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GOOD AND SEMI-STABLE REDUCTIONS OF SHIMURA VARIETIES

X. HE, G. PAPPAS, AND M. RAPOPORT

ABSTRACT. We study variants of the local models constructed by the second author and
Zhu and consider corresponding integral models of Shimura varieties of abelian type.
We determine all cases of good, resp. of semi-stable, reduction under tame ramification
hypotheses.
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1. INTRODUCTION

The problem of the reduction modulo p of a Shimura variety has a long and complicated
history, perhaps beginning with Kronecker. The case of the modular curve (the Shimura
variety associated to GLg) is essentially solved after the work of Igusa, Deligne, Drinfeld
and Katz-Mazur. In particular, it is known that the modular curve has good reduction at
p if the level structure is prime to p. If the level structure is of T'g(p)-type (in addition to
some level structure prime to p), then the modular curve has semi-stable reduction (one
even has a global understanding of the reduction modulo p, as the union of two copies
of the modular curve with level structure prime to p, crossing transversally at the set of
supersingular points). Are there other level structures such that the reduction modulo p is
good, resp. is semi-stable?

This is the question addressed in the present paper, in the context of general Shimura
varieties. The question can be interpreted in two different ways. One can ask whether
there exists some model over SpecZ,) which has good, resp. semi-stable reduction. In the
case of the modular curve, one can prove that, indeed, the two examples above exhaust
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all possibilities (this statement has to be interpreted correctly, by considering the natural
compactification of the modular curve). This comes down to a statement about the spectral
decomposition under the action of the Hecke algebra of the ¢-adic cohomology of modular
curves. Unfortunately, the generalization of this statement to other Shimura varieties seems
out of reach at the moment.

The other possible interpretation of the question is to ask for good, resp. semi-stable,
reduction of a specific class of p-integral models of Shimura varieties. Such a specific class
has been established in recent years for Shimura varieties with level structure which is
parahoric at p, the most general result being due to M. Kisin and the second author [29].
The main point of these models is that their singularities are modeled by their associated
local models, cf. [39]. These are projective varieties which are defined in a certain sense by
linear algebra, cf. [21, 45]. More precisely, for every closed point of the reduction modulo p
of the p-integral model of the Shimura variety, there is an isomorphism between the strict
henselization of its local ring and the strict henselization of the local ring of a corresponding
closed point in the reduction modulo p of the local model. Very often every closed point of
the local model is attained in this way. In this case, the model of the Shimura variety has
good, resp. semi-stable, reduction if and only if the local model has this property. Even
when this attainment statement is not known, we deduce that if the local model has good,
resp. semi-stable, reduction, then so does the model of the Shimura variety. Therefore, the
emphasis of the present paper is on the structure of the singularities of the local models
and our results determine local models which have good, resp. semi-stable reduction.

Let us state now the main results of the paper, as they pertain to local models. See
Section [ for corresponding results for Shimura varieties, and Section M for results on
Rapoport-Zink spaces. Local models are associated to local model triples. Here a LM triple
over a finite extension F' of Q, is a triple (G, {u}, K) consisting of a reductive group G
over F'| a conjugacy class of cocharacters {u} of G over an algebraic closure of F, and a
parahoric group K of G. We sometimes write G for the affine smooth group scheme over
Op corresponding to K. It is assumed that the cocharacter {u} is minuscule (i.e., any
root takes values in {0,+1} on {u}). The reflex field of the LM triple (G, {u}, K) is the
field of definition of the conjugacy class {u}. One would like to associate to (G, {u}, K)
a local model MI2°(G,{u}), a flat projective scheme over the ring O of integers in the
corresponding reflex field F, with action of Gp,. Also, one would like to characterize
uniquely this local model.

At this point a restrictive hypothesis enters. Namely, we have to impose throughout most
of the paper that the group G splits over a tamely ramified extension. Indeed, only under
this hypothesis, X. Zhu and the second author define local models [44] which generalize
the local models defined earlier in the concrete situations considered by Arzdorf, de Jong,
Gortz, Pappas, Rapoport-Zink, Smithling, comp. [43]. In fact, we slightly modify here
the construction in [44] to make sure that MI2¢(G, {u1}) always has reduced special fiber, a
property that is stable under base change. In [44] this reducedness property was established
only when 71(Gger) has order prime to p. Our first main result is that the result of the
construction in [44] is unique, i.e., is independent of all auxiliary choices. This independence
issue was left unexamined in loc. cit.. Here, we need uniqueness after base-changing to an
unramified extension to even make unambiguous sense of our classification of local models
which are smooth or semi-stable. We show:
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Theorem 1.1. Let (G,{pu}, K) be an LM triple such that G splits over a tamely ramified
extension of F. The modified local model MS(G, {u}) of [44] is independent of all choices
made in its construction. Its generic fiber is G g-equivariantly isomorphic to the projective
homogeneous space Xy, and its geometric special fiber MRS (G, {u}) ®oy k is reduced and
is § ®op k-equivariantly isomorphic to the {u}-admissible locus Ax (G, {u}) in an affine
partial flag variety over k.

We refer to the body of the text for undefined items. We conjecture that the properties
in Theorem [[.1] uniquely characterize the local model Mll‘gc(G, {u}), cf. Conjecture

Local models should exist even without the tameness hypothesis. Levin [33] has achieved
some progress on this front by extending the Pappas-Zhu construction to some wild cases.
Scholze [49] considers the general case and defines a diamond local model over Of attached
to the LM triple (G, {u}, K). Furthermore, he proves that there is at most one local model
whose associated diamond is the diamond local model. Unfortunately, the existence ques-
tion is still open. Hence in the general situation, Scholze does not have a construction of
a local model but has a characterization; under our tameness hypothesis, we have a con-
struction but no characterization. In the case of classical groups, the situation is somewhat
better: under some additional hypothesis, we then show that the local models of [44] satisfy
Scholze’s characterizing property, cf. Corollary

Our second main result gives a characterization of all cases when Pappas-Zhu local
models have good reduction. In its statement, F denotes the completion of the maximal
unramified extension of F'.

Theorem 1.2. Let (G,{u},K) be a LM triple over F such that G splits over a tamely
ramified extension of F. Assume that p # 2. Assume that G.q is F-simple, [1aq is not the
trivial cocharacter, and that in the product decomposition over F,Guopk = éad,l X+ X
éad’m, each factor éad’i is absolutely simple. Then the local model MY (G, {u}) is smooth
over Spec Og if and only if K is hyperspecial or (G, u, K) is an LM triple of exotic good
reduction type.

Here the first alternative, that K be hyperspecial, is the natural generalization of the
case of the modular curve with level structure prime to p. There are two cases of the second
(“exotic”) alternative: The first is a striking discovery of T. Richarz, cf. [I, Prop. 4.16].
He proved that the local model associated to an even, resp. odd, ramified unitary group G,
the cocharacter {u} = (1,0,...,0), and the parahoric subgroup which is the stabilizer of a
m-modular, resp. almost m-modular, lattice has good reduction (the case of a m-modular
lattice is much easier and was known earlier, cf. [42] 5.3]). The second case, which is a new
observation of the current paper, is that of the local model associated to an even ramified
quasi-split orthogonal group G, the cocharacter {u} that corresponds to the orthogonal
Grassmannian of isotropic subspaces of maximal dimension, and the parahoric K given by
the stabilizer of an almost selfdual lattice. We therefore see that in the statement of the
theorem both implications are interesting and non-trivial.

Let us comment on the hypotheses in this theorem. The hypothesis that G.q be F-simple
is just for convenience. However, the hypothesis that each factor Guad,i be absolutely simple
is essential to our method. It implies that the translation element associated to {u} in the
extended affine Weyl group for C?ad’,- is not too large and this limits drastically the number
of possibilities of LM triples with associated local models of good reduction. Note that the
tameness assumption on G is automatically satisfied for p > 5 under these hypotheses. We
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refer to the passage after the statement of Theorem [B.1] for a description of the structure
of the proof of Theorem Roughly speaking, we eliminate most possibilities by various
combinatorial considerations and calculations of Poincare polynomials. Ultimately, we
reduce to a few cases that can be examined explicitly, and a single exceptional case (for
the quasi-split ramified triality 3D,) which is handled by work of Haines-Richarz [22].

Our third main result gives a characterization of all cases when Pappas-Zhu local models
have semi-stable reduction.

Theorem 1.3. Let (G,{u},K) be a LM triple over F such that G splits over a tamely
ramified extension of F. Assume p # 2. Assume that Gaq is absolutely simple. Then the
local model MI2(G,{u}) has semi-stable, but non-smooth, reduction over Spec O if and
only if its enhanced Tits datum appears in the table of Theorem [5.0.

Again, let us comment on the hypothesis in this theorem. We are limited in the hy-
potheses of this theorem by the same constraints as in the criterion for good reduction—but
we have to avoid the product of semi-stable varieties since these are no longer semi-stable:
this explains why we make the assumption that G,q4 be absolutely simple. The enhanced
Tits datum of an LM triple is defined in Definition [5.3l In the situation of Theorem [L.3]
the enhanced Tits datum determines the LM triple over F' up to central isogeny and up to
a scalar extension to an unramified extension of F'.

Again, as with Theorem [[.2], both implications in Theorem [[.3] are interesting and non-
trivial. The semi-stability in the case of the LM triple (PGL,, (1,0,...,0), K), where K
is an arbitrary parahoric subgroup has been known for a long time, due to the work of
Drinfeld [I1]. The case of the LM triple (PGL,, (1("),0=) K), where r is arbitrary
and where K is the parahoric subgroup stabilizing two adjacent vertex lattices appears
in the work of Gortz [16], although the significance of this case went unnoticed. Related
calculations also appear in work of Harris and Taylor [23]. Another interesting case is
when G is the adjoint group of a symplectic group with its natural Siegel cocharacter and
K is the simultaneous stabilizer of a selfdual vertex lattice and an adjacent almost selfdual
vertex lattice. This subgroup K is the so-called “Klingen parahoric” and the semi-stability
in this case has been shown by Genestier and Tilouine [14], 6.3]. The case that triggered
our interest in the classification of semi-stable local models is the case recently discovered
by Faltings [13]. Here G is the adjoint group of the split orthogonal group of even size 2n,
the minuscule coweight is the one which leads to the hermitian-symmetric space given by
a quadric, and K is the parahoric subgroup simultaneously stabilizing the selfdual and the
selfdual up to a scalar vertex lattices. Faltings’ language is different from ours, and it could
take the reader some effort to make the connection between our result and his. However,
our point of view allows us to view Faltings’ result as a corollary of the general results of
[29]; see Example 37l The list of Theorem contains two more cases of LM triples with
semi-stable associated local models, both for orthogonal groups, which seem to be new.
Using an idea of Milne [36] and results of Vasiu-Zink [52], we show that in most of these
cases the corresponding integral models of Shimura varieties are “canonical”, see Theorem
1.0l

We refer to the end of Section [l for a description of the proof of Theorem [[3l As a
consequence of the proof, we obtain the following remarkable fact.

Corollary 1.4. Let (G,{u},K) be a LM triple over F' such that G splits over a tamely
ramified extension of F. Assume p # 2. Assume that G is adjoint and absolutely simple.
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Then the local model MII‘;C(G, {u}) has semi-stable reduction if and only if the special fiber
of M¢(G, {u}) has strictly pseudo semi-stable reduction.

We refer to Definition for what it means that the special fiber has strictly pseudo
semi-stable reduction. It is a condition that only involves the reduced special fiber of
M¢(G, {u}); the above corollary shows that it implies that the total scheme M¢(G, {u})
is regular.

Let us now explain the lay-out of the paper. In Section 2] we recall the local models
constructed in [44] and show that they are independent (in a sense to be made precise)
of the auxiliary data used in their construction; we also introduce the modification of
this construction that has reduced special fiber, and compare it with the hypothetical
construction of Scholze [49]. In Section Bl we explain the relation between Shimura varieties
and local models. Section @ does the same for Rapoport-Zink spaces. Section [B] contains
the statements of the main results on local models. In Section [6l we introduce the concepts
of (rationally) strictly pseudo semi-stable reduction and the component count property
(CCP condition), and prove that the former condition implies the latter. In Section [7 we
give a complete list of all enhanced Coxeter data for which the CCP condition is satisfied.
In Section [§, we exclude from this list the cases that do not have rationally strictly pseudo
semi-stable reduction. At this point, we have all tools available to prove Theorem [I.2] and
this is the content of Section @ In Section [0, we use Kumar’s criterion to eliminate all
cases that do not have strictly pseudo semi-stable reduction. At this point, we have all
tools available to prove one implication of Theorem [[3] and this is the content of Section
[[1, where we also prove Corollary [L4l In the final long Section M2, we prove the other
implication of Theorem [L.3l

Notation: For a local field F', we denote by F the completion of its maximal unramified
extension (in a fixed algebraic closure). We denote by xp the residue field of F' and by
k the algebraic closure of kg which is the residue field of F. We always denote by p the
characteristic of kp.

For a reductive group G, we denote by Gger its derived group, by Gg. the simply-
connected covering of Gger, and by G,q its adjoint group. If G is defined over the local
field F', we denote by B(G, F') the extended Bruhat-Tits building of G(F); if S C G is
a maximal F-split torus of G, we denote by A(G,S,F) C B(G,F) the corresponding
apartment. A parahoric subgroup K of G(F) is, by definition, the connected stabilizer of a
point z € B(G, F); by [5], there is a smooth affine group scheme G, over O with generic
fiber G and connected special fiber such that K = §,(Op).

We often write the base change X Xgpec r Spec R as X ®@p R/, or simply as Xpr.
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T. Richarz, P. Scholze and B. Smithling for helpful discussions, and W. M. McGovern for
interesting e-mail exchanges. X. H. was partially supported by NSF grant DMS-1463852.
G.P was partially supported by NSF grant DMS-1701619. M.R. was supported by the grant
SFB/TR 45 from the Deutsche Forschungsgemeinschaft and by funds connected with the
Brin E-Nnovate Chair at the University of Maryland.
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2. LoCAL MODELS
In this section, we discuss the theory of local models, as used in the paper.

2.1. Local model triples. Let F be a finite extension of Qp, with algebraic closure F'.
A local model triple (LM triple) over F is a triple (G,{u}, K) consisting of a connected
reductive group G over F, a conjugacy class {u} of cocharacters of G, and a parahoric
subgroup K of G(F). It is assumed that {u} is a minuscule cocharacter. We denote by
G = Gk the extension of G to a smooth group scheme over Of corresponding to K. Then
G has connected fibers and satisfies K = §(Op). We set K = (O 7). Sometimes we also
write (G, {u}, ) for the LM triple.

Two LM triples (G, {u}, K) and (G',{i'}, K') are isomorphic if there exists an isomor-
phism G — G’ which takes {u} to {¢/} and K to a conjugate of K’. More generally, a

morphism
¢: (G {u}, K) — (G {u'}, K)
of LM triples is a group scheme homomorphism ¢ : G — G’ such that {¢'} = {¢ o u} and
p(K) C ¢ K'g'1, for some ¢ € G'(F).
Let E be the field of definition of {1} inside the fixed algebraic closure F of F, with its
ring of integers Og. We denote by k the algebraic closure of its residue field kg. Denote
by Xy, the partial flag variety over £ of G associated to {u}.

2.2. Group schemes. Let G be a reductive group over F' that splits over a tame extension
of F. Choose a uniformizer m of F. The theory of [44] starts with the construction of
a reductive group scheme G over Op[u®] := Op[u,u~!] which induces by specialization
(Op[u*] — F,u > 7) the group G over F. Let G’ be the reductive group induced by G by
specialization along (Op[u®] = kp((u)),n + 0).

By [44], Thm 4.1], there exists a smooth affine group scheme G over Op[u] with connected
fibers which restricts to G over Op[u*] and which induces the parahoric group scheme G
under the specialization (Op[u] — Op,u — 7). It also induces a parahoric group scheme
G’ under the specialization (Op[u] = kr[[u]],7 — 0), with an identification

g @0 p,m—0 k= 9, ®np[[u]],u'—>0 k. (21)

We denote by G, resp. S, the group schemes over O [uT], resp. O:[u], obtained by base
change Op — Oj.

Let us recall some aspects of the construction of these group schemes. The reader is
referred to [44] for more details. For simplicity we abbreviate O = Op, O = O i

Denote by H (resp. G*) the corresponding split (resp. quasi-split) form of G over O
(resp. F'). These forms are each unique up to isomorphism.

Fix, once and for all, a pinning (H, Ty, By, eo) defined over O. As in [44], we denote by
Zpg the group of automorphisms of the based root datum corresponding to (H,Tx, By).

Pick a maximal F-split torus A C G. By [5] 5.1.12], we can choose an F-rational maximal
F -split torus S in G that contains A and a minimal F-rational parabolic subgroup P which
contains Zg(A). In [44], a triple (A S, P) as above, is called a rigidification of G. Since by
Steinberg’s theorem, the group G=GopFis quasi-split, T = Z(S) is a maximal torus
of G which is defined over F'.

As in [44], 2.4.2], the indexed root datum of the group G over F' gives a Zg-torsor T over
Spec(F'). Then, by [44], Prop. 2.3, we obtain a pinned quasi-split group (G*,T*, B*,e*)
over F' and, by the identification of tame finite extensions of F' with étale finite covers
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of O[u®] given by u + 7, a pinned quasi-split group (G*,T*, B*,e*) over O[u®] (see loc.
cit., 3.3). As in [44], we denote by S* the maximal split subtorus of I*. We have an
identification

(Q*7I*7§*7§*) ®O[ui],u»—>7r F= (G*vT*7 B*7 e*)' (2’2)

Remark 2.1. a) The base change (G*, T, B, €*) ®0[u+] Olu*] is independent of the choice
of uniformizer 7w of F. This follows by the above, since the identification of the tame Galois
group of F with Z/(1) = [112p Zi(1), given by v — y(wt/™) /xt/™  does not depend on the
choice of the uniformizer 7.

b) It is not hard to see, using [44], 3.3.2], that the Picard group of every finite étale cover
of O[u®] is trivial. The argument in the proof of [9, Prop. 7.2.12] , then shows that, up to
isomorphism, a quasi-split reductive group scheme over O[u*] is uniquely determined by a
corresponding = p-torsor over O[u™] and therefore obtained by the above construction. In
fact, any quasi-split reductive group scheme over O[u] is determined, up to isomorphism,
by its base change along O[u*] — F, given by u + 7.

As in [44], we obtain from (2.2]) identifications of apartments
A(G", 5%, F) = A(G ) Sy (1)), (23)

for both k = F, k. Given z* € A(G*,S*,F) C B(G*,F), Theorem 4.1 of [44], produces a
smooth connected affine group scheme

g =g

over O[u] which extends G* ®0[u] Olu*]. Using Remark 1] we see that G.. does not
depend on the choice of the uniformizer. (Notice that G*. might not descend over O[u]
since z* is not necessarily F-rational.)

Now, given z € B(G, F') which corresponds to K, choose a rigidification (A4, S, P) of G
over I, such that z € A(G, S, F).

Since G = Gop F and G*®p F are both quasi-split and inner forms of each other, we can
choose an inner twist, i.e., a Gal(#'/F)-stable G (F')-conjugacy class of an isomorphism

VvV Gop F S G op F.
Then the class [g,] of the 1-cocycle o — Int(g,) = Yop~to~t in HY(Z, G;d(p)) maps to
the class in H!(Z, Aut(G*)(F)) that gives the twist G of G*. The orbit of [g,] under the
natural action of Out(G*)(F) on HY(Z,G}4(F')) only depends on the isomorphism class of

G. In [44], it shown that there is a choice of ¥ that depends on the rigidification (A, S, P)
such that the inclusion

B(G, F) € B(G,F) L5 B(G*, F)
identifies A(G, S,F’) with A(G*, S*, F), set ¥ 1= 9.(x). In loc. cit. the group scheme G
over O[u] is then constructed such that 1 extends to isomorphisms

¥:G =3, ®op Olut] = G,

% : 2:{: i> E::*
A priori, the group scheme § depends on several choices, in particular of G and of the
uniformizer 7. However, we now show:
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Proposition 2.2. a) Up to isomorphism, the group scheme G=G ®0[ut] O[ui] depends
only on G =G ®p F. } 5 }
b) Up to isomorphism, the group scheme §_ = G _ @0y Olu] depends only on G @ F
and the Gyq(F)-orbit of x € B(G, F). }
¢) For any a € O*, the group scheme 9, Qo Olu] supports an isomorphism

Ry a*(§, @op Olul) = G, ®opu Olul.
that lifts the isomorphism given by u +— a - u.
Proof. By the construction, as briefly recalled above, there are isomorphisms

v:G5HE, ¥:§, DG

Hence, it is enough to show corresponding independence statements for Q* and Q;* First
we notice that by Remark 2.1 G only depends on G ®p F and so part (a) follows. Now
using the argument in [44, 4.3.1], we see that changing the rigidification (A4, S, P) of G,
changes the point z* to another point z'* of A(G*, S*, F) in the same G;d(ﬁ’)—orbit, hence
in the same orbit under the adjoint Iwahori-Weyl group ngd. However, each element w
of Wgzd lifts to an element n of G*;(O[u®]) that normalizes S*. Acting by Int(n) gives an
isomorphism between the group schemes g;* and ﬁ:, This implies statement (b). To see
(c), we first observe that Remark 21l implies that there is an isomorphism over Ofu?]

R,:a*(G) 5 &

that lifts u — a - u. To check that this extends to an isomorphism over é[u] it is enough to
check the statement for the corresponding parahoric group scheme over F'[[u]]. This follows
by an argument as in the proof of [55, Lemma 5.4]. O

Remark 2.3. Suppose that G = G* is quasi-split over F. Then, by Remark 2.1] (b), the
extension G = G* over O[u®] is determined by G as the unique, up to isomorphism, quasi-
split group scheme that restricts to G after u — 7. However, the restriction G* ®@q,+] F,
by u + 7/, where 7’ = a - 7 is another choice of uniformizer, is not necessarily isomorphic
to G. For example, suppose G = Resy g, (Gm), with L = Qp(pl/z), p odd. Suppose m = p.
Then,

G = Resg, [u#][x]/(x2-u) /2, [u*] (Gm)-

Specializing this by u + ©" = —p, gives Resy//q,(Gn), with L' = Q,((—p)*/?) which is a
different torus than G if p = 1 mod 4.

Therefore, the extension G* depends on both G and 7. When we need to be more precise,
we will denote it by G. By the above, we have an isomorphism

R a"(Gr) S G,
where a : Spec(O[u*]) — Spec(O[u®]) is given by u + a - u, which descends R, above.

2.3. Weyl groups and the admissible locus. We continue with the set-up of the last
subsection. The group scheme G admits a chain of tori by closed subgroup schemes S C T’
which extend S and T and correspond to §*, I* via 9. These define maximal split, resp.
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maximal, tori in the fibers G = G @p F and G’ = G’ Opp((u)) k((u)) of G. By the above
constructions, we obtain identifications of relative Weyl groups, resp. Iwahori Weyl groups,

WO(év T’) = WO(élv T’/)v W(é7 T) = W(élv Tl)) (24)

cf. [45, §2]. Assume now that we have a conjugacy class {u} of a minuscule geometric
cocharacter of G, so that (G, {u}, K) is a local model triple over F. Then the above give
identifications of {u}-admissible sets in the Iwahori Weyl groups

Adm({p}) = Adm'({u}), (2.5)

¢f. [45, §3]. Denoting by K’ the parahoric subgroup of G'(k((u))) defined by &', with
corresponding group scheme g , we also obtain an identification of {u}-admissible subsets
in the double coset spaces (cf. [45] §3]),

Adm ({p}) = Adm'y, ({u}) € WAW /Wi = W \W' /W, (2.6)

We define a closed reduced subset inside the loop group flag variety ' = LG / L+G over
k, as the reduced union

Ax@GAn) = U  Sw (2.7)
weAdn, ()

Here S, denotes the L*G/-orbit corresponding to w € WK,\W’ /Wy,. We note that, since

{11} is minuscule, the action of LtG on A (G, {u}) factors through G @ pf k- Via @),
we obtain an action of § ®o, k on Ax (G, {u}).

Corollary 2.4. Up to isomorphism, the group G’ over kE((w)) and its parahoric subgroup
K’ are independent of the choice of the uniformizer m and of G. The isomorphism can be
chosen compatibly with the identification (2.1I), and the identifications [2.35) of Weyl groups
and (26)) of admissible sets. As a consequence, the affine partial flag variety F over k
and its subscheme Ak (G,{p}) with action of G ®o, k is independent of the choice of the
uniformizer ™ and of G.

Proof. Follows from Proposition 2.2 its proof and the definition of the {u}-admissible
set. O

2.4. Descent. We continue with the set-up of the previous subsection; we will apply a
form of Weil-étale descent from O to O. The following result is not needed for the proof
of Theorems and [[.3] about local models with smooth or semi-stable reduction, see
Remark 2.8 However, it is an important part of the argument for the independence result
of Theorem [I1]

Proposition 2.5. a) The group scheme §, ®o(,)O[[u]] depends, up to isomorphism, only on
G, the uniformizer m and the G,q(F)-orbit of x € B(G, F). We denote it by gm®o[u10[[u]].

b) If ¥ = a - 7 is another choice of a uniformizer with a € O, then there is an
isomorphism of group schemes

R} a*(S,., o Ollul)) = S5, @op Olful]

where a : Spec O[[u]] — Spec O[[u]] is given by u +— a - u.
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Proof. We first show (a). For this we fix the uniformizer 7. By Proposition [2.2] the base
change §  ®oj, O[[u]] depends only on G' and the Gaq(F)-orbit of x € B(G, F). We will
now use descent. By the construction, the group §_in [44] is given by a (o-semilinear)
Weil descent datum
Int(g)-0:G:. — G..

Here g € G*,(O[u®)); this depends on various choices made in [44]. The action of ¢ is with
respect to the rational structure given by the O[ui]—group G this depends on our fixed
choice of 7, see Remark 2.31 We start the proof by giving:

9

Lemma 2.6. The automorphism group «/* = Aut(g’, D[] Ol[u]]) of the group scheme
9. D) Ol[u]] has the following properties:

v

i) It contains the normalizer N * ofEZ(OU[[u]]) in Gr(O((u))).
ii) The homomorphism </* — Aut(Gk.) given by u — m is surjective. We have

ker(/* — Aut(G}.)) = ker(S%y - (O[[u]]) == G1q,+(0))

ad,z*
and this kernel is pro-unipotent.
Proof. Let us first study Aut(G:.): Passing to the generic fiber gives an injection
Aut(G5.) C Aut(GF).
There is also ([9, Prop. 7.2.11]) a (split) exact sequence
1 — Giy(F) — Aut(G*) — Out(G*) — 1.
This gives
1 — Gy (F)gr — Aut(GF)pr = Aut(G5) — Out(G*)pr — 1

where the subscript z* denotes the subgroup that fixes z* € B(G*, F ).

Notice here that G;d(ﬁ )+ is the normalizer in G (F) of the parahoric subgroup §*.(0) =
G*(F)9.. (Indeed, by [5, 5.1.39], the normalizer of the stabilizer of any facet in the Bruhat-
Tits building has to also stabilize the facet; this last statement easily follows from that.)
We also have

1— G(F)Y — Gig(F)er — Ay — 1
where Ag« is the finite abelian group given as the group of connected components of the
“stabilizer of *” Bruhat-Tits group scheme for G7; over 0.

Similarly, we have an injection «* C Aut(g*). The quasi-split G* carries the pinning
(T*, B*,¢*) and we can use this to identify Out(G ) = Out(G*) with a subgroup of the
group Eg of “graph” automorphisms. By [9, Prop. 7.2.11], we have

Aut(G") = Giy(O((w))) % Out(G). (28)

We first show (i), i.e., that every g € A4* C G*;(O((u))) naturally induces an auto-
morphism Int(g) of §* D[] Ol[u]]. (For simplicity, we omit the subscript z* below.) The
adjoint action of g € A4 gives an ind-group scheme homomorphism Int(g) : LG* — LG*
which preserves LTG*(0). Using the fact LTG" is pro-algebraic and formally smooth over

O, we can easily see that the set of points L+§*(F' ) with F as residue field is dense in
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L*TG*. Since LTG* is a reduced closed subscheme of the ind-scheme LG* = LG* over O, it
follows that ¢ induces a group scheme homomorphism

Int(g) : LTG* — LTG".
In particular, g also normalizes LTG*(F) = G*(F[[u]]). Since §* 61 F((u)) is quasi-split

and residually split, the F-valued points are dense in the fiber 9*®O[u} Fover u = 0. Hence,
we obtain by [0, 1.7.2] that Int(g) induces an automorphism of the group scheme G* B[

F[[u]]. Since G* is smooth over O[[u]] and Int(g) gives an automorphism of G* 6 O((v)),

we see that Int(g) extends to an automorphism of G* B[] Ol[u]] as desired. This proves

(i)-

Let us show that «7* satisfies (ii). Sending u — 7 gives a homomorphism
o — Aut(G5).
This restricts to A™* — G4 (F)z+: To see this we use that LTG*(0) — §*(0) = G*(F)"

m*
given by u +— 7 is surjective (by smoothness and Hensel’s lemma) and that G} (F').~ is

the normalizer of G*(F)?. in G;d(ﬁ' ). We obtain a commutative diagram with exact rows

1 — N — o * — Out(G )gr —> 1
L I 1 (2.9)
1 — Gi(F)gs — Aut(9h.) — Out(G*)y — 1.
We will show that the left vertical arrow is a surjection with kernel equal to ™ :=
ker(G? dx(é[[u]]) A Sad 2+ .(0)) and that the right vertical arrow is an isomorphism.
This would imply part (11)
The subgroup Sadx (Ol[u]]) € G4(O((u))) is contained in .4*. Mapping u — 7 followed

by taking connected component gives a homomorphism
§: N* — GEg(F) e — Ay
We will show that the sequence

1 Gy O[] — A" 25 Ao —5 1 (2.10)
is exact. Since G x(é[[ 1) =5 g, . (0) = G*4(F)%. is surjective (by smoothness and

Hensel’s lemma) this would show that u +— 7 gives a surjective

N Gy (F) e —> 1

with kernel equal to .7 := ker(§%; . (O[[u]]) == Gi, ,-(0)).

Let us show the exactness of (2I0). The subgroup G dx(é[[u]]) lies in the kernel of
d and we can see that it is actually equal to that kernel: Let g € A4 with d(g) = 1.
Since g also normalizes §*(F[[u]]), we see as above, that g lies in Gy (F((u)))e-. Using
the identification of apartments (Z2]) we now see that since d(g) = 1, g is actually in the
connected stabilizer G*4(F((u)))%. = _;dm(ﬁ'[[u]]) Since g is also in G4 (O((u))), we
have

g€ Sadx (F[[u]) N Ghg - (O((w))) = G2y, (O[]
Therefore, ker(6) =G>, .(O D[[u]]). It remains to show that d is surjective. By [B, Propo-
sition 4.6.28 (ii)], for each y € Ag«, there is an element n € Nyq(F) that fixes 2* in the
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building so that §(n) = y. By the identification of the apartments (2.3]), we can lift n to
n € N,q(O((u))) which fixes the point z* considered in the building over F'((u)). Then n
normalizes LTG*(F) N G*(O((u))) = LtG*(O) so n is in A *.

It remains to show that Out(G g+ — Out(G*),+ given by u — 7 is an isomorphism. The
corresponding map Out(Q*) — Out(é*) is an isomorphism by the construction of G from
G*. Hence, it is enough to show that Out(G )+ — Out(G*),- is surjective. By definition,
v E Out(é*)x* is given by an automorphism of G* preserving the pinning (T*,E*,é*),
such that v(z*) = Int(g)(x*), for some g € G:d(ﬁ). Since v(z*) and z* both lie in the
apartment for $* C T*, this implies that v(z*) = Int(n)(z*), for some N;d(F). As above,
we can lift n to n € Ny (O((u))). Using the identification of apartments ([Z3) we see that
~ is in Out(G)ge. O

We can now resume the proof of Proposition We will show that G ®o, O[[u]]
is independent, up to isomorphism, of additional choices. Suppose as above that g €
_Zd(é[ui]) is a second cocycle giving a group scheme g;, then ﬁ; is a form of § . The

twisting is obtained by the image of the cocycle given by
c=g g ' €GuOT).

(This is a cocycle for the twisted o-action on G*4(O[u*]) given by Int(g).) Notice that the
restriction of ¢ along u = 7 preserves x*. Hence, ¢ also preserves x* considered as a point in
the building over F'((u)). It follows that ¢ lies in the normalizer of the parahoric 9. (F'[[u]]).
Using O((u)) N F[[u]] = O[[u]], we see that ¢ lies in the normalizer 4* of 9. (O[[u]]) and it
gives a cocycle for the twisted o-action. The isomorphism class of the form §' ®oy, O[[u]]
is determined by the class [¢] in H'(Z,.<7). Here & = Aut(G, Q6 Ol[u]]) which is &/*
but with the twisted o-action. By Lemma (b), #* and therefore also the kernel
A = ker(o/ — Aut(9;)) is pro-unipotent. Using this, a standard argument as in the proof
of Lemmas 1 and 2, p. 690, of [6], gives that H* (Z, &) = 0. Since the specialization of the
form §' at u = 7 is isomorphic to G,, the image of the class ¢ in HY(Z, Aut(S,)) is trivial.
Hence, by the exact sequence for cohomology, the class [¢] in H! (Z, gf) is trivial. Therefore,
we obtain §' @, Ol[u]] ~ G, @0, Ol[u]], where in both, the choice of m remains the same.
This proves part (a).

To prove part (b), suppose that 7’ = a -7, a € O*, is another choice of uniformizer. By

Proposition 2.2] (c), the group scheme G, o O[u]] supports an isomorphism

u]
Ry : (85, ®pp, Ollul]) = . @y, Ollul]

We would like to show that R, descends to an isomorphism R : a*(§, . ®op Ollu]]) =

as Ry(®) := Ry (a*Int(g))o(Ry) '-o for G . Consider also a descent datum &’ := Int(g')-0
for G _,. It is enough to show that @’ and R,(®P) are cohomologous, i.e., that there is an
automorphism h of G7, 6 O|[u]] such that h™'Ry(®) = & - o(h)~!. Then we can set

R} = h~'R, which descends. To show the existence of h,unote that R, is the identity on
the maximal reductive quotient of the fiber of G, D[] O[[u]] over the point (u, 7). We

S, »®0[uOl[u]]. Consider the descent datum @ := Int(g)-o for G, _and its “rotation” given

have ﬁm ~ ﬁw,w’ modulo (u, ) since they both are isomorphic to G, modulo 7. Hence, @’
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and R,(®) are cohomologous when considered modulo a (connected) pro-unipotent group.
An argument similar to the one in the proof of part (a) above then shows the result. [

2.5. Pappas-Zhu local models. Let (G, {u}, K) be a local model triple over F' such that
G splits over a ramified extension of F'. Again we set O = Op.

In [44], there is a construction of a “local model” Mg ,. The local model Mg, is a
flat projective Og-scheme equipped with an action of Gp, such that its generic fiber is
G g-equivariantly isomorphic to Xy,3. By definition, Mg, is the Zariski closure of Xy, C
Grg ®ppu E in Grgo ®o Op, where Grg is the Drinfeld-Beilinson (global) Grassmannian
over O[u] for § and Grg o = Grg ®¢[,) O is its base change to O by u + m. A priori, Mg,
depends on the group scheme § over Ofu] and the choice of the uniformizer 7.

Theorem 2.7. The Go,-scheme Mg, over Og, depends, up to equivariant isomorphism,
only on the local model triple (G, {u}, K).

Proof. We first observe that Mg, can be constructed starting only with {x}, the base
change § ®oy,) O[[u]], and the ideal (v — 7) in Of[u]]. Indeed, we first see that Grg o only
depends on § ®pp,) O[[u]], and the ideal (v — 7) in O[[u]]. Set t = u — . The base change
Grg,o = Grg ®pp, O by u — 7 has R-valued points for an O-algebra R given by the set
of isomorphism classes of G-torsors over R[t] with a trivialization over R[t,1/t]. By the
Beauville-Laszlo lemma (in the more general form given for example in [44, Lemma 6.1,
Prop. 6.2]), this set is in bijection with the set of isomorphism classes of § ®op, R|[[t]]-
torsors over R[[t]] = R[[u]] together with a trivialization over R((t)) = R[[u]][(v — 7)~1].
To complete the proof we use Proposition It gives that § ®o, O[[u]] only depends
on the local model triple and 7, hence Grg o only depends on the local model triple and
m; for clarity, denote it by Grg o . Part (b) of Proposition with the above then gives
that pulling back of torsors along a : Spec R[[u]] — Spec R[[u]], given by u + a - u, gives
an isomorphism
GI‘97O77r L) GI‘97O77F/.

Hence, by the above Grg o depends, up to equivariant isomorphism, only on G and K. The
result then follows from the definition of Mg ,. O

Remark 2.8. We can obtain directly the independence of the base change Mg ,,®0,, Op via
the same argument as above, by using the simpler Proposition in place of Proposition
2.9l

2.6. Pappas-Zhu local models: A variant. It is not clear that the local models Mg , of
[44] are well behaved when the characteristic p divides the order of 71 (Gge; ). In particular, it
is not clear if in this case, their special fiber is reduced and that they are normal. Motivated
by an insight of Scholze, we employ z-extensions to slightly modify the definition of loc. cit.
Suppose that (G, {u}, K) is an LM triple over F' such that G splits over a tame extension
of F'. Choose a z-extension over F

1 —T— G — Gy — 1. (2.11)

In other words, G is a central extension of G,q by an strictly induced torus 7" and the
reductive group G has simply connected derived group, Gaer = Gse (see for example, [37

Prop. 3.1]). (Here, we say that the torus 7" over F is strictly induced if it splits over a ﬁnlte
Galois extension F’/F and the cocharacter group X, (T) is a free Z[Gal(F'/F)]-module.)

We can assume that G, and then also T', split over a tamely ramified extension of F. By
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[37, Applic. 3.4], we can choose a cocharacter [ of G which lifts taq and which is such
that the reflex field E of {f1} is equal to the reflex field E,q of {j.q}. Let K be the unique
parahoric subgroup of G which lifts K,q. Then the corresponding group scheme G fits in a
fppf exact sequence of group schemes over Op,

1 —T—G— G — 1,
which extends the z-extension above, comp. [29, Prop. 1.1.4]. We set
MR(G, {u}) = Mg ®o, , Ok

which is, again, a flat projective Op-scheme equipped with an action of Gp, (factoring
through Gaq,0,) with generic fiber G'g-equivariantly isomorphic to X{,,,. Indeed, the action
of éoE on M _ factors through the quotient G.q4 0, = 90E/‘J'OE (because it does so on the
generic ﬁber) Slnce G — (g extends to a group scheme homomorphism § — G.4, we also
obtain an action of Gp,, on MI2(G, {u}).

Remark 2.9. 1) By [44, Thm. 9.1}, Mg 5 has reduced special fiber. Therefore, the same
is true for the base change MI2(G, {u}) = Mg ®0y  Op. By [44] Prop. 9.2], it follows

that M¢(G, {u1}) is a normal scheme.
2) If p does not divide the order of 71 (Gge;) then we have an equivariant isomorphism
Mg ®op,  Op ~ Mg, cf. [29, Prop. 2.2.7]@. Therefore, in this case

M (G, {n}) ~ Mg .

We do not know whether this continues to hold when p divides the order of 71 (Gger).

3) Suppose that G’ — G,q is another choice of a z-extension as in (ZII) and let ji/
be a cocharacter that also lifts p,q with reflex field £ = F,4q. Then the fibered product
H=G X Gag G' — G is also a similar z-extension with kernel the direct product T' x T” of
the kernels of G — Gaq and G/ — Gaq. We have a cocharacter pwr = (@i, /) which also has
reflex field E. The parahoric group scheme for H corresponding to G is H = 9 XG4 9’ We
obtain My 1,y as in [44]. By construction, we obtain

Ms (ppy — Mi{ﬂ}’ My gy — MN’,{/l}’

both Hp,-equivariant isomorphisms. Hence, we obtain an isomorphism ]\49 (i} = Mg, T

which is Gaq,0,-equivariant. As a result, M'2¢(G, {u}) is independent of the choice of the
z-extension. We can now easily deduce from Theorem 2.5, that M¢(G, {u}) also only
depends on the local model triple (G, {u}, K).

Theorem 2.10. The geometric special fiber Mll‘gc(G, {1}) ®oy k is reduced and is G ®o,, k-

equivariantly isomorphic to Az (G, {ji}).

Proof. This follows from the construction and [44, Thm. 9.1, Thm. 9.3]. O
Note that this implies that the reduced k-scheme A f((é, {f1}) is independent of the choice

of z-extension and only depends on (G, {u}, K). (This fact can be also seen more directly

using Corollary 2.4 and [41] §6].) We call this the p-admissible locus of the local model
triple (G, {u}, K) and denote it by Ax (G, {u}).

Hn loc. cit. F = Qp, but the result holds for general F'.
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Remark 2.11. It follows from [41], 6.a, 6.b] that G' — égd and G' — égd induce equi-
variant morphisms

Ak (G, {n}) — Ak,y(Gada, {1taa}),  Ag(G,{ii}) — Ak, (Gad, {1taa})

which both induce bijections on k-points. As a result, we have equivariant bijections

Ak (G {u})(k) = A (G, {p})(k) = Ak, (Gad; {ttaa}) (k).

The following conjecture would characterize the local model MIC¢(G, {1}) uniquely.
Conjecture 2.12. Up to equivariant isomorphism, there exists a unique flat projective
Og-scheme M equipped with an action of So, and the following properties.

(a) Its generic fiber is G g-equivariantly isomorphic to Xy, .
(b) Its special fiber is reduced and there is a G ®o, k-equivariant isomorphism of k-schemes
M @0, k= A (G, {u}).

The local models constructed above have the following properties.

Proposition 2.13. The following hold.
(i) If K is hyperspecial, then MIX(G,{u}) is smooth over Op.

(ii) If F'/F is a finite unramified extension, then
MR (G, {p}) ®o, O = MES(G @F F', {n®F F'}). (2.12)
Note that here the reflex field E' of (G ®@p F',{u®@p F'}) is the join of E and F'.
(iti) If (G, {u}, K) = (G1,{m }, K1) x (G2, {p2}, K2), then
MR(G, {n}) = (MRS (G1,{m}) ®op, Or) x (MR5(Ga, {n2}) ®0y, Ok). (2.13)
Note that here the reflex field E of (G,{u}) is the join of the reflex fields Ey and Es.

(iv) If ¢ : (G, {u},K) — (G, {i'},K') is a morphism of local model triples such that
¢: G — G gives a central extension of G', there is a G0, -equivariant isomorphism

MG, {n}) = MG {u'}) @0y, Op. (2.14)

Proof. When K is hyperspecial, we can choose the extension 9 over Op|u| to be reductive;
then M°(G, {1}) is smooth as required in property (i). By choosing the extension §' =

g ®0p[u) OF[u], we easily obtain (ii). For (iii), we choose the extension g = 9 X 9 over
Or[u]. Finally, (iv) follows by the construction since Goq = Gl4. d

2.7. Scholze local models. Under special circumstances, we can relate the local models
above to Scholze local models and give in this way a characterization of them different
from Conjecture In particular, this gives a different way of proving the independence
of all choices in the construction of local models. Recall Scholze’s conjecture [49, Conj.
21.4.1] that there exists a flat projective Op-scheme I\\/JIIO’iLﬁat with generic fiber Xy, and
reduced special fiber and with an equivariant closed immersion of the associated diamond,
Mlizﬂaw — Grg,spdo,- Scholze proves that MloC flat
18.3.1]. Note that Scholze does not make the hypothesm that G split over a tame extension.
We are going to exhibit a class of LM triples (G, {u}, K) (with G split over a tame extension)
such that the local models MIX(G, {u}) defined above satisfy Scholze’s conjecture.

is unique if it exists, cf. [49, Prop.
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We will say that a pair (G, {u}), consisting of a reductive group over F' and a geomet-
ric conjugacy class of minuscule coweights is of abelian type when there is a similar pair
(Gy,{u1}) with E; C EF and with a central isogeny ¢ : G der — Gder Which induces an
isomorphism (G ad, {#t1,ad}) = (Gad, {taa}) and is such that there exists a faithful minus-
cule representation py : G; <= GL,, over F such that p; o uy is a minuscule cocharacter pg
of GL,. Here by a minuscule representation we mean a direct sum of irreducible minus-
cules (i.e., with all weights conjugate by the Weyl group.) In this case, we call such a pair
(G1,{p1}) a realization of the pair (G, {u}) of abelian type.

Theorem 2.14. Let (G,{u}, K) be a LM triple over F such that G splits over a tame exten-
sion of F', for which there is an unramified finite extension F'/F such that the base change
(G, {n})®p F’ is of abelian type, with realization (G1,{p1}) such that p 1 |m1(G1 der)|- Then
the local model M'%°(G, {u1}) defined above satisfies Scholze’s conjecture [49, Conj. 21.4.1].

Proof. We already checked that the flat projective scheme MX(G, {u}) has reduced special
fiber. To show the conjecture it remains to show that the associated diamond MX*(G, {u})®
over Spd(Op) embeds via an equivariant closed immersion in Grggpq(0,) such that its
generic fiber identifies with Xf{)u}'

Using étale descent along F’/F and property (ii) of Proposition 213l we see that it is
enough to show the conjecture for (G,{u}) ®p F’; so, we can assume that (G,{u}) is of
abelian type to begin with. Let (G1,{u1}) be a realization. In fact, we can also assume
that £1 C E. Observe that by using ¢, we obtain a parahoric subgroup K of G; which
corresponds to K. By [29, Prop. 1.3.3], p1 : G1 — GL,, extends to a closed immersion

p1:9) = GL,

where G is the stabilizer (possibly non connected) of a point in the building of G (F') that
corresponds to K; and where G£ is a certain parahoric group scheme for GL,. In fact,
by replacing p’ by a direct sum p'®™ we can assume that G£ is GL,, over Op; we will do
this in the rest of the proof. By [49], Prop. 21.4.3], Grg; spd(0p)m = GT5,.5pd(0p).u» Where
S1 = (9})°. This gives a closed immersion Grg, spd0,),m — Groc,spd(0g)- BY 29, Prop.
2.3.7), p1: §) — GL induces

Mg, g1y = (M, {uay) o, = Gr(d,n)og, ,

which is also an equivariant closed immersion. (Here the local model Mgy, 1,3 is the
Grassmannian Gr(d,n) over Op.) By the assumption p { |71(G1 der)|, Remark [29] above
gives that MI®(G, {u}) ~ Mg, ,, ®0p, Op. This allows us to reduce the result to the case
of GL,, which is dealt with by [49, Cor. 21.5.10]. O

We view Theorem [2.14] as evidence for the following conjecture.

Conjecture 2.15. For all local model triples (G,{u}, K) with G split over a tame exten-
sion, the local model MI2(G,{u}) defined in the last subsection satisfies Scholze’s Congjec-
ture [49, Conj. 21.4.1].

It has in any case the following concrete consequenceE

2We were recently informed that a similar result, which also covers cases of wildly ramified groups, was
obtained by J. Lourenco (forthcoming Bonn thesis).
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Corollary 2.16. Suppose that (G,{pu}, K) is an LM triple with G adjoint and classical such
that G splits over a tame extension of F'. Assume that there exists a product decomposition
over F G Qp F = G1 X o0 X Gm, where each factor GZ is absolutely simple. If there
is a factor for which (Gy, {1i}) ®p F is of type (Dp,wy) with n > 4 (i.e., of type DY in
Deligne’s notation [10, Tables 1.3.9, 2.3.8]), also assume that p is odd. Then the local model
MC(G, {u}) defined above satisfies Scholze’s conjecture [49, Conj. 21.4.1].

Proof. We will show that such a LM triple (G, {u}, K) is, after an unramified extension, of
abelian type. Using our assumption, we can easily reduce to the case that G is absolutely
simple, quasi-split and residually split. The possible pairs (G, {u}) with such G and {u}
minuscule, are listed in the first two tables in §4. A case-by-case check gives that, when
G is a classical group, we can find a realization (G1,{p1}) of (G,{n}) as a pair of abelian
type such that G ger is simply connected—except when the type of Gz is D,,. (See [10}
Rem. 3.10].) In the latter case we can find a realization with G ger simply connected in the
case (Dp,wY) (i.e., of type DX in Deligne’s notation), and a realization where 71 (G1 der)
has order 2 in the case (D,,wY) (i.e., of type DX in Deligne’s notation). (For types A,,
C, and DI the minuscule representation p; is given over F by a sum of corresponding
standard representations, for types B, and DE, is given by a sum of spin representations.)
In all cases, we can pick uq so that Fy = E. The result follows from Theorem 2.141 O

3. SHIMURA VARIETIES

3.1. Consequences for Shimura varieties. Let (G,X) be a Shimura datum. We fix a
prime p > 2 such that G := G ®g Q, splits over a tamely ramified extension of Q,. We
consider open compact subgroups K of G(Ay¢) of the form K = K?- K, C G(Ap ) x G(Qp),
where K = K, is a parahoric subgroup of G(Q,) and KP? is sufficiently small Let E be
the reflex ﬁeld of (G,X). Fixing an embedding Q — Q determines a place p of E over
p. Let E = Ep. Then FE is the reflex field of (G, {u}), where {1} is the conjugacy class

of cocharacters over @p associated to X. We denote by the same symbol Shk (G, X) the
canonical model of the Shimura variety over E and its base change over E.

Theorem 3.1. a) ([29]) Assume that (G,X) is of abelian type. Then there exists a scheme
Sk (G, X) over O with right G(A?)—actz’on such that:

1) Any sufficiently small open compact KP C G(A?) acts freely on Sk (G,X), and the
quotient Sk (G,X) := Sx(G,X)/KP is a scheme of finite type over O which extends
Shk (G, X). Furthermore

SK(G7 X) = @Kp SKPK(G7 X)7
where the limit is over all such KP C G(A?).

2) For every closed point x of 8;c(G,X), there is a closed point y of MIS(G, {u}) such
that the strict henselizations of 81c(G,X) at x and of MI2°(G, {u}) at y are isomorphic.

3) The scheme Sk (G,X) has the extension property: For every discrete valuation ring
R D Op of characteristic (0,p) the map

8k (G,X)(R) — Sk (G, X)(R[1/p])

s a bijection.
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b) (]29]) Assume that (G,X) is of Hodge type, that K is the stabilizer of a point in the
Bruhat-Tits building of G, and that p does not divide |11 (Gger)|. Then the model 8 x (G, X)
of (a) above admits a G(A?)—equz’vam’ant local model diagram over O,

Sk (G, X)

/ X (3.1)

SK(G’X) MII%C(G’ {/L})7

in which 7 is a torsor under the group scheme So,, and ¢ is a Go,-equivariant and smooth
morphism of relative dimension dimG.

¢) (B3, Thm. 8.2], [25, Thm. 4.1]) Under the assumptions of (b) above, the morphism
@ in the local model diagram (3.1) is surjective. O

Remark 3.2. Part (a2) appears as [29, Thm. 0.2], but is stated there for the original local
models of [44], and under the assumption p t |71(Gger)|- The statement above is for the
modified local models of this paper and can be deduced by the results in [29]. Part (b)
follows from [29, Thm. 4.2.7] and Remark [Z9] (2).

Definition 3.3. Let O be a discrete valuation ring and suppose that X is a locally noe-
therian scheme over O.

(i) X is said to have good reduction over O if X is smooth over O.
(ii) X is said to have semi-stable reduction over O if the special fiber is a normal crossings
divisor in the sense of [50, Def. 40.21.4].

Both properties are local for the étale topology around each closed point of X and imply
that X is a regular scheme with reduced special fiber.

Corollary 3.4. Assume that (G,X) is a Shimura datum of abelian type. If the local model
MC(G, {u}) has good, resp. semi-stable, reduction over Op, then so does Sk (G,X). If
(G, X) is of Hodge type and satisfies the assumptions of Theorem[31l (b), then the converse
also holds.

Proof. The first assertion follows from Theorem B.] (a). The second assertion follows from

(b) and (c). O

3.2. Canonical nature of integral models. We now explain how an idea of Milne [306]
together with results of Vasiu and Zink ([52]) imply that, under some additional assump-
tions, the integral models Sk (G, X) with good or semi-stable reduction over an unramified
extension of Z,, are “canonical”. More precisely, we have:

Corollary 3.5. Assume that (G,X) is a Shimura datum of abelian type. Suppose that
MC(G, {u}) has good or semi-stable reduction over Op, that E/Q, is unramified, and
that the geometric special fiber MIXS(G, {u}) ®o, k has no more than 2p — 3 irreducible
components. Then 8k (G,X) is, up to isomorphism, the unique Og-faithfully flat G(A?)—
equivariant integral model of Shi (G, X) that satisfies (1), (2) and the following stronger
version of (3): The bijection

8k (G, X)(R) = 8k (G, X)(R[1/p])

holds for R any Og-faithfully flat algebra which is either a dvr, or a reqular ring which is
healthy in the sense of [52].
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Proof. Note that under our assumption, by [62, Thm. 3, Cor. 5] (see also loc. cit., p. 594),
the scheme M(G, {u}) is regular healthy, when the maximum number of transversely
intersecting smooth components of its special fiber is < 2p — 3. Then, by Theorem B.1] (a),
the same is true for Sx(G,X). By the construction of 8x(G,X) in [29] and [52], it then
follows that the limit Sx (G, X) also satisfies the extension property not just for dvr’s but
for all regular healthy schemes. The uniqueness part of the statement then also follows (see
also [36], [29]). O

Consider the cases of smooth or semi-stable reduction covered by the results in this
paper, see Theorems and [L3], for F' = Q,: it turns out that the number 7 of geometric
irreducible components of the special fiber of MII%C(G, {u}) is < 2 in all cases, except in the
first case of Theorem (the Drinfeld case). In the latter case, this number 7 is equal to
the number of lattices in the primitive part of the periodic lattice chain. Since we assume
that p is odd to begin with, we obtain:

Theorem 3.6. Assume that (G,X) is a Shimura datum of abelian type such that the cor-
responding LM triple (G, {u}, K) satisfies the hypothesis of either Theorem[1.2 or Theorem
L3, with F = Q. Then, unless (G,{p}, K) corresponds to the “Drinfeld case” of Theorem
[2.0, the model Sk (G, X) is canonical, i.e., it satisfies the conclusion of Corollary [3. If
(G,{p}, K) corresponds to the Drinfeld case of Theorem [5.8, then Sk (G,X) is canonical,
provided that K is the connected stabilizer of a facet in the building of PGL,, that is of
dimension < 2p — 4. O

Example 3.7. Consider the group G = GSpin(V), where V is a (non-degenerate) orthog-
onal space of dimension 2n > 8 over Q of signature (2n — 2,2) over R. Take

X={veVeyC| (v,v)=0,(vv) <0}/C".

(Here ( , ) is the corresponding symmetric bilinear form.) The group G(R) acts on X via
G — SO(V) and (G, X) is a Shimura datum of Hodge type.

Suppose that there exists a pair (Ag,A,) of Zy-lattices in V ®g Qp, with Ay = Ao,
A = pA,, and pA, C Ao C A,. Let K, C G(Q,) be the parahoric subgroup which
corresponds to the connected stabilizer of this lattice chain. By combining Theorem [5.6]
and the above, we obtain that, for small enough KP?, the Shimura variety Shk (G, X) has
a canonical Z,-integral model with semi-stable reduction. In fact, we can see, using the
calculations in Subsection [I12.8] that the integral model is locally smoothly equivalent to
Zp|z,y]/(xy — p). This integral model was found by Faltings [13] as an application of his
theory of MJF-objects over semi-stable bases.

4. RAPOPORT-ZINK SPACES

We consider RZ-spaces of EL-type or PEL-type, cf. [47]. We place ourselves in the
situation described in [46], §4].

4.1. The formal schemes. In the EL-case, we start with rational RZ data of EL-type
D = (F, B,V,G, {u}, t]).

Here F' is a finite extension of Q,, B is a central division algebra over F', V is a finite-
dimensional B-module, G = GLg (V) as algebraic group over Q,, {¢} is a conjugacy class
of minuscule cocharacters of G, and [b] € A(G,{u}) is an acceptable o-conjugacy class in
G(Q,). Let E = Ey,y be the corresponding reflex field inside @,. In addition, we fix
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integral RZ data Dz, i.e., a periodic lattice chain of Og-modules A, in V. This lattice
chain defines a parahoric group scheme G over Z, with generic fiber G.
In the PEL-case, we start with rational RZ data of PEL-type

D= (F,B,V,(, )7*’G7{:u}’[b])'

Here F', B and V are as in the EL-case, (, ) is a non-degenerate alternating Q,-bilinear
form on V, * is an involution on B, G = GSpg(V) as algebraic group over Q,, and {x} and
[b] are as before. We refer to [40] for the precise conditions these data have to satisfy. In
addition, we fix integral RZ data Dz, i.e., a periodic self-dual lattice chain of Op-modules
Ao in V. In the PEL case we make the following assumptions.

o pF£2

e (G is connected.

e The stabilizer group scheme G is a parahoric group scheme over Z,.

Then in all cases (G, {p},9) is a LM triple over Q,. As in Section 2] we sometimes write
the LM triple as (G, {u}, K) with K = §(Z,).

Let Oy be the ring of integers in E (the completion of the maximal unramified extension
of E). In either EL or PEL case, after fixing a framing object X over k (the residue field of
O}), we obtain a formal scheme locally formally of finite type over Spf O which represents
a certain moduli problem of p-divisible groups on the category Nilpoé. We denote this
formal scheme by M%azl;’o. The reason for the upper index is that we impose only the
Kottwitz condition on the p-divisible groups appearing in the formulation of the moduli
problem. In particular, M%aZ‘:e need not be flat over Spf O ;.

Analogously, associated to Dz, there is the local model M%aZ‘;’C, a projective scheme over

Op equipped with an action of §o, = § ®z, Og. Furthermore, there is a local model
diagram of morphisms of formal schemes over Spf O 3,

naive
.
DZp

/ X (4.1)
M (i),
in which 7 is a torsor under the group scheme Go,,, and ¢ is a §o,-equivariant and formally
smooth morphism of relative dimension dim G. Here (IMI%aZ“’C)A denotes the completion of
P

M%azive ®op O along its special fiber.
P

Lemma 4.1. Assume that the group G attached to the rational RZ-data D splits over a

tame extension of Q,. Then the modified PZ-local model M'2(G,{u}) of Subsection

attached to the LM triple (G,{u},9) is a closed subscheme ofM%aZiVC, with identical generic
P

fiber.

Proof. Notice that under our assumptions, since this is always true in the EL case, G is
connected. We can see that, under our assumptions, p does not divide |71 (Gger)|- Indeed,
this is clear in the EL case since then (Gder)@p is a product of special linear groups SL. In
the PEL case, (Gder)@p is the product of groups of types SL, Sp, SO, and our assumptions

include that p is odd. It follows from (2) that M°(G,{u}) ~ Mg,. By [4, (8.3)],
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under the above assumptions again (in particular, the fact that G is connected is used), the

local model Mg, agrees with the flat closure of the generic fiber of the naive local model

M%azi"e. The result follows. O
P

We now use the local model diagram (1)) to define a closed formal subscheme Mo, = of
M%azi"o, defined by an ideal sheaf killed by a power of the uniformizer of Og. We therefore
P
obtain a local model diagram

Mo,

{;/// \\\Qi\& (4.2)

My, (MR (G )",

as in (.I)). Again, the left oblique arrow is a torsor under Gp,,, and the right oblique arrow
is §o,-equivariant and formally smooth of relative dimension dim G.

Corollary 4.2. Assume that the group G attached to the rational RZ-data D splits over a
tame extension of Q. If the local model MII%C(G, {u}) has good, resp. semi-stable, reduction
over O, then so does MDZP.

Proof. This follows by descent from the local model diagram. O
Remark 4.3. In contrast to Corollary B.4] the converse does not hold in general.

Proposition 4.4. Assume that the group G attached to the rational RZ-data D splits over
a tame extension of Q,. Then the formal scheme Msz is flat over Spf Oy and normal.

Furthermore, it only depends on Dz, through the quadruple (G,{u}, S, [b]). Finally,

MDZP (k) = U Xw(b) (43)
weAdm (1))

Here Adm g ({u}) C WR\W/WK denotes the admissible set. Also X, (b) denotes for
w € Wi \W /W the affine Deligne-Lusztig set

Xu(b) = {g € G(Q)/K | g~'bo(9) € KwK}
where b is a fixed representative of [b].

Proof. Flatness and normality follows via the local model diagram from the corresponding
properties of MI%°(G, {u}), cf. Remark (1). The uniqueness statement follows from
[49, Cor. 25.1.3]. The final statement follows from [49] Cor. 25.1.3] and Theorem 2.I0I

together with (2.6) and the definition [49, Def. 25.1.1] of the v-sheaf Ml(rét by DY observing
the following: In the definition of Ml(rét by We can take, by Corollary 2.16] the local model
M¢(G, {u}) to give the “diamond” local model v-sheaf Mlgoi used there. O

4.2. The RZ tower. We now pass to the RZ-tower of rigid-analytic spaces (M x, K C
G(Qp)), cf. [46, §4.15]. For its formation, we can start with M%azi"e for an arbitrary integral
P

RZ datum Dz, for D; in particular, we need not assume that G is tamely ramified.
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Proposition 4.5. The RZ-tower (M) depends only on the rational RZ datum D through
the triple (G, {u}, [b]). Furthermore, if it is non-empty, then [b] € B(G,{u}). The converse
holds if G splits over a tamely ramified extension of Q.

Proof. The first assertion follows from [49 Cor. 24.3.5]. The second assertion is [46], Prop.
4.19]. To prove the converse, using flatness of M'sz’ it suffices to prove Msz (k) #£ 0. Via

the identification (4.3)), this follows from [24]. O

Remark 4.6. The uniqueness statement is conjectured in [46, Conj. 4.16] without the
tameness assumption. The converse statement is conjectured in [46, Conj. 4.21], again
without the tameness assumption.

5. STATEMENT OF THE MAIN RESULTS

5.1. Good reduction. In the following, we call the LM triple (G, {u}, K) of exotic good
reduction type if p # 2 and if the corresponding adjoint LM triple (Gaq, {ftad}, Kad) is
isomorphic to the adjoint LM triple associated to one of the following two LM triples.

1) (Unitary exotic reduction)

e G = Resp//p G'. Here F'/F is an unramified extension, and G' = U(V), with V' a F'JF'-
hermitian vector space of dimension > 3, where F’/F’ is a ramified quadratic extension.
o {u} ={nel,. pom with {ue} = (1,0,...,0) or {u,} = (0,0,...,0), for any ¢.

e K = ResOF,/OF(K’) , with K’ = Stab(A), where A is a m-modular or almost m-modular
vertex lattice in V, ie., AV = 771;,11\ if dimV is even, resp. A C AV ! 771;,11\ if dimV is
odd.

2) (Orthogonal exotic reduction)

e G = Resp/p G'. Here F'/F is an unramified extension, and G' = GO(V), with V an
orthogonal F’-vector space of even dimension 2n > 6.
b {M} = {IU‘QD}@; FIsF» with {Mad,&p} = (1(n)70(n))ad or {,ufad,go} = (07 07 o 70)7 for any .
e K =Resp,,/0,(K') , with K" = Stab(A), where A is an almost selfdual vertex lattice in
V,ie, A CLAY C mR/A.
Theorem 5.1. Let (G,{u}, K) be a triple over F' such that G splits over a tame extension
of F. Assume p # 2. Assume that G.q is F'-simple, that in the product decomposition over
F,

Gaq @ F = Hl Gad.i

each factor is absolutely simple, and that ji,q is not trivial. Then the local model ML (G, {u})
is smooth over Spec O if and only if K is hyperspecial or (G, u, K) is a triple of exotic
good reduction typéﬁ.

We are going to use the following dévissage lemma.

3Haines-Richarz [22] gives an alternative explanation for the smoothness of MR°(G, {1}) in the case of
exotic good reduction type for the even unitary case and the orthogonal case: in these cases, the special
fiber of M2°(G, {u}) can be identified with a Schubert variety attached to a minuscule cocharacter in the
twisted affine Grassmannian corresponding to the special maximal parahoric K.
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Lemma 5.2. a) Let F'/F be a finite unramified extension contained in F. Let

(G7 {lu}v K) QF F' = HZ(G“ {:ul}a K2)7
where (Gy, {u;}, K;) are LM triples over F'. Then MY¥(G, {u}) is smooth over Spec O if
and only if M{,‘}f(Gi, {pi}) is smooth over Spec O, for alli.

b) Let (G, {'},K') = (G,{u},K) be a morphism of triples such that G' — G gives a
central extension. Then M'(G, {u}) is smooth over Spec Of if and only MIXS(G', {1'}) is
smooth over Spec Opy.

Proof. This follows from properties (ii)—(iv) of Proposition 2.13] O

The lemma implies that, in order to prove Theorem BE.Il we may assume that G.q is
absolutely simple and that fi,q is not trivial. That MI2(G,{u}) is smooth over Spec Op
when K is hyperspecial is property (i) of Proposition [ZI3l The case of unitary exotic good
reduction is treated in [I, Prop. 4.16], comp. [43, Thm. 2.27, (iii)]. The case of orthogonal
exotic good reduction is discussed in Subsection MT2.171

The proof of the converse proceeds in three steps. In a first step, we establish a list of all
cases in which the special fiber of M¢(G, {u}) is irreducible, i.e., Ay (G, {u}) is a single
Schubert variety in the corresponding affine partial flag variety. This is done in Section [7
In a second step, we go through this list and eliminate the cases when K is not a special
maximal parahoric by showing that in those cases the special fiber is not smooth (in fact,
not even rationally smooth, in the sense explained in Section [6). This is done in Section [§
Finally, we deal with the cases when K is a special maximal parahoric; most of these can
be also dealt with by the same methods. In a few cases, we need to refer to certain explicit
calculations of the special fibers given in [42], [I], and, in one exceptional type, appeal to
the result of Haines-Richarz [22].

5.2. Weyl group notation. Recall that simple adjoint groups G over F are classified up
to isomorphism by their associated local Dynkin dz’agmr%, cf. [51, §4]. Recall that to a
local Dynkin diagram A there is associated its Coxeter system, cf. [7], which is of affine
type. The associated Coxeter group is the affine Weyl group W,. We denote by W its
extended affine Weyl group. Both W, and W are extensions of the finite Weyl group W
by translation subgroups, i.e., finitely generated free Z-modules. We denote by X, the
translation subgroup of W.

Definition 5.3. (i) An enhanced Tits datum is a triple (A, {\}, K) consisting of a local
Dynkin diagram A, a Wo-conjugacy class {\} of elements in X, and a non-empty subset
K of the set S of vertices of A.

(ii) An enhanced Cozeter datum is a triple (W, S),{\}, K) consisting of a Coxeter system

(Wa, 5: ) of affine type, a Wy-conjugacy class {\} of elements in X, and a non-empty subset
K of S.

Note that the Coxeter system (W, S ) is given by its associated Coxeter diagram, cf. [7]
Chapter VI, §4, Thm. 4]. The Coxeter diagram associated to a local Dynkin diagram is
obtained by disregarding the arrows in the local Dynkin diagram. An enhanced Tits datum
determines an enhanced Coxeter datum. The natural map from the set of enhanced Tits
data to the set of enhanced Coxeter data is not injective.

“Note that only the first batch of cases on Tits’ list is relevant since G is automatically residually split.
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Let (G,{u}, K) be a LM triple over F' such that G is adjoint and absolutely simple. We
associate as follows an enhanced Tits datum to (G,{u}, K). The local Dynkin diagram
A is that assomated to G = G RF F. Let T be a maximal torus of G contalned in a
Borel subgroup B containing T. We may choose a representative p of {u} in X, (T ) which
is dominant for B. There is a canonical identification of X, with X, (T)pO (co-invariants
under the inertia group). The second component of the enhanced Tits datum is the image
Aof pin X,. It is well-defined up to the action of Wy (this follows, since Wy is identified
with the relative Weyl group of G and any two choices of B are conjugate under the relative
Weyl group). The third component of the enhanced Tits datum is the subset K of vertices
of A which describes the conjugacy class under G (F ) of the parahoric subgroup K of G (F )
determined by K.

Given a LM triple, one may compute its associated enhanced Tits datum as follows.
First, if G is a split group, with associated Dynkin diagram A, then the local Dynkin
diagram A is simply the associated affine Dynkin diagram, cf. [3, VI,52].

Name (Index) Local Dynkin diagram Minuscule coweights
0
0]
An (PAD)) for n > 2 — (Wh1<i<n
1 2 n—1 n
Ay (11451;) O e— O {WY}
1 0
ol
B, (Bn,n) forn >3 o<«——o0 o- - - - o/ {WY}
n n—1n-2 2\00
Cn (Cfml%) forn > 2 o=——=0 0- - - - 0¢&——0 {Wv\{
0 1 2 n—1 n
lo on—1
Dn (1D'£L1,)n) fOI' n 2 4 \07077770/ {w¥7w7\;717w1\1/}
00/2 3 n— 2\071
ol
/O/
Es (1E8,6) o o o 3 {W¥7Wf\5/}
5\0 8
02
Br (BY) . ‘ o {w!}
0 1 3 4 5 6 7

Now let G be quasi-split and residually split. Then the affine root system is calculated
following the recipe in [42], §2.3]. This gives the list below. In the column “Local Dynkin
diagram”, there are two rows associated to each group: the first row gives the local Dynkin
diagram of the group G over a (ramified) field extension F' of F such that G splits over
ad ; the second row gives the local Dynkin diagram of the group G over F. In the column
“Coweights”, there are two rows: the first row for the minuscule coweight u; the second
row for the corresponding A realized as a translation element of the associated extended
affine Weyl group. Here we put minuscule coweights between braces if they determine the
same A\ which appears directly below. We follow the notation in [51].
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Name (Index) Local Dynkin diagram Coweights
°o_0
B-Co CAS ) | oo (WY i} 1<i<n
1 2 2n—2 2n-—1
ol
forn >3 o=——=50 o————o/ wy
n n—1 n—-2 2\00
o 0
C-BC, (A ) 1{ >2 (@ b 1<i<n—1| {w) Wi}
n— n
for n > 2 o&——o0 0- - - —0&——0 W@y 2W1\1/
0 1 2 n—1 n
/OO\
vV \4
C-BC1 (AYY) 3 {wl,wy'}
O qum— O 2wy
1 0
lo on
C-Bn (* DSLlJll n) \o o---- o/ wy {wn,wii1}
00— 2 3 nmT—g, 1y
forn > 2 0e——o0 0- - - —0o——0 Wy wy
0 1 2 n—1 n
o1
o/
F41 (2Eg W) o o o/3 {wf, ‘U(\S/}
: 0 2 4™~
5 g
o o o o W¥
0 1 2 3 4
1o 03
\ / {wv OJ\/ OJ\/}
G% (3D4,2 or 6D4,2) /S\ 1,wW3,%W4
0o o4
o} O4&——0 Wo
0 2 1

From this list we deduce the following statement.

Lemma 5.4. Two LM triples (G,{u}, K) and (G',{u'}, K') over F, with G and G’ ab-
solutely simple adjoint, define the same enhanced Tits datum if and only if they become
isomorphic after scalar extension to an unramified extension of F. O

Suppose that G and G’ are absolutely simple adjoint such that G ® g F~G®pF. The
isomorphism classes of G and G’ are distinguished by con&dermg the correspondmg action
of the automorphism F of the local Dynkin diagram A of G ~ G ~ G* @p F given by
Frobenius (see [51], [20]). In [20] one can find a very useful list of all possible such actions
and of the corresponding forms of the group. The parahoric subgroups K, K " correspond

to non-empty F-stable subsets K of the vertices of A.

Example 5.5. Consider the enhanced Tits data defined by LM triples of exotic good
reduction type, cf. beginning of Subsection (.1l Assume that G ® g F' is absolutely simple

and adjoint. There are two cases:
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1) G is the adjoint group of U(V), where V is the F/F-hermitian vector space for a
(tamely) ramified quadratic extension F of F. If dimV = 2m > 4 is even, then the
corresponding enhanced Tits datum is (B-Cy,, wy,{0}) for m > 3 and (C-Bs, wy, {0}) for
m=2. If dimV =2m + 1 > 3 is odd, then the corresponding enhanced Tits datum is
(C-BCy,, wy,{0}) for m > 2 and (C-BCh, 2wy, {0}) for m = 1.

2) G is the adjoint group of SO(V') where V' is an orthogonal F-vector space of dimension
2m + 2 > 6. Then V has Witt index m and non-square discriminant. The corresponding
enhanced Tits datum is (C-Byy,, w,,,{0}).

5.3. Semi-stable reduction. In the classification problem of all triples (G, {u}, K) such
that M¢(G, {u}) has semi-stable reduction, Lemma [52] points to two problems. First,
the product of semi-stable schemes is semi-stable only when all factors except at most one
are smooth. And we can consider the problem of classifying the good reduction cases as
solved by Theorem [B.Il Second, the extension of scalars of a semi-stable scheme is again
semi-stable only if the base extension is unramified. Therefore, we will consider in the
classification problem of semi-stable reduction only triples (G, {u}, K) such that G is an
absolutely simple adjoint group.

Lemma [5.4] justifies classifying local models M(G, {u}) with semi-stable reduction
by the enhanced Tits datum associated to (G,{u}, K). Indeed, for F’/F unramified,
MP(G, {u}) ®0, Op =~ M2S(G",{i/'}), where G' = G ®p F’ and {y/} and K’ are induced
from {u} and K, cf. Proposition 213, (ii). Furthermore, M'%(G, {u}) ®0, Op' has semi-
stable reduction if and only if M'2°(G, {u}) has semi-stable reduction (this follows because
the reflex field £’ is an unramified extension of F).

Now we can state the classification of local models with semi-stable reduction.

Theorem 5.6. Let (G,{u}, K) be a LM triple over F such that G splits over a tame exten-
sion of F'. Assume p # 2. Assume also that the group G is adjoint and absolutely simple.
The local model MIX(G, {u}) has semi-stable but not smooth reduction over Spec(Og) if

and only if the enhanced Tits datum corresponding to (G,{u}, K) appears in the first col-
umn of the table below.

Enhanced Tits datum Linear algebra datum Discoverer
éio, ___o>% Split SLy,, r =1 Drinfeld
All vertices are hyperspecial | arbitrary chain of lattices of length > 2
#K > 2
L _o> Split SL,, withn > 4 Gortz
All vertzces are hyperspeczal r arbitrary, (Ao, A1)
w 1s any minuscule coweight
/Ihs
0<=0—0- - — - Split SO2p+1 withn > 3,1 =1, (Ao, An) new
\><
o hs
s = e—o- - — - o<:o hs Split Sp,,, withn > 2, r =n, (Ao, A1) Genestier-Tilouine
hs ®hs
:\ e _ o/ Split SO2y, withn >4, r =1, (Ao, An) Faltings
hs 0/ \O hs
hs © hs
.\oio, o / Split SOz, withn > 5, r =n, A1 new
e \><

hse Ohs
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In the seconducolumn, we list the linear algebra data that correspond to the LM triple
(G7 {N}7K) ®F F.

In the diagrams above, if not specified, hyperspecial vertices are marked with an hs. In
order to also show the coweight {\}, a special vertex is specified (marked by a squareE 80
that the extended affine Weyl group appears as a semi-direct product of Wy and X.. Then
{\} is equal to the fundamental coweight of the vertex marked with x. Finally, the subset
K is the set of vertices filled with black color.

Note that there are some obvious overlaps between the first two rows.

Remark 5.7. Starting with the table in Theorem above, one can also easily list all
LM triples (G,{u}, K) over F, with G adjoint and absolutely simple such that G splits
over a tame extension of F and with MI2°(G, {u}) having semi-stable reduction over Og
(provided p # 2). These are given by listing the possible conjugacy classes of Frobenius au-
tomorphisms in the group Aut(A, K ) of automorphisms of the corresponding local Dynkin
diagram A that preserve the black subset K. B. Gross [20] gives a convenient enumeration
of possible Frobenius conjugacy classes in Aut(A).

For example, in the first case of our list, there could be several possible Frobenius
actions on the n-gon that stabilize K depending on that set; the corresponding groups are
the adjoints of either unitary groups or of SL,, (D), where D are division algebras and m|n
(see [20, p. 15-16]).

In the second case, there is only one possibility of a non-trivial Frobenius action on the
n-gon that stabilizes the set of two adjacent vertices: A reflection (F of order 2). Then G is
the adjoint group of U(V') where V is a non-degenerate Hermitian space for an unramified
quadratic extension of F. Furthermore, when n = 2m is even, F' cannot fix a vertex so V'
does mot contain an isotropic subspace of dimension m ([20, p. 16]).

In the third and fourth cases, there are no non-trivial automorphisms F' that preserve
the subset K and so G is split.

In the fifth case, there is also only one possible non-trivial Frobenius action that stabilizes
K, up to conjugacy in the group Aut(A, K ). The corresponding group is the adjoint group
of U(W) where W is a non-degenerate anti-Hermitian space over the quaternion division
algebra over F'; the center of the Clifford algebra is F' x F' if n is even and the quadratic
unramified extension L/F if n is odd ([20} p. 18-20]).

In the sixth case, there are three possibilities of a non-trivial Frobenius action that
stabilizes K, up to conjugacy in the group Aut(A, K ). In the one case, the group is the
adjoint group of SO(V) where V is a non-degenerate orthogonal space of dimension 2n,
discriminant 1 and Witt index n — 2. In the other two, the group is the adjoint group of
the unramified quasi-split but not split SO(V') ([20, p. 18-20]).

In all these cases, we can realize K as the parahoric stabilizer of a suitable lattice chain.

Remark 5.8. We note that M'°°(G, {1:}) has semi-stable reduction if and only if the base
change MX<(G, {11}) ®o, Op has strictly semi-stable reduction, i.e., the geometric special
fiber is a strict normal crossings divisor, in the sense of [50, Def. 40.21.1]: Indeed, both
Me(G, {u}) ®o, Og and all the irreducible components of its special fiber are normal [44],
hence unibranch at each closed point x. From this we deduce that each intersection of a
subset of irreducible components of the geometric special fiber in the strict henselization

5Note that the local Dynkin type C-BC,, does not occur here so that all special vertices are conjugate;
hence this specification plays no role.
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of M¢(G, {u}) at z (i.e., of “branches”), is isomorphic to the strict henselization of the
intersection of a corresponding subset of global irreducible components at z. Therefore, if
the geometric special fiber is (étale locally) a normal crossings divisor, it is in fact (globally)
a strict normal crossings divisor.

Remarks 5.9. Let us compare this list with the local models investigated in earlier papers.
We always assume p # 2. We use the terminology rationally smooth, strictly pseudo semi-
stable reduction, rationally strictly pseudo semi-stable reduction introduced in the next
section.

(i) Let us consider the LM triples whose first two components are G = GU(V') where V is a
split F’/F-hermitian space of dimension 3 relative to a ramified quadratic extension F'/F,
and where {u} = (1,0,0). We identify E with F’. We use the notation for the parahoric
subgroups as in [43]. Since G is not unramified, there are no hyperspecial maximal parahoric
subgroups. If K is the stabilizer of the self-dual vertex lattice Ag, then K is a special
maximal parahoric and the special fiber is irreducible, normal with an isolated singularity
which is a rational singularity, comp. [43] Thm. 2.24]. The special fiber occurs in the
list in [22] of rationally smooth Schubert varieties in twisted affine Grassmannians. The
blow-up of M¢(G, {1}) in the unique singular point of the special fiber has semi-stable
reduction, cf. [38, Thm. 4.5], [30]. This is an example of a local model which does not
have semi-stable reduction but where the generic fiber has a different model which has
semi-stable reduction.

If K is the stabilizer of the non-selfdual vertex lattice A1, then MI2°(G, {u}) is smooth
over Spec Opr: this case is of exotic good reduction type.

Finally, if K is an Iwahori subgroup, then the local model does not have rationally
strictly pseudo semi-stable reduction, comp. [43, Thm. 2.24, (iii)]. And, indeed, this case
is eliminated in Subsection [B.I3l

(ii) Let us consider G = GU(V), where V is a split F’/F-hermitian space of arbitrary
dimension n > 2 relative to a ramified quadratic extension F’'/F. Let us consider the LM
triple (G,{u}, K), where {u} = (1,0,...,0), and where K is the parahoric stabilizer of
a self-dual lattice A (except when n = 2, K is the full stabilizer of A, cf. [42, 1.2.3]). If
n = 2, then M¢(G, {}) has semi-stable reduction, cf. [43, Rm. 2.35]. If n > 3, the special
fiber of MI2(G, {u}) is irreducible and has a unique isolated singular point, cf. [38, Thm.
4.5]. Generalizing the previous example, the blow-up of this singular point has semi-stable
reduction, cf. [38] 30].

For n > 3 with n = 2m + 1 odd, the associated local Dynkin diagram is of type C-BC,,
and the parahoric subgroup K corresponds to the special vertex m in the local Dynkin
diagram. The special fiber of the local model is a Schubert variety that occurs in the list in
[22] of rationally smooth Schubert varieties in twisted affine Grassmannians. Remarkably,
Kramer [30, Thm. 5.4] has shown in this case that the semi-simple Frobenius trace function
is constant equal to 1 on the special fiber, even though the special fiber is singular.

For n = 2m > 4 even, the associated local Dynkin diagram is of type B-C), and the
parahoric subgroup K corresponds to the non-special vertex m in the local Dynkin diagram
if m > 3, or C-By and the non-special vertex 1, if m = 2. By §88.2] resp. Subsection
[B.7 the associated Poincaré polynomial is not symmetric and hence the special fiber is not
rationally smooth, c¢f. Lemma[6.2] In this case, Kramer [30, Thm. 5.4] has shown that the
semi-simple Frobenius trace function is not constant equal to 1 on the special fiber, but
rather has a jump at the singular point.
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(iii) Let us consider G = Resps/p(GLy), where F'/F is a totally ramified (possibly wildly)
extension. This is excluded from the above considerations (both for the classification of

good reduction and of semi-stable reduction); still, it is interesting to compare this case
with the above lists. Let K = GL,(Op/) and

{u} = ((1(w),0(n—w))¢: T

The singularities of the special fiber are analyzed in [40] by relating the special fiber
M¢(G, {u}) ®o, kE with a Schubert variety in the affine Grassmannian for GL,,. More
precisely, the special fiber is irreducible and reduced and there is an isomorphism of closed
reduced subschemes

MR (G, {p}) ®o, ip = Ot.
Here Oy is the Schubert variety associated to the dominant coweight t = r¥ dual to r =
(ry)e, i€,
tlZ#{SO\T¢21}7 t2:#{90‘743022}7””

By [22] (cf. also [34] for the analogue over a ground field of characteristic zero, and [12],
[54] for the analogue over C), Og is smooth if and only if t is minuscule, i.e., t; — ¢, < 1.
This holds if and only if there is at most one ¢ such that r, ¢ {0,n}. We conclude that
M¢(G, {u1}) is smooth only in the trivial case when at most one 7, is not 0 or n.

(iv) Very similarly to the case above, we can also consider G = Respr,p(H), where F” is a
totally ramified (possibly wildly) extension, and H is unramified over F’ (i.e., quasi-split
and split over an unramified extension of F’). Then H extends to a reductive group scheme
over O which is unique up to isomorphism and which we will also denote by H. Take
K = H(Op), let {u} = ((,usp)w: ), and consider the LM triple (G, {u}, K).

When F'/F is wildly ramified, the theory of [44] does not apply to (G, {u}, K). However,
Levin [33] has extended the construction of [44] to such groups obtained by restriction of
scalars and has defined local models M'2°(G, {u}) for such triples. Assume that p does not
divide |71 (Hger)|. Then, by [33, Thm. 2.3.5], the geometric special fiber M'2¢(G, {u})®0,, k
is reduced and can be identified with a Schubert variety Grp ) of the affine Grassmannian
for H over k. Here, A is given by the sum }_ u, of the minuscule coweights j,. By [22],
(or [34] for the analogue over a ground field of characteristic zero), Gry ) is smooth if and
only if A is minuscule. Therefore, MX¢(G, {u1}) is smooth over O if and only if at most
one of the coweights fi,, aq is not trivial.

The proof of Theorem proceeds in four steps. In a first step, we establish a list of
all cases which satisfy the component count property condition (CCP), cf. Section [l This
condition is implied by strictly pseudo semi-stable reduction. This last condition, concerns
only the special fiber and entails in particular that all irreducible components are smooth,
with their intersections smooth of the correct dimension, cf. Section [l By weakening the
condition of smoothness to rational smoothness, we arrive at the notion of rationally strictly
pseudo semi-stable reduction, cf. Section [6l The second step consists in eliminating from
the CCP-list all cases which do not have rationally strictly pseudo semi-stable reduction,
cf. Section Bl In a third step, we eliminate all cases which have rationally strictly pseudo
semi-stable reduction but not strictly pseudo semi-stable reduction, cf. Section [I0l In the
final step we prove that in all the remaining cases strictly pseudo semi-stable reduction
implies semi-stable reduction. This last step is a lengthy case-by-case analysis through
linear algebra and occupies Section
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6. STRICTLY PSEUDO SEMI-STABLE REDUCTION AND THE CCP CONDITION

Definition 6.1. a) A scheme over the spectrum of a discrete valuation ring is said to
have strictly pseudo semi-stable reduction (abbreviated to SPSS reduction) if all irreducible
components of the reduced geometric special fiber are smooth and of the same dimension,
and the reduced intersection of any ¢ irreducible components is smooth and irreducible and
of codimension 7 — 1.

b) A scheme over the spectrum of a discrete valuation ring is said to have rationally
strictly pseudo semi-stable reduction if all irreducible components of the reduced geometric
special fiber are rationally smooth and of the same dimension, and the reduced intersection
of any ¢ irreducible components is rationally smooth and irreducible and of codimension
i—1.

Here we recall that an irreducible variety Y of dimension d over an algebraically closed

field k is said to be rationally smooth if for all closed points y of Y the relative f-adic
cohomology (for some ¢ # char k) satisfies

0 i#2d

dimg, H'(Y,Y \ {y}, Q) = {1 i = 2d.

When k& = C, this definition (for singular cohomology with coefficients in Q) appears in
[28], cf. also [3, 31l 2].

We note that both notions, that of SPSS reduction and that of rationally SPSS reduction,
only depend on the geometric special fiber. For instance, they do not imply that the scheme
is regular.

Lemma 6.2. Let Y be a proper irreducible variety of dimension d over an algebraically
closed field. If Y is rationally smooth, then the Poincaré polynomial

2d .
— At
Pg) = Zi:o aids
of cohomology with Qg-coefficients (¢ # char k) is symmetric, i.e., a; = asq—;, for alli. O

Remark 6.3. It is proved in [§]