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COCENTER OF p-ADIC GROUPS, II: INDUCTION MAP
XUHUA HE

ABSTRACT. In this paper, we study some relation between the cocenter H(G)
of the Hecke algebra H(G) of a connected reductive group G over an nonar-
chimedean local field and the cocenter H (M) of its Levi subgroups M.

Given any Newton component of H(G), we construct the induction map 7
from the corresponding Newton component of H(M) to it. We show that this
map is surjective. This leads to the Bernstein-Lusztig type presentation of the
cocenter H(G), which generalizes the work [[3] on the affine Hecke algebras.
We also show that the map 7 we constructed is adjoint to the Jacquet functor
and in characteristic 0, the map i is an isomorphism.

INTRODUCTION

0.1. Let G be a connected reductive group over a nonarchimedean local field F’
of arbitrary characteristic and G = G(F'). Let R be an algebraically closed field
of characteristic not equal to p, where p is the characteristic of residue field of F.
Let Hg be the Hecke algebra of G over R and Hp = Hg/[Hg, Hg] be its cocenter.
Let R(G) g be the R-vector space with basis the isomorphism classes of irreducible
smooth admissible representations of G over R. Then we have the trace map

Trg : HR — %(G)E

On the representation side, we have the induction functor and the Jacquet
functor

z'M7R:‘ﬁ(M)R—>SR(G)R, TM7R19{(G)R—>9%(M)R,

where M is a Levi subgroup of G.

What happens on the cocenter side?

The functor adjoint to the induction functor i, is the restriction map 7 g :
H(G)r — H(M)g. Tt can be expressed explicitly via the Van Dijk’s formula. In
this paper, we investigate the functor iy z : Hr(M) — Hg(G), which is adjoint
to the Jacquet functor ry g : R(G)r — R(M)g.

0.2.  We first describe the properties we expect for the map iy g and then discuss
the approach toward it.

First, instead of working over various algebraically closed fields R, it is desirable
to have the map 7, defined on the integral form H (the cocenter of the Hecke
algebra of Z[%]-Valued functions). Such map, if exists, provides not only a uniform
approach to the map iy g for all R, but also some useful information on the mod-I
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representations (see Theorem [Dlin the introduction and a future work [6] for some
results in this direction).
Second, in [11], we introduced the Newton decomposition. Roughly speaking,

G=UG(w) and H=®H(@),

where v runs over the set of dominant rational coweights of G. Such description is
expected to play an important role in the representation theory of p-adic groups.
In order to relate the Newton decomposition with the representations, we would
like to know that the Newton decomposition is compatible with the map ;.

0.3. Now we discuss several approaches in the literature towards the understand-
ing of the map iy.

Over C, the spectral density Theorem of Kazhdan [14] asserts that the trace
map Trc : He — R(G)E is injective. Hence the map 4y ¢ is uniquely determined
by the adjunction formula

ng(f, TM,(C(W)) = Trg(gM,c(f)aW)-

However, if R is of positive characteristic, the trace map Trgz may not be injective
and thus the map iy g is not uniquely determined by the adjunction formula.

In those cases, one may use the categorical description of the cocenter to give
a definition of iy p. Bernstein’s second adjointness theorem implies that the map
iar.r defined in this way is adjoint to the Jacquet functor (see [7, (1.8)]). However,
it is not clear that this map preserves the integral structure (see some discussion
in [7, §4.27]). Also it is not clear if this description is compatible with the Newton
decomposition.

0.4. A different, but more explicit approach is given by Bushnell in [2].

Note that the induction functor iy, z on the representations of M depends not
only on the Levi subgroup M, but also on the parabolic subgroup P with Levi
factor M. However, when passing to the Grothendieck group of the representa-
tions, the dependence of P disappears. On the other hand, the Jacquet functor
rarr, €ven if one passes to the Grothendieck groups of the representations, still
depend on the choice of parabolic subgroup.

Let v be a rational coweight. Then v determines a Levi subgroup M = M, and
the parabolic subgroup P, = M N,. Let IC be a “nice” open compact subgroup of
G (e.g. the n-th congruent subgroup Z, of an Iwahori subgroup) and &, = KNM.
Bushnell introduced the P,-positive elements of M and the subalgebra H" (M, KCyy)
of H(M, ), consisting of compactly supported Ky;-biinvariant functions sup-
ported in the P,-positive elements. Then he proves that

(a) The algebra H (M, Ky,) is isomorphic to the localization of HY(M,KCys) at
a strongly positive element f,.

(b) The map

o _1 pg(K)
JuK - H (M, ICM) — H(G7K>75KMmICM — 5P’u (m) 275’le€
puar (K )
is an injective algebra homomorphism.

(¢) The map j, k is adjoint to the Jacquet functor rys g : Ric(G)r = Rcnm (M) g
relative to P,. Here Ric(G)r C R(G)r consists of representations generated by
their K-fixed vectors.
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Moreover, Bushnell’s map j, x also preserves the integral structure of the Hecke
algebra.

0.5. It is tempting to apply Bushnell’s result to the cocenter of Hecke algebras.
However, there are several obstacles.

If K is the Iwahori or pro-p Iwahori subgroup, then the map j, x extends to an
algebra homomorphism H (M, KNM) — H(G,K). In this case, the localization of
Hecke algebra HY(M, KN M) is consistent with the Bernstein-Lusztig presentation
([10] and [18]). However, as pointed out in [2], these are essentially the only cases
of this kind. Thus one may only use j, x to deduce the induction map from part
of the cocenter of H(M) to the cocenter of H(G).

The Newton strata of M with integral dominant Newton points are positive,
but the strata with rational (but not integral) Newton point may not be positive
for any parabolic P. Those strata are not in the domain of the maps j, «.

Also if one fixes M and P, the maps j, x are not compatible with the change of
open compact subgroups /C, even at the cocenter level (see §2.5]). Thus the maps
jux does not induce a well-defined map H"(M) — H.

0.6. The idea behind Bushnell’s map j,  is to enlarge the open compact subset
KCarmICyr of M to the open compact subset Km/K of G by multiplying the open
compact subgroup K. Inspired by it, we have the following construction.

Let v be a rational coweight and P = M N, be the associated parabolic sub-
group. The elements in the Newton stratum M (v) may not be P,-positive, but a
sufficiently large power of it is P,-positive. One may enlarge an open compact sub-
set inside M (v) by multiplying a suitable open compact subgroup of G to obtain
an open compact subset of G. Unlike the situation in [2], the lack of P,-positivity
condition prevents us to give an explicit open compact subgroup of GG that works
in our situation. We have to use sufficiently small open compact subgroup of G.
Since v is strictly positive with respect to N,,, we finally show that our construction
is independent of the choice of such open compact subgroups. We have

Theorem A. Let v be a rational coweight and M = M,. Let v be the G-dominant
coweight associated to v. Then
(1) [Theorem[3 1] The map
3 ()
pne(Kuk) ™
for sufficiently small open compact subgroup K of G gives a well-defined map
i, H(M;v) — H.

(2) [Theorem [J1)] The image of i, equals H(G;v). B
(3) [Theorem [6.3] If moreover, char(F) = 0, then the map i, gives a bijection
between H(M;v) and H(G;v).

Theorem B (Theorem B.2)). Let v be a rational coweight and M = M,. Then for
any f € Hr(M;v) and m € R(G)g, we have the following adjunction formula

Tr%(.ﬂ TU,R<7T)) = Trg<€v<f)7 7T)-
Here ry g : R(G)g — R(M)g is the Jacquet functor relative to P,.

5m’CJVI — 5Pv (m) IC]V[’C + [H7 H]
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0.7. Now we discuss some applications. In [I1], we introduced the rigid cocenter
H"¢ = @ H (v), where v Tuns over rational central coweights.

Now for any standard Levi subgroup M, we introduce the +-rigid part H (M)
®©H(M;v), where v runs over rational dominant coweights with M = M,. We then
have the well-defined map

it = @iy (M) —s

As an application of Theorem [A] and the Newton decomposition of H (see [I1]
Theorem 3.1]), we have

Theorem C. We have the decomposition of the cocenter H into +-rigid parts:

H = D is a standard Levi subgroup gI/I(FI(M)-hm'g)

For affine Hecke algebras, such decomposition is first obtained in [I3] via an
elaborate analysis on the minimal length elements in the affine Weyl groups of GG
and its Levi subgroups M. In loc.cit., such decomposition is called the Bernstein-
Lusztig presentation of the cocenter of affine Hecke algebras, since the explicit
expression of i}, there is given in terms of the Bernstein-Lusztig presentation.
Although there is no Bernstein-Lusztig type presentation for H, we follow [13]
and still call the decomposition in Theorem [C] the Bernstein-Lusztig presentation
of the cocenter H. It is also worth mentioning that the proof in this paper does not
involve the elaborate analysis on the minimal length elements as in [I3], but based
on the compatibility between the change of different open compact subgroups K
of G.

Theorem [(J asserts that the rigid cocenters of Levi subgroups form the “building
blocks” of the whole cocenter H. We also show that that they are compatible with
the trace map in the following way.

Theorem D (Theorem [6.1]). Let R be an algebraically closed field of characteristic
not equal to p. Then we have

_ T+ M ~ 7 +,7i
ker TrR = Dum is a standard Levi subgroup ¥ pf (ker TrR N HR(M) g).

If R = C, we have the spectral density theorem and the kernel of the trace map
is zero. Theorem [Dlis trivial in this case. However, if R is of positive characteristic,
especially when the spectral density theorem fails, then Theorem [D] would provide
useful information toward the understanding of those representations.

0.8. The outline of the proof is as follows. In §2 we introduce the notion of quasi-
positive elements and we use some remarkable properties on the minimal length
elements established in [I2] to show that any element in the Newton stratum M (v)
is quasi-positive. Then in §3] we use the quasi-positivity to show that the map in
Theorem [A] (1) is well-defined and factors through H(M;v). This proves part (1)
of Theorem [Al

As to part (2) of Theorem[Al we first prove in Proposition L2 that M (v) C G(9).
Then by the admissibility of Newton strata ([I1, Theorem 3.2]), any open compact
subset X of M(v) enlarged by a sufficiently small open compact subgroup is still
contained in G(v). This shows that the image of 7, is contained in H(G;v). The
key ingredients in the proof of surjectivity are

e The notation of P-alcove elements introduced in [8].



e The Iwahori-Matsumoto presentation of H(G;v) ([II, Theorem 4.1]).

By the quasi-positivity, for any f € H(M;v), f' € H*(M) for sufficiently large
I. Theorem [B] follows from the adjunction formula proved in [2], the comparison
between i, (f)" with j,.(f') and a trick of Casselman [4].

Finally, the injectivity in part (3) of Theorem [Al follows from the adjunction
formula (Theorem [B]), the spectral density theorem and the freeness of the cocenter
H (which is only known in the case of char(F) = 0).

0.9. Acknowledgment. We thank Dan Ciubotaru and Sian Nie for many enjoy-
able discussions and valuable suggestions. We also thank Guy Henniart and Marie-
France Vignéras for discussions on the freeness of cocenter and thank Maarten
Solleveld for his useful comments on a preliminary version of the paper.

1. PRELIMINARY

1.1. Let G be a connected reductive group over a nonarchimedean local field F'
of arbitrary characteristic. Let G = G(F'). We fix a maximal F-split torus A
and an alcove a¢ in the corresponding apartment, and denote by Z the associated
Iwahori subgroup.

Let Z = Zg(A). We denote by Wy = NgA(F)/Z(F) the relative Weyl group
and W = NgA(F)/Zy the Twahori-Weyl group, where Z, is the unique parahoric
subgroup of Z(F').

We fix a special vertex of ac and identify T as

W = X (Z)garr) X Wo = {t*w; X € Xo(Z)qaeyr), w € Wo},
We have a semidirect product
W =W, xQ,

where W, is the affine Weyl group associated to W and € is the stabilizer of the
alcove ac in W. Let S be the set of affine simple reflections of W, determined by
the fundamental alcove ac. The groups W, and W are equipped with a Bruhat
order < and a length function £. The subgroup © of W is the subgroup consisting
of length-zero elements.

1.2. Forany K C S, let Wk be the subgroup of W generated by s € K. Let KW
be the set of elements w € W of minimal length in the cosets Wixw.

Let ® = ®(G, A) be the set of roots of G relative to A and &1 be the set of
positive roots so that ac is contained in the antidominant chamber of V' determined
by ®*. Let Z = {a} be the set of affine roots on &Z. We choose a normalization
of the valuation on F so that if « € #Z, then so is a =1 (see [I}, §5.2.23]). For any
n € N, let Z,, be the n-th Moy-Prasad subgroup associated to the barycenter of
ac [15]. This is the subgroup of G generated by the n-th congruence subgroup of
Z(F) and the affine root subgroup X,, for « € Z..

For any n € N and a subgroup G’ of G, we set G, = G' N Z,,. We write Z¢ for
G'NT.



6 X. HE

1.3.  Let ug be the Haar measure on G such that the pro-p Iwahori subgroup Z'
has volume 1. As in [I1 Section 1], we denote by H = H(G) the Hecke algebra

of locally constant, compactly supported Z[%]-Valued functions on GG. We have

H =1lim H(G.K),
K

where K runs over open compact subgroups of G and H(G,K) is the space of
compactly supported, K x K-invariant Z[i]—valued functions on G, i.e., H(G,K) =
@geK\G/KZ[%]éKgK, where x4 is the characteristic function on KCgkC.

We define the action of G on H by *f(g) = f(z7'gz) for f € H, x,9 € G.
By [I1, Proposition 1.1}, the commutator [H, H] of H is the Z[%]-submodule of H
spanned by f —*f for f € H and x € G. Let H = H/[H, H| be the cocenter of
H.

1.4. Now we recall the Newton decomposition introduced in [11].
Set V' = Xu(Z)ca(r/r) ® R and V, be the set of dominant elements in V.

For any w € W, there exists a positive integer [ such that w! = ¢ for some

A € Xu(Z)gar/r)- We set v, = A/l € V and 7, to be the unique dominant in

the Wy-orbit of v,,. The element v, and 7, are independent of the choice of [.
Let X = Q x V,.. We have a map (see [11} §2.1])

= (k,7): W — N, w — (WWy, Uy).

We denote by Wiy be the subset of T consisting of elements of minimal length
in their conjugacy classes. For any v € N we set

X, =U ZwZ and G(v)=G-9X,.

WEW min;m(w)=v
Here - means the conjugation action of GG. Let H(v) be the submodule of H
consisting of functions supported in G(v) and let H(v) be the image of H(v) in
the cocenter H. The Newton decomposition of H is established in [11l, Theorem
3.1 (2)].

Theorem 1.1. We have that

H=H®).
ver
In this paper, we are mainly interested in the V-factor of N. For any v € V.,
VK_7€ also set G(U) = |—|V=(T,’Ul for some TGQG(V)7 H(U) - @I/Z(T,U) for some TEQH(V> and
H(U> - @I/Z(T,U) for some TEQH<V>-

1.5. Let M be a semistandard Levi subgroup of G, i.e., a Levi subgroup of some
parabolic subgroup of GG that contains Z. Let Z,; = ZNM be the Iwahori subgroup
of M and W (M) be the Iwahori-Weyl group of M. We denote by S(M) the set
of affine simple reflections of W(M ) determined by the Iwahori subgroup Zy,.

We may regard W(M ) as a subgroup of W in a natural way. However, the
length function ¢5; on W (M) does not equal to the restriction ot W of the length
function ¢ on W.

Let Qs be the subgroup of W(M ) consisting of length-zero elements with re-
spect to the length function £,;. We have Qy; 2 W(M)/W, (M), where W, (M)
is the affine Weyl group of the subgroup of W (M). We have W, (M) c W, and
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thus a natural map Qy = W(M)/W,(M) — W /W, = Q. Let VM be the set
of M-dominant elements in V. We set Ny = Qur X Vjﬂ” and we have a map
™ = (FLM,DM) : W(M) — NM

We also have a natural map Ny, — X sending (7,v) to (7/,0), where 7" is the
image of 7 in Q and v is the unique (G-)dominant element in the Wy-orbit of v.

Let pps be the Haar measure on M such that the pro-p Iwahori subgroup of M
has volume 1. Let H(M) be the Hecke algebra of M and H(M) be its cocenter.
For any vy, € Ny, we denote by H(M;vy,) the corresponding Newton component

of H(M). By Theorem [T, we have
H(M) = @VMENMH(M; VM)'

2. QUASI-POSITIVE ELEMENTS

2.1.  The semistandard Levi may be described as the centralizer of elements in V.
For any v € V, we set ®,9 = {a € ®; (a,v) =0} and ¢, . = {a € ¥;(a,v) > 0}.
Let M, C G be the Levi subgroup generated by Z and U, (F') for a € ¢, and N, C
G be the unipotent subgroup generated by U,(F) for a € ®, . Set P, = M,N,.
Then P, is a semistandard parabolic subgroup and M, is a Levi subgroup of P,. We
denote by P,” = M, N, the opposite parabolic. Let puy,, fty- be the Haar measures
on N, and N, respectively such that pg(nmn=) = py,(n)par, (m)py-(n~) for

n € Nyym € M,n~ € N,. For m € M, set 6,(m) = %ﬁw For
v = (1,v) € N, we may also write M, for M,, N(v) for N, and N~ (v) for N, .
If v is dominant, then P, is a standard parabolic subgroup of G and M, is a

standard Levi subgroup of G.

2.2. Let v € V. Following [3, Definition 6.5 & Definition 6.14], we call an element
m € M, a (P,,Z,)-positive element if

mN,,m ' C N,,, and m'N, m CN,,.

We call an element z in the center of M, a strongly P,-positive element if the
sequences z"N, 027", 27" N, 42" both tend monotonically to 1 as n — oo.

Following [2], §3.1], let H"(M,, M, ,,) be the subalgebra of H(M,, M, ) of func-
tions with support consisting of (P,,Z,)-positive elements. The following result is
proved in [2, Proposition 5].

—% iy, (My,n)

Proposition 2.1. The map du, ,mar, . = 0u(m) 2=

jective algebra homomorphism

Jon : H'(My, M, ) — H(G,Z,).

01,mz, defines an in-

The formula we have here differs from [2] by the factor 8,(m) 2, since in [2]
the map is adjoint to the (unnormalized) Jacquet functor while we consider the
(normalized) Jacquet functor.

By [2, §3.2], H(M,, M, ) = S~*H"(M,, M, ) is the localization of H"(M,, M, ),
where S = (0, .20, .,.) is the the multiplicative closed set of the function 0y, ,,2n, .,
with a strongly P,-positive element z. It is pointed out in [2, Remark 5] that the
map j,., does not extend to an algebra homomorphism H(M,, M, ,) — H(G,Z,)
for n > 0.
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2.3. Let v € V be a rational coweight and M = M,. For any [ € N with
lv € X,(Z), the element t is strongly P,-positive. However, in general, the
element in M(v) may not be (P,,*)-positive. Therefore, one can not deduce a
map from H(M;v) to H via the map j,.,.

Example 2.2. Let G be split GLs and M = GL3 x GLy. Let v = (%, %, %, %, %)
Then M = M,. The element w = t(1019(132)(45) of W has Newton point v.
However, w(es — e3) = e5 — e5 — 1 is a negative affine root. Therefore the element

w is not (P,, *)-positive.

2.4. To overcome the difficulty, we introduce the quasi-positive elements.
An element m € M, is called P, quasi-positive if there exists [ € N such that

(a) mlNU,nm_l C Nypt1, and m_lN;nml C N

v,n

41 for any n € N.

For any n € N, w € W and g € ZwZ, we have 9ZLns0)9~ " C L. So
(b) Let w € W(M) and m € ZywZy. If m satisfies (a), then we have

mM" Ny 4+ (1-1)ew)ym " C Ny, and m_"N;n,Jr(lfl)g(w)m" C N, for any n, n' € N.
We first discuss some properties on the quasi-positive elements.

Proposition 2.3. Let v € V and M = M,. Let w € W (M) and m € iy
Suppose that m satisfying the inclusion relation (a).

(1) For any n € N, any element in mZI,,q_1yw) s conjugate by an element in
T, to an element in mM,q—1)e(w)-

(2) For any n,n" € N and g € T, 4-1ye(w), we have

5mgM”+(l—1)[(W)In+(l71)2(w)+n’ =0
Proof. (1) We first show that

(a) For any ¢ € N, any element in mM, 1—1)e(w)Ln+-1)ew)+i 1S conjugate by
Z,+; to an element in mMnJr(lfI)Z(w)InJr(lfl)é(w)Jriqu-

Note that any element in mM,, 1 1—1)¢(w)Ln+(1-1)e(w)+i 18 conjugate by Z,, 1 1—1)¢(w)+i
to an element of the form u'gu with u' € N;M(lfl)g(w)ﬂ, g € mMyiq_1)ew)
and u € Ny,i-1yew)+i- By 824 (b), gug™ € N,,py. We have (v, gug™) €
(ZnJr(l,l)g(w)Jri,Zn_;_i) C In+(lfl)2(w)+i+1- Now we have

u'gu = u'(gug™)g € (gug™ V' Loy a-1ye(w)+it19-
So u'gu is conjugate by Z,.; to an element in
UL -1y +i19(9ug ™) = Loy gy i (9°u(9%) g
= (g%u(9®) ) Tt -1)(w)+i+19
= (¢°u(g®) U Tt -1y e(w)+i+19-
By the same procedure, for any [ € N, v/gu is conjugate by Z,,,; to an element in
(g"u(g") Loy a-1yeqwy+iv19- By 924 (a), glug™ € Loy (-1ye@w)+i+1- Hence u/gu
is conjugate by Z,; to an element in w'Z,; 1_1)e(w)+i+19 = W 9Lntq—1)e(w)+i+1- BY
the same argument, any element in u'¢gZ,; —1)¢w)+i+1 is conjugate by Z,; to an
element in 97,4 1—1)¢(w)+i+1-
(a) is proved.
Let go € mM, 2,4 1-1)ew)- By (a), we may construct inductively an element z; €
T, yi for i € N such that g; 1 := z;lgizi is contained in MM, 1—1)e(w)Lnt-(1—1)e(w)+i-

mod [H, H].

Myt 1-1)e(w) Lot (1—1)£(w)+n’



9

The convergent product z := 212 - - - is a well-defined element in Z,, and 2~ 1gz €

MMy (1-1)e(w) -
(2) By part (1), there exists h € Z,,,,+ such that hmgh™' € MM, -1)ew)- We

have (Znqn's Mutq-1yew)) C Lnsnr4—1)ew)- Lherefore Mo q—1yotw)Dnta—1)ew)+n’
is a subgroup of Z and is stable under the conjugation action of Z,,,,. Thus
himg My —1ye) D (-1)ew)+n ™" = MMy 1-1)0(w) Lo+ (1-1)6(w)+n'- The statement
is proved. 0

2.5. We say that m € M is P, strictly positive if for any n € N, we have

vamm’l C Nyp+1, and m’lN;nm C N;nﬂ.

We denote by H” (M) the subalgebra of H(M) consisting of functions with sup-
port consisting of P, strictly positive elements. Note that the limit of the sup-
port of j,,(dz,) for v dominant regular, as n goes to infinite, is just Z, itself,
but the support of j,,(dz) for each n contains of nonsplit regular semisim-
ple elements. Thus the maps {j,,} are not compatible with the natural maps
HY(M, M,) — H"(M, M, ).

However, we have the following compatibility result for P, strictly positive part.

Corollary 2.4. Let n € N. Then the following diagram commutes

A (M, M)~ H(G, T,)

HY (M, Myi) 225 H(G, o).
Proof. Let m € M be P, strictly positive. Then 0ps mns, € H”u(M, M,) C
HY (M, M,,,). By definition,

1 pent(Mysq)
MG(InJrl)
Note that Z,,,1M,, = M,Z, 1 is a subgroup of Z. We have

,j’l},n+1 (5Mann> = 5v<m> 5In+1MannIn+l'

Z,mi, = l—l(il,ig,i’l,ié)ilillz.n-l—lMannZn-l—liéiZa
where {(i1,19,1),15)} C N, x N, x N7 x N, is a finite subset. By Proposition 2.3]
(2), for 41,9y € N,, and i}, € N, , we have

Oiri, T s MymMaTosrihiz = 0T,y MymM, T,y Mod [H, HJ.
Thus

-1 pone (M) pa(ZymI,)
MG(In> NG(InJranmMnInJrl)

. v (Mng1) _ par (Mn) e (ZnmZy)
It remains to show that T = po@) ra T M T

Suppose that m € ZywZy, for some w € W(M). By [, Lemma 4.6],

jvm(aMann) = 5v(m) 5In+1MannIn+1 mod [H> H]

MG(InmIn) _ ,UG(InJrlmInJrl) _ qz(w) ,MM(Mann> _ MM(Mn+1mMn+1) _ L ar(w)
pa(Zn) e (Zns1) Lo (M,y) piar (Miy1)
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Now we have
poar (M) pa(ZnmZy,) oY

pe(Zn) po(ZnpiMymM,Toy)  pe(Ln) pe(ZnyimZy) pa(ZTnpa MymM, L, 1)
_ M,)  pc(ZomZ,)  par(MpyamMgg)
B pe(Zn) po(ZnpimZnga)  poar(MnomM,)

pr (M) pic(Zy) prnr(Ms1) — par (M)

Z,) hc(Tnt1) par(Ms) e (Tnyr)
The statement is proved. O

Finally we show that the elements in M, (v) are P, quasi-positive.

Proposition 2.5. Letv € V be a rational coweight and M = M,. Letw € W (M).
Then there exists a positive integer i,,, such that for any m € IywZy N M(v)
and n = i,,,, we have

. . 1 . e . B
mzv’wNv,n(mlvyw) C Nv,n-l—la (mlv,w) Nv,nmlvyw C Nv,nJrl'

2.6. The proof relies on some remarkable properties of the Iwahori-Weyl group,
which we recall here. B

For w,w’ € W and s € S, we write w = w' if w’ = sws and (w') < (w). We
write w — w’ if there is a sequence w = wy, w1, -+ ,w, = w’ of elements in 1474
such that for any 1 < k < n, wi_1 2y wy for some s;, € S. We write w ~ w' if
w — w and w' — w. It is easy to see that if w — w’ and ¢(w) = ¢(w’), then
w =~ w'. We have that

(a) If w > w' and £(w) = £(w'), then for any g € ZwZ, there exists ¢’ € T5T
such that ¢'g(¢') ™! € Tw'Z.

(b) If w > w' and £(w') < f(w), then for any g € TwZ, there exists ¢’ € Z5T
such that ¢'g(¢')~! € Zw'Z U ZsuwT.

An element w € W is called straight if £(w™) = nl(w) for any n € N. A triple
(x, K,u) is called a standard triple if x € W is straight, K C S with Wy finite,
z € KW and Ad(z)(K) = K, and u € Wg. By definition,

(c) Forany n € Nand gy, - , g, € ZusZ, we have g1g2- - - g, € (ZWkZI)(Z3"T).

It is proved in [12, Theorem A & Proposition 2.7] that

Theorem 2.6. For any w € W, there exists a standard triple (z, K,u) such that
ur € Whin and w — uzx. In this case, m(w) = w(x).

Following [9, §4.3], we write w - w’ if either w > w’ or w' = sw and f(w) >
((sws), and we write w — w' if there exists a sequence w = wg, wy, -+ ,w, = w'
of elements in W such that for any 1 < k < n, wi_1 =& wy, for some s;, € S. Tt is
easy to see that if w € Wmin and w — w’, then w ~ w'.

We show that

Lemma 2.7. Let w € W and g € TwZ. Then there exists a standard triple

(x, K,u), a sequence w = wy,wy, -+ ,w, = uzr of distinct elements in W and a
sequence g = go, g1, - - ,gn Oof elements in G such that
(1) ux € Wiin;

(2) for any 0 < k < n, g € TwpZ;
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(8) for any 1 < k < n, there exists s, € S and hy, € Z$,.Z such that wy_1 X wy,
and gy, = hpge—1hy, "

Remark 2.8. By definition, if w — w’, then v’ € wW, and ¢(vw’) < ¢(w). In

particular, the length of the sequence is at most {{x € W,; ¢(z) < {(w)}.

Proof. We argue by induction on ¢(w).

If w e Wi, by Theorem 2.6 there exists a standard triple (z, K, u) with
ur € Wmin and a sequence w = wy, wn, -+ ,w, = uxr of distinct elements in W
such that for any 1 < k£ < n, wi_ 2By wy for some sy, € S. Since w € Wmin, we
have ¢(wy) = ¢(w) for all k. Now the statement follows from §2.0 (a).

Ifw ¢ Wmm, then by Theorem [2.6], there exists a sequence w = wq, wyq, - - -, w,, of
distinct elements in W such that (w) = £(w,), for any 1 < k < n, wp_y - wy, for

some sj, € S and there exists s € S with sw,s < w,. Then we have ¢(w;) = £(w)
for all k. By §2.6l (a), for any 1 < k < n, there exists hy € Z,Z such that g, =
hkgk,lh,;l. By §2.8 (b), there exists h,1 € Z$Z such that hnﬂgnh;}rl € Tw, 1T
with w,1 € {sw,, sw,s}. Now the statement follows from inductive hypothesis
OoNn Wy 41- U

2.7. Proof of Proposition 2.5l Let Ny = f{w’ € W,(M); {y(w') < Ly (w)}. By
Lemma 2.7 and remark 2.8 there exists a standard triple (z, I, u) of W (M) and

an element h € U.cw,am)ez)<no Ly Ly such that uz € W(M)yin, w — ux and
hmh=! e Tyt . ~

Let i be a positive integer with iv € X,(Z). Then z' = t € W represents a
central element in M. By §2.6 (c), for any [ € N,

(hmh_l)li € (IMWKIM)(IMtlwIM)

Let N1 = maxy 51wy is finite $Wr- Let Gy = (2N + N1 + 1)i. Then for any
a € Dy, (iywv,a) = 2Ny + Ny + 1. Note that m™» = h™!(g;g2)h with h €
Uw’eW(M);f(w’)gNOIMw,IM7 g1 € Uu’EW(M);fM(u’)<N11-MiL,IM and go € IMtZU’wUIM.

So
m™ N, (m"™*) ' = h g ghN, b gy gr R
Ch ' 9192Nyn-no g5 'g1 R
C h7191Nu,n—N0+(2N0+N1+1)gf1h
C hilNv,n—N0+(2N0+N1+1)—N1h
C Nyvn—No+@No+N141) =N —~No = Nont1-

Similarly, m="» N, ,m"™* C N, ..
3. THE MAP i,

We define the induction map 4,, which is the main object in this paper.

Theorem 3.1. Let M be a semistandard Levi subgroup of G and v € Ny with
M = M,. Then

(1) Form € M and an open compact subgroup Ky of Iy with mKCy C M(v),
the map
_1 e (Kr)

Omicy > 0y _—
* (m) MG(’CM/C)

5mKJMK + [Ha H]
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from H(M;v) to H(v) is independent the choice of sufficiently small open compact
subgroup IC of G B
(2) The map i, : H(M;v) — H defined above induces a map

i, H(M;v) — H.

Remark 3.2. Unlike the map j,,, the map i, does not send H(M, M,;v) to
H(G,Z,; 7). One needs to replace Z,, by a smaller open compact subgroup of G.
However, by the Iwahori-Matsumoto presentation of H (M, M,;v) ([I1], Theorem
4.1]) and Proposition 2] there exists a positive integer n’ (depending on v) such
that i, : H(M, M,;v) — H(G, L, ;) for any n € N.

Proof. (1) Let v be the V-factor of v. Let w € W(M) with m € TyiZy. Let
iy D€ an positive integer in Proposition Let [ be a multiple of 4, ,,f(w) with
M, C Ky By Proposition 23] (2), for any n € N and g € Z;, we have

5m’yMle+n = 5m’MlIl+n mod [H, H].

Let KC,K’ be open compact subgroups of G with IC,K' C Z;. Let n € N with
Ziin C K, K'. Now we have

MK
5mKM’C = Z 5m/MﬂC = Z Ll))ém/MlIHn

M7,
m/GmICM/Ml m/EmICM/Ml MG( =itn

e (MKC
- %‘%Mﬂun mod [H, H].

As KCjy is stable under the right multiplication of M;, we have pug(KyZp,) =

MK KK
t(Kn /M) (M Zyy,) and Mg?ﬂ(/[ﬂl“)ﬂ) = ug?/élﬁu)n)' Thus for any n € N, we have

MM(’CM) MM(’CM)
———m v =————0m wTin d |H, H|.
Kt K) N = Ry i 0 [ A

Similarly, 2ELG, o = LUEM 5 7 mod [H, H]. Part (1) is proved.

() By [, §3.3 ()], [H(M), H(M) = Sye,, (HM), H(M)] A H(M),), the
kernel of the map H (M), — H(M), is spanned by d,.xc,, — "Opmic,, for h,m € M
and open compact subgroup Ky, of Z,; such that mK,, C M,. It remains to prove
that iy((;m]CAI) = ’L'V(hém]CM).

Set m' = hmh™! and K, = hKCph™!. By part (1), there exists a sufficiently
small open compact subgroup I of G such that

. ~1 i (Kr)
v 5m M = 51/ 275771 M d H7H7
iy (Omicy,) = 6y (m) (gl ek T [H, H]

()
(8, ) =6, ’*5/”“”(7]”5”, d [H, H).

Here K' = hKCh™1.
We have ks k0 = Opmicprk)n—1 = Omicyk mod [H, H]. Part (2) is proved. [

3.1. In the rest of this section, we show that the maps i, are compatible with
conjugating the Levi subgroups.
For any semistandard Levi subgroup M, we have a natural projection

X(Z)arp/ry | L®y; = Quy
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and a natural map V' — VM. The natural action of W, on Xi(Z)Gapyry XV
induces the following commutative diagram for any w € Wy

X (Z)garyry XV ——= X Z)gar/rm X V

| |

Ny > Ropari—1-

We denote the induced map Ny — Nyamp-1 still by w-. If moreover, w € WM,
i.e. w sends the positive roots of M to the positive roots of wMw™', then we
have WZy ' = Zynm-1. By definition, the M-fundamental alcove is the unique
M-alcove that contains the G-fundamental alcove. Since the conjugation by w
sends the Iwahori-subgroup of M to the Iwahori-subgroup of wMw™!, it also
sends the M-fundamental alcove to the wM w_lifundamental alcove, and thus
induces a length-preserving map from W (M) to W (wMw™'). In particular, the
conjugation by w sends the minimal length elements of W (M) (with respect to
(5) to the minimal length elements of W (wMw~™') (with respect to Lypr-1).
Therefore, by the definition of Newton strata, we have that

(a) Let M be a semistandard Levi subgroup M and v € Ny;. Let w € Wy and
M’ = wMw™, then

WM (V)™ = M'(w(v)).
Proposition 3.3. Let M be a semistandard Levi subgroup and v € Ny, and w €
Wy. Then for any m € M, and an open compact subgroup ICps of Ty with mkKy, C
M, and WKyt C Zyprp-1, we have
iu(dmlCM) = iw(u) <5u'1mICMu'J_1) € H.

Proof. The proof is similar to the proof of Theorem [B.1] (2).
Set M’ = wMw™', m' = wmw™" and Ky = wKyw~!. By Theorem BT (1),
there exists a sufficiently small open compact subgroup I of G such that

. _ _1 e (Kr)
Zl/<5mlCM) = 5,/(77’?,) QW(smKMK mod [H, H],
. . _1 MM(’CM')
Zw(u)<5m’ICM/> = 511}(”)(771/) QW m'IC, K’ mod [Ha H]
Here K/ = wKw .
We have 0,k k0 = Oimkykyi—t = Omicyk mod [H, H]. The statement is
proved. O

Corollary 3.4. Let M be a semistandard Levi subgroup of G and v € X, with
M = M,. Then for any w € Wy,

Im(i, : H(M;v) — H) = Im(iy) : HwMao 5 w(v)) — H).
4. THE IMAGE OF THE MAP i,
The main result of this section is

Theorem 4.1. Let M be a semistandard Levi subgroup and v € Ry with M = M,,.
Then the image of the the map i, : H(M;v) — H equals H(v).

We first compare the Newton strata of G and its Levi subgroups.
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Proposition 4.2. Let M be a semistandard Levi subgroup and v € Ny; with
M, = M. Then we have M(v) C G(D).

Proof. The idea is similar to the proof of [I1, Theorem 2.1].

By 4311 (a), after conjugating by a suitable element in Wj, we may assume that
M is a standard Levi subgroup. Since M = M,,, the V-factor of v is G-dominant.
By the Newton decomposition of G ([I1, Theorem 2.1]), it suffices to prove that
M(v)NG(') =0 for any v/ € X with v/ # .

Let v = (7,v) and v/ = (7/,0'). If the image of 7 in Q does not equal to 7/, then
M(v)NG(V) = 0. Now we assume that the Q-factor matches. Since v/ # v, we
have v' # v.

By [11, Remark 2.6],
M(l/) = U(m,K,u)M . IMUI‘IM, G(l/,) = U(x’,K’,u’)G . Iﬂli‘lz,

where (z, K, u) runs over standard triples of W (M) such that ux € W(]\/{)min and
v (z) = v, (o', K', ') runs over standard triples of W such that u'z’ € Wy, and
w(a') = 1.

If M(v)NG(V') # (), then there exists standard triples (z, K, u) and (2/, K',u')
as above and h € ZyuiZy,h € Ti/'i'Z,g € G such that ghg~! = . For any
n € N, we have gh"g~' = (h/)". By §20 (c), we have

W' € (ZuWrIn)(Znd"Inr), (K)" € (IWgI)(Z(3)"D).

Let [ > 0 with [v, v € X.(Z). Suppose that g € ZZZ for some z € . Then for
any n € N, we have

T T(IWKT)L:  T(IW T) NI T # .

Similar to the argument in [IT], §2.6], this is impossible for n > 0. The statement
is proved. O

Corollary 4.3. The image of the map i, is contained in H(v).

Proof. Let m € M and Kj; be an open compact subgroup of Zy, with mK,, C
M (v). By Proposition 2] mKCy; C G(7). Let X be an open compact subset of G
with mKCy; € X. By [I1, Theorem 3.2], there exists n € N such that X N G(v) is
stable under the right multiplication by Z,. In particular, mK,,;Z, C G(v). Thus
1y (Omic,,) € H(D). O

4.1. In order to prove the other direction, we use the notion of alcove elements
in [8] and [9].

Let w € W. We may regard w € Aff(V) as an affine transformation. Let
p: Aff(V) =V x GL(V) — GL(V) be the natural projection map. Let v € V.
We say that w is a v-alcove element if
e p(w)(v) = v;

e NyNwIw'c N,NT.

Note that the first condition implies that wM,w ! = M,. We have the following

result.

Theorem 4.4. Let w € W. Ifw is a v,-alcove element, then any element in TwT
is conjugate by T to an element in Wiy, .
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Proof. The basic idea is similar to the proof of [8, Theorem 2.1.2].

Write M for M,, and N for N,,,. We start with the generic Moy-Prasad filtra-
tion Z = Z[0] D Z[1] D ---. As explained in [8, §6.2], it is a filtration satisfying
the following conditions:

(1) Each Z[r] is normal in Z;

(2) For each r, either Z[r| C ZyZ[r + 1] or there exists a root a € & — ®(M)
and s € R such that Z[r| = X, Z[r + 1] and X451 C Z[r + 1] for any € > 0.

We show that each element wiysi[r] with iy, € Zy, and i[r] € I[r] is conjugate
by an element in Z to an element in wZyZ[r + 1] (and that the conjugator can be
taken to be small when r is large).

If Z[r] € ZyZ[r+ 1], then we may absorb the Zy; part into iy,. Otherwise, there
exists a root a outside M such that Z|r| = X, Z[r +1] and X, s C Z[r +1] for
any € > 0. We prove the case where a is a root in /N. The case where a is a root
in N~ can be proved in the same way.

We have i[r] € uZ[r + 1] for some u € X,1s C N;. Set m = wiyp. By the
definition of P-alcove elements, m‘u(m?)~! C N, for all i € N. As in the proof of
Proposition (1), wipsi[r] is conjugate by elements in N, to elements in

muZ[r + 1] = (mum YYmI[r + 1] ~ mZ[r + 1](mum™") = m(mum™ " Z[r + 1]
= (m*u(m®) " Y)YmZr +1] ~ - ~ (m'u(m") YymZr + 1] ~ - .

Here ~ means conjugation by elements in Nj.

By Proposition 2.3 there exist ¢ € N such that mu(m’)~! C Z[r + 1]. Thus
wiprt]r] is conjugate by an element in N to an element in wZyZ[r + 1].

Now we start with an element in wZ. The convergent product of the conjugators
(for all r) is an element in Z and conjugates the given element to an element in
wlyy. O

4.2. Proof of Theorem A1l By Corollary 3, the image of 4, is contained in

H(7). Now we prove the other direction. By [II], Corollary 4.2],

H= Y A,

weWmin;ﬂ(w):D

where H,, is the submodule of H consisting of functions supported in ZwZ and
H,, is the image of H,, in H.

Let w € Wi with m(w) = 7. By [0, Lemma 4.4.3 and Proposition 4.4.6], w is
a vy-alcove element. Set M’ = M, and v/ = myp(w) € Ny

Let i,/ ,, be a positive integer in Proposition By definition, H,, is spanned
by 0,4z, for g € ZwZ and n > i(v',w)l(w). By the proof of Theorem B.1] (1), for
any n > i(v,w)l(w) and g € Wy, 047, + [H, H] is contained in the image of 7,

Let ¢ € ZwZ. By Theorem [£L4] there exists ¢ € Z and ¢’ € wZy; such that
g =1ig'i"'. Then

0oz, = Oigz,i—t = 0gz, mod [H, H].

Therefore H,, is contained in the image of i,. By Proposition B3, H,, is also
contained in the image of 7,.
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5. ADJUNCTION WITH THE JACQUET FUNCTOR

5.1. Let R be an algebraically closed field of characteristic # p. Set Hr =
H D1 R, Hp = H D1 R and Hgi(v) = H(v) D1 R. Recall that R(G)r
is the R-vector space with basis the isomorphism classes of irreducible smooth
admissible representations of G over R. We consider the trace map

Tl'g : HR — %(G)E
Similarly, for any semistandard Levi subgroup M, we have
Te - Hrp(M) — R(M)3,.

Let v € V. and M = M,. Let r,r : R(G)r — R(M)g be the (normalized)
Jacquet functor. Note that the Jacquet functor does not only depend on the Levi
M, but also depends on the direction v (or equivalently, the parabolic subgroup
P, with Levi factor M). The following result is proved by Bushnell in [2 Corollary
1].

Proposition 5.1. Let n € N. Let v € V and M = M,. Then for any f €
H} (M, M,), and m € Rz, (G)r, we have

Tr%(f, ro.r(T)) = Trg(jv,n(f)v ).

The main result of this section is the following adjunction formula.

Theorem 5.2. Let M be a semistandard Levi subgroup and v € Nyy. Suppose that
M = M,. Then for any f € Hr(M;v) and m € R(G)r, we have

Tey (f,rur(n)) = T (0(f), 7).

5.2. Let (z, K,u) be a standard triple of W (M) such that the Newton point of
x is v. Let i be the smallest positive integer with iv € X,(Z). Let i € N such that
for any o € @, 1, (iiv,a) > Wy + (i—1)¢(x) + 1. Let [ > ii. Then [ =4'i+ j for
some ¢ > i and 0 < j < i. Then for any my,---,m; € ZyuiZy, by 2.0 (c), we
have

mimse -+ -MmMmy € (IMWKZM)(IMZEJZM)(ZMtZ,wZM)

Note that for g € Zt'"Z, gN,g™ C Ny 1)) 1 Also (IWgZI)(Zi'T) C
UeWt(w)<twie+(i-1)e@ LWL, Thus (mq -« -my)Ny(my - -my)~t C N,1. Similarly
(mq---my) ' N, (mq---my) C N, . Therefore,

(a) Let I > i and mq, -+ ,my € IyaiZy, then mymy---my is a P, strictly
positive element.
Moreover, for any n,l’ € N and my,--- ,my € ZyuiZy, we have

(ml T ml’)quLﬁWKJr(ifl)é(m) (ml T ml’)_l C Nn7

(m1 - -ml/)_lN_

n+ﬁWK+(i—1)z(x)(m1 e -ml/) C N, .

One deduces that
(b) Let n, I € N, and g1, - qr € NnJrﬁWKJr(i*1)5($)IMui‘IMN;+ﬁWK+(if1)[(;,;)'
Then ¢;---gr € N,MN,, .
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5.3. Proof of Theorem By [11, Theorem 4.1 & §4.6], it suffices to prove
it for locally constant functions on M, supported in MuizM, where (x, K, u) is a
standard triple of W (M) and the Newton point of x is v.

Let n > §Wgk + (i — 1)¢(x) such that 7 € Rz, (G)g. It is enough to consider the
function f = dar,mar,, where m € MuzM.

_ _1 _
Let n’ > n and f = MN(A(f:/()’ZLj(N_/)5Nn/MannN;/. By Theorem B (1), f

represents the element 4,(f) € H. By Casselman’s trick [4, Corollary 4.2], it
suffices to prove that for I > 0, TeM (f!, (7)) = Te&(f!, 7).

Let pyr i (M,mM,)" — M and pg : (N,yM,mM,N_ )" — G be the multiplica-
tion map. Since [ > 0, by §5.2] (a) and (b), any element in Im(py) is P, strictly
positive and

Im(pg) C N, Im(py )N, = N x Im(py) x N~

We have the following commutative diagram

(N MumM,N-,)F 2 Tm(pe)

prll lpm

where pr: N x M x N~ — M is the projection map and pr; is the restriction of

pr to Im(pg).
Let m' € Im(pyas). Then

pa(pg pry (Mam! My)) = e ((pr') oy (Mym' My,))
= i (No) 1= (N ) gt (D (Mo’ M)

By Proposition (2), diz  Mpm/MnZ, 0 = 07 MumM,z,, mod [H, H] for any i €
N, and ¢ € N, . Thus

e 8,(m) "> Z pea (pg'pry H(Mu,m/M,))

-1
v (N ) - (N,)! pic(pri (Mym,)) P (Mumd)

m! €M, \M/M,

LM, m' M,
Z 5v(m _%MMl(p]\ff o ”>)5 ril(M mMy)
pe(pry (MymM,,)) P e

m! €M \M /M,

)
l - Mnm’Mn
Z 51,(77’?,)7% Har (pM ( ))) 5In/Mnm’MnIn/ mod [H7 H]

m'€Mn\M/Mp (Lo Mym! M, T,

On the other hand,

5Mnm’Mn-

fl _ Z NMl(p]T/[l(Mnm/Mn))
m' € Mp\M /M, pr (M My,)

By Corollary 2.4] we have
jv,n(fl) = jv,n’(fl)

_ 1 gt (P (M’ M) g (M)
_ Z dy(m) o VL) o)

5In/Mnm’MnIn/ mod [Ha H]
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Since the elements in M,,m’M,, are P, strictly positive, we have Z,,, M,,m' M, T,,, =
Ny (M,m/M,)N,, and
pc(Zo)
poar (M)
So f' = jun(f') mod [H, H] and Trd (f!,r,(n)) = TeG(f!, 7).

pe (Lo My My L) = pun (N ) piv- (NJ):“M(Mnm/Mn) = fiar (Mym' M,,).

6. THE KERNEL OF THE TRACE MAP

6.1. Let M be a semistandard Levi subgroup of G. Let M° be the subgroup of
G generated by the parahoric subgroups of M. Then we have M/M°® = Q,,. Let
U(M)r = Homz(M/M°, R*) be the torus of unramified characters of M.

Let iy r : R(M)r — R(G) g be the induction functor. Then for any o € R(M)p
and f € Hg, the map

\II<M)R — R7 X — TI'R(f, iM,R(UOX))
is an algebraic function over W(M)g.

6.2. LetveV and M = M,. Recall that

(a) H(M; 'U) = Duprerprv=(7a1,v) for some TMEQMH(M; V)’
(b) H(T)) = @ygN;y:(T,T)) for some TGQH(V)'

Note that if 7, 73, € Q) are mapped under s to the same element in 2, then
they differ by a central cocharacter of M. By the definition of the map = = (k, ),
if both (7, v) and (7},,v) are in the image of my, and that k() = k(7},), then
v = Tpy- In other words, there is a natural bijection between the components
appear on the right hand sides of (a) and (b). We define

iv = @yMeNM;u:(TM,U) for some TEQMgV : H(M7 U) — H(@)

Theorem 6.1. Let v € V and M = M,. Let f € H(v). If T'%(f,ipr(0)) =0
for all o € R(M)g, then f € i,(ker Tr).

Proof. For 0 € R(M)g and y € W(M)g, the map

X > T (i (f), iarr(0 0 X))
is an algebraic function on x. We consider its “positive part”, i.e. the linear
combination of the terms (y, A) for dominant coweight A. It is obvious that if an

algebraic function is zero, then its “positive part” is also zero.
By the Mackey formula [16] §5.5], we have

TG (iu(f), inrr(o 0 X)) = Ty (f, 7ar,r © iar,r(0 0 X))

= Z Tr%(f? Z.%O"’M,R owo T%mw*1M7R(J © X)
weM WM
= Z Tr%(f’ i%ﬂwM,ROj} © T]A\jmw—lj\%]g(a) © wX))
weM WM
Asw e MWM and M = M, w(v) is dominant if and only if w = 1. Therefore the
“positive part” of Tr(i,(f), irrr(c 0 X)) is Trhy (f, 0 0 x).
Therefore if TY%(f, i r(0)) = 0 for any o € R(M)g and x € U(M)g, then
Tey (f,o 0 x) =0 for any o € R(M)g and x € U(M)g. Hence f € ker Tryy. O
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Corollary 6.2. Letv €V and M = M,. Then
i, ! (ker Trg |gR(6)) = ker Tr% ‘HR(M;U) )

Proof. If f € ker Tr}y , then Try (f, 7. (7)) = 0 for any 7 € R(G)x. By Theorem
52, Tr%(iy(f), 7) = 0. Thus i,(f) € ker Tr%. The other direction follows from
Theorem [G.11 O

Theorem 6.3. We have ker Tr§ = @, . (ker TrG N Hp(v)).

veVy

Remark 6.4. In general, @,ex(ker Tt N Hp(v)) C ker Tré. However, the equality
may not hold. For example, if (2 = {1, 7} is finite of order 2 and characteristic of
R is also 2, then for any A\ € X,(Z), and f € H(\), we have f + 7f € ker Tr.

Proof. The idea is similar to the proof of [5, Theorem 7.1].

Let f=73",cy, aufy € ker Tr%, where f, € H, and a, € R. Let M be a minimal
standard Levi subgroup such that a, # 0 for some v € V, with M = M,. Then
for 0 € R(M) and x € W(M)g, we have

(a)
TG inoon) = S aTil(fivaloo))+ S aTl(fuiva(ooX)).

veVy;M=M, veVy;M#M,

This is an algebraic function on W(M)g. Note that in (a), the first part is more
regular in W(M)g than the second part. Therefore we have

Z aUTrg(fvaiMﬁ(O 0x)) =0

veVy; M=M,

forall 0 € R(M) and x € W(M)g. As an algebraic function on W(M)g, the “lead-
ing term” of Tr%(f,, im,r(00x)) is a multiple of (v, x). Hence a Tr%(fy, iv (oo
X)) = 0 for every v € V, with M = M,. By Theorem [6.1]

ayfy € iy(ker Try lB())- O
Finally, we have

Theorem 6.5. Assume that char(F) = 0. Let M be a semistandard Levi subgroup
and v € Ny, with M = M,. Then the map

i, H(M;v) = H(p)

s an isomorphism.

Proof. Let f € keri,. Set f = f®1 € He(M;v). By Theorem G 6.1 (2), we have

f € ker TrC By the spectral density theorem [14, Theorem 0], f =0 € H(M)c.

By [17], H(M) is free. Hence f =0 € H(M). O
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