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COCENTER OF p-ADIC GROUPS, II: INDUCTION MAP

XUHUA HE

Abstract. In this paper, we study some relation between the cocenter H̄(G)
of the Hecke algebra H(G) of a connected reductive group G over an nonar-
chimedean local field and the cocenter H̄(M) of its Levi subgroups M .

Given any Newton component of H̄(G), we construct the induction map ī

from the corresponding Newton component of H̄(M) to it. We show that this
map is surjective. This leads to the Bernstein-Lusztig type presentation of the
cocenter H̄(G), which generalizes the work [13] on the affine Hecke algebras.
We also show that the map ī we constructed is adjoint to the Jacquet functor
and in characteristic 0, the map ī is an isomorphism.

Introduction

0.1. Let G be a connected reductive group over a nonarchimedean local field F
of arbitrary characteristic and G = G(F ). Let R be an algebraically closed field
of characteristic not equal to p, where p is the characteristic of residue field of F .
Let HR be the Hecke algebra of G over R and H̄R = HR/[HR, HR] be its cocenter.
Let R(G)R be the R-vector space with basis the isomorphism classes of irreducible
smooth admissible representations of G over R. Then we have the trace map

TrR : H̄R −→ R(G)∗R.

On the representation side, we have the induction functor and the Jacquet
functor

iM,R : R(M)R −→ R(G)R, rM,R : R(G)R −→ R(M)R,

where M is a Levi subgroup of G.
What happens on the cocenter side?
The functor adjoint to the induction functor iM is the restriction map r̄M,R :

H̄(G)R → H̄(M)R. It can be expressed explicitly via the Van Dijk’s formula. In
this paper, we investigate the functor īM,R : H̄R(M) → H̄R(G), which is adjoint
to the Jacquet functor rM,R : R(G)R → R(M)R.

0.2. We first describe the properties we expect for the map īM,R and then discuss
the approach toward it.

First, instead of working over various algebraically closed fields R, it is desirable
to have the map īM defined on the integral form H̄ (the cocenter of the Hecke
algebra of Z[1

p
]-valued functions). Such map, if exists, provides not only a uniform

approach to the map īM,R for all R, but also some useful information on the mod-l
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2 X. HE

representations (see Theorem D in the introduction and a future work [6] for some
results in this direction).

Second, in [11], we introduced the Newton decomposition. Roughly speaking,

G = ⊔G(v) and H̄ = ⊕H̄(v),

where v runs over the set of dominant rational coweights of G. Such description is
expected to play an important role in the representation theory of p-adic groups.
In order to relate the Newton decomposition with the representations, we would
like to know that the Newton decomposition is compatible with the map īM .

0.3. Now we discuss several approaches in the literature towards the understand-
ing of the map īM .

Over C, the spectral density Theorem of Kazhdan [14] asserts that the trace
map TrC : H̄C → R(G)∗

C
is injective. Hence the map īM,C is uniquely determined

by the adjunction formula

TrMC (f, rM,C(π)) = TrGC (̄iM,C(f), π).

However, if R is of positive characteristic, the trace map TrR may not be injective
and thus the map īM,R is not uniquely determined by the adjunction formula.

In those cases, one may use the categorical description of the cocenter to give
a definition of īM,R. Bernstein’s second adjointness theorem implies that the map
īM,R defined in this way is adjoint to the Jacquet functor (see [7, (1.8)]). However,
it is not clear that this map preserves the integral structure (see some discussion
in [7, §4.27]). Also it is not clear if this description is compatible with the Newton
decomposition.

0.4. A different, but more explicit approach is given by Bushnell in [2].
Note that the induction functor iM,R on the representations of M depends not

only on the Levi subgroup M , but also on the parabolic subgroup P with Levi
factor M . However, when passing to the Grothendieck group of the representa-
tions, the dependence of P disappears. On the other hand, the Jacquet functor
rM,R, even if one passes to the Grothendieck groups of the representations, still
depend on the choice of parabolic subgroup.

Let v be a rational coweight. Then v determines a Levi subgroup M = Mv and
the parabolic subgroup Pv = MNv. Let K be a “nice” open compact subgroup of
G (e.g. the n-th congruent subgroup In of an Iwahori subgroup) and KM = K∩M .
Bushnell introduced the Pv-positive elements ofM and the subalgebra Hv(M,KM)
of H(M,KM), consisting of compactly supported KM -biinvariant functions sup-
ported in the Pv-positive elements. Then he proves that

(a) The algebra H(M,KM) is isomorphic to the localization of Hv(M,KM) at
a strongly positive element fz.

(b) The map

jv,K : Hv(M,KM) −→ H(G,K), δKMmKM
7−→ δPv(m)−

1
2

µG(K)

µM(KM)
δKmK

is an injective algebra homomorphism.
(c) The map jv,K is adjoint to the Jacquet functor rM,K,R : RK(G)R → RK∩M(M)R

relative to Pv. Here RK(G)R ⊂ R(G)R consists of representations generated by
their K-fixed vectors.
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Moreover, Bushnell’s map jv,K also preserves the integral structure of the Hecke
algebra.

0.5. It is tempting to apply Bushnell’s result to the cocenter of Hecke algebras.
However, there are several obstacles.

If K is the Iwahori or pro-p Iwahori subgroup, then the map jv,K extends to an
algebra homomorphism H(M,K∩M) → H(G,K). In this case, the localization of
Hecke algebra Hv(M,K∩M) is consistent with the Bernstein-Lusztig presentation
([10] and [18]). However, as pointed out in [2], these are essentially the only cases
of this kind. Thus one may only use jv,K to deduce the induction map from part
of the cocenter of H(M) to the cocenter of H(G).

The Newton strata of M with integral dominant Newton points are positive,
but the strata with rational (but not integral) Newton point may not be positive
for any parabolic P . Those strata are not in the domain of the maps jv,K.

Also if one fixes M and P , the maps jv,K are not compatible with the change of
open compact subgroups K, even at the cocenter level (see §2.5). Thus the maps
jv,K does not induce a well-defined map H̄v(M) → H̄.

0.6. The idea behind Bushnell’s map jv,K is to enlarge the open compact subset
KMmKM of M to the open compact subset KmK of G by multiplying the open
compact subgroup K. Inspired by it, we have the following construction.

Let v be a rational coweight and P = MNv be the associated parabolic sub-
group. The elements in the Newton stratum M(v) may not be Pv-positive, but a
sufficiently large power of it is Pv-positive. One may enlarge an open compact sub-
set inside M(v) by multiplying a suitable open compact subgroup of G to obtain
an open compact subset of G. Unlike the situation in [2], the lack of Pv-positivity
condition prevents us to give an explicit open compact subgroup of G that works
in our situation. We have to use sufficiently small open compact subgroup of G.
Since v is strictly positive with respect to Nv, we finally show that our construction
is independent of the choice of such open compact subgroups. We have

Theorem A. Let v be a rational coweight and M = Mv. Let v̄ be the G-dominant
coweight associated to v. Then

(1) [Theorem 3.1] The map

δmKM
7−→ δPv(m)−

1
2
µM(KM)

µG(KMK)
δmKMK + [H,H ]

for sufficiently small open compact subgroup K of G gives a well-defined map

īv : H̄(M ; v) −→ H̄.

(2) [Theorem 4.1] The image of īv equals H̄(G; v̄).
(3) [Theorem 6.5] If moreover, char(F ) = 0, then the map īv gives a bijection

between H̄(M ; v) and H̄(G; v̄).

Theorem B (Theorem 5.2). Let v be a rational coweight and M = Mv. Then for
any f ∈ H̄R(M ; v) and π ∈ R(G)R, we have the following adjunction formula

TrMR (f, rv,R(π)) = TrGR (̄iv(f), π).

Here rv,R : R(G)R → R(M)R is the Jacquet functor relative to Pv.
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0.7. Now we discuss some applications. In [11], we introduced the rigid cocenter
H̄rig = ⊕H̄(v), where v runs over rational central coweights.

Now for any standard Levi subgroupM , we introduce the +-rigid part H̄(M)+,rig =
⊕H̄(M ; v), where v runs over rational dominant coweights withM = Mv. We then
have the well-defined map

ī+M = ⊕v īv : H̄(M)+,rig −→ H̄.

As an application of Theorem A and the Newton decomposition of H̄ (see [11,
Theorem 3.1]), we have

Theorem C. We have the decomposition of the cocenter H̄ into +-rigid parts:

H̄ = ⊕M is a standard Levi subgroup ī
+
M(H̄(M)+,rig).

For affine Hecke algebras, such decomposition is first obtained in [13] via an
elaborate analysis on the minimal length elements in the affine Weyl groups of G
and its Levi subgroups M . In loc.cit., such decomposition is called the Bernstein-
Lusztig presentation of the cocenter of affine Hecke algebras, since the explicit
expression of ī+M there is given in terms of the Bernstein-Lusztig presentation.
Although there is no Bernstein-Lusztig type presentation for H , we follow [13]
and still call the decomposition in Theorem C the Bernstein-Lusztig presentation
of the cocenter H̄ . It is also worth mentioning that the proof in this paper does not
involve the elaborate analysis on the minimal length elements as in [13], but based
on the compatibility between the change of different open compact subgroups K
of G.

Theorem C asserts that the rigid cocenters of Levi subgroups form the “building
blocks” of the whole cocenter H̄ . We also show that that they are compatible with
the trace map in the following way.

Theorem D (Theorem 6.1). Let R be an algebraically closed field of characteristic
not equal to p. Then we have

ker TrR = ⊕M is a standard Levi subgroup ī
+
M (ker TrMR ∩ H̄R(M)+,rig).

If R = C, we have the spectral density theorem and the kernel of the trace map
is zero. Theorem D is trivial in this case. However, if R is of positive characteristic,
especially when the spectral density theorem fails, then Theorem D would provide
useful information toward the understanding of those representations.

0.8. The outline of the proof is as follows. In §2, we introduce the notion of quasi-
positive elements and we use some remarkable properties on the minimal length
elements established in [12] to show that any element in the Newton stratumM(v)
is quasi-positive. Then in §3, we use the quasi-positivity to show that the map in
Theorem A (1) is well-defined and factors through H̄(M ; v). This proves part (1)
of Theorem A.

As to part (2) of Theorem A, we first prove in Proposition 4.2 thatM(v) ⊂ G(v̄).
Then by the admissibility of Newton strata ([11, Theorem 3.2]), any open compact
subset X of M(v) enlarged by a sufficiently small open compact subgroup is still
contained in G(v̄). This shows that the image of īv is contained in H̄(G; v̄). The
key ingredients in the proof of surjectivity are

• The notation of P -alcove elements introduced in [8].
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• The Iwahori-Matsumoto presentation of H̄(G; v̄) ([11, Theorem 4.1]).

By the quasi-positivity, for any f ∈ H(M ; v), f l ∈ Hv(M) for sufficiently large
l. Theorem B follows from the adjunction formula proved in [2], the comparison
between iv(f)

l with jv,∗(f
l) and a trick of Casselman [4].

Finally, the injectivity in part (3) of Theorem A follows from the adjunction
formula (Theorem B), the spectral density theorem and the freeness of the cocenter
H̄ (which is only known in the case of char(F ) = 0).

0.9. Acknowledgment. We thank Dan Ciubotaru and Sian Nie for many enjoy-
able discussions and valuable suggestions. We also thank Guy Henniart and Marie-
France Vignéras for discussions on the freeness of cocenter and thank Maarten
Solleveld for his useful comments on a preliminary version of the paper.

1. Preliminary

1.1. Let G be a connected reductive group over a nonarchimedean local field F
of arbitrary characteristic. Let G = G(F ). We fix a maximal F -split torus A
and an alcove aC in the corresponding apartment, and denote by I the associated
Iwahori subgroup.

Let Z = ZG(A). We denote by W0 = NGA(F )/Z(F ) the relative Weyl group

and W̃ = NGA(F )/Z0 the Iwahori-Weyl group, where Z0 is the unique parahoric
subgroup of Z(F ).

We fix a special vertex of aC and identify W̃ as

W̃ ∼= X∗(Z)Gal(F̄ /F ) ⋊W0 = {tλw;λ ∈ X∗(Z)Gal(F̄ /F ), w ∈ W0}.

We have a semidirect product

W̃ = Wa ⋊ Ω,

where Wa is the affine Weyl group associated to W̃ and Ω is the stabilizer of the
alcove aC in W̃ . Let S̃ be the set of affine simple reflections of Wa determined by
the fundamental alcove aC . The groups Wa and W̃ are equipped with a Bruhat
order 6 and a length function ℓ. The subgroup Ω of W̃ is the subgroup consisting
of length-zero elements.

1.2. For any K ⊂ S̃, let WK be the subgroup of W̃ generated by s ∈ K. Let KW̃
be the set of elements w ∈ W̃ of minimal length in the cosets WKw.

Let Φ = Φ(G,A) be the set of roots of G relative to A and Φ+ be the set of
positive roots so that aC is contained in the antidominant chamber of V determined
by Φ+. Let R = {α} be the set of affine roots on A . We choose a normalization
of the valuation on F so that if α ∈ R, then so is α± 1 (see [1, §5.2.23]). For any
n ∈ N, let In be the n-th Moy-Prasad subgroup associated to the barycenter of
aC [15]. This is the subgroup of G generated by the n-th congruence subgroup of
Z(F ) and the affine root subgroup Xα+n for α ∈ R+.

For any n ∈ N and a subgroup G′ of G, we set G′
n = G′ ∩ In. We write IG′ for

G′ ∩ I.
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1.3. Let µG be the Haar measure on G such that the pro-p Iwahori subgroup I ′

has volume 1. As in [11, Section 1], we denote by H = H(G) the Hecke algebra
of locally constant, compactly supported Z[1

p
]-valued functions on G. We have

H = lim−→
K

H(G,K),

where K runs over open compact subgroups of G and H(G,K) is the space of
compactly supported, K×K-invariant Z[1

p
]-valued functions on G, i.e., H(G,K) =

⊕g∈K\G/KZ[
1
p
]δKgK, where δKgK is the characteristic function on KgK.

We define the action of G on H by xf(g) = f(x−1gx) for f ∈ H , x, g ∈ G.
By [11, Proposition 1.1], the commutator [H,H ] of H is the Z[1

p
]-submodule of H

spanned by f − xf for f ∈ H and x ∈ G. Let H̄ = H/[H,H ] be the cocenter of
H .

1.4. Now we recall the Newton decomposition introduced in [11].
Set V = X∗(Z)Gal(F̄ /F ) ⊗ R and V+ be the set of dominant elements in V .

For any w ∈ W̃ , there exists a positive integer l such that wl = tλ for some
λ ∈ X∗(Z)Gal(F̄ /F ). We set νw = λ/l ∈ V and ν̄w to be the unique dominant in
the W0-orbit of νw. The element νw and ν̄w are independent of the choice of l.

Let ℵ = Ω× V+. We have a map (see [11, §2.1])

π = (κ, ν̄) : W̃ −→ ℵ, w 7−→ (wWa, ν̄w).

We denote by W̃min be the subset of W̃ consisting of elements of minimal length
in their conjugacy classes. For any ν ∈ ℵ, we set

Xν = ∪w∈W̃min;π(w)=νIẇI and G(ν) = G ·θ Xν .

Here · means the conjugation action of G. Let H(ν) be the submodule of H
consisting of functions supported in G(ν) and let H̄(ν) be the image of H(ν) in
the cocenter H̄ . The Newton decomposition of H̄ is established in [11, Theorem
3.1 (2)].

Theorem 1.1. We have that

H̄ =
⊕

ν∈ℵ

H̄(ν).

In this paper, we are mainly interested in the V -factor of ℵ. For any v ∈ V+,
we also set G(v) = ⊔ν=(τ,v) for some τ∈ΩG(ν), H(v) = ⊕ν=(τ,v) for some τ∈ΩH(ν) and
H̄(v) = ⊕ν=(τ,v) for some τ∈ΩH̄(ν).

1.5. Let M be a semistandard Levi subgroup of G, i.e., a Levi subgroup of some
parabolic subgroup of G that contains Z. Let IM = I∩M be the Iwahori subgroup
of M and W̃ (M) be the Iwahori-Weyl group of M . We denote by S̃(M) the set

of affine simple reflections of W̃ (M) determined by the Iwahori subgroup IM .
We may regard W̃ (M) as a subgroup of W̃ in a natural way. However, the

length function ℓM on W̃ (M) does not equal to the restriction ot W̃ of the length
function ℓ on W̃ .

Let ΩM be the subgroup of W̃ (M) consisting of length-zero elements with re-
spect to the length function ℓM . We have ΩM

∼= W̃ (M)/Wa(M), where Wa(M)

is the affine Weyl group of the subgroup of W̃ (M). We have Wa(M) ⊂ Wa and
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thus a natural map ΩM
∼= W̃ (M)/Wa(M) → W̃/Wa

∼= Ω. Let V M
+ be the set

of M-dominant elements in V . We set ℵM = ΩM × V M
+ and we have a map

πM = (κM , ν̄M) : W̃ (M) → ℵM .
We also have a natural map ℵM → ℵ sending (τ, v) to (τ ′, v̄), where τ ′ is the

image of τ in Ω and v̄ is the unique (G-)dominant element in the W0-orbit of v.
Let µM be the Haar measure on M such that the pro-p Iwahori subgroup of M

has volume 1. Let H(M) be the Hecke algebra of M and H̄(M) be its cocenter.
For any νM ∈ ℵM , we denote by H̄(M ; νM ) the corresponding Newton component
of H̄(M). By Theorem 1.1, we have

H̄(M) = ⊕νM∈ℵM
H̄(M ; νM ).

2. Quasi-positive elements

2.1. The semistandard Levi may be described as the centralizer of elements in V .
For any v ∈ V , we set Φv,0 = {a ∈ Φ; 〈a, v〉 = 0} and Φv,+ = {a ∈ Φ; 〈a, v〉 > 0}.
LetMv ⊂ G be the Levi subgroup generated by Z and Ua(F ) for a ∈ Φv,0 andNv ⊂
G be the unipotent subgroup generated by Ua(F ) for a ∈ Φv,+. Set Pv = MvNv.
Then Pv is a semistandard parabolic subgroup andMv is a Levi subgroup of Pv. We
denote by P−

v = MvN
−
v the opposite parabolic. Let µNv , µN−

v
be the Haar measures

on Nv and N−
v respectively such that µG(nmn−) = µNv(n)µMv(m)µN−

v
(n−) for

n ∈ Nv, m ∈ Mv, n
− ∈ N−

v . For m ∈ Mv, set δv(m) =
µNv (mNv,0m−1)

µNv (Nv,0)
. For

ν = (τ, v) ∈ ℵ, we may also write Mν for Mv, N(ν) for Nv and N−(ν) for N−
v .

If v is dominant, then Pv is a standard parabolic subgroup of G and Mv is a
standard Levi subgroup of G.

2.2. Let v ∈ V . Following [3, Definition 6.5 & Definition 6.14], we call an element
m ∈ Mv a (Pv, In)-positive element if

mNv,nm
−1 ⊂ Nv,n, and m−1N−

v,nm ⊂ N−
v,n.

We call an element z in the center of Mv a strongly Pv-positive element if the
sequences znNv,0z

−n, z−nN−
v,0z

n both tend monotonically to 1 as n → ∞.
Following [2, §3.1], let Hv(Mv,Mv,n) be the subalgebra of H(Mv,Mv,n) of func-

tions with support consisting of (Pv, In)-positive elements. The following result is
proved in [2, Proposition 5].

Proposition 2.1. The map δMv,nmMv,n 7→ δv(m)−
1
2
µMv (Mv,n)

µG(In)
δInmIn defines an in-

jective algebra homomorphism

jv,n : Hv(Mv,Mv,n) →֒ H(G, In).

The formula we have here differs from [2] by the factor δv(m)−
1
2 , since in [2]

the map is adjoint to the (unnormalized) Jacquet functor while we consider the
(normalized) Jacquet functor.

By [2, §3.2],H(Mv,Mv,n) = S−1Hv(Mv,Mv,n) is the localization ofHv(Mv,Mv,n),
where S = 〈δMv,nzMv,n〉 is the the multiplicative closed set of the function δMv,nzMv,n

with a strongly Pv-positive element z. It is pointed out in [2, Remark 5] that the
map jv,n does not extend to an algebra homomorphism H(Mv,Mv,n) → H(G, In)
for n > 0.



8 X. HE

2.3. Let v ∈ V be a rational coweight and M = Mv. For any l ∈ N with
lv ∈ X∗(Z), the element tlv is strongly Pv-positive. However, in general, the
element in M(v) may not be (Pv, ∗)-positive. Therefore, one can not deduce a
map from H̄(M ; v) to H̄ via the map jv,n.

Example 2.2. Let G be split GL5 and M = GL3 × GL2. Let v = (2
3
, 2
3
, 2
3
, 1
2
, 1
2
).

Then M = Mv. The element w = t(1,1,0,1,0)(132)(45) of W̃ has Newton point v.
However, w(e4 − e3) = e5 − e2 − 1 is a negative affine root. Therefore the element
ẇ is not (Pv, ∗)-positive.

2.4. To overcome the difficulty, we introduce the quasi-positive elements.
An element m ∈ Mv is called Pv quasi-positive if there exists l ∈ N such that

(a) mlNv,nm
−l ⊂ Nv,n+1, and m−lN−

v,nm
l ⊂ N−

v,n+1 for any n ∈ N.

For any n ∈ N, w ∈ W̃ and g ∈ IẇI, we have gIn+ℓ(w)g
−1 ⊂ In. So

(b) Let w ∈ W̃ (M) and m ∈ IM ẇIM . If m satisfies (a), then we have

mnNv,n′+(l−1)ℓ(w)m
−n ⊂ Nv,n′ , and m−nN−

v,n′+(l−1)ℓ(w)m
n ⊂ N−

v,n′ for any n, n′ ∈ N.

We first discuss some properties on the quasi-positive elements.

Proposition 2.3. Let v ∈ V and M = Mv. Let w ∈ W̃ (M) and m ∈ IM ẇIM .
Suppose that m satisfying the inclusion relation §2.4 (a).

(1) For any n ∈ N, any element in mIn+(l−1)ℓ(w) is conjugate by an element in
In to an element in mMn+(l−1)ℓ(w).

(2) For any n, n′ ∈ N and g ∈ In+(l−1)ℓ(w), we have

δmgMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+n′
≡ δmMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+n′

mod [H,H ].

Proof. (1) We first show that
(a) For any i ∈ N, any element in mMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+i is conjugate by

In+i to an element in mMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+i+1.
Note that any element inmMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+i is conjugate by In+(l−1)ℓ(w)+i

to an element of the form u′gu with u′ ∈ N−
v,n+(l−1)ℓ(w)+i, g ∈ mMn+(l−1)ℓ(w)

and u ∈ Nv,n+(l−1)ℓ(w)+i. By §2.4 (b), gug−1 ∈ Nv,n+i. We have (u′, gug−1) ∈
(In+(l−1)ℓ(w)+i, In+i) ⊂ In+(l−1)ℓ(w)+i+1. Now we have

u′gu = u′(gug−1)g ∈ (gug−1)u′In+(l−1)ℓ(w)+i+1g.

So u′gu is conjugate by In+i to an element in

u′In+(l−1)ℓ(w)+i+1g(gug
−1) = u′In+(l−1)ℓ(w)+i+1(g

2u(g2)−1)g

= u′(g2u(g2)−1)In+(l−1)ℓ(w)+i+1g

= (g2u(g2)−1)u′In+(l−1)ℓ(w)+i+1g.

By the same procedure, for any l ∈ N, u′gu is conjugate by In+i to an element in
(glu(gl)−1)u′In+(l−1)ℓ(w)+i+1g. By §2.4 (a), glug−l ∈ In+(l−1)ℓ(w)+i+1. Hence u′gu
is conjugate by In+i to an element in u′In+(l−1)ℓ(w)+i+1g = u′gIn+(l−1)ℓ(w)+i+1. By
the same argument, any element in u′gIn+(l−1)ℓ(w)+i+1 is conjugate by In+i to an
element in gIn+(l−1)ℓ(w)+i+1.

(a) is proved.
Let g0 ∈ mMnIn+(l−1)ℓ(w). By (a), we may construct inductively an element zi ∈

In+i for i ∈ N such that gi+1 := z−1
i gizi is contained in mMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+i.
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The convergent product z := z1z2 · · · is a well-defined element in In and z−1gz ∈
mMn+(l−1)ℓ(w).

(2) By part (1), there exists h ∈ In+n′ such that hmgh−1 ∈ mMn+(l−1)ℓ(w). We
have (In+n′,Mn+(l−1)ℓ(w)) ⊂ In+n′+(l−1)ℓ(w). Therefore Mn+(l−1)ℓ(w)In+(l−1)ℓ(w)+n′

is a subgroup of I and is stable under the conjugation action of In+n′. Thus
hmgMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+n′h−1 = mMn+(l−1)ℓ(w)In+(l−1)ℓ(w)+n′ . The statement
is proved. �

2.5. We say that m ∈ M is Pv strictly positive if for any n ∈ N, we have

mNv,nm
−1 ⊂ Nv,n+1, and m−1N−

v,nm ⊂ N−
v,n+1.

We denote by Hv♯(M) the subalgebra of H(M) consisting of functions with sup-
port consisting of Pv strictly positive elements. Note that the limit of the sup-
port of jv,n(δZ0) for v dominant regular, as n goes to infinite, is just Z0 itself,
but the support of jv,n(δZ0) for each n contains of nonsplit regular semisim-
ple elements. Thus the maps {jv,n} are not compatible with the natural maps
H̄v(M,Mn) → H̄v(M,Mn+1).

However, we have the following compatibility result for Pv strictly positive part.

Corollary 2.4. Let n ∈ N. Then the following diagram commutes

H̄v♯(M,Mn)
jv,n

//

� _

��

H̄(G, In)� _

��

H̄v♯(M,Mn+1)
jv,n+1

// H̄(G, In+1).

Proof. Let m ∈ M be Pv strictly positive. Then δMnmMn ∈ Hv♯(M,Mn) ⊂
Hv♯(M,Mn+1). By definition,

jv,n+1(δMnmMn) = δv(m)−
1
2
µM(Mn+1)

µG(In+1)
δIn+1MnmMnIn+1 .

Note that In+1Mn = MnIn+1 is a subgroup of I. We have

InmIn = ⊔(i1,i2,i′1,i
′

2)
i1i

′
1In+1MnmMnIn+1i

′
2i2,

where {(i1, i2, i
′
1, i

′
2)} ⊂ Nn×Nn×N−

n ×N−
n is a finite subset. By Proposition 2.3

(2), for i1, i2 ∈ Nn and i′1, i
′
2 ∈ N−

n , we have

δi1i′1In+1MnmMnIn+1i′2i2
≡ δIn+1MnmMnIn+1 mod [H,H ].

Thus

jv,n(δMnmMn) ≡ δv(m)−
1
2
µM(Mn)

µG(In)

µG(InmIn)

µG(In+1MnmMnIn+1)
δIn+1MnmMnIn+1 mod [H,H ].

It remains to show that µM (Mn+1)
µG(In+1)

= µM (Mn)
µG(In)

µG(InmIn)
µG(In+1MnmMnIn+1)

.

Suppose that m ∈ IM ẇIM for some w ∈ W̃ (M). By [11, Lemma 4.6],

µG(InmIn)

µG(In)
=

µG(In+1mIn+1)

µG(In+1)
= qℓ(w),

µM(MnmMn)

µM(Mn)
=

µM(Mn+1mMn+1)

µM(Mn+1)
= qℓM (w).
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Now we have

µM(Mn)

µG(In)

µG(InmIn)

µG(In+1MnmMnIn+1)
=

µM(Mn)

µG(In)

µG(InmIn)

µG(In+1mIn+1)

µG(In+1mIn+1)

µG(In+1MnmMnIn+1)

=
µM(Mn)

µG(In)

µG(InmIn)

µG(In+1mIn+1)

µM(Mn+1mMn+1)

µM(MnmMn)

=
µM(Mn)

µG(In)

µG(In)

µG(In+1)

µM(Mn+1)

µM(Mn)
=

µM(Mn+1)

µG(In+1)
.

The statement is proved. �

Finally we show that the elements in Mν(ν) are Pν quasi-positive.

Proposition 2.5. Let v ∈ V be a rational coweight and M = Mv. Let w ∈ W̃ (M).
Then there exists a positive integer iν,w such that for any m ∈ IM ẇIM ∩ M(v)
and n > iv,w, we have

miv,wNv,n(m
iv,w)−1 ⊂ Nv,n+1, (miv,w)−1N−

v,nm
iv,w ⊂ N−

v,n+1.

2.6. The proof relies on some remarkable properties of the Iwahori-Weyl group,
which we recall here.

For w,w′ ∈ W̃ and s ∈ S̃, we write w
s
−→ w′ if w′ = sws and ℓ(w′) 6 ℓ(w). We

write w → w′ if there is a sequence w = w0, w1, · · · , wn = w′ of elements in W̃

such that for any 1 6 k 6 n, wk−1
sk−→ wk for some sk ∈ S̃. We write w ≈ w′ if

w → w′ and w′ → w. It is easy to see that if w → w′ and ℓ(w) = ℓ(w′), then
w ≈ w′. We have that

(a) If w
s
−→ w′ and ℓ(w) = ℓ(w′), then for any g ∈ IẇI, there exists g′ ∈ IṡI

such that g′g(g′)−1 ∈ Iẇ′I.

(b) If w
s
−→ w′ and ℓ(w′) < ℓ(w), then for any g ∈ IẇI, there exists g′ ∈ IṡI

such that g′g(g′)−1 ∈ Iẇ′I ⊔ IṡẇI.
An element w ∈ W̃ is called straight if ℓ(wn) = nℓ(w) for any n ∈ N. A triple

(x,K, u) is called a standard triple if x ∈ W̃ is straight, K ⊂ S̃ with WK finite,
x ∈ KW̃ and Ad(x)(K) = K, and u ∈ WK . By definition,

(c) For any n ∈ N and g1, · · · , gn ∈ Iu̇ẋI, we have g1g2 · · · gn ∈ (IWKI)(Iẋ
nI).

It is proved in [12, Theorem A & Proposition 2.7] that

Theorem 2.6. For any w ∈ W̃ , there exists a standard triple (x,K, u) such that

ux ∈ W̃min and w → ux. In this case, π(w) = π(x).

Following [9, §4.3], we write w
s
⇀ w′ if either w

s
→ w′ or w′ = sw and ℓ(w) >

ℓ(sws), and we write w ⇀ w′ if there exists a sequence w = w0, w1, · · · , wn = w′

of elements in W̃ such that for any 1 6 k 6 n, wk−1
sk⇀ wk for some sk ∈ S̃. It is

easy to see that if w ∈ W̃min and w ⇀ w′, then w ≈ w′.
We show that

Lemma 2.7. Let w ∈ W̃ and g ∈ IẇI. Then there exists a standard triple
(x,K, u), a sequence w = w0, w1, · · · , wn = ux of distinct elements in W̃ and a
sequence g = g0, g1, · · · , gn of elements in G such that

(1) ux ∈ W̃min;

(2) for any 0 6 k 6 n, gk ∈ IẇkI;
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(3) for any 1 6 k 6 n, there exists sk ∈ S̃ and hk ∈ IṡkI such that wk−1
sk⇀ wk

and gk = hkgk−1h
−1
k .

Remark 2.8. By definition, if w ⇀ w′, then w′ ∈ wWa and ℓ(w′) 6 ℓ(w). In
particular, the length of the sequence is at most ♯{x ∈ Wa; ℓ(x) 6 ℓ(w)}.

Proof. We argue by induction on ℓ(w).
If w ∈ W̃min, by Theorem 2.6, there exists a standard triple (x,K, u) with

ux ∈ W̃min and a sequence w = w0, w1, · · · , wn = ux of distinct elements in W̃

such that for any 1 6 k 6 n, wk−1
sk−→ wk for some sk ∈ S̃. Since w ∈ W̃min, we

have ℓ(wk) = ℓ(w) for all k. Now the statement follows from §2.6 (a).
If w /∈ W̃min, then by Theorem 2.6, there exists a sequence w = w0, w1, · · · , wn of

distinct elements in W̃ such that ℓ(w) = ℓ(wn), for any 1 6 k 6 n, wk−1
sk−→ wk for

some sk ∈ S̃ and there exists s ∈ S̃ with swns < wn. Then we have ℓ(wk) = ℓ(w)
for all k. By §2.6 (a), for any 1 6 k 6 n, there exists hk ∈ IṡkI such that gk =
hkgk−1h

−1
k . By §2.6 (b), there exists hn+1 ∈ IṡI such that hn+1gnh

−1
n+1 ∈ Iẇn+1I

with wn+1 ∈ {swn, swns}. Now the statement follows from inductive hypothesis
on wn+1. �

2.7. Proof of Proposition 2.5. Let N0 = ♯{w′ ∈ Wa(M); ℓM(w′) 6 ℓM(w)}. By
Lemma 2.7 and remark 2.8, there exists a standard triple (x,K, u) of W̃ (M) and
an element h ∈ ∪z∈Wa(M);ℓ(z)6N0

IM żIM such that ux ∈ W̃ (M)min, w ⇀ ux and
hmh−1 ∈ IM u̇ẋIM .

Let i be a positive integer with iv ∈ X∗(Z). Then xi = tiv ∈ W̃ represents a
central element in M . By §2.6 (c), for any l ∈ N,

(hmh−1)li ∈ (IMWKIM)(IM tlivIM ).

Let N1 = maxK⊂S̃(M);WK is finite ♯WK . Let iv,w = (2N0 +N1 + 1)i. Then for any

α ∈ Φv,+, 〈iv,wv, α〉 > 2N0 + N1 + 1. Note that miv,w = h−1(g1g2)h with h ∈
∪w′∈W̃ (M);ℓ(w′)6N0

IM ẇ′IM , g1 ∈ ∪u′∈W̃ (M);ℓM (u′)6N1
IM u̇′IM and g2 ∈ IM tiv,wvIM .

So

miv,wNv,n(m
iv,w)−1 = h−1g1g2hNv,nh

−1g−1
2 g−1

1 h

⊂ h−1g1g2Nv,n−N0g
−1
2 g−1

1 h

⊂ h−1g1Nv,n−N0+(2N0+N1+1)g
−1
1 h

⊂ h−1Nv,n−N0+(2N0+N1+1)−N1
h

⊂ Nv,v,n−N0+(2N0+N1+1)−N1−N0 = Nv,n+1.

Similarly, m−iv,wN−
v,nm

iv,w ⊂ N−
v,n+1.

3. The map īν

We define the induction map īν , which is the main object in this paper.

Theorem 3.1. Let M be a semistandard Levi subgroup of G and ν ∈ ℵM with
M = Mν . Then

(1) For m ∈ M and an open compact subgroup KM of IM with mKM ⊂ M(ν),
the map

δmKM
7−→ δν(m)−

1
2
µM(KM)

µG(KMK)
δmKMK + [H,H ]
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from H(M ; ν) to H̄(ν̄) is independent the choice of sufficiently small open compact
subgroup K of G

(2) The map iν : H(M ; ν) → H̄ defined above induces a map

īν : H̄(M ; ν) −→ H̄.

Remark 3.2. Unlike the map jv,n, the map īν does not send H̄(M,Mn; ν) to
H̄(G, In; ν̄). One needs to replace In by a smaller open compact subgroup of G.
However, by the Iwahori-Matsumoto presentation of H̄(M,Mn; ν) ([11, Theorem
4.1]) and Proposition 2.5, there exists a positive integer n′ (depending on ν) such
that īν : H̄(M,Mn; ν) → H̄(G, In+n′; ν̄) for any n ∈ N.

Proof. (1) Let v be the V -factor of ν. Let w ∈ W̃ (M) with m ∈ IM ẇIM . Let
iv,w be an positive integer in Proposition 2.5. Let l be a multiple of iv,wℓ(w) with
Ml ⊂ KM . By Proposition 2.3 (2), for any n ∈ N and g ∈ Il, we have

δm′gMlIl+n
≡ δm′MlIl+n

mod [H,H ].

Let K,K′ be open compact subgroups of G with K,K′ ⊂ Il. Let n ∈ N with
Il+n ⊂ K,K′. Now we have

δmKMK =
∑

m′∈mKM/Ml

δm′MlK ≡
∑

m′∈mKM/Ml

µG(MlK)

µG(MlIl+n)
δm′MlIl+n

=
µG(MlK)

µG(MlIl+n)
δmKMIl+n

mod [H,H ].

As KM is stable under the right multiplication of Ml, we have µG(KMIl+n) =

♯(KM/Ml)µG(MlIl+n) and
µG(MlK)

µG(MlIl+n)
= µG(KMK)

µG(KMIl+n)
. Thus for any n ∈ N, we have

µM(KM)

µG(KMK)
δmKMK ≡

µM(KM)

µG(KMIl+n)
δmKMIl+n

mod [H,H ].

Similarly, µM (KM )
µG(KMK′)

δmKMK′ ≡ µM (KM )
µG(KMIl+n)

δmKMIl+n
mod [H,H ]. Part (1) is proved.

(2) By [11, §3.3 (2)], [H(M), H(M)] = ⊕ν∈ℵM
([H(M), H(M)] ∩ H(M)ν), the

kernel of the map H(M)ν → H̄(M)ν is spanned by δmKM
− hδmKM

for h,m ∈ M
and open compact subgroup KM of IM such that mKm ⊂ Mν . It remains to prove
that iν(δmKM

) = iν(
hδmKM

).
Set m′ = hmh−1 and K′

M = hKMh−1. By part (1), there exists a sufficiently
small open compact subgroup K of G such that

iν(δmKM
) ≡ δν(m)−

1
2
µM(KM)

µG(KMK)
δmKMK mod [H,H ],

iν(δm′K′

M
) ≡ δν(m

′)−
1
2
µM(K′

M)

µG(K′
MK′)

δm′K′

MK′ mod [H,H ].

Here K′ = hKh−1.
We have δm′K′

MK′ = δh(mKMK)h−1 ≡ δmKMK mod [H,H ]. Part (2) is proved. �

3.1. In the rest of this section, we show that the maps ī∗ are compatible with
conjugating the Levi subgroups.

For any semistandard Levi subgroup M , we have a natural projection

X∗(Z)Gal(F̄ /F )/ZΦ
∨
M

∼= ΩM
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and a natural map V 7→ V M
+ . The natural action of W0 on X∗(Z)Gal(F̄ /F ) × V

induces the following commutative diagram for any w ∈ W0

X∗(Z)Gal(F̄ /F ) × V
w·

//

��

X∗(Z)Gal(F̄ /F ) × V

��

ℵM
// ℵẇMẇ−1.

We denote the induced map ℵM → ℵẇMẇ−1 still by w·. If moreover, w ∈ WM ,
i.e. w sends the positive roots of M to the positive roots of ẇMẇ−1, then we
have ẇIM ẇ−1 = IẇMẇ−1. By definition, the M-fundamental alcove is the unique
M-alcove that contains the G-fundamental alcove. Since the conjugation by ẇ
sends the Iwahori-subgroup of M to the Iwahori-subgroup of ẇMẇ−1, it also
sends the M-fundamental alcove to the ẇMẇ−1-fundamental alcove, and thus
induces a length-preserving map from W̃ (M) to W̃ (ẇMẇ−1). In particular, the
conjugation by w sends the minimal length elements of W̃ (M) (with respect to

ℓM) to the minimal length elements of W̃ (ẇMẇ−1) (with respect to ℓẇMẇ−1).
Therefore, by the definition of Newton strata, we have that

(a) Let M be a semistandard Levi subgroup M and ν ∈ ℵM . Let w ∈ W0 and
M ′ = ẇMẇ−1, then

ẇM(ν)ẇ−1 = M ′(w(ν)).

Proposition 3.3. Let M be a semistandard Levi subgroup and ν ∈ ℵM and w ∈
W0. Then for any m ∈ M , and an open compact subgroup KM of IM with mKM ⊂
Mν and ẇKM ẇ−1 ⊂ IẇMẇ−1, we have

iν(δmKM
) = iw(ν)(δẇmKM ẇ−1) ∈ H̄.

Proof. The proof is similar to the proof of Theorem 3.1 (2).
Set M ′ = ẇMẇ−1, m′ = ẇmẇ−1 and KM ′ = ẇKM ẇ−1. By Theorem 3.1 (1),

there exists a sufficiently small open compact subgroup K of G such that

iν(δmKM
) ≡ δν(m)−

1
2
µM(KM)

µG(KMK)
δmKMK mod [H,H ],

iw(ν)(δm′KM′
) ≡ δw(ν)(m

′)−
1
2
µM(KM ′)

µG(KM ′K′)
δm′KM′K′ mod [H,H ].

Here K′ = ẇKẇ−1.
We have δm′K′

MK′ = δẇ(mKMK)ẇ−1 ≡ δmKMK mod [H,H ]. The statement is
proved. �

Corollary 3.4. Let M be a semistandard Levi subgroup of G and ν ∈ ℵM with
M = Mν . Then for any w ∈ W0,

Im(̄iν : H̄(M ; ν) −→ H̄) = Im(̄iw(ν) : H̄(ẇMẇ−1;w(ν)) −→ H̄).

4. The image of the map īν

The main result of this section is

Theorem 4.1. Let M be a semistandard Levi subgroup and ν ∈ ℵM with M = Mν .
Then the image of the the map īν : H̄(M ; ν) → H̄ equals H̄(ν̄).

We first compare the Newton strata of G and its Levi subgroups.
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Proposition 4.2. Let M be a semistandard Levi subgroup and ν ∈ ℵM with
Mν = M . Then we have M(ν) ⊂ G(ν̄).

Proof. The idea is similar to the proof of [11, Theorem 2.1].
By §3.1 (a), after conjugating by a suitable element in W0, we may assume that

M is a standard Levi subgroup. Since M = Mν , the V -factor of ν is G-dominant.
By the Newton decomposition of G ([11, Theorem 2.1]), it suffices to prove that
M(ν) ∩G(ν ′) = ∅ for any ν ′ ∈ ℵ with ν ′ 6= ν̄.

Let ν = (τ, v) and ν ′ = (τ ′, v′). If the image of τ in Ω does not equal to τ ′, then
M(ν) ∩ G(ν ′) = ∅. Now we assume that the Ω-factor matches. Since ν ′ 6= ν̄, we
have v′ 6= v.

By [11, Remark 2.6],

M(ν) = ∪(x,K,u)M · IM u̇ẋIM , G(ν ′) = ∪(x′,K ′,u′)G · Iu̇′ẋ′I,

where (x,K, u) runs over standard triples of W̃ (M) such that ux ∈ W̃ (M)min and

πM(x) = ν, (x′, K ′, u′) runs over standard triples of W̃ such that u′x′ ∈ W̃min and
π(x′) = ν ′.

If M(ν) ∩G(ν ′) 6= ∅, then there exists standard triples (x,K, u) and (x′, K ′, u′)
as above and h ∈ IM u̇ẋIM , h′ ∈ Iu̇′ẋ′I, g ∈ G such that ghg−1 = h′. For any
n ∈ N, we have ghng−1 = (h′)n. By §2.6 (c), we have

hn ∈ (IMWKIM)(IM ẋnIM), (h′)n ∈ (IWK ′I)(I(ẋ′)nI).

Let l > 0 with lv, lv′ ∈ X∗(Z). Suppose that g ∈ I żI for some z ∈ W̃ . Then for
any n ∈ N, we have

I żItnlvI(IWKI)I ż
−1I(IẆK ′I) ∩ Itnlv

′

I 6= ∅.

Similar to the argument in [11, §2.6], this is impossible for n ≫ 0. The statement
is proved. �

Corollary 4.3. The image of the map īν is contained in H̄(ν̄).

Proof. Let m ∈ M and KM be an open compact subgroup of IM with mKM ⊂
M(ν). By Proposition 4.2, mKM ⊂ G(ν̄). Let X be an open compact subset of G
with mKM ⊂ X . By [11, Theorem 3.2], there exists n ∈ N such that X ∩G(ν̄) is
stable under the right multiplication by In. In particular, mKMIn ⊂ G(ν̄). Thus
īν(δmKM

) ∈ H̄(ν̄). �

4.1. In order to prove the other direction, we use the notion of alcove elements
in [8] and [9].

Let w ∈ W̃ . We may regard w ∈ Aff(V ) as an affine transformation. Let
p : Aff(V ) = V ⋊ GL(V ) → GL(V ) be the natural projection map. Let v ∈ V .
We say that w is a v-alcove element if

• p(w)(v) = v;

• Nv ∩ ẇIẇ−1 ⊂ Nv ∩ I.

Note that the first condition implies that ẇMvẇ
−1 = Mv. We have the following

result.

Theorem 4.4. Let w ∈ W̃ . If w is a νw-alcove element, then any element in IẇI
is conjugate by I to an element in ẇIMνw

.
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Proof. The basic idea is similar to the proof of [8, Theorem 2.1.2].
Write M for Mνw and N for Nνw . We start with the generic Moy-Prasad filtra-

tion I = I[0] ⊃ I[1] ⊃ · · · . As explained in [8, §6.2], it is a filtration satisfying
the following conditions:

(1) Each I[r] is normal in I;
(2) For each r, either I[r] ⊂ IMI[r + 1] or there exists a root a ∈ Φ − Φ(M)

and s ∈ R such that I[r] = Xa+sI[r + 1] and Xa+s+ǫ ⊂ I[r + 1] for any ǫ > 0.
We show that each element ẇiM i[r] with iM ∈ IM and i[r] ∈ I[r] is conjugate

by an element in I to an element in ẇIMI[r+1] (and that the conjugator can be
taken to be small when r is large).

If I[r] ⊂ IMI[r+1], then we may absorb the IM part into iM . Otherwise, there
exists a root a outside M such that I[r] = Xa+sI[r+1] and Xa+s+ǫ ⊂ I[r+1] for
any ǫ > 0. We prove the case where a is a root in N . The case where a is a root
in N− can be proved in the same way.

We have i[r] ∈ uI[r + 1] for some u ∈ Xa+s ⊂ Ns. Set m = ẇiM . By the
definition of P -alcove elements, miu(mi)−1 ⊂ Ns for all i ∈ N. As in the proof of
Proposition 2.3 (1), ẇiM i[r] is conjugate by elements in Ns to elements in

muI[r + 1] = (mum−1)mI[r + 1] ∼ mI[r + 1](mum−1) = m(mum−1)I[r + 1]

= (m2u(m2)−1)mI[r + 1] ∼ · · · ∼ (miu(mi)−1)mI[r + 1] ∼ · · · .

Here ∼ means conjugation by elements in Ns.
By Proposition 2.5, there exist i ∈ N such that miu(mi)−1 ⊂ I[r + 1]. Thus

ẇiM i[r] is conjugate by an element in Ns to an element in ẇIMI[r + 1].
Now we start with an element in ẇI. The convergent product of the conjugators

(for all r) is an element in I and conjugates the given element to an element in
ẇIM . �

4.2. Proof of Theorem 4.1. By Corollary 4.3, the image of īν is contained in
H̄(ν̄). Now we prove the other direction. By [11, Corollary 4.2],

H̄ =
∑

w∈W̃min;π(w)=ν̄

H̄w,

where Hw is the submodule of H consisting of functions supported in IẇI and
H̄w is the image of Hw in H̄.

Let w ∈ W̃min with π(w) = ν̄. By [9, Lemma 4.4.3 and Proposition 4.4.6], w is
a νw-alcove element. Set M ′ = Mνw and ν ′ = πM ′(w) ∈ ℵM ′ .

Let iν′,w be a positive integer in Proposition 2.5. By definition, Hw is spanned
by δgIn for g ∈ IẇI and n > i(ν ′, w)ℓ(w). By the proof of Theorem 3.1 (1), for
any n > i(ν ′, w)ℓ(w) and g ∈ ẇIM ′, δgIn + [H,H ] is contained in the image of īν′ .

Let g ∈ IẇI. By Theorem 4.4, there exists i ∈ I and g′ ∈ ẇIM ′ such that
g = ig′i−1. Then

δgIn = δig′Ini−1 ≡ δg′In mod [H,H ].

Therefore H̄w is contained in the image of īν′ . By Proposition 3.3, H̄w is also
contained in the image of īν .
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5. Adjunction with the Jacquet functor

5.1. Let R be an algebraically closed field of characteristic 6= p. Set HR =
H ⊗

Z[ 1
p
] R, H̄R = H̄ ⊗

Z[ 1
p
] R and H̄R(ν) = H̄(ν) ⊗

Z[ 1
p
] R. Recall that R(G)R

is the R-vector space with basis the isomorphism classes of irreducible smooth
admissible representations of G over R. We consider the trace map

TrGR : H̄R −→ R(G)∗R.

Similarly, for any semistandard Levi subgroup M , we have

TrMR : H̄R(M) −→ R(M)∗R.

Let v ∈ V and M = Mv. Let rv,R : R(G)R → R(M)R be the (normalized)
Jacquet functor. Note that the Jacquet functor does not only depend on the Levi
M , but also depends on the direction v (or equivalently, the parabolic subgroup
Pv with Levi factor M). The following result is proved by Bushnell in [2, Corollary
1].

Proposition 5.1. Let n ∈ N. Let v ∈ V and M = Mv. Then for any f ∈
Hv

R(M,Mn), and π ∈ RIn(G)R, we have

TrMR (f, rv,R(π)) = TrGR(jv,n(f), π).

The main result of this section is the following adjunction formula.

Theorem 5.2. Let M be a semistandard Levi subgroup and ν ∈ ℵM . Suppose that
M = Mν . Then for any f ∈ H̄R(M ; ν) and π ∈ R(G)R, we have

TrMR (f, rν,R(π)) = TrGR (̄iν(f), π).

5.2. Let (x,K, u) be a standard triple of W̃ (M) such that the Newton point of
x is v. Let i be the smallest positive integer with iv ∈ X∗(Z). Let i ∈ N such that
for any α ∈ Φv,+, 〈iiv, α〉 > ♯WK + (i− 1)ℓ(x) + 1. Let l > ii. Then l = i′i+ j for
some i′ > i and 0 6 j < i. Then for any m1, · · · , ml ∈ IM u̇ẋIM , by §2.6 (c), we
have

m1m2 · · ·ml ∈ (IMWKIM)(IM ẋjIM )(IM ti
′ivIM).

Note that for g ∈ Iti
′ivI, gNng

−1 ⊂ Nn+♯WK+(i−1)ℓ(x)+1. Also (IWKI)(Iẋ
jI) ⊂

∪w∈W̃ ;ℓ(w)6♯WK+(i−1)ℓ(x)IẇI. Thus (m1 · · ·ml)Nn(m1 · · ·ml)
−1 ⊂ Nn+1. Similarly

(m1 · · ·ml)
−1N−

n (m1 · · ·ml) ⊂ N−
n+1. Therefore,

(a) Let l > ii and m1, · · · , ml ∈ IM u̇ẋIM , then m1m2 · · ·ml is a Pv strictly
positive element.

Moreover, for any n, l′ ∈ N and m1, · · · , ml′ ∈ IM u̇ẋIM , we have

(m1 · · ·ml′)Nn+♯WK+(i−1)ℓ(x)(m1 · · ·ml′)
−1 ⊂ Nn,

(m1 · · ·ml′)
−1N−

n+♯WK+(i−1)ℓ(x)(m1 · · ·ml′) ⊂ N−
n .

One deduces that
(b) Let n, l′ ∈ N, and g1, · · · gl′ ∈ Nn+♯WK+(i−1)ℓ(x)IM u̇ẋIMN−

n+♯WK+(i−1)ℓ(x).

Then g1 · · · gl′ ∈ NnMN−
n .
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5.3. Proof of Theorem 5.2. By [11, Theorem 4.1 & §4.6], it suffices to prove
it for locally constant functions on M , supported in Mu̇ẋM , where (x,K, u) is a

standard triple of W̃ (M) and the Newton point of x is v.
Let n > ♯WK + (i− 1)ℓ(x) such that π ∈ RIn(G)R. It is enough to consider the

function f = δMnmMn , where m ∈ Mu̇ẋM .

Let n′ ≫ n and f̃ = δv(m)−
1
2

µN (Nn′ )µN− (N−

n′
)
δNn′MnmMnN

−

n′

. By Theorem 3.1 (1), f̃

represents the element īv(f) ∈ H̄ . By Casselman’s trick [4, Corollary 4.2], it

suffices to prove that for l ≫ 0, TrMR (f l, rv(π)) = TrGR(f̃
l, π).

Let pM : (MnmMn)
l → M and pG : (Nn′MnmMnN

−
n′)l → G be the multiplica-

tion map. Since l ≫ 0, by §5.2 (a) and (b), any element in Im(pM) is Pν strictly
positive and

Im(pG) ⊂ Nn Im(pM)N−
n
∼= N × Im(pM)×N−.

We have the following commutative diagram

(Nn′MnmMnN
−
n′)l

pG
//

prl

��

Im(pG)

pr1

��

(MnmMn)
l pM

// Im(pM),

where pr : N ×M ×N− → M is the projection map and pr1 is the restriction of
pr to Im(pG).

Let m′ ∈ Im(pM). Then

µGl(p−1
G pr−1

1 (Mnm
′Mn)) = µGl((prl)−1p−1

M (Mnm
′Mn))

= µN(Nn′)lµN−(N−
n′)

lµM l(p−1
M (Mnm

′Mn)).

By Proposition 2.3 (2), δiIn′Mnm′MnIn′ i′ ≡ δIn′Mnm′MnIn′
mod [H,H ] for any i ∈

Nn and i′ ∈ N−
n . Thus

f̃ l ≡
δv(m)−

l
2

µN(Nn′)lµN−(N−
n′)l

∑

m′∈Mn\M/Mn

µGl(p−1
G pr−1

1 (Mnm
′Mn))

µG(pr
−1
1 (MnmMn))

δpr−1
1 (MnmMn)

≡
∑

m′∈Mn\M/Mn

δv(m)−
l
2
µM l(p−1

M (Mnm
′Mn))

µG(pr
−1
1 (MnmMn))

δpr−1
1 (MnmMn)

≡
∑

m′∈Mn\M/Mn

δv(m)−
l
2
µM l(p−1

M (Mnm
′Mn))

µG(In′Mnm′MnIn′)
δIn′Mnm′MnIn′

mod [H,H ].

On the other hand,

f l =
∑

m′∈Mn\M/Mn

µM l(p−1
M (Mnm

′Mn))

µM(Mnm′Mn)
δMnm′Mn.

By Corollary 2.4, we have

jv,n(f
l) ≡ jv,n′(f l)

=
∑

m′∈Mn\M/Mn

δv(m)−
l
2
µM l(p−1

M (Mnm
′Mn))

µM(Mnm′Mn)

µM(Mn′)

µG(In′)
δIn′Mnm′MnIn′

mod [H,H ].
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Since the elements inMnm
′Mn are Pv strictly positive, we have In′Mnm

′MnIn′ =
Nn′(Mnm

′Mn)N
−
n′ and

µG(In′Mnm
′MnIn′) = µN(Nn′)µN−(N−

n′)µM(Mnm
′Mn) =

µG(In′)

µM(Mn′)
µM(Mnm

′Mn).

So f̃ l ≡ jv,n(f
l) mod [H,H ] and TrMR (f l, rv(π)) = TrGR(f̃

l, π).

6. The kernel of the trace map

6.1. Let M be a semistandard Levi subgroup of G. Let M0 be the subgroup of
G generated by the parahoric subgroups of M . Then we have M/M0 ∼= ΩM . Let
Ψ(M)R = HomZ(M/M0, R×) be the torus of unramified characters of M .

Let iM,R : R(M)R → R(G)R be the induction functor. Then for any σ ∈ R(M)R
and f ∈ H̄R, the map

Ψ(M)R −→ R, χ 7−→ TrR(f, iM,R(σ ◦ χ))

is an algebraic function over Ψ(M)R.

6.2. Let v ∈ V and M = Mv. Recall that

H̄(M ; v) = ⊕νM∈ℵM ;ν=(τM ,v) for some τM∈ΩM
H̄(M ; ν),(a)

H̄(v̄) = ⊕ν∈ℵ;ν=(τ,v̄) for some τ∈ΩH̄(ν).(b)

Note that if τM , τ ′M ∈ ΩM are mapped under κ to the same element in Ω, then
they differ by a central cocharacter of M . By the definition of the map π = (κ, ν̄),
if both (τM , v) and (τ ′M , v) are in the image of πM and that κ(τM) = κ(τ ′M ), then
τM = τ ′M . In other words, there is a natural bijection between the components
appear on the right hand sides of (a) and (b). We define

īv = ⊕νM∈ℵM ;ν=(τM ,v) for some τ∈ΩM
īν : H̄(M ; v) 7−→ H̄(v̄).

Theorem 6.1. Let v ∈ V and M = Mv. Let f ∈ H̄(v̄). If TrGR(f, iM,R(σ)) = 0
for all σ ∈ R(M)R, then f ∈ īv(ker Tr

M
R ).

Proof. For σ ∈ R(M)R and χ ∈ Ψ(M)R, the map

χ 7−→ TrG(̄iv(f), iM,R(σ ◦ χ))

is an algebraic function on χ. We consider its “positive part”, i.e. the linear
combination of the terms 〈χ, λ〉 for dominant coweight λ. It is obvious that if an
algebraic function is zero, then its “positive part” is also zero.

By the Mackey formula [16, §5.5], we have

TrGR (̄iv(f), iM,R(σ ◦ χ)) = TrMR (f, rM,R ◦ iM,R(σ ◦ χ))

=
∑

w∈MWM

TrMR (f, iMM∩wM,R ◦ ẇ ◦ rM
M∩w−1M,R

(σ ◦ χ)

=
∑

w∈MWM

TrMR (f, iMM∩wM,R(ẇ ◦ rM
M∩w−1M,R

(σ) ◦ ẇχ)).

As w ∈ MWM and M = Mv, w(v) is dominant if and only if w = 1. Therefore the
“positive part” of TrG(̄iv(f), iM,R(σ ◦ χ)) is TrMR (f, σ ◦ χ).

Therefore if TrGR(f, iM,R(σ)) = 0 for any σ ∈ R(M)R and χ ∈ Ψ(M)R, then
TrMR (f, σ ◦ χ) = 0 for any σ ∈ R(M)R and χ ∈ Ψ(M)R. Hence f ∈ ker TrMR . �
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Corollary 6.2. Let v ∈ V and M = Mv. Then

ī−1
v (ker TrGR |H̄R(v̄)) = ker TrMR |H̄R(M ;v) .

Proof. If f ∈ ker TrMR , then TrMR (f, rM,R(π)) = 0 for any π ∈ R(G)R. By Theorem
5.2, TrGR (̄iv(f), π) = 0. Thus īv(f) ∈ ker TrGR. The other direction follows from
Theorem 6.1. �

Theorem 6.3. We have ker TrGR =
⊕

v∈V+
(ker TrGR ∩ H̄R(v)).

Remark 6.4. In general, ⊕ν∈ℵ(ker Tr
G
R∩H̄R(ν)) ⊂ ker TrGR. However, the equality

may not hold. For example, if Ω = {1, τ} is finite of order 2 and characteristic of
R is also 2, then for any λ ∈ X∗(Z)+ and f ∈ H̄(λ), we have f + τf ∈ ker TrGR.

Proof. The idea is similar to the proof of [5, Theorem 7.1].
Let f =

∑
v∈V+

avfv ∈ ker TrGR, where fv ∈ H̄v and av ∈ R. Let M be a minimal
standard Levi subgroup such that av 6= 0 for some v ∈ V+ with M = Mv. Then
for σ ∈ R(M) and χ ∈ Ψ(M)R, we have
(a)

TrGR(f, iM,R(σ◦χ)) =
∑

v∈V+;M=Mv

avTr
G
R(fv, iM,R(σ◦χ))+

∑

v∈V+;M 6=Mv

avTr
G
R(fv, iM,R(σ◦χ)).

This is an algebraic function on Ψ(M)R. Note that in (a), the first part is more
regular in Ψ(M)R than the second part. Therefore we have

∑

v∈V+;M=Mv

avTr
G
R(fv, iM,R(σ ◦ χ)) = 0

for all σ ∈ R(M) and χ ∈ Ψ(M)R. As an algebraic function on Ψ(M)R, the “lead-
ing term” of TrGR(fv, iM,R(σ ◦ χ)) is a multiple of 〈v, χ〉. Hence avTr

G
R(fv, iM,R(σ ◦

χ)) = 0 for every v ∈ V+ with M = Mv. By Theorem 6.1,

avfv ∈ īv(ker Tr
M
R |H̄(M ;v)). �

Finally, we have

Theorem 6.5. Assume that char(F ) = 0. Let M be a semistandard Levi subgroup
and ν ∈ ℵM with M = Mν . Then the map

īν : H̄(M ; ν)
∼=
−→ H̄(ν̄)

is an isomorphism.

Proof. Let f ∈ ker īν . Set f̃ = f ⊗ 1 ∈ H̄C(M ; ν). By Theorem 6.1 (2), we have

f̃ ∈ ker TrMC . By the spectral density theorem [14, Theorem 0], f̃ = 0 ∈ H̄(M)C.
By [17], H̄(M) is free. Hence f = 0 ∈ H̄(M). �
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geometry: Hirzebruch 70 (Warsaw, 1998), Amer. Math. Soc., Providence, RI, 1999, 241,
327–338.
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