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ELEMENTS WITH FINITE COXETER PART IN AN
AFFINE WEYL GROUP

XUHUA HE AND ZHONGWEI YANG

ABSTRACT. Let W, be an affine Weyl group and n : W, — Wy be
the natural projection to the corresponding finite Weyl group. We
say that w € W, has finite Coxeter part if n(w) is conjugate to a
Coxeter element of Wy. The elements with finite Coxeter part is a
union of conjugacy classes of W,. We show that for each conjugacy
class O of W, with finite Coxeter part there exits a unique maximal
proper parabolic subgroup W; of W, such that the set of minimal
length elements in O is exactly the set of Coxeter elements in W .
Similar results hold for twisted conjugacy classes.

INTRODUCTION

In [3], Geck and Pfeiffer showed that elements of minimal length in
the conjugacy classes of finite Weyl groups play a quite special role.
The results on minimal length elements have a lot of applications in
representation theory of finite Hecke algebra and algebraic groups, as
well as the geometry of unipotent classes.

Recently, the first author, joint with Nie [4], [6] studied minimal
length elements in the conjugacy classes of affine Weyl groups and
showed that these elements also play a special role. It is expected that
the minimal length elements will have applications in representation
theory of affine Hecke algebra and p-adic groups, as well as reduction
of Shimura varieties.

Although the proof of [6] is case-free, it is still useful to have concrete
data available for each conjugacy class. In this paper, we study some
special conjugacy classes of affine Weyl groups and give an explicit de-
scription of the minimal length elements in these conjugacy classes. We
show that the minimal length elements in a conjugacy class with finite
Coxeter part (see §1.6 for the precise definition) are exactly the Cox-
eter elements for a unique maximal proper parabolic subgroup of the
affine Weyl group. The precise statement for this “Coxeter=Coxeter”
theorem is Theorem 1.1.

This result is also a necessary ingredient of in the study of dimension
formula of affine Deligne-Lusztig varieties. See [2] and [5].

1. THE MAIN THEOREM
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1.1. Let S be a finite set and (m;;); jes be a matrix with entries in
NU {oo} such that m;; = 1 and m;; = mj; > 2 for all i # j. Let W be
a group defined by generators s; for i € S and relations (s;s;)™7 =1
for i,j € S with m;; < co. We say that (W, S) is a Cozeter group.
Sometimes we just call W itself a Coxeter group.

Let H be a group of automorphisms of the group W that preserves
S. Set W/ =W x H. Then an element in W’ is of the form wé for
some w € W and § € H. We have that (wd)(w'd’) = wé(w')dd € W’
with 4,0’ € H.

For w € W and § € H, we set {(wd) = {(w), where {(w) is the
length of w in the Coxeter group (W, S). Thus H consists of length 0
elements in W’.

For J C S, we denote by W the standard parabolic subgroup of W
generated by s; for j € J and by W7 (resp. /W) the set of minimal
coset representatives in W/W; (resp. W, \W).

For J C S with W} finite, we denote by wg the maximal element in
W.

1.2. For w € W, we denote by supp(w) the set of i € S such that s;
appears in some (or equivalently, any) reduced expression of w. For w €
W and § € H, we set supp(wd) = Uy,ez0"(supp(w)). Then supp(wd)
is the minimal d-stable subset J of S such that wd € W; x (§) C W".

We follow [8, 7.3]. Let § € H. For each d-orbit in S, we pick a
simple reflection. Let g be the product of these simple reflections (in
any order) and put ¢ = gd € W’. We call ¢ a Cozeter element of W'.
Then supp(c) = S for any Coxeter element ¢ of W'.

1.3. Let ® be an irreducible reduced root system and W, be the corre-
sponding finite Weyl group. Then (W, Sp) is a Coxeter group, where
So ={i : s; is a simple reflection in Wy}.

Let PY be the coweight lattice and QY be the coroot lattice. Let

W,=Q" x Wy ={t‘w;x € Q¥,w € Wy}
be the associated affine Weyl group and
W =PV x Wy = {t*w; x € PY,w € Wy}

be the associated extended affine Weyl group. The multiplication is
given by the formula (£Xw)(tXw’) = XX ww'.

Set S = S,U{0} and sy = t?" sy, where 6 is the corresponding largest
positive root. Then W, is a normal subgroup of W and is a Coxeter
group with generators s; (for i € S).

Following [7], we define the length function on W by

((Pw) = > |06 )| + > [0 @) =11,

aedt w1l(a)edt acedt w1l(a)ed—
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For any coset of W, in W, there is a unique element of length 0.
Moreover, there is a natural group isomorphism between Q = {7 €
W;l(r) =0} and W/W, = PV/Q.

1.4. Let ¢ be a diagram automorphism of (Wy, Sp) and (d) be the group
of automorphisms on W, generated by . Set

W, =Wy x (5).

Notice that ¢ induces natural actions on Q, P¥, W, and W, which we
still denote by 4. Tt also gives a bijection on S which sends Sy to So
and sends 0 € S to 0. Set

W' =P x W, =W x(6).

Then ' = Q x (8) is the set of length 0 elements in W’ and W' =
W, x V.

1.5. Define the action of Wy on W by w - w’ = ww'w™'. Each orbit
of Wy is called a Wy-conjugacy class of W(. We define W,-conjugacy
classes and TW-conjugacy classes of W' in the same way. Notice that
W, is a normal subgroup of W’. Thus each W,-conjugacy class of W’
is contained in W,r for some 7 € V.

Let 17 : W’ — W/ be the projection map, i.e., n(tXw) = w for any
X € PY and w € W{. For any w € W', we call n(w) the finite part of
w.
It is easy to see that 1 sends a W-conjugacy class of W’ to a Wy-
conjugacy class of W{.

1.6. It is known that any two Coxeter elements of W/ in the same coset
W /Wy are conjugated by an element of Wj.

Let O be a W,-conjugacy class of W’ and O’ be a W-conjugacy class
of W'. We say that O (resp. O) has finite Coxeter part if n(O) (resp.
n(0Q")) contains a Coxeter element of W;. The purpose of this paper is
to give an explicit description of the minimal length element in O. We
prove the following “Coxeter=Coxeter” theorem.

Theorem 1.1. Let O be a W,-conjugacy class of W' with finite Cozeter
part and Oy, be the set of minimal length elements in O. Let 7 €
with O C W,r. Then there erists a unique mazimal proper T-stable
subset J of S such that Oy, is the set of Cozeter elements of Wy x (T)
that are contained in Wyt C Wy x (1). Here we embed W; x (1) into
W' in a natural way.

Remark. For type A, it is first proved by the first author in [4].
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1.7. Before proving the theorem, we first explain why a W,-conjugacy
class of W' with finite Coxeter part does not contain a Coxeter element
of W’ and hence why we need proper subset of S in the theorem.
Although it is not needed in the proof, it serves as a motivation for the
theorem.

Let tXw € O with y € P¥ and w a finite Coxeter element of 1. Let
n be the order of w in W{. It is known that the action of 1 — w on
PY ®q C is invertible. Hence

n—1 1—w™
(txw)" — tx+wx+~--+w X = 1w X — 1.

Therefore tXw is of finite order and hence any element in O is of finite
order.

On the other hand, it is proved in [9, Theorem 1] (for untwisted case)
and [6, Proposition 3.1] that any Coxeter element of W’ is of infinite
order. Hence O doesn’t contain a Coxeter element of TW'.

2. EXISTENCE OF J

2.1. Let O be a W-conjugacy class of W’. Then O’ = |_| 0; is a disjoint
i=1

union of W,-conjugacy classes of W’. Since W = W, x Q, ) acts

transitively on {0y, Oq,--+,0,}. Moreover, if O; = 70;77" for some

7 € Q, then (0;)min = 7(O0;)minT "

2.2. Let O be a W-conjugacy class of W’ with finite Coxeter part, and
let O be a W,-conjugacy class of W’ with O € O©’. The main purpose
of this section is to show the “existence” part of the Theorem 1.1 for O’
instead of O. More precisely, there exists 7 € €' and a maximal proper
T-stable subset .J of S and a Coxeter element c; of W x () such that
c; €0,

By §2.1, there exists o € € such that oc;jo™! € O. It is easy to
see that oc;o~! is a Coxeter element of Wo(ny X (o7o~!). Thus the
“existence” part of the theorem for W-conjugacy class O’ deduces the
“existence” part of it for W,-conjugacy class O.

Compared with W,-conjugacy classes, it is much easier to classify W-
conjugacy classes with finite Coxeter part and to find representatives.
This is the reason that we consider W-conjugacy classes instead of
W,-conjugacy classes in this section.

2.3. We identify W /W, with PY/QV in the natural way. Let ¢ be a
diagram automorphism of (W, Sp). Then (J) acts on W /W, = PY/Q".
Let (PY/Q")s be the d-coinvariant of PY/Q". Let

ks W — (PY/QY)s, w i wé W,

be the natural projection. We call ks the Kottwitz map.
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The following result classifies the W-conjugacy classes of W' with
finite Coxeter part.

Proposition 2.1. We keep the assumption as above. Let Qg C Wyd be
a Wy-conjugacy class contammg a Coxeter element of W(. Then for
any v € (PY/QY)s, n~(O00) N k5 (v) is a single W -congugacy class of
W’

Proof. Let u € PV such that the image of y under the map PY —
(PV/QV)sis v. Let cd € (90 Then t#cd € n~*(Og) N w5 ' (v). Tt is easy
to see that 7~ (Oo) N ;" (v) is a union of W-conjugacy classes. Now
we prove that W acts transitively on n~1(0g) () k5 ' (v).

Let ;' € PV and ¢/§ € Op such that t#'¢/6 € n71(O) (x5 (v). Then
after conjugating by a suitable element of W, we may assume that
¢ = ¢. By definition, ¢/ € p+ (1 —3)PY +@Q". Thus it suffices to show
that

(a) (1—=0)PY+QY = (1—co)P".

Forany A € PY, (1—cH)A = (1= A+ (1—¢c)d(\) € (1-0)PV +Q".
Hence (1 —6)PY + QY D (1 —co)P".

We first prove that

(b) @Y C (1 —c)PY.

We may assume that ¢ = s;,5;, - -+ 5;,. Since ¢d is a Coxeter element
of Wy, d-orbits on Sy are

{2.17 5(7'1)9 ot ’57“1 (Zl)}a {iQa 5(22)7 T ’57“2 (22)}a R {Zka 5(2142)? sy 5rk(lk)}
For 1 < j <k,
(1-— cé)(w% + W(\S/(ij) + -4 wér )

(1 = o)(wy, + ws(i,y ++ + Wyri i)

Vo Vv
(1 = cwy, = 8iySig-- 84,07

Therefore {0y, oy, ...,
For any m € S,

1<<k
Thus a,;, — ay(,,) € (1—cd)P" for all m € Sp. Hence for 1 < j < k and
n € N, one may show by induction that O‘an(zj) (1-— cé)PV.

(b) is proved.
Now (1 —c§)PY/QY = (1 —0)PY/Q". Thus (a) is proved. O

a; } C (1 —co)PY

2.4. In order to prove the “existence” part of Theorem 1.1 for O, we
need the following key lemma which will be proved in section 3 via a
case-by-case analysis.

Lemma 2.2. Let ¢’ be a diagram automorphism of (W, Sp) and T =

\ S . . . .
1% wy {}w{f‘), where w; is a minuscule coweight. Then there exists

a mammal proper 18'-stable subset J of S and ¢ € Wy such that
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supp(7d’c) = J and woso_{i}wa%é’(c)é’ is conjugate to a Cozeter ele-
ment of Wy.

2.5. Now we prove the “existence” part of Theorem 1.1 for O'.

Let 7 € Q and ¢ € (§) such that O’ N W, # 0. If 7 =1, then we
may take J =Sy and c¢; be any Coxeter element of Wyé" C W{.

If 7 # 1, then 7 = wg‘o—{i}wg‘o for some minuscule coweight w,’.
We take J and c from Lemma 2.2. Then 76’c is a Coxeter element of
Wy x (r0") and n(rd’c) = w§0‘{”w§05'(c)5' is conjugate to a Coxeter
element of Wj. By Proposition 2.1, 7é'c € O'.

3. THE KEY LEMMA

In this section, we verify Lemma 2.2. We use the same labeling of
Dynkin diagram as in [1].

Type An—l

This case was proved by the first author in [4, Lemma 5.1].

Type 2An—1

We may regard ¢’ as the permutation wi® = (1 n)(2 n—1)--- in

S, and regard Wyd" C W{ as S,. Under this identification, the W)
conjugacy class that contains a Coxeter element in Wyd' is the set of
n-cycles when n is odd and is the set of n — 1 cycles when n is even.

Let 7 = 7;. Then 76’-orbits on S are {0,i}, {j,7 — j} for 0 < j < 4,
and {i+j,n—j}for0<j<n-—i.

We have the following four different cases:

Case 1: n is odd and 4 is odd.

In this case, we take J = S— {2} and ¢ = Sip1Siys -+ Sngi_y. Then
woso_{i}c is an n-cycle. In other words, wgo_{i}wa%é’(c)é’ is conjugate
to a Coxeter element in o'

Case 2: n is odd and i is even.

In this case, we take J = S — {1} and ¢ = Si118iqg - Sntiza. Then
wi® e is an n-cycle. In other words, wy®™ Hw’(c)é is conjugate
to a Coxeter element in 1o’

Case 3: n is even and i is odd.

In this case, we take J = S — {51, 21} and ¢ = SisSiss + -+ Snvica.
2

2 2
Then wgo_{i}c is an n — 1 cycle. In other words, w(}%_{i}wgoé’(c)é’ is
conjugate to a Coxeter element in Wyd'.
Case 4: n is even and 1 is even.
In this case, we take J = S —{™} and ¢ = SiSigqc Snti_y. Then

waq‘)_{i}c is an n—1 cycle. In other words, wa%_{i}waqo(;/(c)(;/ 1s conjugate

to a Coxeter element in 1o’
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Type B,
There is only one minuscule coweight: wy. So 7 = 7. Now 7-orbits
on S are {0 1} and {i} for 2 < i < n. We take J = S — {n} and

€= 8189+ Sp—1. Then wgo {} Soc is conjugate to a Coxeter element
of Wo.

Type C,

There is only one minuscule coweight: w,’. So 7 = 7,,. Now 7-orbits
on S are {i,n — i} for 0 < i < n.

If n is odd, we take J = S — {0,n} and ¢ = Sny1Sngs -+ Sp_1. Then

w(}%_{"}wgoc is conjugate to a Coxeter element of Wj.

If n is even, we take J = S — {5} and ¢ = Sny18nig- - S, Then

w(}%_{"}wgoc is conjugate to a Coxeter element of Wj.

Type D,

There are three minuscule coweights: wy, wy ;, wy. There is an
outer diagram automorphism of D,, permuting the last two coweights.
Thus it suffices to consider the case where 7 = 7 or 7,,.

Case 1: 7 =m1.

The 7-orbits on S are {0,1}, {n — 1,n} and {i} for 2 <i < n—2.
We take J = S — {n—1,n} and ¢ = s189- - $;,_2. Then w§°‘{1}w§°c
5189 - -+ S, 1s a Coxeter element of Wj.

Case 2: 7 = 7, and n is odd.

The 7-orbits on S are {0,n,1,n—1} and {i, n—i} for 2 < < 21, We
take J = S— {~1, =} and ¢ = SntsSnts * o Sp_2Sn- Then w(?O‘{"}ngc
is conjugate to a Coxeter element of Wo

Case 3: 7 = 7, and n is even. .

The 7T-orbits on S are {z n—i} for 0 <i < 5. Wetake J = 5—{0,n}
and ¢ = snsnyq - . Then wso {n} Soc is conjugate to a Coxeter
element of W.

Type *D,

As explained above, it suffices to consider the following three cases.

Case 1: 7 =1y. 5

The 7d'-orbits on S are {0,1} and {i} for 2 < ¢ < n. We take
J=2S5- {n} and ¢ = s189---8, 28,_1. Then woo n 5%5’(0)5’
5189+ -+ Sp_95,—10" 1s a Coxeter element in Wyd'.

Case 2: 7 =7, and n is odd.

The 74'-orbits on S are {i,n —i} for 0 < i < @ We take J =
S —{0,n} and ¢ = Sng1Snys o Sp_2Sp—1. Then wiP TSt (0)8 s
conjugate to a Coxeter element in Wyd'.

Case 3: 7 = 7,, and n is even.



8 XUHUA HE AND ZHONGWEI YANG

The 74’-orbits on NS’ are {0,1,n — 1,n} and {i,n — i} for 2 < i <
5. We take J = § — {5} and ¢ = Sny1Sny9 - Sp28,-1. Then

w(}%_{"}wgoé’(c)(y is conjugate to a Coxeter element in Wyd'.

Type *D,

Without loss of generality, we may assume that ¢’ is the outer dia-
gram automorphism on D, sending s; to s3, s3 to s4 and s4 to s1. As
(0"} acts transitively on {1, 3,4}, it suffices to consider the case where
T = 1T1.

In this case, the 76’-orbits on S are {0,1,4}, {2}, {3}. We take J =
S — {3} and ¢ = 5,5, then w§°‘{1}w§°5’(c)5’ is conjugate to a Coxeter
element in Wyd'.

Type Eg

There are two minuscule coweights: w; and wy. The unique outer
diagram automorphism of Eg permutes these two coweights. Thus it
suffices to consider the case where 7 = 7. In this case, T-orbits on
S are {0,1,6},{2,3,5},{4}. We take J = S — {0,1,6} and ¢ = sys5.
Then w;fO‘{”ngc is conjugate to a Coxeter element of W.

Type *Ejs

As explained above, it suffices to consider the case where 7 = 7.
In this case, 78'-orbits on S are {0,1},{2,3}, {4}, {5},{6}. We take
J =25 —{6} and ¢ = s554535,. Then wgo_{l}wa%é’(c)é’ is conjugate to
a Coxeter element of Wj.

Type E7

There is a unique minuscule coweight: w~. So 7 = 77. In this case,
T-orbits on S are {0, 7}, {1,6},{3,5}, {2}, {4}. We take J = S —{0,7}
and ¢ = $95455586. Then w(‘?o_{ﬂwa%c is conjugate to a Coxeter element
of W().

4. PROOF OF THE MAIN THEOREM

4.1. We keep the notation in section 1. For any w,w’ € W and i € S,
we write w 2% w’ if w' = s;ws; and {(w') < £(w). We write w — w' if
there is a sequence of w = wog, wy, -+ - ,w, = w’ of elements in W’ such
that for any k& € {0,1,---,n — 1}, w, =5 wyyq for some i € S. We
write w ~ w' if w — w" and W' — w.

The following result is proved in [6].

Theorem 4.1. Let O be a W,-conjugacy class of W' with finite Cozeter
part and Oy, be the set of minimal length elements in O. Then for
any w € O and w' € Opin, w — w'.
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4.2. Let O be a W,-conjugacy class of W’ with finite Coxeter part and
let 7 € 0 with O C W,7. In section 2, we have proved that there
exists a maximal proper 7-stable subset J of S and a Coxeter element
cy of Wj x (1) such that ¢; € O.

Let w be a minimal length element in O. By Theorem 4.1, ¢; — w.
Since ¢ is a Coxeter element of W; x (7), w is also a Coxeter element
of Wyr C Wy x () and ¢; ~ w.

Since J is a proper subset of S, W, x (7) is a finite group. Hence
any two Coxeter element of W ;T are conjugated by an element of W;.
Thus all the Coxeter elements of W;T are contained in O.

Therefore O, is the set of Coxeter elements in Wy C W x (7).

Moreover, J = supp(w) for any w € Op,. This proves the unique-
ness of J.
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