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ELEMENTS WITH FINITE COXETER PART IN AN

AFFINE WEYL GROUP

XUHUA HE AND ZHONGWEI YANG

Abstract. LetWa be an affineWeyl group and η : Wa −→ W0 be
the natural projection to the corresponding finite Weyl group. We
say that w ∈ Wa has finite Coxeter part if η(w) is conjugate to a
Coxeter element of W0. The elements with finite Coxeter part is a
union of conjugacy classes of Wa. We show that for each conjugacy
class O ofWa with finite Coxeter part there exits a unique maximal
proper parabolic subgroup WJ of Wa, such that the set of minimal
length elements in O is exactly the set of Coxeter elements in WJ .
Similar results hold for twisted conjugacy classes.

Introduction

In [3], Geck and Pfeiffer showed that elements of minimal length in
the conjugacy classes of finite Weyl groups play a quite special role.
The results on minimal length elements have a lot of applications in
representation theory of finite Hecke algebra and algebraic groups, as
well as the geometry of unipotent classes.

Recently, the first author, joint with Nie [4], [6] studied minimal
length elements in the conjugacy classes of affine Weyl groups and
showed that these elements also play a special role. It is expected that
the minimal length elements will have applications in representation
theory of affine Hecke algebra and p-adic groups, as well as reduction
of Shimura varieties.

Although the proof of [6] is case-free, it is still useful to have concrete
data available for each conjugacy class. In this paper, we study some
special conjugacy classes of affine Weyl groups and give an explicit de-
scription of the minimal length elements in these conjugacy classes. We
show that the minimal length elements in a conjugacy class with finite
Coxeter part (see §1.6 for the precise definition) are exactly the Cox-
eter elements for a unique maximal proper parabolic subgroup of the
affine Weyl group. The precise statement for this “Coxeter=Coxeter”
theorem is Theorem 1.1.

This result is also a necessary ingredient of in the study of dimension
formula of affine Deligne-Lusztig varieties. See [2] and [5].

1. The main Theorem
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1.1. Let S be a finite set and (mij)i,j∈S be a matrix with entries in
N ∪ {∞} such that mii = 1 and mij = mji > 2 for all i 6= j. Let W be
a group defined by generators si for i ∈ S and relations (sisj)

mij = 1
for i, j ∈ S with mij < ∞. We say that (W,S) is a Coxeter group.
Sometimes we just call W itself a Coxeter group.

Let H be a group of automorphisms of the group W that preserves
S. Set W ′ = W ⋊ H . Then an element in W ′ is of the form wδ for
some w ∈ W and δ ∈ H . We have that (wδ)(w′δ′) = wδ(w′)δδ′ ∈ W ′

with δ, δ′ ∈ H .
For w ∈ W and δ ∈ H , we set ℓ(wδ) = ℓ(w), where ℓ(w) is the

length of w in the Coxeter group (W,S). Thus H consists of length 0
elements in W ′.

For J ⊂ S, we denote by WJ the standard parabolic subgroup of W
generated by sj for j ∈ J and by W J (resp. JW ) the set of minimal
coset representatives in W/WJ (resp. WJ\W ).

For J ⊂ S with WJ finite, we denote by wJ
0 the maximal element in

WJ .

1.2. For w ∈ W , we denote by supp(w) the set of i ∈ S such that si
appears in some (or equivalently, any) reduced expression of w. For w ∈
W and δ ∈ H , we set supp(wδ) = ∪n∈Zδ

n(supp(w)). Then supp(wδ)
is the minimal δ-stable subset J of S such that wδ ∈ WJ ⋊ 〈δ〉 ⊂ W ′.

We follow [8, 7.3]. Let δ ∈ H . For each δ-orbit in S, we pick a
simple reflection. Let g be the product of these simple reflections (in
any order) and put c = gδ ∈ W ′. We call c a Coxeter element of W ′.
Then supp(c) = S for any Coxeter element c of W ′.

1.3. Let Φ be an irreducible reduced root system and W0 be the corre-
sponding finite Weyl group. Then (W0, S0) is a Coxeter group, where
S0 ={i : si is a simple reflection in W0}.

Let P ∨ be the coweight lattice and Q∨ be the coroot lattice. Let

Wa = Q∨ ⋊W0 = {tχw;χ ∈ Q∨, w ∈ W0}

be the associated affine Weyl group and

W̃ = P ∨ ⋊W0 = {tχw;χ ∈ P ∨, w ∈ W0}

be the associated extended affine Weyl group. The multiplication is
given by the formula (tχw)(tχ

′

w′) = tχ+wχ′

ww′.

Set S̃ = S0∪{0} and s0 = tθ
∨

sθ, where θ is the corresponding largest
positive root. Then Wa is a normal subgroup of W̃ and is a Coxeter
group with generators si (for i ∈ S̃).

Following [7], we define the length function on W̃ by

ℓ(tχw) =
∑

α∈Φ+,w−1(α)∈Φ+

|〈χ, α〉|+
∑

α∈Φ+,w−1(α)∈Φ−

|〈χ, α〉 − 1|.
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For any coset of Wa in W̃ , there is a unique element of length 0.
Moreover, there is a natural group isomorphism between Ω = {τ ∈
W̃ ; ℓ(τ) = 0} and W̃/Wa

∼= P ∨/Q∨.

1.4. Let δ be a diagram automorphism of (W0, S0) and 〈δ〉 be the group
of automorphisms on W0 generated by δ. Set

W ′
0 = W0 ⋊ 〈δ〉.

Notice that δ induces natural actions on Q∨, P ∨, Wa and W̃ , which we
still denote by δ. It also gives a bijection on S̃ which sends S0 to S0

and sends 0 ∈ S̃ to 0. Set

W̃ ′ = P ∨ ⋊W ′
0 = W̃ ⋊ 〈δ〉.

Then Ω′ = Ω ⋊ 〈δ〉 is the set of length 0 elements in W̃ ′ and W̃ ′ =
Wa ⋊ Ω′.

1.5. Define the action of W0 on W ′
0 by w · w′ = ww′w−1. Each orbit

of W0 is called a W0-conjugacy class of W ′
0. We define Wa-conjugacy

classes and W̃ -conjugacy classes of W̃ ′ in the same way. Notice that
Wa is a normal subgroup of W̃ ′. Thus each Wa-conjugacy class of W̃ ′

is contained in Waτ for some τ ∈ Ω′.
Let η : W̃ ′ → W ′

0 be the projection map, i.e., η(tχw) = w for any

χ ∈ P ∨ and w ∈ W ′
0. For any w̃ ∈ W̃ ′, we call η(w̃) the finite part of

w̃.
It is easy to see that η sends a W̃ -conjugacy class of W̃ ′ to a W0-

conjugacy class of W ′
0.

1.6. It is known that any two Coxeter elements ofW ′
0 in the same coset

W ′
0/W0 are conjugated by an element of W0.

Let O be a Wa-conjugacy class of W̃ ′ and O
′ be a W̃ -conjugacy class

of W̃ ′. We say that O (resp. O
′) has finite Coxeter part if η(O) (resp.

η(O′)) contains a Coxeter element of W ′
0. The purpose of this paper is

to give an explicit description of the minimal length element in O. We
prove the following “Coxeter=Coxeter” theorem.

Theorem 1.1. Let O be a Wa-conjugacy class of W̃
′ with finite Coxeter

part and Omin be the set of minimal length elements in O. Let τ ∈ Ω′

with O ⊂ Waτ . Then there exists a unique maximal proper τ -stable
subset J of S̃ such that Omin is the set of Coxeter elements of WJ ⋊ 〈τ〉
that are contained in WJτ ⊂ WJ ⋊ 〈τ〉. Here we embed WJ ⋊ 〈τ〉 into

W̃ ′ in a natural way.

Remark. For type A, it is first proved by the first author in [4].
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1.7. Before proving the theorem, we first explain why a Wa-conjugacy
class of W̃ ′ with finite Coxeter part does not contain a Coxeter element
of W̃ ′ and hence why we need proper subset of S̃ in the theorem.
Although it is not needed in the proof, it serves as a motivation for the
theorem.

Let tχw ∈ O with χ ∈ P ∨ and w a finite Coxeter element of W ′
0. Let

n be the order of w in W ′
0. It is known that the action of 1 − w on

P ∨ ⊗Q C is invertible. Hence

(tχw)n = tχ+wχ+···+wn−1χwn = t
1−wn

1−w
χ = 1.

Therefore tχw is of finite order and hence any element in O is of finite
order.

On the other hand, it is proved in [9, Theorem 1] (for untwisted case)
and [6, Proposition 3.1] that any Coxeter element of W̃ ′ is of infinite

order. Hence O doesn’t contain a Coxeter element of W̃ ′.

2. existence of J

2.1. Let O′ be a W̃ -conjugacy class of W̃ ′. Then O
′ =

r⊔

i=1

Oi is a disjoint

union of Wa-conjugacy classes of W̃ ′. Since W̃ = Wa ⋊ Ω, Ω acts
transitively on {O1,O2, · · · ,Or}. Moreover, if Oi = τOjτ

−1 for some
τ ∈ Ω, then (Oi)min = τ(Oj)minτ

−1.

2.2. Let O′ be a W̃ -conjugacy class of W̃ ′ with finite Coxeter part, and
let O be a Wa-conjugacy class of W̃ ′ with O ⊂ O

′. The main purpose
of this section is to show the “existence” part of the Theorem 1.1 for O′

instead of O. More precisely, there exists τ ∈ Ω′ and a maximal proper
τ -stable subset J of S̃ and a Coxeter element cJ of WJ ⋊ 〈τ〉 such that
cJ ∈ O

′.
By §2.1, there exists σ ∈ Ω such that σcJσ

−1 ∈ O. It is easy to
see that σcJσ

−1 is a Coxeter element of Wσ(J) ⋊ 〈στσ−1〉. Thus the

“existence” part of the theorem for W̃ -conjugacy class O′ deduces the
“existence” part of it for Wa-conjugacy class O.

Compared withWa-conjugacy classes, it is much easier to classify W̃ -
conjugacy classes with finite Coxeter part and to find representatives.
This is the reason that we consider W̃ -conjugacy classes instead of
Wa-conjugacy classes in this section.

2.3. We identify W̃/Wa with P ∨/Q∨ in the natural way. Let δ be a
diagram automorphism of (W0, S0). Then 〈δ〉 acts on W̃/Wa

∼= P ∨/Q∨.
Let (P ∨/Q∨)δ be the δ-coinvariant of P ∨/Q∨. Let

κδ : W̃δ → (P ∨/Q∨)δ, w 7→ wδ−1Wa

be the natural projection. We call κδ the Kottwitz map.
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The following result classifies the W̃ -conjugacy classes of W̃ ′ with
finite Coxeter part.

Proposition 2.1. We keep the assumption as above. Let O0 ⊂ W0δ be

a W0-conjugacy class containing a Coxeter element of W ′
0. Then for

any v ∈ (P ∨/Q∨)δ, η
−1(O0)

⋂
κ−1
δ (v) is a single W̃ -congugacy class of

W̃ ′.

Proof. Let µ ∈ P ∨ such that the image of µ under the map P ∨ →
(P ∨/Q∨)δ is v. Let cδ ∈ O0. Then tµcδ ∈ η−1(O0) ∩ κ−1

δ (v). It is easy

to see that η−1(O0)
⋂
κ−1
δ (v) is a union of W̃ -conjugacy classes. Now

we prove that W̃ acts transitively on η−1(O0)
⋂
κ−1
δ (v).

Let µ′ ∈ P ∨ and c′δ ∈ O0 such that tµ
′

c′δ ∈ η−1(O0)
⋂
κ−1
δ (v). Then

after conjugating by a suitable element of W0, we may assume that
c′ = c. By definition, µ′ ∈ µ+(1− δ)P ∨ +Q∨. Thus it suffices to show
that

(a) (1− δ)P ∨ +Q∨ = (1− cδ)P ∨.
For any λ ∈ P ∨, (1− cδ)λ = (1−δ)λ+(1− c)δ(λ) ∈ (1−δ)P ∨+Q∨.

Hence (1− δ)P ∨ +Q∨ ⊃ (1− cδ)P ∨.
We first prove that
(b) Q∨ ⊂ (1− cδ)P ∨.
We may assume that c = si1si2 · · · sik . Since cδ is a Coxeter element

of W ′
0, δ-orbits on S0 are

{i1, δ(i1), · · · , δ
r1(i1)}, {i2, δ(i2), · · · , δ

r2(i2)}, · · · , {ik, δ(ik), ..., δ
rk(ik)}.

For 1 6 j 6 k,

(1− cδ)(ω∨
ij
+ ω∨

δ(ij)
+ · · ·+ ω∨

δ
rj (ij)

) = (1− c)(ω∨
ij
+ ω∨

δ(ij )
+ · · ·+ ω∨

δ
rj (ij)

)

= (1− c)ω∨
ij
= si1si2 ...sij−1

α∨
ij
.

Therefore {α∨
i1
, α∨

i2
, ..., α∨

ik
} ⊂ (1− cδ)P ∨.

For any m ∈ S0,

(1− cδ)α∨
m = α∨

m − α∨
δ(m) + (1− c)α∨

δ(m) ∈ α∨
m − α∨

δ(m) +
∑

16j6k

Zα∨
ij
.

Thus α∨
m−α∨

δ(m) ∈ (1− cδ)P ∨ for all m ∈ S0. Hence for 1 6 j 6 k and

n ∈ N, one may show by induction that α∨
δn(ij)

∈ (1− cδ)P ∨.

(b) is proved.
Now (1− cδ)P ∨/Q∨ = (1− δ)P ∨/Q∨. Thus (a) is proved. �

2.4. In order to prove the “existence” part of Theorem 1.1 for O′, we
need the following key lemma which will be proved in section 3 via a
case-by-case analysis.

Lemma 2.2. Let δ′ be a diagram automorphism of (W0, S0) and τ =

tω
∨

i w
S0−{i}
0 wS0

0 , where ω∨
i is a minuscule coweight. Then there exists

a maximal proper τδ′-stable subset J of S̃ and c ∈ W0 such that
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supp(τδ′c) = J and w
S0−{i}
0 wS0

0 δ′(c)δ′ is conjugate to a Coxeter ele-

ment of W ′
0.

2.5. Now we prove the “existence” part of Theorem 1.1 for O′.
Let τ ∈ Ω and δ′ ∈ 〈δ〉 such that O′ ∩Waτδ

′ 6= ∅. If τ = 1, then we
may take J = S0 and cJ be any Coxeter element of W0δ

′ ⊂ W ′
0.

If τ 6= 1, then τ = tω
∨

i w
S0−{i}
0 wS0

0 for some minuscule coweight ω∨
i .

We take J and c from Lemma 2.2. Then τδ′c is a Coxeter element of
WJ ⋊ 〈τδ′〉 and η(τδ′c) = w

S0−{i}
0 wS0

0 δ′(c)δ′ is conjugate to a Coxeter
element of W ′

0. By Proposition 2.1, τδ′c ∈ O
′.

3. the key lemma

In this section, we verify Lemma 2.2. We use the same labeling of
Dynkin diagram as in [1].

Type An−1

This case was proved by the first author in [4, Lemma 5.1].

Type 2An−1

We may regard δ′ as the permutation wS0

0 = (1 n)(2 n − 1) · · · in
Sn and regard W0δ

′ ⊂ W ′
0 as Sn. Under this identification, the W0

conjugacy class that contains a Coxeter element in W0δ
′ is the set of

n-cycles when n is odd and is the set of n− 1 cycles when n is even.
Let τ = τi. Then τδ′-orbits on S̃ are {0, i}, {j, i− j} for 0 < j < i,

and {i+ j, n− j} for 0 < j < n− i.
We have the following four different cases:
Case 1: n is odd and i is odd.
In this case, we take J = S̃−{n+i

2
} and c = s i+1

2

s i+3

2

· · · sn+i
2

−1. Then

w
S0−{i}
0 c is an n-cycle. In other words, w

S0−{i}
0 wS0

0 δ′(c)δ′ is conjugate
to a Coxeter element in W0δ

′.
Case 2: n is odd and i is even.
In this case, we take J = S̃ −{ i

2
} and c = s i

2
+1s i

2
+2 · · · sn+i−1

2

. Then

w
S0−{i}
0 c is an n-cycle. In other words, w

S0−{i}
0 wS0

0 δ′(c)δ′ is conjugate
to a Coxeter element in W0δ

′.
Case 3: n is even and i is odd.
In this case, we take J = S̃ − { i−1

2
, i+1

2
} and c = s i+3

2

s i+5

2

· · · sn+i−1

2

.

Then w
S0−{i}
0 c is an n − 1 cycle. In other words, w

S0−{i}
0 wS0

0 δ′(c)δ′ is
conjugate to a Coxeter element in W0δ

′.
Case 4: n is even and i is even.
In this case, we take J = S̃−{n+i

2
} and c = s i

2

s i
2
+1 · · · sn+i

2
−1. Then

w
S0−{i}
0 c is an n−1 cycle. In other words, w

S0−{i}
0 wS0

0 δ′(c)δ′ is conjugate
to a Coxeter element in W0δ

′.
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Type Bn

There is only one minuscule coweight: ω∨
1 . So τ = τ1. Now τ -orbits

on S̃ are {0, 1} and {i} for 2 6 i 6 n. We take J = S̃ − {n} and

c = s1s2 · · · sn−1. Then w
S0−{1}
0 wS0

0 c is conjugate to a Coxeter element
of W0.

Type Cn

There is only one minuscule coweight: ω∨
n . So τ = τn. Now τ -orbits

on S̃ are {i, n− i} for 0 6 i 6 n.

If n is odd, we take J = S̃ − {0, n} and c = sn+1

2

sn+3

2

· · · sn−1. Then

w
S0−{n}
0 wS0

0 c is conjugate to a Coxeter element of W0.
If n is even, we take J = S̃ − {n

2
} and c = sn

2
+1sn

2
+2 · · · sn. Then

w
S0−{n}
0 wS0

0 c is conjugate to a Coxeter element of W0.

Type Dn

There are three minuscule coweights: ω∨
1 , ω∨

n−1, ω∨
n . There is an

outer diagram automorphism of Dn permuting the last two coweights.
Thus it suffices to consider the case where τ = τ1 or τn.

Case 1: τ = τ1.
The τ -orbits on S̃ are {0, 1}, {n − 1, n} and {i} for 2 6 i 6 n − 2.

We take J = S̃−{n− 1, n} and c = s1s2 · · · sn−2. Then w
S0−{1}
0 wS0

0 c =
s1s2 · · · sn is a Coxeter element of W0.

Case 2: τ = τn and n is odd.
The τ -orbits on S̃ are {0, n, 1, n−1} and {i, n−i} for 2 6 i 6 n−1

2
. We

take J = S̃−{n−1
2
, n+1

2
} and c = sn+3

2

sn+5

2

· · · sn−2sn. Then w
S0−{n}
0 wS0

0 c

is conjugate to a Coxeter element of W0.
Case 3: τ = τn and n is even.
The τ -orbits on S̃ are {i, n−i} for 0 6 i 6 n

2
. We take J = S̃−{0, n}

and c = sn
2
sn

2
+1 · · · sn−1. Then w

S0−{n}
0 wS0

0 c is conjugate to a Coxeter
element of W0.

Type 2Dn

As explained above, it suffices to consider the following three cases.
Case 1: τ = τ1.
The τδ′-orbits on S̃ are {0, 1} and {i} for 2 6 i 6 n. We take

J = S̃ − {n} and c = s1s2 · · · sn−2sn−1. Then w
S0−{1}
0 wS0

0 δ′(c)δ′ =
s1s2 · · · sn−2sn−1δ

′ is a Coxeter element in W0δ
′.

Case 2: τ = τn and n is odd.
The τδ′-orbits on S̃ are {i, n − i} for 0 6 i 6 (n−1)

2
. We take J =

S̃ − {0, n} and c = sn+1

2

sn+3

2

· · · sn−2sn−1. Then w
S0−{n}
0 wS0

0 δ′(c)δ′ is

conjugate to a Coxeter element in W0δ
′.

Case 3: τ = τn and n is even.
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The τδ′-orbits on S̃ are {0, 1, n − 1, n} and {i, n − i} for 2 6 i 6
n
2
. We take J = S̃ − {n

2
} and c = sn

2
+1sn

2
+2 · · · sn−2sn−1. Then

w
S0−{n}
0 wS0

0 δ′(c)δ′ is conjugate to a Coxeter element in W0δ
′.

Type 3D4

Without loss of generality, we may assume that δ′ is the outer dia-
gram automorphism on D4 sending s1 to s3, s3 to s4 and s4 to s1. As
〈δ′〉 acts transitively on {1, 3, 4}, it suffices to consider the case where
τ = τ1.

In this case, the τδ′-orbits on S̃ are {0, 1, 4}, {2}, {3}. We take J =

S̃ −{3} and c = s2s1, then w
S0−{1}
0 wS0

0 δ′(c)δ′ is conjugate to a Coxeter
element in W0δ

′.

Type E6

There are two minuscule coweights: ω∨
1 and ω∨

6 . The unique outer
diagram automorphism of E6 permutes these two coweights. Thus it
suffices to consider the case where τ = τ1. In this case, τ -orbits on
S̃ are {0, 1, 6}, {2, 3, 5}, {4}. We take J = S̃ − {0, 1, 6} and c = s4s5.

Then w
S0−{1}
0 wS0

0 c is conjugate to a Coxeter element of W0.

Type 2E6

As explained above, it suffices to consider the case where τ = τ1.
In this case, τδ′-orbits on S̃ are {0, 1}, {2, 3}, {4}, {5}, {6}. We take

J = S̃ − {6} and c = s5s4s3s1. Then w
S0−{1}
0 wS0

0 δ′(c)δ′ is conjugate to
a Coxeter element of W ′

0.

Type E7

There is a unique minuscule coweight: ω∨
7 . So τ = τ7. In this case,

τ -orbits on S̃ are {0, 7}, {1, 6}, {3, 5}, {2}, {4}. We take J = S̃−{0, 7}

and c = s2s4s5s6. Then w
S0−{7}
0 wS0

0 c is conjugate to a Coxeter element
of W0.

4. Proof of the main theorem

4.1. We keep the notation in section 1. For any w,w′ ∈ W̃ ′ and i ∈ S̃,
we write w

si−→ w′ if w′ = siwsi and ℓ(w′) 6 ℓ(w). We write w → w′ if

there is a sequence of w = w0, w1, · · · , wn = w′ of elements in W̃ ′ such
that for any k ∈ {0, 1, · · · , n − 1}, wk

si−→ wk+1 for some i ∈ S̃. We
write w ≈ w′ if w → w′ and w′ → w.

The following result is proved in [6].

Theorem 4.1. Let O be a Wa-conjugacy class of W̃
′ with finite Coxeter

part and Omin be the set of minimal length elements in O. Then for

any w ∈ O and w′ ∈ Omin, w → w′.
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4.2. Let O be a Wa-conjugacy class of W̃ ′ with finite Coxeter part and
let τ ∈ Ω′ with O ⊂ Waτ . In section 2, we have proved that there
exists a maximal proper τ -stable subset J of S̃ and a Coxeter element
cJ of WJ ⋊ 〈τ〉 such that cJ ∈ O.

Let w be a minimal length element in O. By Theorem 4.1, cJ → w.
Since cJ is a Coxeter element of WJ ⋊ 〈τ〉, w is also a Coxeter element
of WJτ ⊂ WJ ⋊ 〈τ〉 and cJ ≈ w.

Since J is a proper subset of S̃, WJ ⋊ 〈τ〉 is a finite group. Hence
any two Coxeter element of WJτ are conjugated by an element of WJ .
Thus all the Coxeter elements of WJτ are contained in O.

Therefore Omin is the set of Coxeter elements in WJτ ⊂ WJ ⋊ 〈τ〉.
Moreover, J = supp(w) for any w ∈ Omin. This proves the unique-

ness of J .
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