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ON FROBENIUS SPLITTING OF ORBIT CLOSURES

OF SPHERICAL SUBGROUPS IN FLAG VARIETIES

XUHUA HE AND JESPER FUNCH THOMSEN

Abstract. LetH be a connected spherical subgroup of a semisim-
ple algebraic groupG. In this paper, we give a criterion forH-orbit
closures in the flag variety of G to have nice geometric and coho-
mological properties. Our main tool is the method of Frobenius
splitting and of global F-regularity.

1. Introduction

1.1. Let G be a semisimple algebraic group and let H denote a closed
subgroup of G acting with only finitely many orbits on the flag variety
G/B associated with G. The group H under this condition is called
a spherical subgroup of G. The geometric and cohomological proper-
ties of the finitely many H-orbit closures in G/B are of importance in
representation theory.

The case where H is a Borel subgroup has been studied in great
detail. The H-orbit closures are in this case the set of Schubert va-
rieties which have some remarkable properties: Schubert varieties are
normal, Cohen-Macaulay and have rational singularities, all the higher
cohomology groups of ample line bundles are zero, etc. They play an
important role in representation theory.

Another important case is when H is a symmetric subgroup; i.e.
when H is the set of fixed points of an involution of G. The classifica-
tion and inclusion relation between the orbit closures have in this case
been studied in great detail by Richardson and Springer [RS, RS2].
However, the singularities are considerably more complicated than in
the case of Schubert varieties and the general picture is far from being
fully understood. A non-normal example is constructed by Barbasch
and Evens in [BE, 6.9]. A non-normal, non-Cohen-Macaulay example
for a spherical H is constructed by Brion in [B1, Example 6].

1.2. In this paper, we give a criterion for H-orbit closures to have nice
geometric and cohomological properties. Our main tool is the method
of Frobenius splitting and of global F-regularity.

The notion of Frobenius splitting was introduced by Mehta and Ra-
manathan in [MR]. Any projective Frobenius split variety is weakly
normal and the higher cohomology groups of ample line bundle are
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zero. The more restrictive notion of global F-regularity was recently
introduced by K. Smith in [S]. Any (projective) globally F-regular vari-
ety is normal and Cohen-Macaulay and the higher cohomology groups
of nef line bundles are zero.

The main result can be briefly stated as follows

Theorem 1.1. Let H be a connected reductive subgroup of G and B
denote a Borel subgroup of G such that BH = B∩H is a Borel subgroup
of H. Assume furthermore that (G,H) is a Donkin pair or that the
characteristic of the ground field k is sufficiently large. Let J be a
subset of the set I of simple roots of G and let ρJ (resp. 2ρH) denote
the sum of the fundamental weights within J (resp. the sum of the
positive roots of H). Then

(1) If 2ρH − ρJ is dominant for BH , then HPJ/B admits a Frobenius
splitting along an ample divisor that is compatible with all subvarieties
of the form HBwB/B for w ∈ WJ .

(2) If moreover 2ρH − ρJ is dominant regular for BH , then HBwB/B
is globally F-regular for all w ∈ WJ .

Notice that we do not assume H to be spherical subgroup in the
above theorem. However, in many cases the relevant orbit closures
HBwB/B coincide with closures of orbits under spherical subgroups. For
example, if H is the trivial subgroup of G then the theorem applies
for J = I. In this case the varieties HBwB/B , for w ∈ W , are just the
set of Schubert varieties. In particular, in this way we obtain the well
known results that the flag variety admits a Frobenius splitting along
an ample divisor which is compatible with all Schubert varieties and
that any Schubert variety is globally F-regular.

Another special case is when (G,H) is in N. Ressayre’s list of minimal
rank pairs [Re]. In this case one finds that the flag variety admits a
Frobenius splitting along an ample divisor that is compatible with all
the H-orbit closures.

Notice that one cannot expect the flag variety G/B to be Frobenius
split compatible with all the H-orbit closures for a given spherical sub-
group H of G. For example, if (G,H) = (SLn, SOn), then the scheme
theoretic intersection of two H-orbit closures might not be a reduced
scheme. Thus the desired Frobenius splitting cannot exist. For more
details, see [B1, Introduction].

1.3. Let us make a short digression and discuss another criterion for
H-orbit closures to have nice properties.

In [B1], Brion introduced multiplicity-free subvarieties of the flag
variety. A subvariety is multiplicity-free if it is rationally equivalent
to a linear combination of Schubert cycles with coefficients equal to
either 0 or 1. In [B2] Brion proved that multiplicity-free subvarieties
are normal, Cohen-Macaulay and have nice cohomological properties.
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In a recent work [Kn], Knutson proved that given a multiplicity-
free divisor X of the flag variety, there exists a Frobenius splitting on
the flag variety that is compatible with X . It is still unknown if any
multiplicity-free subvariety admits a Frobenius splitting.

The applications of the results in this paper include many multiplicity-
free cases, but they also include some non multiplicity-free cases. See
the Example in Section 8.2 and 8.3. It is interesting to compare the
criterion in this paper with the multiplicity-free criterion.

1.4. The paper is organized as follows. In Section 2 we introduce no-
tation. In Section 3 we give a short introduction to Frobenius splitting
and global F-regularity. The main technical result (Theorem 4.1) is
presented in Section 4. In Section 5, we discuss the surjectivity condi-
tion appearing in Theorem 4.1. In Section 6, we discuss some Frobenius
splitting of the flag variety PJ/B, which will be used in Section 7. In
Section 7, we prove the main result of this paper and discuss some ap-
plications. In Section 8, we discuss some examples and non examples.

2. Notation

2.1. Throughout this paper G will denote a connected semisimple and
simply connected linear algebraic group over an algebraically closed
field k. Within G we will fix a Borel subgroup B and a maximal torus
T ⊂ B.

The set of roots of G determined by T will be denoted by R and
the set of positive roots determined by (B, T ) will be denoted by R+.
The simple roots are denoted by αi, i ∈ I. For i ∈ I, let si be the cor-
responding simple reflection and ωi be the corresponding fundamental
weight. We let ρ denote half the sum of the positive roots or, alterna-
tively defined, the sum of the fundamental weights.

The Weyl group W = NG(T )/T is generated by the simple reflections
si, for i ∈ I. The length of w ∈ W will be denoted by l(w), and the
element of maximal length will be denoted by w0. By abuse of notation
w will sometimes both denote an element w ∈ W and a corresponding
element within the normalizer NG(T ). The set of Schubert varieties in
G/B is indexed by the elements in W . We use the notation X(w) for
the Schubert variety defined as the closure of BwB/B.

2.2. For J ⊂ I, let PJ ⊃ B be the corresponding standard parabolic
subgroup and LJ ⊃ T be the corresponding Levi subgroup of PJ . Let
UJ be the unipotent radical of PJ . Let WJ denote the parabolic sub-
group of W generated by sj for j ∈ J and wJ0 denote the element of
maximal length in WJ . Let ρJ =

∑

j∈J ωj . The set of positive roots

determined by B ∩ LJ in LJ is denoted by R+
J .
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2.3. By H we will denote a connected reductive subgroup of G. We
will assume that B and T are chosen such that BH = H ∩B is a Borel
subgroup of H and TH = H ∩ T is a maximal torus of H .

The rootsRH ofH determined by TH is the set of nonzero restrictions
of the roots in R. We consider the character group X∗(TH) of TH
as embedded inside the tensorproduct X∗(TH)Q = X∗(TH) ⊗Z Q. By
ρH ∈ X∗(TH)Q we then denote half the sum of the positive roots of H .

2.4. For any integral weight λ of T , let k−λ be the one-dimensional
representation of B with weight −λ and L(λ) = G ×B k−λ be the
corresponding G-linearized line bundle on G/B. Let

∇(λ) = IndGB(k−λ) = H0(G/B,L(λ)),

denote the dual Weyl G-module with lowest weight −λ (if λ is dom-
inant). The restriction of L(λ) to PJ/B will be denoted by LJ(λ) and
we define

∇J(λ) = IndPJ
B (k−λ) = H0(PJ/B,LJ(λ)).

When ν is an integral TH-weight we similarly write LH(ν) = H×BH
k−ν

and

∇H(ν) = IndHBH
(k−ν) = H0(H/BH ,LH(ν)).

When k is a field of positive characteristic p > 0 then the G-module
St = ∇((p − 1)ρ) will play a special role. This module is called the
Steinberg module. The Steinberg module is known to be an irreducible
and self-dual G-module. When it makes sense we let StH denote the
Steinberg module of H .

2.5. By a variety we mean a reduced and separated scheme of finite
type over k. In particular, we allow a variety to have several irreducible
components. WhenX is a BH-variety we define an action of BH onH×
X by b ·(h, x) = (hb−1, b ·x). The quotient is then denoted by H×BH

X
or sometimes by XH . This way we obtain an equivalence between the
set of quasi-coherent BH -linearized sheaves onX and quasi-coherent H-
linearized sheaves onXH . The H-linearized sheaf onXH corresponding
to a BH -linearized sheaf F onX is denoted by IndHBH

(F). This notation
is explained by the H-equivariant identity

H0
(

XH , Ind
H
BH

(F)
)

≃ IndHBH

(

H0
(

X,F)
)

.

The sheaf IndHBH
(F) is characterized as theH-linearized sheaf satisfying

that its BH -linearized restriction to

X ≃ {e} ×X ⊆ H ×BH
X,

is F.
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3. Frobenius splitting

3.1. In this section k denotes an algebraically closed field of positive
characteristic p. Let X be a scheme of finite type over k. The absolute
Frobenius morphism F : X → X on X is the morphism of schemes
which on the level of points is the identity map and where the associated
map of sheaves

F ♯ : OX → F∗OX ,

is the p-th power map. Define EndF (X) to be the k-vector space
which as a abelian group equals HomOX

(

F∗OX ,OX
)

, but where the

k-structure is twisted by the map a 7→ a
1

p . A Frobenius splitting of X
is then an element s in EndF (X) such that the composition s ◦ F ♯ is
the identity map.

3.2. Let k[X ] denote the space of global regular functions on X . The
evaluating of an element s of HomOX

(

F∗OX ,OX
)

at the constant global
function 1 on X defines an element in k[X ]. This way we obtain a k-
linear map

(1) HomOX

(

F∗OX ,OX
)

→ k[X ].

Composing (1) with the Frobenius morphism on k[X ] is then a k-linear
map

(2) evX : EndF (X) → k[X ],

which is called the evaluation map.

3.3. Let M denote a line bundle on X and define EndM

F (X) to be
the k-vector space which as an abelian group is HomOX

(

F∗M,OX
)

but

where the k-structure is twisted by the map a 7→ a
1

p . A Frobenius
M-splitting of X is an element sM of EndM

F (X) for which there exists
a global section m of M such that the composed map

(3) F∗OX
F∗m−−→ F∗M

sM−→ OX ,

defines a Frobenius splitting. The construction of (3) from m and sM
is a special case of a general k-linear morphism

(4) EndM

F (X)⊗H0
(

X,M
)

→ EndF (X).

Notice that for (4) to be k-linear it is necessary that the k-structure
on EndM

F (X) is chosen in the given way.
In case X is a smooth variety one has the following canonical k-linear

identification

(5) EndM

F (X) ≃ H0
(

X,ω1−p
X ⊗M

−1
)

,

where ωX denotes the dualizing sheaf of X . In this setting the map (4)
is just the multiplication map

H0
(

X,ω1−p
X ⊗M

−1
)

⊗ H0
(

X,M
)

→ H0
(

X,ω1−p
X

)

.
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3.4. Let Y denote a closed subscheme of X with sheaf ideals denoted
by IY . The subvector space of EndM

F (X) consisting of the elements sM
satisfying

sM
(

M⊗ IY

)

⊆ IY ,

is denoted by EndM

F (X, Y ). If Xi, i ∈ I, is a collection of closed
subschemes of X then we use the notation EndM

F (X, {Xi}i∈I) for the
intersection of the EndM

F (X,Xi) for i ∈ I. When M = OX we remove
M from all of the above notation.

3.5. Let sM in EndM

F (X, {Xi}i∈I) define a Frobenius M-splitting of X .
In this case we say that sM is compatible with the subschemes Xi,
i ∈ I. The following result is standard (see e.g. [HT2, Lemma 3.1])

Lemma 3.1. Let Y and Z be closed subvarieties in X and let s be a
global section of EndM

F (X, {Y, Z}).

(1) sM ∈ EndM

F (X, Y1) for every irreducible component Y1 of Y .
(2) If Y ∩ Z denotes the scheme theoretic intersection then sM is

contained in EndL

F (X, Y ∩ Z).

3.6. Let R denote a localizations of a finitely generated k-algebra and
assume, for simplicity, that R is an integral domain. In the following
we use the notation F∗R

e, e ∈ N, to denote the R-module which as
an abelian group is just R but where the R-structure is twisted by the
iterated Frobenius map r 7→ rp

e
.

The following notion was introduced by M. Hochster and C. Huneke.

Definition 3.2. The ring R is said to be strongly F -regular if for each
r ∈ R there exists an e ∈ N and an R-linear map

F e
∗R → R,

which maps r to 1.

Strongly F -regular rings have nice geometric properties; e.g. they
are normal and Cohen-Macaulay. It is known that a ring R is strongly
F -regular if and only if all its local rings are strongly F -regular. We
define an irreducible variety X to be strongly F -regular if all its local
rings are strongly F -regular. In that case the coordinate ring of any
open affine subvariety of X is also strongly F -regular. The Schubert
varieties X(w) are examples of strongly F -regular varieties [LRT].

We now recall the following important notion introduced by Karen
Smith [S].

Definition 3.3. Let X denotes an irreducible projective variety and
M denote a ample line bundle on X . If the section ring

⊕

n≥0

H0
(

X,Mn
)

,

is strongly F -regular then X is said to be globally F -regular.
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It should be noticed that the definition above is independent of the
chosen ample line bundle M. For later use we observe the following
result [S, Thm.3.10]

Lemma 3.4. Let X denote an irreducible projective and strongly F -
regular variety. If X admits a Frobenius M-splitting by an ample line
bundle M, then X is globally F -regular.

Another useful fact, observed in [LRT, Lemma 1.2], is the following

Lemma 3.5. Let f : X → Y denote a morphism of projective varieties.
Assume that the induced map

OY → f∗OX ,

is an isomorphism and that X is globally F -regular. Then Y is also
globally F -regular.

To apply this result we will later use the following fact

Lemma 3.6. Let f : X → Y denote a surjective morphism of pro-
jective varieties. Let X ′ denote a closed subvariety of X and let Y ′ =
f(X ′) denote its image. Assume that the map

OY → f∗OX ,

induced by f , is an isomorphism and let M denote an ample line bundle
on X. If X admits a Frobenius M-splitting compatible with X ′ then the
map

OY ′ → f∗OX′ ,

induced by f , is also an isomorphism.

Proof. Let L denote an ample line bundle on Y . By [BK, Lemma
3.3.3(b)] it suffices to prove that the induced morphism

H0
(

Y ′,Ln
)

→ H0
(

X ′, f ∗
L
n
)

,

is surjective for sufficiently large n. By the assumption the correspond-
ing statement on X and Y are satisfied. Commutative of the following
diagram

(6) H0
(

Y,Ln
) f∗

//

resY
Y ′

��

H0
(

X, f ∗Ln
)

resX
X′

��

H0
(

Y ′,Ln
) f∗

// H0
(

X ′, f ∗Ln
)

then implies that it suffices to prove that the restriction map

H0
(

X, f ∗
L
n
)

→ H0
(

X ′, f ∗
L
n
)

,

is surjective. As f ∗Ln is globally generated this follows by the ample-
ness of M and the assumption that X admits a Frobenius M-splitting
compatible with X ′ (cf. [BK, Thm.1.4.8(ii)]). �
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4. Frobenius splitting of H ×BH
X

In this section we let M denote a B-linearized line bundle on an
irreducible projective B-variety X . The notation MH is used to denote
the corresponding H-linearized line bundle on XH = H ×BH

X . A
linearized line bundle on H/BH is determined by a BH -character ν. The
pull-back of such a line bundle to H ×BH

X is denoted by O(−ν). The
tensor product of O(ν) and MH will be denoted by MH(ν). Recall that
we have an H-equivariant identification

(7) H0
(

XH ,MH(ν)
)

≃ IndHBH

(

H0
(

X,M
)

⊗ k−ν

)

.

We will now consider the following setup : let λ denote a dominant
weight of G and Xi, i ∈ I, denote a collection of closed subvarieties in
X . By

(8) θ : kλ → EndM

F

(

X, {Xi}
)

,

and

(9) φ : ∇(λ) → H0
(

X,M
)

.

we denote B-equivariant maps. By

(θ, φ) : ∇(λ)⊗ kλ → EndF
(

X, {Xi}
)

,

we denote the map induced by θ, φ and the natural B-equivariant
morphism

EndM

F

(

X, {Xi}
)

⊗H0
(

X,M
)

→ EndF
(

X, {Xi}
)

.

Then we can formulate

Theorem 4.1. Assume that the following conditions are satisfied

(1) (θ, φ) contains a Frobenius splitting of X in its image.
(2) The TH-character 2(p− 1)ρH − λ|TH is dominant.
(3) The H-equivariant restriction morphism

∇
(

λ
)

→ ∇H
(

λ|TH
)

,

is surjective.

Then H ×BH
X admits a Frobenius MH(2(p − 1)ρH − λ|TH)-splitting

which is compatible with the subvarieties H ×BH
Xi, i ∈ I.

Proof. Recall that the BH -character associated to the dualizing sheaf
on H/BH equals 2ρH . In particular, we have an H-equivariant identifi-
cation (cf. [HT2, Sect. 5])

End
MH (ν)
F (XH , {(Xi)H}) ≃ IndHBH

(

EndM

F (X, {Xi})⊗ k−λ

)

,

where ν denotes the BH-character 2(p−1)ρH−λ|TH , and where we have
used the notation (Xi)H for H ×BH

Xi. By application of Frobenius
reciprocity this show that θ induces an H-equivariant morphism

(10) k → End
MH (ν)
F (XH , {(Xi)H}).
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Let g denote a nonzero element inside the image of (10). It then suffices
to find a global section s of MH(ν) such that g(s) is nonzero.

To find s we first apply Frobenius reciprocity to (9) to obtain

(11) ∇(λ) → IndHBH

(

H0
(

X,M
))

≃ H0
(

XH ,MH

)

,

which combined with the natural morphism

(12) ∇H(ν) → H0
(

XH ,O(ν)
)

,

defines an H-equivariant morphism

(13) ∇(λ)⊗∇H(ν) → H0
(

XH ,MH(ν)
)

.

We claim that we can find the desired s inside the image of (13).
Applying the natural morphism

End
MH (ν)
F (XH , {(Xi)H})⊗ H0

(

XH ,MH

)

→ End
O(ν)
F (XH , {(Xi)H}),

we see that g and (11) defines an H-equivariant map

(14) Φ : ∇(λ) → End
O(ν)
F (XH , {(Xi)H}).

By construction (14) is the map induced by (θ, φ) and the identification

End
O(ν)
F (XH , {(Xi)H}) ≃ IndHBH

(

EndF (X, {Xi})⊗ k−λ

)

,

in particular, the following diagram is commutative
(15)

∇(λ)
Φ

//

(θ,φ)⊗k−λ

))SSSSSSSSSSSSSSSSS IndHBH

(

EndF (X, {Xi})⊗ k−λ

)

��

IndH
BH

(evX)
// ∇H(λ|TH)

��

EndF (X, {Xi})⊗ k−λ
evX

// k−λ

Notice that the lower horizontal part of the diagram (15) is a B-
equivariant morphism and thus it must, up to a constant, coincide
with the projection map onto the lowest weight space of ∇(λ). By as-
sumption (1) this map is nonzero. Thus the composed upper horizontal
morphism ∇(λ) → ∇H(λ|TH) must, up to a non-zero constant, be the
natural restriction map. In particular, the composed upper horizontal
map ∇(λ) → ∇H(λ|TH) is surjective by assumption (3).

Consider next the natural morphism

(16) End
O(ν)
F (XH , {(Xi)H})⊗ H0

(

XH ,O(ν)
)

→ EndF (XH , {(Xi)H}).
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Composing (14) with (12) and Φ defines the following commutative
diagram
(17)

∇(λ)⊗∇H(ν)
ψ

++VVVVVVVVVVVVVVVVVVVV

Φ⊗1

��

End
O(ν)
F (XH , {(Xi)H})⊗∇H(ν)

IndH
BH

(evX)⊗1

��

// EndF (XH , {(Xi)H})

evXH

''NNNNNNNNNNNNNN

IndH
BH

(evX)

��

∇H(λ|TH)⊗∇H(ν) m
// ∇H(2(p− 1)ρH) evH/BH

// k

where m is the multiplication map and ψ is the map induced by g. In
this notation we have to show that the image of ψ contains a Frobenius
splitting or, equivalently, that the map

∇(λ)⊗∇H(ν) → k,

from the upper left corner in (17) to the lower right corner is surjective.
First of all the composed vertical map in (17) is surjective by the above
observations. Moreover, m is surjective by assumption (2) and [RR,
Thm. 3] while evH/BH

is surjective because H/BH admits a Frobenius
splitting. This ends the proof. �

Remark. The statement of Theorem 4.1 provides us with a morphism

(18) F∗MH

(

2(p− 1)ρH − λ|TH
) g
−→ OXH

,

and a global section s of the line bundle MH

(

2(p− 1)ρH − λ|TH
)

such
that the composition of (18) with

(19) F∗OXH

F∗s−−→ F∗MH

(

2(p− 1)ρH − λ|TH
)

,

defines a Frobenius splitting of XH . Actually the proof of Theorem
4.1 provides us with more precise information. It defines three H-
equivariant maps (ν = 2(p− 1)ρH − λ) :

f1 : ∇(λ)⊗∇H(ν) → EndF (XH , {(Xi)H}),

f2 : ∇(λ)⊗∇H(ν) → H0
(

XH ,MH(ν)
)

,

f3 : ∇(λ)⊗∇H(ν) → k.

related in the following way : let s = f2(x), for some x ∈ ∇(λ)⊗∇H(ν).
Then g◦F∗s = f1(x) defines a Frobenius splitting ofXH up to a nonzero
constant if and only if f3(x) is nonzero. Moreover, the map f3 may be
explicitly described as the composed morphism

∇(λ)⊗∇H(ν) → ∇H(λ|TH)⊗∇H(ν)
m
−→ ∇(2ρH(p− 1))

evH/BH−−−−→ k,

induced by the restriction map ∇(λ) → ∇H(λ|TH ), while f2 is the
tensorproduct of (11) and (12).
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It follows that we may choose s to be a product of the form s1s2,
where s1 and s2 denote global sections of the line bundles MH and
O
(

2(p − 1)ρH − λ|TH
)

respectively. Moreover, s1 can be chosen inside
the image of (11) or, even more specific, if ∇(λ) is generated by an
element v as an H-module then s1 can be chosen to be the image of
v under (11). Part of the outcome of this is that (19) factors through
the morphism

(20) F∗OXH

F∗s1−−→ F∗MH

and consequently XH also admits a Frobenius MH-splitting compatible
with all the subvarieties (Xi)H . Even though this conclusion seems
weaker than Theorem 4.1 it will be useful for us later.

Corollary 4.2. Assume that H is semisimple and simply connected
and that (p − 1)ρH − λ|TH is dominant as a TH-weight. Then there
exists a BH-equivariant map

StH ⊗ (p− 1)ρH → EndF
(

XH , {(Xi)H}
)

,

containing a Frobenius splitting in its image; i.e. XH admits a BH-
canonical Frobenius splitting compatible splitting each (Xi)H (see [M]).

Proof. With notation as in the remark above we have, by assumption,
a surjective multiplication map

∇H((p− 1)ρH − λ|TH )⊗∇H((p− 1)ρH) → ∇H(ν).

Composing this map with f1 defines a morphism

∇(λ)⊗∇H((p− 1)ρH − λ|TH)⊗ StH → EndF (XH , {(Xi)H}),

and by the description of f3 it suffices to find a BH semi-invariant
element v in

∇(λ)⊗∇H((p− 1)ρH − λ|TH ),

mapping to a (nonzero) highest weight vector under the natural map

∇(λ)⊗∇H((p− 1)ρH − λ|TH ) → ∇H((p− 1)ρH).

Let v− denote a lowest weight vector in∇(λ) and wH0 denote the longest
element in the Weyl group ofH . Then wH0 v− will be BH semi-invariant.
Let now v+ denote a highest weight vector in ∇H((p − 1)ρH − λ|TH ).
Then the product v = v+(wH0 v−) has the desired property. �

Lemma 4.3. Assume that X is contained in a G-variety Z and that the
line bundle M is the restriction of an ample G-linearized line bundle
MZ on Z. Then MH(ν) is an ample line bundle for every regular
dominant weight ν of H.

Proof. Consider the H-equivariant morphism

ψ : XH = H ×BH
X → Z,

defined by
ψ(h, x) = h · x.
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The pull-back ψ∗(MZ) is then an H-linearized line bundle on XH . Con-
sider X as a BH-stable subvariety of XH in the natural way. Then, by
assumption, the restriction of ψ∗(MZ) to X coincides with the BH-
linearized line bundle M on X . In particular, MH must coincide with
ψ∗(MZ) as H-linearized line bundles.

As Z is an H-variety we have an identification

(21) H ×BH
Z ≃ H/BH × Z,

(h, z) 7→ (hBH , h · z).

Moreover, by the assumptions on ν and MZ , the external tensor prod-
uct LH(ν)⊠MZ is an ample line bundle on H/BH ×Z. The conclusion
now follows as MH(ν) is the pull-back of LH(ν)⊠MZ under the closed
inclusion

H ×BH
X ⊆ H ×BH

Z,

composed with the identification (21) above �

Corollary 4.4. Consider a setup as in Theorem 4.1. Assume, more-
over, that 2(p − 1)ρH − λ|TH is a regular weight of H and that M is
the restriction of a G-linearized ample line bundle on a G-variety which
contains X as a closed B-stable subvariety. If X is a strongly F -regular
projective variety then H ×BH

X is globally F -regular.

Proof. By Lemma 4.3 and Theorem 4.1 we know that XH admits a
Frobenius splitting along an ample divisor. Moreover, as X is strongle
F -regular the same is the case for XH . Now apply Lemma 3.4. �

5. Surjectivity condition

In this section, we discuss one of the conditions in Thereom 4.1 about
the surjectivity of the restriction map

(22) ∇(λ) → ∇H(λ|TH).

The first observation is the following

Lemma 5.1. Assume that the restriction map (22) is surjective for all
the fundamental weights ωi. Then the restriction map (22) is surjective
for any dominant weight λ.

Proof. We may assume that λ =
∑

i∈I miωi, where mi > 0. Consider
the following commutative diagram

∇(ω1)
⊗m1 ⊗ · · · ⊗ ∇(ωn)

⊗mn

f
⊗m1
1

⊗···⊗f⊗mn
n

��

m
// ∇(λ)

f
��

∇H(ω1 |TH )
⊗m1 ⊗ · · · ⊗ ∇H(ωn |TH )

⊗mn
m′

// ∇H(λ |TH),

where f, f1, · · · , fn are restriction maps and m,m′ are multiplication
maps. By [RR, Theorem 3], m andm′ are surjective and by assumption
the left vertical map is also surjective. This proves the claim. �
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The above results applies in case ∇H(ω1 |TH ), · · · ,∇
H(ωn |TH ) are ir-

reducible H-modules. In particular, it applies in case the characteristic
p of k is sufficiently large; e.g.

Lemma 5.2. Assume that 〈ρH + ωi |TH , β
∨〉 6 p for all fundamental

weights ωi of G and any positive root β of H. Then the restriction map
(22) is surjective for all dominant weights λ of T .

5.1. Below we give a criterion on the surjectivity of (22) valid for all
characteristics. We first recall the definition and some known results
on Donkin pairs.

An ascending chain

0 = V0 ⊂ V1 ⊂ V2 · · · ⊂ Vn = V

of submodules of a G-module V is called a good filtration if for any i,
Vi/Vi−1

∼= ⊕λ∇(λ)⊗kA(λ, j) for some trivial G-modules A(λ, j), where
λ runs over the set of dominant integral weights of T .

We say that (G,H) is a Donkin pair if for any G-module M with a
good filtration, the H-module resGH(M) also has a good filtration. The
following are some examples of Donkin pairs that will be used in this
paper :

(1) If H is a Levi subgroup of G, then (G,H) is a Donkin pair. This
is proved by Donkin in [Do] for almost all cases and later by Mathieu
in [M] in full generality.

(2) If H is the centralizer of a graph automorphism of G or the
centralizer of an involution of G and the characteristic of k is at least
3, then (G,H) is a Donkin pair. This is conjectured by Brundan in
[Bru] and proved by Van der Kallen in [V].

Lemma 5.3. Let (G,H) be a Donkin pair. Let λ ∈ X∗(T ) be a domi-
nant weight. Then the restriction map ∇(λ) → ∇H(λ|TH) is surjective
for all dominant weights λ of T .

Proof. By definition, ∇(λ) has a good filtration. Hence resGH∇(λ) also
has a good filtration

0 =M0 ⊂ · · · ⊂Mn−1 ⊂Mn = resGH∇(λ).

As resGH∇(λ) is finite dimensional we may furthermore assume that
the quotients Mi/Mi−1 are isomorphic to ∇H(νi) for certain dominant
TH-weights νi. Moreover, as −λ is the (unique) lowest weight vector of
∇(λ) we must have νi ≤ λ|TH .

Now use that ∇(λ) → ∇H(λ|TH) is nonzero to find a minimal j such
that the induced map Mj → ∇H(λ|TH) is nonzero. In particular, we
obtain a nonzero map

(23) ∇H(νj) → ∇H(λ|TH ).

By Frobenius reciprocity this implies that νj ≥ λ|TH and thus that
νj = λ|TH . Another use of Frobenius reciprocity now implies that (23)
is the identity map which suffices to end the proof. �
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6. Frobenius splitting of PJ/B

We eventually want to apply the result in Section 4 to the case
where X is B-variety of the form PJ/B. In particular, we need a good
description of the Frobenius splitting properties of PJ/B. As a variety
PJ/B is just the flag variety associated to the Levi subgroup LJ and as
such we already have a detailed knowledge about its Frobenius splitting
properties. The aim of this section is to formulate this knowledge in a
B-equivariant way.

Lemma 6.1.
∑

α∈R+

J

α = ρJ − wJ0 ρJ .

Proof. Define

λJ =
∑

β∈R+\R+

J

β, λJ =
∑

α∈R+

J

α.

Then 2ρ = λJ + λJ . Now recall the following identities

wJ0 (R
+
J ) = −R+

J ,

wJ0 (R
+ \R+

J ) = R+ \R+
J .

It follows that

2wJ0 ρ = wJ0 (λ
J + λJ) = λJ − λJ .

and thus

ρ− wJ0 ρ = λJ .

On the other hand

wJ0 ρ = wJ0 (ρJ + ρI\J ) = wJ0 ρJ + ρI\J ,

and thus

λJ = ρ− wJ0 ρ = ρJ − wJ0 ρJ .

�

The trivial PJ-linearization on OPJ/B induces a PJ -linearization of
the line bundle ωPJ/B which is associated to B-character

∑

α∈R+

J

α.

In particular, we have a PJ-equivariant identification

(24) ∇J
(

(p− 1)
∑

α∈R+

J

α
)

= H0
(

PJ/B, ω1−p
PJ/B

)

≃ EndF (PJ/B).

By Lemma 6.1 this leads to the following central morphism
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Proposition 6.2. There exists a surjective PJ -equivariant morphism

(25) ∇J((p− 1)ρJ)⊗∇J((1− p)wJ0 ρJ ) → EndF (PJ/B).

Composing (25) with the evaluation map defines a PJ -equivariant map

∇J((p− 1)ρJ)⊗∇J((1− p)wJ0 ρJ) → k,

which defines an PJ -equivariant isomorphism

(26) ∇J((p− 1)ρJ) → ∇J((1− p)wJ0 ρJ )
∗,

between irreducible PJ -representations.

Proof. The map (25) is just the surjective multiplication map

∇J((p− 1)ρJ)⊗∇J((1− p)wJ0 ρJ) → ∇J((p− 1)(ρJ − wJ0 ρJ )),

composed with the identification (24) using Lemma 6.1.
For the second part, it suffices to prove the irreducibility claim and

that (26) is non-zero. That (26) is non-zero follows as (25) is surjective
and as PJ/B admits a Frobenius splitting. Consider next the simply
connected commutator group GJ = (LJ , LJ). As GJ -modules both
tensor-factors on the left hand side of (25) are equal to the associated
Steinberg module StJ of GJ . In particular, they are irreducible as
GJ -modules and thus also as PJ-modules. �

Let v+J denote a highest weight vector of the PJ -module ∇J((1 −
p)wJ0 ρJ). The weight of v+J is then (p− 1)ρJ . The element v+J vanishes
with multiplicity (p−1) along the union of the codimension 1 Schubert
varieties in PJ/B. In particular, we obtain (cf. [BK, Prop.1.3.11])

Corollary 6.3. The restriction of (25) to the highest weight space de-
fines a B-equivariant morphism

∇J((p− 1)ρJ)⊗ k(p−1)ρJ → EndF (PJ/B, {X(w)}w∈WJ
),

where the image is compatible with all Schubert varieties contained in
PJ/B and contains a Frobenius splitting of PJ/B.

6.1. Frobenius M-splitting. We now want to formulate a slightly
more precise statement based on the observations above. Define M =
LJ((p− 1)ρJ) and start by observing the PJ-equivariant identification

(27) EndM

F

(

Pj/B
)

≃ H0
(

PJ/B, ω
(1−p)
PJ/B

⊗M
−1
)

≃ ∇J
(

(1− p)wJ0 ρj
)

.

As

(28) H0
(

PJ/B,M
)

≃ ∇J
(

(p− 1)ρJ
)

,

we may relate (25) with (27) by the natural map

H0
(

PJ/B,M
)

⊗ EndM

F

(

PJ/B
)

→ EndF
(

PJ/B
)

.

The statement in Corollary 6.3 then means that the highest weight
line in EndM

F (PJ/B) is compatible with any Schubert variety X(w), w ∈
WJ . More precisely we find the following result related to the setup in
Section 4 :
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Proposition 6.4. There exists a B-equivariant map

(29) θJ : k(p−1)ρJ → EndM

F

(

PJ/B, {X(w)}w∈WJ

)

,

such that when

φJ : ∇
(

(p− 1)ρJ
)

→ ∇J
(

(p− 1)ρJ
)

≃ H0
(

PJ/B,M
)

,

denotes the restricition map, then the induced B-equivariant map

(θJ , φJ) : ∇
(

(p− 1)ρJ
)

⊗ k(p−1)ρJ → EndF
(

PJ/B, {X(w)}w∈WJ

)

,

contains a Frobenius splitting of PJ/B in its image.

7. Frobenius splitting H ×BH
X(w).

We are now ready to apply the results in Section 4 and Section 6.

Theorem 7.1. Let M denote the line bundle LJ((p − 1)ρJ) on PJ/B.
If the following conditions are satisfied

(1) The TH-weight 2ρH − ρJ |TH is dominant,
(2) The H-equivariant restriction morphism

∇
(

(p− 1)ρJ
)

→ ∇H
(

(p− 1)ρJ |TH
)

,

is surjective,

then the variety H×BH
PJ/B admits a Frobenius MH((p−1)(2ρH−ρJ |TH

))-splitting which is compatible with the subvarieties H×BH
X(w), w ∈

WJ . If, moreover, 2ρH − ρJ is regular then the line bundle MH((p −
1)(2ρH − ρJ |TH )) is ample and as a consequence the varieties H ×BH

X(w), w ∈ WJ , are globally F -regular.

Proof. The first part of the statement follows by an application of The-
orem 4.1 and Proposition 6.4. The second part follows from Corollary
4.4 by using that Schubert varieties are strongly F -regular. �

By applying the natural morphism

(30) πJ : H ×BH
PJ/B → HPJ/B ⊆ G/B,

we may sometimes transfer the statements in Theorem 7.1 into state-
ments about H-orbit closures in G/B. For this to work we however
need (30) to be separable, which is easily seen to be equivalent to the
following condition on the level of the Lie algebras

(31) Lie(H) ∩ Lie(PJ) = Lie(H ∩ PJ).

Corollary 7.2. Assume that the relation (31) as well as condition (1)
and (2) of Theorem 7.1 are satisfied. Then HPJ/B admits a Frobenius
L((p− 1)ρJ)|HPJ/B-splitting which is compatible with all subvarieties of
the form H ·X(w), w ∈ WJ . If, moreover, 2ρH−ρJ |TH is regular then
each H ·X(w), w ∈ WJ , is globally F -regular.
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Proof. Use the notation M to denote the line bundle LJ((p − 1)ρJ).
Applying the remark in Section 4 we find, as in Theorem 7.1, that the
variety H ×BH

PJ/B admits a Frobenius MH-splitting which is compat-
ible with the subvarieties H ×BH

X(w), w ∈ WJ ; i.e. there exists a
map

(32) F∗MH → OH×BH
PJ/B,

compatible with all subvarieties H ×BH
X(w), w ∈ WJ , and a global

section s of MH such the composition of (32) with

(33) F∗OH×BH
PJ/B

F∗s−−→ F∗MH ,

defines a Frobenius splitting of H×BH
PJ/B. As observed in the remark

in Section 4 we may even assume that s is contained in the image of
the morphism

(34) ∇((p− 1)ρJ) → IndHBH

(

H0(PJ/B,M)
)

= IndHBH

(

∇J((p− 1)ρJ)
)

,

i.e. we may assume that s is the pull-back π∗
J(s

′) of a global section s′

of the line bundle L
(

(p− 1)ρJ
)

|HPJ/B
. In this connection we notice the

identity MH ≃ π∗
J

(

L
(

(p − 1)ρJ
))

which follows by arguing as in the
proof of Lemma 4.3.

We now claim that the morphism

(35) OHPJ/B → (πJ)∗OH×BH
PJ/B,

induced by πJ , is an isomorphism. If so, we may apply (πJ)∗ to the
composition of (32) and (33) to obtain a map

F∗OHPJ/B
F∗s′−−→ F∗L

(

(p− 1)ρJ
)

|HPJ/B
→ OHPJ/B,

defining a Frobenius L
(

(p − 1)ρJ
)

|HPJ/B
-splitting of HPJ/B compatible

with all the subvarieties (cf. [BK, Lemma 1.1.8])

HBwB/B = πJ
(

H ×BH
X(w)

)

, w ∈ WJ .

This is exactly the first part of the statement of this corollary.
To prove the claim consider the natural morphism

(36) H/PJ∩H → G/PJ .

As relation (31) is assumed to be satisfied the morphism (36) is a closed
embedding. In particular, the pull back HPJ/B of the closed subvariety
H/PJ∩H by the morphism

G/B = G×PJ
PJ/B → G/PJ,

is isomorphic to H ×PJ∩H
PJ/B. The claim now follows as the natural

morphism
H ×BH

PJ/B → H ×PJ∩H
PJ/B,

is a locally trivial PJ∩H/BH-bundle. This ends the proof of the first part
of the statement.
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As to the second statement the global F -regularity of HPJ/B follows
from Theorem 7.1 using the claim above and the fact that global F -
regularity is preserved by push forward (Lemma 3.5). The global F -
regularity of H · X(w), w ∈ WJ , now follows in the same way by
applying Lemma 3.6. �

Remark. In case G/B contains a dense H-orbit HgB and ∇
(

(p− 1)ρJ
)

is irreducible as a G-module we may, in the proof of the above corollary,
choose the section s to be the image under (34) of the element gv+.
Here v+ denotes a the highest weight vector in ∇

(

(p− 1)ρJ
)

. This

follows from the remark in Section 4 as gv+ generates ∇
(

(p− 1)ρJ
)

as
an H-module. In this case the zero divisor associated to s′ is the sum

D = (p− 1)
∑

i∈J

(

g ·X(w0si) ∩ HPJ/B
)

.

The Frobenius splitting in Corollary 7.2 may therefore also be consid-
ered as a Frobenius D-splitting (cf. [BK, § 1.4]).

Remark. The assumption in Corollary 7.2 that the relation (31) is sat-
isfied is necessary to make the proof work. This assumption does not
follow from the rest of the assumptions as can be seen by the following
example : Consider the case G = SL2 × SL2 and H = {(g, F (g)); g ∈
SL2} ⊂ G. If PJ is chosen to be the set of pair (g1, g2) ∈ G with the
condition that g2 upper triangular, then the natural morphism (36)
is not a closed embedding. However, the rest of the assumption in
Corollary 7.2 are satisfied.

As relation (31) is always satisfied in case J = I we find

Corollary 7.3. If 2ρH − ρ|TH is a dominant TH-weight and if the re-
striction map

∇
(

(p− 1)ρ
)

→ ∇H
(

(p− 1)ρ|TH
)

,

is surjective, then there exists a Frobenius L
(

(p− 1)ρ)-splitting of G/B
that is compatibly with all subvarieties over the form H ·X(w), w ∈ W .
In particular, for any dominant weight λ of T and any w ∈ W we have

(1) Hi(H ·X(w),L(λ)) = 0 for i > 1.
(2) The restriction map

H0(G/B,L(λ)) → H0(H ·X(w),L(λ)),

is surjective.

Corollary 7.4. We keep the assumption in Corollary 7.3. Assume
furthermore that H is a spherical subgroup of G. Let w ∈ W and g ∈ G
such that HgB/B is open dense in H ·X(w). Let λ be a dominant
weight of T and V (λ) be the Weyl module ∇(λ)∗. Let vλ be a nonzero
vector of weight λ in V (λ). Then H0

(

H ·X(w),L(λ)
)∗

is isomorphic
to the H-submodule of V (λ) generated by gvλ.
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Proof. We follow the idea of the proof of [BK, Cor.3.3.11]. Let M be
the H-module generated by gvλ. By Corollary 7.3, the restriction map

γ : ∇
(

λ
)

→ H0
(

H ·X(w),L(λ)
)

,

is surjective. As HgB/B is dense in H ·X(w) we have

ker(γ) = {f ∈ ∇(λ) : f|HgB/B = 0}

= {f ∈ V (λ)∗ : ((g−1h)f)(eB) = 0, for all h ∈ H}.
(37)

The central point is now that the B-equivariant map ∇
(

λ
)

→ k−λ,
coincides with the map f 7→ f(eB). In particular, f is zero at eB if
and only if vλ(f) = 0. Thus, by (37), f is contained in ker(γ) if and
only if ((hg)vλ)(f) is zero for all h ∈ H . The kernel of γ is therefore
(V (λ)/M)∗. This ends the proof. �

8. Examples

8.1. In this subsection, we discuss some cases where there is a splitting
on G/B that is compatible with all the H-orbit closures. Let (G,H) be
one of the following: (H,H), (H ×H,Hdiag), (A2n+1, Cn), (Dn, Bn−1),
(E6, F4), (B3, G2). Let B be a Borel subgroup of G such that BH =
H ∩ B is a Borel subgroup of H . It is known that all such B are
conjugated by H (see [Re, Prop 2.2]) and that all the H-orbit closure
in G/B are of the form HBwB/B for some w ∈ W . By §5.1(2), (G,H) is
a Donkin pair. It is also easy to check that 2ρH − ρ |TH is dominant
for BH . Hence (G,H,B) is admissible. By Corollary 7.3, there exists
a Frobenius L

(

(p − 1)ρ
)

-splitting of G/B that is compatible with all
H-orbit closures.

It is proved by N. Ressayre in [Re, Theorem A] that if G is a com-
plex reductive group and H a closed quasi-simple subgroup of G, then
(G,H) is of minimal rank if and only if (G,H) is (up to isomorphism)
one of the pairs above.

However, in positive characteristic, the pair (G,H) is also of minimal
rank, where G = SL2 × SL2 and H = {(g, F (g)); g ∈ SL2} ⊂ G. The
closed H-orbit in G/B ∼= P1 × P1 is defined by the equation XpW −
Y pV = 0, where X, Y are the coordinates of the first P1 and V,W are
the coordinates of the second P1. There is no Frobenius splitting on
G/B that compatibly splits the closed H-orbit.

8.2. Let G = Sp4 and B a Borel subgroup of G. Let α be the short
simple root and β be the long simple root. We denote by s1 and s2 the
simple reflections corresponding to α and β respectively. Let H be the
standard Levi subgroup corresponding to α. The H-orbit closures on
the flag variety of G are described in the the following graph
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Here X8 is the H-orbit of B1 = B, X9 is the H-orbit of B2 = s2Bs2,
X10 is the H-orbit of B3 = s2s1Bs1s2 and X11 is the H-orbit of B4 =
s2s1s2Bs2s1s2. It is easy to see that 2ρH − ρ |Ti∩H is dominant for
B1 ∩H and B4 ∩H but is not dominant for B2 ∩H and B3 ∩H . By
Corollary 7.2,

(1) There exists a Frobenius L
(

(p− 1)ρ
)

-splitting of the flag variety
G/B that compatibly splits X2, X5 and X8. We may even apply the
second part of Corollary 7.2 to obtain global F -regularity of X2, X5

and X8. In fact, X2, X5 and X8 is just a subset of the set of Schubert
varieties so this is a well known result.

(2) Similarly, there exists a Frobenius splitting of the flag variety G/B4

that compatible splits certain H-orbit closures X ′
4, X

′
7 and X

′
11 (which

are also Schubert varieties in G/B4). By the natural identification of
G/B4 with G/B this leads to a Frobenius L

(

(p−1)ρ
)

-splitting of the flag
variety G/B that compatibly splits X4, X7 and X11. The varieties X4,
X7 and X11 are not Schubert varieties in G/B.

(3) Let P1 and P2 denote the minimal parabolic subgroups containing
B2. Fix notation such that P1 corresponds to the short simple root.
Then, by Corollary 7.2, the variety HP2/B2 in G/B2 admits a Frobenius
M2-splitting compatible with the orbit closure HB2/B2. Here M2 is some
ample line bundle on HP2/B2 which can be explicitly determined. In this
case we cannot apply the strong part of Corollary 7.2. Focusing on P1

instead we may conclude that HP1/B2 admits a Frobenius M1-splitting
compatible with HB2/B2. Again M1 is some ample line bundle. In this
case we may apply the strong part of Corollary 7.2 to obtain global
F -regularity of both HP1/B2 and HB2/B2. Transferring this information
into G/B it means that X6 as well as X5 admits a Frobenius splitting,
along an ample line bundle, which is compatible with X9. Moreover, as
X6 corresponds to HP1/B2 we may conclude global F -regularity of X6.
Notice that X6 and X9 are not multiplicity-free in the sense of [B2].

(4) Similar statement as for the pairs (X5, X9) and (X6, X9) are also
satisfied for the pairs (X7, X10) and (X6, X10).

We do not know if X3 admits a Frobenius splitting.
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8.3. Let (G,H) = (SLn, SOn) and p > 3. Then (G,H) is a Donkin
pair. Let I = {1, 2, · · · , n− 1} be the set of simple roots of G and

J =

{

I − {n
2
}, if 2 | n;

I − {n−1
2
} or I − {n+1

2
}, if 2 ∤ n.

Then 2ρH − ρJ |TH is dominant. By Corollary 7.2, HPJ/B admits a
Frobenius splitting along an ample divisor which is compatible with all
subvarieties HBwB/B for w ∈ WJ .

Notice that none of the codimension one H-orbit closures in G/B are
multiplicity-free.

8.4. Let (G,H) = (H ×H ×H,Hdiag). Then ρ |TH= 3ρH and 2ρH −
ρ |TH is not dominant. Moreover, (G,H) satisfies the pairing crite-
rion (see [V, Example 8]). It is easy to see that the subvarieties
HB(wH

0
,1,1)B/B,HB(1,wH

0
,1)B/B,HB(1,1,wH

0
)B/B are the partial diagonals of

G/B = H/BH × H/BH × H/BH . By [BK, Exercise 3.5.3], the flag vari-
ety of G does not admit a Frobenius splitting which is compatible with
all the partial diagonals. This proves the necessity in Corollary 7.3 of
something like the condition that 2ρH − ρ |TH is dominant.
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