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CENTERS AND COCENTERS OF 0-HECKE

ALGEBRAS

XUHUA HE

Dedicated to David Vogan on his 60th birthday

Abstract. In this paper, we give explicit descriptions of the cen-
ters and cocenters of 0-Hecke algebras associated to finite Coxeter
groups.

Introduction

0.1. Iwahori-Hecke algebras Hq are deformations of the group algebras
of finite Coxeter groups W (with nonzero parameters q). They play an
important role in the study of representations of finite groups of Lie
type.

In 1993, Geck and Pfeiffer [4] discovered some remarkable properties
of the minimal length elements in their conjugacy classes in W (see
Theorem 1.2). Based on these properties, they defined the “character
table” for Iwahori-Hecke algebras. They also gave a basis of the cocen-
ter of Iwahori-Hecke algebras, using minimal length elements. Later,
Geck and Rouquier [6] gave a basis of the center of Iwahori-Hecke alge-
bras. It is interesting that both centers and cocenters of Iwahori-Hecke
algebras are closely related to minimal length elements in the finite
Coxeter groups and their dimensions both equal the number of conju-
gacy classes of the finite Coxeter groups.

0.2. The 0-Hecke algebra H0 was used by Carter and Lusztig in [2] in
the study of p-modular representations of finite groups of Lie type. It
is a deformation of the group algebras of finite Coxeter groups (with
zero parameter). In this paper, we study the center and cocenter of
0-Hecke algebras H0. We give a basis of the center of H0 in Theorem
4.4 and a basis of the cocenter of H0 in Theorem 5.5.

0.3. It is interesting to compare the (co)centers of Hq and H0. Let
Wmin be the set of minimal length elements in their conjugacy classes
in W . There are two equivalence relations ∼ and ≈, on Wmin (see §1.2
for the precise definition). Hence we have the partition of Wmin into
∼-equivalence classes and ≈-equivalence classes. The second partition
is finer than the first one.

Key words and phrases. finite Coxeter groups, 0-Hecke algebras, Conjugacy
classes.
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2 XUHUA HE

The center and cocenter of Hq have basis sets indexed by the set of
conjugacy classes of W , which are in natural bijection with Wmin/ ∼.
The cocenter of H0 has a basis set indexed by Wmin/ ≈ and the center
of H0 has a basis set indexed by Wmax/ ≈. Here Wmax/ ≈ is defined
using maximal length elements instead and there is a natural bijection
between Wmax/ ≈ with the set of ≈-equivalence classes of minimal
length elements in their “twisted” conjugacy classes in W . In general,
the number of elements in Wmax/ ≈ is different from the number of
elements in Wmin/ ≈.

0.4. The paper is organized as follows. In section 1, we recall some
properties of the minimal length and maximal length elements. In
section 2, we recall the results on the center and cocenter of Hq. We
give parameterizations ofWmin/ ≈ andWmax/ ≈ in section 3. In section
4, we give a basis of the center of H0 and in section 5, we give a basis
of the cocenter of H0. In section 6, we describe the image of a standard
element tw in the cocenter of H0 and discuss some applications to the
class polynomials of Hq.

1. Finite Coxeter groups

1.1. Let S be a finite set. A Coxeter matrix (ms,s′)s,s′∈S is a matrix
with entries in N∪{∞} such that mss = 1 and ms,s′ = ms′,s > 2 for all
s 6= s′ in S. The Coxeter group W associated to the Coxeter matrix
(ms,s′) is the group generated by S with relations (ss′)ms,s′ = 1 for
s, s′ ∈ S with ms,s′ < ∞. The Coxeter group W is equipped with the
length function ℓ : W → N and the Bruhat order 6.

For any J ⊆ S, let WJ be the subgroup of W generated by elements
in J . Then WJ is also a Coxeter group.

1.2. Let δ be an automorphism of W with δ(S) = S. We say that the
elements w,w′ ∈ W are δ-conjugate if there exists x ∈ W such that
w′ = xwδ(x)−1. Let cl(W )δ be the set of δ-conjugacy classes of W .
We say that a δ-conjugacy class O is elliptic if O ∩ WJ = ∅ for any
J = δ(J) $ S.

For any w ∈ W , let supp(w) be the set of simple reflections that
appear in some (or equivalently, any) reduced expression of w. Set
suppδ(w) = ∪i>0δ

i(supp(w)). Then O ∈ cl(W )δ is elliptic if and only if
suppδ(w) = S for any w ∈ O.

For w,w′ ∈ W and s ∈ S, we write w
s
−→δ w′ if w′ = swδ(s) and

ℓ(w′) 6 ℓ(w). We write w →δ w′ if there exists a sequence w =

w0, w1, · · · , wn = w′ of elements in W such that for any k, wk−1
s
−→δ wk

for some s ∈ S. We write w ≈δ w
′ if w →δ w

′ and w′ →δ w.
We say that the two elements w,w′ ∈ W are elementarily strongly

δ-conjugate if ℓ(w) = ℓ(w′) and there exists x ∈ W such that w′ =
xwδ(x)−1, and ℓ(xw) = ℓ(x) + ℓ(w) or ℓ(wδ(x)−1) = ℓ(x) + ℓ(w). We
say that w,w′ are strongly δ-conjugate if there exists a sequence w =
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w0, w1, · · · , wn = w′ such that for each i, wi−1 is elementarily strongly
δ-conjugate to wi. We write w ∼δ w′ if w and w′ are strongly δ-
conjugate. It is easy to see that

Lemma 1.1. If w,w′ ∈ W with w ≈δ w
′, then w ∼δ w

′.

Note that ∼δ and ≈δ are both equivalence relations. For any O ∈
cl(W ), let Omin be the set of minimal length elements in O and Omax

be the set of maximal length elements in O. Since ∼δ and ≈δ are
compatible with the length function, both Omin and Omax are unions of
∼δ-equivalence classes and unions of ≈δ-equivalence classes.

LetWδ,min = ⊔O∈cl(W )δOmin andWδ,max = ⊔O∈cl(W )δOmax. LetWδ,min/ ∼δ

be the set of ∼δ-equivalence classes in Wmin. We define Wδ,min/ ≈δ,
Wδ,max/ ∼δ and Wδ,max/ ≈δ in a similar way.

If δ is the identity map, then we may omit δ in the subscript.

The following result is proved in [4, Theorem 1.1], [3, Theorem 2.6]
and [7, Theorem 7.5] (see also [9] for a case-free proof).

Theorem 1.2. Let W be a finite Coxeter group and O be a δ-conjugacy
class of W . Then

(1) For any w ∈ O, there exists w′ ∈ Omin such that w →δ w
′.

(2) Omin is a single strongly δ-conjugate class.
(3) If O is elliptic, then Omin is a single ≈δ-equivalence class.

As a consequence of Theorem 1.2, it is proved in [7, Corollary 4.5]
that the set of minimal length elements in O coincides with the set of
minimal elements in O with respect to the Bruhat order 6.

Corollary 1.3. Let W be a finite Coxeter group and O be a δ-conjugacy
class of W . Then Omin = {w ∈ O;w′ ≮ w for any w′ ∈ O}.

1.3. One may transfer the results on minimal length elements to results
on maximal length elements via the trick in [3, §2.9]. Let w0 be the
longest element in W and δ′ = Ad(w0) ◦ δ be the automorphism on W .
Then the map

W → W,w 7→ ww0

reverses the Bruhat order and sends a δ-conjugacy class O to a δ′-
conjugacy class O′. Moreover, w1 →δ w2 if and only if w2w0 →δ′ w1w0.
Thus

Theorem 1.4. Let W be a finite Coxeter group and O be a δ-conjugacy
class of W . Then

(1) For any w ∈ O, there exists w′ ∈ Omax such that w′ →δ w.
(2) Omax = {w ∈ O;w ≮ w′ for any w′ ∈ O}.

2. Finite Hecke algebras

In the rest of this paper, we assume that W is a finite Coxeter group.
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2.1. Let q be an indeterminate and Λ = C[q]. The generic Hecke
algebra (with equal parameters) H of W is the Λ-algebra generated by
{Tw;w ∈ W} subject to the relations:

(1) Tw · Tw′ = Tww′, if ℓ(ww′) = ℓ(w) + ℓ(w′).
(2) (Ts + 1)(Ts − q) = 0 for s ∈ S.

Given q ∈ C, let Cq be the Λ-module where q acts by q. Let Hq =
H⊗Λ Cq be a specialization of H.

In particular, H1 = C[W ] is the group algebra. The algebra H0 is
called the 0-Hecke algebra. We will discuss it in details in the next
section.

For any w ∈ W , we denote by Tw,q = Tw ⊗ 1 ∈ Hq. We simply write
tw for Tw,0.

2.2. Let [H,H]δ be the δ-commutator of H, that is, the Λ-submodule of
H spanned by [h, h′] = hh′ − h′δ(h) for h, h′ ∈ H. Let Hδ = H/[H,H]δ
be the δ-cocenter of H.

For any q ∈ C, we define the δ-cocenter Hq,δ in the same way. Notice
that if q 6= 0, then Tw,q is invertible in Hq for any w ∈ W . However,
if q = 0, then tw is invertible in Hq if and only if w = 1. This makes
a difference in the study of the cocenter of Hq (for q 6= 0) and the
cocenter of H0.

Proposition 2.1. Let w,w′ ∈ W . If w ≈δ w′, then the image of Tw

and Tw′ in Hδ are the same.

Proof. It suffices to prove the case where w
s
−→δ w′ and ℓ(w) = ℓ(w′).

Without loss of generality, we may assume furthermore that sw < w.
Then Tw = TsTsw and Tw′ = TswTδ(s). Hence the image of Tw and Tw′

are the same. �

For q 6= 0, a similar argument shows that if w ∼δ w
′, then the image

of Tw,q and Tw′,q in Hq,δ are the same. By Theorem 1.2 (2), for any
δ-conjugacy class O of W , Omin is a single strongly δ-conjugacy class.
Thus

Proposition 2.2. ([4, §1] and [3, 7.2])

If q 6= 0, then for any O ∈ cl(W )δ and w,w′ ∈ Omin, the image of
Tw,q and Tw′,q in Hq,δ are the same.

Remark. We denote this image by TO,q.

Theorem 2.3. ([4, §1] and [3, Theorem 7.4 (1)])

If q 6= 0, then {TO,q}O∈cl(W )δ form a basis of Hq,δ.

Proposition 2.4. ([4, §1.2] and [3, Theorem 7.4 (2)])

If q 6= 0, then there exists a unique polynomial fw,O ∈ Z[q] for any
w ∈ W and O ∈ cl(W )δ such that the image of Tw in Hq,δ equals
∑

O∈cl(W )δ
fw,OTO,q.
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Remark. The polynomials fw,O are called the class polynomials. They
play an important role in the study of characters of Hecke algebras.

Theorem 2.5. ([6, Theorem 5.2])

Let q 6= 0. Let

Z(Hq)δ = {h ∈ Hq; h
′h = hδ(h′) for any h′ ∈ Hq}

be the δ-center of Hq. For any O ∈ cl(W )δ, set

zO =
∑

w∈W

q−ℓ(w)fw,OTw−1 .

Then {zO}O∈cl(W )δ form a basis of Z(Hq)δ.

As a consequence of the results above, we have

Corollary 2.6. If q 6= 0, then

dimZ(Hq)δ = dimHq,δ = ♯cl(W )δ.

3. Parameterizations of Wδ,min/ ≈δ and Wδ,max/ ≈δ

3.1. Notice that for q 6= 0, both Hq,δ and Z(Hq)δ have basis sets in-
dexed by cl(W )δ, which is in natural bijection with Wδ,min/ ∼δ. As
we will see later in this paper, for H0,δ and Z(H0)δ, we need to use
Wδ,min/ ≈δ and Wδ,max/ ≈δ instead. We give parameterizations of
these sets here.

3.2. Let Γδ = {(J, C); J = δ(J) ⊆ S, C ∈ cl(WJ )δ is elliptic}. There
is a natural map

f : Γδ → cl(W )δ, (J, C) 7→ O,

where O is the unique δ-conjugacy class of W that contains C.
We say that (J, C) is equivalent to (J ′, C ′) if there exists x ∈ W δ

and the conjugation by x sends J to J ′ and sends C to C ′. By [1,
Proposition 5.2.1], f induces a bijection from the equivalence classes of
Γδ to cl(W )δ.

Proposition 3.1. Let O ∈ cl(W )δ. Then

Omin = ⊔(J,C)∈Γδ with f(J,C)=OCmin.

Proof. If (J, C) ∈ Γδ with f(J, C) = O, we have Cmin ⊆ Omin by [7,
Lemma 7.3].

Let w ∈ Omin. Let J = suppδ(w) and C ∈ cl(WJ)δ with w ∈ C. By
[7, Theorem 7.5 (P1)], C is an elliptic δ-conjugacy class of WJ . Since
w ∈ Omin and w ∈ C, w ∈ Cmin. �

Corollary 3.2. The map

f : Γδ → Wδ,min/ ≈δ, (J, C) 7→ Cmin

is a bijection.
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Proof. Let (J, C) ∈ Γδ and w ∈ Cmin. If w
s
−→δ w′, then w′ = w or

sw < w or wδ(s) < w. In the latter two cases, s ∈ J . Therefore
w′ ∈ C. Since w ∈ Cmin and ℓ(w′) 6 ℓ(w), w′ ∈ Cmin.

By definition of ≈δ, v ∈ Cmin for any v ∈ W with w ≈δ v. On
the other hand, by Theorem 1.2, Cmin is a single ≈δ-equivalence class.
Hence the map (J, C) 7→ Cmin ∈ Wδ,min/ ≈δ is well-defined.

It is obvious that this map is injective. The surjectivity follows from
Proposition 3.1. �

Using the argument in §1.3, we also obtain

Corollary 3.3. Set δ′ = Ad(w0) ◦ δ. The map

Γδ′ → Wδ,max/ ≈δ, (J, C) 7→ Cminw0

is a bijection.

Example 3.4. Let W = S3. Then ♯cl(W ) = 3, ♯Γ = 4 and ♯ΓAd(w0) =
3. Therefore ♯(Wmin/ ≈) 6= ♯cl(W ) and ♯(Wmin/ ≈) 6= ♯(Wmax/ ≈) for
W = S3.

4. Centers of 0-Hecke algebras

4.1. Let Σ ∈ Wδ,max/ ≈δ. Set

W6Σ = {x ∈ W ; x 6 w for some w ∈ Σ},

t6Σ =
∑

x∈W6Σ

tx.

Now we recall the following known result on the Bruhat order (see,
for example, [12, Lemma 2.3]).

Lemma 4.1. Let x, y ∈ W with x 6 y. Let s ∈ S. Then
(1) min{x, sx} 6 min{y, sy} and max{x, sx} 6 max{y, sy}.
(2) min{x, xs} 6 min{y, ys} and max{x, xs} 6 max{y, ys}.

Lemma 4.2. Let Σ ∈ Wδ,max/ ≈δ and s ∈ S. Then {x ∈ W ; x /∈
W6Σ, sx ∈ W6Σ} = {x ∈ W ; x /∈ W6Σ, xδ(s) ∈ W6Σ}.

Proof. Let x ∈ W with x /∈ W6Σ, sx ∈ W6Σ. By definition, sx 6 w
for some w ∈ Σ. Since x 
 w, we have sx < x and sw > w by
Lemma 4.1. Thus ℓ(swδ(s)) > ℓ(sw) − 1 = ℓ(w). Since w ∈ Wδ,max,
ℓ(swδ(s)) = ℓ(w) and sws ∈ Σ. Moreover, swδ(s) < sw.

Since sx 6 w and w < sw, x 6 sw. By Lemma 4.1, min{x, xδ(s)} 6

swδ(s). Since x /∈ W6Σ, xδ(s) ∈ W6Σ. �

Lemma 4.3. Let Σ ∈ Wδ,max/ ≈δ. Then t6Σ ∈ Z(H0)δ.

Proof. Let s ∈ S. Then

tst6Σ =
∑

x∈W6Σ

tstx =
∑

x,sx∈W6Σ

tstx +
∑

y∈W6Σ,sy /∈W6Σ

tstx.
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If x, sx ∈ W6Σ, then tstx + tstsx = 0. If y ∈ W6Σ, sy /∈ W6Σ, then
y < sy and tsty = tsy. Therefore

tst6Σ =
∑

x∈W ;x/∈W6Σ,sx∈W6Σ

tx.

Similarly,

t6Σtδ(s) =
∑

x∈W ;x/∈W6Σ,xδ(s)∈W6Σ

tx.

By Lemma 4.2, tst6Σ = t6Σtδ(s) for any s ∈ S. Thus t6Σ ∈ Z(H0)δ.
�

Theorem 4.4. The elements {t6Σ}Σ∈Wδ,max/≈δ
form a basis of Z(H0)δ.

Proof. For any h =
∑

w∈W awtw ∈ H0, we write supp(h) = {w ∈
W ; aw 6= 0}. Let supp(h)max be the set of maximal length elements in
supp(h). We show that

(a) If h ∈ Z(H0)δ and w ∈ supp(h)max, then swδ(s) ∈ supp(h)max

and aswδ(s) = aw for any s ∈ S with sw > w or ws > w.
Without loss of generality, we assume that sw > w. Then sw ∈

supp(tsh) = supp(htδ(s)) and

supp(tsh)max = {sx; x ∈ supp(h)max, sx > x},

supp(htδ(s))max = {yδ(s); y ∈ supp(h)max, yδ(s) > y}.

Therefore swδ(s) ∈ supp(h)max and ℓ(swδ(s)) = ℓ(w). The coeffi-
cient of tsw in tsh is aw and the coefficient of tsw = t(swδ(s))δ(s) in htδ(s)
is aswδ(s). Thus aw = aswδ(s).

(a) is proved.
Now we show that
(b) If h ∈ Z(H0)δ, then supp(h)max ⊆ Wδ,max.
If w /∈ Wδ,max, then by Theorem 1.4, there exists w′ with ℓ(w′) =

ℓ(w) + 2 and s ∈ S with w′ →δ sw′δ(s) ≈δ w. By (a), sw′δ(s) ∈
supp(h)max since sw′δ(s) ≈δ w. Since sw′ < w′, by (a) again, w′ ∈
supp(h)max. That is a contradiction.

(b) is proved.
Now suppose that ⊕Σ∈Wδ,max/≈δ

Ct6Σ $ Z(H0)δ. Let h be an element
in Z(H0)δ−⊕Σ∈Wδ,max/≈δ

Ct6Σ and maxw∈supp(h) ℓ(w) 6 maxw∈supp(h′) ℓ(w)
for any h′ ∈ Z(H0)δ −⊕Σ∈Wδ,max/≈δ

Ct6Σ.
By (a) and (b), supp(h)max is a union of Σ with Σ ∈ Wδ,max/ ≈δ.

By (a), if Σ ⊆ supp(h)max, then aw = aw′ for any w,w′ ∈ Σ. We
set aΣ = aw for any w ∈ Σ. Set h′ = h −

∑

Σ⊆supp(h)max
aΣt6Σ.

Then h′ ∈ Z(H0)δ − ⊕Σ∈Wδ,max/≈δ
Ct6Σ. But maxw∈supp(h′) ℓ(w) <

maxw∈supp(h) ℓ(w). That is a contradiction. �

4.2. In fact, Theorem 4.4 also holds for the 0-Hecke algebras associated
to any affine Weyl group and the proof is similar (the only difference
is that one use [14, Main Theorem 1.1] instead of Theorem 1.4).
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On the other hand, there are other explicit descriptions of the centers
of finite and affine Hecke algebras.

• Geck and Rouquier [6, Theorem 5.2] gave a basis of the centers
of finite Hecke algebras with parameter q 6= 0.

• Bernstein, and Lusztig [11, Proposition 3.11] gave a basis of the
centers of affine Hecke algebras with parameter q 6= 0.

• Vignéras [15, Theorem 1.2] gave a basis of the centers of affine
0-Hecke algebras and pro-p Hecke algebras.

It is interesting to compare Theorem 4.4 (for finite and affine 0-Hecke
algebras) with the above results.

5. Cocenters of 0-Hecke algebras

5.1. For any Σ ∈ Wδ,min/ ≈δ, we denote by TΣ the image of Tw in Hδ

for any w ∈ Σ. By Proposition 2.1, the element TΣ is well-defined.
Similar to the proof of Theorem 2.3, we have

Proposition 5.1. The set {TΣ}Σ∈Wδ,min/≈δ
spans Hδ.

5.2. Via the natural bijection f : Γδ → Wδ,min/ ≈δ in Corollary 3.2, we
may write T(J,C) for Tf(J,C). We also write t(J,C) = tf(J,C) for T(J,C)⊗1 ∈

H0,δ = Hδ ⊗Λ C0.

It is worth mentioning that Hδ is not a free module over Λ by
Theorem 2.3 and Theorem 5.5 we will prove later. This is because
dimHq,δ = ♯cl(W )δ for any q 6= 0 and dimH0,δ = ♯Wδ,min/ ≈δ. These
numbers do not match in general (see Example 3.4).

5.3. Now we come to the cocenter of 0-Hecke algebras.
We first recall the Demazure product.
By [8], for any x, y ∈ W , the set {uv; u 6 x, v 6 y} contains a

unique maximal element. We denote this element by x ∗ y and call it
the Demazure product of x and y. It is easy to see that supp(x ∗ y) =
supp(x) ∪ supp(y). The following result is proved in [8, Lemma 1].

Lemma 5.2. Let x, y ∈ W . Then

txty = (−1)ℓ(x)+ℓ(y)−ℓ(x∗y)tx∗y.

Lemma 5.3. For any J = δ(J) ⊆ S, set H
suppδ=J
0 = ⊕suppδ(w)=JCtw.

Then
[H0, H0]δ = ⊕J=δ(J)⊆S

(

H
suppδ=J
0 ∩ [H0, H0]δ

)

.

Proof. By Lemma 5.2, for any x, y ∈ W ,

txty = (−1)ℓ(x)+ℓ(y)−ℓ(x∗y)tx∗y,

tytδ(x) = (−1)ℓ(x)+ℓ(y)−ℓ(y∗(δ(x))ty∗δ(x).

Moreover, suppδ(x ∗ y) = suppδ(x) ∪ suppδ(y) = suppδ(y ∗ (δ(x)).

Thus txty, tytδ(x) ∈ H
suppδ=suppδ(x∗y)
0 and txty−tytδ(x) ∈ H

suppδ=suppδ(x∗y)
0 .

�



CENTERS AND COCENTERS OF 0-HECKE ALGEBRAS 9

Another result we need here is that the elliptic conjugacy classes
never “fuse”.

Theorem 5.4. ([5, Theorem 3.2.11] and [1, Theorem 5.2.2])1

Let J = δ(J) ⊆ S. Let C,C ′ be two distinct elliptic δ-conjugacy
classes of WJ . Then C and C ′ are not δ-conjugate in W .

Now we come to the main theorem of this section.

Theorem 5.5. The elements {t(J,C)}(J,C)∈Γδ
form a basis of H0,δ.

Proof. Suppose that
∑

(J,C)∈Γδ
a(J,C)t(J,C) = 0 in H0,δ for some a(J,C) ∈

C. Then by Lemma 5.3, for any J = δ(J) ⊆ S,
∑

C∈cl(WJ)δ is elliptic

a(J,C)t(J,C) = 0.

Fix J = δ(J) ⊆ S. We show that
(a) The set {T(J,C)}C∈cl(WJ)δ is elliptic is a linearly independent set in

Hδ.
Suppose that

∑

C∈cl(WJ)δ is elliptic

bCT(J,C) = 0 ∈ Hδ

for some bC ∈ Λ. Then
∑

C∈cl(WJ)δ is elliptic

bC |q=q T(J,C) = 0 ∈ Hq,δ

for any q 6= 0. By Theorem 2.3, the set {T(J,C),q}C∈cl(WJ)δ is elliptic is a

linearly independent set in Hq,δ for any q 6= 0. Hence bC |q=q= 0 for
any q 6= 0. Thus bC = 0.

(a) is proved.
In other words,

∑

C∈cl(WJ)δ is elliptic ΛT(J,C) is a free submodule of H
with basis T(J,C). Thus

∑

C∈cl(WJ)δ is ellipticCt(J,C) is a free submodule

of H0,δ with basis t(J,C). Therefore aJ,C = 0. �

5.4. Now we relate the cocenter of H0 to the representations of H0.
For any J ⊆ S, let λJ be the one-dimensional representation of H0

defined by

λJ(ts) =

{

−1, if s ∈ J ;

0, if s /∈ J.

1The proof in [5] and [1] are based on a characterization of elliptic conjugacy
classes using characteristic polynomials [5, Theorem 3.2.7 (P3)] and [7, Theorem
7.5 (P3)], which is proved via a case-by-case analysis. It is interesting to find a
case-free proof of these results.
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By [13], the set {λJ}J⊆S is the set of all the irreducible representa-
tions of H0.

Let R(H0) be the Grothendieck group of finite dimensional repre-
sentations of H0. Then R(H0) is a free group with basis {λJ}J⊆S.
Consider the trace map

Tr : H0 → R(H0)
∗, h 7→ (V 7→ tr(h, V )).

It is easy to see that for any (J, C) ∈ Γ and K ⊆ S,

tr(tJ,C , λK) =

{

(−1)ℓ(C), if J ⊆ K;

0, otherwise.

Here ℓ(C) is the length of any minimal length element in C.
By [10, Proposition 6.10], for any J ⊆ S and any two elliptic conju-

gacy classes C and C ′ of WJ , ℓ(C) ≡ ℓ(C ′) mod 2. Therefore,

Proposition 5.6. The trace map Tr : H0 → R(H0)
∗ is surjective and

the kernel equals ⊕J⊆S,C,C′∈cl(WJ) are ellipticC{t(J,C) − t(J,C′)}.

6. A partial order on Wδ,min/ ≈δ

6.1. Let w ∈ W and Σ ∈ Wδ,min/ ≈δ, we write Σ � w if there exists
w′ ∈ Σ with w′ 6 w. For w ∈ W and O ∈ cl(W )δ, we define O � w in
the same way.

We define a partial order on Wδ,min/ ≈δ as follows.
For Σ,Σ′ ∈ Wδ,min/ ≈δ, we write Σ′ � Σ if Σ′ � w for some w ∈ Σ.

By [7, Corollary 4.6], Σ′ � Σ if and only if Σ′ � w for any w ∈ Σ. In
particular, � is transitive. This defines a partial order on Wδ,min/ ≈δ.

We define a partial order on cl(W )δ in a similar way.

Proposition 6.1. Let O,O′ ∈ cl(W )δ. The following conditions are
equivalent:

(1) For any w ∈ Omin, there exists w′ ∈ O
′
min such that w′ 6 w.

(2) There exists w ∈ Omin and w′ ∈ O
′
min such that w′ 6 w.

Remark. We write O
′ � O if the conditions above are satisfied. Then

the map Wδ,min/ ≈δ→ cl(W )δ is compatible with the partial orders �.

Proof. Let w,w1 ∈ Omin and w′ ∈ O
′
min with w′ 6 w. Let J = suppδ(w),

J1 = suppδ(w1) and J ′ = suppδ(w
′). Let C ∈ cl(WJ)δ and C1 ∈

cl(WJ1)δ with w ∈ C and w′
1 ∈ C1. By §3.2, there exists x ∈ W δ and

the conjugation of x sends J to J1 and sends C to C1. Since w′ 6 w,
J ′ ⊆ J . As the conjugation by x sends simple reflections in J to simple
reflections in J1, we have xw′x−1 6 xwx−1. Moreover, xwx−1 ∈ C1

is a minimal length element. By Theorem 1.2, xwx−1 ≈δ w′. By [7,
Lemma 4.4], there exists w′

1 ∈ O
′
min with w′

1 6 w1. �

Proposition 6.2. Let w ∈ W . Then
(1) The set {Σ ∈ Wδ,min/ ≈δ; Σ � w} contains a unique maximal

element Σw.
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(2) The image of tw in H0,δ equals (−1)ℓ(w)−ℓ(Σw)tΣw
.

Remark. By Theorem 5.5, part (2) of the Proposition gives another
characterization of Σw.

Proof. We argue by induction on ℓ(w).
If w ∈ Wδ,min, we denote by Σw the≈δ-equivalence class that contains

w. By definition, for any Σ ∈ Wδ,min/ ≈δ with Σ � w, Σ � Σw. Also
by definition, the image of tw in H0,δ is tΣw

.
Now suppose that w ∈ Wδ,min. By Theorem 1.2 (1), there exists

w′ ∈ W and s ∈ S such that w ≈ w′ and ℓ(sw′δ(s)) < ℓ(w′). Let
Σ ∈ Wδ,min/ ≈δ with Σ � w. By [7,Lemma4.4], Σ � w′. Inother
words, there exists x ∈ Σ with x 6 w′.

Now we prove that
(a) Σ � Σsw′.
If x < sx, then by Lemma 4.1, x 6 sw′ and Σ � sw′.
If sx < x, then ℓ(sxδ(s)) 6 ℓ(sx) + 1 = ℓ(x). Hence sxδ(s) ∈ Σ. By

Lemma 4.1, sx 6 sw′. Since sw′δ(s) < sw′, by Lemma 4.1 again, we
have sxδ(s) 6 sw′. Thus Σ � sw′.

Since ℓ(sw′) < ℓ(w), by inductive hypothesis, Σsw′ is defined and
Σ � Σsw′.

(a) is proved.
Since Σsw′ � sw′, Σsw′ � w′. By [7, Lemma 4.4], Σsw′ � w. Thus

Σsw′ is the unique maximal element in {Σ ∈ Wδ,min/ ≈δ; Σ � w}.
We also have

tw ≡ tw′ ≡ tstsw′ = tsw′tδ(s) = −tsw′ mod [H0, H0]δ.

By inductive hypothesis, the image of tsw′ inH0,δ is (−1)ℓ(sw
′)−ℓ(Σsw′ )tΣsw′

.

Hence the image of tw in H0,δ is (−1)ℓ(w)−ℓ(Σsw′ )tΣsw′
.

6.2. For any w ∈ W , we denote by Ow the image of Σw under the
map Wδ,min/ ≈δ→ cl(W )δ. Then Ow is the maximal element in {O ∈
cl(W )δ;O � w}.

Now we discuss some application to class polynomials.
Let w ∈ W . By Proposition 2.4, for any q 6= 0,

Tw,q =
∑

O∈cl(W )δ

fw,OTO,q ∈ Hq,δ.

By the same argument as in Proposition 6.2, fw,O = 0 unless O � Ow.
Moreover, by Proposition 5.1, there exists aw,Σ ∈ Λ such that

Tw =
∑

Σ∈Wδ,min/≈δ

aw,ΣTΣ ∈ Hδ.

Let p : Wδ,min/ ≈δ→ cl(W )δ be the natural map. Then for any q 6= 0,

Tw,q =
∑

Σ∈Wδ,min/≈δ

aw,Σ |q=q Tp(Σ),q ∈ Hq,δ.
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Therefore for any O ∈ cl(W )δ,
∑

p(Σ)=O
aw,Σ = fw,O.

By Proposition 6.2,

aw,Σ ∈

{

(−1)ℓ(w)−ℓ(Σw) + qΛ, if Σ = Σw;

qΛ, otherwise.

Therefore

fw,O ∈

{

(−1)ℓ(w)−ℓ(Σw) + qZ[q], if Σw ⊆ O;

qZ[q], otherwise.

�
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