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Abstract

We study the intermediate extension of the character sheaves on an adjoint group to the semi-stable locus
of its wonderful compactification. We show that the intermediate extension can be described by a direct
image construction. As a consequence, we show that the “ordinary” restriction of a character sheaf on the
compactification to a “semi-stable stratum” is a shift of semisimple perverse sheaf and is closely related
to Lusztig’s restriction functor (from a character sheaf on a reductive group to a direct sum of character
sheaves on a Levi subgroup). We also provide a (conjectural) formula for the boundary values inside the
semi-stable locus of an irreducible character of a finite group of Lie type, which gives a partial answer to
a question of Springer (2006) [21]. This formula holds for Steinberg character and characters coming from
generic character sheaves. In the end, we verify Lusztig’s conjecture Lusztig (2004) [16, 12.6] inside the
semi-stable locus of the wonderful compactification.
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

0.1. Let G be a connected, semisimple algebraic group of adjoint type over an algebraically
closed field k. In [16], Lusztig introduced a decomposition of the wonderful compactification
Ḡ of G into G-stable pieces. The group G itself is a G-stable piece and each G-stable piece
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is a smooth, locally closed subvariety of Ḡ and the G-orbits on each piece (for the diagonal
G-action) naturally correspond to the “twisted” conjugacy classes of a smaller group. Moreover,
this correspondence leads to a natural equivalence between the bounded derived category of
G-equivariant, constructible sheaves on that piece and the bounded derived category of certain
constructible sheaves on the smaller group that are equivariant under the “twisted” conjugation
action (see [16, 12.3]).

Character sheaves on a reductive group are some special simple perverse sheaves on the group
that are equivariant under the (“twisted”) conjugation action. The theory of character sheaves was
developed by Lusztig in the series of papers [14] (for conjugation action) and [15] (for “twist-
ed” conjugation action). Now using the natural equivalence we discussed above, one can define
the character sheaves on each G-stable piece. The character sheaves on Ḡ are the intermedi-
ate extensions to Ḡ of the character sheaves on the G-stable pieces (see [16, 12.3]). The most
interesting cases are the intermediate extension to Ḡ of the character sheaves on G. Roughly
speaking, these sheaves can be regarded as the objects that describe the behavior at infinity of the
character sheaves on G.

0.2. In order to understand the intermediate extensions to Ḡ of the character sheaves on a
G-stable piece, in [7] we gave a second definition of character sheaves on Ḡ by imitating the
definition of character sheaves on groups. This new definition coincides with Lusztig’s definition
we mentioned in the previous subsection (see [7, Corollary 4.6]). Moreover, using the new def-
inition, one can show that the character sheaves on Ḡ have the following nice property (see [7,
Section 4]):

Let i be the inclusion of a G-stable piece to Ḡ, then
(1) for any character sheaf C on Ḡ, any perverse constituent of i∗(C) is a character sheaf on

that piece;
(2) for any character sheaf C on that piece, any perverse constituent of i!(C) is a character

sheaf on Ḡ.

0.3. However, analyzing the intermediate extension of a character sheaf on a G-stable piece
is still a challenging problem. In [21], Springer listed some interesting questions in this direction.
One interesting question is to study the boundary values of an irreducible character of a finite
group of Lie type.

A technical difficulty in analyzing the intermediate extension is as follows.
A character sheaf on G can be understood in terms of “admissible complex”, which is obtained

by pushing forward of some intersection cohomology complex under some small, proper map to
the closure of a Lusztig’s stratum of G.

Using the G-stable piece decomposition of Ḡ and the natural correspondence between the G-
stable pieces and the smaller groups, one is able to generalize Lusztig’s stratification on G to a
decomposition on Ḡ. However, an explicit description of the closure to Ḡ of a Lusztig’s stratum
is still unknown. A more serious problem is that the small map we used to construct “admissible
complex” on G doesn’t extend to a small map on Ḡ.

0.4. In this paper, we will study the intermediate extension of a character sheaf on G, not to
Ḡ, but to the semi-stable locus Ḡss of Ḡ, an open smooth subvariety of Ḡ that contains G. In
fact, Ḡss is a union of some G-stable pieces. An explicit description of Ḡss was obtained in a
joint work with Starr [11]. We call the G-stable pieces inside Ḡss semi-stable strata.
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The idea of studying intermediate extension to Ḡss instead of Ḡ comes from geometric in-
variant theory. Now we make a short digression from character sheaves and discuss about some
basic ideas in the theory of geometric invariant theory.

Let H be a linear algebraic group and X be a H -variety. When considering the quotient space,
a main problem is that the quotient X/H may not exist in the category of algebraic varieties.
Geometric invariant theory suggests a method to distinguish “good” H -orbits from “bad” H -
orbits in the sense that the union of “good” H -orbits forms an open subvariety U of X and U/H

exists.
Motivated by this, one may wonder if the “good” G-orbits on Ḡ are still good in the study of

character sheaves in the sense that the intermediate extension of a character sheaf on G to the
union of “good” orbits can be analyzed. The answer is YES and this is what we are going to do
in this paper.

0.5. Now let us consider the closure of a Lusztig’s stratum in Ḡ. If we take the limit in the
direction of unipotent elements in the stratum, then by the results in [6] and [12], the boundary
points are outside the semi-stable locus. On the other hand, taking the limit in the direction of
semisimple elements in the stratum is more or less the same as calculating the closure of some
subvariety in a toric variety. This naive thought suggests that the closure to Ḡss of a Lusztig’s
stratum can be described explicitly.

The explicit description will be obtained in Section 3. Moreover, the small map we used to
construct “admissible complex” on G extends to a small map on Ḡss . Based on this result, the
intermediate extension of an “admissible complex” to Ḡss can also be described by a direct
image construction. This is a generalization of [15, Proposition 5.7].

Moreover, the restriction of the direct image to a semi-stable stratum can be calculated explic-
itly and is closely related to Lusztig’s restriction functor introduced in [14, 3.8] and [15, 23.3].
The precise statement can be found in Theorem 4.4. Based on this, we give a (conjectural) for-
mula for the boundary values inside the semi-stable locus of a character of a finite group of Lie
type. The formula is true if the (virtual) character is obtained from the direct image construction.
This gives a partial answer to a question of Springer [21, Problem 10].

0.6. There is a special character sheaf S on G that characterizes the semisimple elements
of G. This sheaf is the alternating sum of the induced sheaves from the trivial local systems on the
standard parabolic subgroups of G. In [16, 12.6], Lusztig generalized the notion of semisimple
elements to Ḡ and conjectured that the intermediate extension to Ḡ of this sheaf characterizes
the semisimple elements of Ḡ.

It is known that the semisimple elements of Ḡ lie in the semi-stable locus. We will calculate
the intermediate extension of S to Ḡss and verify Lusztig’s conjecture inside the semi-stable
locus.

In order to do this, we will consider the intermediate extension of the induced sheaf from
the trivial local system on a standard parabolic subgroup P . Therefore we need to understand
the closure of P in Ḡss and the intermediate extension of the trivial local system on P to this
closure.

Let B be a Borel subgroup of P . Then P is stable under the action of B × B and the closure
of P in Ḡ was obtained in [20, Corollary 2.5] in terms of the union of certain B × B-orbits.
However, Ḡss is not stable under the action of B × B . To describe the closure of P in Ḡss , we
have to use the P -stable pieces, introduced by Lu and Yakimov as a generalization of the notions
of B × B-orbits and G-stable pieces. Although the closure of P in Ḡ is not smooth in general,
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the closure of P in Ḡss is always smooth. Therefore, the intermediate extension of the trivial
local system on P to the closure of P in Ḡss is just the trivial local system on that closure. Now
we can explicitly calculate the intermediate extension of S to Ḡss .

0.7. We now review the content of this paper in more detail.
In Section 1, we recall the definition and properties of P -stable pieces. In Section 2, we give

an explicit description of the closure of a parabolic subgroup in Ḡss and prove that the closure is
smooth. In Section 3, we obtain the closure of a Lusztig’s stratum of G in Ḡss . In Section 4, we
study the intermediate extension of a character sheaf on G to Ḡss and verify Lusztig’s conjecture
inside Ḡss .

1. R-stable pieces on the wonderful compactification

1.1. Let G be a connected reductive algebraic group over an algebraically closed field k. Let
B be a Borel subgroup of G, T ⊂ B be a maximal torus and B− be the opposite Borel subgroup.
Let I be the set of simple roots and W = NG(T )/T be the corresponding Weyl group. For any
w ∈ W , we choose a representative ẇ of w in NG(T ).

For J ⊂ I , let WJ be the subgroup of W corresponding to J and WJ (respectively J W ) be
the set of minimal length coset representatives of W/WJ (respectively WJ \W ). Let wJ

0 be the
unique element of maximal length in WJ . (We simply write w0 for wI

0 .) For J,K ⊂ I , we write
J WK for J W ∩ WK .

For J ⊂ I , let ΦJ be the set of roots that are linear combination of simple roots in J . Let
PJ ⊃ B be the standard parabolic subgroup defined by J and P −

J ⊃ B− be the opposite of PJ .
Let LJ = PJ ∩ P −

J and GJ = LJ /Z(LJ ). For any parabolic subgroup P , we denote by UP its
unipotent radical and HP the inverse image of the connected center of P/UP under P → P/UP .
We simply write U for UB and U− for UB− .

For any g ∈ G and subvariety H ⊂ G, we write gH for gHg−1.
Now we will review the R-stable pieces introduced in [18]. We will follow the approach

in [9].

1.2. A triple c = (J1, J2, δ) consisting of J1, J2 ⊂ I and an isomorphism δ :WJ1 → WJ2 with
δ(J1) = J2 is called an admissible triple of W × W . For an admissible triple c = (J1, J2, δ), set
Wc = {(w, δ(w)); w ∈ WJ1} ⊂ W × W .

Let c = (J1, J2, δ) and c′ = (J ′
1, J

′
2, δ

′) be admissible triples. For w1 ∈ WJ1 and w2 ∈ J ′
2W ,

set

I
(
w1,w2, c, c

′) = max
{
K ⊂ J1; w1(K) ⊂ J ′

1 and δ′w1(K) = w2δ(K)
}
,[

w1,w2, c, c
′] = Wc′(w1WI(w1,w2,c,c

′),w2)Wc ⊂ W × W.

Then

W × W =
⊔

w1∈WJ1 ,w2∈J ′
2W

[
w1,w2, c, c

′]. (∗)

See [9, Proposition 2.4 (1)].
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Moreover, define an automorphism σ :WI(w1,w2,c,c
′) → WI(w1,w2,c,c

′) by σ(w) =
δ−1(w−1

2 δ′(w1ww−1
1 )w2). Then map WI(w1,w2,c,c

′) → W × W defined by w → (w1w,w2) in-
duces a bijection from the σ -twisted conjugacy classes on WI(w1,w2,c,c

′) to the double cosets
Wc′ \[w1,w2, c, c

′]/Wc. See [9, Proposition 2.4(2)].
Let O be a double coset in Wc′ \(W × W)/Wc. Then O ∩ (WJ1 × J ′

2W) contains at most
one element (see [9, Corollary 2.5]). If O ∩ (WJ1 × J ′

2W) 	= ∅, then we call O a distinguished
double coset. We denote by Omin the set of minimal length elements in O. We have a natural
partial order on the set of distinguished double cosets defined as follows: O � O′ if for some (or
equivalently, any) w′ ∈ O′

min, there exists w ∈ Omin with w � w′. See [9, 4.7].

1.3. An admissible triple of G × G is by definition a triple C = (J1, J2, θδ) consisting of
J1, J2 ⊂ I , an isomorphism δ :WJ1 → WJ2 with δ(J1) = J2 and an isomorphism θδ :LJ1 → LJ2

that maps T to T and the root subgroup Uαi
(for i ∈ J1) to the root subgroup Uαδ(i)

. Then an
admissible triple C = (J1, J2, θδ) of G × G determines an admissible triple c = (J1, J2, δ) of
W × W . For an admissible triple C = (J1, J2, θδ), define

RC = {
(p, q); p ∈ PJ1 , q ∈ PJ2, θδ(p̄) = q̄

}
,

where p̄ is the image of p under the map PJ1 → LJ1 and q̄ is the image of q under the map
PJ2 → LJ2 .

Let C = (J1, J2, θδ) and C′ = (J ′
1, J

′
2, θδ′) be admissible triples. For w1 ∈ WJ1 and w2 ∈ J ′

2W ,
set

[
w1,w2, C, C′] = RC′(Bẇ1B,Bẇ2B)RC ⊂ G × G.

For any distinguished double coset O ∈ Wc′ \(W × W)/Wc, we also write [O, C, C′]
for [w1,w2, C, C′], where (w1,w2) is the unique element in O ∩ (WJ1 × J ′

2W). We call
[w1,w2, C, C′] a RC′ × RC -stable piece of G × G.

Now we list some properties of the RC′ × RC -stable pieces.
(1) The RC′ × RC -stable piece [w1,w2, C, C′] is a locally closed, smooth and irreducible

subvariety of G × G of dimension equal to dim(G) + |I | + l(w1) + l(w2) + l(w
J1
0 ) + l(w

J2
0 ).

See [18, Theorem 1.1(i)]. See also [22, Theorem 2.6].
(2) G × G = ⊔

w1∈WJ1 ,w2∈J ′
2W

[w1,w2, C, C′]. Lu and Yakimov [18, 1.3] and Springer [22,

Theorem 2.6] gave two different proofs of this result. A different approach is sketched in [9,
Proposition 5.6].

(3) Let w1 ∈ WJ1 and w2 ∈ J ′
2W and O = Wc′(w1,w2)Wc. Then for any (w′

1,w
′
2) ∈ Omin,

[O, C, C′] = RC′(Bẇ′
1B,Bẇ′

2B)RC . See [9, Proposition 5.3].

(4) Let (w1,w2) ∈ WJ1 ×J ′
2W . Define an automorphism θσ :LI(w1,w2,c,c

′) → LI(w1,w2,c,c
′) by

θσ (l) = θ−1
δ (ẇ−1

2 θδ(ẇ1lẇ
−1
1 )ẇ2). Then map LI(w1,w2,c,c

′) → G × G defined by l → (ẇ1l, ẇ2)

induces a bijection between the θσ -twisted conjugacy classes on LI(w1,w2,c,c
′) and the double

cosets RC′ \[w1,w2, C, C′]/RC . See [18, 1.2] and [9, Proposition 5.6(2)].
(5) For any (w1,w2) ∈ W × W , RC′(Bẇ1B,Bẇ2B)RC = ⊔

O[O, C, C′], where O runs over
the distinguished double cosets in Wc′ \(W × W)/Wc that contains a minimal length element
(w′

1,w
′
2) with w′

1 � w1 and w′
2 � w2. See [9, Proposition 5.8]. A slightly more complicated

description was obtained in [18, Theorem 4.1].
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In particular,
(6) for any distinguished double coset O ∈ Wc′ \(W × W)/Wc, we have that [O, C, C′] =⊔

O′�O[O′, C, C′]. See [9, Corollary 5.9].
Now we will come to the wonderful compactifications and the PK -stable-piece decomposi-

tions on the compactifications.
From now on, unless otherwise stated, we assume that G is adjoint and G̃ an algebraic group

with identity component G. Let G1 be a connected component of G̃. We fix an element g0 ∈ G1

with g0B = B and g0T = T . If G1 = G, then we choose g0 = 1 and δ = id . We denote by
θδ the conjugation of g0 on G. Then θδ gives automorphisms on I and W . We denote these
automorphisms by δ.

1.4. We consider G as a G × G-variety by left and right translation. Let Ḡ be the won-
derful compactification of G. This compactification was first constructed by De Concini and
Procesi [4] when k = C and later generalized by Strickland [24] to arbitrary algebraically
closed field k. It is known that Ḡ is an irreducible, smooth projective (G × G)-variety with
finitely many G × G-orbits ZJ indexed by the subsets J of I . Here ZJ is isomorphic to the
quotient space (G × G) ×P−

J ×PJ
GJ for the P −

J × PJ -action on G × G × GJ defined by

(q,p) · (g1, g2, z) = (g1q
−1, g2p

−1, q̄zp̄−1), where q̄ is the image of q under the projection
P −

J → GJ and p̄ is the image of p under the projection PJ → GJ . Let hJ be the image of
(1,1,1) in ZJ under this isomorphism.

1.5. The wonderful compactification G1 of G1 is the (G×G)-variety which is isomorphic to
Ḡ as a variety and where the G×G-action is twisted by (g, g′) �→ (g, θδ(g

′)). The G×G-orbits
on G1 then coincide with the G × G-orbits on Ḡ. Let ZJ,δ be the orbit coinciding with Zδ(J )

and hJ,δ ∈ ZJ,δ be the point identified with the base point hδ(J ) ∈ Zδ(J ). Then G1 is identified
with the open G × G-orbit ZI,δ via gg0 �→ (g,1) · hI,δ . Moreover, the isotropy subgroup of hJ,δ

in G × G is

(
UP−

δ(J )
× UPJ

Z(LJ )
)
(LJ )δ,

where (LJ )δ = {(θδ(l), l); l ∈ LJ }.
In other words, we have the following commuting diagram

G
·g0

G1

Ḡ
r

G1,

where r((g1, g2) · hδ(J )) = (g1, θ
−1
δ (g2)) · hJ,δ .

For any subvariety X ⊂ G1, we denote by X̄ its closure.

1.6. For J ⊂ I , set J1 = w0w
δ(J )
0 δ(J ) and δ′ = δ−1 ◦ Ad(w0w

δ(J )
0 )−1 :WJ1 → WJ . Then

c = (J1, J, δ′) is an admissible triple on W × W . Set θδ′ = θ−1 ◦ Ad(ẇ0ẇ
δ(J )

)−1 :LJ → LJ .
δ 0 1
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Then C = (J1, J, θδ′) is an admissible triple on G×G. We may identify (G×G)/RC (1,Z(LJ ))

with ZJ,δ as G × G-variety via (g1, g2) �→ (g1ẇ0ẇ
δ(J )
0 , g2) · hJ,δ .

Let K ⊂ I and C′ = (K,K, id). Then each RC′ × RC -stable piece of G × G is stable under
the right action of RC (1,Z(LJ )). For w ∈ Wδ(J ) and v ∈ KW , set

[J,w,v]K,δ = [
ww

δ(J )
0 w0, v, C, C′]/RC

(
1,Z(LJ )

) = (PK)�(Bẇ,Bv̇) · hJ,δ.

We call [J,w,v]K,δ a PK -stable piece on G1. In the case where K = ∅, a PK -stable piece
is just a B × B-orbit and we simply write [J,w,v]δ for [J,w,v]∅,δ . In the case where K = I ,
a PK -stable piece is just Lusztig’s G-stable piece introduced in [16, Section 12] and we simply
write ZJ,w;δ for [J,w,1]I,δ .

The following properties follow easily from the properties of RC′ × RC -stable pieces that we
listed in Section 1.3.

(1) [J,w,v]K,δ is an irreducible, locally closed subvariety of G1 of dimension l(w0) + |J | +
l(v) − l(w) + l(wK

0 ).

(2) G1 = ⊔
J⊂I,w∈Wδ(J ),v∈KW [J,w,v]K,δ .

(3) For any J ⊂ I , x ∈ Wδ(J ) and y ∈ W , (PK)� · [J, x, y]δ ∩ ZJ,δ = ⊔[J,w,v]K,δ , where
(w,v) runs over all elements in Wδ(J ) ×KW such that there exists a ∈ WK and b ∈ WJ such that
awδ(b)w

δ(J )
0 w0 � xw

δ(J )
0 w0, avb � y and l(awδ(b)w

δ(J )
0 w0) + l(avb) = l(ww

δ(J )
0 w0) + l(v).

(4) For x ∈ Wδ(J ) and y ∈ W with l(y) − l(x) = l(v) − l(w) and there exists a ∈ WK and
b ∈ WJ such that x = awδ(b) and y = avb, then we have that (PK)� · [J, x, y]δ = [J,w,v]K,δ .

The following explicit description of the closure of a PK -stable piece in G1 was obtained in
[18, Theorem 5.1], which generalized results on the B ×B-orbit closures in [20, Proposition 2.4]
and [13, Proposition 6.3] and the G-stable-piece closures in [8, Theorem 4.5].

(5) [J,w,v]K,δ is a finite union of PK -stable pieces. Moreover, [J ′,w′, v′]K,δ ⊂ [J,w,v]K,δ

if and only if J ′ ⊂ J and there exist x ∈ WK and y ∈ WJ such that xw′ � wδ(y) and xv′ � vy.
We also need the following variation of Section 1.3 (4),
(6) [J,w,v]K,δ = (PK)�(LK1ẇ, v̇) · hJ,δ , where K1 = max{K ′ ⊂ K; w−1(K ′) ⊂ J,

w−1(K ′) = δ(v−1(K ′))}.
Moreover, we have an explicit description of the semi-stable locus G1ss for the diagonal G-

action on G1 in terms of G-stable pieces (see [11]). The case where G1 = G was also studied by
De Concini, Kannan and Maffei in [3].

(7) G1ss = ⊔
J⊂I ZJ,1;δ .

We call ZJ,1;δ a semi-stable stratum.
The following consequence of (1) and (5) is also useful in this paper.

Corollary 1.1. For J ′ ⊂ J , dim([J,w,v]K,δ ∩ ZJ ′,δ) = dim([J,w,v]K,δ) − |J | + |J ′|.

Proof. We have that [J ′,w, v]K,δ ⊂ [J,w,v]K,δ ∩ ZJ ′,δ . By Section 1.6 (1),
dim([J ′,w, v]K,δ) = l(w0)+ l(wK

0 )+|J ′|+ l(v)− l(w) = l(w0)+ l(wK
0 )+|J |+ l(v)− l(w)+

(|J ′| − |J |) = dim([J,w,v]K,δ) − |J | + |J ′|.
On the other hand, by Section 1.6 (5), [J,w,v]K,δ ∩ZJ ′,δ is a finite union of PK -stable pieces

of the form [J ′,w′, v′]K,δ with xw′ � wδ(y) and xv′ � vy for some x ∈ WK and y ∈ WJ . For
any such pair (w′, v′),

dim
([

J ′,w′, v′] ) = l(w0) + l
(
wK

) + ∣∣J ′∣∣ + l
(
v′) − l

(
w′)
K,δ 0
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� l(w0) + l
(
wK

0

) + ∣∣J ′∣∣ + l
(
xv′) − l

(
xw′)

� l(w0) + l
(
wK

0

) + ∣∣J ′∣∣ + l(vy) − l
(
wδ(y)

)
� l(w0) + l

(
wK

0

) + ∣∣J ′∣∣ + l(v) − l(w)

= dim
([J,w,v]K,δ

) − |J | + ∣∣J ′∣∣.
The corollary is proved. �

2. Closure of a parabolic subgroup in G1ss

In this section, we will describe the closure of a standard parabolic subgroup P in the semi-
stable locus of Ḡ and prove that the closure is smooth. The explicit description and smoothness
of the closure will be used in Section 4 to study the intermediate extension of Steinberg character
sheaf and to partially verify a conjecture of Lusztig. The explicit description of the closure will
also be used in Section 3 to study the closure of a Lusztig’s stratum in Ḡss .

Below are some notations.
For any J ⊂ I , set Jδ = max{J1 ⊂ J ; δ(J1) = J1}.
For any K ⊂ I with δ(K) = K , we write P 1

K = PKg0 = N
G̃
PK ∩ G1 and G1

K =
LKg0/Z(LK).

Now we give an explicit description of P 1
K ∩ G1ss using PK -stable pieces.

Theorem 2.1. For K ⊂ I with δ(K) = K , we have that

P 1
K ∩ G1ß =

⊔
J⊂I

⊔
w∈KWJ ,wWJ ∩Wδ 	=∅

[
J, δ(w),w

]
K,δ

.

Proof. By [23, Lemma 7.3], P 1
K = PKg0 = (PK)� · (Bg0) = [I,1,1]K,δ . Thus by Section 1.6

(5),

P 1
K ∩ ZJ,1;δ =

⊔
w∈Wδ(J ), v∈KW, xw�δ(xv) for some x∈WK

([J,w,v]K,δ ∩ ZJ,1;δ
)
.

Let w ∈ Wδ(J ), v ∈ KW with xw � δ(xv) for x ∈ WK . Since v ∈ KW , we have that

l(w) � l(xw) − l(x) � l(xv) − l(x) = l(v).

By Section 1.6 (3), G� · [J,w,v]K,δ ∩ ZJ,δ = G� · [J,w,v]δ ∩ ZJ,δ is a union of G-stable
pieces. If [J,w,v]K,δ ∩ZJ,1;δ 	= ∅, then ZJ,1;δ ⊂ G� · [J,w,v]δ . Again by Section 1.6 (3), there
exists a ∈ W and b ∈ WJ such that aδ(b)w

δ(J )
0 w0 � ww

δ(J )
0 w0, ab � v and l(aδ(b)w

δ(J )
0 w0) +

l(ab) = l(w
δ(J )
0 w0). Therefore aδ(b)w

δ(J )
0 � ww

δ(J )
0 and

l
(
aδ(b)w

δ(J )
0

)
� l

(
ww

δ(J )
0

) = l(w) + l
(
w

δ(J )
0

)
� l(v) + l

(
w

δ(J )
0

)
� l(ab) + l

(
w

δ(J ))
.
0
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Since l(aδ(b)w
δ(J )
0 w0) + l(ab) = l(w

δ(J )
0 w0), we have that

l
(
aδ(b)w

δ(J )
0

) = l(ab) + l
(
w

δ(J )
0

)
.

Therefore, xw = δ(xv), aδ(b)w
δ(J )
0 = ww

δ(J )
0 and ab = v. So wδ(b)−1 = vb−1 = a and

xvb−1 = xwδ(b)−1 = δ(xv)δ(b)−1 = δ(xvb−1).
We may write xvb−1 as xvb−1 = z1z2 for z1 ∈ WK and z2 ∈ KW . Then xvb−1 = δ(xvb−1) =

δ(z1)δ(z2) and δ(z1) ∈ WK , δ(z2) ∈ KW . Therefore z1 = δ(z1) and z2 = δ(z2). Write z2 as
z2 = z3z4, where z3 ∈ WJ and z4 ∈ WJ . Then z3 ∈ KWJ and xwδ(b)−1 = xvb−1 = z1z3z4 =
z1δ(z3)δ(z4). By [9, Corollary 2.5], (w,v) = (δ(z3), z3) is the unique element in (Wδ(J ) ×
KW) ∩ O, where O = {(x′wδ(y′), x′vy′); x′ ∈ WK, y′ ∈ WJ } = {(x′δ(z3)δ(y

′), x′z3y
′); x′ ∈

WK, y′ ∈ WJ }.
Therefore P 1

K ∩ ZJ,1;δ ⊂ ⊔
z∈KWJ , zWJ ∩Wδ 	=∅[J, δ(z), z]K,δ .

Now for z ∈ KWJ such that zu = δ(zu) for some u ∈ WJ , we have that G� · [J, δ(z), z]K,δ =
G� · [J, δ(z), z]δ . By Section 1.6 (4), G� · [J, δ(z), z]δ = ZJ,1;δ . Hence [J, δ(z), z]K,δ ⊂ P 1

K ∩
ZJ,1;δ . The theorem is proved. �
Lemma 2.2. Let J,K ⊂ I with δ(K) = K . Then the map w �→ min(wWJ ) gives a bijection

ε : KWJδ ∩ Wδ → {
x ∈ KWJ , xWJ ∩ Wδ 	= ∅}

.

Moreover, for any w ∈ KWJδ ∩ Wδ ,

max
{
K ′ ⊂ K; K ′ = δ

(
K ′), ε(w)−1(K ′) ⊂ J

} = K ∩ w(Jδ).

Proof. If w ∈ KWJδ ∩Wδ and x = min(wWJ ). Then x ∈ KWJ and w ∈ xWJ ∩Wδ . So the map
is well-defined.

Now suppose that x ∈ KWJ with xWJ ∩ Wδ 	= ∅. Let y ∈ xWJ ∩ Wδ . Write y as y = ab

for a ∈ WK and b ∈ KW . Since δ(K) = K , we have that δ(a) ∈ WK and δ(b) ∈ KW . Now
ab = y = δ(y) = δ(a)δ(b). So b = δ(b). Since x ∈ KWJ , b ∈ WKxWJ ∩ KW = x(WJ ∩ K1W),
where K1 = K ∩ x−1(J ).

Write b as b = wc for w ∈ KWJδ and c ∈ WJδ . Then wc = b = δ(b) = δ(w)δ(c) and δ(w) ∈
KWJδ , δ(c) ∈ WJδ . Thus w = δ(w) ∈ KWJδ ∩ Wδ and ε(w) = x. The map is surjective.

If w1,w2 ∈ KWJδ ∩ Wδ with ε(w1) = ε(w2). Then w2 = w1a for some a ∈ WJ . Thus
w1a = w2 = δ(w2) = δ(w1)δ(a) = w1δ(a) and a = δ(a). Let supp(a) be the set of simple
roots whose associated simple reflections appear in a reduced expression of a. Then supp(a) =
δ(supp(a)) ⊂ J . Hence supp(a) ⊂ Jδ and a ∈ WJδ . Since w1,w2 ∈ WJδ , we have that a = 1 and
w1 = w2. The map is injective.

Let w ∈ KWJδ ∩ Wδ . Then w = ε(w)a for some a ∈ WJ ∩ WJδ . Let K ′ ⊂ K . If
a−1ε(w)−1(K ′) = w−1(K ′) ⊂ Jδ ⊂ J , then ε(w)−1(K ′) ⊂ ΦJ . Since ε(w) ∈ WJ , we must
have that ε(w)−1(K ′) ⊂ J . Moreover, δ(K ∩ wJδ) = δ(K) ∩ δ(w)δ(Jδ) = K ∩ wJδ . Hence
K ∩ w(Jδ) ⊂ max{K ′ ⊂ K; δ(K ′) = K ′, ε(w)−1(K ′) ⊂ J }. On the other hand, assume that
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K ′ ⊂ K , δ(K ′) = K and ε(w)−1(K ′) ⊂ J . Then for any i ∈ K ′, w−1(αi) = a−1ε(w)−1(αi) is a
root in ΦJ . Since w ∈ KW , w−1(αi) is a positive root in ΦJ . Now

δ

(
w−1

∑
i∈K ′

αi

)
= δ(w)−1

∑
i∈δ(K ′)=K ′

αi = w−1
∑
i∈K ′

αi.

Hence, w−1(αi) is a positive root in ΦJδ for i ∈ K ′. Notice that w ∈ WJδ . Thus w−1(αi) is a
simple root in ΦJδ for i ∈ K ′ and w−1(K ′) ⊂ Jδ . �

Let w ∈ KW ∩ Wδ and J ⊂ I , min(wWJδ ) ∈ Wδ . Write w′ for min(wWJδ ). Then

(PK)�(Bẇ,Bẇ) · hJ,δ = (PK)�
(
Bẇ′,Bẇ′) · hJ,δ

= [
J, δ

(
w′),w′]

K,δ
.

By Proposition 2.1 and the previous lemma, we have other descriptions of P 1
K ∩ G1ss which

are sometimes more convenient to use.

Theorem 2.3. For K ⊂ I with δ(K) = K , we have that

P 1
K ∩ G1ss =

⊔
J⊂I

⊔
w∈KWJδ ∩Wδ

(PK)�(Bẇ,Bẇ) · hJ,δ

=
⊔
J⊂I

⋃
w∈KW∩Wδ

(PK)�(Bẇ,Bẇ) · hJ,δ

=
⋃

w∈KW∩Wδ

⊔
J⊂I

(PK)�(Bẇ,Bẇ) · hJ,δ.

Theorem 2.4. For any K ⊂ I with δ(K) = K , the variety P 1
K ∩ G1ss is smooth.

The proof will be given in the rest of this section. The main idea of the proof is to find an

open covering of P 1
K ∩ G1ss such that each open subvariety appearing in the covering is open in

another smooth variety.

Lemma 2.5. For any K ⊂ I with δ(K) = K and w ∈ KW ∩ Wδ ,
⊔

J⊂I (Bẇ,BẇK
0 ẇ) · hJ,δ is a

locally closed subvariety of G1 isomorphic to an affine space of dimension dim(PK).

Proof. Since w ∈ KW and δ(w) = w, we have that

θ−1
δ

(
ẇ−1

U ∩ U−) = ẇ−1
U ∩ U− = ẇ−1

UPK
∩ U− ⊂ ẇ−1ẇK

0 U ∩ U−,

θδ

(
ẇ−1ẇK

0 U ∩ U
) = ẇ−1ẇK

0 U ∩ U = ẇ−1
UPK

∩ U ⊂ ẇ−1
U ∩ U.

Notice that (UP−
δ(J )

,UPJ
) · hJ,δ = hJ,δ and (θδ(l),1) · hJ,δ = (1, l) · hJ,δ for all l ∈ LJ . For

J ⊂ I , we have that
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(
ẇ−1

B, ẇ−1ẇK
0 B

) · hJ,δ

= (
ẇ−1

U, ẇ−1ẇK
0 B

) · hJ,δ

= ((
ẇ−1

U ∩ U
)(

ẇ−1
U ∩ U−)

, ẇ−1ẇK
0 B

) · hJ,δ

= ((
ẇ−1

U ∩ U
)(

ẇ−1
U ∩ U− ∩ Lδ(J )

)
, ẇ−1ẇK

0 B
) · hJ,δ

= (
ẇ−1

U ∩ U, ẇ−1ẇK
0 Bθ−1

δ

(
ẇ−1

U ∩ U− ∩ Lδ(J )

)) · hJ,δ

= (
ẇ−1

U ∩ U, ẇ−1ẇK
0 B

) · hJ,δ

= (
ẇ−1

U ∩ U,
(
ẇ−1ẇK

0 B ∩ B−)(
ẇ−1ẇK

0 U ∩ U
)) · hJ,δ

= (
ẇ−1

U ∩ U,
(
ẇ−1ẇK

0 B ∩ B−)(
ẇ−1ẇK

0 U ∩ U ∩ LJ

)) · hJ,δ

= ((
ẇ−1

U ∩ U
)
θδ

(
ẇ−1ẇK

0 U ∩ U ∩ LJ

)
,
(
ẇ−1ẇK

0 B ∩ B−)) · hJ,δ

= (
ẇ−1

U ∩ U, ẇ−1ẇK
0 B ∩ B−) · hJ,δ.

Set X = ⊔
J⊂I (1, T ) · hJ,δ . Using the result of [5, 3.7 and 3.8], we see that

(
ẇ−1, ẇ−1ẇK

0

) ·
⊔
J⊂I

(
Bẇ,BẇK

0 ẇ
)
hJ,δ = (

ẇ−1
U ∩ U, ẇ−1ẇK

0 U ∩ U−) · X

is a closed subvariety of (U,U−) · X isomorphic to an affine space of dimension dim(PK).
Since (U,U−) · X is open in G1, (ẇ−1, ẇ−1ẇK

0 ) · ⊔J⊂I (Bẇ,BẇK
0 ẇ)hJ,δ is locally closed

in G1. �
Lemma 2.6. For any K ⊂ I with δ(K) = K and w ∈ KW ∩Wδ , we have that

⊔
J⊂I (PKẇ,PKẇ)·

hJ,δ is smooth.

Proof. Set X = ⊔
J⊂I (Bẇ,BẇK

0 ẇ) · hJ,δ . Then X is isomorphic to an affine space and

⊔
J⊂I

(PKẇ,PKẇ) · hJ,δ =
⋃

p,q∈PK

(p,q) · X.

So it suffices to prove that X is open in
⊔

J⊂I (PKẇ,PKẇ) · hJ,δ .
Suppose that X is not open in

⊔
J⊂I (PKẇ,PKẇ) · hJ,δ . Notice that X and

⊔
J⊂I

(PKẇ,PKẇ) · hJ,δ =
⊔
J⊂I

⋃
x,y∈WK

(Bẋẇ,Bẏẇ) · hJ,δ

are unions of some B × B-orbits. Thus there exists a B × B-orbit O in
⊔

J⊂I (PKẇ,PKẇ) ·
hJ,δ − X whose closure contains a B × B-orbit O′ in X.

We may assume that O ⊂ ZJ,δ and O′ ⊂ ZJ ′,δ . Set w′ = min(wWJ ). Then w′ ∈ KWJ and

dim
((

Bẇ,BẇK
0 ẇ

) · hJ,δ

) = dim
([

J, δ
(
w′),wK

0 w′]
δ

) = l(w0) + |J | + l
(
wK

0

)
= dim

(
(PKẇ,PKẇ) · hJ,δ

)
.
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Thus (Bẇ,BẇK
0 ẇ) ·hJ,δ is open in (PKẇ,PKẇ) ·hJ,δ and dim(O) < dim((Bẇ,BẇK

0 ẇ) ·hJ,δ).
By Corollary 1.1,

dim(O ∩ ZJ ′,δ) < dim
((

Bẇ,BẇK
0 ẇ

) · hJ,δ

) − |J | + ∣∣J ′∣∣
= dim

((
Bẇ,BẇK

0 ẇ
) · hJ ′,δ

) = dim
(

O′).
Therefore O′ � O, which is a contradiction. �
Lemma 2.7. For any K ⊂ I with δ(K) = K and w ∈ KW ∩ Wδ ,

⊔
J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ

is open in
⊔

J⊂I (PKẇ,PKẇ) · hJ,δ .

Proof. By definition, (PK)�(Bẇ,Bẇ) · hJ,δ = [J, δ(min(wWJ )),min(wWJ )]K,δ . Thus⊔
J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ is a union of PK -stable pieces.
Notice that (PK)� ⊂ PK × PK and B × B ⊂ PK × PK . Thus for any J ⊂ I and x, v ∈ W ,

either

(PK)�(Bẋ,Bv̇) · hJ,δ ∩ (PKẇ,PKẇ) · hJ,δ = ∅

or

(PK)�(Bẋ,Bv̇) · hJ,δ ⊂ (PKẇ,PKẇ) · hJ,δ.

In other words,
⊔

J⊂I (PKẇ,PKẇ) · hJ,δ is a union of PK -stable pieces.
Suppose that

⊔
J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ is not open in

⊔
J⊂I (PKẇ,PKẇ) · hJ,δ . Then

there exists a PK -stable piece O in
⊔

J⊂I (PKẇ,PKẇ) · hJ,δ − ⊔
J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ

whose closure contains a PK -stable piece O′ in
⊔

J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ .
We may assume that O ⊂ ZJ,δ and O′ ⊂ ZJ ′,δ . Set w′ = min(wWJ ). By Section 1.6 (1),

dim
(
(PK)�(Bẇ,Bẇ) · hJ,δ

) = dim
([

J, δ
(
w′),w′]

K,δ

) = l(w0) + |J | + l
(
wK

0

)
= dim

(
(PKẇ,PKẇ) · hJ,δ

)
.

Thus [J, δ(w′),w′]K,δ is open in (PKẇ,PKẇ) · hJ,δ and dim(O) < dim([J, δ(w′),w′]K,δ). By
Corollary 1.1,

dim(O ∩ ZJ ′,δ) < dim
([

J, δ
(
w′),w′]

K,δ

) − |J | + ∣∣J ′∣∣
= dim

(
(PK)�(Bẇ,Bẇ) · hJ ′,δ

) = dim
(

O′).
Therefore O′ � O, which is a contradiction. �
Proof of Theorem 2.4. We showed in Lemma 2.7 that for w ∈ KW ∩ Wδ ,

⊔
J⊂I (PK)�

(Bẇ,Bẇ) · hJ,δ is an open subvariety of a smooth variety
⊔

J⊂I (PKẇ,PKẇ) · hJ,δ . By Lem-
mas 2.5 and 2.6,

⊔
J⊂I (PKẇ,PKẇ) · hJ,δ is a smooth variety of dimension dim(PK). Hence⊔

J⊂I (PK)�(Bẇ,Bẇ) · hJ,δ is a smooth variety of dimension dim(PK). Now the theorem fol-
lows from Theorem 2.3. �
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3. A stratification on G1ss

3.1. In [14] and [15], Lusztig introduced a stratification of G. This stratification is a key in-
gredient for defining the notion of “admissible complex” on G. In this section, we will generalize
the definition of Lusztig’s stratum to Ḡss and prove that the decomposition of Ḡss into Lusztig’s
strata is a stratification. We will also prove that some maps are small. These maps will be used
in Section 4 to study the intermediate extension of “admissible complex” to Ḡss .

First, we recall a stratification of G1 introduced by Lusztig in [15].

3.2. An element g ∈ G1 is called isolated if there is no proper parabolic subgroup P of G

such that h ∈ N
G̃
(P ) and ZG(hs)

0 ⊂ P , where hs is the semisimple part of h [15, 2.2]. Then
the set of isolated elements is closed in G1 [15, Lemma 2.8] and the action of Z(G) × G on G1

defined by (z, g) · g′ = gzg′g−1 leaves stable the set of isolated elements in G1 and there are
finitely many orbits there [15, Lemma 2.7]. These orbits are called isolated strata of G1 [15, 3.3].

3.3. Let P be a parabolic subgroup of G, L be a Levi subgroup of P and S be an isolated
stratum of N

G̃
(L) ∩ G1 such that S ⊂ N

G̃
(P ). Set S∗ = {g ∈ S; ZG(gs)

0 ⊂ L} and YL,S =⊔
g∈G gS∗g−1. We call YL,S a stratum of G1. It is known that YL,S is smooth [15, 3.17] and

YL,S (for various (L,S)) form a stratification of G1 [15, Propositions 3.12 and 3.15].
Moreover, let S′ be the closure of S in N

G̃
(L) ∩ G1 and G ×P (S′UP ) be the quotient space

of G × (S′UP ) under the P -action defined by p(g, z) = (gp−1,pzp−1). Then the proper map
f :G×P (S′UP ) → YL,S defined by (g, z) �→ gzg−1 is a small map. See the proof of [15, Propo-
sition 5.7].

Now we generalize the definition of strata to G1ss .

3.4. By [8, Proposition 1.10], the map (g, z) �→ (g, g) · z gives an isomorphism G ×PJδ

(PJδ ,PJδ ) · hJ,δ → ZJ,1;δ .
Notice that the map (g, z) �→ (g,1)z gives an isomorphism from UPJδ

× (LJδ ,1) · hJ,δ to
(PJδ ,PJδ ) · hJ,δ and the action of UPJδ

on (LJδ ,1) · hJ,δ defined by (g, z) �→ (1, g) · z is trivial.
Then (g, z) �→ (g, g) · z gives an isomorphism

UPJδ
× (LJδ ,1) · hJ,δ

∼= (PJδ ,PJδ ) · hJ,δ. (a)

Therefore

PJδ ×LJδ
(LJδ ,1) · hJ,δ

∼= (UPJδ
× LJδ ) ×LJδ

(LJδ ,1) · hJ,δ

∼= UPJδ
× (

LJδ ×LJδ
(LJδ ,1) · hJ,δ

)
∼= (PJδ ,PJδ ) · hJ,δ,

where PJδ ×LJδ
(LJδ ,1) · hJ,δ is the quotient space for the LJδ action on PJδ × (LJδ ,1) · hJ,δ

defined by l · (p, z) = (pl−1, (l, l) · z).
Thus ZJ,1;δ is isomorphic to G ×PJδ

(PJδ ×LJδ
(LJδ ,1) · hJ,δ) ∼= G ×LJδ

(LJδ ,1) · hJ,δ via
(g, z) �→ (g, g) · z.
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We may also identify (LJδ ,1) · hJ,δ with LJδg0/Z(LJ ). Therefore we have an isomorphism

iJ : G ×LJδ
LJδg0/Z(LJ ) ∼= ZJ,1;δ

via (g, lg0) �→ (gl, g) · hJ,δ .
Notice that we have a stratification G×LJδ

LJδg0 = ⊔
G×LJδ

Y , where Y runs over strata of
LJδg0. Moreover, each stratum Y of LJδg0 is stable under the action of Z(LJδ ) ⊃ Z(LJ ). Then

G1ss =
⊔
J⊂I

⊔
Y is a stratum of LJδ

g0

iJ
(
G ×LJδ

Y/Z(LJ )
)

(b)

is a decomposition of G1ss . We will see in the end of this section that (b) is in fact a stratification.
For any J ⊂ I and stratum Y of LJδg0, we call iJ (G ×LJδ

Y/Z(LJ )) a stratum of G1ss .

We may define a decomposition for G1 in the same way. But it is very hard to give an explicit
description of the closure of any subvariety appearing in the decomposition. However, [6, The-
orem 4.3], [12, Theorem 7.4] and [8, Theorem 4.5] give some evidence that this decomposition
for G1 may still be a stratification.

3.5. In this subsection, we assume that G1 = G. It is known [4] that the map (g, g′, z) �→
(g, g′) · z gives an isomorphism

(G × G) ×P−
J ×PJ

GJ
∼= ZJ .

Notice that any element in ZJ ∩ Ḡss is of the form (gl, g) · hK for some K ⊂ J , g ∈ G and
l ∈ LK and any element in GJ

ss is of the form (g′l′, g′) · hK for some K ⊂ J , g′ ∈ LJ and
l′ ∈ LK . Therefore ZJ ∩ Ḡss = G� · GJ

ss .
The morphism (G × G) ×P−

J ×PJ
GJ → G/P −

J × G/PJ , (g, g′, z) �→ (gP −
J , g′PJ ) sends

ZJ ∩ Ḡss to the open G� orbit O in G/P −
J ×G/PJ . It is easy to see that O ∼= G/LJ . Since each

fiber of the G-equivariant morphism ZJ ∩ Ḡss → G/LJ is isomorphic to GJ
ss , by [19, p. 26,

Lemma 4], we have that

ZJ ∩ Ḡss ∼= G ×LJ
GJ

ss .

Here G ×LJ
GJ

ss is the quotient space for the LJ -action on G × GJ
ss defined by l · (g, z) =

(gl−1, (l, l) · z). This isomorphism extends the isomorphism ZJ,1;id = ZJ ∩ Ḡss ∼= G×LJ
GJ in

the previous subsection.

Lemma 3.1. Let T0 = {tθδ(t
−1); t ∈ T }. Let J,K ⊂ I with δ(K) = K and w ∈ Wδ . Then

T0Z(LK) ∩ (ẇT , ẇ) · hJ =
{

(T0Z(LK)ẇ, ẇ) · hJ , if w−1ΦK ⊂ ΦJ ;
∅, otherwise.
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Proof. Let X = ⊔
D⊂I (T ,1) · hD . Then for any positive root α, the morphism T → k defined

by t �→ α(t) extends in a unique way to a morphism X → k, which we denote by α̃. It is easy to
see that

α̃i

(
(t,1) · hJ

) =
{

αi(t), if i ∈ J,

0, if i /∈ J.
(a)

By definition, T0Z(LK) = {t ∈ T ; ∏
i∈O αi(t) = 1, ∀δ-orbit O of K}. So (ẇ−1, ẇ−1) ·

T0Z(LK) = {t ∈ T ; ∏
i∈O w−1αi(t) = 1, ∀δ-orbit O of K}. For any root α, set

sgn(α) =
{

1, if α > 0;
−1, if α < 0.

Notice that δ(w−1αi) = δ(w)−1αδ(i) = w−1αδ(i). Thus for any δ-orbit O of K , either w−1αi > 0
for all i ∈ O or w−1αi < 0 for all i ∈ O. So we may write sgn(w−1 O) for sgn(w−1αi), where

i ∈ O. Now (
∏

i∈O w̃−1(αi)z)
sgn(w−1 O) is a well-defined morphism from X to k and

(
ẇ−1, ẇ−1

) · T0Z(LK) =
{
z ∈ X;

∏
i∈O

w̃−1(αi)(z)
sgn(w−1 O) = 1

}
.

By (a), if w−1(ΦK) � ΦJ , then
∏

i∈K w̃−1(αi)(z)
sgn(w−1(αi )) = 0 for all z ∈ (T ,1) · hJ and

(ẇ−1, ẇ−1) · T0Z(LK) ∩ (T ,1) · hJ = ∅. On the other hand, if w−1(ΦK) ⊂ ΦJ , then for any

z = (t,1) · hJ and i ∈ K , w̃−1(αi)(z) = w−1(αi)(t). Therefore (ẇ−1, ẇ−1) · T0Z(LK) ∩ (T ,1) ·
hJ = {(t,1) · hJ ; t ∈ (ẇ−1, ẇ−1) · T0Z(LK)}. The lemma is proved. �

Notice that θδ(T0) = T0 and θδZ(LK) = Z(LK) for K ⊂ I with δ(K) = K . By the identifica-
tion of Ḡ with G1 in Section 1.5, we have the following variation of the previous lemma.

Lemma 3.2. Let J,K ⊂ I with δ(K) = K and w ∈ Wδ . Then

T0Z(LK)g0 ∩ (ẇT , ẇ) · hJ,δ =
{

(T0Z(LK)θδ(ẇ), ẇ) · hJ,δ, if w−1ΦK ⊂ ΦJ ;
∅, otherwise.

Theorem 3.3. Let K ⊂ I with δ(K) = K and S be an isolated stratum of LKg0. Let S′ be the
closure of S in LKg0. Then

UPK
S ∩ G1ss =

⊔
J⊂I,w∈KWJδ ∩Wδ,w−1(K)⊂Jδ

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hJ,δ.

Proof. Since UPK
S′ ⊂ P 1

K , then

UPK
S′ ∩ G1ss ⊂ P 1

K ∩ G1ss =
⊔ ⊔

K J δ

(PK)�(Bẇ,Bẇ) · hJ,δ.
J⊂I w∈ W δ ∩W
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Since S is stable under the conjugation action of LK , there exists s ∈ (B ∩ LK)g0 such that
s ∈ S. We may write s as s = utg0 for some t ∈ T and u ∈ U ∩ LK . Then

S = {
lutzg0l

−1; l ∈ LK,z ∈ Z(LK)
} ⊂ (LK)�

(
(U ∩ LK)tT0Z(LK)g0

)
.

By [15, Lemma 3.11], S∗ is open dense in S. By [15, 3.13], dim((UPK
)� ·S∗) = dim(UPK

)+
dim(S∗) = dim(UPK

S′). Since (UPK
)� · S ⊂ UPK

SUPK
= UPK

S ⊂ UPK
S′, (UPK

)� · S∗ is
dense in UPK

S′ and hence (UPK
)� · S is dense in UPK

S′. Now consider the proper map

PK ×B UtT0Z(LK)g0 → G1 defined by (g, z) �→ (g, g) · z. Since

(PK)�
(
UtT0Z(LK)g0

) = (UPK
)�(LK)� · (UtT0Z(LK)g0

) ⊃ (UPK
)� · S,

then

UPK
S′ ⊂ (PK)�UtT0Z(LK)g0. (a)

Let J ⊂ I and w ∈ KWJδ ∩ Wδ . By definition,

(PK)�(Bẇ,Bẇ) · hJ,δ ⊂
⋃

x∈WK

(BẋBẇ,BẋBẇ) · hJ,δ

=
⋃

x∈WK

(BẋBẇ,Bẋẇ) · hJ,δ

⊂
⋃

x∈WK

(
(Bẋẇ,Bẋẇ) · hJ,δ ∪

⋃
y<xw

(Bẏ,Bẋẇ) · hJ,δ

)
.

If (PK)�(Bẇ,Bẇ) · hJ,δ ∩ UPK
S′ 	= ∅, by (a) we have that

⋃
x∈Wδ

K

(Bẋẇ,Bẋẇ) · hJ,δ

= (PK)�(Bẇ,Bẇ) · hJ,δ ∩ B1

⊃ (PK)�(Bẇ,Bẇ) · hJ,δ ∩ UtT0Z(LK)g0 	= ∅.

Therefore UtT0Z(LK)g0 ∩ (Bẋẇ,Bẋẇ) · hJ,δ 	= ∅ for some x ∈ Wδ
K . Set X =⋃

J ′⊂I (Bẋẇ,Bẋẇ) · hJ ′,δ . Then the map (u,u′, z) �→ (uẋẇ, u′ẋẇ) · z defines an isomorphism

(
U ∩ ẋẇU

) × (
U ∩ ẋẇU−) ×

⋃
J ′⊂I

(T ,1) · hJ ′,δ → X.

Notice that UtT0Z(LK)g0 ⊂ X. Then UtT0Z(LK)g0 ∩ X is the closure of UtT0Z(LK)g0 in
X. Hence

UtT0Z(LK)g0 ∩ X = ((
U ∩ ẋẇU

)
ẋẇ,

(
U ∩ ẋẇU−)

ẋẇ
) · X′, (b)
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where X′ = (ẋẇ)−1
T0Z(LK)g0 ∩ ⋃

J ′⊂I (T ,1) · hJ ′,δ . Since UtT0Z(LK)g0 ∩ (Bẋẇ,Bẋẇ) ·
hJ,δ 	= ∅, then X′ ∩(T ,1) ·hJ,δ 	= ∅. By the previous lemma, w−1ΦK = w−1x−1ΦK ⊂ ΦJ . Since
w = δ(w) and K = δ(K), we have that δ(w−1ΦK) = w−1ΦK ⊂ ΦJδ . Notice that w ∈ KWJδ .
Then w−1(K) ⊂ Jδ .

On the other hand, suppose that w ∈ KW ∩ Wδ with w−1(K) ⊂ I . Set

Y =
⊔

w−1(K)⊂D⊂I

(PK)�(Bẇ,Bẇ) · hD,δ.

If w−1(K) ⊂ D, then g0Lw−1(K)g
−1
0 = Lw−1(K) and by [23, Lemma 7.3], (Lw−1(K))� · ((B ∩

Lw−1(K))g0) = Lw−1(K)g0. Hence

(PK)�(Bẇ,Bẇ) · hD,δ

= (LK)�
(
UPK

ẇ,UPK
ẇ(B ∩ Lw−1(K))

) · hD,δ

= (UPK
ẇ,UPK

ẇ)
(
Lw−1(K)

)
�

(
1,B ∩ Lw−1(K)

) · hD,δ

= (UPK
ẇ,UPK

ẇ)(1,Lw−1(K)) · hD,δ

= (UPK
ẇ,UPK

ẇ)(Lw−1(K),Lw−1(K)) · hD,δ = (PKẇ,PKẇ) · hD,δ.

Therefore Y = ⊔
w−1(K)⊂D⊂I (PKẇ,PKẇ) · hD,δ . Since w−1(K) ⊂ I , UPK

∩ ẇU = UPK
∩

ẇUP
w−1(K)

and UPK
∩ ẇU− = UPK

∩ ẇUP−
w−1(K)

. It is easy to see that the map (u,u′, z) �→
(u,u′) · z defines an isomorphism

(
UPK

∩ ẇU
) × (

UPK
∩ ẇU−) ×

⊔
w−1(K)⊂D⊂I

(LKẇ,LKẇ) · hD,δ → Y. (c)

By the similar argument as we did for (b), one can show that the closure of S′ =
(S′g−1

0 θδ(ẇ), ẇ) ·hI,δ in
⊔

w−1(K)⊂D⊂I (LKẇ,LKẇ) · hD,δ is
⊔

w−1(K)⊂D⊂I (S
′g−1

0 θδ(ẇ), ẇ) ·
hD,δ .

Hence the closure of UPK
S′ = (UPK

∩ ẇU,UPK
∩ ẇU−) · (S′g−1

0 θδ(ẇ), ẇ) · hI,δ in Y is

(
UPK

∩ ẇU,UPK
∩ ẇU−) ·

⊔
w−1(K)⊂D⊂I

(
S′g−1

0 θδ(ẇ), ẇ
) · hD,δ

=
⊔

w−1(K)⊂D⊂I

(
UPK

S′g−1
0 θδ(ẇ),UPK

ẇ
) · hD,δ

=
⊔

w−1(K)⊂D⊂I

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hD,δ.

The theorem is proved. �
Now we state the result on the special case that G1 = G.
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Corollary 3.4. Let K ⊂ I and S be an isolated stratum of LK . Let S′ be the closure of S in LK .
Then for any J ⊂ I ,

UPK
S ∩ Ḡss ∩ ZJ =

⊔
w∈KWJ ,w−1(K)⊂J

(UPK
ẇ,UPK

ẇ) · Xw,

where Xw is the closure of (UP
w−1(K)

∩ LJ )ẇ
−1

S/Z(LJ ) in GJ
ss .

3.6. Let J,K ⊂ I with δ(K) = K and w ∈ KWJδ ∩ Wδ . Let S ⊂ LJδ be a subvariety. Since
ZJ,1;δ ∼= G ×PJδ

(PJδ ,PJδ ) · hJ,δ , we have a projection map ZJ,1;δ → G/PJδ . Restricting the

projection map to (ẇ
−1

PK)�(S,1) · hJ,δ ⊂ ZJ,1;δ , we obtain a morphism

(
ẇ−1

PK

)
�
(S,1) · hJ,δ → ẇ−1

PK/ẇ−1
PK ∩ PJδ .

By [19, p. 26, Lemma 4],

(
ẇ−1

PK

)
�
(S,1) · hJ,δ

∼= ẇ−1
PK ×ẇ−1

PK∩PJδ

(
ẇ−1

PK ∩ PJδ

)
�
(S,1) · hJ,δ.

Notice that ẇ−1
PK ∩ PJδ

∼= ẇ−1
PK ∩ UPJδ

× ẇ−1
PK ∩ LJδ and

ẇ−1
PK ∩ LJδ = LK ′

(
ẇ−1

UPK
∩ LJδ

) = LK ′(B ∩ LJδ ) = PK ′ ∩ LJδ ,

where K ′ = w−1K ∩ Jδ . Therefore,

(
ẇ−1

PK ∩ PJδ

)
�
(S,1) · hJ,δ = (

ẇ−1
PK ∩ UPJδ

)
�
(PK ′ ∩ LJδ )�(S,1) · hJ,δ.

Set X = (PK ′ ∩ LJδ )�(S,1) · hJ,δ . By Section 3.4 (a), the map (g, z) �→ (g, g) · z gives an
isomorphism

(
ẇ−1

PK ∩ PJδ

) ×PK ′∩LJδ
X ∼= (

ẇ−1
PK ∩ UPJδ

) × X ∼= (
ẇ−1

PK ∩ UPJδ

)
�

· X.

Therefore, we have that

G ×ẇ−1
PK

(
ẇ−1

PK

)
�

· X
∼= G ×ẇ−1

PK

(
ẇ−1

PK ×ẇ−1
PK∩PJδ

(
ẇ−1

PK ∩ PJδ

)
�

· X)

∼= G ×ẇ−1
PK∩PJδ

((
ẇ−1

PK ∩ PJδ

)
�

· X)

∼= G ×ẇ−1
PK∩PJδ

((
ẇ−1

PK ∩ PJδ

) ×PK ′∩LJδ
X

)
∼= G ×P ′∩L X ∼= G ×L (LJδ ×P ′∩L X). (a)
K Jδ Jδ K Jδ
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Similarly, we may identify G� · X with G ×LJδ
(LJδ )� · X and under these identifications,

the map (g, z) �→ (g, g) · z from G ×ẇ−1
PK

(ẇ
−1

PK)� · X to G� · X is induced from the map

G × (LJδ ×PK ′∩LJδ
X) → G × (

(LJδ )� · X)
,

defined by (g, l, z) �→ (g, (l, l) · z).

3.7. Let J,K ⊂ I with δ(K) = K and w ∈ KWJδ ∩ Wδ with w−1(K) ⊂ Jδ . Let S′ ⊂ LKg0

be the closure of an isolated stratum. We have that ẇ−1
PK = ẇ−1

UPK
ẇ−1

LK = (ẇ
−1

UPK
∩

UPJδ
)(ẇ

−1
PK ∩LJδ )(

ẇ−1
UPK

∩UP−
Jδ

). Since w ∈ WJδ and w−1(K) ⊂ Jδ , we have that ẇ−1
UPK

∩
LJδ = UP

w−1(K)
∩ LJδ . Then

(
ẇ−1, ẇ−1)(PK)�

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hJ,δ

= (
ẇ−1

PK

)
�

((
ẇ−1

UPK
∩ LJδ

)(
ẇ−1

UPK
∩ UP−

Jδ

)
ẇ−1

S′g−1
0 ,

(
ẇ−1

UPK
∩ UPJδ

)) · hJ,δ

= (
ẇ−1

PK

)
�

((
ẇ−1

UPK
∩ LJδ

)
ẇ−1

S′g−1
0 ,1

) · hJ,δ

= (
ẇ−1

PK

)
�

(
(UP

w−1K
∩ LJδ )

ẇ−1
S′g−1

0 ,1
) · hJ,δ.

The map f :G ×PK
(PK)�(UPK

S′ẇg−1
0 ,UPK

ẇ) · hJ,δ → G ×ẇ−1
PK

(ẇ
−1

PK)�((UP
w−1K

∩
LJδ )

ẇ−1
S′g−1

0 ,1) · hJ,δ defined by (g, z) �→ (gẇ, (ẇ−1, ẇ−1)z) is an isomorphism. Moreover,

π = π ′ ◦ f, (∗)

where

π :G ×PK
(PK)�

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hJ,δ → ZJ,1;δ,

π ′ :G ×ẇ−1
PK

(
ẇ−1

PK

)
�

(
(UP

w−1K
∩ LJδ )

ẇ−1
S′g−1

0 ,1
) · hJ,δ → ZJ,1;δ,

are induced from the map G × ZJ,1;δ → ZJ,1;δ defined by (g, z) �→ (g, g) · z.
As in the previous subsection, the map π ′ is induced from the map G × (LJδ ×P

w−1(K)
∩LJδ

X) → G × ((LJδ )� · X) defined by (g, l, z) �→ (g, (l, l) · z), here

X = (
(UP

w−1K
∩ LJδ )

ẇ−1
S′g−1

0 ,1
) · hJ,δ

∼= (UP
w−1K

∩ LJδ )
ẇ−1

S′/Z(LJδ ).

Since ẇ−1
S′/Z(LJδ ) is the closure of an isolated stratum in Lw−1Kg0/Z(LJδ ), by Section 3.3,

G� · X is a union of strata in ZJ,1;δ and the map π ′ is a small map.
As a summary, we have the following result.

Theorem 3.5. Let K ⊂ I with δ(K) = K and S be an isolated stratum of LKg0. Then the proper
map

G ×P

(
UP S ∩ G1ss

) → G�(UP S) ∩ G1ss

K K K
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sending (g, z) → (g, g) · z is small and G�(UPK
S) ∩ G1ss is a union of strata in G1ss .

3.8. Let J ⊂ I and Y be a stratum of LJδg0. By the same argument as above, we can show

that iJ (G ×LJδ
Y/Z(LJ )) ∩ G1ss is a union of strata of G1ss . Since we don’t need this result in

the rest of the paper, we skip the details.

4. Character sheaves on G1ss

4.1. In this section, we will use the results on the structure of the semi-stable locus estab-
lished in the previous two sections to prove our main result (Theorem 4.4), which describes the
restriction to a semi-stable stratum of the intermediate extension of an “admissible complex”. We
also give partial answers to the problem about “boundary value” of character of simple groups of
Lie type (asked by Springer) and a conjecture about semisimple elements in Ḡ (due to Lusztig).

4.2. Fix a prime number l that is invertible in k. For any algebraic variety X over k, we write
D(X) for Db

c (X,Ql), the bounded derived category of Ql-constructible sheaves on X [1, 2.2.18].
For any subgroup H of G and an H -variety X, we define the H action on G×X by h ·(g, x) =

(gh−1, h · x) and denote by G ×H X the quotient space. For any perverse sheaf A on X that is
equivariant for the H action, we denote by iGH (A) the perverse sheaf on G ×H X such that
p∗(A)[dim(H)] = Ql,G[dim(G)] � A, where p :G × X → G ×H X is the projection map.

4.3. In this subsection, we only assume that G is a connected reductive group.
Let Z = {g ∈ Z(G); gg′ = g′g for all g′ ∈ G1}. For each isolated stratum S of G1 and n ∈ N

that is invertible in k, let Sn(S) be the set of local systems on S that are equivariant for the
Z 0 ×G-action defined by (z, g) · s = gznsg−1 [15, 5.2]. Let S(S) be the category whose objects
are the local systems on S that are in Sn(S) for some n as above.

Now assume that E is an irreducible local system in Sn(S). For y ∈ S, let Hy be the isotropy
subgroup of y for this Z 0 × G-action. Notice that for (z, g) ∈ Hy , zn = g−1ygy−1. By [10,
Lemma 1.1(2)], there are only finitely many possible choices for z. In particular, H 0

y = ZG(y)0.

Define a morphism f : Z 0 × G/H 0
y → S by (z, g) �→ (z, g) · y. Then E is a direct summand of

f!Q̄l,Z 0×G/H 0
y

. Let C be the G-conjugacy class of y, then f factors through

Z 0 × G/H 0
y

f1−→ Z 0 × C
f2−→ S,

where f1(z, g) = (zn, gyg−1) is a principal μn × ZG(y)/ZG(y)0-covering and f2(z, c) = zc is
a A-covering. Here A = {z ∈ Z 0; zC = C} is a finite group. Therefore E is a direct summand
of (f2)!(F � E ′), where F is an irreducible local system on Z 0 which is a direct summand of
n!Q̄l,Z 0 for the n-th isogeny n : Z 0 → Z 0 and E ′ is an irreducible local system on C which is a
direct summand of (f1|{1}×G/H 0

y
)!Q̄l,G/H 0

y
.

Now let Z ′ = {zθδ(z)
−1; z ∈ Z(G)0}. Since Z(G)0 is Abelian, Z ′ is an Abelian subgroup

of Z(G)0. By [15, 1.2], Z(G)0 = Z 0 Z ′. It is easy to see that Z 0 ∩ Z ′ is finite. Since C ⊂ G1
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is stable under the conjugation action of Z(G)0, we have that Z ′C = C. Therefore we have an
isomorphism Z(G)0 ×Z ′ C ∼= Z 0 ×Z 0∩Z ′ C. Thus we have the following commuting diagram

Z 0 × Z ′ × C

a

b
Z(G)0 × C

c

Z 0 × C
f3

Z 0 ×Z ∩Z ′ C
f4

S,

where a,f3, c are projection maps, b(z, z′, c) = (zz′, c) and f4(z, c) = zc. The square (a, b,

f3, c) is a Cartesian square and f2 = f4 ◦ f3.
Thus c∗(f3)!(F � E ′) = b!a∗(F � E ′) = b!(F � Q̄l,Z ′ � E ′). Any direct summand of

c∗(f3)!(F � E ′) is of the form F ′ � E ′, where F ′ is an irreducible local system on Z(G)0 which
is a direct summand of n!Q̄l,Z(G)0 for the n-th isogeny n :Z(G)0 → Z(G)0.

As a summary,
(a) E is a direct summand of (f4)!E ′′. Here f4 :Z(G)0 ×Z ′ C → S, (z, c) �→ zc and E ′′ is a

local system on Z(G)0 ×Z ′ C whose pull back to Z(G)0 × C is of the form F ′ � E ′, where F ′
is an irreducible local system on Z(G)0 which is a direct summand of n!Q̄l,Z(G)0 for the n-th
isogeny n :Z(G)0 → Z(G)0.

Lemma 4.1. Let K ⊂ I with δ(K) = K , S ⊂ LKg0 be an isolated stratum and S′ the closure of
S in LKg0. Let w ∈ KW ∩ Wδ with w−1(K) ⊂ I . Set Y = ⊔

w−1(K)⊂D⊂I (Sẇg−1
0 , ẇ) · hD,δ and

Y ′ = ⊔
w−1(K)⊂D⊂I (S

′ẇg−1
0 , ẇ) ·hD,δ . For J ⊂ I with w−1(K) ⊂ J , let πJ :S → (Sẇg−1

0 , ẇ) ·
hJ,δ be the map defined by s �→ (sẇg−1

0 , ẇ) · hJ,δ . Let E ∈ Sn(S) be an irreducible local system.
If E = π∗

J E ′ for some local system on Y ∩ ZJ,δ , then IC(Y ′, E )|Y ′∩ZJ,δ
= IC(Y ′ ∩ ZJ,δ, E ′)[|I −

J |]. Otherwise, IC(Y ′, E )|Y ′∩ZJ,δ
= 0.

Proof. Let Z̃ = ⊔
w−1(K)⊂D⊂I (g0Z(LK)ẇg−1

0 , ẇ) · hD,δ be the closure of g0Z(LK) in Y ′. Let

p :g0Z(LK) → Z̃ ∩ ZJ,δ
∼= g0Z(LK)/ẇZ(LJ )ẇ−1, z �→ (zẇg−1

0 , ẇ) · hJ,δ be the projection
map.

We show that
(a) Let F be an irreducible local system on g0Z(LK). If F = p∗F ′ for some local system on

Z̃ ∩ ZJ,δ , then IC(Z̃, F )|
Z̃∩ZJ,δ

= F ′[|I − J |]. Otherwise, IC(Z̃, F )|
Z̃∩ZJ,δ

= 0.

For any j /∈ w−1(K), let ω∨
j be the fundamental coweight. Then fj : k∗ → Z̃, a �→

g0ẇω∨
j (a)ẇ−1 is a cross section to Z̃ ∩ ZI−{j},δ in Z̃. Using [14, 1.6], IC(Z̃, F )|

Z̃∩ZJ,δ
	= 0

if and only if for any j /∈ J , the monodromy of F around the divisor Z̃ ∩ ZI−{j},δ is 0, i.e., f ∗
j F

is trivial. It is easy to see that f ∗
j F is trivial for any j /∈ J if any only if F = p∗F ′. In this case,

one can show that IC(Z̃, F )|
Z̃∩ZJ,δ

= F ′. Part (a) is proved.
Similarly,
(b) If E = π∗

J E ′ for some local system on Y ∩ ZJ,δ , then IC(Y, E )|Y∩ZJ,δ
= E ′[|I − J |]. Oth-

erwise, IC(Y, E )|Y∩ZJ,δ
= 0.

Let Z ′ = {zθδ(z)
−1; z ∈ Z(LK)}. By Section 4.3 (a), E is a direct summand of (f ′

4)!E ′′. Here
f ′

4 :g0Z(LK) ×Z ′ C → S, (z, c) �→ g−1
0 zc = (g−1

0 z)(cg−1
0 )g0 = cg−1

0 (g−1
0 zg0) and E ′′ is a local

system on g0Z(LK) ×Z ′ C whose pull back to g0Z(LK) × C is of the form l∗−1 F ′ � E ′, where

g0
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F ′ is an irreducible local system on Z(LK) which is a direct summand of n!Q̄l,Z(LK) for the n-th
isogeny n :Z(G)0 → Z(G)0 and l

g−1
0

:g0Z(LK) → Z(LK), z �→ g−1
0 z.

Let C′ be the closure of C in LKg0. Then the map f ′
4 :g0Z(LK) ×Z ′ C → S extends in the

natural way to a map f ′′
4 : Z̃ ×Z ′ C′ → Y ′, (z, c) �→ (cg−1

0 ,1) · (g−1
0 zg0). This is a surjective map

and each fiber is finite. In particular, f ′′
4 is a small map and

IC
(
Y ′,

(
f ′

4

)
!E ′′) = (

f ′′
4

)
!IC

(
Z̃ ×Z ′ C′, E ′′).

Consider the following diagram

(Z̃ ∩ ZJ,δ) ×Z ′ C

a

(Z̃ ∩ ZJ,δ) ×Z ′ C′

b

Z̃ ×Z ′ C′

f ′′
4

Y ∩ ZJ,δ Y ′ ∩ ZJ,δ Y ′,

where a, b are the restriction of f ′′
4 and are small maps. Both squares are Cartesian squares. So

IC
(
Y ′,

(
f ′

4

)
!E ′′)∣∣

Y ′∩ZJ,δ
= ((

f ′′
4

)
!IC

(
Z̃ ×Z ′ C′, E ′′))∣∣

Y ′∩ZJ,δ
= b!A,

where A = IC(Z̃ ×Z ′ C′, E ′′)|
(Z̃∩ZJ,δ)×Z ′C′ .

Notice that the pull back of A to (Z̃ ∩ ZJ,δ) × C′ is IC(Z̃, l∗
g−1

0
F ′)|

Z̃∩ZJ,δ
� IC(C′, E ′). The

pull back is isomorphic to

IC
(
(Z̃ ∩ ZJ,δ) × C′, IC

(
Z̃, l∗

g−1
0

F ′)∣∣
Z̃∩ZJ,δ

� E ′).

By (a), IC(Z̃, l∗
g−1

0
F ′)|

Z̃∩ZJ,δ
� E ′ is a shift of an irreducible local system on (Z̃ ∩ZJ,δ)×C or 0.

Hence A = IC((Z̃ ∩ ZJ,δ) ×Z ′ C′,A|
(Z̃∩ZJ,δ)×Z ′C) and

IC
(
Y ′,

(
f ′

4

)
!E ′′)∣∣

Y ′∩ZJ,δ
= b!A = IC

(
Y ′ ∩ ZJ,δ, a!

(
A|

(Z̃∩ZJ,δ)×Z ′C
))

= IC
(
Y ′ ∩ ZJ,δ, (b!A)|Y∩ZJ,δ

)
.

Since IC(Y ′, E ) is a direct summand of IC(Y ′, (f ′
4)!E ′′),

IC
(
Y ′, E

)∣∣
Y ′∩ZJ,δ

= IC
(
Y ′ ∩ ZJ,δ, IC

(
Y ′, E

)∣∣
Y∩ZJ,δ

)
= IC

(
Y ′ ∩ ZJ,δ, IC(Y, E )|Y∩ZJ,δ

)
.

Now the lemma follows from (b). �
From Section 4.4 to Lemma 4.2, we only assume that G is a connected reductive group. We

first recall some results on character sheaves on disconnected groups. We follow the approach
in [15].
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4.4. Let P be a parabolic subgroup of G such that N
G̃
P ∩G1 	= ∅. Let L be a Levi of P . Set

L1 = N
G̃
P ∩ N

G̃
L ∩ G1 ∼= (N

G̃
P ∩ G1)/UP . Consider the diagram

L1 a←− G × (
N

G̃
P ∩ G1) b−→ G ×P

(
N

G̃
P ∩ G1) c−→ G1,

where a, b are projection maps and c(g,h) = ghg−1. To any simple perverse sheaf A on L1

which is L-equivariant (for the conjugation action) we define indL1

G1 A = c!A1, where A1 is the

perverse sheaf on G ×P (N
G̃
P ∩ G1) such that a∗A[dim(G) − dim(P )] = b∗A1. We call indL1

G1

an induction functor.
Consider the diagram

G1 i←− N
G̃
P ∩ G1 π−→ L1,

where i is the inclusion map and π is the projection. To any simple perverse sheaf B on G1

which is G-equivariant (for the conjugation action), we define resL1

G1 B = π!i∗B . We call resL1

G1 a
restriction functor.

4.5. For P,L and S as in Section 3.3, set

XL,S = G ×P S′UP ;
ỸL,S = G ×L S∗ ∼= G ×P

(
P� · S∗)

where S′ is the closure of S in G1, L acts diagonally on S∗ and P acts diagonally on P� ·S∗ and
S′UP .

We have the following commuting diagram

YL,S ỸL,S

π
G × S∗a b

S

Y ′
L,S XL,S

π ′
G × S′UP

a′ b′
S′,

where Y ′
L,S is the closure of YL,S in G1, a, b, a′, b′ are projection maps and π , π ′ sends (g,p) →

gpg−1.
Let E ∈ S(S). Then there is a unique local system Ẽ on ỸL,S with a∗Ẽ = b∗E and the

intersection cohomology complex IC(S′, E ), IC(XL,S, Ẽ ) are related by (a′)∗IC(XL,S, Ẽ ) =
(b′)∗IC(S′, E ) (see [15, 5.6]). Moreover, IC(Y ′

L,S,π!Ẽ ) is canonically isomorphic to

π ′
! IC(XL,S, Ẽ ) = indL1

G1(IC(S′, E ))[−dim(XL,S)] [15, Proposition 5.7].

A simple perverse sheaf on G1 is called admissible if it is a direct summand of the perverse
sheaf IC(Y ′

L,S,π!Ẽ )[dim(Y ′
L,S)] on G1 (0 outside Y ′

L,S ) for some pair (L,S) as above and a
cuspidal local system E ∈ S(S) [15, 6.7]. The definition of cuspidal local system can be found in
[15, 6.3].
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Lemma 4.2. We keep the notations as above. Let E ∈ S(S) and A be a direct summand of
IC(Y ′

L,S,π!Ẽ )[dim(Y ′
L,S)]. Let Z be a connected subgroup of Z(G). If A is equivariant for the

right Z-action, then E is equivariant for the right Z-action on S.

Proof. Consider the following diagram

ỸL,S

π

XL,S

π ′

YL,S Y ′
L,S,

where π and π ′ are defined in the previous subsection. By [15, Lemma 5.5] and [15, Proposi-
tion 5.7], this is a Cartesian square and π ′ is small. So

((
π ′)∗(

π ′)
!IC(XL,S, Ẽ )

)∣∣
ỸL,S

= π∗((π ′)
!IC(XL,S, Ẽ )|YL,S

)
= π∗(IC

(
Y ′

L,S,π!Ẽ
)∣∣

YL,S

) = π∗π!Ẽ .

Consider the following diagram

G ×L (N ×L S∗) b

a

ỸL,S

π

ỸL,S

π
YL,S,

where N = {n ∈ NGL; nSn−1 = S} and G×L (N ×LS∗) is the quotient of G×(N ×S∗) modulo
the L × L-action, (l, l′) · (g,n, s) = (gl−1, ln(l′)−1, l′s(l′)−1) and the maps a, b are defined by
a(g,n, s) = (g,nsn−1) and b(g,n, s) = (gn, s). It is easy to see that this is a Cartesian square.
Therefore π∗π!Ẽ = b!a∗Ẽ = Ẽ ⊕|N/L|.

Since A is a direct summand of (π ′)!IC(XL,S, Ẽ )[dim(Y ′
L,S)], each direct summand of

((π ′)∗A)|
ỸL,S

is a shift of Ẽ . In particular, IC(XL,S, Ẽ )[dim(XL,S)] is an irreducible constitute

of pH i((π ′)∗A) for some i ∈ Z.
Notice that A is equivariant for the right Z-action and π ′ is Z-equivariant, where the Z-

action on XL,S = G ×P S′UP is defined by z · (g, s) = (g, sz−1). Hence pH i((π ′)∗A) is also
Z-equivariant. Therefore IC(XL,S, Ẽ ) and IC(XL,S, Ẽ )|G×P SUP

are both Z-equivariant. By defi-
nition, the pull back of IC(XL,S, Ẽ )|G×P SUP

to G×SUP is a shift of Q̄l,G� E �Q̄l,UP
. Therefore

E is Z-equivariant. �
As in Section 3.4, we identify ZJ,1;δ with G×LJδ

LJδg0/Z(LJ ). Now we can prove our main
theorem.

Theorem 4.3. Let J,K ⊂ I with δ(K) = K . Let S be an isolated stratum of LKg0, S′ its closure
in LKg0 and E ∈ S(S). Let W be the set of w ∈ KWJδ ∩ Wδ with w−1(K) ⊂ Jδ and such that E
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is equivariant for the right ẇZ(LJ )ẇ−1-action on S. Then IC(G1ss , indLKg0

G1 IC(S′, E ))|ZJ,1;δ is
canonically isomorphic to

⊕
w∈W

iGLJδ
ind

L
w−1(K)

g0/Z(LJ )

LJδ
g0/Z(LJ ) IC

(
ẇ−1

S′/Z(LJ ), EJ,w

)
,

where EJ,w is the local system on ẇ−1
S/Z(LJ ) such that E = Ad(ẇ−1)∗i∗EJ,w . Here i : ẇ−1

S →
ẇ−1

S/Z(LJ ) is the projection map and Ad(ẇ−1) :S → ẇ−1
S, s �→ ẇ−1sẇ.

Proof. Consider the following commuting diagram

ỸLK,S

π

XLK,S

π ′

X̃LK,S

π ′′

YLK,S Y ′
LK,S Y ′

LK,S ∩ G1ss ,

where X̃LK,S = G×PK
(SUPK

∩G1ss), π ′′(g, z) = (g, g) · z and π,π ′ are the restrictions of π ′′.
Both squares are Cartesian squares. By Theorem 3.5, π ′′ is a small map. Therefore

IC
(
G1ss , indLKg0

G1 IC
(
S′, E

)) = IC
(
G1ss , π!Ẽ

)[
dim(G) − dim(LJ )

]

is canonically isomorphic to π ′′
! IC(X̃LK,S, Ẽ )[dim(G) − dim(LJ )]. This is similar to the argu-

ment in Section 4.5.
Therefore IC(G1ss , indLKg0

G1 IC(S′, E ))[−dim(G)+dim(LJ )]|ZJ,1;δ is canonically isomorphic
to

π ′′
! IC(X̃LK,S, Ẽ )|G�·(SUPK

∩ZJ,1;δ) = (
π ′′|ZJ,1;δ

)
!
(
IC(X̃LK,S, Ẽ )|G×PK

(SUPK
∩ZJ,1;δ)

)
.

We have shown in Theorem 3.3 that

UPK
S ∩ ZJ,1;δ =

⊔
w∈KWJδ ∩Wδ,w−1(K)⊂Jδ

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hJ,δ.

Similar to the proof of the isomorphism (b) in the proof of Theorem 3.3, we have that

(
UPK

∩ ẇU
) × (

UPK
∩ ẇU−) ×

⊔
J⊂D⊂I

(
S′ẇg−1

0 ,UPK
ẇ

) · hD,δ

∼=
⊔

J⊂D⊂I

(
UPK

S′ẇg−1
0 ,UPK

ẇ
) · hD,δ.

By Lemma 4.1, for w ∈ KWJδ ∩ Wδ with w−1(K) ⊂ Jδ , the restriction of IC(X̃LK,S, Ẽ ) to
G×PK

(UPK
S′ẇg−1

0 ,UPK
ẇ) ·hJ,δ is 0 if w /∈ W and is isomorphic to Q̄(UPK

∩ẇU)×(UPK
∩ẇU−) �

IC(ẇ
−1

S′/Z(LJ ), EJ,w)[|I − J |] if w ∈ W . Now the theorem follows from the isomorphism
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G ×PK
(UPK

S′ẇg−1
0 ,UPK

ẇ) · hJ,δ
∼= G ×LJδ

(LJδ ×P
w−1(K)

∩LJδ

ẇ−1
S′/Z(LJ )) in Sections 3.6

and 3.7 and Section 3.7 (∗). �
4.6. For any K ⊂ J ⊂ I with δ(K) = K and a character sheaf A on LKg0, we set

cJ (A) =
{

A, if A is equivariant for the right Z(LJ )-action on LKg0;
0, otherwise.

If B is a semisimple perverse sheaf on LK and is a direct sum of some character sheaves B =
⊕Ai , then we set cJ (B) = ⊕cJ (Ai). By Lemma 4.2, for any K ′ ⊂ K with δ(K ′) = K ′ and a

character sheaf A on LK ′g0, if cJ (A) = 0, then cJ (ind
LK ′g0
LKg0

(A)) = 0. By [14, Proposition 4.8]

and [15, 27.2 and 38.3], ind
L

w−1(K)
g0/Z(LJ )

LJδ
g0/Z(LJ ) IC(ẇ

−1
S′/Z(LJ ), EJ,w) is semisimple and perverse.

Using Macay type formula [14, Proposition 15.2] and [15, Proposition 38.8], we can reformulate
our main theorem in the following way.

Theorem 4.4. Let K ⊂ I with δ(K) = K , S be an isolated stratum of LKg0 and S′ be its closure
in LKg0. Let E be a cuspidal local system on S and A = indLKg0

G1 IC(S′, E [dim(S)]). Then for

any J ⊃ K , IC(G1,A)|ZJ,1;δ = iGLJδ
(C)[|I − J |], where C is a semisimple perverse sheaf on

LJδg0/Z(LJ ) whose pull back to LJδg0 is cJ res
LJδ

g0

G1 A[−|I − J |].

By [14, Section 4] and [15, Theorem 30.6], any character sheaf on G1 is a direct summand of
indLKg0

G1 IC(S′, E [dim(S)]) for some pair (S, E ) as above. We have that

Corollary 4.5. Let A′ be a character sheaf on G1 and J ⊂ I . Then IC(G1,A′)|ZJ,1;δ is of the
form iGLδ

(C)[|I − J |] for some semisimple perverse sheaf C on LJδg0/Z(LJ ).

Furthermore, we conjecture that the semisimple perverse sheaf C is given by the following
explicit formula.

Conjecture 4.6. Let A′ be a character sheaf on G1. Then for any J ⊂ I ,

IC
(
G1,A′)∣∣

ZJ,1;δ = iGLJδ
(C)

[|I − J |],
where C is the semisimple perverse sheaf on LJδg0/Z(LJ ) whose pull back to LJδg0 is

cJ res
LJδ

g0

G1 (A′)[−|I − J |].

Let E ∈ S(T g0) such that if w ∈ Wδ with Ad(w)∗E ∼= E , then w = 1. Then indTg0
G1 E [dim(T )]

is a single perverse sheaf. The character sheaves obtained in this way are called generic. See [17,
1.1].

By the above theorem, the conjecture holds for generic character sheaves on G1. We will show
in Proposition 4.7 that this conjecture also holds for Steinberg character sheaf.
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4.7. In this subsection, we assume that G1 = G. For any J ⊂ I , we have that ZJ ∩ Ḡss ∼=
G ×LJ

GJ
ss (see Section 3.5). Now keep the notation in Theorem 4.4, we can show in the same

way as we did for the proof of the main theorem that

IC(Ḡ,A)|ZJ ∩Ḡss = iGLJ
IC

(
GJ

ss,C
)[|I − J |].

Notice that iGLJ
IC(GJ

ss,C) is canonically isomorphic to IC(G ×LJ
GJ

ss, iGLJ
(C)). Thus

IC(Ḡ,A)|ZJ ∩Ḡss is the intermediate extension of its restriction to ZJ ∩ Ḡss . Since any char-
acter sheaf A′ on G is a direct summand of some A considered above, we have that

(a) For any J ⊂ I , IC(Ḡ,A′)|ZJ ∩Ḡss is canonically isomorphic to IC(ZJ ∩ Ḡss,

IC(Ḡ,A′)|ZJ ∩Ḡss ) = iGLJ
IC(GJ

ss, IC(Ḡ,A′)|GJ
).

In particular, for any K ⊂ J ⊂ I , IC(Ḡ,A′)|ZK∩Ḡss is canonically isomorphic to

iGLK
(IC(GJ

ss, IC(Ḡ,A′)|GJ
)|GK

). Hence to verify the above conjecture for G1 = G, it suffices
to verify the cases where J is a maximal proper subset of I . However, we still don’t know how
to do it.

Another thing worth mentioning is that the open embedding G → Ḡss is an affine map. Hence
by [1, Corollary 4.1.12], for any perverse sheaf A on G, IC(Ḡss,A)|Ḡss−G[−1] is perverse. In
other words, IC(Ḡ,A)|ZJ ∩Ḡss [−1] is a perverse sheaf for any maximal proper subset J of I .

We showed above that for any character sheaf A, IC(Ḡ,A)|ZJ ∩Ḡss [−|I − J |] is perverse for any
subset J of I . It would be interesting to see if the result holds for arbitrary perverse sheaves
on G.

4.8. In this and next subsections, we assume that k is an algebraic closure of a finite field Fq

and that we are given an Fq -structure on G̃ with a Frobenius morphism F : G̃ → G̃ such that G1

is defined over Fq . Then F extends to a Frobenius morphism F on G1.
Let A be a character sheaf on G1 and φ :F ∗A → A be an isomorphism. Then φ extends to

an isomorphism F ∗IC(G1,A) → IC(G1,A) which we still denote by φ. Then we can define
functions χA

φ : (G1)F → Q̄l and χ̂A
φ : (G1)F → Q̄l by

χA
φ (x) =

∑
i

(−1)iTr
(
φi

x,H
i(A)x

)
,

χ̂A
φ (x) =

∑
i

(−1)iTr
(
φi

x,H
i
(
IC

(
G1,A

)
x

))
.

The function χA
φ is called the characteristic function of A and is constant on GF -conjugacy

classes of (G1)F and χ̂A
φ is a natural extension of χA

φ .

Now for any function f : (G1)F → Q̄l that is constant on GF -conjugacy classes, we can
naturally extend it to a function f̂ : (G1)F → Q̄l as follows.

By [14, Theorem 25.2] and [15, Theorem 21.21], the characteristic functions (for various A)
form a basis of the vector space of functions from (G1)F to Q̄l that are constant on the GF -
conjugacy classes. Hence f = ∑

A cAχA
φ , where cA ∈ Q̄l is uniquely determined by f,A and φ.

Now define

f̂ =
∑

cAχ̂A
φ .
A
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We may view the restriction of f̂ to (G1)F − (G1)F as the boundary values of f . The most
interesting case is when G1 = G and f is an irreducible character of the finite group GF . The
study of the boundary values of irreducible characters of GF is one of the open problems in
Springer’s talk [21, Problem 10] at ICM 2006.

4.9. By [16, 12.3], the map (g1, g2) · hJ,δ �→ (g2PJ , g1P −
δ(J ), g1HP−

δ(J )
g0HPJ

g−1
2 ) gives a

natural isomorphism of ZJ,δ with {(P,Q,HQgHP ); P ∈ PJ , Q ∈ P−w0(δ(J )), g ∈ G1, gP ∩
Q is a common Levi of gP and Q}. Here PJ

∼= G/PJ is the variety of parabolic subgroups
conjugate to PJ . Now let x = (P,Q,γ ) ∈ (G1ss)F and A = IC(G1, indLKg0

G1 IC(S′, E [dim(S)])),
where LK and S′ are defined over Fq and φ :F ∗E → E is an isomorphism. Then φ induces a
natural isomorphism F ∗A → A, which we also denote by φ. By Theorem 4.4, we have that

χ̂A
φ (x) = 1

|(N
G̃
P ∩ γ )F |

∑
g∈(N

G̃
P∩γ )F

χA
φ (g)

= 1

|(N
G̃
Q ∩ γ )F |

∑
g∈(N

G̃
Q∩γ )F

χA
φ (g). (∗)

If Conjecture 4.6 is true, then the formula (∗) is true for any character sheaf A on G with
φ: F ∗A ∼= A and

f̂ (x) = 1

|(N
G̃
P ∩ γ )F |

∑
g∈(N

G̃
P∩γ )F

f (g) = 1

|(N
G̃
Q ∩ γ )F |

∑
g∈(N

G̃
Q∩γ )F

f (g),

for any function f : (G1)F → Q̄l that is constant on GF -conjugacy classes and
x = (P,Q,HQgHP ) ∈ (G1ss)F .

4.10. In the case where A is a character sheaf on G, the characteristic function of resL
G(A) is

the truncation of the characteristic function of A as follows

χ
resLG(A)

φ (l) = 1

|UF
P |

∑
u∈UF

P

χA
φ (ul) for l ∈ LF .

The truncation, which sends generalized characters of GF to generalized characters of LF , is
well-known in the representation theory of finite group of Lie type (see [2, Section 8]).

Notice that the formula (∗) in the previous subsection for character sheaves on G is

χ̂A
φ (x) = 1

|HF
P |

∑
g∈HF

P

χA
φ (gl) = 1

|HF
Q |

∑
g∈HF

Q

χA
φ (gl), (∗)

here x ∈ Ḡss corresponds to the triple (P,Q,HQlHP ), where P ∩Q is a common Levi of P and
Q and l ∈ P ∩ Q. This formula can be regarded as a “truncation” from generalized characters of
GF to generalized characters of (L/Z(L))F .

Now we consider a special character sheaf on G1 and its intermediate extension to G1ss .
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4.11. For any K ⊂ J ⊂ I with δ(K) = K . The map LJδ × (PK ∩ LJδ )g0/Z(LJ ) →
LJδg0/Z(LJ ) defined by (l, z) �→ (l, l) · z induces a proper map

πJ,K,δ :LJδ ×PK∩LJδ
(PK ∩ LJδ )g0/Z(LJ ) → LJδg0/Z(LJ ).

The map πJ,K,δ is the Springer resolution for not necessarily connected reductive group. It is
known that πJ,K,δ is a small map. (See for example, [16, 12.6 (a)].) Set

CJ,K,δ = (πJ,K,δ)!
(
Ql,LJδ

×PK∩LJδ
(PK∩LJδ

)g0/Z(LJ )

[
dim(GJδ )

])
.

Moreover, we may identify (LJδ ,1) · hJ,δ with LJδg0/Z(LJ ) and (PK ∩ LJδ ,1) · hJ,δ with
(PK ∩ LJδ )g0/Z(LJ ) in the natural way. Under this identification, CJ,K,δ is a perverse sheaf on
(LJδ ,1) · hJ,δ .

Define π ′
J,K,δ :G ×PK∩LJδ

(PK ∩ LJδ ,1) · hJ,δ → ZJ,1;δ by (g, z) �→ (g, g) · z. Notice that

G ×LJδ

(
LJδ ×PK∩LJδ

(PK ∩ LJδ ,1) · hJ,δ

) ∼= G ×PK∩LJδ
(PK ∩ LJδ ,1) · hJ,δ.

Then

iGLJδ
(CJ,K,δ) = (

π ′
J,K,δ

)
!
(
Ql,G×PK∩LJδ

(PK∩LJδ
,1)·hJ,δ

[
dim(ZJ,1;δ)

])

is a perverse sheaf on G ×LJδ
(LJδ ,1) · hJ,δ

∼= ZJ,1;δ .

4.12. Let J,K ⊂ I with δ(K) = K and w ∈ KWJδ ∩ Wδ . Let ε(w) = min(wWJ ). Set
K1 = max{K ′ ⊂ K; δ(K ′) = K ′, ε(w)−1(K ′) ⊂ J }. By Lemma 2.2, K1 = K ∩ wJδ . By Sec-
tion 1.6 (6),

(PK)�(Bẇ,Bẇ) · hJ,δ = [
J, δ

(
ε(w)

)
, ε(w)

]
K,δ

= (PK)�
(
LK1

˙δ
(
ε(w)

)
, ˙ε(w)

) · hJ,δ

= (PK)�(LK1ẇ, ẇ) · hJ,δ

= (PK)�(ẇLw−1(K)∩Jδ
, ẇ) · hJ,δ.

The map

f :G ×PK
(PK)�(Bẇ,Bẇ) · hJ,δ → G ×ẇ−1

PK

(
ẇ−1

PK

)
�
(Lw−1(K)∩Jδ

,1) · hJ

defined by (g, z) �→ (gẇ, (ẇ−1, ẇ−1)z) is an isomorphism. Moreover, πJ,K,w,δ = π ′
J,K,w,δ ◦ f ,

where

πJ,K,w,δ :G ×PK
(PK)�(Bẇ,Bẇ) · hJ,δ → ZJ,1;δ,

π ′
J,K,w,δ :G ×ẇ−1

PK

(
ẇ−1

PK

)
�
(Lw−1(K)∩Jδ

,1) · hJ → ZJ,1;δ,

are induced from the map G × ZJ,1;δ → ZJ,1;δ defined by (g, z) �→ (g, g) · z.
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Notice that

(Pw−1(K)∩Jδ
∩ LJδ )�(Lw−1(K)∩Jδ

,1) · hJ,δ = (Pw−1(K)∩Jδ
∩ LJδ ,1) · hJ,δ.

By Section 3.6 (a), πJ,K,w,δ is a small map and

(πJ,K,w,δ)!
(
Ql,G×PK

(PK)�(Bẇ,Bẇ)·hJ,δ

[
dim(ZJ,1;δ)

])
= (

π ′
J,K,w,δ

)
!
(
Q

l,G×
ẇ−1

PK
(ẇ

−1
PK)�(L

w−1(K)∩Jδ
,1)·hJ,δ

[
dim(ZJ,1;δ)

])

= (
π ′

J,w−1(K)∩Jδ,δ

)
!
(
Ql,G×P

w−1(K)∩Jδ
∩LJδ

(P
w−1(K)∩Jδ

∩LJδ
,1)·hJ,δ

[
dim(ZJ,1;δ)

])

= iGLJδ
(CJ,w−1(K)∩Jδ,δ

).

4.13. By [15, 38.11], for any J ⊂ I with δ(J ) = J , there is a unique simple perverse sheaf
StJ,δ on (LJδ ,1) · hJ,δ

∼= LJδg0/Z(LJ ) such that StJ,δ is a direct summand of CJ,∅,δ and StJ,δ is
not a direct summand of CJ,K,δ for any ∅ 	= K ⊂ J with δ(K) = K . In fact,

StJ,δ ⊕
⊕

K⊂J,δ(K)=K,2�|K|
CJ,K,δ =

⊕
K⊂J,δ(K)=K,2||K|

CJ,K,δ.

It is known that for any g ∈ G1
J , Hi

g(StJ,δ) 	= 0 for some i ∈ Z if and only if the stabilizer of
g in G is reductive (i.e., g is quasi-semisimple). In this case,

∑
i∈Z dim(Hi

g(StJ,δ)) = 1. See [15,
12.6].

Let K ⊂ I with δ(K) = K . By Theorem 2.4, P 1
K ∩ G1ss is smooth. By Theorem 2.1 and the

previous subsection, πK :G ×PK
(P 1

K ∩ G1ß) → G1ss defined by (g, z) �→ (g, g) · z is a small

map. Hence (πK)!(Ql,G×PK
(P 1

K∩G1ß)
[dim(G)]) is a perverse sheaf on G1ss whose restriction to

G1 is CK,I,δ .
Let S′ be the unique simple perverse sheaf on G1ss such that S′|G1 = StI,δ . Then

S′ ⊕ ⊕
K⊂I, δ(K)=K, 2�|K|

(πK)!
(
Q

l,G×PK
(P 1

K∩G1ß)

[
dim(G)

])

=
⊕

K⊂I, δ(K)=K, 2||K|
(πK)!

(
Q

l,G×PK
(P 1

K∩G1ß)

[
dim(G)

])
.

Now we calculate the restriction of S′ to ZJ,1;δ .

Proposition 4.7. For J ⊂ I , S′|ZJ,1;δ = iGLJδ
(StJ,δ[|I − J |]).

Proof. For J,K ⊂ I and w ∈ KWJδ ∩ Wδ , set I (J,K,w, δ) = w−1K ∩ Jδ .
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We have the following Cartesian square

G ×PK
(P 1

K ∩ ZJ,1;δ)

πK

G ×PK
(P 1

K ∩ G1ß)

πK

ZJ,1;δ G1ss .

Hence by Theorem 2.3,

(
(πK)!

(
Q

l,G×PK
(P 1

K∩G1ß)

[
dim(G)

]))∣∣
ZJ,1;δ

= (πK |
G×PK

(P 1
K∩ZJ,1;δ)

)!
(
Q

l,G×PK
(P 1

K∩ZJ,1;δ)
[
dim(G)

])

= (πK |
G×PK

(P 1
K∩ZJ,1;δ)

)!Ql,
⊔

w∈KWJδ ∩Wδ G×PK
(PK)�(Bẇ,Bẇ)·hJ,δ

[
dim(G)

]

=
⊕

w∈KWJδ ∩Wδ

(πJ,K,w,δ)!
(
Ql,G×PK

(PK)�(Bẇ,Bẇ)·hJ,δ

[
dim(G)

])

=
⊕

w∈KWJδ ∩Wδ

iGLJδ
(CJ,I (J,K,w,δ),δ)

[|I − J |].

Moreover,

⊕
K⊂I, δ(K)=K, 2||K|

⊕
w∈KWJδ ∩Wδ

iGLJδ
(CJ,I (J,K,w,δ),δ)

[|I − J |]

=
⊕

w∈WJδ ∩Wδ

⊕
K⊂I, δ(K)=K, 2||K|, w∈KW

iGLJδ
(CJ,I (J,K,w,δ),δ)

[|I − J |]

=
⊕

w∈WJδ ∩Wδ

⊕
K⊂I (J,I,w,δ)

iGLJδ
(CJ,K,δ)

[|I − J |] ⊕
K ′⊂I,δ(K ′)=K ′, w∈K ′

W, I (J,K ′,w,δ)=K, 2||K ′|
1.

Similarly,

⊕
K⊂I, δ(K)=K, 2�|K|

⊕
w∈KWJδ ∩Wδ

iGLJδ
(CJ,I (J,K,w,δ),δ)

[|I − J |]

=
⊕

w∈WJδ ∩Wδ

⊕
K⊂I (J,I,w,δ)

iGLJδ
(CJ,K,δ)

[|I − J |] ⊕
K ′⊂I, δ(K ′)=K ′, w∈K ′

W, I (J,K ′,w,δ)=K, 2�|K ′|
1.

Fix w ∈ WJδ ∩ Wδ . Let J ′ = max{K ⊂ I ; w ∈ KW }. Then δ(J ′) = J ′ and wI (J, I,w, δ) ⊂
J ′. It is easy to see that for any K ⊂ I (J, I,w, δ) and K ′ ⊂ I with δ(K ′) = K ′, the following
conditions are equivalent:

(1) w ∈ K ′
W and I (J,K ′,w, δ) = K ;

(2) K = δ(K) and wK ⊂ K ′ ⊂ wK
⊔

(J ′ − wI (J, I,w, δ)).
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Notice that J ′ − wI (J, I,w, δ) is δ-stable. Therefore, for any K ⊂ I (J, I,w, δ),

∑
K ′⊂I, w∈K ′

W, I (J,K ′,w,δ)=K

(−1)|K ′| =
{

(−1)|K|, if δ(K) = K and J ′ − wI (J, I,w, δ) = ∅;
0, otherwise.

If J ′ = wI (J, I,w, δ), then there is no i ∈ I such that ww
Jδ

0 ∈ {i}W . Hence ww
Jδ

0 = w0 and

w = w0w
Jδ

0 . In this case, I (J, I,w, δ) = Jδ . Therefore for any w ∈ WJδ ∩ Wδ with w 	= w0w
Jδ

0 ,

⊕
K⊂I (J,I,w,δ)

iGLJδ
(CJ,K,δ)

[|I − J |] ⊕
K ′⊂I, δ(K ′)=K ′, w∈K ′

W, I (J,K ′,w,δ)=K, 2||K ′|
1

=
⊕

K⊂I (J,I,w,δ)

iGLJδ
(CJ,K,δ)

[|I − J |] ⊕
K ′⊂I, δ(K ′)=K ′, w∈K ′

W, I (J,K ′,w,δ)=K, 2�|K ′|
1.

Now

S′|ZJ,1;δ
⊕ ⊕

K⊂Jδ,δ(K)=K,2�|K|
iGLJδ

(CJ,K,δ)
[|I − J |]

=
⊕

K⊂Jδ, δ(K)=K, 2||K|
iGLJδ

(CJ,K,δ)
[|I − J |].

Hence S′|ZJ,1;δ = iGLJδ
(StJ,δ[|I − J |]). �

4.14. Let S̃ be the simple perverse sheaf on G1 such that S̃|G1 = StI,δ . Then S̃|
G1ss = S′. By

the previous Proposition and [11], the following conditions on z ∈ G1 are equivalent:
(1) The stabilizer of z in G is reductive;
(2) z ∈ G1ss and Hi

z(S̃) 	= 0 for some i ∈ Z;

(3) z ∈ G1ss and
∑

i∈Z dim(Hi
z(S̃)) = 1.

This verifies Lusztig’s conjecture in [16, 12.6] inside G1ss . More precisely, by what we have
shown above, Lusztig’s conjecture is now reduced to the following one:

Conjecture 4.8. The intermediate extension of S′ to G1 is the extension by 0 outside G1ss .
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