GEOMETRY OF $B \times B$-ORBIT CLOSURES IN EQUIVARIANT EMBEDDINGS

XUHUA HE AND JESPER FUNCH THOMSEN

Abstract

Let X denote an equivariant embedding of a connected reductive group G over an algebraically closed field k. Let B denote a Borel subgroup of G and let Z denote a $B \times B$-orbit closure in X. When the characteristic of k is positive and X is projective we prove that Z is globally F-regular. As a consequence, Z is normal and Cohen-Macaulay for arbitrary X and arbitrary characteristics. Moreover, in characteristic zero it follows that Z has rational singularities. This extends earlier results by the second author and M. Brion.

1. Introduction

Let G denote a connected and reductive linear algebraic group over an algebraically closed field k. Let B denote a Borel subgroup of G. An (equivariant) embedding X of G is a normal $G \times G$-variety which contains an open subset which is $G \times G$-equivariantly isomorphic to G. Here we think of G as a $G \times G$-variety through left and right translation. In this paper we study the geometry of $B \times B$-orbit closures in X. Examples of such varieties include all toric varieties, all (generalized) Schubert varieties and all large Schubert varieties (see [B-P]).

The geometry of $B \times B$-orbit closures within equivariant embeddings has been the subject of several earlier papers. In [B] it was realized that such orbit closures were mostly singular with singular locus of codimension 2. In the special case of the wonderful compactification of a semisimple group G of adjoint type, this was later strengthened in [B-P], where it was proved that closures of orbits of the form $B g B$, for $g \in G$, are normal and Cohen-Macaulay. Closures of this form are called large Schubert varieties. Using the concept of global F-regularity the latter result was generalized to arbitrary X and G in $[\mathrm{B}-\mathrm{T}]$. For arbitrary $B \times B$-orbit closures it seems that normality and CohenMacaulayness is only known for the wonderful compactifications [B2, Rem.1]. In the present paper we show that all $B \times B$-orbit closures for arbitrary X and G will be normal and Cohen-Macaulay. Moreover, when the field k has characteristic 0 we will show that such orbit closures have rational singularities. As in [B-T] the main technical tool will be that of global F-regularity.

[^0]Global F-regularity was introduced by K. Smith in [S2]. By definition a projective variety Z over a field of positive characteristic is globally F-regular if every ideal of some homogeneous coordinate ring of Z is tightly closed. Any globally F-regular variety will be normal and Cohen-Macaulay. Moreover, every homogeneous coordinate ring of Z will share the same properties. Another consequence is that the higher cohomology groups of nef line bundles on Z will be zero. Known classes of globally F-regular varieties include projective toric varieties [S2], (generalized) Schubert varieties [L-P-T] and projective large Schubert varieties [B-T]. In this paper we prove that every $B \times B$-orbit closure in a projective embedding X of a reductive group G is globally F-regular. Notice that varieties of this form include the mentioned classes above.

The paper is organized as follows. In Section 2 we introduce notation. In Section 3 we give a short introduction to Frobenius splitting, canonical Frobenius splitting and global F-regularity. In section 4 we present the main technical result (Proposition 4.1) which relates the mentioned concepts from Section 3. In section 5 we describe the $G \times G$-orbit closures in a toroidal embedding. Section 6 describes the decomposition of the closure of a $B \times B$-orbit into the union of some $B \times B$-orbits for toroidal embeddings. This is a generalization of Springer's result in Sp on the wonderful compactification. As a by-product of this description we obtain, that any Frobenius splitting of a toroidal embedding X which compatibly Frobenius splits the boundary components and the large Schubert varieties of codimension 1, will automatically compatibly Frobenius split all $B \times B$-orbit closures in X. This is used in Section 7 to conclude that all $B \times B$-orbit closures in a toroidal embedding are simultaneous canonical Frobenius split. In section 8 we prove that any $B \times B$-orbit closure in a projective embedding (over a field of positive characteristic) is globally F-regular. The proof of this proceeds by reducing to the case when X is toroidal and then using the results of the previous sections. Finally in Section 9 we treat the characteristic 0 case by descending the results from Section 8 to positive characteristic.

2. Notation

Throughout this paper G will denote a connected reductive linear algebraic group over an algebraically closed field k. The associated semisimple and connected group of adjoint type will be denoted by $G_{\text {ad }}$. The associated canonical morphism is denoted by $\pi_{\mathrm{ad}}: G \rightarrow G_{\text {ad }}$. We will fix a maximal torus T and a Borel subgroup $B \supset T$ of G.

The set of roots determined by T will be denoted by R and we define the subset of positive roots R^{+}of R to be the set of roots $\alpha \in$ R such that the α-weight space of the Lie algebra of B is nonzero. The set $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of simple positive roots will be indexed by
$I=\{1, \ldots, l\}$. For each subset $J \subset I$ we let $P_{J} \supset B$ denote the corresponding parabolic subgroup of G. The associated Levi subgroup containing T will be denoted by L_{J} while we use the notation U_{J} to denote the unipotent radical of P_{J}. The notation U_{J}^{-}and L_{J}^{-}will be used for the equivalent subgroups in the parabolic subgroup P_{J}^{-} opposite to P_{J}. When J is empty we simple denote P_{J}^{-}by B^{-}and U_{J} by U. The semisimple group of adjoint type associated with L_{J} is denoted by G_{J}.

To each root $\alpha \in R$ there is an associated reflection s_{α} in the Weyl group $W=N_{G}(T) / T$. The reflection associated with the simple root α_{i} is called simple and will be simply written as s_{i}. We may then write each element w in W as a product of simple reflection and the minimal number of factors in such a product is the length of w and will be denoted by $l(w)$. The unique element of maximal length will be denoted by w_{0}. For $J \subset I$, we denote by W_{J} the subgroup of the Weyl group W generated by the simple reflections s_{i} for, $i \in J$, and by W^{J} the set of minimal length coset representatives of W / W_{J}. The element in W_{J} of longest length is denoted by w_{0}^{J}. For an element $w \in W$ we let \dot{w} denote a representative for w in the normalizer of T. Moreover, we define $R(w)=\left\{\alpha \in R^{+}: w \alpha \in R^{+}\right\}$, and denote by U_{w} the subgroup of B generated by the root subgroups U_{α} for $\alpha \in R(w)$. Then we let B_{w} denote the subgroup $T U_{w}$ of B.

By a variety over k we mean a reduced and separated scheme of finite type over k. In particular, a variety need not be irreducible.

3. Generalities on Frobenius splitting

Let X be a scheme of finite type over an algebraically closed field k of positive characteristic $p>0$. The absolute Frobenius morphism $F: X \rightarrow X$ on X is the morphism of schemes which on the level of points is the identity map and where the associated map of sheaves

$$
F^{\sharp}: \mathcal{O}_{X} \rightarrow F_{*} \mathcal{O}_{X},
$$

is the p-th power map. A Frobenius splitting of X is an \mathcal{O}_{X}-linear morphism

$$
s: F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}
$$

such that the composition $s \circ F^{\sharp}$ is the identity map.
3.1. Compatibly split subschemes. Let Y denote a closed subscheme of X with sheaf of ideals \mathcal{J}_{Y}. A Frobenius splitting s of X is said to compatibly Frobenius split Y if $s\left(\mathcal{J}_{Y}\right) \subset \mathcal{J}_{Y}$. In this case there exists an induced Frobenius splitting of Y. When Y is compatibly Frobenius split by s then any irreducible component of Y will also be compatibly Frobenius split by s. Moreover, if Y^{\prime} is another (by s) compatibly Frobenius split closed subscheme then the scheme theoretic intersection $Y \cap Y^{\prime}$ will also be compatibly Frobenius split by s.
3.2. Push-forward. Let $f: X \rightarrow X^{\prime}$ denote a morphism of schemes of finite type over k. Assume that X admits a Frobenius splitting s which compatibly splits a closed subscheme Y. If the induced map $f^{\sharp}: \mathcal{O}_{X^{\prime}} \rightarrow f_{*} \mathcal{O}_{X}$, is an isomorphism, then s induces by push-forward a Frobenius splitting of X^{\prime} which compatibly Frobenius splits the scheme theoretic image of Y.
3.3. Stable Frobenius splitting along divisors. Let D denote an effective Cartier divisor on X and let s_{D} denote the canonical section of the associated line bundle $\mathcal{O}_{X}(D)$. Then X is said to admit a stable Frobenius splitting along D if there exists a positive integer e and an \mathcal{O}_{X}-linear morphism

$$
s: F_{*}^{e} \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}
$$

such that $s\left(s_{D}\right)=1$. Notice that in this case the composition of s with the canonical map $\mathcal{O}_{X} \rightarrow F_{*}^{e} \mathcal{O}_{X}(D)$, defined by s_{D}, is a Frobenius splitting of X. If D^{\prime} is another effective divisor then it is known (see e.g. [B-T, Lemma 3.1]) that X is stably Frobenius split along the sum $D+D^{\prime}$ if and only if X is stably Frobenius split along both D and D^{\prime}.

When X admits a stable Frobenius splitting s along D and Y is a closed subscheme of X, then we say that s compatibly Frobenius splits Y if $s\left(F_{*}^{e}\left(\mathcal{J}_{Y} \otimes \mathcal{O}_{X}(D)\right)\right) \subset \mathcal{J}_{Y}$ and, moreover, none of the components of Y are contained in the support of D.
3.4. Canonical Frobenius splitting. Let now G be a connected reductive linear algebraic group. Fix a Borel subgroup B and a maximal torus $T \subset B$ of G. When X is a B-variety there is an induced action of B on the set of \mathcal{O}_{X}-linear maps $\operatorname{Hom}_{\mathcal{O}_{X}}\left(F_{*} \mathcal{O}_{X}, \mathcal{O}_{X}\right)$. More precisely, when $b \in B$ and $f \in \mathcal{O}_{X}(V)$, for V open in X, then we define $b \cdot f$ to be the function on $b V$ defined by $(b \cdot f)(v)=f\left(b^{-1} v\right)$. Then for $s: F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ we define $(b \star s): F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ by

$$
(b \star s)(f)=b \cdot s\left(b^{-1} \cdot f\right) .
$$

We regard $\operatorname{Hom}_{\mathcal{O}_{X}}\left(F_{*} \mathcal{O}_{X}, \mathcal{O}_{X}\right)$ as a k-vectorspace by letting $z \in k$ act on $s: F_{*} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ as

$$
(z . s)(f)=z^{1 / p} s(f)
$$

We may then define the following important concept : a Frobenius splitting s of X is said to be (B, T)-canonical if :

- $t \star s=s, \forall t \in T$.
- Let $\alpha \in \Delta$ and let $x_{\alpha}: k \rightarrow G$ be the associated homomorphism of algebraic groups satisfying $t x_{\alpha}(z) t^{-1}=x_{\alpha}(\alpha(t) z), t \in T$. Then

$$
x_{\alpha}(z) \star s=\sum_{i=1}^{p-1} z^{i} \cdot s_{i, \alpha}, \text { for all } z \in k
$$

for certain fixed $s_{i, \alpha} \in \operatorname{Hom}_{\mathcal{O}_{X}}\left(F_{*} \mathcal{O}_{X}, \mathcal{O}_{X}\right)$.

When X is a B-variety we define the variety $G \times_{B} X$ to be the quotient of $G \times X$ by the B-action defined by $b .(g, x)=\left(g b^{-1}, b x\right)$ for $b \in B, g \in G$ and $x \in X$. With this notation we have the following crucial result connected with canonical Frobenius splittings (see e.g. [B-K, 4.1.E(4)])

Proposition 3.1. Let X be a variety admitting a (B, T)-canonical Frobenius splitting s. Then the variety $G \times_{B} X$ admits a (B, T) canonical Frobenius splitting such that $\overline{B \dot{w} B} \times{ }_{B} X$ is compatibly Frobenius split for all $w \in W$ and such that $G \times_{B} Y$ is compatibly Frobenius split for all B-stable subvarieties of X which are compatibly Frobenius split by s.
3.5. Strong F-regularity. A general reference for this subsection is $[\mathrm{H}-\mathrm{H}]$. Let K be a field of positive characteristic $p>0$ and let R denote a commutative K-algebra essentially of finite type, i.e. equal to some localization of a finitely generated K-algebra. We say that R is strongly F-regular if for each $s \in R$, not contained in a minimal prime of R, there exists a positive integer e such that the R-linear map $F_{s}^{e}: R \rightarrow F_{*}^{e} R, r \mapsto r^{p^{e}} s$, is split. When R is strongly F-regular then R is normal and Cohen-Macaulay. Moreover, all ideals in R will be tightly closed and thus R will be F-rational, i.e. every parameter ideal is tightly closed.

The ring R is strongly F-regular if and only if all of its localized rings are strongly F-regular. Thus, we define a scheme X of finite type over K to be strongly F-regular if all of its local rings $\mathcal{O}_{X, x}$, for $x \in X$, are strongly F-regular. Then the affine scheme $\operatorname{Spec}(R)$ (when R is a finitely generated K-algebra) is strongly F-regular precisely when R is strongly F-regular.
3.6. Global F-regularity. Consider an irreducible projective variety X over k. For an ample line bundle \mathcal{L} on X we define the associated section ring to be

$$
R=R(X, \mathcal{L}):=\bigoplus_{n \in \mathbb{Z}} \Gamma\left(X, \mathcal{L}^{n}\right)
$$

We then say that X is globally F-regular if the $\operatorname{ring} R(X, \mathcal{L})$ is strongly F-regular for some (or equivalently, any) ample invertible sheaf \mathcal{L} on X. Global F-regularity was introduced by K. Smith in S2. When X is globally F-regular then X is also strongly F-regular. In particular, globally F-regular varieties are normal, Cohen-Macaulay and locally F-rational.

The following important result by Smith [S2, Theorem 3.10] connects global F-regularity, Frobenius splitting and strong F-regularity.

Theorem 3.2. If X is an irreducible projective variety over k then the following are equivalent:
(1) X is globally F-regular.
(2) X is stably Frobenius split along an ample effective Cartier divisor D and the (affine) complement $X \backslash D$ is strongly F-regular.
(3) X is stably Frobenius split along every effective Cartier divisor.

The connection between (1) and (3) in this theorem leads to the following result which can be found in [L-P-T].
Corollary 3.3. Let $f: \tilde{X} \rightarrow X$ be a morphism of projective varieties. If the connected map $f^{\sharp}: \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{\tilde{X}}$ is an isomorphism and \tilde{X} is globally F-regular then X is also globally F-regular.

4. Some criteria for globally F-regularity

Throughout this section we assume that k has positive characteristic. The following result connects canonical Frobenius splitting and global F-regularity.

Proposition 4.1. Let Y be an irreducible projective B-variety. Let $y \in Y$ and $w \in W$. Define $Y^{\prime}=Y-B \cdot y$ and assume that
(1) $B_{w} \cdot y=B \cdot y$ and $B \cdot y$ is dense in Y.
(2) Y admits a ($B, T)$-canonical Frobenius splitting which compatibly splits the subvariety Y^{\prime}.
(3) Y is strongly F-regular.

Write $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{n}}$ as a reduced product of simple reflections and define

$$
Z=P_{1} \times_{B} P_{2} \times_{B} \cdots \times_{B} P_{n} \times_{B} Y,
$$

where $P_{j}=B \cup B \dot{s}_{i_{j}} B$ is a minimal parabolic subgroup. Then Z is globally F-regular.

Proof. Let \mathcal{L} denote an ample line bundle on Z. Since Y is strongly F-regular, Y is normal. Moreover the Picard group of B is trivial. Thus we may consider \mathcal{L} as a B-linearized line bundle. In particular, B acts linearly on the finite dimensional vector space $\mathrm{H}^{0}(Z, \mathcal{L})$ of global sections of \mathcal{L} and we may thus find a nonzero global section s which is B-invariant up to scalars.

Let $z=\left[\dot{s}_{i_{1}}, \ldots, \dot{s}_{i_{n}}, y\right] \in Z$. Then by assumption (1) the orbit $B \cdot z$ is dense in Z with complement equal to the union of the subsets

$$
\begin{gathered}
Z_{i}=P_{1} \times_{B} \cdots \times_{B} B \times_{B} \cdots \times_{B} P_{n} \times_{B} Y, i=1, \ldots, n, \\
Z_{j}^{\prime}=P_{1} \times_{B} P_{2} \times_{B} \cdots \times_{B} P_{n} \times_{B} Y_{j}^{\prime}, j=1, \ldots, m,
\end{gathered}
$$

where Z_{i} is defined by substituting B with P_{i} in the definition of Z and $Y_{j}^{\prime}, j=1, \ldots, m$, denotes the components of Y^{\prime}. As the support $\operatorname{supp}(s)$ of s is B-stable and of codimension 1 in Z it follows that $\operatorname{supp}(s)$ is contained in $Z-B \cdot z$, i.e in the union of $Z_{i}, i=1, \ldots, n$ and
$Z_{j}^{\prime}, j=1, \ldots, m$. In particular, we may choose nonnegative integers n_{i} and m_{j} such that the zero divisor of s in Z equals

$$
Z(s)=\sum_{i=1}^{n} n_{i} Z_{i}+\sum_{j=1}^{m} m_{j} Z_{j}^{\prime} .
$$

By assumption (2) and Proposition 3.1]the variety Z admits a Frobenius splitting which compatibly Frobenius splits $Z_{j}^{\prime}, j=1, \ldots, m$ and $Z_{i}, i=1, \ldots, n$. Let Y^{0} denote the (B-invariant) nonsingular locus in Y. As Y is normal the complement $Y-Y^{0}$ is of codimension ≥ 2. Now define

$$
Z^{0}=P_{1} \times_{B} P_{2} \times_{B} \cdots \times_{B} P_{n} \times_{B} Y^{0}
$$

Then Z^{0} is a smooth variety which admits a Frobenius splitting compatibly splitting the divisors $Z_{i} \cap Z^{0}, i=1, \ldots, n$ and the subvarieties $Z_{j}^{\prime} \cap Z^{0}, j=1, \ldots, m$. As Z^{0} is smooth this implies (see e.g. L-P-T, Lemma 1.1]) that Z^{0} admits a stable Frobenius splitting along the effective Cartier divisor :

$$
\sum_{i=1}^{n}\left(Z_{i} \cap Z^{0}\right)+\sum_{j=1}^{m} \delta_{j}\left(Z_{j}^{\prime} \cap Z^{0}\right)
$$

where $\delta_{j}=0$ if Z_{j}^{\prime} is not a divisor and else $\delta_{j}=1$. As a consequence, Z^{0} admits a stable Frobenius splitting along

$$
\sum_{i=1}^{n} n_{i}\left(Z_{i} \cap Z^{0}\right)+\sum_{j=1}^{m} m_{j}\left(Z_{j}^{\prime} \cap Z^{0}\right)
$$

In other words, Z^{0} is stably Frobenius split along the Cartier divisor defined by the restriction of s to Z^{0}. Thus the morphism

$$
\mathcal{O}_{Z^{0}} \rightarrow F_{*}^{e} \mathcal{O}_{Z^{0}}\left(Z(s) \cap Z^{0}\right),
$$

defined by the restriction of s to Z^{0} splits for some sufficiently large integer e.

As Y is normal so is Z. Moreover, $Z-Z^{0}$ has codimension ≥ 2 and thus $i_{*} i^{*} \mathcal{M}$ for any line bundle \mathcal{M} on Z where i denotes the inclusion map of Z^{0} in Z. Applying the functor i_{*} to the stable splitting above we find that Z admits a stable Frobenius splitting along the effective Cartier divisor defined by s. Moreover, as Y is strongly F-regular also Z and hence $Z-\operatorname{supp}(s)$ is strongly F-regular (see e.g. L-S, Lemma 4.1]). This proves that Z is globally F-regular and ends the proof.

For convenience of the reader we include the following result (see \underline{R}, Lemma 2.11]) which we will use in the proof of the next proposition.

Lemma 4.2. Let $f: X \rightarrow Y$ denote a projective morphism of irreducible varieties and let X^{\prime} denote a closed irreducible subvariety of X. Consider the image $Y^{\prime}=f\left(X^{\prime}\right)$ as a closed subvariety of Y. Let \mathcal{L} denote an ample line bundle on Y and assume
(1) $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$.
(2) $\mathrm{H}^{i}\left(X, f^{*} \mathcal{L}^{n}\right)=\mathrm{H}^{i}\left(X^{\prime}, f^{*} \mathcal{L}^{n}\right)=0$ for $i>0$ and $n \gg 0$.
(3) The restriction map $\mathrm{H}^{0}\left(X, f^{*} \mathcal{L}^{n}\right) \rightarrow \mathrm{H}^{0}\left(X^{\prime}, f^{*} \mathcal{L}^{n}\right)=0$ is surjective for $n \gg 0$.
Then the induced map $f^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is a rational morphism, i.e. $f_{*}^{\prime} \mathcal{O}_{X^{\prime}}=\mathcal{O}_{Y^{\prime}}$ and $\mathrm{R}^{i} f_{*}^{\prime} \mathcal{O}_{X^{\prime}}=0, i>0$.

Proposition 4.3. Let X denote an irreducible G-variety and let Y denote a closed irreducible B-subvariety of X. Assume that X admits $a(B, T)$-canonical Frobenius splitting which compatibly splits Y. Let P_{1}, \ldots, P_{n} denote a collection of minimal parabolic subgroups of G. Then the natural map

$$
f: Z=P_{1} \times_{B} \cdots \times_{B} P_{n} \times_{B} Y \rightarrow\left(P_{1} \cdots P_{n}\right) \cdot Y \subset X
$$

is a rational morphism, i.e. $R^{i} f_{*} \mathcal{O}_{Z}=0, i>0, f_{*} \mathcal{O}_{Z}=\mathcal{O}_{f(Z)}$.
Proof. Define $Z_{X}=P_{1} \times{ }_{B} \cdots \times_{B} P_{n} \times_{B} X$. As X is a G-variety we may identify Z_{X} with the product $Z\left(P_{1}, \ldots, P_{n}\right) \times X$, where $Z\left(P_{1}, \ldots, P_{n}\right)$ denotes the Bott-Samelson variety $P_{1} \times_{B} \cdots \times_{B} P_{n} / B$. We define g : $Z_{X} \rightarrow X$ to be the associated projection map. As $Z\left(P_{1}, \ldots, P_{n}\right)$ is an irreducible projective variety we have $g_{*} \mathcal{O}_{Z_{X}}=\mathcal{O}_{X}$.

Let $Z_{X, i}, i=1, \ldots, n$, denote the Cartier divisor

$$
Z_{X, i}=P_{1} \times_{B} \cdots \times_{B} B \times_{B} \cdots \times_{B} P_{n} \times_{B} X
$$

in Z_{X}, where P_{i} in the definition of Z_{X} is substituted by B. Then, by Proposition 3.1, the variety Z_{X} admits a Frobenius splitting s which compatibly splits the subvariety Z and the divisors $Z_{X, i}, i=1, \ldots, n$. Thus by [L-P-T, Lem.1.1] the Frobenius splitting $s: F_{*} \mathcal{O}_{Z_{X}} \rightarrow O_{Z_{X}}$ maps through the morphism

$$
F_{*} \mathcal{O}_{Z_{X}} \rightarrow F_{*}\left(\mathcal{O}_{Z_{X}}\left(\sum_{i=1}^{n} Z_{X, i}\right)\right)
$$

defined by the product of the canonical sections of the Cartier divisors $Z_{X, i}, i=1, \ldots, n$. Thus we may regard s as a stable Frobenius splitting of X along $\sum_{i=1}^{n} Z_{X, i}$ which compatibly splits Z. By [T] Lem.4.3, Lem.4.4] we conclude that Z_{X} admits a stable Frobenius splitting along any divisor of the form

$$
\sum_{i=1}^{n} n_{i} Z_{X, i}
$$

with n_{i} being positive integers, which compatibly Frobenius splits Z.
Let \mathcal{L} denote any ample line bundle on X. Choose $n_{i}, i=1, \ldots, n$, such that the line bundle

$$
\mathcal{L}_{m}^{\prime}=g^{*} \mathcal{L}^{p^{m}} \otimes \mathcal{O}_{Z_{X}}\left(\sum_{i=1}^{n} n_{i} Z_{X, i}\right)
$$

is ample on Z_{X} for all $m>0$ (that this is possible follows e.g. from [L-T], Lem.6.1]). By [T, Lem.4.8] there exists, for some m, an embedding of abelian groups

$$
\mathrm{H}^{j}\left(Z_{X}, \mathcal{J}_{Z} \otimes g^{*} \mathcal{L}\right) \subseteq \mathrm{H}^{j}\left(Z_{X}, \mathcal{J}_{Z} \otimes \mathcal{L}_{m}^{\prime}\right)
$$

for all j. So by [B-K, Thm.1.2.8] and the ampleness of \mathcal{L}_{m}^{\prime} it follows that $\mathrm{H}^{j}\left(Z_{X}, \mathcal{J}_{Z} \otimes g^{*} \mathcal{L}\right.$) is zero for $j>0$. Similarly (with Z substituted with $\left.Z_{X}\right)$ we may conclude that $\mathrm{H}^{j}\left(Z_{X}, g^{*} \mathcal{L}\right)$ is zero for $j>0$. Together these two latter statements imply that $\mathrm{H}^{j}\left(Z, g^{*} \mathcal{L}\right)$ is also zero for $j>0$.

Applying Lemma 4.2 now ends the proof.
Combining the two propositions above with Corollary 3.3 we find
Theorem 4.4. Let X denote an irreducible G-variety and let Y be a closed irreducible B-subvariety of X. Assume that X admits a (B, T) canonical Frobenius splitting which compatibly splits Y. Let $y \in Y$ and $w \in W$ and assume that the triple (Y, y, w) satisfies the assumptions in Proposition 4.1. Then $(\overline{B \dot{w} B}) Y$ is globally F-regular.

5. The $G \times G$-orbit closures in toroidal embeddings

Consider G as a $G \times G$-variety by left and right translation. An equivariant G-embedding (or simply a G-embedding) is a normal $G \times$ G-variety X containing an open subset which is $G \times G$-equivariantly isomorphic to G.
5.1. Wonderful compactifications. When $G=G_{\mathrm{ad}}$ is of adjoint type there exists a distinguished equivariant embedding \mathbf{X} of G which is called the wonderful compactification (see e.g. [B-K] 6.1]).

The boundary $\boldsymbol{X}-G$ of \boldsymbol{X} is a union of irreducible divisors \boldsymbol{X}_{i}, $i \in I$, which intersect transversally. For a subset $J \subset I$ we denote the intersection $\cap_{j \in J} \boldsymbol{X}_{j}$ by \boldsymbol{X}_{J}. Then $\boldsymbol{Y}:=\boldsymbol{X}_{I}$ is the unique closed $G \times G$-orbit in \boldsymbol{X}. As a $G \times G$-variety \boldsymbol{Y} is isomorphic to ${ }^{G} / B \times{ }^{G} / B$.
5.2. Toroidal embeddings. An embedding X of a reductive group G is called toroidal if the canonical map $\pi_{\mathrm{ad}}: G \rightarrow G_{\mathrm{ad}}$ admits an extension $\pi: X \rightarrow \mathbf{X}$ into the wonderful compactification \mathbf{X} of the group $G_{\text {ad }}$ of adjoint type.
5.3. The $G \times G$-orbits. For the rest of this section we assume that X is a toroidal embedding of G. The boundary $X-G$ is of pure codimension 1 (see [H, Prop.3.1]). Let X_{1}, \ldots, X_{n} denote the boundary divisors. For each $G \times G$-orbit closure Y in X we then associate the set

$$
K_{Y}=\left\{i \in\{1, \ldots, n\} \mid Y \subset X_{i}\right\}
$$

where by definition $K_{Y}=\varnothing$ when $Y=X$. Then by [B-K, Prop.6.2.3], $Y=\cap_{i \in K_{Y}} X_{i}$. Moreover, we define

$$
\mathcal{J}=\left\{K_{Y} \subset\{1, \ldots, n\} \mid Y \text { a } G \times G \text {-orbit closure in } X\right\}
$$

and write $X_{K}:=\cap_{i \in K} X_{i}$ for $K \in \mathcal{J}$. Then $\left(X_{K}\right)_{K \in \mathcal{J}}$ are the closures of $G \times G$-orbits in X. When X is the wonderful compactification of $G_{\text {ad }}$ then $\mathcal{J}=\mathcal{P}(I)$, where $\mathcal{P}(I)$ denotes the set of subsets of I. Moreover, the $G \times G$-equivariant map $\pi: X \rightarrow \boldsymbol{X}$ induces a map $p: \mathcal{J} \rightarrow \mathcal{P}(I)$ such that $\pi\left(X_{K}\right)=\boldsymbol{X}_{p(K)}$.
5.4. The base points. Let X^{\prime} denote the closure of T within X and let similarly \mathbf{X}^{\prime} denote the closure of $T_{\mathrm{ad}}=\pi_{\mathrm{ad}}(T)$ within \mathbf{X}. Let X_{0} denote the complement of the union of the closures $\overline{B \dot{s}_{i} B^{-}}, i=1, \ldots, l$, within X. Then X_{0} is an open $B \times B^{-}$-stable subset of X. Moreover, if we let X_{0}^{\prime} denote the intersection of X^{\prime} and X_{0} then the map

$$
\begin{gathered}
U \times U^{-} \times X_{0}^{\prime} \rightarrow X_{0} \\
(u, v, x) \mapsto(u, v) z
\end{gathered}
$$

is an isomorphism (see [B-K, Prop.6.2.3(i)]). With similar definitions for \mathbf{X} we also obtain an isomorphism

$$
U \times U^{-} \times \mathbf{X}_{0}^{\prime} \rightarrow \mathbf{X}_{0}
$$

The above defined subsets are related in the way that $\pi^{-1}\left(\mathbf{X}_{0}^{\prime}\right)=X_{0}^{\prime}$ and consequently also $\pi^{-1}\left(\mathbf{X}_{0}\right)=X_{0}$.

The set \mathbf{X}_{0}^{\prime} is a toric variety (with respect to $T_{\text {ad }}$). In particular, it contains finitely many $T \times T$-orbits. The $T \times T$-orbits are classified by the set $\mathcal{P}(I)$ of subsets of I. We may choose representatives \boldsymbol{h}_{J}, $J \subset I$, for these orbits such that \boldsymbol{h}_{J} is invariant under the groups $U_{I-J}^{-} \times U_{I-J}, \operatorname{diag}\left(L_{I-J}\right)$ and $Z\left(L_{I-J}\right) \times Z\left(L_{I-J}\right)$ (see e.g. [Sp, 1.1]). Such a representative \boldsymbol{h}_{J} is then uniquely determined.

Each $G \times G$-orbit in \mathbf{X} intersects \mathbf{X}_{0}^{\prime} in a unique $T \times T$-orbit (see $\mathrm{B}-\mathrm{K}$, Prop.6.2.3(ii)]). In particular, the elements \boldsymbol{h}_{J} are also representatives for the $G \times G$-orbits in \mathbf{X}. Moreover, $(G \times G) \cdot \boldsymbol{h}_{J}$ is the open dense $G \times G$-orbit in \boldsymbol{X}_{J}.

Now for the toroidal embedding X and $K \in \mathcal{J}$, we may pick a point h_{K} in the open $G \times G$-orbit of X_{K} which maps to $\boldsymbol{h}_{p(K)}$. Then $\left(h_{K}\right)_{K \in \mathcal{J}}$ is a set of representatives of the $G \times G$-orbits in X. Notice that $h_{K} \in$ $\pi_{1}\left(\boldsymbol{X}_{0}^{\prime}\right) \subset X_{0}^{\prime}$.
5.5. The structure of $G \times G$-orbit closures. The following result should be well known but, as we have not been able to find a reference to it, we include a proof.

Lemma 5.1. Let H denote a linear algebraic over the field k and let Y denote a homogeneous H-variety. Let $y \in Y$ and let $p_{y}: H \rightarrow Y$ denote the associated orbit map. Let H_{y} denote the stabilizer group scheme of y. Then $Y \simeq H / H_{y}$ as homogeneous H-varieties. Moreover, if H_{y} is a normal subgroup scheme of H then Y may be given a structure of a linear algebraic group such that p_{y} is a morphism of algebraic groups.

Proof. By [D-G] Prop.III.3.5.2.] it follows that we may identify H / H_{y} with a locally closed subscheme Y^{\prime} of Y. As Y is a homogeneous H variety we conclude that $Y=Y^{\prime}$. In particular, H / H_{y} is a variety.

Consider now the case when H_{y} is a normal subgroup scheme of H. Then by [D-G] Prop.III.3.5.6] the quotient H / H_{y} is an affine group scheme. Thus the isomorphism $Y \simeq H / H_{y}$ induces a desired algebraic group structure on Y.

Proposition 5.2. Let X be a toroidal embedding. Let $K \in \mathcal{J}, J=p(K)$ and $h=h_{K}$. Then
(1) h is invariant under the groups $U_{I-J}^{-} \times U_{I-J}$ and $\operatorname{diag}\left(L_{I-J}\right)$.
(2) We simply write $\left(L_{I-J} \times\{1\}\right) \cdot h$ as $L_{I-J} \cdot h$. The closure $\overline{L_{I-J} \cdot h}$ in X is $L_{I-J} \times L_{I-J \text {-equivariantly }}$ isomorphic to a toroidal equivariant embedding of a quotient L_{I-J} / H_{I-J} of L_{I-J} by some (not necessarily reduced) subgroup H_{I-J} of the (scheme theoretical) center of L_{I-J}.
(3) The natural morphism

$$
\phi_{K}:(G \times G) \times_{P_{I-J}^{-} \times P_{I-J}} \overline{L_{I-J} \cdot h} \rightarrow X_{K}
$$

is a birational and bijective $G \times G$-equivariant morphism. Moreover, when the characteristic of k is positive then ϕ_{K} is an isomorphism.
(4) For $v \in W^{I-J}$ and $w \in W$ define $[K, v, w]:=(B \dot{v}, B \dot{w}) \cdot h$. Then

$$
(G \times G) \cdot h=\bigsqcup_{v \in W^{I-J}, w \in W}[K, v, w] .
$$

Proof. The statements holds if $X=\mathbf{X}$ (see [Sp, 1.1]).
Now let $V=\pi^{-1}\left(\boldsymbol{h}_{J}\right) \subset \pi^{-1}\left(\mathbf{X}_{0}^{\prime}\right)=X_{0}^{\prime}$. Let $U_{1} \simeq \mathbb{G}_{a}$ be a 1dimensional additive subgroup in $G \times G$ normalized by $T \times T$ which acts trivially on \boldsymbol{h}_{J}. Then $U_{1} \cdot h \subset V \subset X_{0}^{\prime}$. By [B-K] Prop.6.2.3(ii)] the $G \times G$-orbit of h intersects X_{0}^{\prime} in a single $T \times T$-orbit. Hence, $U_{1} \cdot h \subset(T \times T) \cdot h$ and thus U_{1} leaves $(T \times T) \cdot h$ invariant. But $(T \times T) \cdot h \simeq\left(k^{*}\right)^{n}$, for some n, and any action of \mathbb{G}_{a} on $\left(k^{*}\right)^{n}$ is trivial. In particular, U_{1} leaves h invariant. This proves that h is invariant under $U_{I-J}^{-} \times U_{I-J}$ and the semisimple part of $\operatorname{diag}\left(L_{J}\right)$. Now (1) follows as any element in the toric variety X^{\prime} is invariant under $\operatorname{diag}(T)$.

We identify X_{0} with $U \times U^{-} \times X_{0}^{\prime}$ and simply write $(T \times\{1\}) \cdot h$ as $T \cdot h$. Then $\left(U \cap L_{I-J}\right) \times\left(U^{-} \cap L_{I-J}\right) \times\left(\overline{T \cdot h} \cap X_{0}^{\prime}\right)$ is a closed irreducible subset of X_{0} contained in $\overline{L_{I-J} h}$ and of the same dimension as $\overline{L_{I-J} h}$. Hence $\overline{L_{I-J} \cdot h} \cap X_{0} \simeq\left(U \cap L_{I-J}\right) \times\left(U^{-} \cap L_{I-J}\right) \times\left(\overline{T \cdot h} \cap X_{0}^{\prime}\right)$. As $X^{\prime}=\bar{T}$ is a toric variety every T-orbit closure in X^{\prime} is normal. Hence $\overline{L_{I-J} \cdot h} \cap X_{0}$ is normal. As a consequence, every intersection of the form $\overline{L_{I-J} \cdot h} \cap x X_{0}$, for $x \in L_{I-J}$, is also normal.

We claim that the union $\cup_{x \in L_{I-J}} x X_{0}$ contains $\overline{L_{I-J} \cdot h}$. To see this it suffices to prove that the union $\cup_{x \in L_{I-J}} x \mathbf{X}_{0}$ contains the wonderful
compactification $\overline{G_{I-J}}=\overline{L_{I-J} \cdot \boldsymbol{h}_{J}}$ (see [Sp, 1.1] for this equality) of G_{I-J}. But \mathbf{X}_{0} contains (by definition) the corresponding open subset $\left(\overline{G_{I-J}}\right)_{0}$ of $\overline{G_{I-J}}$ and, moreover, $\overline{G_{I-J}}$ is covered by the $L_{I-J \text {-translates }}$ of the subset $\left(\overline{G_{I-J}}\right)_{0}$. This proves the claim and as a consequence $\overline{L_{I-J} \cdot h}$ is normal.

As $\pi(h)=\boldsymbol{h}_{J}$ it follows that the scheme theoretic $L_{I-J \text {-stabilizer }}$ $\left(L_{I-J}\right)_{h}$ of h is a closed subgroup scheme of the L_{I-J}-stabilizer of \boldsymbol{h}_{J}. The latter stabilizer coincides with the scheme theoretic center of L_{I-J}. So applying Lemma 5.1 we conclude that $L_{I-J} \cdot h$ is isomorphic to the reductive group $L_{I-J} /\left(L_{I-J}\right)_{h}$. As a consequence, $\overline{L_{I-J} \cdot h}$ is an equivariant embedding of $L_{I-J} /\left(L_{I-J}\right)_{h}$. Moreover the map π induces a morphism $\pi: \overline{L_{I-J} \cdot h} \rightarrow \overline{L_{I-J} \cdot \boldsymbol{h}_{J}} \simeq \overline{G_{I-J}}$, so $\overline{L_{I-J} \cdot h}$ is even a toroidal embedding of $L_{I-J} /\left(L_{I-J}\right)_{h}$. This proves statement (2).

Consider the commutative diagram

where all the maps are the natural ones. As ϕ_{J} is an isomorphism it follows that ϕ_{K} is injective. As ϕ_{K} is a projective morphism this implies that ϕ_{K} is finite. Moreover, as $\overline{L_{I-J} \cdot h}$ is closed in X_{K} and invariant under $P_{I-J}^{-} \times P_{I-J}$ the image of ϕ_{K} is closed. Therefore ϕ_{K} is surjective and hence bijective. Moreover, due to the identification $\overline{L_{I-J} h} \cap X_{0} \simeq\left(U \cap L_{I-J}\right) \times\left(U^{-} \cap L_{I-J}\right) \times\left(\overline{T \cdot h} \cap X_{0}^{\prime}\right)$ it follows that ϕ_{K} is birational. This proves the first part of statement (3). When the characteristic is positive then X_{K} is Frobenius split (see e.g. B-K, Thm.6.2.7]) and thus weakly normal (see e.g. [B-K, Thm.1.2.5]). It follows that ϕ_{K} is an isomorphism which ends the proof of statement (3).

By statement (1) and the Bruhat decomposition it easily follows that the union of $[K, v, w]$, for $v \in W^{I-J}, w \in W$, equals $(G \times G) \cdot h$. Moreover, when $X=\boldsymbol{X}$ then by [Sp, Lemma 1.3(i)] this union is disjoint (notice that our notation is slightly different from the notation used in $[\mathrm{Sp}$: the subset $[J, v, w]$ in Sp corresponds to $[I-J, x, w]$ in the present paper). As $\pi([K, v, w])$ equals the associated $B \times B$-orbit $[J, v, w]$ in \boldsymbol{X} this proves statement (4) in general.

Remark 5.3. Statement (3) in Proposition 5.2 above is also correct in characteristic 0 . This follows from Theorem 9.1 which proves that X_{K} is normal and thus, by Zariski's main theorem, that ϕ_{K} is an isomorphism. A result similar to (3) for some special (i.e. regular) embeddings has earlier been obtained in [B, Sect.2.1].

6. $B \times B$-ORbit closures

In this section we will study inclusions between $B \times B$-orbit closures in a toroidal embedding X of G. We will state a precise description of when a $B \times B$-orbit $[K, v, w]$ is contained in the closure of another $B \times B$-orbit $\left[K^{\prime}, v^{\prime}, w^{\prime}\right]$. This generalizes the corresponding results of T. Springer for $X=\boldsymbol{X}$ given in [Sp, Sect.2]. As a consequence we will be able to prove that any $B \times B$-orbit closure Z in X of codimension ≥ 2 is a component of an intersection of $B \times B$-orbit closures distinct from Z. By standard Frobenius splitting techniques this will enable us to prove that each $B \times B$-orbit closure admits a canonical Frobenius splitting.
6.1. Inclusions between $B \times B$-orbit closures. Let $K \in \mathcal{J}$ and $J=p(K)$. Let $B_{J}=B \cap L_{I-J}$ and $B^{\prime}=\left(w_{0}^{I-J} w_{0}\right) B\left(w_{0}^{I-J} w_{0}\right)_{1}$. Define $\pi_{J}: B \rightarrow B_{J}$ by $\pi_{J}(b u)=b$, for $b \in B_{J}$ and $u \in U_{I-J}$, and $\pi_{J}^{\prime}: B^{\prime} \rightarrow$ B_{J} by $\pi_{J}^{\prime}(b u)=b$, for $b \in B_{J}$ and $u \in U_{I-J}^{-}$. By Proposition 5.2(1) the base point h_{K} is invariant under $\operatorname{diag}\left(B_{J}\right)$. In particular, we may define a $B^{\prime} \times B$ action on $G \times G \times \overline{B_{J} \cdot h_{K}}$ by

$$
\left(b_{1}, b_{2}\right)\left(g_{1}, g_{2}, z\right)=\left(g_{1} b_{1} 1, g_{2} b_{2} 1,\left(\pi_{J}^{\prime}\left(b_{1}\right), \pi_{J}\left(b_{2}\right)\right) z\right)
$$

for $b_{1} \in B^{\prime}, b_{2} \in B, g_{1}, g_{2} \in G$ and $z \in \overline{B_{J} \cdot h_{K}}$. The associated quotient is denoted by $(G \times G) \times_{B^{\prime} \times B} \overline{B_{J} \cdot h_{K}}$. The map $G \times G \times \overline{B_{J} \cdot h_{K}} \rightarrow X$, $\left(g_{1}, g_{2}, z\right) \mapsto\left(g_{1}, g_{2}\right) z$, induces a projective surjective morphism

$$
p_{K}:(G \times G) \times_{B^{\prime} \times B} \overline{B_{J} \cdot h_{K}} \rightarrow X_{K} .
$$

which can be used to prove
Lemma 6.1. Let $v, v^{\prime}, w, w^{\prime} \in W$. Assume that $v w_{0}^{I-J} \leq v^{\prime} w_{0}^{I-J}$ and $w^{\prime} \leq w$ in the Bruhat order on W. Then

$$
\left(B \dot{v}^{\prime}, B \dot{w}^{\prime}\right) \cdot\left(B_{J} \cdot h_{K}\right) \subset \overline{(B \dot{v}, B \dot{w}) \cdot\left(B_{J} \cdot h_{K}\right)}
$$

Proof. By restricting the map p_{K} above we obtain a projective and surjective map

$$
\left(\overline{B \dot{v} B^{\prime}} \times \overline{B \dot{w} B}\right) \times_{B^{\prime} \times B} \overline{B_{J} \cdot h_{K}} \rightarrow \overline{(B \dot{v}, B \dot{w}) \cdot\left(B_{J} \cdot h_{K}\right)} .
$$

For the above statement to be true it thus suffices to have $B v^{\prime} B^{\prime} \subset$ $\overline{B v B^{\prime}}$ and $B w^{\prime} B \subset \overline{B w B}$, which is clearly satisfied under the stated conditions.

Notice that when $v \in W^{I-J}$ then the set $(B \dot{v}, B \dot{w}) \cdot\left(B_{J} \cdot h_{K}\right)$, in Lemma 6.1] coincides with the orbit $[K, v, w]$.

Proposition 6.2. Let $K, K^{\prime} \in \mathcal{J}, v \in W^{I-p(K)}$, $v^{\prime} \in W^{I-p\left(K^{\prime}\right)}$ and $w, w^{\prime} \in W$. Then $\left[K^{\prime}, v^{\prime}, w^{\prime}\right]$ is contained in $\overline{[K, v, w]}$ if and only if $K \subset K^{\prime}$ and there exists $u \in W_{I-p\left(K^{\prime}\right)}$ and $u^{\prime} \in W_{I-p(K)} \cap W^{I-p\left(K^{\prime}\right)}$ such that $v u^{\prime} u \leq v^{\prime}, w^{\prime} u \leq w u^{\prime}$.

Proof. Notice $\overline{[K, v, w]} \subset \pi_{1}\left(\pi\left(\overline{(\overline{K, v, w]}))} \cap X_{K}\right.\right.$. Thus if $\left[K^{\prime}, v^{\prime}, w^{\prime}\right] \subset$ $\overline{[K, v, w]}$, then $K \subset K^{\prime}$ and $\left[p\left(K^{\prime}\right), v^{\prime}, w^{\prime}\right] \subset \overline{[p(K), v, w]}$. By [Sp, 2.4], there exists $u \in W_{I-p\left(K^{\prime}\right)}$ and $u^{\prime} \in W_{I-p(K)} \cap W^{I-p\left(K^{\prime}\right)}$ such that $v u^{\prime} u_{1} \leq$ $v^{\prime}, w^{\prime} u \leq w u^{\prime}$.

On the other hand, assume that $v^{\prime} \in W^{I-p\left(K^{\prime}\right)}, w^{\prime} \in W, u \in W_{I-p\left(K^{\prime}\right)}$ and $u^{\prime} \in W_{I-p(K)} \cap W^{I-p\left(K^{\prime}\right)}$ such that $v u^{\prime} u_{1} \leq v^{\prime}, w^{\prime} u \leq w u^{\prime}$. Assume, moreover, that $K \subset K^{\prime}$. By the one to one correspondence between the set of $G \times G$-orbits in X and the set of T-orbits in X_{0}^{\prime} B-K, Prop.6.2.3(ii)], it follows that $h_{K^{\prime}} \in \overline{T \cdot h_{K}}$. Thus $(\dot{x}, \dot{x}) h_{K^{\prime}} \in \overline{T \cdot h_{K}}$ for all $x \in W_{I-p(K)}$ by Proposition 5.2(i). Therefore, with $J^{\prime}=p\left(K^{\prime}\right)$, we find by use of Lemma 6.1

$$
\left[K^{\prime}, v^{\prime}, w^{\prime}\right]=\left(B \dot{v}^{\prime} \dot{u}, B \dot{w}^{\prime} \dot{u}\right) \cdot h_{K^{\prime}} \subset \overline{\left(B \dot{v} \dot{u}^{\prime}, B \dot{w} \dot{u}^{\prime}\right) \cdot\left(B_{J^{\prime}} \cdot h_{K^{\prime}}\right)} .
$$

As $u^{\prime} \in W^{I-J^{\prime}}$ we have $u^{\prime} B_{J^{\prime}} \subset B u^{\prime}$. Thus the right hand side of the above inclusion is contained in

$$
\overline{(B \dot{v} B, B \dot{w}) \cdot\left(\left(u^{\prime}, u^{\prime}\right) h_{K^{\prime}}\right)} \subset \overline{(B \dot{v}, B \dot{w}) \cdot\left(B_{J} \cdot h_{K}\right)}=\overline{[K, v, w]},
$$

which ends the proof.
We may reformulate the above proposition to a slightly simpler version.

Proposition 6.3. Let $K, K^{\prime} \in \mathcal{J}, v \in W^{I-p(K)}$, $v^{\prime} \in W^{I-p\left(K^{\prime}\right)}$ and $w, w^{\prime} \in W$. Then $\left[K^{\prime}, v^{\prime}, w^{\prime}\right] \subset \overline{[K, v, w]}$ if and only if $K^{\prime} \supset K$ and there exists $u \in W_{I-p(K)}$ such that $v u \leq v^{\prime}, w^{\prime} \leq w u$.

Proof. If $\left[K^{\prime}, v^{\prime}, w^{\prime}\right] \subset \overline{[K, v, w]}$, then in \boldsymbol{X} we have

$$
\left[I, v^{\prime}, w^{\prime}\right] \subset \overline{\left[p\left(K^{\prime}\right), v^{\prime}, w^{\prime}\right]} \subset \overline{[p(K), v, w]} .
$$

By Proposition 6.2 there exists $u \in W_{I-p(K)}$ such that $v u \leq v^{\prime}, w^{\prime} \leq$ $w u$. On the other hand, assume that $K^{\prime} \supset K$ and there exists $u \in$ $W_{I-p(K)}$ such that $v u \leq v^{\prime}, w^{\prime} \leq w u$. Write u as $u=u_{1} u_{2}$ for $u_{1} \in$ $W_{I-p(K)} \cap W^{I-p\left(K^{\prime}\right)}$ and $u_{2} \in W_{I-p\left(K^{\prime}\right)}$. By [He, Cor.3.4], there exists $u_{2}^{\prime} \leq u_{2}$ such that $w^{\prime}\left(u_{2}^{\prime}\right)_{1} \leq w u_{1}$. Moreover, $v u_{1} u_{2}^{\prime} \leq v u_{1} u_{2} \leq v^{\prime}$. Hence by Proposition 6.2. $\left[K^{\prime}, v^{\prime}, w^{\prime}\right] \subset \overline{[K, v, w]}$ and the proposition is proved.

For later reference we state the following easy consequences of the above propositions.

Corollary 6.4. Let $K, K^{\prime} \in \mathcal{J}, v \in W^{I-p(K)}, v^{\prime} \in W^{I-p\left(K^{\prime}\right)}$ and $w, w^{\prime} \in$ W.
(1) If $\overline{\left[K^{\prime}, v^{\prime}, w^{\prime}\right]} \subset \overline{[K, v, w]}$ then $v \leq v^{\prime}$.
(2) $\overline{\left[K, v, w^{\prime}\right]} \subset \overline{\left[K^{\prime}, v, w\right]}$ if and only if $w^{\prime} \leq w$ and $K^{\prime} \subset K$.
6.2. Intersection of $B \times B$-orbit closures. In this section we will prove.

Proposition 6.5. Let $Z \neq X$ denote a $B \times B$-orbit closure in X. If Z has codimension 1 in X the Z is either a boundary divisor X_{i}, $1 \leq i \leq n$, of X or else Z coincides with the closure of a codimension 1 Bruhat cell $B \dot{s_{i}} \dot{w}_{0} B, 1 \leq i \leq l$, within X. If the codimension of Z is ≥ 2 then there exist $B \times B$-orbit closures $Z_{1} \neq Z$ and $Z_{2} \neq Z$ in X such that Z is a component of the intersection $Z_{1} \cap Z_{2}$.

The proof of Proposition 6.5 will depend on the following 4 lemmas.
Lemma 6.6. Let $w \in W$ be an element of length $l(w)<l\left(w_{0}\right)-1$. Then there exist elements w^{\prime} and $w^{\prime \prime}$ distinct from w such that $\overline{[\varnothing, 1, w]}$ is an irreducible component of $\overline{\left[\varnothing, 1, w^{\prime}\right]} \cap \overline{\left[\varnothing, 1, w^{\prime \prime}\right]}$.

Proof. Choose simple reflections s_{i} and s_{j} such that $l\left(w s_{i}\right)=l\left(s_{j} w\right)=$ $l(w)+1$. If $w s_{i}$ and $s_{j} w$ are distinct then the statement follows by setting $w^{\prime}=w s_{i}$ and $w^{\prime \prime}=s_{j} w$. If $w s_{i}=s_{j} w$, then we choose a simple reflection s_{k} such that $l\left(w s_{i} s_{k}\right)=l\left(w s_{i}\right)+1=l(w)+2$. Then $k \neq i$. As $w s_{i} s_{k}=s_{j} w s_{k}$, we conclude that $l\left(w s_{k}\right)=l(w)+1$. The statement follows by setting $w^{\prime}=w s_{i}$ and $w^{\prime \prime}=w s_{k}$.

Lemma 6.7. For $K \in \mathcal{J}$ and $w \in W, \overline{[K, 1, w]}$ is an irreducible component of $\overline{[\varnothing, 1, w]} \cap \overline{\left[K, 1, w_{0}\right]}$.

Proof. By Proposition 6.3, $\overline{[K, 1, w]} \subset \overline{[\varnothing, 1, w]} \cap \overline{\left[K, 1, w_{0}\right]}$. As X is a finite union of $B \times B$-orbits each irreducible component of the intersection $\overline{[\varnothing, 1, w]} \cap \overline{[K, 1, w]}$ will be the closure of a $B \times B$-orbit in X. Assume that $K^{\prime} \in \mathcal{J}, v \in W^{I-p\left(K^{\prime}\right)}$ and $w^{\prime} \in W$ satisfy

$$
\overline{[K, 1, w]} \subset \overline{\left[K^{\prime}, v, w^{\prime}\right]} \subset \overline{[\varnothing, 1, w]} \cap \overline{\left[K, 1, w_{0}\right]} .
$$

Then by Corollary 6.4(1) we have $v=1$. Moreover, Proposition 6.3 implies that $K^{\prime}=K$. Then Corollary 6.4(2) shows that $w^{\prime}=w$, which ends the proof.

Lemma 6.8. Let $v, v^{\prime} \in W^{I-p(K)}$ with $v=s_{i} v^{\prime}$ for some $i \in I$ and $l(v)=l\left(v^{\prime}\right)+1$. Then $\overline{\left[K, v, w_{0}\right]}$ is an irreducible component of $\overline{\left[K, v^{\prime}, w_{0}\right]} \cap \overline{\left[\varnothing, 1, w_{0} v_{1}\right]}$.

Proof. By Proposition 6.3 we easily conclude $\overline{\left[K, v, w_{0}\right]} \subset \overline{\left[\varnothing, 1, w_{0} v_{1}\right]}$ and $\overline{\left[K, v, w_{0}\right]} \subset \overline{\left[K, v^{\prime}, w_{0}\right]}$. Assume that $w \in W^{I-p(K)}$ and $w^{\prime} \in W$ satisfy

$$
\overline{\left[K, v, w_{0}\right]} \subset \overline{\left[K, w, w^{\prime}\right]} \subset \overline{\left[K, v^{\prime}, w_{0}\right]} \cap \overline{\left[\varnothing, 1, w_{0} v_{1}\right]} .
$$

Then by Corollary 6.4 (i), $v^{\prime} \leq w \leq v$. So $w=v^{\prime}$ or $w=v$. Moreover, by Proposition 6.3 there exists $u \in W_{I-p(K)}$ such that $w u \leq v$ and $w_{0} \leq w^{\prime} u$. As $v \in W^{I-p(K)}$ we conclude that $u=1$ and $w^{\prime}=w_{0}$. Then, by Proposition 6.3, there exists $u^{\prime} \in W$ such that $u^{\prime} \leq w$ and
$w_{0} \leq w_{0} v 1 u^{\prime}$. Thus $u^{\prime}=v$ and w must then be equal to v. The lemma is proved.

Lemma 6.9. We keep the assumptions on v and v^{\prime} from the previous Lemma 6.8. Then for $w \in W, \overline{[K, v, w]}$ is an irreducible component of $\overline{\left[K, v, w_{0}\right]} \cap \overline{\left[K, v^{\prime}, w\right]}$.
Proof. By Proposition 6.3 we have $\overline{[K, v, w]} \subset \overline{\left[K, v, w_{0}\right]} \cap \overline{\left[K, v^{\prime}, w\right]}$. Assume that $u \in W^{I-p(K)}$ and $w^{\prime} \in W$ satisfy $\overline{[K, v, w]} \subset \overline{\left[K, u, w^{\prime}\right]} \subset$ $\overline{\left[K, v, w_{0}\right]} \cap \overline{\left[K, v^{\prime}, w\right]}$. Then, by Corollary [6.4(i), $u=v$ and hence by Corollary 6.4(ii) we have $w \leq w^{\prime}$. Moreover, by Proposition 6.3 there exists $u^{\prime} \in W_{I-p(K)}$ such that $v^{\prime} u^{\prime} \leq v$ and $w^{\prime} \leq w u^{\prime}$. We conclude that $u=1$ and as a consequence that $w^{\prime}=w$.

We can now prove Proposition 6.5
Proof. Let $K \in \mathcal{J}, v \in W^{I-p(K)}$ and $w \in W$ such that $Z=\overline{[K, v, w]}$. Notice that by Proposition 6.3 the closure $\overline{\left[\varnothing, 1, w_{0}\right]}$ contains all $B \times B$ orbit closures and hence it will be equal to X.

We first consider the situation when $w \neq w_{0}$: if there exists a simple reflection s_{i} such that $l\left(s_{i} v\right)=l(v)-1$ then by Lemma 6.9 we may use $Z_{1}=\overline{\left[K, v, w_{0}\right]}$ and $Z_{2}=\overline{\left[K, s_{i} v, w\right]}$ (notice that this makes sense as $\left.s_{i} v \in W^{I-p(K)}\right)$. So we may assume that $v=1$. If now $K \neq \varnothing$ then by Lemma 6.7 we may use $Z_{1}=\overline{[\varnothing, 1, w]}$ and $Z_{2}=\overline{\left[K, 1, w_{0}\right]}$. So we may assume that $Z=\overline{[\varnothing, 1, w]}$. If $l(w)<l\left(w_{0}\right)-1$ then we may apply Lemma 6.6 to define Z_{1} and Z_{2}. This leaves us with the cases $\overline{\left[\varnothing, 1, s_{i} w_{0}\right]}, i=1, \ldots, l$, which are equal to the closures of the Bruhat cells $B \dot{s}_{i} \dot{w}_{0} B \subseteq G$ within X.

Next assume that $w=w_{0}$: if there exists a simple reflection s_{i} such that $l\left(s_{i} v\right)=l(v)-1$ then by Lemma 6.8 we may use $Z_{1}=\overline{\left[K, s_{i} v, w_{0}\right]}$ and $Z_{2}=\overline{\left[\varnothing, 1, w_{0} v_{1}\right]}$. So we may assume that $v=1$. As $Z \neq X$ we have that $Z=\overline{\left[K, 1, w_{0}\right]}$ with K a nonempty set. In particular, by Proposition 6.3, Z coincides with the $G \times G$-orbit closure X_{K}. Now let $K^{\prime} \subset K$ be a minimal subset such that X_{K} is an irreducible component of $\cap_{i \in K^{\prime}} X_{i}$. If $\left|K^{\prime}\right|=1$ then Z coincides with a boundary divisor, so we may assume that $\left|K^{\prime}\right|>1$. Let $j \in K^{\prime}$ and let Y_{1}, \ldots, Y_{s} denote the irreducible components of the intersection $\cap_{i \in K^{\prime}-\{j\}} X_{i}$. Then, by minimality of K^{\prime}, each Y_{i}, for $i=1, \ldots, s$, is a $G \times G$-orbit closure distinct from Z. Moreover, there exists an i such that Z is an irreducible component of the intersection $Y_{i} \cap X_{j}$. Now use $Z_{1}=Y_{i}$ and $Z_{2}=X_{j}$.

7. Frobenius splitting of $B \times B$-orbit closures

Let X denote an equivariant embedding of the reductive group G over a field of positive characteristic $p>0$. As above the boundary divisors of X will be denoted by X_{1}, \ldots, X_{n}. Moreover, we will use
the notation $D_{i}, i=1, \ldots, l$, to denote the closures of the Bruhat cells $B \dot{s}_{i} \dot{w}_{0} B, i=1, \ldots, l$, within X.

Proposition 7.1. The equivariant embedding X admits a $(B \times B, T \times$ $T)$-canonical Frobenius splitting which compatibly splits the closure of all $B \times B$-orbits.

Proof. First of all X admits a $(B \times B, T \times T)$-canonical Frobenius splitting s which compatibly splits all boundary component $X_{j}, j=$ $1, \ldots, n$, and the subvarieties $D_{i}, i=1, \ldots, l$ (see [B-K, Thm.6.2.7]).

Consider, for a moment, the case when X is toroidal. We claim that s compatibly Frobenius splits all $B \times B$-orbit closures. If this is not the case, then there exists a $B \times B$-orbit closure Z of maximal dimension which is not compatibly Frobenius split by s. By Proposition 6.5 the codimension of Z must be ≥ 2. In particular, we can find orbit closures $Z_{1} \neq Z$ and $Z_{2} \neq Z$ such that Z is a component of the intersection $Z_{1} \cap Z_{2}$. By the maximality assumption on Z the orbit closures Z_{1} and Z_{2} will be compatibly Frobenius split by s. But then every component of $Z_{1} \cap Z_{2}$, and thus Z, will also be compatibly Frobenius split by s, which is a contradiction. This ends the proof when X is toroidal.

For an arbitrary embedding X we may find a toroidal embedding X^{\prime} of G and a birational projective morphism $f: X^{\prime} \rightarrow X$ extending the identity map on G (see e.g. [B-K] Prop.6.2.5]). Now X^{\prime} admits a $(B \times B, T \times T)$-canonical Frobenius splitting s^{\prime} which compatibly Frobenius splits all $B \times B$-orbit closures. By Zariski's main theorem the map $f^{\sharp}: \mathcal{O}_{X^{\prime}} \rightarrow f_{*} \mathcal{O}_{X}$ induced by f is an isomorphism. In particular, s^{\prime} induces by push forward a $(B \times B, T \times T)$-canonical Frobenius splitting s of X. Moreover, the image in X of every $B \times B$-orbit closure in X^{\prime} will be compatibly Frobenius split by s. But any $B \times B$-orbit closure in X is the image of a similar orbit closure in X^{\prime}. This ends the proof.
7.1. Cohomology vanishing. As a direct consequence of Proposition 7.1 we conclude the following vanishing result (see e.g. B-K, Thm.1.2.8]).

Proposition 7.2. Let X be a projective equivariant embedding of G. Let Z denote a $B \times B$-orbit closures in X and let \mathcal{L} denote an ample line bundle on Z. Then

$$
\mathrm{H}^{i}(Z, \mathcal{L})=0, i>0
$$

Moreover, if $Z^{\prime} \subset Z$ is another $B \times B$-orbit closure then the restriction map

$$
\mathrm{H}^{0}(Z, \mathcal{L}) \rightarrow \mathrm{H}^{0}\left(Z^{\prime}, \mathcal{L}_{Z^{\prime}}\right),
$$

is surjective.
Later (Corollary [8.5) we will see that the vanishing part of Propositione 7.2 remains true when the line bundle \mathcal{L} is only assumed to
be nef, i.e. when $\mathcal{L} \otimes \mathcal{M}$ is an ample line bundle for every ample line bundle \mathcal{M}.

8. Global F-regularity of $B \times B$-orbit closures

We are now ready to state and prove the main result of the paper.
Theorem 8.1. Let X denote a projective equivariant embedding of a reductive group G over a field of positive characteristic $p>0$. Let Z denote a $B \times B$-orbit closure in X. Then Z is globally F-regular.

We will divide the proof of Theorem 8.1 into 2 parts. The first part concerns the case when X is toroidal.

Lemma 8.2. Let X be a projective toroidal embedding. Then any $B \times B$-orbit closure $\overline{[K, v, w]}$ in X is globally F-regular.

Proof. Keep the notation of Section 6.1. As a consequence of Proposition [7.1, X admits a $\left(B^{\prime} \times B, T \times T\right)$-canonical Frobenius splitting s which compatibly Frobenius splits every $B^{\prime} \times B$-orbit closure.

Let $Y=\overline{\left(B^{\prime} \times B\right) h_{K}}$ and $Y^{\prime}=Y-\left(B^{\prime} \times B\right) h_{K}$. Then s induces a $\left(B^{\prime} \times B, T \times T\right)$-canonical Frobenius splitting s_{Y} of Y which compatibly Frobenius splits Y^{\prime}. Notice that by Proposition 5.2(1), $Y=\overline{B_{J} \cdot h_{K}}$. Thus by Proposition 5.2(2), Y is the closure of the Borel subgroup B_{J} of L_{I-J} within some equivariant embedding of L_{I-J}. Hence, Y is a large Schubert variety for some equivariant embedding of L_{I-J} and, as such, Y is globally F-regular [B-T], Thm.4.3]. Define $v^{\prime}=w_{0}^{I-p(K)} w_{0} v$. Then $\left(B^{\prime} \times B\right)_{\left(v^{\prime}, w\right)}$ contains the group $B_{J} \times\{1\}$ (notice that the set of positive roots on the first coordinate is defined with respect to B^{\prime}) and thus by Proposition 5.2(1)

$$
\left(B^{\prime} \times B\right) h_{K}=\left(B_{J} \times\{1\}\right) h_{K}=\left(B^{\prime} \times B\right)_{\left(v^{\prime}, w\right)} h_{K} .
$$

The above statements proves that the triple $\left(Y, h_{K},\left(v^{\prime}, w\right)\right)$ satisfies the requirements of Proposition 4.1. Now Theorem 4.4 shows that the closed subvariety

$$
\left(\overline{B^{\prime} \dot{v}^{\prime} B^{\prime}}, \overline{B \dot{w} B}\right) \overline{B_{J} \cdot h_{K}}=\left(\dot{w}_{0}^{I-J} \dot{w}_{0}, 1\right) \overline{[K, v, w]},
$$

is globally F-regular. Thus also $\overline{[K, v, w]}$ must be globally F-regular.
8.1. The general case. Let X denote an arbitrary equivariant projective embedding of G. To handle the proof of Theorem 8.1 for X we start by the following construction : Consider the natural $G \times G$ equivariant embedding

$$
f: G \rightarrow X \times \mathbf{X}
$$

and let Y denote the normalization of the closure of the image of f. Then Y is a projective equivariant toroidal embedding of G. We let ϕ :
$Y \rightarrow X$ denote the associated $G \times G$-equivariant projective morphism to X. Then

Lemma 8.3. Let Z^{\prime} denote the closure of a $B \times B$-orbit within Y and let Z denote its image $\phi\left(Z^{\prime}\right)$ within X. Then the induced morphism $\phi^{\prime}: Z^{\prime} \rightarrow Z$ is a rational morphism.

Proof. We will prove this using Lemma 4.2. Notice first of all that ϕ is birational and X is normal, so by Zariski's main theorem we have $\phi_{*} \mathcal{O}_{Y}=\mathcal{O}_{X}$. Let now \mathcal{L} denote a very ample line bundle on X. Then by Lemma 8.2 and [S2, Cor.4.3],

$$
\mathrm{H}^{i}\left(Y, \phi^{*} \mathcal{L}\right)=\mathrm{H}^{i}\left(Z^{\prime}, \phi^{*} \mathcal{L}\right)=0, \quad i>0
$$

as $\phi^{*} \mathcal{L}$ is globally generated and thus nef.
Let $\tilde{\boldsymbol{D}}_{i}, i=1, \ldots, l$, denote the closures $\overline{B^{-} \dot{s}_{i} \dot{w}_{0} B^{-}}$in \boldsymbol{X}. Then the divisor $\tilde{\boldsymbol{D}}=\sum_{i=1}^{l} \tilde{\boldsymbol{D}}_{i}$ is ample [B-K, Prop.6.1.11]. Let $\mathcal{M}=\mathcal{O}_{\boldsymbol{X}}(\tilde{\boldsymbol{D}})$ denote the associated line bundle and let $\mathcal{N}^{\prime}=\phi^{*} \mathcal{M}$ be its pull back to Y. Let s denote the canonical section of \mathcal{M} and let s^{\prime} denote its pull back to Y. Let V denote an irreducible component of the support of s^{\prime}. If V is contained in the boundary of Y then the support of s^{\prime} will contain a closed $G \times G$-orbit. In particular, also the support $\cup_{i} \tilde{\mathbf{D}}_{i}$ of s will contain a closed $G \times G$-orbit. As the latter is not the case we conclude that each component of the support of s^{\prime} will intersect G. Moreover, the support of s^{\prime} is $B^{-} \times B^{-}$-stable. As a consequence, we conclude that the divisor of zeroes of s^{\prime} equals

$$
\sum_{i=1}^{l} n_{i} \tilde{D}_{i}^{\prime}
$$

for some positive integers n_{i} and with $\tilde{D}_{i}^{\prime}, i=1, \ldots, l$, denoting the closure $\overline{B^{-} \dot{s}_{i} \dot{w}_{o} B^{-}}$in Y.

Let $Y_{j}, j=1, \ldots, n$, denote the boundary components in Y and let $D_{i}^{\prime}, i=1, \ldots, l$, denote the closures $\overline{B \dot{s}_{i} \dot{w}_{0} B}$ in Y. Let Y^{0} denote the smooth locus of Y. Then Y^{0} admits a Frobenius splitting which compatibly Frobenius splits the Cartier divisors $Y^{0} \cap Y_{j}, j=1, \ldots, n$, and $D_{i}^{\prime} \cap Y^{0}$ and $\tilde{D}_{i}^{\prime} \cap Y^{0}, i=1, \ldots, l[\mathrm{~B}-\mathrm{K}]$, Thm.6.2.7]. As in the proof of Proposition 4.3 we conclude that Y^{0} admits a stable Frobenius splitting along the effective divisor

$$
\operatorname{div}\left(s^{\prime}\right) \cap Y^{0}=\sum_{i=1}^{l} n_{i}\left(\tilde{D}_{i}^{\prime} \cap Y^{0}\right)
$$

which compatibly Frobenius splits $D_{i}^{\prime} \cap Y^{0}, i=1, \ldots, l$, and $Y_{j} \cap Y^{0}$, $j=1, \ldots, n$. Let ψ_{0} denote such a stable Frobenius splitting; i.e. let e be an integer such that ψ_{0} is a splitting of the morphism

$$
\mathcal{O}_{Y^{0}} \rightarrow F_{*}^{e} \mathcal{M}_{\mid Y^{0}}^{\prime},
$$

defined by the restriction of s^{1} to Y^{0}. Let now $i: Y^{0} \rightarrow Y$ denote the inclusion morphism. Applying the functor i_{*} to the above split morphism and using that Y is normal, we find that the morphism

$$
\mathcal{O}_{Y} \rightarrow F_{*}^{e} \mathcal{N}^{\prime}
$$

defined by s^{\prime} has an induced splitting ψ. Then ψ defines a stable Frobenius splitting along $\operatorname{div}\left(s^{\prime}\right)$ which compatibly Frobenius splits D_{i}^{\prime}, $i=1, \ldots, l$, and $Y_{j}, j=1, \ldots, n$ (as the compatibility can be checked on the open dense subsets Y^{0}).

We now claim that Z^{\prime} is not contained in any \tilde{D}_{i}^{\prime}. To see this assume that Z^{\prime} is contained in \tilde{D}_{i}^{\prime} for some i. As Z^{\prime} is $B \times B$-invariant and as \tilde{D}_{i}^{\prime} is $B^{-} \times B^{-}$-invariant it follows that $\left(B^{-} B, B^{-} B\right) Z^{\prime}$ is contained in \tilde{D}_{i}^{\prime}. But then also $(G, G) Z^{\prime}$ must be contained in \tilde{D}_{i}^{\prime}. We conclude that $\tilde{\mathbf{D}}_{i}^{\prime}$ contains a closed $G \times G$-orbit which is a contradiction. Hence, Z^{\prime} is not contained in the support of s^{\prime}. As in the proof of Proposition 7.1] we may then use Proposition 6.5 to show that Z^{\prime} is compatibly Frobenius split by the stable Frobenius splitting ψ. By [T, Lem.4.8] it follows that we have an embedding

$$
\mathrm{H}^{1}\left(Y, \mathcal{J}_{Z^{\prime}} \otimes \phi^{*} \mathcal{L}\right) \subset \mathrm{H}^{1}\left(Y, \mathcal{J}_{Z^{\prime}} \otimes \phi^{*} \mathcal{L}^{p^{e}} \otimes \mathcal{M}^{\prime}\right)
$$

of abelian groups, where $\mathcal{J}_{Z^{\prime}}$ denotes the sheaf of ideals associated to Z^{\prime}. But $\mathcal{L}^{p^{e}} \boxtimes \mathcal{M}$ is ample on $X \times \boldsymbol{X}$ and, as the map $Y \rightarrow X \times \boldsymbol{X}$ is finite, we conclude that $\phi^{*} \mathcal{L}^{p^{e}} \otimes \mathcal{M}^{\prime}$ is ample on Y. Applying B-K, Thm.1.2.8] it follows that $\mathrm{H}^{1}\left(Y, \mathcal{J}_{Z^{\prime}} \otimes \phi^{*} \mathcal{L}\right)$ is zero.

As all the requirement in Lemma 4.2 are now satisfied this ends the proof.

We may now prove Theorem 8.1
Proof. By Corollary 3.3 and Lemma 8.3 we may assume that X is toroidal. Now apply Lemma 8.2.
8.2. Applications. As the main application of Theorem 8.1 we find.

Corollary 8.4. Let X denote an equivariant embedding of a reductive group G over a field of positive characteristic. Then every $B \times B$-orbit closure in X is strongly F-regular. In particular, every $B \times B$-orbit closure is normal, Cohen-Macaulay and locally F-rational.

Proof. As in the proof of [B-T, Cor.4.2] we may reduce to the case when X is projective. Then by Theorem 8.1 every $B \times B$-orbit closure is globally F-regular and thus strongly F-regular. This ends the proof.

We also obtain the following strengthening of Proposition 7.2 ,
Corollary 8.5. Let X denote a projective equivariant embedding of a reductive group G over a field of positive characteristic. Let Z denote
the closure of a $B \times B$-orbit and let \mathcal{L} be a nef line bundle on Z. Then the cohomology $\mathrm{H}^{i}(Z, \mathcal{L})$ vanishes for $i>0$.
Proof. Just apply [S2, Cor.4.3].

9. The characteristic 0 CASE

Let X denote a scheme of finite type over a field K of characteristic 0 . Then there exists a finitely generated \mathbb{Z}-algebra A and a flat scheme X_{A} of finite type over A, such that the base change of X_{A} to K may be naturally identified with X. Moreover, when $m \subset A$ is a maximal ideal we may form the base change $X_{k(m)}$ of X_{A} to the finite field $k(m)=A / m$. We then say that the scheme X is of strongly F-regular type (resp. F rational type) if $X_{k(m)}$ is strongly F-regular (resp. F-rational) for all maximal ideals m in a dense open subset of $\operatorname{Spec}(A)$.

Any scheme X of strongly F-regular type will also be of F-rational type. Thus, by [S, Thm.4.3], schemes of strongly F-regular type will have rational singularities, in particular, they will be normal and CohenMacaulay.

In the proof of the next result we will use the following observation (see e.g. H-H3, Thm.5.5(e)]: let $\bar{k}(m)$ denote an algebraic closure of the field $k(m)$. If the base change $X_{\bar{k}(m)}$ is strongly F-regular then also $X_{k(m)}$ is strongly F-regular.

We can now prove the characteristic 0 version of Corollary 8.4,
Theorem 9.1. Let X denote an equivariant embedding of a reductive group G over an algebraically closed field k of characteristic 0 . Then every $B \times B$-orbit closure in X is of strongly F-regular type. In particular, every $B \times B$-orbit closure in X has rational singularities.

Proof. We may assume that there exists a split \mathbb{Z}-form $G_{\mathbb{Z}}$ of G over which B is defined by a closed subscheme $B_{\mathbb{Z}}$. Let Z denote a $B \times B$ orbit closure in X. The complete data consisting of the $G \times G$-action on X, the open embedding $G \subset X$, the $B \times B$-stability of Z, the closed embedding $Z \subset X$ and the irreducibility of X and Z may all be descended to some finitely generated \mathbb{Z}-algebra A (see e.g. H-H2, Sect.2] for this kind of technique). This means that there exists schemes $G_{A}:=G_{\mathbb{Z}} \times_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(A), B_{A}:=B_{\mathbb{Z}} \times{ }_{\operatorname{Spec}(\mathbb{Z})} \operatorname{Spec}(A), X_{A}$ and Z_{A} flat and of finite type over $\operatorname{Spec}(A)$ satisfying, that for every maximal ideal $m \subseteq A$ the associated base changes $G_{\bar{k}(m)}, B_{\bar{k}(m)}, X_{\bar{k}(m)}$ and $Z_{\bar{k}(m)}$, to an algebraic closure $\bar{k}(m)$ of the field $k(m)=A / m$, share the same structure; i.e. $G_{\bar{k}(m)}$ is a reductive linear algebraic group, $X_{\bar{k}(m)}$ is an irreducible $G_{\bar{k}(m)} \times G_{\bar{k}(m)}$-variety containing $G_{\bar{k}(m)}$ as an open subset and $Z_{\bar{k}(m)}$ is an irreducible $B_{\bar{k}(m)} \times B_{\bar{k}(m)}$-stable subvariety of $X_{\bar{k}(m)}$. As X is normal we may even assume that $X_{\bar{k}(m)}$ is normal (see H-H2, Thm.2.3.17]). In particular, $X_{\bar{k}(m)}$ is then an equivariant embedding of the reductive group $G_{\bar{k}(m)}$. Moreover, by the finiteness of the number
of $B_{\bar{k}(m)} \times B_{\bar{k}(m)}$-orbits in $X_{\bar{k}(m)}$ we conclude that $Z_{\bar{k}(m)}$ is the closure of such an orbit.

Applying Corollary 8.4 and the observation above, we conclude that Z is of strongly F-regular type and thus also of F-rational type. Finally, as mentioned above, the latter statement implies that Z has rational singularities.

We may now generalize Corollary 8.5 to arbitrary characteristics.
Corollary 9.2. Let X denote a projective equivariant embedding of a reductive group G over a field of arbitrary characteristic. Let Z denote the closure of a $B \times B$-orbit and let \mathcal{L} be a nef line bundle on Z. Then the cohomology $\mathrm{H}^{i}(Z, \mathcal{L})$ vanishes for $i>0$.
Proof. Apply Corollary 8.5 and [52, Cor.5.5].
For a discussion of other kinds of vanishing results for varieties of globally F-regular type we refer to [S2, Sect.5].

References

[B-K] M. Brion and S. Kumar, Frobenius Splittings Methods in Geometry and Representation Theory, Progress in Mathematics (2004), Birkhäuser, Boston.
[B] M. Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998), 137-174.
[B2] M. Brion, Multiplicity-free subvarieties of flag varieties, in Commutative Algebra, Contemporary Math. 331 (2003) 13-23.
[B-P] M. Brion and P. Polo, Large Schubert Varieties, Represent. Theory 4 (2000), 97-126.
[B-T] M. Brion and J. F. Thomsen, F-regularity of large Schubert varieties, math.AG/0408180
[D-G] M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson \& Cie, 1970.
$[\mathrm{H}] \quad \mathrm{R}$. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture notes in math. 156 (1970), Springer-Verlag.
[H-H] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Mémoires de la Société Mathématique de France 38 (1989), 119-133.
[H-H2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1-62.
[H-H3] M. Hochster and C. Huneke, Tight closure in equal characteristic zero, preprint.
[He] X. He, The G-stable pieces of the wonderful compactification, math.RT/0412302
[L-S] G. Lyubeznik and K. E. Smith, Weak and strong F-regularity are equivalent in graded rings, Amer. Math. Soc. 121 (1999), 1279-1290.
[L-T] N. Lauritzen and J. F. Thomsen, Line bundles on Bott-Samelson varieties, J. Alg. Geom. 13 (2004), 461-473.
[L-P-T] N. Lauritzen, U. R. Pedersen and J. F. Thomsen, Global F-regularity of Schubert varieties with applications to D-modules, math.AG/0402052.
[R] A, Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61-90.
[S] K. E. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159-180.
[S2] K. E. Smith, Globally F-regular varieties: Applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553-572.
[Sp] T. A. Springer, Intersection cohomology of $B \times B$-orbits closures in group compactifications, J. Alg. 258 (2002), 71-111.
[T] J.F. Thomsen, Frobenius splitting of equivariant closures of regular conjugacy classes, math.AG/0502114

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

E-mail address: hugo@math.ias.edu
Institut for matematiske fag, Aarhus Universitet, 8000 Århus C, Denmark

E-mail address: funch@imf.au.dk

[^0]: 2000 Mathematics Subject Classification. 14M17, 14L30, 14B05.
 The first author is supported by NSF grant DMS-0111298.

