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FLOER COHOMOLOGY AND DISC INSTANTONS

OF LAGRANGIAN TORUS FIBERS IN

FANO TORIC MANIFOLDS

CHEOL-HYUN CHO AND YONG-GEUN OH

Abstract. In this paper, we first provide an explicit description of all holo-
morphic discs (“disc instantons”) attached to Lagrangian torus fibers of ar-
bitrary compact toric manifolds, and prove their Fredholm regularity. Using
this, we compute Fukaya-Oh-Ohta-Ono’s (FOOO’s) obstruction (co)chains and
the Floer cohomology of Lagrangian torus fibers of Fano toric manifolds. In
particular specializing to the formal parameter T 2π = e−1, our computation
verifies the folklore that FOOO’s obstruction (co)chains correspond to the
Landau-Ginzburg superpotentials under the mirror symmetry correspondence,
and also proves the prediction made by K. Hori about the Floer cohomology
of Lagrangian torus fibers of Fano toric manifolds. The latter states that the
Floer cohomology (for the parameter value T 2π = e−1) of all the fibers vanish
except at a finite number, the Euler characteristic of the toric manifold, of base
points in the momentum polytope that are critical points of the superpotential
of the Landau-Ginzburg mirror to the toric manifold. In the latter cases, we
also prove that the Floer cohomology of the corresponding fiber is isomorphic
to its singular cohomology.

We also introduce a restricted version of the Floer cohomology of La-
grangian submanifolds, which is a priori more flexible to define in general,
and which we call the adapted Floer cohomology. We then prove that the
adapted Floer cohomology of any non-singular torus fiber of Fano toric mani-
folds is well-defined, invariant under the Hamiltonian isotopy and isomorphic
to the Bott-Morse Floer cohomology of the fiber.

1. Introduction

Floer cohomology of Lagrangian intersections was introduced by Floer [Fl] in
symplectic geometry. Since then, its construction has been further generalized [O1]
and an obstruction theory to its definition has been developed by Fukaya-Oh-Ohta-
Ono [FOOO]. It has been proven to be a powerful tool in studying various problems
in symplectic geometry (see [Fl], [O4], [Che], [P], [Se], [FOOO], [BC], and [TY],
for example). The theory itself was greatly enhanced by the advent of the Fukaya
category [Fuk1] and the homological mirror symmetry proposal by Kontsevich [Ko],
and also by the open string theory of D-branes in many physics literature, among
which [HV], [H] will be the most relevant to the content of the present paper.

Even in the midst of these theoretical enhancement and successful applications
of the Floer theory, actual computation of Floer cohomology itself for specific ex-
amples remains to be a non-trivial task, especially with Z-coefficients (not just with
Z2-coefficients), except for the cases where there is no quantum contribution [Fl] or
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for the case of real manifolds i.e., the fixed point sets of anti-holomorphic involu-
tions [O2], [FOOO]. Indeed, computation of the Floer cohomology in the presence
of nontrivial holomorphic discs requires detailed understanding of the quantum
contribution of the holomorphic discs (or the effect of “open string instantons” in
the physics terminology) to the cohomology of the Lagrangian submanifolds. In
this respect, the recent computation [Cho] by the first named author of the Floer
cohomology of the Clifford torus in Pn sheds some light on a general procedure of
computing the Floer cohomology “by direct calculation of disc instanton effects” in
the context of A-model without relying on the B-model calculations and the mirror
symmetry correspondence, which is still conjectural.

In this paper, we extend this computation and compute the (adapted) Floer coho-
mology of all the non-singular torus fibers of smooth Fano toric varieties equipped
with symplectic (Kähler) form. As in [Cho], we will carry out this by comput-
ing the Bott-Morse version HFBM (L; J0) of the Floer cohomology of Lagrangian
submanifold L that was introduced in [FOOO]. Our computation, when the Floer
cohomology is twisted with the flat line bundles and the formal parameter T is set
T 2π = e−1, verifies the prediction made by Hori-Vafa [HV] for the Lagrangian torus
fibers of Fano toric manifolds based on the mirror symmetry correspondence via
the linear sigma models [Wi], [HV].

In the point of view of the obstruction theory developed in [O1], [FOOO], a
priori, the torus fibers of general toric manifolds are neither monotone nor unob-
structed, and may carry holomorphic discs of non-positive Maslov indices. Recall
that the Clifford torus is also obstructed as an object in the A∞-category [O1],
[FOOO], but the fact that it is monotone enables one to define the Floer cohomol-
ogy [O1],[O4] which the first named author computed in [Cho]. Combination of
these facts prevent us from directly applying the general construction of the Floer
cohomology from [FOOO] and forces us to manually construct a restricted version
of the Floer cohomology and to prove the invariance property. For this purpose,
some specific geometry of the moduli of holomorphic discs associated to the pair
(L, J0) of the torus fiber L and the canonical complex structure J0 on the toric
variety will play an essential role both for the definition and computation of the
Floer cohomology. We will prove that there exists no non-constant holomorphic
discs of non-positive Maslov indices for the torus fibers, although its Hamiltonian
deformations of them may allow such (pseudo-)holomorphic discs. Our definition of
the adapted Floer cohomology exploits this specific feature of the pair (L, J0). We
call this version of the Floer cohomology the adapted Floer cohomology. It appears
that in general this adapted Floer cohomology is more flexible to define and exploits
best specific features of the moduli of holomorphic discs of the given pair (L, J0).
(However the arguments from [FOOO] involving the homotopy inverse of the A∞-
algebra strongly suggests that whenever the adapted Floer cohomology is defined,
the deformed Floer cohomology in the sense of [FOOO] will be also well-defined
and isomorphic to the adapted Floer cohomology. This question will be studied in
the final version of [FOOO].)

Once the well-definedness of the adapted Floer cohomology is established, its
computation largely follows the scheme used by the first named author [Cho]:
Firstly, we derive general Maslov index formula of holomorphic discs in terms
of the intersection number of natural divisors associated to the toric manifolds.
Secondly we explicitly classify all the holomorphic discs and prove the Fredholm
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regularity of the discs. Then using this information, we compute the Bott-Morse
version HFBM (L; J0) of the Floer cohomology of L with respect to the complex
structure J0. Because the torus fibers do not have non-constant holomorphic discs
of non-positive Maslov indices (see Theorem 5.3), the argument from [O4] proves
HFBM (L; J0) isomorphic to the adapted Floer cohomology HF ad(L; J0) in the
Fano case, and expected to be the same in general.

In the course of our computation, we also derive an area formula Theorem 8.1
for the holomorphic discs of the Maslov index 2 (and so of all holomorphic discs) in
terms of the location of the base point of the Lagrangian fiber and the relative ho-
mology class of the disc (or the divisor of the toric manifold that the disc intersect).
This formula is crucial for our proof of the prediction that the base points in the
momentum polytope at which the corresponding fiber has non-trivial Floer coho-
mology are indeed those corresponding to the critical points of the superpotential
of the Landau-Ginzburg mirror.

We would like to emphasize that the mirror symmetry prediction made both in
the Kontsevich proposal or by physicists does not really concern the standard Floer
cohomology in symplectic geometry which uses the Novikov ring as its coefficients,
but its convergent power series version. One byproduct of our classification of
disc instantons is that this latter version of the Floer cohomology is defined and
so substitution of the formal parameter T 2π by the number e−1 is allowed in the
Fano toric case. However the latter version of the Floer cohomology is not known
to be invariant in general under the Hamiltonian isotopy of the Lagrangian torus
fiber and so the mirror symmetry prediction concerns the Kähler geometry of the
Lagrangian torus fibers (with respect to the natural complex structure J0 and the
Kähler form ω), rather than the symplectic geometry of its Hamiltonian isotopy
class. For example, it is possible that a fiber has trivial Floer cohomology with
Novikov ring as its coefficients but non-trivial one with the parameter value T 2π =
e−1 (see section 13 for an explicit example of Hirzebruch surfaces).

Our work also provides some concrete mathematical evidence in the toric case
for the conjectural relation between the superpotential and the “open Gromov-
Witten invariants” which has been advocated by physicists (see [KKLM] for exam-
ple). More precisely, we verifies that under the mirror symmetry correspondence
of a torus fiber, the one-point open Gromov-Witten invariant, which is essentially
FOOO’s obstruction chain [FOOO], maps to the superpotential W of the Landau-
Ginzburg mirror, and two-point invariants, which is essentially the Floer differential
δ2〈pt〉 in the Bott-Morse setting, maps to the derivative ∂W

∂Θ . We refer to section
15 for more discussion on this point.

One general distinction between the Fano and the non-Fano cases lies in the
transversality property of the singular strata of various compactified moduli spaces.
More precisely, non-Fano manifolds carry spheres of negative Chern numbers and
so the compactified moduli space may contain singular strata that contain sphere
bubbles (especially their multiple covers) of negative Chern numbers. As the study
in [FOOO] demonstrated, such problems in the moduli space of holomorphic discs
in relation to the Floer theory (or to open Gromov-Witten invariants) are much
more troublesome than the case of spheres. We refer to section 16 for more detailed
discussion on this.
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2. Compact toric manifolds

We consider smooth and compact toric varieties. Here we closely follow the
Batyrev [B1] with minor notational changes (See M. Audin [A] for more details)

In order to obtain an n-dimensional compact toric manifold V , we need a combi-
natorial object Σ, a complete fan of regular cones, in a n-dimensional vector space
over R.

Let N be the lattice Zn, and let M = HomZ(N,Z) be the dual lattices of rank
N . Let NR = N ⊗ R and MR = M ⊗ R.

Definition 2.1. A convex subset σ ⊂ NR is called a regular k-dimensional cone
(k ≥ 1) if there exists k linearly independent elements v1, · · · , vk ∈ N such that

σ = {a1v1 + · · ·+ akvk | ai ∈ R, ai ≥ 0},
and the set {v1, · · · , vk} is a subset of some Z-basis of N . In this case, we call
v1, · · · , vk ∈ N the integral generators of σ.

Definition 2.2. A regular cone σ′ is called a face of a regular cone σ (we write
σ′ ≺ σ) if the set of integral generators of σ′ is a subset of the set of integral
generators of σ.

Definition 2.3. A finite system Σ = σ1, · · · , σs of regular cones in NR is called a
complete n-dimensional fan of regular cones, if the following conditions are satisfied.

(1) if σ ∈ Σ and σ′ ≺ σ, then σ′ ∈ Σ;
(2) if σ, σ′ are in Σ, then σ′ ∩ σ ≺ σ and σ′ ∩ σ ≺ σ′;
(3) NR = σ1 ∪ · · · ∪ σs.

The set of all k-dimensional cones in Σ will be denoted by Σ(k).

Example 2.4. Consider basis vectors e1, · · · , en in a n-dimensional real vector
space. Let vi = ei for i = 1, · · · , n and let vn+1 = −e1 − e2 − · · · − en. Any
k-element subset I ⊂ {v1, · · · , vn+1} for (k ≤ n) generates a k-dimensional regular
cone σ(I). The set Σ(n) consisting of 2n+1 − 1 cones σ(I) generated by I is a
complete n-dimensional fan of regular cones, with which later we will associate a
projective space Pn.

Definition 2.5. Let Σ be a complete n-dimensional fan of regular cones. Denote
by G(Σ) = {v1, · · · , vN} the set of all generators of 1-dimensional cones in Σ ( N =
Card Σ(1)). We call a subset P = {vi1 , · · · , vip} ⊂ G(Σ) a primitive collection if
{vi1 , · · · , vip} does not generate p-dimensional cone in Σ, while for all k (0 ≤ k < p)
each k-element subset of P generates a k-dimensional cone in Σ.

Example 2.6. Let Σ be a fan from Example 2.4. Then there exists the unique
primitive collection P which is the set of all generators {v1, · · · , vn+1}.
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Definition 2.7. Let CN be N -dimensional affine space over C with the set of
coordinates z1, · · · , zN which are in the one-to-one correspondence zi ↔ vi with
elements of G(Σ). Let P = {vi1 , · · · , vip} be a primitive collection in G(Σ). Denote
by A(P) the (N − p)-dimensional affine subspace in Cn defined by the equations

zi1 = · · · = zip = 0.

Remark 2.8. Since every primitive collection P has at least two elements, the
codimension of A(P) is at least 2.

Definition 2.9. Define the closed algebraic subset Z(Σ) in CN as follows

Z(Σ) = ∪PA(P),

where P runs over all primitive collections in G(Σ). Put

U(Σ) = CN \ Z(Σ).

Definition 2.10. Let K be the subgroup in ZN consisting of all lattice vectors
λ = (λ1, · · · , λN ) such that

λ1v1 + · · ·+ λNvN = 0.

Obviously K is isomorphic to ZN−n and we have the exact sequence:

0→ K→ ZN
π→ Zn → 0, (2.1)

where the map π sends the basis vectors ei to vi for i = 1, · · · , N .

Definition 2.11. Let Σ be a complete n-dimensional fan of regular cones. Define
D(Σ) to be the connected commutative subgroup in (C∗)N generated by all one-
parameter subgroups

aλ : C∗ → (C∗)N ,

t 7→ (tλ1 , · · · , tλN )

where λ = (λ1, · · · , λN ) ∈ K.

It is easy to see from the definition that D(Σ) acts freely on U(Σ). Now we
are ready to give a definition of the compact toric manifold Xσ associated with a
complete n-dimensional fan of regular cones Σ.

Definition 2.12. Let Σ be a complete n-dimensional fan of regular cones. Then
the quotient

XΣ = U(Σ)/D(Σ)

is called the compact toric manifold associated with Σ.

Example 2.13. Let Σ be a fan Σ(n) from Example 2.4. By 2.6, U(Σ(n)) = Cn+1 \
{0}. By the definition of Σ(n), the subgroup K is generated by (1, · · · , 1) ∈ Zn+1.
Thus D(Σ) ⊂ (C∗)N consists of the elements (t, · · · , t), where t ∈ C∗. So the toric
manifold associated with Σ(n) is the ordinary n-dimensional projective space.

There exists a simple open coverings of U(Σ) by affine algebraic varieties.

Proposition 2.1. Let σ be a k-dimensional cone in Σ generated by {vi1 , · · · , vik}.
Define the open subset U(σ) ⊂ CN as

U(σ) = {(z1, · · · , zN) ∈ CN | zj 6= 0 for all j /∈ {i1, · · · , ik}}.
Then the open sets U(σ) have the following properties:
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(1)
U(Σ) = ∪σ∈ΣU(σ);

(2) if σ ≺ σ′, then U(σ) ⊂ U(σ′);
(3) for any two cone σ1, σ2 ∈ Σ, one has U(σ1) ∩ U(σ2) = U(σ1 ∩ σ2); in

particular,

U(Σ) =
∑

σ∈Σ(n)

U(σ).

Proposition 2.2. Let σ be an n-dimensional cone in Σ(n) generated by {vi1 , · · · , vin},
which spans the lattice N . We denote the dual Z-basis of the lattice M by {ui1 , · · · , uin}.
i.e.

〈vik , uil〉 = δk,l (2.2)

where 〈·, ·〉 is the canonical pairing between lattices N and M .
Then the affine open subset U(σ) is isomorphic to Cn × (C∗)N−n, the action

of D(Σ) on U(σ) is free, and the space of D(Σ)-orbits is isomorphic to the affine
space Uσ = Cn whose coordinate functions xσ1 , · · · , xσn are n Laurent monomials in
z1, · · · , zN : 




xσ1 = z
〈v1,ui1 〉
1 · · · z〈vN ,ui1〉

N
...

xσn = z
〈v1,uin 〉
1 · · · z〈vN ,uin 〉

N

(2.3)

The last statement yields a general formula for the local affine coordinates
xσ1 , · · · , xσn of a point p ∈ Uσ as functions of its “homogeneous coordinates” z1, · · · , zN .

3. Symplectic forms of toric manifolds

In the last section, we associated a compact manifold XΣ to a fan Σ. In this
section, we review the construction of symplectic (Kähler) manifold associated to
a convex polytope P .

Let M be a dual lattice, we consider a convex polytope P in MR defined by

{x ∈MR | 〈x, vj〉 ≥ λj for j = 1, · · · , N} (3.1)

where 〈·, ·〉 is a dot product of MR
∼= Rn. Namely, vj ’s are inward normal vectors

to the codimension 1 faces of the polytope P . We associate to it a fan in the lattice
N as follows: With any face Γ of P , fix a point m in the (relative) interior of Γ and
define

σΓ = ∪r≥0r · (P −m).

The associated fan is the family Σ(P ) of dual convex cones

σ̌Γ = {x ∈ NR | 〈y, x〉 ≥ 0 ∀y ∈ σΓ} (3.2)

= {x ∈ NR | 〈m,x〉 ≤ 〈p, x〉 ∀p ∈ P,m ∈ Γ} (3.3)

where 〈·, ·〉 is dual pairing MR and NR. Hence we obtain a compact toric manifold
XΣ(P ) associated to a fan Σ(P ).

Now we define a symplectic (Kähler) form on XΣ(P ) as follows. Recall the exact
sequence :

0→ K
i→ ZN

π→ Zn → 0.

It induces another exact sequence :

0→ K → RN/ZN → Rn/Zn → 0.
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Denote by k the Lie algebra of the real torus K. Then we have the exact sequence
of Lie algebras:

0→ k → RN
π→ Rn → 0.

And we have the dual of above exact sequence:

0→ (Rn)∗ → (RN )∗
i∗→ k∗ → 0.

Now, consider CN with symplectic form i
2

∑
dzk ∧ dzk. The standard action T n

on Cn is hamiltonian with moment map

µ(z1, · · · , zN ) =
1

2
(|z1|2, · · · , |zN |2). (3.4)

For the moment map µK of the K action is then given by

µK = i∗ ◦ µ : CN → k∗.

If we choose a Z-basis of K ⊂ ZN as

Q1 = (Q11, · · · , QN1), · · · , Qk = (Q1k, · · · , QNk)
and {q1, · · · , qk} be its dual basis of K∗. Then the map i∗ is given by the matrix
Qt and so we have

µK(z1, · · · , zN ) =
1

2
(

N∑

j=1

Qj1|zj|2, · · · ,
N∑

j=1

Qjk|zj |2) ∈ Rk ∼= k∗ (3.5)

in the coordinates associated to the basis {q1, · · · , qk}. We denote again by µK the
restriction of µK on U(Σ) ⊂ CN .

Proposition 3.1 (Audin [A], Proposition 6.3.1.). Then for any r = (r1, · · · , rN−n) ∈
µK(U(Σ)) ⊂ k∗, we have a diffeomorphism

µ−1
K (r)/K ∼= U(Σ)/D(Σ) = XΣ (3.6)

And for each (regular) value of r ∈ k∗, we can associate a symplectic form ωP on
the manifold XΣ by symplectic reduction [MW].

To obtain the original polytope P that we started with, we need to choose r as
follows: Consider λj for j = 1, · · · , N which we used to define our polytope P by
the set of inequalities 〈x, vj〉 ≥ λj . Then, for each a = 1, · · · , N − n, let

ra = −
N∑

j=1

Qjaλj .

Then we have

µ−1
K (r1, · · · , rN−n)/K ∼= XΣ(P )

and for the residual T n ∼= TN/K action on XΣ(P ), and for its moment map µT , we
have

µT (XΣ(P )) = P.

In fact, Guillemin [Gu] proved the following explicit closed formula for the Kḧaler
form
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Theorem 3.2 (Guillemin). Let P , XΣ(P ), ωP and

µT : XΣ(P ) → (RN/k)∗ ∼= (Rn)∗

be the moment map defined as above. Define the functions on (Rn)∗

ℓi(x) = 〈x, vi〉 − λi for i = 1, · · · , N (3.7)

ℓ∞(x) =

N∑

i=1

〈x, vi〉 = 〈x,
N∑

i=1

vi〉. (3.8)

Then we have

ωP =
√
−1∂∂µ∗

T

( N∑

i=1

λi(log ℓi) + ℓ∞

)
(3.9)

on int(P ).

4. Adapted Floer cohomology of the torus fibers

Let (XΣ(P ), ωP ) be a 2n-dimensional symplectic toric manifold with T n-action
constructed from the polytope P ⊂ MR. Each T n orbit associated to an interior
point in P is a Lagrangian submanifold of XΣ(P ). Such an orbit can be obtained

as µ−1
T (A) for A ∈ int(µT (XΣ(P ))) for the moment map µT .

We fix one such orbit (non-singular) and denote it by L. In this paper, we
will study the Floer cohomology of these Lagrangian tori and compute this by
computing its Bott-Morse theory version HFBM (L; J0) as in [Cho]. One important
difference between the Clifford torus and the general torus fibers is that the former
is monotone [O1], [O4] while the latters are not. Since the obstruction classes
defined in [FOOO] do not vanish for the Lagrangian submanifold L, it is not clear
whether the standard Floer cohomologyHF (L, φ(L)) is defined and invariant under
the change of Hamiltonian isotopy, or whether it is isomorphic to the Bott-Morse
version HFBM (L; J0) when L is not monotone.

In this section, we will define a restricted version of the Floer cohomology which
exploits some special geometry of Lagrangian torus fibers in the toric manifolds. We
will call this adapted Floer cohomology and denote it by HF ad(L; J0). Important
ingredients for the construction of the adapted Floer cohomology HF ad(L; J0) are
the following three theorems whose proof will be postponed to the next two sections.

[Maslov index formula] For a symplectic toric manifold XΣ(P ), let L be a La-
grangian T n orbit. Then the Maslov index of any holomorphic disc with boundary
lying on L is twice the sum of intersection multiplicities of the image of the disc
with the codimension 1 submanifolds V (vj) for vj ∈ Σ(1) for all j = 1, · · · , N .

[Classification theorem] Any holomorphic map w : (D2, ∂D2)→ (XΣ(P ), L) can
be lifted to a holomorphic map

w̃ : (D2, ∂D2)→ (CN \ Z(Σ), π−1(L))

so that each homogeneous coordinates functions z1(w̃), · · · , zN(w̃) are given by
Blaschke products with constant factors.

i.e. zj(w̃) = cj ·
µj∏

k=1

z − αj,k
1− αj,kz
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for cj ∈ C∗ and non-negative integers µj for each j = 1, · · · , N . In particular, there
is no non-constant holomorphic discs of non-positive Maslov indices.

[Regularity theorem] The discs in the classification theorem are Fredholm regu-
lar, i.e., its linearization map is surjective.

Assuming these theorems for the moment, we proceed construction ofHF ad(L; J0)
of (L; J0). We denote the standard integrable complex structure on X by J0. Let
φ be a Hamiltonian diffeomorphism such that φ(L) intersects L transversely. We
consider the set of paths J ′ : [0, 1]→ Jω(X) with

J ′(0) = J0, J ′(1) = φ∗J0

denote it by j(φ,J0). Similar theorems obviously hold for the pair (φ(L), φ∗J0) as for
(L; J0). In particular, there is no non-constant holomorphic discs of non-positive
Maslov indices for the pair (φ(L), φ∗J0) either.

Remark 4.1. The set j(φ,J0) was considered and played an important role in [O5]
in relation to the formulation of Floer homology of Hamiltonian diffeomorphisms
over the mapping torus of φ. It appears that considering this set of paths depend-
ing on the triple (L, J0;φ) enable us to define the Floer homology of Lagrangian
submanifolds in a more flexible way when the given pair (L; J0) has some special
structure of the moduli of J0-holomorphic discs attached to L as in our case.

Now we restrict to the paths J ′ ∈ j(φ,J0) for the study of Floer’s equations
{
∂u
∂τ + J ′

t
∂u
∂t = 0

u(τ, 0) ∈ L, u(τ, 1) ∈ φ(L)
(4.1)

in the definition of the Floer boundary operator. Now for given pair x, y ∈ L∩φ(L),
we study the moduli space

M(x, y; J ′)

for the Fredholm index µ(x, y) = 0, 1 or 2. The following proposition is the reason
why we restrict J ′ to the ones coming from j(φ,J0).

Proposition 4.1. Assume XΣ(P ) is Fano. Let φ be a Hamiltonian diffeomorphism
such that φ(L) intersects L transversely and let J ′ ∈ j(φ,J0). Assume that x, y ∈
L ∩ φ(L) with µ(x, y) = 0, 1 or 2. Then the following holds:

(1) When µ(x, y) = 0, M(x, y; J ′)/R is empty.
(2) When µ(x, y) = 1, M(x, y; J ′)/R is a compact manifold of dimension zero
(3) When µ(x, z) = 2,

(a) if x 6= z, M(x, z; J ′)/R can be compactified into a compact manifold
with boundary of dimension one, whose boundary consists of the form

v1♯v2 (4.2)

where v1 ∈M(x, y; J ′) and v2 ∈M(y, z; J ′).
(b) if x = z,M(x, x; J ′) can be compactified into a compact manifold with

boundary of dimension one, whose boundary consists of the types

v1♯v2

where vi’s are types either of (4.2) or that for which one of vi’s is
constant and the other is a J0-holomorphic disc with boundary lying
on L or a φ∗(J0)-holomorphic disc with boundary lying on φ(L).
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Proof. First note that non-constant holomorphic discs with boundary on one of the
Lagrangian submanifold, L or φ(L), have positive Maslov indices (and so greater
than or equal to 2). Once this is in our disposition, the proof of this fact follows
by the dimension counting arguments from [O1], [O4]. We omit the details of the
argument referring to [O1]. �

Remark 4.2. Unlike the case [O1] or [O4] where we allow to vary the almost
complex structures, since we prefer to keep the usage of integrable complex structure
J0, we also need to prove that the above singular curves are also regular (or more
precisely the relevant evaluation maps are transverse in forming the fiber products).
This follows from the fact that L is a torus orbit of the torus action on XΣ(P ).

Corollary 4.2. Under the hypothesis as in Proposition 4.1, the Floer cohomology
HF (L, φ(L); J ′) is well-defined.

We can now compare two Floer cohomology HF (L, φ(L); J ′) with J ′ ∈ j(φ,J0)

and HF ∗(L,ψ(L)); J ′′) with J ′′ ∈ j(ψ,J0) by considering paths

Φ = {φs}0≤s≤1; φ
0 = φ, φ1 = ψ

J = {Js}0≤s≤1; J
0 = J ′, J1 = J ′′, Js ∈ j(φs,J0)

and the continuity equation
{
∂u
∂τ + J

ρ(τ)
t

∂u
∂t = 0

u(τ, 0) ∈ L, u(τ, 1) ∈ φρ(τ)(L)

where ρ : R→ [0, 1] is a monotonically increasing function

ρ =

{
0 for τ ≤ −R
1 for τ ≥ R

for some sufficiently large R > 0. Again by the same reasoning using the choice
Js ∈ j(φs,J0), we can prove that the continuity equation defines a chain map

h(Φ,J) : CF (L, φ(L); δJ′)→ CF (L,ψ(L); δJ′′)

which is an isomorphism. We refer to [O1], [O4] for the proof in the monotone case,
which obviously generalizes in the current Fano toric case if we use the set-up of
the adapted Floer cohomology. More specifically we use the special property of the
pair (L, J0) mentioned in the three theorems in the beginning of this section. This
proves the well-definedness and the invariance property of HF (L, φ(L); J ′). We
denote the canonical isomorphism class of HF (L, φ(L); J ′) over φ and J ′ ∈ j(φ,J0)

by HF ad(L; J0).
We will compute this group by computing the Bott-Morse version of the Floer

cohomology, which we denote by HFBM (L; J0). Because the above structure the-
orems, this latter Floer cohomology group is well-defined. The following theorem
permits us to do this for the computation of HF (L, φ(L); J ′).

Theorem 4.3. Assume XΣ(P ) is Fano and let L and φ, J ′ as above. Then

HFBM (L; J0) is well-defined and isomorphic to HF ad(L; J0). More specifically,
HFBM (L; J0) is isomorphic to HF (L, φ(L); J ′) for any Hamiltonian diffeomor-
phism φ with L intersection φ(L) transversely and a path J ′ ∈ j(φ,J0).
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Proof. The well-definedness of HFBM (L; J0) follows from the classification theo-
rem which in particular implies that all holomorphic discs have positive Maslov
indices and are regular, by examining the details of the construction from [section
7, FOOO].

For the second statement, it is enough to consider the case when φ is C2-close to
the identity. We refer to [O4] for the proof in the monotone case which obviously
generalizes to the semi-positive case, in particular the Fano case (X,ω). �

Remark 4.3. We would like to emphasize that in our case where the obstructions
do not vanish, the Bott-Morse version of the Floer cohomology constructed in
[FOOO], a priori, may not be defined and may depend on the choice of the almost
complex structure J , even if it is defined. Because of this, we make the dependence
on J0 explicit in the notation HFBM (L; J0).

Having Theorem 4.3 in mind, we will compute the Bott-Morse Floer cohomology
group HFBM (L; J0) in the rest of the paper.

5. Index formula and the classification of holomorphic discs

In this section, we will prove the Maslov index formula and the classification
theorem mentioned in section 4.

Before we state the theorem, we recall that for each generator vj ∈ Σ(1), there

is associated a codimension 1 subvariety V (vj). For the principle bundle (U(Σ)
π→

XΣ(P )), π
−1(V (vj)) is defined by the equation zj = 0 in U(Σ).

Theorem 5.1 (The Maslov index formula). For a symplectic toric manifold XΣ(P ),
let L be a Lagrangian T n orbit. Then the Maslov index of any holomorphic disc with
boundary lying on L is twice the sum of intersection multiplicities of the image of the
disc with the codimension 1 submanifolds V (vj) for vj ∈ Σ(1) for all j = 1, · · · , N .

Proof. As in [Cho], we deform a holomorphic disc w : (D2, ∂D2) → (X,L) near
the intersections with V (vj)’s. It is easy to see that the intersections are discrete
and there are only finitely many of them because of holomorphicity of the map
w. Denote by p1 ∈ D2 a point in the preimage of the intersection. i.e. p1 ∈
w−1(image(w)∩V (vj)) for some j. We describe how to deform w as a smooth map
near the point p1 and such deformation will be carried out near every preimages of
intersections.

Note that w(p1) may lie in the intersection of several V (vj)’s: Denote them by
V (vi1 ), · · · , V (vik). Then, We have

w(p) ∈ V (vi1 ) ∩ · · · ∩ V (vik ) (5.1)

The fact that V (vi1 )∩· · ·∩V (vik) 6= 0 implies that {vi1 , · · · , vik} is not a primitive
collection (See Definition 2.5). Since the fan Σ is complete, we may choose (n− k)
generators vik+1

, · · · , vin so that 〈vi1 , · · · , vin〉 defines a n-dimensional cone σ in Σ.
We may consider the map w near p1 as a map into the affine open set Cn =

Spec(σ̌ ∩ M) as in [Ful]. More precisely, the coordinate functions of this affine
open set Cn is given as in Proposition 2.2. Denote by d1, · · · , dk the intersection
multiplicities of the map w with V (vi1 ), · · · , V (vik ). In other words, if we represent
the map w in terms of homogeneous coordinates, then the homogeneous coordinate
functions zi1 , · · · , zik will have order of zero d1, · · · , dk at p1 and other homogeneous
coordinate functions are non-vanishing near p1.
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As in Proposition 2.2, let {ui1 , · · · , uin} be the basis of M dual to {vi1 , · · · , vin}.
〈uij , vik〉 = δj,k

Then, the affine coordinate function xσ1 is

xσ1 = z
〈v1,ui1 〉
1 · · · z〈vN ,ui1 〉

N

= C(z) · z〈vi1 ,ui1 〉
i1

= C(z) · zi1
where C(z) is a function nonvanishing near p1. Therefore, the affine coordinate
function xσ1 has order of zero d1 at p1. Similarly, xσ2 , · · · , xσk have order of zero
d2, · · · , dk at p1. For j > k, xσj is non-vanishing near zero. We may further assume

that p1 = 0 ∈ D2. Then, the map w near p1 can be written in affine coordinates as
(a1z

d1 +O(zd1+1), · · · , akzdk +O(zdk+1), ak+1 +O(z), · · · , an +O(z)).
Now we are in the same situation as in [Cho] Theorem 4.1. From now on, we

will only sketch the arguments and refer readers to [Cho] for details.
We label by p2, · · · , pm ∈ D2 all the other points whose image intersect with

V (vj) for some j. We find disjoint open balls Bǫ(p1) ⊂ D2 centered at pi with fixed
radius ǫ for sufficiently small ǫ for all i = 1, 2, · · · ,m.

Now we smoothly deform the map w inside the ball Bǫ(p1), so that the deformed
map w̃ satisfies

w̃|∂Bǫ/2(p1) ⊂ L (5.2)

and as a map into the affine open set Cn near p1, the map w̃ on Bǫ/2(p1) is given
by

( a1z
d0

|a0|( ǫ2 )d1
, · · · , akz

dk

|ak|( ǫ2 )dk
,
ak+1

|ak+1|
, · · · , an|an|

)
. (5.3)

We perform the same kind of deformations for p2, p3, · · · , pm inside the ball
Bǫ(p2), · · · , Bǫ(pm) and write the resulting map as w̃. Over the punctured disc

Σ = D2 \ (Bǫ(p1) ∪ · · ·Bǫ(pm)),

the deformed map w̃ does not intersect with the hyperplanes, and it intersects with
the Lagrangian torus L along the boundaries of the punctured disc.

Since the Maslov index is a homotopy invariant, we have µ(w) = µ(w̃). Hence,
we may compute the Maslov index of the map w̃. Note that the boundary ∂Σ is
∂D2 ∪ (∪i∂Bǫ/2(pi)).

Since the image of the map w̃ on the boundaries of the balls Bǫ/2(pi)
′s lies on the

Lagrangian submanifold L, the map w̃ : (Σ, ∂Σ)→ (X,L) satisfies the Lagrangian
boundary condition. Furthermore, since every intersection with the hyperplane
occurs inside the balls Bǫ/2, w̃|Σ does not meet the hyperplanes. Hence, it can
be considered as a map into the cotangent bundle of L, (If we take out all such
codimension 1 submanifolds V (vj)’s from XΣ(P ), there remains (C∗)n which can
be considered as the cotangent bundle of the torus orbit L). Therefore we have

µ(w̃|Σ) = 0. (5.4)

On the other hand, the Maslov index of the map w̃|Σ is given by the sum of the
Maslov indices along ∂Σ after fixing the trivialization.

Now consider the map w̃ : D2 → X and we fix a trivialization Φ of the pull-
back bundle w̃∗TX . It gives a trivialization ΦΣ of the pull-back bundle (w̃|Σ)∗TX
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restricted over Σ. In this trivialization, it is easy to see that

µ(ΦΣ, ∂D
2) = µ(Φ, ∂D2) = µ(w̃) = µ(w).

Since the boundary of the balls Bǫ/2 are oriented in the opposite way, and from the
explicit description (5.3) of the deformed map on the ball Bǫ/2(pi), we have

µ(ΦΣ, ∂Bǫ/2(pi)) = −2(sum of intersection multiplicities in Bǫ/2(pi)).

From the equation (5.4), we have

µ(w) − 2(sum of intersection multiplicities ) = 0.

�

Now, we use this index formula to classify all holomorphic discs with bound-
ary lying on L. It is much easier if we describe them in terms of “homogeneous
coordinates” of toric varieties. Namely we claim that homogeneous coordinate func-
tions of any holomorphic discs with boundary on L can be written as just Blaschke
products with constant coefficients.

Before we prove the claim, we first need the following Lemma,

Lemma 5.2. Any holomorphic map w : D2 → XΣ(P ) can be lifted to a holomorphic
map

w̃ : D2 → (CN \ Z(Σ)),

so that

π ◦ w̃ = w

Proof. The fibration (CN \ Z(Σ)) → XΣ(P ) is a principal D(Σ) bundle. We pull

back this bundle over D2, and fix a holomorphic trivialization and take a constant
section. �

Theorem 5.3 (Classification theorem). Any holomorphic map w : (D2, ∂D2) →
(XΣ(P ), L) can be lifted to a holomorphic map

w̃ : (D2, ∂D2)→ (CN \ Z(Σ), π−1(L))

so that each homogeneous coordinates functions z1(w̃), · · · , zN(w̃) are given by the
Blaschke products with constant factors.

i.e. zj(w̃) = cj ·
µj∏

k=1

z − αj,k
1− αj,kz

for cj ∈ C∗ and non-negative integers µj for each j = 1, · · · , N .

Proof. By the previous lemma, we have a lift w̃ : D2 → (CN \ Z(Σ)). Suppose
the map w meets the submanifold V (v1) at w(α) for α ∈ int(D2). We multiply
factor 1−αz

z−α to z1(w̃) and denote the modified map by w1. Note that the map w1

still satisfies the boundary condition because |1−αzz−α | = 1 for z ∈ ∂D2. And the

intersection multiplicity of w1 with V (v1) is one less than that of w.
By repeating the process, we may assume that we obtain a map wd which does

not meet V (v1). Repeat the process for each V (vj) for j = 1, · · · , N . Hence
we obtain a holomorphic map w̃ : D2 → (CN \ Z(Σ)) which does not meet any
codimension 1 submanifolds V (vj)’s. This map has Maslov index 0 and is contained
in any affine open sets Cn of toric variety. It is easy to see that this map is indeed
constant.



14 CHEOL-HYUN CHO AND YONG-GEUN OH

Hence, we may deduce that homogeneous coordinates of any holomorphic disc
can be written as Blaschke products. �

Remark 5.1. (1) In the case of PN , a similar formula was proved in [Cho].

(2) The Maslov index of w is
∑N

j=1 µj by Theorem 5.1.

6. Fredholm regularity of discs

Theorem 6.1 (Regularity theorem). The discs in Theorem 5.3 are Fredholm reg-
ular, i.e., its linearization map is surjective.

We first recall the exact sequence

0→ K→ ZN
π→ Zn → 0.

This induces the exact sequence of the complex vector space

0→ CK → CN
π→ Cn → 0

via tensoring with C where CK is the N − n dimensional subspace of CN spanned
by K ⊂ ZN . Note that this exact sequence is equivariant under the natural actions
by the associated complex tori.

Now we explain implication of the existence of the above equivariant exact se-
quence on the study of Fredholm property of holomorphic map

w : (D2, ∂D2)→ (X,L)

where L ⊂ X is a torus fiber L = µ−1(η), η ∈ P ⊂MR.
We first need some general discussion on the sheaf of holomorphic sections of

bundle pairs (E,F ) where E is a complex vector bundle over D2 and F a real
vector bundle over ∂D2 such that F ⊗ C an identification with E|∂D2 . We denote
by (E ,F) the sheaf of holomorphic sections of E with boundary values lying in F .
We will be interested in the sheaf cohomology of (E ,F) which we denote by

Hq(D2, ∂D2;E,F ) = Hq(E,F ).

Here the sheaf cohomology functors are the right derived functors of the global
section functor from the category of sheaves of (O,OR)-modules on D2 to the
category of R modules, where (O,OR) is the sheaf of holomorphic functions on
D2 with real boundary values. Denote by A0(E,F ) the sheaf of C∞ sections of
E with boundary values in F , and denote by A(0,1)(E) the sheaf of C∞ E-valued
(0, 1)-forms. The following is easy to check (see section 3.4 of [KL]).

Lemma 6.2. The sequence

0→ (E ,F)→ A0(E,F )
∂→ A0,1(E)→ 0

defines a fine resolution of (E ,F).

From this, it follows that

H0(E,F ) ∼= ker∂

H1(E,F ) ∼= coker ∂.

Next let (X,L) be a pair of Kähler manifold X and a Lagrangian submanifold
L ⊂ X . Consider a holomorphic disc w : (D2, ∂D2)→ (X,L) and denote

E = w∗TX, F = (∂w)∗TL.
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In terms of the sheaf cohomology group Hq(D2, ∂D2;E,F ), the surjectivity of the
linearization of the disc w is equivalent to the vanishing result

H1(D2, ∂D2;E,F ) = {0}. (6.1)

Now we restrict to the case of our main interest as in Theorem 6.1. Let w :
(D2, ∂D2)→ (X,L) be a holomorphic disc obtained in section 5 and w̃ : (D2, ∂D2)→
(CN , π−1(L)) be the lifting obtained in Theorem 5.3. From the expression of w̃ in
Theorem 5.3, it follows that w̃(∂D2) is contained in a torus orbit of (S1)N

L̃ = (S1)N · (c1, · · · , cN ) ⊂ π−1(L) ⊂ CN .

We denote by

(E,F ) = (w∗TX, (∂w)∗TL)

(Ẽ, F̃ ) = (D2 × CN , (∂w̃)∗(T L̃)))

(EK, FK) = ((w̃)∗(TOrb(C∗)K), (∂w̃)∗(TOrbK))

and by

(E ,F), (Ẽ , F̃), (EK,FK)

the corresponding sheaves of holomorphic sections

Lemma 6.3. The natural complex of sheaves

0→ (EK,FK)→ (Ẽ , F̃)→ (E ,F)→ 0 (6.2)

is exact.

Proof. We need to prove the sequence of stalks

0→ (EK,FK)z → (Ẽ , F̃)z → (E ,F)z → 0

is exact at each z ∈ D2. When z ∈ IntD2, this immediately follows from the ∂-
Poincaré lemma. It remains to prove exactness when z ∈ ∂D2. We will give details
of the proof of surjectivity of the last map

(Ẽ , F̃)z → (E ,F)z (6.3)

and leave the rest to the readers.
Let z0 ∈ ∂D2. By choosing a sufficiently small neighborhood U of z0, we

can holomorphically identify (EK, FK)|U with the trivial bundle (CN−n,RN−n) →
(U,U ∩ ∂D2). By shrinking U if necessary, we may choose a holomorphic frame

{f1, · · · , fN−n, fN−n+1, · · · , fN}
of (Ẽ, F̃ ) so that fj = ej , 1 ≤ j ≤ N − n the standard real constant basis of
RN−n ⊂ CN−n and the projections of {[fN−n+1], · · · , [fN ]} defines a holomorphic
frame of E.

Now let η be a given holomorphic section of E defined in a neighborhood z ∈
V ⊂ V ⊂ U such that

η|V ∩∂D2 ∈ F.
We can write

η = bN−n+1[fN−n+1] + · · ·+ bN [fN ]

where bj’s are holomorphic functions on V . Then it is obvious that

ξη := bN−n+1fN−n+1 + · · ·+ bNfN
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defines a holomorphic section of Ẽ which projects to η. However ξη may not satisfy
the boundary condition

(ξη)|V ∩∂D2 ⊂ F̃
and so we need to correct it by adding a suitable holomorphic section of (EK, FK) ∼=
(CN−n,RN−n). Since (ξη)|∂D2 ⊂ F , there exists a map g : V ∩ ∂D2 → F = RN−n,
g = (g1, · · · , gN−n) such that

ξη|V ∩∂D2(z)−
N−n∑

i=1

gi(z)ei ∈ F̃ (6.4)

for all z ∈ V ∩ ∂D2.
Now we solve the following Riemann-Hilbert problem for the mapG : (D2, ∂D2)→

(CN−n,RN−n), G = (G1, · · · , GN−n)
{
∂G
∂z = 0

G(z) = g(z) z ∈ V ∩ ∂D2
(6.5)

It is well-known that this equation can be solved (see [O3] for example) on a neigh-

borhood V ′ ⊂ V ′ ⊂ V by multiplying a cut-off function ρ such that

ρ(z) =

{
1 for z ∈ V ′

0 for z in a neighborhood of ∂V .

Now it follows that if we define ξ

ξ(z) = ξη(z)−
N−n∑

i=1

Gi(z)ei,

it satisfies

[ξ] = [ξη] and ξ(z) ∈ F̃z, z ∈ V ∩ ∂D2.

This finishes the proof of surjectivity of (6.3). �

The exact sequence (6.2) of the sheaves induces the long exact sequence of co-
homology

0 → H0(EK, FK)→ H0(Ẽ, F̃ )→ H0(E,F ) −→
→ H1(EK, FK)→ H1(Ẽ, F̃ )→ H1(E,F )→ 0. (6.6)

Therefore to prove H1(D2, ∂D2;E,F ) = {0}, it is enough to prove the following
lemma

Lemma 6.4. H1(Ẽ, F̃ ) = {0}.

Proof. From the definition of the bundle pair (Ẽ, F̃ )→ (D2, ∂D2), we have

Ẽ = D2 × CN , F̃ = ℓ1 ⊕ · · · ⊕ ℓN .
Here for each j = 1, · · · , N , ℓj is the line bundle which is the tangent space of the
circle

θ 7→ e2πµjθ · cj ⊂ C

with µj ≥ 0 is an integer given in Theorem 5.3. Now the lemma immediately
follows from the study of the one-dimensional Riemann-Hilbert problem with this
Lagrangian loop (see e.g., [O3] for this kind of analysis). �
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This finishes the proof of the vanishing result

H1(E,F ) = {0}
and so the discs w obtained in Theorem 5.3 and so all the discs in X with boundary
lying on L are Fredholm-regular.

7. Holomorphic discs of Maslov index two

We first recall the definition of the Bott-Morse Floer coboundary operator from
[FOOO]: For [P, f ] ∈ C∗(L,Q) and non-zero β ∈ π2(M,L),

{
δβ([P, f ]) = (M2(β) ev1 ×f P, ev0)
δ0([P, f ]) = (−1)n[∂P, f ]

(7.1)

And the boundary operator is defined as

δ([P, f ]) =
∑

β∈π2(M,L)

δβ([P, f ]) ⊗ Tω(β)q
µ(β)

2 (7.2)

And we extend it linearly over the universal Novikov ring Λnov. The following
boundary property follows from the proof of [Theorem 6.24, FOOO] in which is
considered the case where all the obstructions vanish, after combined with some
additional cancellation arguments used in [addenda, O1], [Theorem 2.28, Cho] to
deal with the case where the obstruction does not vanish but is a multiple of the
fundamental cycle. We omit the proof referring to that of [Theorem 2.28, Cho].

Theorem 7.1. Assume that XΣ(P ) is Fano and L is as before. Then

δ ◦ δ = 0.

Since the standard complex structure J0 in these toric manifolds are regular as
proved in the last section, we may proceed to compute the actual Floer boundary
map with respect to J0. The relevant calculations in our cases will be reduced to the
study of discs of Maslov index two as in [Cho] because of the following proposition.

Proposition 7.2. Let δk to be the formal sum of δβ with µ(β) = k. Then we have
δk ≡ 0 for k ≥ 4.

Proof. We can proceed as in the case of Clifford torus. Consider the homotopy
class β ∈ π2(X,L) with the Maslov index µ(β) = 4. The fiber product in the Floer
coboundary operator M(β)ev1 ×f P has expected dimension dim(P ) + 3. If its
dimension is less than expected dimension, the boundary operator is considered as
zero since we consider them in terms of currents (See [FOOO] for details). But it is
not hard to see that the dimension ofM(β)ev1 ×f P is less or equal to dim(P )+2 :
Consider the case that P is a point cycle 〈pt〉 in X . The fiber productM(β)ev1×fP
is nothing but the image of the trajectories of the boundary of holomorphic discs
in M(β) which meets the point 〈pt〉. Consider the lifts of these holomorphic discs
in U(Σ). Then from the expression of lifted discs in Theorem 5.3, the image of
the boundary of the lifted discs has dimension always less or equal to two which is
the dimension of S1 × S1. Hence after taking a quotient by D(Σ), dimension of its
image is still less than two. This proves the proposition for the case P is a point
cycle 〈pt〉, and other cases can be done similarly. �
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Therefore, we will be mainly interested in the holomorphic discs of Maslov index
two for the computation of HFBM (L; J0). From the classification theorem, it is
easy to see that there exists N number of holomorphic discs of Maslov index 2 (up
to an automorphism of a disc) meeting a point in L. We denote the homotopy class
of such discs by βj ∈ π2(X,L) for j = 1, · · · , N :

Definition 7.1. For the homogeneous coordinates z1, · · · , zN , we denote by D(vj)
the holomorphic disc of class βj ∈ π2(X,L) associated to the lifted disc

{
zk = ck for k 6= j

zj = cj · z
(7.3)

for z ∈ D2, where (c1, · · · , cN ) ∈ (C∗)N are chosen to satisfy the boundary condi-
tion.

Now we want to express each such disc in terms of the coordinates of the torus
(C∗)n ⊂ XΣ(P ) to compute the boundary operator. Recall that in toric varieties,
the torus (C∗)n corresponds to 0-cone in N or the dual cone MR.

(C∗)n ∼= Spec C[x1, x
−1
1 , x2, x

−1
2 , · · · , xn, x−1

n ].

Its coordinate can also be obtained by applying Proposition 2.2 for the cone σ which
is generated by the standard basis vectors 〈e1, · · · , en〉 (Such cone may not exist in
the fan Σ, but the coordinate expression of (C∗)n obtained this way is still true).

Hence we use Proposition 2.2 to find the relation with the (C∗)n coordinates
and the homogeneous coordinates. If we choose the generators of the cone (vij ) in
Proposition 2.2 to be 〈e1, · · · , en〉, its dual basis becomes

uij = e∗j .

From the equation (2.3), we have





xσ1 = z
〈v1,e

∗

1〉
1 · · · z〈vN ,e

∗

1〉
N

...

xσn = z
〈v1,e

∗

n〉
1 · · · z〈vN ,e

∗

n〉
N

(7.4)

Hence for the holomorphic disc D(vj), by substituting (7.3) into the above equa-
tions, we get the following :





xσ1 = c′1 · z〈vj,e
∗

1〉 = c′1 · zv
1
j

...

xσn = c′n · z〈vj ,e
∗

n〉 = c′n · zv
n
j

(7.5)

where vj = (v1
j , · · · , vnj ).

Proposition 7.3. For i = 1, · · · , N , the holomorphic disc D(vj) given by (7.3)
can be written in terms of coordinates of the torus (C∗)n as

(C1z
v1j , C2z

v2j , · · · , Cnzv
n
j ) (7.6)

where constants Ci ∈ C are chosen to satisfy the given Lagrangian boundary condi-
tion.
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Example 7.2. For the Clifford torus case, the holomorphic discs of index two are

[z : c1 : · · · : cn], · · · , [1 : c1 : · · · : cnz],
which in the standard open set U0 are

(c1
1

z
, · · · , cn

1

z
), (c1z, · · · , cn), · · · , (c1, · · · , cnz)

Now, the image of the moment map of Pn is the standard n simplex, which can be
written as follows:

For v1 = e1, vn = en, vn+1 = (−1,−1, · · · ,−1) ∈ Rn,
{
〈x, vi〉 ≥ 0 for i ≤ n
〈x, vn+1〉 ≥ −1

(7.7)

Now one can see the theorem is true in this case.
{
vn+1 =⇒ (c1

1
z , · · · , cn 1

z )

vj =⇒ (c1, · · · , cjz, · · · , cn)
(7.8)

We have the classification theorem, Theorem 5.3 in terms of the homogeneous
coordinates, but it is also convenient to look at them in the open sets Cn corre-
sponding to n-dimensional cones in Σ. But one should note that not all discs are
contained in these affine open sets. More precisely, if the holomorphic disc inter-
sects with V (vi1), · · · , V (vij ) (possibly at different points), and if {vi1 , · · · , vij} is a
primitive collection, then such disc can not be contained in the affine open sets. But
as the primitive collections have two or more elements, the discs of Maslov index
two which intersect only one of the submanifolds V (vj)’s are always contained in
the affine open sets.

Proposition 7.4. For the affine open set Cn corresponding to n-dimensional cone
σ = 〈vi1 , · · · , vin〉 in Σ, the holomorphic discs with Maslov index 2 contained in
this open set Cn ⊂ X are just D(vi1), · · · , D(vin) up to an automorphism of a disc.

Proof. For such an open set Cn ⊂ X , the Lagrangian torus fiber L is defined by
|zi| = ci for i = 1, · · · , n for some ci ∈ R. And the holomorphic discs which are
mapped into this open set Cn are indeed easy to classify. More precisely, the i-th
coordinate of such maps are just given by the Blaschke products times the constant
ci. Hence, holomorphic discs of Maslov index 2 are (up to automorphism of disc)
can be written in terms of coordinates of Cn as

(c1z, c2, · · · , cn)
(c1, c2z, · · · , cn)

...

(c1, c2, · · · , cnz)
As the coordinate of Cn is determined by the dual cone σ̌ of the cone σ =

〈vi1 , · · · , vin〉. The primitive generators of σ̌ are given by the dual Z-basis 〈u1, · · · , un〉
in M since X is smooth.

Let z1, · · · , zn be the coordinates of the torus (C∗)n ⊂ X given by MR. From
[Ful], the affine coordinates xσ1 , · · · , xσn are given by the primitive generators as
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follows: For ui := (ui1, · · · , uin) ∈M ,




xσ1 = zu11
1 zu12

2 · · · zu1n
n

...

xσn = zun1
1 zun2

2 · · · zunn
n

(7.9)

Then, the torus coordinates zk can be recovered from the affine coordinates
xσ1 , · · · , xσn: Take

(xσ1 )v
k
i1 · (xσ2 )v

k
i2 · · · (xσn)v

k
in = z

(u11v
k
i1

+···+un1v
k
in

)

1 · · · z(u1nv
k
i1

+···+unnv
k
in

)
n

= z
(V t·U)1k

1 · · · z(V t·U)nk
n = zk

where U , V are (n × n) matrices whose j-th rows are given by the vectors vij , uj
respectively. The last equality follows from the duality between vij and uj .

Hence the holomorphic disc in CN given by

(c1, · · · , cjz, · · · , cN )

can be rewritten in the coordinates of the torus (C∗)n as





z1 = (xσ1 )v
1
i1 · · · (xσn)v

1
in = C1 · zv

1
ij

...

zn = (xσ1 )v
n
i1 · · · (xσn)v

n
in = Cn · zv

n
ij

(7.10)

for (C1, · · · , Cn) ∈ (C∗)n. This is nothing but the expression of the disc D(vij ) in
Proposition 7.3. This proves the proposition. �

8. The areas of holomorphic discs

In this section we compute the symplectic areas of the holomorphic discs. For
each such holomorphic disc D(vj), there exists S1-action on its image from the
torus action on the toric variety. From the coordinate expression of holomorphic
discs in Theorem 7.3, this S1 can be easily seen as a subgroup of T = (S1)n via the
monomorphism

S1 → T : eiθ 7→ (eiv
1
j θ, · · · , eivn

j θ) (8.1)

for each given j = 1, · · · , N . We will fix one such j in the rest of this section.
In the level of Lie algebra, the S1 ⊂ T is generated by the element

ξ = v1
j e1 + v2

j e2 + · · ·+ vnj en ∈ Lie(T n) ∼= Rn (8.2)

From now on, we denote by µT for the moment map of the whole torus (T ∼=
(S1)n) action. The image µT (D(vj)) of holomorphic discs D(vj) under the moment
map µT can be easily seen to be 1-dimensional because it is invariant under the
S1 action generated by ξ, and it meets with the boundary of the moment polytope
because when the disc meets the submanifold V (vj). The intersection point is
a fixed point of the S1 action we described above. Indeed, µT (Dj) meets the
hyperplane defined by

〈x, vj〉 = λj ,

since the preimage under the moment map µT of this hyperplane has the stabilizer
vj . Also recall that the image of the Lagrangian torus fiber under µT is a point,
which we denote by

A = (a1, a2, · · · , an) ∈ (Rn)∗.
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Let (r, θ) be the standard polar coordinate of D2(1) ⊂ C and consider the map

(r, θ) 7→ µT (w(r, θ))

where
w = D(vj) : (D2, ∂D2)→ (X,L)

provided in Proposition 7.3. Since the disc is invariant under the S1-action (8.1),
the map is independent of θ. We write the corresponding curve by

α : [0, 1]→ (Rn)∗ = (Lie(T n))∗; α(r) := µT (w(r, ·))
We are now ready to prove the following area formula of the disc D(vj), which will
play a crucial role later when we relate our computation of the Floer cohomology
to Hori-Vafa’s Landau-Ginzburg B-model calculation.

Theorem 8.1. The area of the holomorphic disc D(vj) in Proposition 7.3 is

2π(〈A, vj〉 − λj).
Proof. Let η ∈ Lie(T n) be any element and ηX be the vector field on X generated
by η. By definition of the moment map µT , we have the following defining formula
of the moment map

d〈µT , η〉 = ηX⌋ωP
in general [MW]. We apply this identity to η = ξ defined in (8.2) to have

d〈µT , ξ〉 = ξX⌋ωP . (8.3)

Therefore we derive
d

dr
〈α(r), ξ〉 = 〈dµT

(∂w
∂r

)
, ξ〉

= d〈µT , ξ〉
(∂w
∂r

)

= ξX⌋ωP
(∂w
∂r

)
(8.4)

where we regard µT both as the map from X to (Lie(T n))∗ and as a (Lie(T n))∗-
valued function.

And it follows from the coordinate formula (7.6) that

ξX(w(r, θ)) =
∂w

∂θ
(r, θ).

By substituting this into (8.4), we have derived

d

dr
〈α(r), ξ〉 = ωP

(∂w
∂θ

,
∂w

∂r

)
. (8.5)

From this, we derive

Area(D(vj)) =

∫

D2

w∗ωP =

∫ 1

0

∫ 2π

0

ωP

(∂w
∂r

,
∂w

∂θ

)
dθ dr

= −2π

∫ 1

0

d

dr
〈α(r), ξ〉 dr

= 2π(〈α(0), ξ〉 − 〈α(1), ξ〉).
The value of α(1) ≡ µT (w(1, θ)) is the base of the Lagrangian torus fiber L which
is nothing but 〈A, ξ〉 and α(1) is in the hyperplane determined by

〈x, ξ〉 = λj .
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Therefore we have proved that the area of the disc is 2π(〈A, ξ〉−λj). Finally noting
that ξ = vj in (8.2), we have finished the proof. �

9. Standard spin structure

We recall the notion of the standard spin structure introduced in [Cho] for the
case of the Clifford torus in Pn. A spin structure of L is equivalent to the homotopy
class of a trivialization of the tangent bundle of L over the two skeleton of L. We
also recall that a framing of the manifold L is defined to be the homotopy class of
a trivialization of the tangent bundle TL. Therefore each framing canonically fixes
a spin structure of L.

Proposition 9.1. The framings of L induced by the embeddings L →֒ Uσ ∼= Cn are
all the same over the choice of cones σ. We call the corresponding spin structure
of L the standard spin structure of L ⊂ X.

Proof. Let S1 := eiθ be the unit circle embedded in C. The tangent bundle of
S1 has a natural trivialization given by S1 × R · ∂∂θ . Similarly there is a natural

trivialization of the tangent bundle of (S1)n ⊂ Cn. The torus fiber L sits inside the
intersection of the affine open sets. So, each affine open set induces a trivialization
of tangent bundle of L. One can check that the trivializations of TL obtained for
each affine open set have the same homotopy class because the transition matrices
are constant matrices: Recall that the transition functions between these affine
open sets are given by monomial relations. For two n-dimensional cones σ, τ , Let

zσi = (zτ1 )ai1 · · · (zτn)ain .

Then,

∂

∂θzτ
j

= a1j
∂

∂θzσ
1

+ · · ·+ anj
∂

∂θzσ
n

.

Hence, the transition matrices for the induced trivializations of the TL are constant
matrices. By permuting the affine coordinates to make det(aij) > 0, if necessary,
this implies that the trivializations induced by each affine sets are in the same
homotopy class. This is what we mean by the standard spin structure of T n. �

Recall from [FOOO] that to fix an orientation of the moduli spaces of holomor-
phic discs we need to fix a spin structure of L and an identification of the tangent
space at a point of L with Rn. Different trivializations in the same homotopy class
can only reverse signs of the moduli spaces of the holomorphic discs simultaneously
and hence give the same Floer cohomology group.

Also note that there exists 2n = |H1(L; Z/2)| different spin structures for the
torus L. Other spin structures besides the standard one can be naturally considered
in the setting of the Floer cohomology twisted by the flat line bundles on L: Cal-
culations of the Floer cohomology with different spin structures can be substituted
by the Floer cohomology twisted by the flat line bundles on L with holonomy eπi

along appropriate generators of π1(L).
Our computations in the rest of the paper will be based on the standard spin

structure. We refer readers to [Cho] for more detailed discussions on the orientation
and computations for different spin structures.
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10. Computation of the Bott-Morse Floer cohomology

Now, we are ready to compute the Bott-Morse Floer cohomology of any La-
grangian torus fiber L in symplectic toric manifold XΣ(P ). We will assume in this
section that XΣ(P ) is Fano.

The Bott-Morse Floer cohomology defined in section 7 satisfies

δ ◦ δ = 0

for our torus fiber. Note that we do not need to deform the boundary operator of the
Floer complex by introducing obstruction cycles since all non-constant holomorphic
discs have positive Maslov indices in our case.

We fix the standard spin structure of L, which fixes the orientation of the moduli
space of holomorphic discs. The orientation of the boundary (7.1) not only depends
on the orientation of the moduli spaceM2(β), but also the fiber product orientation.
It was studied in great detail in [Cho], [FOOO], and so we restrict our discussion
about orientation to a minimum.

Recall that the Floer cochain complex in [FOOO] is constructed using currents.
From now on, the cycles we write actually represents their Poincaré duals, and we
will not distinguish homology H∗(L,Q) and cohomology H∗(L,Q) in our presenta-
tion.

The filtration on the boundary operator δ with energy induces a spectral sequence
E∗,∗
r which converges to the Floer cohomology HFBM (L; J0). Recall from [FOOO]

that

Ep,q2
∼= (H∗(L,Q)⊗ eq)p

where ( )p means the total degree p. To compute the Floer cohomology, we work
with this spectral sequence and the main step is to compute the boundary δ2 of
the cohomology generators. Here δ2 is the boundary operator given by considering
only Maslov index 2 discs.

We first compute the boundary for a point class 〈pt〉. We denote the generators
of H∗(L,Q) by L1, · · · , Ln. More precisely, by Lj we denote a cycle given by the
image of the map

S1 → (C∗)n : eiθ 7→ (c1, · · · , cjeiθ, · · · , cn).
In view of Proposition 7.3 and considering an orientation as in [Cho], we have

δβj 〈pt〉 = (−1)n(v1
jL1 + · · ·+ vnj Ln) (10.1)

where βj = [D(vj)] ∈ π2(X,L). Hence,

δ2(〈pt〉) =

N∑

j=1

(−1)nTArea(βj) · q · (v1
jL1 + · · ·+ vnj Ln)

=

N∑

j=1

(−1)nT 2π(〈vj,A〉−λj) · q · (v1
jL1 + · · ·+ vnj Ln)

We can also compute the Floer cohomology with flat line bundle L on it, which we
denote by

HFBM ((L,L); J0).

If we denote by

hα = eiνα
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the holonomy of the line bundle L along the cycle Lα for α = 1, · · · , n, Proposition
5.3 implies that the holonomy along the boundary of the disc D(vj), becomes

h
v1j
1 · · ·h

vn
j
n = ei〈ν,vj〉 := hvj (10.2)

where the vector ν = νL is defined by

ν = (ν1, · · · , νn) (10.3)

which we call the holonomy vector of L.
In this case, the boundary operator of the Floer cochain complex is defined as

follows [Fuk2]:
{
δβ([P, f ]) = (M2(β) ev1 ×f P, ev0) · (hol∂βL)⊗ q for β 6= 0

δ0([P, f ]) = (−1)n[∂P, f ]
(10.4)

Therefore, we have

δ2(〈pt〉) =
∑

j

(−1)nhvjT 2π(〈vj ,A〉−λj) · q · (v1
jL1 + · · ·+ vnj Ln) (10.5)

By identifying H1(L : Q) with Qn via Li 7→ ei, we may write the condition to have
δ2(〈pt〉) = 0 as ∑

j

(−1)nhvjT 2π(〈vj,A〉−λj) · vj = 0 (10.6)

It is not hard to see that if δ2(〈pt〉) = 0, we would have δ2(P ) = 0 in H∗(L,Q) for
any cycle P ∈ H∗(L,Q) (see [Cho] for the relevant computations). Therefore, in
this case, the Floer cohomology HFBM ((L,L); J0) is isomorphic to the singular co-
homology of L. In particular, it is non-vanishing. The following proposition implies
that, one only needs to consider δ2(〈pt〉) for the computation of Floer cohomology.

Theorem 10.1. If δ2(〈pt〉) = 0, then Bott-Morse Floer cohomology is isomorphic
to the singular cohomology of L as a Λnov-module, i.e.,

HFBM ((L,L); J0) ∼= H∗(L; ΛC

nov)

where ΛC
nov is the Novikov ring twisted by the line bundle L in an obvious way.

If δ2(〈pt〉) 6= 0, then the Floer cohomology HFBM ((L,L); J0) vanishes.

Proof. It remains to prove the second statement. Suppose δ2(〈pt〉) 6= 0, and con-
sider the lowest energy terms of δ2〈pt〉 which gives rise to a non-zero term: Suppose

the terms with this energy are given by δβi1
, · · · , δβiℓ

. Denote by δ̃2 the sum

δ̃2 := δβi1
+ · · ·+ δβiℓ

By the assumption δ2〈pt〉 6= 0, we have δ̃2 6= 0. It follows from the construction of
the spectral sequence in [FOOO] that this becomes the boundary operator of the
spectral sequence of a certain step, say r. From our choice of βi∗ , lower energy
terms give rise to zero boundary maps in the spectral sequence. Therefore we have,

Ep,qr
∼= Ep,q2

∼= (H∗(L,Q)⊗ eq)p

We will show that

Er+1
∼= 0.

For this we will compute δ̃2 for the cohomology generators of H∗(L,Q).
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In H∗(L,Q), we may write, omitting the common factor of formal parameter
TAreaq,

δ̃2〈pt〉 = c1[L1] + c2[L2] + · · ·+ cn[Ln]. (10.7)

At least one of ci is non-zero from our assumption. It is not hard to see that

δ̃2〈Li〉 =
n∑

j=1

cj〈Lj × Li〉

where Li × Li is 0-cycle. Or more generally,

δ̃2(Lii × Li2 × · · · × Lik) =
n∑

j=1

cj〈Lj × (Lii × Li2 × · · · × Lik)〉

where the latter is a 0-cycle if j ∈ {i1, i2, · · · , ik} (See [Cho] for the case of Clifford
torus in Pn).

From now on, for index sets, say J with j = |J | elements, we denote its elements
as J = {j1, · · · , jj} with j1 < j2 < · · · < jj . And we denote Jŝ = J \ {js}.

Now we denote an arbitrary element of k dimensional cycles as
∑

I,|I|=k

AILI

for I ⊂ {1, 2, · · · , n} and AI ∈ Q. The boundary of this element is

δ̃2(
∑

I,|I|=k

AILI) =
∑

I

AI(δ̃2LI)

=
∑

I

AI(c1L1 + · · ·+ cnLn)× LI

=
∑

J,|J|=k+1

k+1∑

s=1

AJŝ
(−1)s−1cjsLJ

Hence, the element
∑

I,|I|=kAILI is in the kernel of δ̃2 if for any set J ⊂
{1, 2, · · · , n} with |J | = k + 1, the following equation holds:

k+1∑

s=1

AJŝ
(−1)s−1cjs = 0. (10.8)

Set {
S := {i ∈ {1, 2, · · · , n} | ci = 0}
Sc := {1, 2, · · · , n} \ S. (10.9)

Then, the equation (10.8) is exactly the same equation as we had in Theorem 4.20
in [Cho] with (his − h0) replaced by cis .

Hence, by applying the same method, one can show that such elements in the

kernel of δ̃2 lies in the image of δ̃2. This finishes the proof. �

Since for a fiber to have a non-trivial Floer cohomology is a very special geometric
property, it seems to deserves a name to them.

Definition 10.1. We call balanced a Lagrangian fiber that have a non-vanishing
Floer cohomology.

In the next section, we will provide a geometric description of balanced torus
fibers.
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11. Description of the balanced torus fibers

In this section, we now examine the equation (10.6) in terms of toric geometry.
In particular, in the case of no line bundle twisted, we provide a concrete toric
description of the conditions for a fiber to satisfy the equation.

For given A ∈ intP , we partition G = G(Σ) = {vj}1≤j≤N into the disjoint union

G =
∐

µ

G(A;µ)

where G(A;µ) is the set of vj ∈ G with the symplectic area of the associated homo-
topy class βj = [D(vj)] ∈ π2(X,L)

ωP (βj) = µ

for each given positive number µ. Obviously G(A;µ) = ∅ except for a finite number
of values of µ’s

0 < µ1 < µ2 < · · · < µLA

and 1 ≤ LA ≤ N . Then (10.6) becomes
∑

vj∈G(A;µℓ)

hvjvj =
∑

vj∈G(A;µℓ)

ei〈ν,vj〉vj = 0 (11.1)

for all 1 ≤ ℓ ≤ LA.

Proposition 11.1. Assume XΣ(P ) is Fano and let L = µ−1(A) ⊂ (XΣ(P ), ωP )
be a fiber for A ∈ int P and L be a flat line bundle with the holonomy vector
ν = (ν1, · · · , νn) such that A and ν satisfy (11.1). Then we have the isomorphism

HFBM ((L,L); J0) ∼= H∗(L; ΛC

nov).

For all other cases, HFBM ((L,L); J0) is trivial.

Now we specialize to the case without L, i.e., all hvj ≡ 1. In the remaining sec-
tion, we will provide a more concrete description of the balanced fibers by analyzing
(11.1) in terms of toric data.

Note that in this case (11.1) just becomes
∑

vj∈G(A;µℓ)

vj = 0. (11.2)

We denote by

{1, · · · , N} =

LA∐

ℓ=1

Iℓ

the partition of {1, · · · , N} corresponding to the partition of G =
∐LA

ℓ=1G(A;µℓ).
We also denote

eIℓ
=

∑

j∈Iℓ

ej . (11.3)

By the exact sequence

0→ K
i→ ZN

π→ Zn → 0

(11.2) implies that there exists δℓ ∈ K such that

i(δℓ) = eIℓ
∈ ZIℓ

for each 1 ≤ ℓ ≤ LA, where ZIℓ is the obvious product space. We denote by

∆ℓ ⊂ (S1)Iℓ
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the obvious diagonal circle group generated by the vector eIℓ
∈ ZIℓ and by ∆ their

products as a subgroup of (S1)N . By construction, we have

∆ ⊂ K
with dim∆ = LA ≤ dimK = N − n.

We will now carry out the “reduction by stages” to describe our toric manifolds
XΣ(P ) and the Lagrangian torus fiber L in a two-step process. We denote δ =
Lie(∆) and by

µ∆ : CN → δ∗

the moment map of the action of ∆ on CN . We denote

j : ∆ →֒ K(⊂ (S1)N ) or j : δ →֒ k(⊂ RN )

the inclusion homomorphism and T∆ := (S1)N/∆.
We note that (S1)N acts on CN as the direct product of the actions of dℓ-

dimensional torus (S1)Iℓ on CIℓ . By carrying out the first reduction by the action
of ∆, we have obtained the reduced space

Y∆ = µ−1
∆ (j∗(r))/∆ ∼= P(d1−1) × · · · × P(dLA

−1)

ω∆ = ω1 ⊕ · · · ⊕ ωLA

where we have

j∗(r) =

LA∑

ℓ=1

(−λIℓ
)e∗Iℓ
∈ δ∗, λIℓ

=
∑

i∈Iℓ

(λi)

with respect to the basis {e∗I1 , · · · , e∗Iℓ
} dual to the basis {eI1 , · · · , eIℓ

} of δ, and ωℓ
is the Fubini-Study form on P(dℓ−1) associated to the value λIℓ

of the momentum
function µ∆ℓ

: Cdℓ → δ∗ℓ
∼= R, which becomes nothing but the standard momentum

function of the S1 action on Cdℓ i.e.,

z ∈ Cdℓ 7→ 1

2
|z|2 ∈ R.

Furthermore the residual torus T∆ = (S1)N/∆ is the direct product

T∆ =
∏

ℓ

T∆ℓ

with T∆ℓ := (S1)Iℓ/∆ℓ, and canonically acts on the reduced space Y∆ as the direct
product action of the standard torus action of T∆ℓ ∼= (S1)dℓ/∆ℓ on P(dℓ−1). We
denote

t∆ℓ = Lie((S1)Iℓ/∆ℓ) ∼= R(dℓ−1).

This action of the torus T∆ℓ on P(dℓ−1) naturally extends to the action of the
product

U∆ :=
∏

ℓ

U(dℓ)

as the Kähler isometry with respect to the canonical complex and symplectic struc-
tures induced from the ones on Y∆ = µ−1

∆ (j∗(r))/∆.
Now the quotient group K/∆ := K∆ acts on Y∆. We denote its moment map

by
µK∆ : Y∆ → k∗∆

and the natural projection K → K∆ by π∆. Then we have the identity

π∗
∆ ◦ µK∆ = µK .
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and the second reduction provides the description of (XΣ(P ), ωP ) as the reduced
space

XΣ(P )
∼= µ−1

K∆
(s)/K∆

where s ∈ k∗∆ such that π∗
∆(s) = r.

In terms of this identification, the Lagrangian torus L = µ−1(A), A = (a1, · · · , an)
can be written as

µ−1
T∆(A1, · · · , ALA)/K∆

∼=
(
µ−1
T∆1

(A1)× · · · × µ−1

T
∆LA

(ALA)
)
/K∆

where Aℓ ∈ (t∆ℓ)∗ and (A1, · · · , ALA) ∈ ⊕ℓ(t∆ℓ)∗ and

µT∆ℓ : P(dℓ−1) → (t∆ℓ)∗ ∼= R(dℓ−1)

is the standard moment map on P(dℓ−1) of the action by the torus T∆ℓ. Here
(A1, · · · , ALA) = π∗(A) where

π : T∆ = (S1)N/∆→ (S1)N/∆

K/∆
∼= (S1)N/K = T n.

By the symmetry consideration, it follows that µ−1
T∆ℓ

(Aℓ) is the Clifford torus of

P(dℓ−1).
We summarize the above discussion into the following theorem

Theorem 11.2. Let XΣ(P ) = µ−1(r)/K be a Fano toric manifold with the canon-
ical symplectic form ωP . Then each balanced Lagrangian torus fiber in XΣ(P ) has
the form

L ∼= (L1 × · · · × LLA)/K∆ ⊂ µ−1
K∆

(s)/K∆
∼= XΣ(P )

where K∆ = K/∆ and Lℓ is the Clifford torus of (P(dℓ−1), ωℓ) with ωℓ the Fubini-
Study form associated to the normalization

Pdℓ−1 = µ−1
∆ℓ

(−λIℓ
)/S1, λIℓ

=
∑

i∈Iℓ

λi.

12. Hori-Vafa’s B-Model Calculation

In this section and the next, we will relate the equation (10.6) with the critical
point equation of the superpotential of the Landau-Ginzburg mirror to the toric
manifold (XΣ(P ), ωP ), after substituting T 2π = e−1. We will closely follow the
notations from [HV] with few minor exceptions, and exclusively use convention
that the letter i runs over 1, · · · , N , a over 1, · · · , k(= N − n) and α over 1, · · · , n.

In this section, we first describe the prediction of Floer cohomology by Hori via
the mirror symmetry correspondence from Hori and Vafa [HV] or Hori [H].

Suppose the k-dimensional torus K = (S1)k acts on CN as follows.

(eiθ1 , · · · , eiθk) · (z1, · · · , zN ) = (

k∑

a=1

eiQ1aθaz1, · · · ,
k∑

a=1

eiQNaθazN )

The moment map of this action is given by

µ : CN → (Rk)∗

(z1, · · · , zN ) 7→ 1

2
(
∑

i

Qi1|zi|2, · · · ,
∑

i

Qik|zi|2)

(See section 3 for more detailed discussion on this). Now we consider the quotient
µ−1(r)/K as toric manifolds where r = (r1, · · · , rk) lies in (Rk)∗.
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With some physical arguments, Hori and Vafa [HV] introduce the dual geometry
by introducing periodic variables Yi, i = 1, · · · , N with Yi ≡ Yi + 2πi such that for
a = 1, · · · , k,

N∑

i=1

QiaYi = ta (12.1)

where ta = ra − iθa.
Remark 12.1. Here we consider the case where the B-field is zero

The real part of Yi represents the position of the Lagrangian torus fiber and
imaginary part represents the holonomy of the line bundle on this torus fiber. And
one considers the superpotential

W :=

N∑

i=1

e−Yi . (12.2)

The critical points of the superpotential correspond to specific fibers and holonomies
whose Floer cohomology are non-vanishing.

For a given Q, we consider the equation

N∑

i=1

viQia = 0, vi ∈ Z. (12.3)

The space of solutions of (12.3) form an integral lattice of rank n = N − k in RN .
We denote a Z-basis of this lattice by {vα}1≤α≤n ⊂ RN with

vα = (vα1 , · · · , vαN )

each of them satisfying
N∑

i=1

vαi Qia = 0. (12.4)

Therefore the general solutions for the constraint equation
∑

iQiaYi = ta have the
form

Yi =

n∑

α=1

vαi Θα + yi (12.5)

with n = N − k periodic variables Θα ( mod 2πi) where y = (y1, · · · , yN ) is a
special solution of

N∑

i=1

QiaYi = ta.

(In [HV], the letters ti’s are used for yi’s which is somewhat confusing with the
other usage of ta’s.)

Now the superpotential (12.2) of the mirror theory can be expressed as

W =
N∑

i=1

exp(−yi − 〈Θ, vi〉), (12.6)

where

vi := (v1
i , v

2
i , · · · , vni ) ∈ Rn ∼= NR
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and 〈Θ, vi〉 is the short hand notation for
∑n

α=1 v
α
i Θα. Note that the condition

∂W
∂Θα

= 0 is the same as

N∑

i=1

e−Yi · vαi =

N∑

i=1

exp(−yi − 〈Θ, vi〉) · vαi = 0 (12.7)

for α = 1, · · · , n. One can already see the similarity between equation (10.6) and the
equation (12.7). In the next section, we show that two equations indeed coincide,
if we substitute

T 2π = e−1, and then yi = −λi.

13. Equivalence when T 2π = e−1

In this section, we show that our calculation of the (Bott-Morse) Floer cohomol-
ogy indeed verifies the mirror symmetry prediction made by Hori-Vafa’s B-model
calculation. More precisely, the condition (10.6) to have non-vanishing Floer coho-
mology with T 2π = e−1 exactly corresponds to the critical points of the superpo-
tential, with a canonical definition of the variables Yi’s.

To see the correspondence for the compact toric manifold XΣ(P ), we define Yi
as follows:

Definition 13.1. For i = 1, · · · , N , define Yi ∈ R× i(R/2πZ) as
{
Re(Yi) = Area(βi)/2π

Im(Yi) = i log(hvi) = −〈ν, vi〉 mod 2π
(13.1)

where vi’s are the generators of the one dimensional cones of the fan Σ associated
the toric manifoldXΣ(P ) as in section 2 and βi ∈ π2(X,L) is its associated homology
class, and ν is the holonomy vector of the flat line bundle L defined in (10.3).

Then it follows from Theorem 8.1 that

Yi = (〈A, vi〉 − λi)− i〈ν, vi〉 = 〈A− iν, vi〉 − λi (13.2)

and hence

e−Yi = e−(〈A−iν,vi〉−λi) or (13.3)

= hvie−(〈A,vi〉−λi). (13.4)

Consider the choice of ta’s given by the real numbers

ta = −
N∑

i=1

Qiaλi

for a = 1, · · · , N − n. Then by the choice of ta’s,

yi = −λi, i = 1, · · · , N
is a special solution of (12.1).

Proposition 13.1. For any vectors A and ν above, Yi’s defined by (13.2) satisfy
the constraint equation

N∑

i=1

QiaYi = ta for each a = 1, · · · , N − n.
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Proof. First note that we have the following equality from the exact sequence (2.1)
or equation (12.4)

N∑

i=1

Qiav
α
i = 0 for all α,

and so we have

N∑

i=1

Qiavi = 0. (13.5)

From this, we derive

N∑

i=1

QiaYi =
N∑

i=1

Qia(〈A − iν, vi〉 − λi)

= 〈A− iν,
N∑

i=1

Qiavi〉 −
N∑

i=1

Qiaλi

= 0 + ta = ta

which finishes the proof. �

Now identifying the variable Θ

Θ = A− iν,

Yi’s defined in (13.2) coincide with (12.5).
Now, it remains to show that the condition (10.6) to have non-vanishing Floer

cohomology corresponds to the critical points of the superpotentialW =
∑N

i=1 e
−Yi ,

if we substitute T 2π = e−1.

Proposition 13.2. The Θ = A − iν is a critical point of the superpotential W if
and only if A and ν (or hvi ’s) satisfy (10.6), i.e., δ2〈pt〉 = 0.

Proof. The condition (10.6)

∑

i

hviT 2π(〈A,vi〉−λi) · vi = 0

becomes the following equation, after we substitute T 2π = e−1:

∑

i

hvie−(〈A,vi〉−λi) · vi = 0. (13.6)

Then from (13.4) and from the choice yj = −λj , the above equation is same as

∑

i

e−Yivαi = 0 ∀ α, (13.7)

which is precisely the condition for Yi to be the critical points of the superpotential
W as in the equation (12.7). �
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14. Examples

14.1. The complex projective space P2. This example is taken from [Cho]. We
consider P2 associated with the moment polytope P defined by






〈x, (1, 0)〉 ≥ 0

〈x, (0, 1)〉 ≥ 0

〈x, (−1,−1)〉 ≥ r
(14.1)

Let (a1, a2) ∈ int(P ). For the Lagrangian submanifold L := µ−1
T (a1, a2), there exist

three Maslov index 2 discs (up to Aut(D2)) with boundary in L. It is not hard to
check that its moment map µT trajectories are in fact straight lines. To find the
torus fiber whose Floer cohomology is non-vanishing, we check the condition (10.6).

δ2(〈pt〉) = h1T
2πa1(1, 0) + h2T

2πa2(0, 1) + h−1
1 h−1

2 T 2π(−a1−a2+r)(−1,−1) = 0
(14.2)

Since hi ∈ U(1), we have
{
h1 = h−1

1 h−2
2

a1 = −a1 − a2 + r
(14.3)

{
h2 = h−1

1 h−2
2

a2 = −a1 − a2 + r
(14.4)

Hence, we have

a1 = a2 = r/3,

h1 = h2 and h3
1 = 1

The Lagrangian fiber µ−1
T (r/3, r/3) is called the the Clifford torus and the holonomies

(h1, h2) of the line bundle L for the non-vanishing Floer cohomologies on the Clif-
ford torus are

(1, 1), (e2πi/3, e2πi/3), (e4πi/3, e4πi/3)

14.2. Hirzebruch surfaces Fc. This example illustrates well the difference be-
tween the actual Floer cohomology with Λnov-coefficient and the Floer cohomology
with the parameter value T 2π = e−1. The latter was predicted by Hori-Vafa [HV]
by the B-model calculation. However the latter version of the Floer cohomology is
not invariant under the Hamiltonian isotopy of the Lagrangian torus fiber while the
former version is so. The latter Floer cohomology has Euler number of fibers whose
Floer cohomology is non-vanishing for toric Fano manifolds ([HV]), especially there
exists four such fibers for Hirzebruch surfaces F1 and F2. But we will show that
the former version has no fiber whose Floer cohomology is non-vanishing.

We start with the example F1. We consider F1 associated with the moment
polytope P1 defined by





〈x, (1, 0)〉 ≥ −1

〈x, (0, 1)〉 ≥ −1

〈x, (0,−1)〉 ≥ −1

〈x, (−1, 1)〉 ≥ −1

(14.5)
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This polytope is reflexive [B2], thus F1 is Fano. Let (a1, a2) ∈ int(P1). For the
Lagrangian submanifold L := µ−1

T (a1, a2), there exist four Maslov index 2 discs (up
to Aut(D2)) with boundary in L. In the torus coordinates, these are given as

(c1, c2z), (c1z, c2), (c1,
c2
z

), (
c1
z
, c2z)

To find the torus fiber whose Floer cohomology is non-vanishing, we check the
condition (10.6).

0 = δ2(〈pt〉) = h1T
2π(a1+1)(1, 0) + h2T

2π(a2+1)(0, 1) +

h−1
2 T 2π(−a2+1)(0,−1) + h−1

1 h2T
2π(−a1+a2+1)(−1, 1)

From the first coordinate, we obtain,
{
h1 = h−1

1 h2

T 2π(a1+1) = T 2π(−a1+a2+1)
(14.6)

Therefore we have

h2 = h2
1, a2 = 2a1.

From the second coordinate, we have

h2
1T

2π(2a1+1) − h−2
1 T 2π(−2a1+1) + h1T

2π(a1+1) = 0.

Or, equivalently

(h1T
2πa1)4 − 1 + (h1T

2πa1)3 = 0. (14.7)

Now, we substitute T 2π = e−1. Then, the equation (14.7) becomes

(h1e
−a1)4 − 1 + (h1e

−a1)3 = 0. (14.8)

By setting X := h1e
−a1 , we have

X4 +X3 − 1 = 0. (14.9)

It is not hard to check the four solutions of this equation indeed gives the location
of the four fibers inside the polytope P1, whose Floer cohomology with the value
T 2π = e−1 is non-vanishing. This agrees with the B-model calculation from [HV].

For the Floer cohomology with Λnov-coefficient, note that we regard T as a
formal parameter. Hence to have a solution of the equation (14.7), we should have

a1 = 0. (14.10)

In this cases, the equation becomes,

h4
1 + h3

1 − 1 = 0. (14.11)

It is easy to check that this equation does not have a solution for h1 ∈ U(1). Hence,
there exists no torus fiber in F1(from the polytope P1) whose Floer cohomology with
Λnov-coefficient is non-vanishing.

Theorem 14.1. Let c be any positive integer and consider the Hirzebruch surface
Fc with the canonical symplectic (Kähler)-form as a toric manifold. Then all the
non-singular torus fiber has trivial Floer cohomology with Λnov-coefficients.

Remark 14.1. For F0
∼= P1 × P1 with both factors having the same area, we

find one fiber with four possible holonomies whose Floer cohomology with Λnov-
coefficient is non-vanishing.
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Proof. We may consider a polytope Pc (trapezoid with lengths B,A,B+ cA) given
as follows: 





〈x, (1, 0)〉 ≥ 0

〈x, (0, 1)〉 ≥ 0

〈x, (0,−1)〉 ≥ −A
〈x, (−1,−c)〉 ≥ −B − cA

(14.12)

Let (a1, a2) ∈ int(Pc). Consider the Lagrangian submanifold L := µ−1
T (a1, a2). We

check the condition (10.6) as before.

0 = δ2(〈pt〉) = h1T
2π(a1)(1, 0) + h2T

2π(a2)(0, 1) +

h−1
2 T 2π(−a2+A)(0,−1) + h−1

1 h−c2 T 2π(−a1−ca2+B+cA)(−1,−c)
From the first coordinate, we have

{
h1 = h−1

1 h−c2

a1 = −a1 − ca2 +B + cA
(14.13)

And for T as a formal parameter, from the second coordinate of the above equation
δ2〈pt〉 = 0, we have

a2 = −a2 +A = −a1 − ca2 +B + cA. (14.14)

Combining these equations, we have

a1 = a2 = A/2, B = (
2− c

2
)A. (14.15)

Hence, for c ≥ 2, the length B becomes non-positive which is not possible. For the
case c = 1, we should have

h4
1 + h3

1 − 1 = 0,

which does not admit any solution in U(1), in particular h1 = 1 is not a solution.
Hence, δ2(〈pt〉) 6= 0 and this finishes the proof.

�

Remark 14.2. The non-unitary solutions of (14.11) for the Λnov-coefficients can
be interpreted as the solutions when a B-field is turned on: consider the complex
symplectic form

ω +
√
−1B =: Ω

and the one-parameter family (X, zΩ) with z ∈ C∗. However the solutions for
B 6= 0 do not seem to carry any natural symplectic geometrical meaning.

15. Obstruction classes, open Gromov-Witten invariants and

superpotentials

Fukaya-Oh-Ohta-Ono [FOOO] have defined the obstruction cycles of the filtered
A∞-algebra associated to each Lagrangian submanifold and developed a deforma-
tion theory thereof, which tells whether one can kill the m0-term by a suitable gauge
equivalence. The m0 is defined by a collection of currents induced by the (co)chains

[M1(β), ev0]

for all β ∈ π2(M,L). More precisely, we have

m0(1) =
∑

β∈π2(M,L)

[M1(β), ev0] · TArea(β)qµ(β)/2 ∈ C∗(L)⊗ Λnov,0. (15.1)
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The sequence {ok(L)}1≤k<∞ of the obstruction classes introduced in [FOOO] is the
iterative obstructions to deforming the filtered A∞-structure so that

m0 ≡ 0 mod T λk+1 as k →∞.
Here we order those λ’s that appear as the area of β, i.e., as ω(β).

Since the paper [FOOO] appeared, it became a folklore among some mathemati-
cians and physicists alike that under the mirror symmetry correspondence FOOO’s
obstruction (co)chain in the A-model should correspond to the superpotential in
the B-model.

In fact, our computation confirms this test in the toric case. We now explain this
correspondence precisely. We first recall from Theorem 5.3 and the orientability of
the torus that there is no holomorphic discs of Maslov index less than 2. According
to [section 7, FOOO], all obstruction classes o(β) are well-defined and the only
non-trivial obstruction classes (as currents) are the ones given by

o(β) := [M1(β), ev0] for β with µ(β) = 2 (15.2)

for the torus fibers in this paper (see [section 7, FOOO] for more explanation), which
also coincides with m0(1) in this case. In view of Proposition 7.3 and consideration
of the sign from [Cho], we also have

o(β) = [L] (= 1)

the fundamental class of L for any β with µ(β) = 2. Therefore we have obtained
the formula for the obstruction class of L

o(L) =

N∑

i=1

hvjTArea(βj) · q (15.3)

from the definition of obstruction classes [Definition 4.6 & 4.8, FOOO]. However it
follows, by the same substitution T 2π by e−1 as before, that the right hand side of
(15.3) precisely becomes

N∑

i=1

exp(−yi − 〈Θ, vi〉) = W (Θ)

if we ignore the harmless grading parameter q. Therefore we have confirmed the
exact correspondence

o(L)←→W

for the case of Lagrangian torus fibers in toric manifolds.
In addition, comparing (10.6) with the derivative

∂W

∂Θ
=

( ∂W
∂Θ1

, · · · , ∂W
∂Θn

)

after substitution of T 2π = e−1, we have also verified the correspondence

δ2〈pt〉 ←→
∂W

∂Θ
.

Recall from [addenda, O1] that the second named author observed that the ob-
struction class is determined by the (genus zero) one-point open Gromov-Witten
invariants in the monotone case, which obviously generalizes to the toric Fano case
(because the fiber does not have holomorphic discs of non-positive Maslov indices).
Similarly in general, δ2〈pt〉 is determined by the two-point open Gromov-Witten
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invariants from the definitions (7.1) and (7.2) [FOOO]. Here we would like to em-
phasize that in this case of torus fibers in the Fano toric manifolds, the (genus
zero) open Gromov-Witten invariants considered here are rigorously well-defined
(with respect to the canonical complex structure). This correspondence between
adding one marked point and taking the derivative is consistent with the well-known
principle in the calculus of correlation functions in physics.

Combination of these facts suggests an intriguing relation between the derivatives
of W of the superpotential (or of the obstruction o(L)) and the “open Gromov-
Witten invariants” of L in general. (Here we put the quotation mark because the
open Gromov-Witten invariants in general has not been rigorously defined.) In
fact, there has been conjectured by physicists that the superpotential is related by
the mirror symmetry correspondence to the “open Gromov-Witten potential” (see
[KKLM] for example), and our work provides a concrete mathematical evidence via
an A-model calculation. As far as we understand, most calculations, if not all, in
the physics literature in this respect have been done in the B-model side. We hope
to further investigate this relation in the future.

16. Discussion: non-Fano cases

We believe that our calculation of the Floer cohomology in this paper remain to
be true for the non-Fano toric manifolds. In this section, we explain what remains
to be proved for the non-Fano cases.

The structure and regularity theorem of smooth holomorphic discs still hold for
the non-Fano case. However for singular curves, distinction occurs in the trasversal-
ity problem because of the presence of multiple covered spheres of negative Chern
numbers. Therefore it is essential to use the abstract perturbation in the frame-
work of Kuranishi structure [FOn], even if all disc components are already regular.
With this transversality problem taken care of, all the theorems, especially those
in sections 4 and 10 remain to be true, possibly except the statement

HF (L, φ(L); J ′) ∼= HFBM (L, J0).

The proof of this isomorphism is expected to use a singular degeneration argument
as those used in [FOh1] in the presence of non-trivial instantons which may not
be transversal. Unlike the Fano case, there is no soft argument as those used in
[Oh4] to go from the limit configurations to the case of small parameters because of
non-transversality of sphere components. One really has to construct a Kuranishi
structure in the limit configurations and to prove other non-trivial convergence
statements. This singular degeneration problem is currently being studied by the
second named author with K. Fukaya [FOh2].

In the end, we expect that the above isomorphism still holds but details of the
proof remain to be worked out. Because of this, we restrict ourselves to the Fano
case for sections 4, 10 and the beginning of section 7 in this paper.
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