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Abstract: We compute the ring structure of Floer cohomology groups of Lagrangian
torus fibers in some toric Fano manifolds continuing the study of [CO]. Related
A∞-formulas hold for a transversal choice of chains. Two different computations are
provided: a direct calculation using the classification of holomorphic discs by Oh and
the author in [CO], and another method by using an analogue of divisor equation in
Gromov-Witten invariants to the case of discs. Floer cohomology rings are shown to
be isomorphic to Clifford algebras, whose quadratic forms are given by the Hessians of
functions W , which turn out to be the superpotentials of Landau-Ginzburg mirrors. In
the case of CP n and CP 1 × CP 1, this proves the prediction made by Hori, Kapustin
and Li by B-model calculations via physical arguments. The latter method also provides
correspondence between higher derivatives of the superpotential of LG mirror with the
higher products of the A∞(or L∞)-algebra of the Lagrangian submanifold.

1. Introduction

Floer theory of Lagrangian intersections has been proved to be a powerful technique
in symplectic geometry. Also since the “homological mirror symmetry” conjecture by
Kontsevich [K], it has become a much more exciting field of mathematics, which yet
has a long way to be fully understood. Recently, Fukaya, Oh, Ohta and Ono constructed
an A∞-algebra of a Lagrangian submanifold and Floer homology in a general setting in
their beautiful work [FOOO]. But the construction is highly non-trivial to overcome sev-
eral technical problems. The first problem is the well-definedness of the moduli space of
J -holomorphic discs compatible for all homotopy classes. It was observed in [FOOO],
that standard Kuranishi perturbation does not produce compatible and transversal mod-
uli space in general. Another problem is that even if moduli spaces of J -holomorphic
discs are well-defined, it does not directly produce an A∞-algebra since one has to work
at the chain level.
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In [CO], Yong-Geun Oh and the author have explicitly described the moduli space
of holomorphic discs in the case of Lagrangian torus fibers in toric Fano manifolds, and
used that information to compute Floer cohomology groups. A combinatorial descrip-
tion of a fiber whose Floer cohomology is non-vanishing was found, and for such a fiber,
the Floer cohomology was in fact isomorphic to singular cohomology as a module. It
was shown that all holomorphic discs in these cases are transversal. To compactify the
moduli space, we need an additional assumption regarding the behavior of holomorphic
spheres on a toric Fano manifold (see Assumption 3.1). In this paper, we first consider a
related A∞-algebra which is defined transversally. Namely, fiber products with various
chains in the Lagrangian submanifold L in the definition of an A∞-algebra can be made
transversal for the generic choice of chains. This gives a partial A∞-algebra, but products
on the cohomology of these A∞-algebras are shown to be well-defined. How to obtain
an actual A∞-algebra from this partial algebra is an interesting question. With skew-
symmetrization in this toric Fano case, these partial A∞-algebras gives well-defined
L∞-algebras. On the other hand, recently Fukaya has constructed an A∞-algebra on
DeRham complex of Lagrangian submanifolds. A computation in toric Fano case can
be carried out in the DeRham setting, which will produce actual A∞-algebra.

Then we show that Floer cohomology ring HFBM(L; J0) is isomorphic to a Clifford
algebra Cl(V, Q) where Q is a symmetric bilinear form. It is very interesting that the
symmetric bilinear form Q we obtained exactly agrees with the Hessian of the superpo-
tential W of the mirror Landau-Ginzburg model studied by Hori and Vafa [HV]. (This is
related to homological mirror symmetry conjecture between A-model in Fano manifolds
and B-model in Landau-Ginzburg mirror.) In particular, the Floer cohomology of the
Clifford torus T n in CP n is isomorphic to the Clifford algebra with n generators as a ring.

Such product structures in the Clifford torus T n in CP n and T 1 ×T 1 in CP 1 ×CP 1

have been conjectured by Hori and Kapustin and Li [KL], recently in general by [KL2]
from the calculation on B-model side using physical arguments. Mathematical account of
the product structure onB-model side looks plausible considering the paper by Orlov [O].

We provide two ways of computing the product structure. First, we provide direct
computations exploiting the classification of all holomorphic discs with boundary on L

by Oh and the author ([CO]).Another method is by using an analogue of divisor equation
for discs, which is introduced in section 6. The latter method easily provides the general
correspondence between higher derivatives of the superpotential of LG mirror with the
higher products of A∞(or L∞)-algebra of Lagrangian submanifold. This extends the
correspondence proved by Oh and the author in [CO] that obstruction cochain m0 = l0
agrees with the superpotential itself and non-vanishing of Floer cohomology corresponds
to the critical points of the superpotential W . These l∞-products are invariant under the
perturbation of an almost complex structure.

We also provide an explicit filtered chain map between singular cochain complex and
Bott-Morse Floer complex in the case of torus fibers L in toric Fano manifolds, which
induces an isomorphism in cohomology in case Floer homology is non-vanishing.

2. A∞-Algebra of Lagrangian Submanifold

In this section we recall the construction of the A∞-algebra of a Lagrangian submani-
fold. In fact, we will provide a transversal version (partial A∞-algebra) which is suitable
for our purposes. (This version is only suitable for the case when the moduli space is
already well-defined.)



Products of Floer Cohomology of Torus Fibers in Toric Fano Manifolds 615

The A∞-algebra in this case naturally arises from the stable map compactification of
the moduli spaces of holomorphic discs. The moduli space of a disc with n+1 boundary
marked points, Mn+1, can be seen also as a compactification of a configuration space
of n − 2 points on an interval [0, 1]. (By Aut(D2), send n + 1, 0, 1st marked points to
1, ∞, 0 where we identify D2 with the upper-half plane.) The latter gives the well-known
Stasheff Polytope [S1].

We first recall the definition of the (non-unital) A∞-algebra introduced by Stasheff
[S1]. Let A = ⊕i∈ZAi be a Z-graded module over R, where R is a commutative ring
with unit. As usual, we denote its suspension by A[1]i = Ai+1.

Definition 2.1. A structure of the (non-unital) A∞-algebra on A is given by a series of
R-module homomorphisms mk : A⊗n → A[2−n] for non negative integer k, satisfying
quadratic equations

∑

k1+k2=k+1

∑

i

(−1)deg x1+···+deg xi−1+i−1 (2.1)

mk1(x1, . . . , mk2(xi, . . . , xi+k2−1), . . . , xk) = 0.

In the transversal version, the above formula will only hold on a dense transversal
sequence of chains for each k.

Now we recall the setting for the objects of the chain complex. We refer readers
to [FOOO] Appendix A for a complete explanation about introducing this setup. Let
C∗(L; �nov) be the set of currents on L realized by geometric chains as follows: For
a given (n-k)-dimensional geometric chain [P, f ], we consider the current T ([P, f ])
which is defined as follows: The current T ([P, f ]) is an element in D′k(M; R), where
D′k(M; R) is the set of distribution valued k-forms on M : For any smooth (n-k)-form
ω, we put

∫

M

T ([P, f ]) ∧ ω =
∫

P

f ∗ω. (2.2)

This defines a homomorphism

T : Sn−k(M; Q) → D′k(M; R),

whereSn−k(M; Q) is the set of all (n-k) dimensional geometric chains with Q-coefficient.

Let S
k
(M, Q) be the image of the homomorphism T . We extend the coefficient ring Q

to �nov . Then we set

Ck(L; �nov) := S
k
(M, �nov). (2.3)

Since we consider the elements in the image of T , if the image of the map f of the geo-
metric chain [P, f ] is smaller than the expected dimension, then it gives 0 as a current.
This fact will be used crucially later on. Also, note that the map T is not injective, hence
some elements get identified under the map T . Also note that we take the whole image
of T (instead of taking a countable subset of it) as transversality of fiber products in the
definition of mk is achieved by choosing generic chains.

The classical part of the maps {mk} are defined as follows, which is different from
that of [FOOO] (In [FOOO], mk,0 defines an A∞-algebra of singular cochains.)
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Definition 2.2. The maps mk,0 for k = 0, 1, . . . on C∗(L; �nov) are transversally
defined by the following maps. For [P, f ], [Q, g] ∈ C∗(L; Q),

(1) m0,0 = 0.
(2) m1,0([P, f ]) = (−1)n[∂P, f ].
(3) m2,0([P, f ], [Q, g]) = (−1)degP (degQ+1)[f (P ) ∩ g(Q), i] = 0, where i is an

embedding into L.
(4) for k ≥ 3,

mk,0 ≡ 0. (2.4)

We extend the above maps linearly over �nov . The notation ∂ here is the usual boundary
operator for singular homology.

Now, the quantum contribution part is defined in the same way as in [FOOO].

Definition 2.3 [FOOO].

(1) For a geometric chain [P, f ] ∈ Cg(L : Q) and non-zero β, define

m0,β = [M1(β), ev0], (2.5)

m1,β [P, f ] = [M2(β) ev1 ×f P, ev0]. (2.6)

(2) For each k ≥ 2, non-zero β, for geometric chains

[P1, f1] ∈ Cg1(L : Q), . . . , [Pk, fk] ∈ Cgk (L : Q)

(i.e. dimension of [Pi, fi] as a chain is n − gi), define

mk,β([P1, f1], . . . , [Pk, fk]) = (−1)ε[Mmain
k+1 (β) (ev1,...,evk)

×(f1,...,f2)(P1 × · · · × Pk), ev0]. (2.7)

Here ε is a sign assigned as follows:

ε = (n + 1)

k−1∑

j=1

j∑

i=1

deg(Pi). (2.8)

(3) Then we define the maps mk (k ≥ 0) by

mk([P1, f1], . . . , [Pk, fk]) =
∑

β∈π2(M,L)

mk,β([P1, f1], . . . , [Pk, fk])

⊗T Area(β)qµ(β)/2.

Remark 2.4. Here Mk(β) is a compactified moduli space of J -holomorphic discs with k

marked point on ∂D2. Recall that Mk(β) for k ≥ 3 has several connected component. By
the ordering of the k marked points on ∂D2 and by Mmain

k (β) we denote the connected
component where marked points z1, . . . , zk lie cyclically on ∂D2 counter-clockwise.

Also, the fiber products defined above are not always transversal, and we discuss this
issue in Sect. 3.

Here we recall the dimension formula of mk,β when the involved fiber product is
transversal.
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Proposition 2.1 ([FOOO] Proposition 13.16). For non-zero β, when transversal,

mk,β((P1, f1), . . . , (Pk, fk)) ∈ C
n−∑k

i=1 gi+µ(β)−2+k
(L : Q).

Proposition 2.2 (cf. [FOOO]). These {mk} maps satisfy the A∞ formulas (2.1) for
transversal sequence of chains in C∗(L; �nov).

Proof. This is essentially the theorem proved in [FOOO]. We recall its proof for the
convenience of readers and explain the changes made for mk,0.

For simplicity, we recall the proof only for the third A∞-formula. Consider the moduli
space of J -holomorpic discs intersecting chains P and Q (see Fig. 1),

m2,β(P, Q) = (Mmain
3 (β)ev1,ev2 ×f,g (P × Q), ev0). (2.9)

Now, we consider all possible stable map compactification of this moduli space and its
image under the evaluation map. The limit configurations of codimension 1 of the image
can be written as follows. See Fig. 1, where each figure corresponds to the following
terms:

m2,β(P, Q) → m2,β2(m1,β1(P ), Q), m2,β2(P, (m1,β1(Q), ), (2.10)

m3,β2(P, Q, m0,β1), m3,β2(P, m0,β1 , Q), m3,β2(m0,β1 , P , Q), m1,β1(m2,β2(P, Q)).

(2.11)

Degenerations into several (three or more) disc components or sphere bubbles also
occur. But if transversalities are satisfied for such singular strata with positivity assump-
tions on a Lagrangain submanifold, such strata should be of codimension 2 or more,
hence they do not contribute to the A∞ formulas.

Now, these limit configurations can be written into an A∞-formula up to sign:

∂(m2,β(P, Q)) = ±m2,β2(m1,β1(P ), Q) ± m2,β2(P, (m1,β1(Q), )

±m3,β2(P, Q, m0,β1) ± m3,β2(P, m0,β1 , Q) ± m3,β2(m0,β1 , P , Q)

±m1,β1(m2,β2(P, Q)).

Fig. 1. Limit configurations of (2.9) of codimension 1
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This is the third A∞-formula in (2.1) up to sign, and other formulas can be obtained
in a similar fashion by choosing a mk,β(P1, . . . , Pk) for general k in (2.9).

Now we justify the changes made in the definitions of mk,0 ≡ 0 for k ≥ 3. Consider
one of the m3,0 term appeared in the above configuration when β2 = 0, or generally one
may consider the geometric chain m3,0(P, Q, R). The dimension of the image under
the evaluation map of m3,0(P, Q, R) is always smaller than the virtual dimension of the
moduli space: The reason is that the evaluation map of a constant disc forgets the moduli
parameter. Namely, before evaluation, there is a parameter describing the position of
four marked points on a disc. Recall that the moduli space of 4 marked points on ∂D2

up to automorphisms of D2 is diffeomorphic to R (see [FOh]). But as we evaluate on a
constant disc, the image is always a point, while the moduli parameter is lost under the
evaluation map. Hence, such a term m3,0(P, Q, R) is of codimension 1 by the virtual
dimension, but its actual image is of codimension 2. Hence terms involving m3,0 do not
appear in the A∞ formula, which is obtained by considering the codimension 1 boundary
of the image of the chain (2.9) under evaluation map.

This phenomenon always happens for mk,0 for any k ≥ 3 because of the same reason.
Hence we may set (transversally)

mk,0 ≡ 0 for k ≥ 3.

Note that in [FOOO], the evaluation maps of constant homotopy class are also perturbed
by moduli parameters, so that the image has the same dimension as virtual dimension
unlike our setting. Also note that m2,0, m1,0 does not vanish as there are no moduli
parameters in these cases. This proves the proposition. �


Now, because of the presence of m0 terms, m2
1 = 0 does not always hold. Hence,

Floer homology groups are not well-defined in general. Obstructions for the well-de-
finedness of Floer cohomology was studied in [FOOO]. In an unobstructed case, one
can deform the chain complex in a suitable way so that m2

1 = 0 holds. For the case
of torus fibers in a toric Fano manifold, it is (weakly) obstructed, in which case Floer
cohomology itself is well-defined.

A related phenomenon in the language of A∞-algebra is that m0 terms disappear
from the A∞-formula.

Proposition 2.3 (compare [FOOO] Proposition 7.1). Let xi be an element in C∗
(L; �nov) for i = 0, . . . , k, for a Lagrangian torus fiber L in toric Fano manifolds.
Then, when transversal, we have

mk+1(x1, . . . , [L], . . . , xk) = 0, k ≥ 2, k = 0,

m2([L], x0) = (−1)deg(x0)m2(x0, [L]) = x0.

Namely, [L] behaves as a strict unit.

Proof. This was proved in [FOOO], except that we do not need to use a homotopy unit
argument. Recall that the forget maps commute with the evaluation maps obviously
in our case, whereas they do not commute in [FOOO] because of the perturbation of
evaluation maps at marked points. We give the proof of the proposition here for the
convenience of readers. Note that the proposition holds by the definition of mk+1,0 for
k ≥ 2. Hence it is enough to show that mk,β(x1, . . . , [L], . . . , xk) = 0 for k ≥ 2 with
non-zero β ∈ π2(M, L), and the statement about m2,0.
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Note that the condition for the image of a marked point to meet the fundamental
chain [L] is redundant since it always meets L. Hence,

ev0
(Mk+2(β) ev × (x1 × · · · × [L] × · · · × xk)

)

⊂ ev0(Mk+1(β) ev × (x1 × · · · × xk)). (2.12)

The dimension of RHS is

n −
∑

deg(xi) + µ(β) − 2 + k,

where as the virtual (expected) dimension of LHS is

n −
∑

deg(xi) + µ(β) − 2 + k + 1.

Hence, the actual image has smaller dimension than the expected dimension, which
becomes zero in the language of currents. The case of m2,0 follows from the sign con-
vention of [FOOO]. �


The second formula implies that the Floer cohomology is well-defined in this case
as observed in [CO] and [C] Proposition 3.18; in this case it was shown that m0(1) =∑N

i=1[L] ⊗ T ei q is a multiple of the fundamental chain.
Here, we write the first three A∞-formulas where m0 terms are dropped because of

the above proposition.

0 = m1 ◦ m1, (2.13)

0 = m2(m1(x), y) + (−1)deg(x)+1m2(x, m1(y)) + m1(m2(x, y)), (2.14)

0 = m1(m3(x, y, z)) + m2(m2(x, y), z) + (−1)deg(x)+1m2(x, m2(y, z)) (2.15)

+m3(m1(x), y, z) + m3(x, m1(y), z) + m3(x, y, m1(z)).

The first equation implies that m1 defines the cochain complex. The second equa-
tion implies that m2 defines a product of the cohomology up to sign. For x, y, z ∈
HFBM(L; J0), we have m1(x) = m1(y) = m1(z) = 0. Therefore the third equation
implies the associativity of the product up to sign,

m2(m2(x, y), z) + (−1)deg(x)+1m2(x, m2(y, z)) = 0. (2.16)

To define an associative product (with correct sign) on cohomology, one should make
the following change of signs.

Definition 2.5. We define

m̃1(P ) = (−1)degP m1(P ), (2.17)

m̃2(P, Q) = (−1)degP (degQ+1)m2(P, Q). (2.18)

Remark 2.6. The first sign appears due to a acohomological sign convention. The second
sign appears due to the sign convention of [FOOO].



620 C.-H. Cho

The resulting A∞-formulas for the new {m̃k} are

m̃1(m̃2(x, y)) = m̃2(m̃1(x), y) + (−1)deg xm̃2(x, m̃1(y)),

m̃2(m̃2(x, y), z) = m̃2(x, m̃2(y, z))

for x, y, z ∈ HFBM(L; J0). Hence m̃2 defines an graded associative product on HFBM

(L; J0).
For example, with the new sign, the classical cup product part of m̃2 can be written

as

m̃2,0(P1, P2) = P1 ∩ P2.

Also associativity in the classical level is just

(P1 ∩ P2) ∩ P3 = P1 ∩ (P2 ∩ P3).

3. Transversality

In this section, we discuss the issues regarding the moduli space of J -holomorphic discs
and the transversality of A∞-algebra.

3.1. Moduli spaces. We first recall the following theorem.

Theorem 3.1 ([CO]). Holomorphic discs in toric manifolds with boundary on any
Lagrangian torus fiber are Fredholm regular, i.e., its linearization map is surjective.

Hence the moduli space of holomorphic discs (before compactification) is a manifold
of the expected dimensions. As we try to compactify the moduli space, we may have
strata with sphere bubbles. In general toric Fano manifolds, it is already known that
holomorphic spheres are not always Fredholm regular. Hence in the compactification of
holomorphic discs, some strata (with sphere bubble) may not have the expected dimen-
sion. But since we only evaluate at the boundary of the discs (not on spheres), with the
Fano condition, the evaluation image of such strata is always of codimension of two
or higher. Hence, it is plausible that these moduli spaces with evaluation maps define
currents on L. But to make this precise seems to be a non-trivial problem. A similar
problem also has been observed in the case of Gromov-Witten theory if one tries to
integrate forms over the pseudo-cycle (see p. 277 of [MS]). The author does not know
how to prove it, so we require the following strict assumption on the sympletic manifold
so that the moduli chain defines a current.

Assumption 3.1. The toric Fano manifold M is assumed to be convex. Namely we require
that for any genus 0 stable map f : � → M , f ∗TM is generated by global sections.

Such an assumption holds in the case of complex projective spaces, and products
of complex projective spaces. Except of this rectifiability problem of the compactified
moduli chain of holomorphic discs, the results in this paper hold for all toric Fano mani-
folds. Even when the assumption is not satisfied, the results in Sect. 6 can be understood
independently as computations of some invariants (see Proposition 6.5).

We remark about perturbing the standard complex structure to a tame almost com-
plex structure. McDuff and Salamon [MS] showed that for a subset Jreg(M) of second
category, the moduli spaces of simple J -holomorphic curves become pseudo-cycles. In
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the case of J-holomorphic discs, it is more complicated since the structure of non-simple
J-holomorphic discs can be very complex. But due to the structure theorem proven by
Kwon and Oh [KO], a similar proof as in [MS] can be used to show that the moduli space
of simple discs are “pseudo-chain” which may be similarly defined as pseudo-cycle. But
also in this case, we do not know if these moduli chains would define currents. If these
define currents, one can prove the invariance of Floer cohomology ring in a similar way
as in [FOOO].

Another approach would be to consider the Kuranishi structure of the moduli space
of J -holomorphic discs ([FOOO, FOno]). But as pointed out in [FOOO], it is not (yet)
possible to find a Kuranishi perturbation which is compatible for all homotopy classes in
π2(M, L). Such compatibility is rather essential since we are interested in the relations
between moduli spaces which produce A∞-formula.

3.2. Transversal A∞-algebra. Now we explain how to achieve transversality of the
fiber product in the definition of A∞-formulas. First, recall that the ordinary intersection
product in the chain level is not well-defined, while the cup product is well-defined on
cohomology. Hence, even in the classical level, the A∞-algebra (C∗(L; �nov), mk,0) is
not easy to define, since operations are defined in the chain level. But it is obvious how
to define it to work only transversally. A similar problem occurs for mk,β . For example
the fiber product mk(P, P, . . . , P ) is not transversal if P �= L. Hence, the authors of
[FOOO] develop a non-trivial technique to overcome such a problem. In this section,
we show that if we choose the generic sequence of chains, then the fiber product is
transversal, and this transversal A∞-algebra is enough to determine homology and its
ring structure.

Definition 3.2. A k-tuple (P1, . . . , Pk) is called a transversal sequence if the chain
(P1 × · · · × Pk) is transversal to the image of the map evβ for all β ∈ π2(M, L). For a
transversal sequence (P1, . . . , Pk), the fiber product mk(P1, . . . , Pk) is well-defined.

Recall that a residual subset of a space X is one which contains the intersection of
countably many dense open subsets.

Lemma 3.2. For a residual set of C∗(L; �nov)×· · ·×C∗(L; �nov), the kth A∞-formula
(2.1) is well-defined. Namely all the fiber products given in the formula are transversal.

Proof. It is enough to show that transversality of the chain (P1 × · · · × Pk) and the
image of evβ from each codimension 1 strata of the moduli space of J -holomorphic
discs for all β ∈ π2(M, L), which can be achieved by choosing generic chains Pi’s by
the standard transversality theorem. �

Corollary 3.3. (C∗(L; �nov), {mk}) satisfies the A∞-formula for a dense transversal
sequence of chains.

In fact, in our case it is easy to perturb (P1, . . . , Pk) to a transversal sequence due to
the presence of torus action. Namely, as the torus (S1)n acts on L transitively. Hence,
for a generic (t1, . . . , tk) ∈ (S1)n × · · · × (S1)n, (t1 · P1) × · · · × (tk · Pk) is a trans-
versal sequence. Also because we have the same torus action on the moduli space of
holomorphic discs, we have the following identity:

mk(t · P1, . . . , t · Pk) = t · mk(P1, . . . , Pk). (3.1)
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Therefore, the transversality of the A∞-formula also can be achieved by the torus action
on each chain: If the mk2 term causes non-transversality to define mk1 in the A∞-formula,
then we can perturb all chains inside mk2 by the same t ∈ (S1)n to make the mk2 term
transversal in mk1 by the equality (3.1). Also, it is easy to perturb a Floer-cycle in its
cohomology class by the following lemma.

Lemma 3.4. Let � be the chain map constructed in Definition 4.4. For any cycle P of
singular homology, �(P ) is a Floer-cycle, i.e. m1(�(P )) = 0. Then for t ∈ T n, t ·�(P )

is also a Floer cycle, and we have

�(P ) − t · �(P ) = (−1)nm1�(H),

where the homotopy H is a singular chain with m1,0(H) = P − t · P .

Proof. Equation (3.1) for k = 1 implies that

m1,β(t · P) = t · m1,βP .

Hence the theorem follows. The last statement follows by applying Proposition 4.1 (1)
for the chain H with the fact that t · �(P ) = �(t · P). �

Proposition 3.5. m̃2 defines a product on the Floer cohomology ring HFBM(L; J0).

Proof. To show that the product is well-defined on cohomology, it is enough to show
that for P, Q ∈ C∗(L; �nov) with m1(P ) = m1(Q) = 0, we have

m2(P, t1 · Q) = m2(P, t2 · Q) + m1(R)

for generic t1, t2 ∈ (S1)n and for some R ∈ C∗(L; �nov). First, for any homotopy class
β ∈ π2(M, L), note that the the fiber product in m1,β(P ) of A∞-algebra is transversal
for any chain P since the evaluation map from the moduli space is always submersive
due to the torus action. And m2,β(P, Q) is transversal if m1,β(P ) is transversal to Q.
Then, for a generic t ∈ (S1)n, m1,β(P ) is transversal to t ·Q for any β. Also, for generic
t1, t2 ∈ (S1)n, m1,β(P ) is transversal to H with m1(H) = t1 · Q − t2 · Q for any β.
If not, we can perturb t1 · Q, t2 · Q, H by another t ∈ (S1)n to make them transversal.
Therefore,

m2(P, t1 · Q) − m2(P, t2 · Q) = m2(P, m1(H)) = ±m1(m2(P, H).

This finishes the proof. �


4. Bott-Morse Floer Cycles

In [C] and [CO], Oh and the present author have shown that for any such torus fiber
L ⊂ M , the Floer homology group HF(L, L) when nonvanishing, is isomorphic to
the singular cohomology of the Lagrangian submanifold H ∗(L : �nov). Now, we fix
a Lagrangian torus fiber L whose Floer cohomology is non-vanishing. The fact that
HFBM(L; J0) and H ∗(L; �nov) is isomorphic as a module is a little bit deceiving
because a cycle in the singular homology is not a cycle in Floer homology. We need to
modify a cycle, say P , by adding correction terms, say Q to make it satisfy m1(P +Q) =
0. In the computations of [C] or [CO], it was automatically taken care of by the spectral
sequence. We will find exact correction terms for any cycle in Proposition 4.1. Actually
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we will construct a filtered chain map from the singular chain complex to the Bott-Morse
Floer complex.

We start with the following definition and an important example to understand the
construction that follows.

Definition 4.1. An element P = ∑k
i=1 ai [Pi, fi] T ei qµi ∈ C∗(L; �nov) is called a

Floer-cycle if m1(P ) = 0.

Example 4.2. Consider a Clifford torus T 2 in CP 2. A point < pt > is a cycle in the
singular homology of T 2. Let l0, l1, l2 be the cycles in T 2 which are boundaries of
holomorphic discs [z; 1; 1], [1; z; 1], and [1; 1; z]. These three discs have the same sym-
plectic area which we denote by ω(D).

Recall from [C] that we have

m1 < pt >= (−1)n(l0 + l1 + l2) ⊗ T ω(D)q �= 0.

Therefore < pt > is not a Floer-cycle. But, l0 + l1 + l2 is homologous to zero. We may
choose a 2-chain Q ⊂ L with ∂Q = −(l0 + l1 + l2). Hence < pt > +Q ⊗ T ω(D)q

turns out to be a correct Floer-cycle:

m1(< pt > +Q ⊗ T ω(D)q) = m1,2(< pt >) + m1,0(Q) ⊗ T ω(D)q

= (−1)n((l0 + l1 + l2) + ∂Q) ⊗ T ω(D)q = 0. (4.1)

Similarly, we can explicitly construct correction terms as follows for the general toric
Fano case. We first recall the usual product structure on the torus T n = (S1)n, i.e. for
(a1, . . . , an) ∈ T n, (b1, . . . , bn) ∈ T n, we have

(a1, . . . , an) × (b1, . . . , bn) = (a1b1, . . . , anbn).

Also for subsets P ⊂ T n, Q ⊂ T n, we denote by P × Q

P × Q := {(p × q) ∈ T n|p ∈ P, q ∈ Q}.
We may assign the set P × Q a product orientation.

Recall from [CO] that we have N holomorphic discs of Maslov index 2 (up to
Aut(D2)) with boundary on the Lagrangian torus fiber L ⊂ M , which we denote
by D1, . . . , DN . We denote the homotopy classes of such discs as β1, . . . , βN . Then we
have

m1,βi
(P ) = (−1)n(∂Di) × P. (4.2)

Now, we recall the partition

{1, 2, . . . , N} =
l∐

i=1

Ii

with respect to the symplectic energy of discs, i.e. discs Dj for j ∈ Ii have the same
symplectic area, which we denote as ei . Nonvanishing of Floer cohomology was shown
to be equivalent to the following equality for each i = 1, . . . , l:




∑

j∈Ii

∂Dj



 = 0 in H ∗(T n).



624 C.-H. Cho

Definition 4.3. For each i, we denote by Qi a 2-chain with the following property.

∂Qi = −
∑

j∈Ii

∂Dj . (4.3)

We may choose such a 2-chain since RHS is homologus to zero.

Now, consider the chain complex C∗(L; �nov) defined in (2.3) with two different
coboundary operators m1,0 and m1. To distinguish the two chain complex, we label
them as (C∗

1 (L, �nov), m1,0), whose cohomology is isomorphic to singular cohomol-
ogy, and (C∗

2 (L, �nov), m1), whose cohomology is a Bott-Morse Floer cohomology.
Now we define a chain map between these two complexes when Floer cohomology is
non-vanishing.

Definition 4.4. Let P ⊂ L be any singular chain. Define

�(P ) : = P +
l∑

i=1

(Qi × P) ⊗ T ei +
∑

i<j

(Qi × Qj × P)

⊗T ei+ej q2 + · · · +
∑

i1<···<ik

(Qi1 × · · · × Qik × P)

⊗T
∑k

j=1 eij qk + · · · + (Q1 × Q2 × · · · × Ql × P) ⊗ T
∑l

i=1 ei ql .

By extending linearly over C∗(L; �nov), we obtain a map

� : C∗
1 (T n; �nov) → C∗

2 (T n; �nov).

Remark 4.5. For simplicity, we define � for singular chains rather than geometric chains.
It can be easily modified to the latter case. We also recall that C∗(L; �nov) has a filtration
with respect to energy:

Fλ0C∗ = {
∑

i

ai[Pi, fi]T
λi qmi |λi ≥ λ0 for all i}.

Proposition 4.1. Let L be a Lagrangian torus fiber in toric Fano manifolds, whose
Floer cohomology is non-vanishing. Then, the map � defines a filtered chain map which
induces an isomorphism on cohomology.

� : H ∗(L; �nov) → HFBM(L; J0).

More precisely,

(1) �(m1,0P) = m1�(P ),
(2) �(Fλ(C1)) ⊆ Fλ(C2).

Remark 4.6. Note that � is only defined when Floer homology is non-vanishing since
otherwise we can not find chains Qi in 4.3.
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Proof. The second property is clear from the definition, hence we only prove the first
statement, which we prove by direct calculation. Recall that m1,k ≡ 0 for k ≥ 4 in toric
Fano case (see Proposition 7.2 of [CO]). Hence,

m1(�(P )) = m1,0�(P ) + m1,2�(P ). (4.4)

The first component can be written as

m1,0�(P ) = (−1)n∂�(P )

= (−1)n(∂P +
l∑

i=1

∂(Qi × P) ⊗ T ei + · · · )

= (−1)n(�(∂P ) +
l∑

i=1

∂(Qi) × P ⊗ T ei

+
∑

i<j

(∂(Qi × Qj) × P) ⊗ T ei+ej q2 + · · · ).

We used the following formula in the last equality, where there is no sign contribution
since Qi’s are 2-chains:

∂(Qi1 × · · · × Qik × P) = (Qi1 × · · · × Qik ) × ∂P

+
k∑

j=1

(Qi1 × · · · (∂Qij ) × Qik ) × P.

For the second component in (4.4),

m1,2

∑

i1<···<ik−1

(Qi1 × · · · × Qik−1 × P) ⊗ T
∑k−1

l=1 eil qk−1

=
N∑

j=1

m1,βj




∑

i1<···<ik−1

(Qi1 × · · · × Qik−1 × P)



 ⊗ T ej T
∑k−1

l=1 eil qk

=
l∑

i=1

(−(−1)n∂Qi

) ×



∑

i1<···<ik−1

(Qi1 × · · · × Qik−1 × P)



 ⊗ T ej T
∑k−1

l=1 eil qk

= −(−1)n
∑

i1<···<ik

k∑

j=1

(Qi1 × · · · (∂Qij ) × Qik × P) ⊗ T
∑k

l=1 eil qk

=
∑

i1<···<ik

(−(−1)n)∂(Qi1 × · · · × Qik ) × P ⊗ T
∑k

l=1 eil qk.

In the third equality, we used the identity (4.2), (4.3). Hence, we have

m1(�(P )) = m1,0�(P ) + m1,2�(P ) = (−1)n�(∂P ) = �(m1,0P). �
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The arguments in this section (hence of the whole paper) can be extended to the case
with different spin structures. Extension to the case with flat bundles over a Lagrangian
submanifold is possible in the case that non-vanishing Floer cohomology occurs when
for each i = 1, . . . , l the holonomies along discs Dj are equal for all j ∈ Ii so that we
can define Qj . This includes all the examples we showed in the last section.

5. A Direct Computation of Ring Structure

Now, we provide two different computations of Floer cohomology rings of torus fibers
in toric Fano manifolds. In this section, we give a direct computation using the classi-
fication of holomorphic discs by Oh and the author in [CO]. For simplicity, we carry
out calculations for degree 1 generators, which is enough to see the whole algebraic
structure of the ring due to associativity.

First we choose the generators Ci of H 1(L) for i = 1, . . . , n.

Definition 5.1. Let li be a circle 1 × · · · S1 · · · × 1, where S1 is the ith circle of (S1)n ⊂
(C∗)n. Then torus action of (S1)n on L gives corresponding cycles in L, which we also
denote as li by abuse of notation. For i = 1, . . . , n, denote by Ci ∈ H 1(L) the Poincaré
dual of the cycle

(−1)i−1(l1 × · · · × l̂i × · · · ln).
Similarly, we denote by Ci,j ∈ H 2(L) the Poincaré dual of the cycle

(l1 × · · · × l̂i × · · · × l̂j × · · · ln)

for i �= j , and we also define Ci1,...,ik ∈ Hk(L) similarly for the index set {i1, i2, . . . , ik}.

Now we show that Ci’s generate the Floer cohomology ring HFBM(L; J0).

Proposition 5.1. Let L be a Lagrangian torus fiber whose Floer cohomology group
HFBM(L; J0) is nonvanishing, thus isomorphic to H ∗(L; �nov). Then, for each i, Ci

is a Floer-cycle without any correction terms, and Floer cohomology HFBM(L; J0) is
generated by Ci for i = 1, . . . , n as a ring.

Proof. From the construction in Definition 4.4, any correction term added to Ci , like
PD(Ci)×Qj , is supposed to have chain dimension n+1 or higher. Hence, as a current
in L, they are zero. Hence, Ci itself is a Floer-cycle.

To see that {Ci} generate the Floer cohomology ring, note that

m2(Ci1 , m2(Ci2 , . . . , m2(Cik−1 , Cik ) · · · )
is a Floer cycle whose index zero part is

m2,0(Ci1 , m2,0(Ci2 , . . . , m2,0(Cik−1 , Cik ) · · · ).

Since m2,0 is nothing but the cup product, hence the latter equals Ci1,...,ik ∈ Hk(L) up
to sign. Note that all the other terms (terms containing m2,β with non-zero β) are higher
order terms with respect to the filtration by T . Hence, these elements generate the ring
HFBM(L; J0). �
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Remark 5.2. For the sign convention for the cup product, see [FOOO] Convention 25.14.

Now, we compute the quantum contribution. We first state the following lemma which
is a special case of Proposition 2.1.

Lemma 5.2. Let β ∈ π2(M, L) be a homotopy class. Then the degree (as a cochain) of
m2,β(Ci, Cj ) is given by

deg(Ci) + deg(Cj ) − µ(β) = 2 − µ(β).

Hence, we have a non-trivial m2,β product between the generators Ci for β with µ(β) =
0 or 2.

The product when µ(β) = 0 is the classical cup product, hence we consider the
contributions from homotopy classes with Maslov index two. Let us recall the definition
of m2,β ,

m2,β(Ci, Cj ) = (−1)n+1((Mmain
3 (βk) ev1,ev2 × (Ci × Cj ), ev0), (5.1)

where i is an embedding of cycles into L. Recall that the main component is one of
the components of the moduli space of discs with marked points ev0, ev1, ev2 which lie
on the disc counter-clockwise direction. The fact that we use only the main component
of the moduli space is important, and this makes computation a little cumbersome.

To get an intuitive idea about calculations, we first study the case of CP 1.

5.1. Example : the equator L ⊂ CP 1. Let L be the equator of CP 1, whose Floer coho-
mology HF(L, L) is isomorphic to H ∗(S1). We pick a point p which will be an element
of both the singular homology H0(L) and HF 1(L, J0). Note that the cup product

PD(p) ∪ PD(p) = 0,

since generically two points do not intersect in S1. In our case, we choose t ∈ S1 which
is not equal to 1, and consider two points p and q = t · p. Then, clearly

m2,0(p, q) = 0.

Now, we consider products m2,β with non-zero β. By Lemma 5.2, we only consider
β with µ(β) = 2. Recall from [C] that there are only two such holomorphic discs
Du, Dl (up to Aut(D2)) with boundary on L, which are nothing but discs covering the
upper(lower)-hemisphere Du (Dl).

Note that both discs intersect p and q. Then, the product m2,Du(p, q) is a certain part
of the boundary of Du. More precisely, since we only consider the “main” component of
the boundary, where ev0, p, q is ordered counter-clockwise on the boundary of the disc
Du, we obtain a part of S1 as in Fig. 2. And similarly, the product m2,Dl

(p, q) only takes
the “main” component of the boundary, where ev0, p, q is ordered counter-clockwise
on the boundary of the disc Dl . Therefore, after adding these two pieces, we obtain the
whole equator:

m2(p, q) = (m2,Du(p, q) + m2,Dl
(p, q))T ω(D)q = [S1]T ω(D)q.

Hence, HF(L, J0) is a Clifford algebra with a generator [p] and a unit 1 = [S1]
such that

m̃2([p], [p]) = [m̃2(p, q)] = [m2(p, q)]

= [S1]T ω(D)q = 1 · T ω(D)q ∈ HF(L, J0).
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Fig. 2. Main components of evaluation maps for Du(left) and Dl (right)

5.2. Computation of m2(Ci, Cj ) + m2(Cj , Ci). The previous example illustrates that
the product m2(Ci, Cj ) is a sum of chains in L. Actually this is not a cycle of singular
homology in general as seen in Definition 4.4. But we can make the calculation much
easier by computing the sum m2(Ci, Cj )+m2(Cj , Ci) instead of each individual piece.
(The next section generalizes this observation.)

The reason that we compute this sum rather than each part, is that by adding each
“main” component we will obtain the whole boundaries of the discs which intersect
both Ci and Cj . And computing this sum will be enough to show that the algebra we
obtain is a Clifford Algebra. Again the only nontrivial m2,β(Ci, Cj ) will come from the
homotopy classes β1, . . . , βN of Maslov index 2 by Lemma 5.2.

We recall the relevant fiber product orientation from [C]. This in fact provides the
same orientation as in [FOOO], which is described by the orientation of fiber products of
Kuranishi structures. (The smooth simplex may be considered as a weakly submersive
strongly continuous map from a space with Kuranishi structure with corners where the
obstruction bundle is taken to be the normal bundle of the embedding).

Definition 5.3 [C]. Let X, P, Y be an oriented smooth manifold. Let f : X → Y and
i : P → Y be a smooth map. We define the orientation of the fibre product X ×Y P for
the case that the map i : P → Y is an embedding. Let f : X → L be a submersion and
i : P → L be an embedding. Here we will regard P as a submanifold of L. By x, l, p we
denote the dimension of X, L, P . Take a point q ∈ f (X)∩P . We can choose an oriented
basis < u1, . . . , ul >∈ TqL and < w1, . . . , wp >∈ TqP which agrees with the given
orientations of L and P . Since f is a submersion, we can choose < v1, . . . , vl >∈ TpX

for some p ∈ f −1(q) such that (df )p(vk) = uk for k = 1, . . . , l. Then, we can choose
a basis < η1, . . . , ηx−l >∈ Ker(dfp) such that < η1, . . . , ηx−l , v1, . . . , vl, > is the
given orientation of TpX. Then we define an orientation on the fibre product X f ×i P

so that < η1, . . . , ηx−l , w1, . . . , wp > becomes an oriented basis.

From now on, [ ] means the oriented frame on its tangent bundle. We remark that
we mainly follow the amazing work of the orientation convention in [FOOO]. We may
rewrite the following [FOOO].

m2,βk
(Ci, Cj ) + m2,βk

(Cj , Ci) = (−1)n+1((M3(βk) ev1,ev2 × (Ci × Cj ), ev0)

= (−1)((M3(βk) ev1 ×i Ci) ev2 ×i Cj ), ev0).

Recall that

[M3(βk)] = ([M̃(βk)] × [∂D0] × [∂D1] × [∂D2])/PSL(2 : R)

= (−1)([∂D0] × [∂D2] × [M̃(βk)] × [∂D1])/PSL(2 : R)

= (−1)([∂D0] × [∂D2] × [T n]).
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Here the last equality follows from [C] Proposition 3.18. By the above definition of fiber
product orientation, we have

[M3(βk) ev1 × Ci] = (−1)[∂D0] × [∂D2] × [Ci].

Therefore,

m2,βk
(Ci, Cj ) + m2,βk

(Cj , Ci) = ([∂D0] × [∂D2] × [Ci]) ev2 ×i [Cj ]).

As the marked point travels around the 3rd marked point ∂D2, its trajectory in L is

vk1l1 + · · · + vknln.

Here, vk for k = 1, . . . , N are normal vectors to the codimension 1 faces of the moment
polytope for M ,

[∂D2] × [Ci] = [vk1l1 + · · · + vknln] × (−1)i−1[l1 × · · · × l̂i × · · · × ln]

= (−1)i−1[vki li × l1 × · · · × l̂i × · · · × ln]

= vki[l1 × · · · × ln] = vki[T
n].

Therefore,

m2,βk
(Ci, Cj ) + m2,βk

(Cj , Ci) = ([∂D0] × [∂D2] × [Ci]) ev2 ×i [Cj ])

= ([∂D0] × [vkiT
n]) ev2 ×i [Cj ]

= vki([∂D0] × [Cj ])

= vkivkj [T n]

= vkivkj · 1.

Also note that signs of the following cup product works as

m2,0(Ci, Cj ) = −m2,0(Cj , Ci).

Therefore,

Proposition 5.3.

m2(Ci, Cj ) + m2(Cj , Ci) =
N∑

k=1

(m2,βk
(Ci, Cj ) + m2,βk

(Cj , Ci))T
ekq

=
N∑

k=1

vkivkjT
ekq.

Now we consider the case when i = j . The above formula also works for the case
i = j after we perturb Ci by a torus action to t · Ci for some t ∈ T n. Also we have the
following easy lemma.

Lemma 5.4.

[m2(Ci, t · Ci)] = [m2(t · Ci, Ci)] in HF ∗(L, J0).
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Corollary 5.5.

m2(Ci, t · Ci) =
N∑

k=1

1

2
v2
ki ⊗ T ekq.

Now, we recall the definition of the Clifford algebra.

Definition 5.4. Let V be a Q-vector space with a non-degenerate symmetric bilinear
form Q on V . The Clifford Algebra Cl(V, Q) is defined as

Cl(V, Q) = T (V )/I (V, Q),

where T (V ) is the tensor algebra

T (V ) =
⊕

k=0

V k,

and I (V, Q) is the ideal in T (V ) generated by elements

v ⊗ v − 1

2
Q(v, v)1 for v ∈ V.

Alternatively, one may define Cl(V,Q) with the relation

v · w + w · v = Q(v, w).

In our case, we consider a universal Novikov ring �nov instead of Q as a coefficient.
Now Proposition 5.3 and Corollary 5.5 imply our main theorem.

Theorem 5.6. Let L ⊂ M be a Lagrangian torus fiber in the Fano toric manifold whose
Floer cohomology is non-vanishing. Then, the Floer cohomology ring (HFBM(L; J0),

m̃2) has a Clifford Algebra structure with generators given by Ci for i = 1, . . . , n, and
its relations as

m̃2(Ci, Cj ) + m̃2(Cj , Ci) = Q(Ci, Cj ),

where the symmetric bilinear form Q is given by

Q(Ci, Cj ) =
N∑

k=1

vkivkjT
ekq.

Furthermore, this Q agrees with the Hessian of the superpotential W(�) of the mirror
Landau-Ginzburg model of toric Fano manifold (upon the substitution “T 2π = e−1”).

Proof. We only need to check the last statement. Recall that the superpotential is given
as (see for example [HV, CO])

W(�) =
N∑

k=1

e−yk−<�,vk>.
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Hence, it is easy to see that

∂W(�)

∂�i

= −
N∑

k=1

vkie
−yk−<�,vk>,

and

∂2W(�)

∂�i∂�j

=
N∑

k=1

vkivkj e
−yk−<�,vk>.

Here � is a the coordinate on the mirror Landau-Ginzburg model, and it is related to the
toric manifold M as follows. The real part of the variable � is given by (a1, . . . , an) ∈ P ,
which is the image point of the Lagrangian torus fiber L in the moment polytope P ,
whereas the imaginary part is given by the holonomy of the flat line bundle along L.
When the Floer cohomology of L is non-vanishing, the corresponding � becomes the
critical point of W as shown in [CO], and 2π times its exponent (yk+ < �, vk >)

becomes the area of holomorphic discs which we denoted as ek in this paper. If we
ignore harmless grading q, and with the equivalence “T 2π = e−1”,

e−yk−<�,vk> = T ek .

Hence, this proves the claim. �

More correspondences will be given in the next section.

6. Analogue of Divisor Equation for Discs

In this section, we introduce an analogue of the divisor equation and this will explain
how Clifford algebra structure naturally arises for Floer cohomology rings of Lagrangian
submanifolds, as this section provides the alternative proof of results in the previous sec-
tion. To state the result, it is better to write down the formula in terms of the L∞-algebra
(strong homotopy Lie algebra) maps. Recall that every A∞-algebra has an underly-
ing L∞-algebra structure by the following relation (this is similar to the fact that the
commutator of an associative algebra A defines a Lie algebra on A).

Theorem 6.1 ([LM, LS](or see [Fu2])). An A∞-structure {mk : ⊗kV → V } on the
graded vector space V induces an L∞-structure {lk : ⊗kV → V }, where for all non-
negative integer k, β ∈ π2(M, L),

lk,β(v1 ⊗ · · · ⊗ vk) =
∑

σ∈Sn

(−1)ε(σ )mk,β(vσ(1) ⊗ · · · ⊗ vσ(k)), (6.1)

with ε(σ ) =
∑

i,j with i<j,σ (i)>σ(j)

(deg(vi) + 1)(deg(vj ) + 1).

Namely, the lk map is a skew-symmetrization of the mk map. For example,

l2,β(x, y) = m2,β(x, y) + (−1)(x+1)(y+1)m2,β(y, x).

The following is the Divisor equation of Gromov-Witten invariants. For a general
equation involving gravitational descendents, see [H1].
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Proposition 6.2 ([KM]). Let M be a convex algebraic manifold, For α ∈ H2(M), let
IM
g,m,α : H ∗(V )⊗n → H ∗(Mg,n) be the Gromov-Witten invariants. Then, for γ1 ∈

H 2(M), and πn : Mg,n → Mg,n−1, we have

πn∗(IM
g,n,α(γ1 ⊗ · · · ⊗ γn) = (α · γ1)I

M
g,n−1,α(γ2 ⊗ · · · ⊗ γn).

Now, we state an analogue of the divisor equation for discs.

Proposition 6.3. If Pi is a cycle of cohomology degree 1 in L, then for k ≥ 1,

lk,β(P1, . . . , Pk) = (Pi · ∂β) lk−1,β(P1, . . . , P̂i , . . . , Pk), (6.2)

where ∂ : π2(M, L) → π1(L), and P̂i means that Pi term is omitted.

Remark 6.1. Here is the sign convention for the intersection of two chains P, Q of com-
plementary degree in L. At each transversal intersection p ∈ P ∩ Q, for a basis [TpP ]
of tangent space TpP , and similarly for [TpQ] and [TpL], if [TpP ][TpQ] has the same
orientation as [TpL] then it is counted as (+1), otherwise it is counted as (−1).

Before we prove the proposition, we show how to prove the results in the previous
section using the analogue of the divisor equation for discs. Recall that by βk ∈ π2(M, L)

for k = 1, . . . , N , we denote the homotopy class of a holomorphic disc of Maslov index
two corresponding to N codimension one facets of the moment polytope([CO]).

By definition, we have

l0,βk
= m0,βk

= T ekq,

l1,βk
(P ) = m1,βk

(P ).

For degree 1 generators Ci, Cj of H ∗(L) which are defined in Definition 5.1, we
apply the divisor equation for discs repeatedly

l2,βk
(Ci, Cj ) = (Ci · ∂βk)l1,βk

(Cj )

= (Ci · ∂βk)(Cj · ∂βk)l0,βk

= (vki)(vkj ) ⊗ T ekq.

The last equality follows from the definitions that

Ci = (−1)i−1(l1 × · · · × l̂i × · · · ln),

∂βk = vk1l1 + · · · + vknln.

Hence, it is easy to see that

Ci · ∂βk = (−1)nvki .

Hence, we obtain Lemma 5.3, as we have l2(Ci, Cj ) = m2(Ci, Cj ) + m2(Cj , Ci).
In general, we have
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Corollary 6.4. For any Lagrangian torus fiber L in the toric Fano manifold M( whose
Floer cohomology may be vanishing), we have

lm(Ci1 , . . . , Cim) =
N∑

k=1

lm,βk
(Ci1 , . . . , Cim)

= (−1)nm
N∑

k=1

vki1 · · · vkim ⊗ T ekq

= (−1)(n−1)m ∂mW(�)

∂�i1 · · · ∂�im

,

where W(�) is the superpotential of the Landau-Ginzburg mirror model of M .

This corollary extends the correspondence observed in [CO], m0 = l0 = W(�).
Note that such correspondence, considered at every Lagrangian torus fiber with flat line
bundles, may be used to recover the superpotential W(�) of the Landau-Ginzburg mir-
ror. But the above corollary indicates that in fact one Lagrangian torus fiber with a fixed
flat line bundle (whose Floer cohomology may be vanishing) in M is enough to recover
the superpotential in this case: It is because the superpotential is a holomorphic function
on (C∗)n and all its partial derivatives at the corresponding point on the mirror is given
from the products of the L∞-algebra by the above correspondence.

Also note that the above product does not depend on the choice of cycles C∗ since it
is determined by the intersection numbers which only depend on the homology class of
C∗. These are also invariants with respect to the change of an almost complex structure.
By J0 we denote the standard complex structure of the toric Fano manifold M , and
denote the corresponding lm products by l

J0
m .

Proposition 6.5. Let L be any Lagrangian torus fiber of the toric Fano manifold M . Let
J1 ∈ Jreg(M) be a tame almost complex structure such that all simple J -holomorphic
discs are Fredholm regular. Then, for k = 1, . . . , N , we have

l
J0
m,βk

(Ci1 , . . . , Cim) = l
J1
m,βk

(Ci1 , . . . , Cim)

in H ∗(L; �nov).

Proof. As in [MS], one can prove that the subset Jreg(M) is of the second category and
path connected. Since any J -holomorphic disc with Maslov index two is simple and its
homotopy class βk is minimal, the moduli space M(βk; Jt ) of Jt holomorphic discs is
in fact a manifold without boundary. Then, by choosing a path Jt ∈ Jreg(M), we set

Mm+1(βk; J ) = ∪t∈[0,1]
({t} × Mm+1(βk; Jt )

)
.

Then we have

∂
(Mm+1(βk; J )ev × (

m∏

j=1

Cim)
) = M(βk; J1)ev

×(

m∏

j=1

Cim) − M(βk; J0)ev × (

m∏

j=1

Cim)

which proves the proposition. �
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Now we begin the proof of Proposition 6.3

Proof. A rough idea is that if Pi is a cycle of codimension 1, then it always intersects
with the boundary of a J -holomorphic disc of homotopy class β with (Pi · ∂β) number
of times (counted with sign). Hence, if Pi is dropped from the argument of mk , the
resulting image should be the same up to a multiple of the intersection number. While
this is the same idea as the “divisor equation” in Gromov-Witten theory, there are a few
differences. First, the mk map records only part of the boundaries of J-holomorphic discs
as it is defined by using only the main component Mmain

k . But note that intersection of Pi

and the disc may occur at an arbitrary point of the domain ∂D2. Hence we consider the
L∞-algebra map, lk , which will be shown to record the whole boundaries of discs. Then,
the next step involves delicate sign analysis in the case that the parameter Pi is dropped
from the mk(P1, . . . , Pk) to obtain mk−1(P1, . . . , P̂i , . . . , Pk) for a codimension 1 cycle
Pi .

Suppose there exists an element ((D2, �z), h) ∈ Mmain
k+1 (β), where h : D2 → M is

a J -holomorphic map. We also assume that for fixed chains P1, . . . , Pk in L, we have
h(zi) ∈ Pi for each i = 1, . . . , k. Boundary marked points z1, . . . , zk (z0 is omitted
here) separate ∂D2 into k connected pieces. And only the component between the kth

and 1th marked point contributes to the chain mk(P1, . . . , Pk), as it is obtained as an
evaluation of 0th marked point which lies between those two marked point in Mmain

k+1 .
Now, it is easy to see that up to sign, other connected components will contribute to the
chains

mk(P2, . . . , Pk, P1), mk(P3, . . . , P1, P2), · · · , mk(Pk, P1, · · · , Pk−1),

and ((D2, �z), h) will not contribute to other terms of lk(P1, . . . , Pk) generically due to
the ordering of marked points. Now, we show that signs in (6.1) are needed to have a
coherent sign in the images of the above chains.

We recall the following lemma from [FOOO].

Lemma 6.6 (FOOO, Lemma 25.3). Let σ be the transposition element (i, i + 1) in the
kth symmetric group Sk . Then the action of σ on M1(β, P1, . . . , Pi, Pi+1, . . . , Pk) by
changing the order of marked points is described by the following:

σ(M1(β, P1, . . . , Pi, Pi+1, . . . , Pk))

= (−1)(deg Pi+1)(deg Pi+1+1)Mσ
1 (β, P1, . . . , Pi+1, Pi, . . . , Pk).

Remark 6.2. In the first term, M1(β, P1, . . . , Pi, Pi+1, . . . , Pk)) is defined by using
the moduli space with boundary marked points lying cyclically, whereas in the second
term, Mσ

1 (β, P1, . . . , Pi+1, Pi, . . . , Pk) is defined by using the moduli space Mσ
k with

boundary marked points lying in the order z0, . . . , zi−1, zi+1, zi, zi+2, . . . , zk . Namely,
in the latter case, only the labeling of two marked point is changed from the first case.

Let σ ∈ Sn be a permutation denoted by (1, 2, . . . , k) (i.e. 1 → 2, 2 → 3, · · · , k →
1). Then, by applying the above lemma repeatedly, we have

σ(M1(β, P1, . . . , Pk)) = (−1)ε(σ )Mσ
1 (β, P2, . . . , Pk, P1),

where ε(σ ) is the same sign as appeared in (6.1). Now, it is not hard to check that the latter
has the same sign as (−1)ε(σ )M(β; P2, . . . , Pk, P1). Here, Mσ

1 (β, P2, . . . , Pk, P1) and
M(β; P2, . . . , Pk, P1)have different images coming from the same set ofJ -holomorphic
discs. This is because marked points in the former case lie on the circle in the order
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0, k, 1, 2, . . . , k − 1 and in the latter case marked points lie on the circle in the order
k, 0, 1, 2, . . . , k −1. Hence, as we evaluate at 0th marked point, their images come from
the neighboring connected components of ∂D2 separated by marked points. Hence, this
proves that with the sign given as in (6.1), the image of the boundary of discs can be
glued in the lk map.

Now, we explain the second step which computes the change of sign as the argument
Pi is dropped from the mk(P1, . . . , Pk) to obtain mk−1(P1, . . . , P̂i , . . . , Pk) for a codi-
mension 1 cycle Pi . In the computation, we will calculate the ith fiber product with Pi

to remove the term from the fiber product.
Let ((D2, �z), h) ∈ Mmain

k (β), where h : D2 → M is a J -holomorphic map. We
also assume that for fixed chains P1, . . . , P̂i , . . . , Pk in L, we have h(zi) ∈ Pi for each
i = 1, . . . , î, . . . , k. And let Pi be a cycle of codimension one in L. If [Pi] · ∂β is not
zero, then, a generic cycle Pi should intersect with h(∂D2) transversally. Hence, we
obtain a corresponding element ((D2, �z′), h) ∈ Mmain

k+1 (β) with h(z′
i ) ∈ Pi for each

i = 1, . . . , k.
We recall that the moduli space Mmain

k+1 (β) is oriented as

(
[M̃(β)] × [∂D2

0] × · · · × [∂D2
k ]

)
/PSL(2; C),

where [∂D2
i ] denotes the tangent vector corresponding to the counterclockwise rotation

of the ith marked point. If we take [∂D2
i ] to the last, we have

= (−1)s1
((

[M̃(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × [∂D2
k ]

)
/PSL(2; C)

) × [∂D2
i ],

where s1 = k − i + 1. Now we write

M(β; P1, . . . , Pk) = (−1)s2Mmain
k+1 (β)ev1,...,evk

× (P1 × · · · × Pk)

= (−1)s3
( · · · (Mmain

k+1 (β)ev1 × P1
) · · ·evk

× Pk

)
,

where s2 = (n + 1)
∑k−1

l=1
∑l

j=1 deg(Pj ), s3 = ∑k−1
l=1

∑l
j=1 deg(Pj ).

Then, if we look at the term
(Mmain

k+1 (β)ev1 × P1
)
, it can be oriented as

(−1)s1
(((

[M̃(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × · · · × [∂D2
k ]

)
/PSL(2; C)

) × [∂D2
i ]

)
ev1

×[P1]

= (−1)s4
(((

[M̃o(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × · · · × [∂D2
k ]

)
/PSL(2; C)

) × [∂D2
i ]

×[L]
)
ev1

× [P1]

= (−1)s4(
((

[M̃o(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × · · · × [∂D2
k ]

)
/PSL(2; C)

)

×[∂D2
i ] × [P1]

= (−1)s5(
((

[M̃o(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × · · · × [∂D2
k ]

)
/PSL(2; C)

) × [P1]

×[∂D2
i ]

= (−1)s6
(((

[M̃(β)] × [∂D2
0] × · · · ̂[∂D2

i ] × · · · × [∂D2
k ]

)
/PSL(2; C)

)
ev1

×[P1]
)

×[∂D2
i ],
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where [M̃o(β)][L] = [M̃(β)] and s4 = n(k + 2) + s1, s5 = s4 + p1 = s4 + dim(P1)

and s6 = s5 + n(k + 1). Hence s6 = n + p1 + k − i + 1 = deg(p1) + k − i + 1. Now
we repeat this process up to Pi−1 and

( · · · (Mmain
k+1 (β)ev1 × P1

) · · · × Pi−1
)

is oriented as

(−1)s7
( · · · (([M̃(β)] × [∂D2

0] × · · · ̂[∂D2
i ] × · · · × [∂D2

k ]
)
/[PSL(2; C)]

)
ev1

×[P1]
) × · · · × [Pi−1]

) × [∂D2
i ]

with s7 = deg(P2) + · · · + deg(Pi−1) + k − i + 1. Then,
( · · · (Mmain

k+1 (β)ev1 × P1
) · · · × Pi−1

)
evi

× Pi

is oriented as

(−1)s8
( · · · (([M̃(β)] × [∂D2

0] × · · · ̂[∂D2
i ] × · · · × [∂D2

k ]
)
/[PSL(2; C)]

)
ev1

×[P1]
) × · · · × [Pi−1]

)o × [∂D2
i ][Pi]

= (−1)s9
( · · · (([M̃(β)] × [∂D2

0] × · · · ̂[∂D2
i ] × · · · × [∂D2

k ]
)
/[PSL(2; C)]

)
ev1

×[P1]
) × · · · × [Pi−1]

)o × [Pi][∂D2
i ]

= (−1)s10
( · · · (([M̃(β)] × [∂D2

0] × · · · ̂[∂D2
i ] × · · · × [∂D2

k ]
)
/[PSL(2; C)]

)
ev1

×[P1]
) × · · · × [Pi−1]

)
,

where s8 = ∑i−1
j=1 deg(Pj ) + n, s9 = s8 + (n − 1) · 1, s10 = s9 + ε. The last

equality follows from the sign of the intersection [Pi][∂β] = (−1)ε[L]. Hence s10 =
ε + (n − 1) + n + ∑i−1

j=1 deg(Pj ) + k − i + 1.
Now, the last expression can be considered as an orientation of

( · · · (Mmain
k (β)ev1 × P1

) · · ·evi−1 × Pi−1
)
.

Hence, orientation of

M(β; P1, . . . , Pk)

corresponds to

(−1)s3
( · · · (Mmain

k+1 (β)ev1 × P1
) · · ·evk

× Pk

)
,

⊂ (−1)s11
( · · · (Mmain

k (β)ev1 × P1
) · · · × P̂i

) × · · ·evk
× Pk

)
,

= (−1)s12M(β; P1, . . . , P̂i , . . . , Pk),

where s11 = s3 + s10, s12 is obtained in a similar way as s3 and we have s12 = ε + k −
i + (k − i)deg(Pi) = ε, since deg(Pi) = 1.

This proves that ifPi intersect with theJ -holomorphic disc at several boundary points,
then at each intersection, the sign change between mk(P1, . . . , Pk) and mk−1(P1, . . . ,
P̂i , . . . , Pk) of the contribution from this J -holomorphic disc, is given by (−1)ε , where
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ε is the sign of the intersection between [Pi] and the J -holomorphic disc at each inter-
section point.

Now, we prove the proposition. Note that in the expression lk(P1, . . . , Pk), a term
mk(P1, . . . , Pk) carries the same sign as the term mk(P1, . . . , P̂i , . . . , Pk, Pi) or any
other term which is obtained by moving Pi around if deg(Pi) = 1. Consider the J -
holomorphic disc contributing non-trivially to the expression mk−1,β(P1, . . . , P̂i , . . . ,
Pk). Then the whole boundary of this disc contributes to lk−1,β(P1, . . . , P̂i , . . . , Pk).
Generically, Pi may intersect with ∂β at arbitrary points of the domain ∂D2. Suppose
such disc intersect Pi between j and j + 1th marked point with intersection sign (−1)ε

for j > i + 1 without loss of generality. Then, the whole boundary of this disc would
contribute to the terms (while divided into several pieces)

mk,β(P1, . . . , P̂i , . . . , Pj−1, Pi, Pj , . . . , Pk)

+mk,β(P2, . . . , P̂i , . . . , Pj−1, Pi, Pj , . . . , Pk, P1)

+ · · · + mk,β(Pk, P1, · · · , P̂i , . . . , Pj−1, Pi, Pj , . . . , Pk−1).

By applying the sign analysis, the above terms correspond to terms in lk(P1, . . . , P̂i ,
. . . , Pk) with multiplicity (−1)ε . By adding up all the possibilities of intersections be-
tween Pi and ∂β, we obtain the proposition. �


7. Examples

In what follows we omit area terms T ei q for simplicity.

7.1. The Clifford torus T 2 ⊂ CP 2. In [CO], it is shown that the Clifford torus is the only
Lagrangian torus fiber whose Floer cohomology is non-vanishing, which is isomorphic
to H ∗(T 2; �nov). Hence, by Theorem 5.6, HF ∗(T 2, T 2) as a ring is a Clifford algebra
with two generators C1 and C2. Using its moment polytope data, one can immediately
compute the matrix of the symmetric bilinear form

Q =
(

2 1/2
1/2 2

)
.

(See [KL] for computations of the B-model by physical arguments and the predictions
made for the Clifford torus case.)

But it is also instructive to compute m2(C1, C1) and m2(C1, C2) directly. Consider
T 2 as a rectangle whose edges are glued accordingly. Let us assume that its edges are
cycles l1, l2 as given in Definition 5.1. Then by definition, we have

C1 = l2, C2 = −l1.

First we consider m2(C1, C1) = m2(l2, l2). As before, we pick t ∈ T 2 so that l2 and t l2
do not intersect. Then,

m2,0(l2, t l2) = 0.

Recall that there exist 3 holomorphic discs (up to Aut(D2)) with boundary trajectory as

∂D0 = −l1 − l2, ∂D1 = l1, ∂D2 = l2.
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Fig. 3. m2,β0 (l2, t l2) + m2,β1 (l2, t l2) = L, m2,β0 (l1, l2)

For m2,β(l2, t l2), holomorphic discs D0, D1 contribute nontrivially. Since we only con-
sider the main components as in Fig. 3, we have

m2,β0(l2, t l2) + m2,β1(l2, t l2) = [L].

Therefore, we have

m̃2([C1], [C1]) = [m2(C1, tC1)] = [L]T ω(D)q.

This agrees with Corollary 5.5. From Fig. 3, it is easy to see that the product m2(l2, t l2)

is independent of t ∈ T 2.
Now, we consider the product m2(C1, C2),

m2(C1, C2) = m2,0(C1, C2) +
∑

β

m2,β(C1, C2)T
Area(β)q.

Here m2,0(C1, C2) is a cup product which is nothing but the Poincaré dual of the inter-
section C1 ∩ C2 = point . But as we discussed in Example 4.2, the point itself is not
a Floer-cycle. The needed correction term Q is obtained in this case from the quantum
contribution m2,β .

It is easy to see that only the β0 disc contributes to the product m2,β , since other discs
generically do not intersect both C1, C2. Now, m2,β0(C1, C2) is not a cycle but a chain
as drawn in Fig. 3, since we only evaluate on the main component. This is the chain Q

that we added to make < pt > a Floer cycle in Definition 4.4,

m2(C1, C2) = m2,0(C1, C2) + m2,β0(C1, C2)T
eq

= < pt > +QT eq.

7.2. CP 1 × CP 1. Consider CP 1 × CP 1 whose moment map image is a rectangle. For
the equator S1 ∈ CP 1, S1 × S1 ⊂ CP 1 × CP 1 has nontrivial Floer cohomology and
its product structure is given by

Q =
(

2 0
0 2

)
.
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7.3. CP n. The example CP 2 easily generalizes to CP n. The Floer cohomology of the
Clifford torus T n ⊂ CP n becomes the Clifford Algebra with n generators with sym-
metric bilinear form as

Q =





2 1/2 · · · 1/2
1/2 2 · · · 1/2
...

...
. . .

...

1/2 1/2 · · · 2



 .
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