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GRADIENT-LIKE VECTOR FIELDS

ON A COMPLEX ANALYTIC VARIETY

CHEOL-HYUN CHO AND GIOVANNI MARELLI

Abstract. Given a complex analytic function f on a Whitney stratified com-
plex analytic variety of complex dimension n, whose real part Re(f) is Morse,
we prove the existence of a stratified gradient-like vector field for Re(f) such
that the unstable set of a critical point p on a stratum S of complex dimen-
sion s has real dimension m(p) + n − s as was conjectured by Goresky and
MacPherson.

1. Introduction

Morse theory has been a very powerful tool to study the topology and geometry
of manifolds. An analogue of such theory for singular stratified spaces has been
developed by Lazzeri [La73], Pignoni [Pi79], Goresky-MacPherson [GM87] and by
many other people. For a good review of the development of stratified Morse
theory, we refer readers to the article of Massey [Mas06]. Goresky and MacPherson
proved the main theorem of stratified Morse theory that local Morse data is given
as the product of the tangential and normal Morse data in [GM87] and have given
beautiful applications of stratified Morse theory to intersection cohomology and to
the topology of complement of affine subspaces arrangements.

Many examples of singular stratified spaces are provided by complex analytic
varieties, in which case the stratified Morse theory behaves much better. For ex-
ample, Goresky and MacPherson showed that the normal Morse data of a point in
the stratum is determined by the complex link up to homotopy equivalence. Also
in [GM87] they showed that a critical point of a Morse function of a (stratified)
complex analytic variety can be given an index, in the sense that the intersection
homology of the Morse data is shown to be non-vanishing only in one index (The-
orem I.1.6 [GM87]). In the case of smooth manifolds, the Morse index of a critical
point is given as the dimension of the unstable manifold of the negative gradient
flow. But in the (stratified) case of complex analytic varieties, it has not been
known whether the index given from the intersection homology can be interpreted
as the dimension of the unstable (stratified) manifold or not.

In fact, Goresky and MacPherson conjectured the existence of a gradient-like
vector field whose dimension of unstable (stratified) manifold is related to the above
index ([GM87] p 213). The goal of this paper is to provide the construction of this
conjectural gradient-like vector field for Morse functions obtained from complex
analytic functions.

Theorem 1.1. Let X denote a purely n-dimensional reduced complex analytic va-
riety, on which we fix a Whitney stratification S. Let f c : X → C be a complex
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analytic function, and denote by f := Re(f c) its real part. Suppose that f is a
Morse function on X and let p be a critical point of f . Assume that {p} is a stra-
tum of S. Then, there exists a stratified weakly controlled gradient-like vector field
V for f with continuous flow and whose unstable and stable set Wu(p) and W s(p)
at p satisfy for every S ∈ S,

dimR(W
u(p) ∩ S) ≤ dimC S

dimR(W
s(p) ∩ S) ≤ dimC S (1.1)

For a general critical point p of the Morse function f , the point p itself does not
form a stratum but belongs to some S0 ∈ S. In this case, by restricting to a normal
slice at p, and by applying the main theorem 1.1, we obtain the following corollary,
which justifies the definition of Morse index in the complex analytic case.

Corollary 1.2. Let X,S, f c, f be as above. Then, there exists a stratified weakly
controlled gradient-like vector field V for f with continuous flow such that for any
critical point p of f , its unstable and stable set Wu(p) and W s(p) at p satisfy

dimRW
u(p) = mS(p) + n− s

dimRW
s(p) = n+ s−mS(p)

where mS(p) denotes the Morse index of f|S at p, S is the stratum containing p,
and s = dimC S.

Remark 1.3. The dimension of the unstable set mS(p) + n − s equals the Morse
index m(p) defined in the definition 2.3([GM87]).

The scheme of the proof of the main theorem is rather simple. Namely, we
exploit the beautiful construction, recalled in section 5, of the vanishing polyhedron
performed by Lê in [Lê88] and modify it to construct a field onX with the prescribed
unstable set and projecting via f c onto horizontal lines in the half disc D− :=
D2∩{z|Re(z) < 0}. We consider then a similar construction overD+ and glue them
along the imaginary axis. As the constructed field may be trivial over (f c)−1(0), we
modify the obtained flow by combining with another contribution, built by using
the submersion similar to f : X \{p} → R, so that the resulting vector field satisfies
the desired properties.

There are related recent works by Misha Grinberg and Ursula Ludwig on this
conjecture and we explain them briefly in section 3.

We hope this work to be a first step to apply modern techniques of Morse theory
or in general Floer theory to complex analytic spaces. As a next step we hope
to construct in the near future, the Morse-Witten-Smale complex of intersection
cohomology using the construction of this paper.

Here is the organization of this paper. In the next section, we recall basic notions
in the theory of stratified spaces. In section 3, we recall previous results related to
the conjecture. In section 4 and 5, we explain polar curve and Lê’s construction.
In the last section we prove the main theorem.

We would like to thank Lê Dũng Tráng, and Misha Grinberg for helpful corre-
spondences and specially for Misha Grinberg, who pointed out some mistakes in
the original version. After this work was posted on the arXiv, Grinberg has proved
similar results but with a different method recently in [Gr10].
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2. Preliminaries

Let M be a smooth manifold andX ⊂M a closed subset endowed with a Whitney
stratification. We refer readers to [Pf01] for the definition of Whitney stratification
and more details concerning stratified spaces and vector fields on them.

2.1. Stratified Morse theory. First, we recall the definition of Morse function
on X .

Definition 2.1. A Morse function f : X → R is the restriction of a smooth
function f :M → R such that
(a) f|X is proper and its critical values are distinct
(b) for each stratum Si the critical points of f |Si

: Si → R are non-degenerate
(c) for every such critical point p ∈ Si and for every generalized tangent space Q
at p, with Q 6= TpSi, we have df(p)(Q) 6= 0.

Definition 2.2. A gradient-like vector field for a Morse function f on a stratified
space X is a vector field V such that its restriction V |S to each stratum S is a
gradient-like vector field for f |S, that is:
(a) for each critical point p of f |S there is a neighbourhood US(p) of p in S and a
chart ϕ : US(p) → U in Cs where ϕ∗(V ) is in standard form

−
mS(p)∑

i=1

xi
∂

∂xi
+

s∑

i=mS(p)+1

xi
∂

∂xi

where s is the dimension of S and mS(p) is the Morse index of f|S at p
(b) V (x)(f |S) > 0 for x /∈ ∪pUS(p)

In the complex analytic case, the following definition of index has been intro-
duced in [GM87].

Definition 2.3. Let f : X → R be a Morse function on a purely n-dimensional
Whitney stratified space X and let p be a critical point of f belonging to a stratum
S of dimension s; we define the Morse index of p as

m(p) = mS(p) + n− s

where mS(p) is the standard Morse index of f|S at p.

We recall that Goresky and MacPherson (see again [GM87] and also [GM83])has
related the vanishing of the intersection homology of a Morse pair to the index of
a critical point, extending to the stratified case the analogous classical theorem
for Morse theory on smooth manifolds, after replacing singular homology with
intersection homology.

Theorem 2.4. [GM83] For a proper Morse function f : X → R on a Whitney
stratified complex analytic variety X with a critical point p with critical value v =
f(p), the intersection homology IHi(X≤v+ǫ, X≤v−ǫ) of Morse data at p vanishes
for all i 6= m(p).

2.2. Control systems. We recall briefly the definitions of control data, controlled
vector field and controlled lift. (See [Mat70] or [Pf01] for more details.) Let X be
a real C∞ manifold with a Whitney stratification S.
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Definition 2.5. Let S ∈ S be a stratum, and let TS be an open neighborhood of
S in X. A tubular projection ΠS : TS → S is a smooth submersion which is a
retraction, and satisfies ΠS |S = id|S.
Definition 2.6. Control data on (X,S) is a collection {TS,ΠS , ρS}S∈S, where
ΠS : TS → S is a tubular projection, and ρS : TS → R≥0 is continuous function
with ρ−1(0) = S with the following properties:

(1) for each pair of strata (S,R) with TS ∩ R 6= ∅ we have S ⊂ R (that is,
S < R);

(2) for each pair of strata (S,R) with S < R, the map (ΠS , ρS) : TS ∩ R →
S × R≥0 is smooth and submersive;

(3) for any two strata S,R with S < R, the following compatibility conditions
hold

ΠS ◦ΠR(x) = ΠS(x), ρS ◦ΠR(x) = ρS(x)

for any x ∈ TS ∩ TR with ΠR(x) ∈ TS.

Two control data {TS,ΠS , ρS}S∈S and {T ′
S,Π

′
S , ρ

′
S}S∈S are equivalent over S if

there exists a neighbourhood T̃S ⊂ TS ∩ T ′
S such that

ΠS|T̃S
= Π′

S|T̃S

ρS|T̃S
= ρ′

S|T̃S

Wewill say that (X,S) endowed with an equivalence class of control data {TS,ΠS , ρS}S∈S

is a controlled space.

Definition 2.7. Control data {TS ,ΠS , ρS}S∈S on (X,S) are said to be compatible
with a stratified map h : X → N , where N is a manifold with its trivial stratification,
if for every stratum S and all x ∈ TS

h ◦ΠS(x) = h(x).

Theorem 2.8. For every Whitney stratified space X (and every smooth stratified
submersion h : X → N to a manifold N) there exist control data (compatible with
h).

Definition 2.9. A vector field V : X → TX over a controlled space X is said to
be controlled if there exist control data {TS,ΠS , ρS}S∈S of X such that for every
S < R

dΠS|TS∩R
◦ V|TS∩R = V|S ◦ΠS|TS∩R

dρS|TS∩R
◦ V|TS∩R = 0

Theorem 2.10. Given X, N and h as above, there exists for every smooth vector
field W : N → TN a controlled vector field V : X → TX such that

dh ◦ V =W ◦ h
As a special case we have:

Corollary 2.11. If N = S ⊂ X and V is a vector field on S, then it can be lifted
to a controlled vector field on TS.

We will also use a slightly different definition of controlled conditions, which we
explain now:
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Definition 2.12. A vector field V : X → TX over a controlled space X is said to
be weakly controlled if there exist control data {TS,ΠS , ρS}S∈S of X such that for
every S < R

dΠS|TS∩R
◦ V|TS∩R = V|S ◦ΠS|TS∩R

|dρS|TS∩R
◦ V|TS∩R| ≤ AρS|TS∩R

(x)

for some positive constant A

(Weak) control conditions are interesting because they ensure that a vector field
which satisfies them has a continuous flow and its gradient lines do not leave a
stratum in finite time (see [Pf01]). However we need weak controllability to allow
gradient lines to approach a point on a stratum of smaller dimension in an infinite
time, which would not be possible with the standard controllability.

We also recall the weakly Lipschitz condition introduced by Verdier in [V76] (In
[Pf01], it is called Verdier condition).

Definition 2.13. Let A be a subanalytic set of an Euclidean vector space V and
{Si} a Whitney stratification of A: we say that a function f : A → R is weakly
Lipschitz if for every stratum Si, f|Si

is smooth and for every x ∈ Si there exists a
neighbourhood U of x in V and a constant C such that for every x′ ∈ U ∩ Si and
for every y ∈ U ∩ A

|f(x′)− f(y)| ≤ C‖x− y‖
A weakly Lipschitz function is continuous but in general is not Lipschitz. The

above definition can be extended to maps between analytic varieties by requiring
the condition to hold locally and to vector-valued functions by imposing it to each
component.

Definition 2.14. If X is an analytic variety, A a subanalytic set of X endowed
with a Whitney stratification S, we say that a stratified vector field V on A is weakly
Lipschitz if for every local immersion ϕ of X into a smooth manifold M , the vector
field induced by V on ϕ∗(TM |A) is a weakly Lipschitz section.

We recall the theorem of Verdier ([V76]) which shows the usefulness of weakly
Lipschitz condition.

Theorem 2.15. A stratified weakly Lipschitz vector field on a closed subanalytic
set admits a flow which is stratum preserving and is also weakly Lipschitz.

One of the main tools we use in this paper is the well-known Thom-Mather
isotopy lemma:

Theorem 2.16. Let h : X → N be a proper controlled submersion (that is, h
is proper, controlled and its restriction to each stratum is submersive), then there
exists a covering of N by open subsets U such that for each U there is a stratified
space Y and an isomorphism of stratified spaces ψ : Y × U → h−1(U) such that
h|h−1(U) ◦ ψ(y, x) = x. We say that h is locally trivial.

3. Previous results

We explain previous results of Ludwig [Lu03] and Grinberg [Gr05] and their
relations to this work.
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3.1. Ludwig’s Morse-Witten-Smale complex. First, Ludwig has constructed
a version of Morse-Smale-Witten homology on a stratified space whose homology
is isomorphic to singular homology, not intersection homology.

Theorem 3.1. [Lu03] Let X be a compact abstract stratified space and (f, g) a
stratified Morse pair satisfying the Morse-Smale condition. Then there is an iso-
morphism

H∗(f, g;Z2) ∼= Hsing(X ;Z2)

The Morse-Smale-Witten homology above is defined by a “Morse pair” which
needs a few explanations: on a compact abstract stratified space, defined as a
stratified space admitting a controlled system (observe that, as a consequence, these
spaces, of which Whitney stratified spaces are examples, possess a locally cone-like
structure) she first considers a somewhat general class of “Morse” functions. More
precisely, a point p in a stratum S is critical for a function f if the restriction f|S has
a critical point at p, and it is a non-degenerate critical point if it is non-degenerate
both in the tangential and normal direction.

She considers stratified metrics g which are in some sense compatible with the
given control systems, and whose existence is shown, to construct the stratified
gradient vector field ∇gf of a function f . She defines a critical point to be non-
degenerate if, not only it is non-degenerate for f|S but also if there exists a control
system with respect to which∇gf is a radial extension of∇gf|S. By radial extension
of a vector field VS on S it is meant a vector field V extending VS to TS as sum of
a controlled lift of VS to TS, a stratified bounded vector field on TS with factor ρ2S
and a controlled lift by ρS of the vector field −t∂/∂t on R.

Note that due to the part −t∂/∂t, non-degenerate stratified gradient vector field
∇gf are forced to have a flow to go only from larger to smaller strata. (This
asymmetry seems to be related to the non-existence of Poincaré duality on singular
homology)

Now a stratified Morse pair is a pair (f, g), where f has no degenerate critical
points and ∇gf is a controlled vector field with respect to some control system. In
[Lu03] the existence of such stratified Morse pair is proved. As the flows go only
from larger to smaller strata, the unstable set is a smooth submanifold contained
in the stratum S to which p belongs (whose dimension so is well-defined and used
as Morse index of the point p), while the stable set is a stratified space. With some
transversality assumptions as in the smooth case, a Morse-Smale-Witten homology
is constructed and showed to be isomorphic to singular homology.

However a generic Morse function does not define a Morse pair: consider a
stratified space X which is given by two 2-spheres glued at a single point, say p,
which we regard as a singular stratum. Then, a function f on M gives rise to a
Morse pair only if f has a local minimum at the singular stratum p. And in the
case f gives rise to a Morse pair, −f does not.

In our case, instead we fix any Morse function and construct a gradient-like vector
field with respect to this function. Also, we expect that such an approach, in the
complex analytic case, will eventually provide a Morse-Smale-Witten complex for
intersection homology (instead of singular homology).

3.2. Grinberg’s proof of the conjecture (1.1) up to a fuzz. Now, we explain
the result of Grinberg [Gr05]. There the main purpose is the construction of a
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self-indexing Morse function for a complex stratified space, which was proved by
means of the following theorem.

Theorem 3.2. [Gr05] Let X = Cn, S an algebraic Whitney stratification of X,
p ∈ X and ∆ an open subset of the set of non-degenerate covectors at p (that is,
those covectors which does not annihilate any generalized tangent plane at p). Then
there exists f ∈ ∆, which may be considered as a linear function f : X → R, a
closed ball B around p and a closed real semi-algebraic set K ⊂ B such that

(1) dimRK ∩ S ≤ dimC S for every S ∈ S;
(2) f−1(0) ∩K = {p};
(3) for every open U ⊃ K there exists an S-preserving ∇f -like vector field V

on B with stable and unstable sets contained in U (here an S-preserving
gradient-like vector field is a controlled gradient-like vector field with respect
to some control system).

In other words, the theorem proves that the stable and unstable sets of the cov-
ector f can be made sufficiently close to a subset K having the expected dimension
as in the conjecture (Theorem 1.1).

But the theorem does not provide the actual dimension of the stable and unstable
sets. In other words, as Grinberg himself states, it solves the conjecture “up to a
fuzz”. However this result was enough to prove the existence of a self-indexing
Morse function:

Theorem 3.3. [Gr05] Every proper, non-singular, Whitney stratified complex an-
alytic variety admits a self-indexing Morse function.

4. The polar curve and the Cerf diagram

For the rest of this paper, we denote by X a purely n-dimensional reduced
complex analytic subvariety of some complex analytic manifold M (unless specified
otherwise), on which we fix a Whitney stratification S (whose existence was proved
by Whitney himself in [W65]). Let f c : X → C be a complex analytic function
and suppose f := Re(f c) is a Morse function and p a critical point of f and also
assume that f(p) = 0 for simplicity. We now recall the notion of polar curve,
which provides an essential and convenient tool to carry out inductive arguments
for complex analytic varieties.

The following result, proved in different generality, by Hamm and Lê in [LM73]
and by Lê in [Lê73] (see also chapter 7 of the book [Mi07], [Mas95] or [Mas07]
Theorem 1.1):

Theorem 4.1. There exists an open dense Zariski subset Ω in the space of hyper-
planes through p such that for every H ∈ Ω we have that:
(1) there is an open neighborhood U ⊂ X such that H is transversal in U to every
stratum Si of S with p ∈ Si except maybe {p} if it is a stratum;
(2) chosen a linear form l : X → C defining H, consider the map

φ : X → C
2

φ = (l, f c)

then for any stratum Si with p ∈ Si the set

ΓSi
:= (Ci \ {Crit(f c)}) ∩ U
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where Ci is the set of critical points of the restriction of φ to the smooth part of Si,
is either empty or a reduced curve. Furthermore, ΓSi

properly intersects (f c)−1(0)

at p, i.e. p is an isolated point in ΓSi
∩ (f c)−1(0).

This theorem leads to the defintions of so called polar curve and Cerf diagram:

Definition 4.2. We fix H ∈ Ω given in the Theorem 4.1. We call

Γ = ∪i(ΓSi
∩ U)

the polar curve of f c at p relatively to the stratification S. If Γ is non-empty, for
a suitable choice of U , φ(Γ) = ∆ = ∪α∈A∆α is an analytic curve in an open set of
C2, which is called the Cerf’s diagram of φ at p relatively to the stratification S.

Now we discuss the relation between a Morse function and hyperplane sections.

Lemma 4.3. Let f : X → R be a Morse function on a complex analytic subspace X
of some complex analytic manifold M as above. Then, there exists a dense subset
Ω′ in the space of hyperplanes through p such that, for all H ∈ Ω′, the function
f : X ∩H → R is also a Morse function.

Proof. Suppose not. Then it is easy to see that condition (c) in Definition 2.1 fails
to hold for f : X ∩ H → R for a generic choice of H . First, suppose that the
union U of all generalized tangent spaces at p is a subspace of a complex subspace
V ⊂ TpM , where dimC(V ) < dimC(TpM). Then, for any generalized tangent plane
Q, Q ∩H = {0} for generic H , hence condition (c) trivially holds. Hence, we may
suppose that U = TpM as U is a complex vector space.

But the failure of condition (c) implies the existence of a nonzero vector vH ∈
Q∩H such that df(p)(vH) = 0. As we can choose a dense family of hyperplanes H ,
we can find a dense family of vectors vH with such property. As df(p) is a linear
function, this implies the vanishing of df(p) on Q, providing a contradiction. �

In this paper, we will choose hyperplanes in Ω′ ∩ Ω. Polar curve has provided
very useful tool to study singular complex analytic spaces.

The famous fibration theorem of Milnor has been generalized by Lê in [Lê77]. It
is useful to consider neighborhoods which are not balls but polydiscs, as done by
Lê in the following topological preparation theorem.

Theorem 4.4. [Lê88] Let l ∈ Ω. For simplicity, we suppose l(p) = f c(p) = 0. For
all ǫ, 1 ≫ ǫ > 0 and for all η1, η2, ǫ ≫ η1 > 0, η1 ≫ η2 > 0, the morphism φ
induces a mapping of Xǫ,η1,η2

= Bǫ(p) ∩ φ−1(Dη1
×Dη2

) ∩X on Dη1
×Dη2

which
induces an topological fibration of Xǫ,η1,η2

\φ−1(∪α∈A∆α) on Dη1
×Dη2

\(∪α∈A∆α),
moreover the projection onto Dη2

composed with φ induces a map on Xǫ,η1,η2
onto

Dη2
which induces a topological fibration above D∗

η2
isomorphic to that of local

fibration theorem.

We also recall that a complex analytic function gc : X ⊂M → C has an isolated
singularity at x if for all complex analytic extension g̃c of g in an open neighborhood
U of x inM , the intersection of the image of the section dg̃c and the conormal space
∪iT

∗
Si
U in (x, dg̃c(x)) is an isolated point. The critical points of a Morse function

are isolated singularites and we refer to [Lê88] or [Lê92] for more details.
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5. Lê’s inductive construction of vanishing polyhedron

For the main construction of this paper, we recall briefly parts of Lê’s construc-
tions in [Lê87] and [Lê88]. The construction in this section is entirely due to Lê
and we refer readers to [Lê88] for its full details.

Consider the map φ : X → C2 from Theorem 4.1. Lê has shown how to define a
polyhedron which contains essential information of each fiber f−1(t) (see figure 1),
by working explicitly with polar curves.

Fix ǫ, η so that the fibration theorem of [Lê77] holds and that f c has rank one
in such a neighborhood. We denote (for t ∈ Dη \ {0})

Xǫ,η = Bǫ ∩ (f c)−1(Dη), Xǫ,η(t) = Bǫ ∩ (f c)−1(t),

∂Xǫ,η =
(
∂Bǫ ∩ (f c)−1(Dη)

)
∪
(
Bǫ ∩ (f c)−1(S1

η)
)
, ∂Xǫ,η(t) = ∂Bǫ ∩ (f c)−1(t).

Theorem 5.1. [Lê88] Let f c : X → C be a complex analytic function on a purely
n-dimensional reduced complex analytic variety. Suppose X is closed in an open
subset of CN for some N and endowed with a Whitney stratification S. Suppose f c

has an isolated singularity at p ∈ X and for simplicity that f c(p) = 0.
Then for ǫ and η such that 1 ≫ ǫ≫ η > 0 and for all t ∈ Dη \ {0}, there exists

in Xǫ,η(t) a polyhedron Pt of real dimension n − 1 compatible with S (that is, the
interior of each simplex is contained in some stratum of S) and a continuous strat-
ified simplicial map ψt : ∂Xǫ,η(t) → Pt such that Xǫ,η(t) is the mapping cylinder of
ψt.

Moreover, there exists also a continuous simplicial map rt : Xǫ,η(t) → Xǫ,η(0)
sending Pt onto p and inducing a stratified homeomorphism from Xǫ,η(t) \ Pt onto
Xǫ,η(0) \ {p}.
Remark 5.2. We point out a few differences between Lê’s theorem and the con-
struction of gradient-like vector fields in this paper. The flow Ψt over a line in Dη2

in [Lê88] is constructed away from the collapsing polyhedron using a gradient-like
vector field . We show how to extend such a flow to that of vanishing polyhedron
along a line in the next section. Lê also discussed an extension of the theorem on
a semidisc but with flows converging to the singular point p. This increases the
dimension of the unstable set and is not appropriate for our purpose. Moreover, on
(f c)−1(0), the vector field is not defined. In fact, a possibly natural extension may
provides identically vanishing vector field on (f c)−1(0), which is not a gradient-like
vector field. Later, we show how to overcome these difficulties using the additional
Morse condition while keeping the unstable set as the collapsing polyhedron as in
Lê’s theorem.

The construction in [Lê88] is given by induction on the complex dimension of X
with the following hypothesis:

Induction hypothesis 5.3. For all t ∈ Dη \ {0}, there exist in Xǫ,η(t)

(1) a polyhedron Pt (called vanishing polyhedron), adapted to the stratification
S and whose real dimension is dimCX − 1.

(2) a vector field Et defined on all Xǫ,η(t), tangent to each stratum of
◦

Xǫ,η (t)\Pt induced by S, with
◦

Xǫ,η (t) = Xǫ,η(t)\∂Xǫ,η(t), that is contin-

uous, weakly Lipschitz, and non-zero on
◦

Xǫ,η (t) \ Pt , transverse to strata
of ∂Xǫ,η(t) (and toward interior), and zero on Pt. Also we suppose that
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Dt

vt

t

(t)y
3

(t)y
2

(t)y
1

D

tQ

t

tPt

xi

(a) (b)

Figure 1. (a) Qt and Pt in dimension two, (b) Vector field vt

the flow given by the vector field defines a continuous, surjective, simplicial
map of ∂Xǫ,η(t) onto Pt and that Xǫ,η(t) is the mapping cylinder of such
map.

In the case when dimCX = 1, it is easy to see that the induction hypothesis
holds true. First, we explain the case of dimCX = 2 in more detail closely following
[Lê88] and explain the modifications for general inductive construction.

5.1. The case of dimension two. For simplicity, suppose that f c(p) = 0 and
p ∈ Si for all Si ∈ S. From the topological preparation theorem ([Lê88]), we can
replace Xǫ,η(t) by Xt = Xǫ,η1,η2

∩ (f c)−1(t). The subset Xt is naturally stratified
and we denote by S(t) its stratification.

For convenience, we set

Dt := Dη1
× {t}

and also denote by φt : Xt → Dt the map induced by the morphism φ (or the linear
form l) which is surjective.

By the definition of Cerf diagram, the restriction of φt to the strata of S(t) is

of maximal rank at all the points of
◦

Xt \ ∪ φ−1(∆α), where
◦

Xt= Xt \ ∂Xt. The
number of intersections between the Cerf diagram ∆ and Dt is finite and is denoted
as yi(t) ∈ Dt∩(∪∆α). Note also that we have a topological covering ofXt\φ−1

t (∆α)
on Dt \ (∪∆α).

We remark that here it exists also a case where the polar curve does not exist.
In [Lê88], this trivial case has not been discussed, but in such a case, as the map φ
is submersive away from p, the proof can be carried out without much difficulty.

Fix a point λt ∈ Dt \ (∪∆α). Consider simple paths from λt contained in the
interior of Dt whose end points are yi(t) so that λt is the unique common point
of these paths (see figure 1). We call δ(yi(t)) these paths between λt and yi(t).
Denote by Qt the union of such paths.

We can also construct in Dt a C∞ vector field which we call vt and which
vanishes on Qt, tranverse to ∂Dt, toward interior, integrable. We may also assume
that its flow pt : [0,∞) × (Dt − Qt) → Dt defines a map ξt : ∂Dt → Qt, by
defining ξt(u) = limτ→∞ pt(τ, u) for all u ∈ ∂Dt, that is surjective and continuous,
simplicial and differentiable in the interior of each simplices. As φt is a covering
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above Dt \Qt, we can lift a vector field vt to the vector field Et, differentiable on
Xt \ φ−1

t (Qt), vanishing on φ−1
t (Qt), continuous on Xt, integrable and transverse

to ∂Xt and toward interior.
Also, if qt : [0,∞)× (Xt − φ−1

t Qt) → Xt is the flow associated to Et, we have a
continuous and surjective map ψt : ∂Xt → φ−1

t (Qt) that is simplicial and differen-
tiable on the interior of each simplex, and Xt is the mapping cylinder of ψt. In the
case of dimension two, the polyhedron Pt is defined as φ−1

t (Qt) which is naturally
stratified by the stratification induced by S(t).
5.2. The collapsing in dimension two. Parametrized version of the construction
in the previous subsection has been carried out in [Lê88] in two ways. One is for t
along a curve t ∈ γ converging to p. The other is over a semi-disc containing such
γ. The first case is explained here to define a collapsing cone, and for the second
case, we refer to the general case of the induction.

Consider Dη2
and a simple path γ which joins 0 and t0 ∈ ∂Dη2

and which is
transverse to ∂Dη2

. We can make the construction of the vector field Et simulta-
neously for all t along γ(t). We can choose the common point λt to be for example,
the barycenter of the points yi(t) ∈ Dt ∩ (∪∆α). The projection onto Dη2

induces
a covering of ∆ onto Dη2

that is only ramified at 0. Therefore, the inverse image
of γ \ {0} defines k curves on ∆ each of which is diffeomorphic to γ \ {0} by the
projection onto Dη2

. Such simple curve has 0 in its closure and connects to each
yi(t). In the same way, λt gives another distinct simple path Λ whose projection to
Dη2

induces a diffeomorphism to γ outside 0. We can also choose the path δ(yi(t))
such that Ti = ∪t∈γδ(yi(t)) forms differentiable triangle in ∪tDt outside 0. The
triangles Ti have in common only the simple path Λ given by λt. We can construct
the vector fields v continuous on ∪t∈γDt = Dη1

× γ, differentiable on ∪t∈γDt \∪Ti,
vanishing on Q := ∪Ti, transverse to ∂Dη1

× γ, whose projection to γ is zero and
inducing a flow

p : [0,∞)× (Dη1
× γ \ ∪Ti) → Dη1

× γ

which defines a map ξ : ∂Dη1
×γ → Q by ξ(z) = limτ→∞ p(τ, z) for all z ∈ ∂Dη1

×γ,
that is continuous, surjective, simplicial, and differentiable in the interior of each
simplex (see figure (2): this is a simplified figure and the triangles Ti may not be
linear as in the figure as the points {yi(t)} changes along γ(t)).

We denote for all A > 0 by VA(Q) the closed neighborhood of Q defined by

VA(Q) := Dη1
× γ \ p([0, A)× ∂Dη1

× γ)

where ∂VA(Q) is a differentiable manifold which has a projection onto γ with a
circle as fiber.

As φ has maximal rank away from the Cerf diagram ∆, the space φ−1(∂VA(Q))∩
Bǫ(x) is a differentiable submanifold ofXǫ,η1,η2

that is a proper local trivial fibration
on γ.

Set P := φ−1(Q) ∩ Bǫ(p). We construct a vector field on Xǫ,η1,η2
∩ f−1(γ) \ P

in the following way. We fix some A > 0.

(1) If y /∈ φ−1(VA(Q)) ∩ Bǫ(p), there exists an open neighborhood Uy of y in
Dη1

× γ that does not meet the closed set φ−1(VA(Q)) ∩Bǫ(p). We define
in Uy a C∞ vector fields Gy that lifts a differentiable vector field θ which
is not zero on γ and which takes t0 to 0 in a finite time a > 0.

(2) If y ∈ φ−1(VA(Q)) ∩ Bǫ(p), there exists an open neighborhood Uy of y in
Dη × γ that does not intersect P and in it, one can construct a vector
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Figure 2. Q and its contracting neighborhoods VA

field Gy that lifts a vector field θ, defined in (1), and that is tangent to
φ−1(∂VA′(Q)) for all A′ > A.

We cover thus Xǫ,η1,η2
∩f−1(γ)\P by the open sets Uy with the vector fields Gy in

each of them and by considering a partition of unity gy subordinate to the covering
Uy, we define the vector field G =

∑
gyGy. Such a vector field is differentiable in

Xǫ,η1,η2
∩ f−1(γ) \ P , lifts θ and is tangent to φ−1(∂VA′(Q)) for A′ > A.

The flow π : [0, a]×Z → Z defined on Z = Xǫ,η1,η2
\P gives a C∞ diffeomorphism

of Xt0 \ Pt0 onto X0 \ {0} which extends to a continuous mapping of Xt0 to X0

sending Pt0 to {0}. P is called the collapsing cone above γ.
Lê also constructed collapsing cone over the semi-disc D− along the angular rays

as described in (6.2), which he used in the inductive construction([Lê88]).

5.3. Inductive construction of polyhedron. The general inductive construc-
tion which is explained in great detail in [Lê88] is quite involved and we only give
a brief scketch of some parts of them.

Suppose that dimC(X) ≥ 3 and that the induction hypothesis is verified in all
dimensions of the situation of dimension ≤ n−1. To prove the induction statement
for X with dimC(X) = n, Lê used the induction hypothesis at two different parts
of X as follows: First consider

xi(t) = φ−1(yi(t)) ∩ (∪Γα),

which is an isolated critical point over yi(t) ∈ Dt ∩ (∪∆α). Consider also λ(t) and
simple paths δ(yi(t)) in Dt as in the case of dimension two. We further suppose
that λ(t) = (0, t) ∈ Dη1

×Dη2
because {0}×C is not a component of ∆ when l ∈ Ω

(otherwise, this violates the isolated singularity condition).
Firstly, we restrict X to a hyperplane in Ω defined by {l = 0}. The restriction

X ∩ {l = 0} is of dimension (n − 1) and we may apply the induction hypothesis
for the restricted function f c|X∩(l=0) → C. The fiber Xt ∩ (l = 0) have a vanishing
polyhedron P ′

t and a vector field that we call E′
t.

On the other hand, by taking a sufficiently small ball Ds(yi(t)) of the critical
value yi(t), we consider the projection

φt : Xt ∩ φ−1(Ds(yi(t))) → Ds(yi(t)),
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which has also an isolated singularity at xi(t). As we have dimCXt = n− 1, we can
again apply the induction hypothesis and we obtain a vanishing polyhedron Pi(ai)
at the point ai ∈ δ(yi(t)) ∩ ∂Ds(yi(t)), and also a collapsing cone of Pi(a) along

δ(yi(t)) ∩Ds(yi(t)), which we denote by P̃i.

The above two polyhedra P ′
t and P̃i are to be connected along the path δ(yi(t))

from ai to λ(t). This is done by flowing the polyhedra Pi(a) along a vector field
W ′ to P ′

t where it will be glued to.
We set δ′ = δ(yi(t)) \Ds(yi(t)). Note that above δ′i , the morphism φt induces

a stratified fibration which is locally trivial. In fact, over the δ′i, Lê considers a
controlled vector field Ξ that is tangent to each stratum, weakly Lipschitz and lifts
a C∞ vector fields ξ which is a non-zero vector field on δ′i and whose flow goes from
ai to 0.

Then, the vector fields E′
t of φ−1

t (0) is tranported onto all the fibers of φ−1
t (u)

for all u ∈ δ′i via the flow Ξ, and we obtain the vector field W on φ−1
t (δ′i) whose

restriction to φ−1
t (0) is the field E′

t and the restriction to φ−1
t (u) is a vector field

on φ−1
t (u).

Consider a differentiable function h on δ′i that takes value 0 at 0 and which is
non-zero and positive on δ′i \ {0}. We regard h as a function on Ai = φ−1

t (δ′i).
On Ai, we have a field W ′ = W + hΞ which is weakly Lipschitz, tangent to each

stratum of
◦

Ai and which lifts hξ.
The image of Pi(ai) under the flow of W ′ is also a subpolyhedron P ′

i of P ′
t . The

trajectories of points of Pi(ai) by V1 yield a polyhedron Ri.

We define thus a polyhedron Si = P̃i ∪Ri ∪P ′
i and the vanishing polyhedron Pt

is defined by

Pt = P ′
t ∪k

i=1 Si.

The vector field Et, which is the contracting vector field to the vanishing poly-
hedron, can be constructed, and we refer readers to [Lê88] for its construction.

5.4. Collapsing over semi-disc. In this subsection, we briefly recall the parametrized
construction of the above over the semi-disk D− = {z ∈ D2

η2
|Re(z) < 0} exposed

in [Lê88].
Recall that the collapsing cone Q along γ0 constructed in section 5.2 is of real

dimension two. Similarly on D−, we first construct the three dimensional Q as
follows. Consider in Dη1

×D− the Cerf diagrams ∪∆α, which projects differentiably
onto D− away from 0. Denote its intersection points with each fiber over t ∈ D−

as yi(t) for i = 1, · · · , k. For each t ∈ D−, take λ(t) to be the barycenter of critical
values yi(t) (we assume that this does not lie on the Cerf diagram), and choose
paths δ(yi(t)) from λ(t) to yi(t) continously on t. Then, for each i, we obtain a set

Ti = ∪t∈D−δ(yi(t)).

The Ti’s have in common the intersection Λ = ∪t∈D−{λ(t)}. We set Q := ∪iTi,
which is a three dimensional figure with ribs given by Ti’s.

The collapsing polyhedron of [Lê88] is constructed in the following way. In (5.3.2)
of [Lê88], for each critical point xi(t) of φ above the critical value yi(t) with t ∈ D−,
Lê chooses a radius r(t) > 0 such that ∪t∈D−Br(t)(xi(t)) =: Bi provides a sharp
neighborhood of ∪t∈D−{xi(t)}. Here, sharp means that the neighborhood shrinks
to p or the radius converges to 0 as t approaches 0. We may assume that each Bi

is disjoint and their closures meet at p. One chooses such r(t) as a real analytic
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function of t ∈ D−. For this, consider (as in (5.3.3) of [Lê88]) a real analytic
function s(t) with 1 ≫ r(t) ≫ s(t) > 0 for t ∈ D− and define in C2 the set

Di = ∪t∈D−Ds(t)(yi(t)).

Also, consider a sharp (and sufficiently small) neighborhood U of Q \ {0} which
meets Di for i = 1, · · · k but does not intersect yi(t). As U does not meet the
Cerf diagram, Lê uses the trivialization of V = Xǫ,η1,η2

∩ φ−1(U) over D−. In
this setting, Lê may repeat the inductive construction of the previous subsection
to define the collapsing polyhedron for all t ∈ D− simultaneously. The collapsing
vector field E is also analogously constructed. We refer readers to [Lê88] for more
details.

6. A proof of the main theorem

Let p be a critical point of f . After restricting to a normal slice through p, we
can suppose the set {p} to form a 0-dimensional stratum. We assume for simplicity
that f(p) = 0. Here is the slightly stronger form of the main theorem 1.1.

Theorem 6.1. With the above hypothesis, there exists a stratified weakly controlled
gradient-like vector field V near p for f with continuous flow and whose unstable
and stable set Wu(p) and W s(p) at p satisfy for every S ∈ S,

dimR(W
u(p) ∩ S) ≤ dimC S

dimR(W
s(p) ∩ S) ≤ dimC S.

Moreover they satisfy

dimRW
u(p) = dimRW

s(p) = n

Corollary 6.2. Including the tangential direction, the above theorem 6.1 implies
the corollary 1.2.

Proof. For the case n = 1, the theorem can be proved without much difficulty and
we first explain this case, that is dimCX = 1, before proving the general case.
As we consider only the neighborhood of p, we may assume that X is given the
stratification

S = {S0 = {p}, S1 = X \ {p}}.
Recall that df c(p) 6= 0 since the function f is Morse and {p} is a stratum of S.
Consider Xǫ,η2

= X ∩Bǫ(p)∩ (f c)−1(Dη2
) and the map f c : Xǫ,η2

→ Dη2
. As Xǫ,η2

is of complex dimension one, and df c 6= 0, f c defines a holomorphic map which is
a local diffeomorphism except at p.

We consider the following vector field Vst on Dη2
. If the coordinate of Dη2

is

given by x+ y
√
−1, we define

Vst(x, y) =
√
x2 + y2

∂

∂x
. (6.1)

One can easily check that induced flows are parallel to the x-axis and, particu-
larly, that the only gradient lines which can have the origin as limit point are those
contained in the x-axis. Also one can check that the flow of the vector field takes
infinite time to approach the point 0 if one starts at negative real axis.

Now, we consider a map f c : Xǫ,η2
\ {p} → Dη2

\ {0}, which is submersive.
Hence, we can take a controlled lift V ′ of the vector field Vst by the map f c with
respect to some control system on X , i.e. we have f c

∗(V
′) = Vst. The lifted vector
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field V ′ may be considered a continuous vector field on X by defining V ′(p) = 0.
(In fact X \ {p} near p may considred as one stratum, any lift is a controlled lift.)

To make sure that the vector field V is weakly controlled at p, let ρ be the distance
function in the chosen control system of X . The first condition dΠS ◦ V ′

|TS∩R =

V ′ ◦ ΠS is trivially satisfied as ΠS is the projection onto S = {p}. To meet the
condition |dρS ◦ V ′

|TS
| ≤ AρS(x) for some A, we may multiply a smooth function

h(ρ) of ρ vanishing at p to the constructed vector field V ′ to obtain new vector
field V := h(ρ) · V ′. By a suitable choice of h(ρ) the second condition also can
be satisfied, while the trajectories of V ′ equal the trajectories of V as sets. It is
easy to see that the stable and unstable set of the vector field V on X are real
one dimensional sets which are given by several half-lines with common vertex p.
Hence, this proves the theorem for the case n = 1.

Now, we consider the general case n ≥ 2. The proof consists of the following
steps. The first step is to consider Lê’s construction of the collapsing polyhedron
P and the contracting vector field E over a semi-disc D− = {z ∈ Dη2

|Re(z) < 0},
and use it to lift the vector field (6.1). This vector field on D− is different from
that of Lê, it will provide a gradient-like flow over X ∩Bǫ(x) ∩ (f c)−1(D−) whose
unstable set of the critical point will be given by the collapsing polyhedron over the
negative real axis. Here to show that such a flow is well-defined along the collapsing
polyhedron, we need to modify the construction of Lê, to find a special lifting of
the vector field in D− in a neighborhood of P .

The second step is to consider an analogous construction over a semi-disc D+,
and glue them along the intersection D+ ∩ D−. The final step is to have the
additional construction of a vector field in a neighborhood N0 of (f c)−1(0) \ {0},
then the final vector field will be obtained by partition of unity and will prove the
main theorem.

The first step of constructing such a vector field over a semi-disc D− can be
divided into the following procedures which will be explained later in detail.

(1) Following [Lê88], we consider parametrized constructions of a vanishing
polyhedron Pt in f−1(t) and a contractible vector field Et for all t ∈ D−,
and denote the resulting collapsing polyhedron as P and the contracting
vector field as E. By integrating the flow of E, we define a closed neigh-
borhood VA(P ) of P as in [Lê88].

(2) Consider a sharp neighborhood of P which is defined as V1/|fc(x)|(P ) over

D−, and consider a map f c : V1/|fc(x)|(P ) → C which is a submersion.
(3) Using the trivialization obtained by applying Thom-Mather isotopy lemma

to f c, we redefine the collapsing polyhedron P̃ , and contracting vector field

Ẽ (and denote it again by P and E for simplicity)
(4) Consider the standard vector field (6.1) on D−, and define a specific lifting

to Xǫ,η1,η2
∩ f−1(D−) which is tangent to VA(P ) away from P , so that the

lifted vector field extends continously on P and can be integrated.

For simplicity we use the following notation

X(D−) := Xǫ,η1,η2
∩ (f c)−1(D−)

Following [Lê88] the construction of collapsing cone over the semi-disk, we have
a collapsing polyhedron P and a contracting vector field E on X(D−), which is
continuous, weakly Lipschitz, vanishing at P and its associated flow provides a
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(a) (b) (c)

Figure 3. (a) Flows in [Lê88] (b) Flows in this paper (c) Vst

continuous strata preserving map

ρ : [0,∞)×XD− → XD−

which sends XD− \ P to itself. We denote by ∂outXD− the following part of the
boundary of X(D−):

X ∩Bǫ ∩ φ−1(∂Dη1
×D−), X ∩ ∂Bǫ ∩ φ−1(Dη1

×D−)

We remark that the vector field E is transverse to ∂outXD− on which it points
inward, moreover its projection under f c vanishes. We may define the closed neigh-
borhood of P by

VA(P ) := X(D−) \ ρ
(
[0, A)× ∂Xout(D

−)
)
.

It is not hard to see that f c : VA(P ) → D− is still a submersion from the Morse
condition of f in the stratified settting. The main purpose of the contracting vector
field E is to construct the above closed neighborhood VA(P ), so that one can define
a flow preserving these levels determined by VA(P ).

Lê then considers (as in section 5.2) a lifting the vector field on D− whose flow
converges to 0 and whose trajectories provides a foliation of D− given by the lines
γθ where

γθ = {η2teiθ|t ∈ [0, 1]} for
π

2
< θ <

3π

2
. (6.2)

(See figure (3) (a)). Such a lifting is used to define a mapping sending X(D−)− P
to X0 \ {p}

Instead, we make a similar construction over the semi-disc D−, but considering
the standard vector field Vst of (6.1) whose trajectory gives the foliation of D− by
the horizontal lines (figure (3)(b))

γj = {z ∈ D−|Im(z) = j} for − η2 < j < η2.

We remark that the Cerf diagram does not intersect {0} ×Dη2
, hence none of the

{0} × γj ’s. This finishes procedure (1).
There is a subtle point in lifting the vector field. Lê’s construction of the lifting

as in section 5.2 is actually carried out away from the collapsing polyhedron. Hence
Lê obtains a map from X(D−) \ P to X0 \ {p} via a flow which, however, is not
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shown to extend over P , as the lifted vector field may not have a limit toward the
collapsing polyhedron P . (Intuitively, it seems clear that such a vector field should
extend over P but it turns out to be rather subtle).

In our case, we would like to define the vector field everywhere, hence we proceed
in a slightly different way to prove the extension. We now explain procedure (2).
Instead of VA(P ), we consider a sharp neighorhood by changing A to ∞ as we
approach the point p. By sharp, we mean that the neighborhood shrinks to the
point p as we approach it. Namely, we may set A = 1

|fc(x)| for each x ∈ X(D−) or

define

Vsharp(P ) := X(D−) \
(
∪x∈Xout(D−) ρ([0,

1

|f c(x)| )× {x})
)
.

As f c : Vsharp(P ) → D− is still a proper submersion, by the Thom-Mather isotopy
lemma, we obtain a stratified trivialization

Ψ : Vsharp(P ) ∼= D− × Ft

via f c, where Ft = Vsharp(P ) ∩ (f c)−1(t) for the given t ∈ ∂D−, so that the
projection of Ψ to the first component equals the map f c. We may regard polar
curves as additional stratas and that this trivialization preserves these stratras also.

Given this trivialization, we will construct a new collapsing polyhedron denoted

by P̃ and a new contracting vector field denoted by Ẽ, using Pt and Et for t = −η2.
This is somewhat unsatisfactory but otherwise we do not know how to construct a
gradient-like vector field which extends to P .

Via the trivialization Ψ we consider parallel transports of the vanishing polyhe-
dron Pt and the contracting vector field Et|Ft

over D− and define the collapsing

polyhedron P̃ and the contracting vector field Ẽ inD−×Ft, and hence in Vsharp(P ).
Note that parallel transport sends a point of the polar curve to another point of

the polar curve. This provides a new collapsing polyhedron P̃ , which a priori may
be different from P , but over a contractible set D− these should contain equiva-

lent informations. Also, we may extend Ẽ from Vsharp(P ) to X(D−) so that it is
continuous, weakly Lipschitz, transverse to ∂Xout(D

−), pointing inward and whose

flow provides a retraction onto P̃ . We may also assume that with the new vector

field Ẽ, the time it takes for the flow from ∂Xout(D
−) to Vsharp(P ) is a smooth

function on D− × Ft ⊂ D− ×M . This is procedure (3). We now fix P̃ , Ẽ and call
it again by P and E for simplicity of expressions.

Now, we explain how to choose a lifting of the standard vector field (6.1) on D−.
We need to do it carefully to make sure that the flow extends continuously over P .

We construct a lifting of Vst in D− to X(D−) \ P in the following way. We
choose A0 > 2.

(1) If y /∈ VA0
(P ) for y ∈ XD− , there exists an open neighborhood Uy of y in

X(D−) that does not meet the closed set VA0
(P ). In Uy, we define a C∞

vector field G̃y as a lifting of the differentiable vector field Vst.
(2) If y ∈ VA0

(P ) \ Vsharp(P ), there exists an open neighborhood Uy of y in
X(D−) \ V ′

sharp(P ) where V ′
sharp(P ) is constructed in the same way as

Vsharp(P ) with A = 2
|fc(x)| instead. Hence Uy does not intersect P and in

it, one can construct a vector field G̃y that lifts a vector field Vst and that
is tangent to ∂VA′(P ) for all A′ > A0. The lifting exists as φ is submersive
away from the polar curve.
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(3) If y ∈ Vsharp(P ) \ P , we find a special lifting in the following way. Re-
call that we have a trivialization Ψ : Vsharp(P ) ∼= D− × Ft. Denote
Ψ(y) = (f c(y), b(y)). Consider the curve σ : [−c, c] 7→ D− × Ft defined
by translation, i.e. for s ∈ [−c, c],

σ(s) = (f c(y) + s, b(y)).

By assumption, there exists a smooth function A(s) such that each point
Ψ−1(σ(s)) lies in the time A(s) level VA(s)(P ) of the flow ρ for a smooth
function A(s). In fact A(s) will not be constant, as the flow ρ starts from
∂Xout(D

−) and not from ∂Vsharp(P ).
But by choosing smaller c′, with 0 < c′ < c if necessary, we may assume

that

σ̃(s) := ρA(0)−A(s)(Ψ
−1 ◦ σ(s))

lies in Ṽ for−c′ < s < c′, and the new curve σ̃(s) will be tangent to VA(0)(P )
by the construction. Consider the image curve σ̃(−c′, c′) and we take a

unique vector G̃(y) tangent to σ̃ at s = 0 which satisfies (df c)G̃(y) = Vst.

In this way, we define a unique lifting G̃ of Vst in Vsharp(P ) \ P .
The main reason for the last construction is to use the trivialization Ψ as a

reference. Namely, as the new contracting vector field Ẽ is defined in Vsharp(P ) via
parallel tranport of the trivialization, the map ρA(0)−A(t) in fact commutes with
the trivialization. Hence, we have

Ψ(σ̃(s)) =
(
f c(y) + s, ρA(0)−A(s)(b(y))

)

Now, we claim that the lifting G̃ extends to P continuously. Intuitively, this is
because we have chosen a special lifting so that there exists no ambiguity in its limit
approaching P . We will show that the fiber component of the lifted vector field

G̃(y) in terms of the trivialization of Ψ vanishes in a uniform way as we appraoch
P .

We denote Ψ∗(G̃(y)) = (Vst(f
c(y)), G̃F (y)). As |Vst(z)| = |z|, it is easy to see

that the fiber component is

|G̃F (y)| = | d
ds

|s=0ρA(0)−A(|fc(y)|s)(b(y))| = |f c(y)| · |E(y)| · |dA
ds

(0)|.

This is because the flow ρ is generated by the vector field E or Et.
As y ∈ Vsharp(P ) \ P approach the collapsing polyhedron P ( or as A(0) ap-

proaches ∞), the |E(y)| approaches zero, whereas |f c(y)| and |dAds (0)| is bounded
in its local compact neighborhood and hence the fiber component vanishes as we
approach P . This proves the desired property of the lifted vector field near P , and

we extend |G̃(y)| continuously as (Vst, 0) in the trivialization D− × Ft.
It is not hard to see that the resulting vector field is weakly Lipschitz, and its

associated flow is stratum preserving. Hence via Ψ, we can extend the lifted vector
field to P in Vsharp(P ).

We cover thus X(D−) \ P by the open sets Uy with the vector fields G̃y and by
considering a partition of unity gy subordinate to the covering Uy, we define the
vector field

G̃ =
∑

gyG̃y .

Such a vector field is stratified and differentiable in X(D−) \P , lifts Vst, is tangent
to ∂VA′(P ) for A′ > A, and preserves P .
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The flow of the vector field G̃ gives a diffeomorphism from Xt0 \Pt0 to X0 \ {p}
for t0 ∈ γ0 and from Xtj \ Ptj to Xt

′
j
\ Pt

′
j
for tj , t

′
j ∈ γj and it extends to a

continuous map from Xt0 to X0 and from Xtj to Xt
′
j
, sending respectively Pt0 to

{p} and Ptj to Pt
′
j
.

Hence G̃ provides over X(D−) the desired stratified gradient-like vector field,
which has real n-dimensional stable set given by ∪t0∈γ0

Pt0 . This finishes the first
step of the proof.

We claim that the polyhedron ∪t∈γ0
Pt as an unstable set of p satisfies the di-

mension estimate (1.1) of the main theorem . This can be checked by considering
carefully Lê’s inductive procedure (section 5.3) constructing Pt. The estimate is
clearly true for n = 1. We remind that the vanishing polyhedron is constructed
in section 5.3 by gluing the polyhedron Ri, obtained by flowing (via W ′) the van-
ishing polyhedron Pi(a) to P

′
t , where by induction we may assume that Pi(a) and

P ′
t satisfy the estimates (1.1). Here the flow W ′ is stratum-preserving as it is the

sum of a controlled vector field (hΞ) and a weakly Lipschitz vector field W . As
a consequence, the dimensional estimate (1.1) continues to hold throughout the
construction of Pt.

Now, we begin the second step of the proof. As the argument above used only
the contractibility ofD−, we can in fact perform the same construction for a slightly
larger set

D̃− := {z ∈ Dη2
\ {0} | π − ǫ < arg(z) < 3π + ǫ},

where arg(z) is defined appropriately, and the vector field, which we call G̃−, over

D̃− gives rise to a stable set at the critical point p of the expected real dimension.
Also, we carry out a similar construction over the set

D̃+ := {z ∈ Dη2
\ {0} | − π − ǫ < arg(z) < π + ǫ},

with the vector field induced from Vst on it. Hence, the vector field, which we call

G̃+, over D̃+ gives rise to an unstable set of the expected real dimension at the

critical point p. Note that D̃+ ∪ D̃− = Dη2
\ {0}, and also D̃+ ∩ D̃− does not

contain γ0.

Now, we glue the two fields G̃± by means a partition of unity to obtain a stratified
weakly Lipschitz and controlled gradient-like vector field V ′ over Dη2

\{0}. We can
use a partition of unity depending only on the angular parameter of Dη2

. Note that

both the vector fields G̃± approaches zero as we approach the point p. Hence, the
gluing is well-defined near (f c)−1(0). But the vector field V ′, if we are to extend it
continously overX , must vanish on (f c)−1(0), hence V ′ can not be the gradient-like
vector field over X we are looking for (as a gradient-like vector field is required to
vanish only at critical points).

Still, the new vector field V ′ projects down to Vst by the map f c, and hence the
stable and unstable set of p exist only along γ0. So the stable (resp. unstable) set

of G̃+ (resp. G̃−) remains as the stable (resp. unstable) set of the vector field V ′

at p.
Up to now we have a vector field V ′ defined in Bǫ(p) \ (f c)−1(0). It may or may

not extend continuously over Bǫ(p). Hence, to solve this problem, we consider in
addition, another vector field V0 defined in the following way.
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Figure 4. Neighborhood N0

Consider a neighbourhood N0 ⊂ (Bǫ \ {p}) of (f c)−1(0) \ {p}. Recall from the
theorem 4.1 that p is an isolated point in ΓSi

∩ (f c)−1(0), and hence N0 can be
chosen away from polar curves.

As we consider gradient-like vector fields, it is clear that their unstable and stable
set of p do not intersect with (f c)−1(0) except at p. Hence as they are closed sets,
we may also assume that the neighborhood N0 does not intersect both the unstable
and stable sets of p (see figure 4) and does not intersect the polar curves.

As a consequence, φ|N0
is submersive. So we can take a controlled lift, with

respect to some control system, of the vector field

V ′
st =

∂

∂x3

on Dη1
×Dη2

⊂ C2, where (x1+x2
√
−1, x3+x4

√
−1) denotes the standard coordi-

nates in C2. The lift, which we denote by V ′
0 , is a stratified, controlled, gradient-like

(because of the compatibility with φ) vector field.
Note that the flow of V ′

0 preserves the hyperplanes H + c (as it preserves the
linear form l), and does not vanish in N0. To make it continuous at p, we actually
consider the vector field

V0 := ρV ′
0 ,

where ρ is a distance function from p in a fixed control system of X and V0 is still
stratified, controlled (except at p) and gradient-like.

The open sets {(Xǫ,η1,η2
\ (f c)−1(0)), N0} define an open cover of Bǫ(p) \ {p}

and, by using a partition of unity subordinate to this cover, we glue the vector field
V ′ with V0, and denote the resulting vector field by V . Hence we get the continuous
vector field V on Xǫ,η1,η2

by defining V (p) = 0
We claim that the vector V is the desired gradient-like vector field for f of the

main theorem.
Indeed, first note that, as V ′ and V0 are both stratified gradient-like vector fields,

so is the vector field V . It is also easy to check that V does not vanish except at p.
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It remains to show that the unstable and stable manifolds of V satisfies the desired
properties.

We now consider the unstable and stable set of p for the vector field V . As we
have glued away from the stable and unstable set at p of the vector field V ′, these
remain as subsets of the stable and unstable set at p of the vector field V . Hence
it remains to show that in the intersection of two open sets

(Xǫ,η1,η2
\ (f c)−1(0)) ∩N0,

we do not create any new gradient line converging to or emanating from p by gluing.
To this purpose, we recall first that both vectors f c

∗(V
′) and f c

∗(V0) are parallel
to the x-axis of Dη2

, hence the glued vector field V also has such a property. For
a possibly new flow trajectory converging to or emanating from p, we only need to
check what happens over γ0, which is the x-axis. The vector field V ′ over γ0 is, by

construction, the same as the vector fields G̃± on D±.
Now, recall that the vector field V ′ inside the set VA(P ) \ P is a lift of Vst for

the map f c and is tangent to ∂VA′(P ) for some A′, hence the flow of V ′ preserves
the sets ∂VA′(P ) for A′ > A.

Consider the polar curve Γ and a linear form l : Γ → Dη1
. This is a branch cover

at p, hence, as t ∈ γ0 approaches 0, the image of the polar curve l(xi(t)) = yi(t) also
approaches 0, thgerefore, we may assume that in a sufficiently close neighborhood
of p and for sufficiently large A′, the flow along ∂VA′(P ) decreases the value of |l|.

Note however that the flow V0 at a point of ∂VA′(P ) fixes |l|, as it preserves the
linear form, hence, the vector field V0 at ∂VA′(P ) is pointing outward (away from
P ), toward ∂VA′′(P ) for A′′ < A′. As V ′ is tangent to ∂VA′(P ) and as V0 is pointing
outward to ∂VA′(P ), the final vector field V , which is obtained as a partition of
unity of V ′ and V , is also tangent to ∂VA′(P ) or pointing outward.

This implies that the flow of V does not approach p in the intersection of these
open sets, since A′ should go to ∞ for the flow to approach p.

The vector field V is controlled except at p. We can make it weakly controlled
while preserving the trajectories of V , as in the case of n = 1, by multiplying it
with a function of ρ which vanishes at 0. (here ρ is the distance function to p from
the fixed control system).

As the unstable and stable set are given by P |(fc)−1(γ0)∩P , and we have already
shown that they satisfy the dimensional estimate (1.1) after the construction of P .
This finishes the proof of the claim and this proves the main theorem. �

Now, we prove corollary 1.2.

Proof. To obtain a global vector field on X , we first apply the main theorem to
each normal slice of critical points of f . Then, by adding a tangential component
(as in the smooth case) to each normal slice, we obtain a vector field with the
required properties in each neighborhood of critical points. For any point q ∈ X
which is not a critical point, we choose a contractible neighorhood U of q which
does not contain any critical point. Then we consider a map f : U → R, which is a
submersion, and take a controlled lift of the standard unit vector field on R. Then,
we obtain the global vector field by a partition of unity. �

As Lê also shows in [Lê88] we have the following corollary:

Corollary 6.3. There exists a map χ : ∂Xt ∩ Bǫ(p) → Wu(V ) ∩Xt ∩ Bǫ(p) such
that Xt ∩B(p) is the mapping cylinder of χ.
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Proof. Observe that by construction Wu(V ) ∩Xt ∩ Bǫ(p) = Pt, so we can take as
χ the flow of Et for t→ +∞. �

This corollary allows us to relate Morse data to the unstable set of the vector
field V as follows:

Corollary 6.4. The homotopy type of normal Morse data is given by

(Wu(V ),Wu(V ) ∩B(p))

(or by (W s(V ),W s(V ) ∩Bǫ(p))).

Proof. For a complex analytic variety the homotopy type of normal Morse data is
given by (Cone(L),L), where L denotes the complex link of p and Cone(L) the
cone over L; but by definition L is Xt ∩Bǫ(p), which, by corollary 6.3, deformation
retracts onto Wu(V ) ∩ Bǫ(p); on the other hand, by construction, Wu(p) is the
cone over Pt =Wu(V ) ∩B(p). �

Corollary 6.5. The normal Morse data are homeomorphic to (J,K) where

J = Cone([(Cyl(χ)×[0, 2π])/(q, 0) ∼= (µ(q), 2π)]∪∂(Xt∩B(p))×S1 [∂(Xt∩B(p))×D1])

K = Cyl(χ)× [0, 2π]

where µ is the monodromy associated to p, χ : ∂Xt∩B(p) → Wu(V )∩Xt ∩B(p) is
the map appearing in corollary 6.3 and K ⊂ J is embedded in the base of the cone.

Proof. This follows mutatis mutandis from the homeomorphism type of normal
Morse data in [GM87]. �
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299-318, RIMS Kyoto.
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