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Abstract

Kontsevich and Soibelman defined Donaldson-Thomas invariants of a 3d Calabi-Yau cat-
egory C equipped with a stability condition [[<{S1]. Any cluster variety gives rise to a family
of such categories. Their DT invariants are encapsulated in a single formal automorphism
of the cluster variety, called the DT -transformation.

Let S be an oriented surface with punctures, and a finite number of special points on the
boundary considered modulo isotopy. It give rise to a moduli space Xpqr,,, s, closely related
to the moduli space of PGL,-local systems on S, which carries a canonical cluster Poisson
variety structure [F'(G1]. For each puncture of S, there is a birational Weyl group action on
the space Apqr,,.s- We prove that it is given by cluster Poisson transformations. We prove
a similar result for the involution * of Apqr,, s provided by dualising a local system on S.

Let p be the total number of punctures and special points, and ¢(S) the genus of S. We
assume that g > 0. We say that S is admissible if ¢(S) + ¢ = 3 and p > 1 if S has only
punctures, and also when S is an annulus with a special point on each boundary circle.

Using a combinatorial characterization of a class of DT transformations due to B. Keller
[K13], we calculate the DT-transformation of the space Xpar,, s for any admissible S.

We show that the Weyl group and the involution * act by cluster transformations of the
dual moduli space Agr,,, s, and calculate the DT-transformation of the space Asy,,, s-

If S admissible, combining the results above with the results of Gross, Hacking, Keel
and Kontsevich [GHIKIK], we get a canonical basis in the space of regular functions on the
cluster variety Xpgr,, s, and in the Fomin-Zelevinsky upper cluster algebra with principal
coefficients [FZIV] related to the pair (SLy,,S), as predicted by Duality Conjectures [FG2].

1 Introduction

1.1 Summary

A decorated surface S is an oriented topological surface with n punctures inside and a finite
number of special points on the boundary, considered modulo isotopy. We assume that each
boundary component has at least one special point, see Figure 1. We define marked points as
either punctures or special points. Denote by p the number of marked points. We assume that



w > 0. Filling the punctures by points, and the holes by discs, we get a compact closed surface.
The genus ¢(S) of S is its genus. Denote by I's the mapping class group of S.

Figure 1: A decorated surface with three special points on the boundary and two punctures.

Let G be a split semi-simple group over Q. A pair (G, S) gives rise to a Poisson moduli space
Xa s, closely related to the moduli spaces of G-local systems on S. If the center of G is trivial,
the space Xg s has a natural cluster Poisson structure, defined for G = PGL,, in [FG1].

There are three groups acting on the moduli space Xg s:

1. The mapping class group I's acts by automorphisms of the moduli space X s.

2. The group Out(G) of outer automorphisms of G acts by automorphisms of Xqs.

3. The Weyl group W™ acts by birational automorphisms of the space Xgs.

The actions of these three groups commute by the very definition.

When do these groups act by cluster transformations of the space Apqi,,, s? It was proved
in [FG1] that the action of the group I's is cluster if S satisfies the following condition:

i) One has ¢(S) + p = 3, or S is an annulus with two special points.

We prove that the action of the group Out(PGL,,) is cluster under the same assumptions,
and that the action of the group W" is cluster if, in addition to i), S has the following property:*

ii) If S has no special points, then it has more than one puncture.

Definition 1.1. A decorated surface S is admissible, if it satisfies conditions i) and ii).
We introduce a birational action of the group W™ on the dual moduli space Asgt,,, s.

Theorem 1.2. IfS is admissible, and not a sphere with three punctures if G is of type A1, then
the action of the group I's x W™ x Out(G) on the spaces Xpgr,, s and Asy,, s s cluster.

If S has just one puncture, the W-action is not cluster at least if G = PGLs.

We use Theorem 1.2 in a crucial way to study the Donaldson-Thomas transformations.

Kontsevich and Soibelman [I<S1] defined Donaldson-Thomas invariants of a 3d Calabi-Yau
category equipped with a stability condition. Any cluster variety gives rise to a family of such
categories. Their DT invariants are encapsulated in single formal automorphism of the cluster
variety, called the DT-transformation.

Let wg € W™ be the longest element, and r the clockwise rotation of the special points on
each boundary component of S by one. The group Out(G) contains a canonical involution .

Theorem 1.3. Let S be an admissible decorated surface. Then the DT-transformation DTpqr,,, s
of the space Xpat,, s is a cluster transformation. It is given by

DTpgl,,s = *owgor. (1)

The cluster transformation (1) is a cluster DT-transformation in the sense of Definition 1.15.

!There is one more minor exception: G = PGLs and S is a sphere with three punctures. However in this case
the longest element (1,1,1) € (Z/2Z) still acts by a cluster transformation.



This implies that the DT-transformation coincides with Gaiotto-Moore-Neitzke spectral gen-
erator, which encodes the count of BPS states in 4d N' = 2 SUYM theories [GMN1]-[GMN5].
Thus, at least in certain cases, the DT-invariants coincide with the GMN count of BPS states.
We prove Theorem 1.3 in Section 10.

When S is a triangle, we identify the tropicalized involution = on the tropicalised space
Asgt,..s with the Schiitzenberger involution.

An application to Duality Conjectures. For any admissible S, Theorems 1.2 and 1.3,
combined with Theorem 0.10 of Gross, Hacking, Keel and Kontsevich [GHIKIK], deliver a canon-
ical I's x W x Out(G)-equivariant linear basis in the space of regular functions on the cluster
Poisson variety Xpcr,,, s, as predicted by Duality Conjectures [F'G2].

Precisely, the cluster Poisson variety structure on the moduli space Xpqr,, s gives rise to a
I's-equivariant algebra Og(Xpar,, s) of regular functions on the corresponding cluster variety.?
On the other hand, the cluster A-variety structure on the moduli space Agr,, s [F'G1] gives rise
a I's-equivariant set Agp,, s(Z"') of the integral tropical points.

A cluster A-variety A has a deformation A, over a torus. The algebra of regular function
Oci(Aprin) is the Fomin-Zelevinsky upper cluster algebra with principal coefficients [F'Z1V]. We
denote by Oci(Aprin(SLm, S)) the one related to the pair (SLy,S).

Theorem 1.4. Let S be an arbitrary admissible decorated surface. Then:
i) There is a canonical I's x W™ x Out(G)-equivariant linear basis in the space Oc(XpGL., s)
of regular functions on the cluster variety XpaL,, s, parametrized by the set Asy,, s(Z').
ii) There is a canonical T's x W™ x Out(G)-equivariant linear basis in the space Oc(Aprin(SLim, S)).

A canonical basis in Ou(XpaL,, s) parametrized by the set Agp, s(Z') just means that we
have a canonical pairing
I: Agp, s(Z") x Xpar,, s — Al

It assigns to a tropical point | € Agy,, s(Z') a function on Xpgr,, s, given by the basis vector
parametrized by [. The equivarianace means that the pairing is I's x W x Out(G)-invariant.
Theorem 1.4 follows immediately from Theorems 1.2, 1.3 and 1.17.
A canonical basis in Oq(XpgL,,s) was defined by a different method in [F'G1, Section 12].

1.2 Definitions

The Poisson moduli space Xgs. The space Xggs parametrises G-local systems on S with
an additional data: a reduction to a Borel subgroup near every marked point, called a framing.
As the name suggests, it comes with additional structures: a I's-equivariant Poisson structure.

A birational automorphism Cgg of the moduli space Xgs. A decorated surface has
punctures and boundary components. We assume that each boundary component has at least
one special point.

We introduce three types of (birational) automorphisms of the spaces Xg .

2We abuse notation denoting a moduli space and the corresponding cluster variety the same way, although
these are different geometric objects. The notation Oq()) emphasises that we deal with the algebra of functions
on a cluster variety ).



1. Punctures. For each puncture on S there is a birational action of the Weyl group W of
G on the space Xg s, defined in [FGi1]. Namely, given a generic regular element g € G, the
set of Borel subgroups containing ¢ is a principal homogeneous set of the Weyl group. So,
given a puncture p and a generic G-local system £ on S, the Weyl group acts by altering
the reduction of £ to a Borel subgroup near p, leaving the G-local system intact.

For example, for a generic SL,,-local system on S the monodromy around p has m eigen-
lines. A reduction to Borel subgroup near p just means that we order them. The symmetric
group Sy, acts on the orderings.

The actions at different punctures commute. So the group W™ acts birationally on X s.

2. Boundary components. For each boundary component h on S, consider an isomorphism
rs,p, of the moduli space Xg g provided by the rotation by one of the special points on h in
the direction prescribed by the orientation of S. Namely, we rotate the surface near the
boundary component, moving each special point to the next one, transporting framings.

The isomorphisms rg j, at different boundary components commute. We take their product
over all boundary components:
rs = H TS,h-
h

@
N
Figure 2: The rotation operator on a disc with four special points.

3. The involution *. We define an involution * acting on the space Xgs. If G = SL,,, it
amounts to dualising a local system on S, as well as the framings at the marked points.

For any group G it is provided by an outer automorphism of the group G defined as follows.
Let a; (i € I) be simple positive roots. Let i — i* be a Dynkin diagram automorphism
such that a;+ = —wg(e;). Choose a pinning of G. It provides us with a Cartan subgroup
H € G and one parametric subgroups z;(a) and y;(a), i € I. These subgroups generate G.
It also provides a lift of the Weyl group W to G, w — w, lifting the generator of each
standard SLo to the element <_01 (1)> Then there is an involution * : G — G:
x: G— G, zi(a) — 2x(a), yi(a) —> yix(a), h+—>h* =@, h ‘W, VheH.
(2)
For example, if G = GL,,, then =(g) = W, - (g W ! where ¢! is the transpose of g.
The involution * preserves the Borel subgroup B generated by H and {x;(a)}s. So it
induces an involution of the flag variety B = G/B. Hence it acts on the moduli space Xg s.
Abusing notation, all of them are denoted by .

t)fl

Definition 1.5. Let wo = (wo, ..., wq) be the longest element of the Weyl group W™. We set

Ca,s 1= 15 0 * 0 Wy. (3)



Theorem 1.6 below asserts that the transformation Cpgr,, s is a cluster transformation when
S is an admissible decorated surface. We observe that this is not the case when S has a single
puncture. Theorem 1.6 is our main tool to study DT-invariants. To state it properly, let us
review the background.

1.3 Cluster nature of the Weyl group action and of the *-involution

Quivers and quantum cluster varieties. In this paper a quiveris an oriented graph without
loops or 2-cycles, whose vertices are labelled by a set I = {1,..., N}. See Figure 3.

Q1 Q2
v 1
1 2
o
3 B 4 4
2 3

Figure 3: Graph Q; has a 2-cycle (a, 8) and a loop 7. It is not a quiver. Graph Qs is a quiver.

A quiver determines a triple
(A, {ev}, (%)),

where A is a lattice generated by the vertices {v} of the quiver, {e,} is the basis parametrised
by the vertices, and (%, %) is a skewsymmetric integral bilinear form on A, uniquely defined by

(€y, ) := #{arrows from v to w} — #{arrows from w to v}.

Vice verse, such a triple (A, {e,}, (*, %)) determines a quiver, whose vertices are the basis vectors
ey, and vertices v, w are related by an arrow with multiplicity (e,, e,,) if and only if (e, e,,) > 0.

Any lattice A with a bilinear skewsymmetric Z-valued form (x,*) gives rise to a quantum
torus algebra Ty. It is an algebra over the ring of Laurent polynomials Z[q, ¢ '] in ¢ given by
a free Z[q, ¢~ ']-module with a basis X, v € A, with the product relation

le XU2 = q(vl 7U2)XU1 +uvg -

Therefore a quiver q provides us with a quantum torus algebra Tq. We think about it
geometrically, as of the algebra of functions on a non-commutative space - a quantum torus T4.

Any basis vector e,, provides a mutated in the direction e,, quiver '. The quiver q’ is defined
by changing the basis {e,} only. The lattice and the form stay intact. The new basis {e]} is
defined via halfreflection of the basis {e,} along the hyperplane (e,,) = 0:

A Bt + (ep,ew)rew if v=w ()
v —€w if v=w.
Here a; := a if & = 0 and ay := 0 otherwise. Quiver mutations in a coordinate form were

introduced by Seiberg [Se95], and independently by Fomin-Zelevinsky [F7Z1].



A quiver q gives rise to a dual pair (A, X') of cluster varieties [F'(G2]. Their cluster coordinate
systems are parametrised by the quivers obtained by mutations of the quiver q. The algebra of
regular functions on the cluster Ky-variety A is Fomin-Zelevinsky’s upper cluster algebra [F71].

The cluster Poisson variety X has a deformation, called quantum cluster variety, which
depends on a parameter q. The quantum cluster coordinate systems of the quantum cluster
variety are related by the quantum cluster transformations.

The crucial part in their definition [F'G2] plays the quantum dilogarithm formal power series:

1
(1+qz)(1+¢@2)(1 + ¢°x)(1 + q7x) ...

Wy (x) = (5)

It is the unique formal power series starting from 1 and satisfying a difference relation
W, (¢*x) = (1 + q) P, (). (6)

It has the power series expansion, easily checked by using the difference relation:

’I’L2’n

o0 e

The logarithm of the power series W, (x) is the g-dilogarithm power series:

log W, () = Z (—1)n+t

Zinlg—a)

" (8)

Indeed, it suffices to show that the difference relation (6) holds for the right hand side:

Z (_1)n+1<q2x)n B Z (—1)n+1xn _ Z (—1)n+1(q2n —1)z" _ Z _(_qu)n = log(1 + qx).

n=1 n(q" o q_n) n=1 n(q" o q_n) n=1 n<qn o q_n) n=1

In particular, in the quasiclassical limit we recover the classical dilogarithm power series:

lim(q g log () =~ 3, T = ip(-), 0

n=1

The quantum cluster transformations are automorphisms of the non-commutative fraction
field of the quantum torus algebra Ty, given by the conjugation by quantum dilogarithms.
Inspite of the fact that the quantum dilogarithms are power series, the conjugation is a rational
transformation due to the difference relation (6). The quasiclassical limit when ¢ — 1 of the
quantum cluster variety is the cluster Poisson variety X. We carefully review the definition of
quantum cluster varieties in Section 2.

There is a natural cluster Poisson structure on the space Xpqr,, s, introduced in [F'G1]. The
group I's acts by cluster transformations of Apqgr,, s, provided that

(i) g(S) 4+ = 3, or that S is an annulus with 2 special points.

In particular, the rotation rgj is a cluster transformation. See Section 10.1.



Theorem 1.6 (Theorems 9.1, 8.2). 1) Assuming (i), the involution * acts by a cluster trans-
formation of Xpar,s-

2) Let us assume (i), exclude surfaces with n = 1 puncture and no special points, and if G is
of type A1, exclude a sphere with 3 punctures. Then the group W™ acts by cluster transformations
of the space Xpgr,, s-

Let us recall the moduli space Ags. The group I's and the involution * act naturally on
the space Ags. In Section 4 we introduce an action of the Weyl group W™ by birational
automorphisms of the space Ags. The space Agy,, s has a natural cluster structure of different
kind, called a cluster Ks-structure, or cluster A-variety structure; the group I's acts by cluster
transformations of the space Agr,,, s under the same assumptions as for the space Xpqr,, s [FG1].

Theorem 1.7. The involution * and the Weyl group W™ act on the space Asi,, s by cluster
transformations under the same assumptions as in the parts 1) and 2) of Theorem 1.6.

Our main result determines the DT-transformation of the moduli space Xpgr,,, s when S is
an admissible decorated surface. Let us formulate the question in the next subsection.
1.4 Donaldson-Thomas transformations

Kontsevich and Soibelman [I[{S1], generalizing the original Donaldson-Thomas invariants [DT],
defined Donaldson-Thomas invariants of a 3d Calabi-Yau category C equipped with a stability
condition. An important class of 3d CY categories is provided by quivers with potentials. First
we briefly recall the definitions and results following [[<S1, [K{52].

A quiver q with a generic potential W gives rise to a 3d CY category C(q, W), defined as
the derived category of certain representations of the Ginzburg DG algebra [Gin] of the quiver
with potential (q,W). See [KX12, Sect.7], [N10] for details.

The category C(q, W) has a collection of spherical generators {S,}, parametrized by the
vertices of the quiver q, called a cluster collection. Their classes [S,] form a basis of the
Grothendieck group Ko(C(q, W)). See [[XS1, Sect.8.1].

For any 3d CY category C, the lattice Ky(C) has a skew-symmetric integral bilinear form:

3
([A], [B])Buter := — Z(—l)irk Ext'(A,B), [A],[B] e Ko(C).
i=0

The original quiver q is identified with the quiver assigned to the triple

(Ko(Cla, W) [80]), (5, uer )

There is an open domain Hq in the space of stability conditions on the category C(q, W),
described as follows. Let us consider a “punctured upper halfplane”
H={2eC|z=re¥, 0<p<m, r>0}

The domain Hq is identified with the product of H’s over the set of vertices of the quiver q:

Hyq = H’H = {z, € H}.

8



The central charge of a stability condition s € Hq is given by a group homomorphism
Z:Ko(C(q,W)) — C, [Sy] — 2.
Define the positive cone of the lattice Ky(C(q,W)) generated by the basis
A(Jlr = @UZZO[SU]'

A central charge Z is called generic if there are no two Q-independent elements of A:lr which are
mapped by Z to the same ray.

Quantum DT-series. Consider a unital algebra over the field Q((¢)) of Laurent power series
in ¢, given by the g-commutative formal power series in X,,, where v is in the positive cone:

o~

A= QUO[Xos veE AL | XXy = ¢ X, 00 ]].

Kontsevich-Soibelman [I[{51, Sect.8.3] assigned to the 3d CY category C(q,W) is a formal
power series, called the quantum DT-series of the category:

Eq = 1 + higher order terms € A\q. (10)

For a generic potential W, the series Eq depends on the quiver q only.

The following useful Lemma 1.8, due to [IXS, Th.6] see also [MMNS, Lemma 1.12], expresses
the series Eq as a product, possibly infinite, of the “g-powers” of the quantum dilogarithm power
series W, (X). Namely, given a formal Laurent series 2(¢) € Q((q)), let us set

v (X)OQ(‘] fexp< Z "+1Q ))Xn> (11)

n=1

If Q(q) is just an integer €2, then (11) is the usual power W, (X)%, as is clear from the formula
(8) relating the logarithm of the power series ¥,(X) to the g-dilogarithm power series.

Lemma 1.8. Given a stability condition s with a generic central charge Z, there exists a unique
collection of rational functions Q5(q) € Q(q), parametrized by the positive cone vectors 7y €
— {0} with Z(y) € H, such that the quantum DT series Eq are factorized as

Eq=[]%, ®:= H\p )5, (12)

IcH

Here the first product is over all rays | € ‘H in the clockwise order;
The second product is over positive lattice vectors v € AY — {0} such that Z(v) € L.

In particular, if €25 (q) are all integers, then Eq is a product of quantum dilogarithm series.

The rational functions Q5 (q) are called the quantum (or refined) DT-invariants assigned to
the stability condition s, and the element v [[K52, Def.6.4]. So all the quantum DT-invariants
are packaged into the single quantum DT-series Eq. They are uniquely determined by the Eg.

Evaluating at ¢ = —1, we obtain the numerical DT-invariant ny(—l). Roughly speaking, the
numerical DT-invariant is the weighted Euler characteristic of the moduli space of all semistable
objects for the stability condition s with a given class v in Ky (cf. [[XS1]).




The integrality conjecture [IKS1, Sect.7.6, Conj.6] asserts that the numerical DT-invariants
are integers for all generic s. Konstevich-Soibelman [I{52, Sect.6.1] proved that if Eq is quantum
admissible (in the sense of [loc.cit. Definition 6.3]), then Q5(¢) is a Laurent polynomial with
integral coefficients. The integrality conjecture follows directly then.

Conversely, if for a given generic s we have Q(q) € Z[q, g '] for all v € A:lr, then Eq is
quantum admissible. Therefore Qi(q) € Z[q,q '] for all generic s.

DT-transformations. Define the algebra of formal power series along the negative cone

~

Aq = QU)X ve A | XuX oy = ¢ X o]

The conjugation Adg, by the Eq is a formal power series transformation of A\q. Being composed
with the reflection map ¥ acting by

N(Xy) =X, Yve Ko(C(q,W)),

we get a formal power series transformation, called DT-transformation:

—~

DTq:= Adg, 0% : Aq — Ag.

Note that DTy is an invariant of the quiver q. It is an “infinite” cluster transformation.
The conjugation Adg, by the Eq is not necessarily rational. If it is rational, then the DT-
transformation of the quantum torus T4 is defined as

DTq:=Adg, 0¥ : Tq — Tq, (13)

where Tq := Frac(Tgq) is the non-commutative field of fractions of Tq.

DT-invariants from DT-transformations. Consider the symplectic double (Ap, (x,#)p) of
the original lattice A with the form (x, ), given by

Ap = A@Hom(A, Z),  ((v1,f1), (v2, f2))p := (v1,v2) — (f1,v2) — (f2,01).

Since A < Ap, one can defined the DT-transformation DTp  of the quantum torus algebra
related to the pair (Ap,(x,#)p) by the same formula (13):

DT'p’q = Aqu o E'p, E'p Xy — Xy Yve Ap. (14)

Remarkably, the DT-series Eq and therefore all DT-invariants €25 are recovered from the D'T-
transformation (14). They are recovered from the DT-transformation (13) if the form (x,#) is
non-degenerate.

Remark. Quantum cluster transformations were defined in [F'G2] by the conjugation by the
quantum dilogarithm power series W,(X). The crucial fact that they are rational transforma-
tions follows from difference relation (6), characterizing the power series W (X).

On the other hand, the quantum dilogarithm W,(X) appeared in [IX5] story due to formula
(8), as well as thanks to its power series expansion (7): the coefficient in z™ in (7) reflects
counting the number of points of the stack X®"/Aut(X®") over F 2 for a simple object X.

10



The quantum dilogarithm power series (5) are convergent if |¢| < 1, but hopelessly divergent
if [¢| = 1. The most remarkable feature of the quantum dilogarithm is that its “modular double”
U,y(e”)

Pp(z) = @, (/)

q = exp(imh), q" = exp(in/h) (15)

has wonderful analytic properties at all g, e.g. |¢| = 1. It has a beautiful integral presentation

Pp(z) = eXp<_i fg sh(ﬂlf;jiihp)p)‘

The quantum dilogarithm function ®5(x) is crucial in the quantization of cluster Poisson vari-
eties, given by a #-representation in a Hilbert space of the ¢g-deformed algebra of functions [F(G2,
version 1], [FG4]. Yet so far the function ®;(z) has no role in the DT theory.

Mutations of quivers with potentials. Mutations of quivers with potentials were studied
by Derksen-Weyman-Zelevinsky [D'WZ]. The mutation py at the direction k gives rise to a pair
(d',W') = px(q, W). The domains H for the quivers with potentials obtained by mutations of
the original quiver q form a connected open domain in the space of all stability conditions on the
category C(q,W). Moving in this domain, and thus mutating a quiver, we get a different DT-
transformation of the same quantum torus. The Kontsevich-Soibelman wall crossing formula
tells how quantum DT-series changes under quiver mutations, see [[<S1, Sect.8.4, Property 3].
Indeed, let q = (A, {e;}, (*,*)). The mutated quiver p(q) is isomorphic to

’. / r —€L ifi=k
a = (A, feil, (% %), where ¢ = { ei + [(ei,er)]+ex  otherwise.

Note that it only changes the basis. The lattice and the form stay intact. Therefore one can
identify the quantum tori
Ty =Ty =Tq. (16)

Consider the intersection
Agn Ay = QU)X ve Ay A AL | XoXu = 4P X o],
Theorem 1.9 ([KS1, p.138]). Under the identification (16), we have
U, (X)) 'Eq=Eq¥, (X, )" eAgnAl (17)

3
Compatibility with cluster mutations. The quantum cluster mutation
D () = Ad\I'q(Xek) oi: Ty —Tgq (18)

is the composition of the isomorphism i : Ty — T4 under (16) and the conjugation Adyg Xep )"
The following result is a direct consequence of Theorem 1.9. See also [KS1, p.143].

Theorem 1.10. If Adg, is rational, then the following diagram is commutative:

(k)

=Ty

Tqy

DT l lDTq
(k)

Ty —Tq

11



Proof. By Theorem 1.9, we have Ad\pq(Xek)q oAdg, 0@ =10 Aqu, o Ady, (x -1 Therefore
Ck
Aqu 010 Ad‘I’q(Xe;) = Ad‘I’q(Xek) 010 Aqu,. (19)

Note that (X, ) = X_,. Therefore

/
k

10 Ad\I"I(Xe;c) oY = Ad‘I’q(Xfek) ojoX=Xo Ad‘I’q(Xek) 0 1. (20)

Therefore

)

(I)(Nk) o DTq/ = Ad‘I’q(Xek) X Xe! Aqu, o (g Aqu ogo0 Ad‘I'q(Xe;c) o

(2:0) Aqu oYX o Ad\I'q(Xek) ot = DTqo D (g, (21)

O

There is a similar interpretation of the DT-transformations DTp 4, see (14), via the quantum
cluster variety Apyin , discussed in the end of Section 2.

Theorem 1.10 implies that the multitude of DT-transformations assigned to quivers obtained
by mutations of an initial quiver q are nothing but a single formal, i.e. given by formal power
series, automorphism DT of the quantum cluster variety, written in different cluster coordinate
systems assigned to these quivers.

So a natural question arises:

How to determine the DT-transformation of a given (quantum) cluster variety? (22)

1.5 DT-transformations for moduli spaces of local systems

Cluster DT-transformation. Keller [I[<11, K12 K{13] using the work of Nagao [N10], pro-
posed a simpler and more accessible, but much more restrictive combinatorial version of DT-
transformation. It is a cluster transformation, which may not be defined, but when it does, it
coincides with the Kontsevich-Soibelman DT-transformation [[X12, Th 6.5]. We call it cluster
DT-transformation. It acts on any type of cluster variety, e.g. on the quantum cluster variety.
We postpone a definition of cluster DT-transformations till Section 1.6.

If DTq is a cluster DT-transformation, then Theorem 1.10 follows directly from Theorem
3.6 of the present paper. Furthermore, its quantum DT-series Eq can be presented as a finite
product of quantum dilogarithm power series. As a Corollary of [[{52, Prop 6.2], we have

Proposition 1.11. If DTy is a cluster DT-transformation, then Eq is quantum admissible.
Therefore for arbitary generic stability condition s, the quantum D T-invariants Q5 (q) € Z|[q, g ']

Conjecturally, fo(q) has non-negative coefficients in this case.

Even if a DT-transformation of a cluster variety is rational, it may not be a cluster trans-
formation. In Section 1.6, elaborated in Section 3.4, we give a conjectural elementary charac-
terization of rational DT-transformations of cluster varieties. It does not refer to Kontsevich-
Soibelman theory.

12



Main result. Moduli spaces X s are important examples of cluster Poisson varieties. So there
is a DT-transformation acting as a single (formal, or if we are lucky, rational) transformation of
a moduli space Xg s, encapsulating the Donaldson-Thomas invariants of the corresponding 3d
CY categories. This leads to the following questions:

What are the DT-transformations of the moduli spaces X s? Are they rational? (23)

We use Theorem 1.6 and Keller’s characterization of cluster DT-transformations to determine
the DT-transformation DTq s of the space g s for G = PGLy,.

Theorem 1.12. Let G = PGL,,. If S is admissible in the sense of Definition 1.1, then the
DT-transformation DTqs is a cluster transformation. It is given by the following formula:

DTQS = Cg,g. (24)
The cluster transformation (24) is a cluster DT-transformation in the sense of Definition 1.15.

Conjecture 1.13. Formula (24) is valid for any pair (G,S).

Example. The W-action is not cluster if S has a single puncture, no holes, and G = PGLs.
The cluster DT transformation in this case is not defined. Yet when G = PGLgy and S is a
punctured torus the formula DTq g = Cgs = wg was proved by Kontsevich.

For surfaces with n > 2 punctures a proof for G = PGLy follows from the results of Bucher
and Mills [Bu], [BuM] who found green sequences of cluster transformations in these cases.

For G = PGLy we give two transparent geometric proofs of formula (24):

i) The first proof, presented in Section 5.1, is based on the interpretation of integral trop-
ical points of the moduli space Xg s as integral laminations [F(G1, Section 12]. It requires a
calculation of the tropicalization of the wp-action at the puncture given in [FG1, Lemma 12.3].

ii) The second proof, presented in Section 5.2, does not require any calculations at all. It
uses an interpretation of integral tropical points as explicitly constructed divisors at infinity of
the moduli space Xg s [F'G3]. We worked out the details when S has no punctures.

None of them require a decomposition of the map Cpar,,s into a composition of mutations.
However we do not know how to generalise these proofs to the higher rank groups. To find such
generalizations is a very important problem.

For G = PGL,,, we give another, high precision proof, based on an explicit decomposition
of the cluster transformation Cg s into a composition of mutations. This decomposition looks
pretty complicated, but it reveals a lot of valuable information about the DT-invariants €25,

1.6 DT-transformations of cluster varieties and Duality Conjectures

The definition of DT-transformations is complicated. It uses generic potentials, but in the end
the DT-transformation does not depend on it. So one wants an intrinsic definition of DT-
transformations of cluster varieties, given just in terms of cluster varieties.

We state a conjecture relating DT-transformations of cluster varieties to Duality Conjectures.
It implies an alternative conjectural definition of the DT-transformations of cluster varieties,
which characterizes them uniquely, and makes transparent their crucial properties.

13



Duality Conjectures [FG2]. Recall that a quiver gives rise to a dual pair (A, X') of cluster
varieties of the same dimension, as well as a Langlands dual pair of cluster varieties (AY,X'V).
The cluster modular group I' acts by their automorphisms.

The following objects, equipped with a I'-action, are assigned to any cluster variety ):

e The algebra O()) (respectively O())) of regular (respectively formal) functions on V.
o A set Y(Z!) of the integral tropical points of ).

The set Y(Z!) is isomorphic, in many different ways, to Z", where n = dim).

As was shown in [GHEK], the algebra O(X) could have smaller dimension then X

Duality Conjectures [F'(G2, Section 4] predict a deep multifacet duality between cluster vari-
eties A and X'V. In particular, one should have canonical I'-equivariant pairings

I: AZ) x XY — A, Ty Ax XV(ZY — AL (25)
This means that each [ € A(Z!), and each m € X'V (Z'), give rise to functions
I4(0) :=Ta(l,%) on XY, and Iy(m):=1Ix(m,*) on A.
In particular, in the formal setting we should have a pair of canonical I'-equivariant maps
Iy: A(ZH — O(XY), Ty : X(Z) — O(AY). (26)
Each map should parametrise a linear basis in its image on the space of function on the target.
The involutions i4 and iy [FG4, Lemma 3.5]. Denote by (A°, X°) the dual pair of cluster

varieties assigned to the opposite quiver, obtained by changing the sign of the form. Then there
are isomorphisms of cluster varieties

in: A— A% iy X — X° (27)

which in any cluster coordinate systems {4;} on A and {X;} on X act as follows:
AT Ay, i XD X (28)
DT-transformations and Duality Conjectures. Our point is that the duality A «— X'V is
not compatible with the isomorphisms i4 and iyv! Furthermore, Conjecture 1.14 suggests that

the DT-transformations DTy and DT 4 of the cluster varieties X and A respectively measure
the failure of the isomorphisms i 4 and iy to be compatible with the duality. Namely, set

Dy:=igqoDTy, Dy:=iyxyoDTy. (29)

We show that these maps are involutions: D 4o o D 4 = Id 4, Dyo o Dy = Idy. Then the duality
should intertwine D 4 with iyv, and i4 with Dyv. So we should have diagrams

A<—s XV A<—s XV
P
AOﬁX\/O AOﬁX\/O

They should give rise to commutative diagrams when one of the columns is tropicalised, and
the other is replaced by the induced map of algebras of functions. The horizontal arrows become
the canonical maps. Here is a precise statement.

14



Conjecture 1.14. 3 Let (A, X) be a dual pair of cluster varieties. Then:
i) There are commutative diagrams

X(Z) —~ O(AY) A(ZH) 2 O(x)
thl levo z‘tAl ng;vo
Xo(zt)&@@‘lvo) Ao(zt) E)(’Q\(XVO)

i1) Assume that the DT-transformations DT 4 and DT x are positive rational. Then:

e The canonical pairings are DT -equivariant:

I4(DTY(a),DTxv (2)) = 14(a,x), Ixv(DT4(x),DT%.(2)) = Iy (a,2). (30)

e There are commutative diagrams

X(Z') —*~ O(AY) A(Z) —2= O(x)
Dtxl J{ijvo Di‘l lz’j‘(vo
x°(2) = O(AV°) A (ZH) =25 (X v°)

Let us recall the most basic feature of Duality Conjectures. A quiver determines a cluster co-
ordinate system {A;} on A", and a cluster coordinate system on X'. Duality Conjectures predict
that a tropical point [T € X(Z!) with non-negative coordinates (w1, ...,7,) in the tropicalised
cluster coordinate system on X' gives rise to a cluster monomial A" ... AT» on AY:

Ly(IY) = AT L AT 0 = (21, ey ).

Let I~ € X(Z") be the tropical point with the coordinates (—x1,. .., —z;,) in the same coordinate
system. Then (28) imlies that the tropicalised transformation DT%, has the following property:

DT, (1) =1". (31)

In particular, let [ € X(Z') be the tropical point with the coordinates (0, ...,1,...,0): all the
coordinates but the i-th one are zero. Specializing (31) to these tropical points we get

DT4 (L) =1; . (32)

It follows easily from Duality Conjectures that if there is a cluster transformation K such that
K'(1}) = I} (33)
then it is unique (Proposition 3.3).

Definition 1.15. A cluster transformation K such that (33) holds in a single cluster coordinate
system is called a cluster DT-transformation.

3Conjecture 1.14 is just one incarnation of the ”commutative diagrams” above. Another incarnation is the one
where the horizontal arrows mean the mirror symmetry.
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Let K4 and Ky be the cluster transformations of the A and X spaces provided by such a
cluster transformation K. If DT-transformations are rational, Conjecture 1.14 implies that

DT4=K,4, DTy =Kx. (34)

Indeed, thanks to (32) - (33), the DT 4 and K 4 must act the same way on the cluster variables
A;, and hence on the cluster algebra. Therefore they coincide. Using Dulaity Conjectures again,
this implies the second claim. See the proof of Proposition 3.3 for details.

Keller proved unconditionally [I[<11], [K12, Th 6.5, Sect 7.11], although in a different formu-
lation which used crucially the cluster nature of K, see Theorem 3.4, even a stronger claim:

a cluster DT-transformation is a Kontsevich-Soibelman DT-transformation.

Unlike Keller’s definition, Condition (33) makes sense for any positive rational transformation
K of X. Conjecture 1.14 implies that K must coincide with the Kontsevich-Soibelman DT-
transformation. Condition (33) is an efficient way to find a cluster DT-transformation of a cluster
variety, which we use. Yet, placed out of the context of Conjecture 1.14, it looks enigmatic.

DT-transformations and Duality Conjectures revisited. The following conjecture links
rationality of DT-transformations to the existence of regular canonical bases on cluster varieties.

Conjecture 1.16. The map DTy is rational if and only if the formal canonical basis in @(X)
lies in O(X). The same is true for the A-space.

Theorem 1.17. Suppose that the map DT x is a cluster DT-transformation. Then

i) There is a canonical T'-equivariant basis in the space O(X), parametrized by the set of the
integral tropical points of A (Z') of the Langlands dual cluster A-variety.

i1) There is a canonical I'-equivariant basis in the upper cluster algebra with principal coef-

ficients O(Aprin)-

Proof. This follows immediately from [GHICI, Theorem 0.10, Proposition 8.25] and the following
observation. Given a quiver q, consider two cones:

Abcx(zZh), AfcXx(Z.

The cone A:{ (respectively Ay ) consists of all integral tropical points of X which have non-
negative (respectively non-positive) coordinates in the cluster coordinate system provided by
the quiver q. Following [F(G3], take the union A™ of all cones A:{ , as well as the union A~ of
all cones A, when q runs through all quivers obtained from a given one by mutations:

AT c x(Zh, AT cX(Zh.

Equivalently, the AT (respectively A™) consists of all points of X'(Z!) which have non-negative
(respectively non-positive) coordinates in one of the cluster coordinate systems. Since the map
DTy is a cluster DT-transformation, we have

{5, U, e AT

Indeed, I € Al by the definition, and I;7 = DT% () by (32) and Definition 1.15. Therefore,
since DTy is cluster, [; € AT. Evidently the convex hull of the points {l;° ,l;} in the linear

structure of X (Z') given by the cluster coordinate system assigned to the quiver q coincides with
the X'(Z!). This is exactly the condition in [GHIKIK, Theorem 0.10, Proposition 8.25] needed to
get a canonical basis in O(X) as well as in O(Apyin). O
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We notice that a cluster transformation K is a cluster DT-transformation if and only if
K(AY) = Ag.
Conjecture 1.16 tells that if DT-transformations are rational, we should have canonical maps
Ig: A(ZH — OXY), Tx:X(Z") — O(AY). (35)

The functions {I4(1)} in O(X") should be linearly independent, and form a canonical linear
basis in the linear span of the image. Similarly for the functions {Ix(m)} in O(AY).

So the next question is what are the images. The equivariance under the DT-transformations
in Conjecture 1.14 implies that any function F' in the linear span of the image of each of the two
maps (35) must remain regular under arbitrary powers of the corresponding DT-transformations.
Conjecture 1.18 claims that this is the only extra condition on the image.

Conjecture 1.18. Assume that the DT-transformations of cluster varieties (A, X) are rational.
Then the linear span of the images of canonical maps (35) consist of all reqular functions which
remain reqular under the arbitrary powers of the corresponding DT-transformations.

Let S be a decorated surface with a single puncture and no boundary. Then the condition
in Conjecture 1.18 is essential for the dual pair (Ags, XL g), see the end of Section 3.4.

1.7 Ideal bipartite graphs on surfaces and 3d CY categories [G]

To define the DT-invariants Kontsevich-Soibelman start with a 3d CY category. However for
a generic cluster variety there is no natural 3d CY category assigned to it. Indeed, one uses a
quiver with generic potential (q, W) as an input, and the 3d CY category does depend on W.

It turns out that for the moduli space Xg s the situation is much better. Among the quivers
describing its cluster structure there is a particularly nice subclass provided by rank m ideal
bipartite graphs, introduced in [G]. A bipartite graph is a graph with vertices of two kinds, so
that each edge connects vertices of different kinds. Let us recall crucial examples.

Let T be an ideal triangulation of S, i.e. a triangulation of S with the vertices at the marked
points. Given a triangle of T, we subdivide it into m? small triangles by drawing three families
of m equidistant lines, parallel to the sides of the triangle, as shown on the left of Figure 4.

For every triangle of T there are two kinds of small triangles: the “up” and “down” triangles.
We put a e-vertex into the center of each of the “down” triangles. Let us color in red all “up”
triangles. Consider the obtained red domains — some of them are unions of red triangles, and
put a o-vertex into the center of each of them. A o-vertex and a e-vertex are neighbors if the
corresponding domains share an edge. Connecting the neighbors, we get a bipartite surface
graph T's, (T), see Figure 4.

The dual graph to a bipartite surface graph I' is a quiver qr. Its vertices are the faces of I,
and its edges are oriented so that the e-vertex is on the left, see Figure 5. The quiver qr was
introduced in [FG1], where it was shown that it gives rise to a cluster coordinate system on the
moduli space Xgs. We review these coordinate systems in Section 4.

The quiver qr is equipped with a canonical potential. Namely, for each vertex of the graph
I" there is a unique cycle on the quiver q going around the vertex. We sum all these cycles, with
the + sign for the o-vertices, and — sign for the e vetrices:

Wyr = Z Cycles in qr around o-vertices— Z Cycles in qr around e-vertices.
o-vertices of I' e-vertices of I’
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Figure 5: G = PGLy4. A bipartite graph associated with a quadrilateral, and the related quiver.

It was proved in [G] that any two bipartite graphs assigned to ideal triangulations of S
are related by special moves of bipartite graphs, called two by two moves, see Figure 6. The

% >»<6»<
/N

Figure 6: A two by two move. Flipping the colors of vertices delivers another two by two move.

corresponding moves of the associated quivers are the mutations. The two by two moves keep
us in the class of bipartite graphs on S, introduced in loc. cit. and called ideal bipartite graphs.
In particular, this class is I's-invariant. The crucial fact is that a two by two move I' — I”
transforms the potential Wq,. to one W, .

Therefore we arrive at a 3d CY category C,, s with an array of cluster collections of generating
objects. For G = PGLy it was studied by Labardini-Fragoso in [LI'08]. So we conclude that

There is a combinatorially defined 3d CY category C,, s “categorifying” moduli spaces Xgs.

A conjectural realization of the 3d CY category C, s as a Fukaya category [G].
Let Qp(X) be the sheaf of meromorphic differentials on a Riemann surface ¥ with the set of
punctures P, with poles of order < 1 at P. A point t of the Hitchin’s base of (X, P) is given by
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a data
t = (%, Pty ts,...ty), tr e Qp(X)®F,

The universal Hitchin base is the family of Hitchin bases over the moduli space M, .
The spectral curve assigned to t is a curve in T*X. given by the following equation:

Yo = AET*S | A + 0™ 2 + .+ by A+ by, = 0} € THX. (36)
The projection T*Y. — 3 provides the spectral cover 7y : Xy — 3. It is an m : 1 ramified cover.

The pair (m,S) gives rise to a family of open CY threefolds ), s over the universal Hitchin
base [DDP], [[XS3]. For example, in the A case it is given by

{((t,xeX, ar,a0,a3) | 2 +ad+a2=t}, teQp(X)®% oz)eTHE).

The intermediate Jacobians of the fibers Vi provide Hitchin’s integrable system.
The category C,, s should be equivalent to a Fukaya category of the open CY threefold given
by the generic fiber )y of the family YV, s:

Conjecture 1.19 ([G]). For a generic point t of the Hitching base, there is a fully faithful
functor
¢ : Cps — F(D).

It transforms cluster collections in Cp, s to the ones provided by special Lagrangian spheres.

For m = 2 this is known thanks to the works of Bridgeland and Smith [BrS], [S].
Therefore formula (24), conjecturally, describes the DT-invariants of this Fukaya category.

1.8 Physics perspective

Unification diagram. Assume that the group G is simply laced. In a series of works [GMN1]-
[GMN5], Gaiotto, Moore and Neitzke studied 4d N' = 2 SUYM theories of class S related to
a Riemann surface with punctures ¥. The S alludes to “six dimensional”’: the theories are
“defined” as compactifications of the hypothetical (2,0) theories X, related to ADE Dynkin
diagrams, on the Riemann surface 3, with defects at the punctures.

The origins of the 4d theory can be perceived as follows. Let I'q be a finite subgroup of
SU(2) corresponding to G by the McKay correspondence. The theory Xg itself is “defined” as
a compactification of the ten dimensional type IIB superstring theory on the Klein singularity
C?/T'q. One should have a “commutative diagram”:

10d type IIB superstring theory

C*Tq|

[YG,E,t] 6d theory Xg

=]

4d N =2 SUYM class S theory Tg s
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The vertical arrow is the compactification of the 10d type IIB superstring theory on the six-
dimensional Riemannian manifold given by the complex open CY threefold Y x ¢. The point t
belongs to the Hitchin base. The latter is the Coulomb branch of the space of vacua of the 4d
theory 7g x.

Gaiotto-Moore-Neitzke count of BPS states. The Hilbert space H of the 4d N =
SUYM class S theory is a huge representation of the A/ = 2 Poincare super Lie algebra P =
Po@P;. Its even part Py is the Poincare Lie algebra of the flat Minkowski space R®! plus a one
dimensional center with the generator Z. The odd part is 8-dimensional. As a representation
of the Lorenz group, it is a sum of two copies of the spinor representation S, @ S_.

The Hilbert space H is the symmetric algebra of a 1-particle Hilbert space ;. The n-th
symmetric power of H; is the “n-particle part”. The H; should have a discrete spectrum, i.e.
be a sum rather then integral of unitary representations of the Poincare super Lie algebra P.

The Hilbert space H has the following structures, inherited on the subspace H;:

1. It depends on a point t of the Hitchin base. The Hitchin base is the Coulomb branch of
the moduli space of vacua in the theory.

2. It is graded by a charge lattice I'. In particular, there is a decomposition

Hl = (-D«{GFIHL«{.

The lattice T" is equipped with an integral valued skew symmetric bilinear form (x, ).

Irreducible unitary representations of the super Lie algebra P are parametrized by three
parameters: the mass M € [0, ), the spin j € {0, 3 31, 2, ..}, and the central charge Z € C.

The pairs (M, j) parametrize “positive” unitary representations of the Lorenz group.

The crucial fact is the inequality M > |Z|. We are interested in the BPS part HPFS of
the space, defined by the M = |Z| condition. Let n; be the multiplicity of the irreducible
representations of spin j in HBPS. The integers QCMN(5), “counting the BPS states” of the
central charge 7, are not the integers n; but rather the “ second helicity supertrace”:

QPMN(Y) = 2 (=D)H (2] + )y
J
Let us now discuss the Gaiotto-Moore-Neitzke approach to calculate these numbers. A point

t of the Hitchin base determines a spectral curve ¥y < T*X, and a spectral cover 7 : Xy — 2.
It determines a lattice I'y. When X is compact it is given by

- Ker(Hl(Et,Z) e, Hl(Z‘,,Z)). (37)

Then « € T'y. Integrating the canonical 1-form a on T*¥ over the homology classes from (37)
we get a linear map, called the central charge map:

Zt:I‘t—>(C, ’7'—>j01
Y

Gaiotto, Moore and Neitzke introduced a spectral network related to a generic t. They use it
to develop an algorithm to calculate the numbers Q¢ (7). The algorithm has some mathematical
issues for higher rank groups. Let us assume that they are resolved.

1One of them is a possibility of having an infinite number of “two side roads” in a spectral network, making
the algorithm problematic.
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The Gaiotto-Moore-Neitzke spectral generator is a transformtion of the Hitchin moduli space.
It tells the cumulative result of the wall crossings which one encounters rotating a Higgs field ®
projecting to a point t by ¢?®, with 0 < 6 < co. It turned out® that our map CpaLy,,s acting
on the moduli space Xpqr,, s coincides with the result of calculation of the spectral generator.
So formula (24) implies that

The DT-transformation DT, s = The Gaiotto-Moore-Neitzke spectral generator.  (38)

Let us assume that a point t of the universal Hitchin base determines a quiver q, and that
the lattice Aq of this quiver is identified with the lattice I'y. This is known for G = SLg [GMN2].
Examples were worked out in [GMN5] for G = SL,,,m < 9. They produce quivers of the type
discussed above. Then the central charge map Z; translates into a central charge map

Zq:ANg — C.

Let {e;} be the basis of A provided by the quiver q. Assuming that Z(e;) € H, we arrive at
a stability condition s determined by t.

So if all mentioned above assumptions were satisfied, the formula (38) would imply that

KS numerical DT-invariants Q55(y) = GMN invariants QFMN (). (39)

Let us stress that the origins and definitions of the two sides of (39) are entirely different.
The numbers Q55(7) came from 3d CY categories related to quivers q.

The numbers QE’MN () came from a quantum field theory, and calculated using the geometry
of a Riemann surface X.

Gaiotto-Moore-Neitzke algorithm for counting the numbers Q¢(y) can be interpreted as a
count of certain type of branes in 10d type IIB superstring theory on

Ve x R3L (40)

These are the D3-branes supported on L x [ where L < ) is a special Lagrangian sphere, and
I < R®! is the world line of a BPS particle. The mass M of the particle is the Riemannian
volume of L. Its central charge Z is the integral Z(L) = §, Q over L of the holomorphic 3-form
Q on Y. So the BPS condition M = Z just means that we count special Lagrangian spheres.

Conjecture 1.19 connects the two approaches. Namely, among the “combinatorial” 3d CY
categories assigned to a quiver q there is a distinguished one, C,, s, provided by the canonical
potentials on ideal bipartite graphs on S. Conjecture 1.19 predicts that the category C,, s has
a geometric realisation as a Fukaya category of an open CY threefold ). And this is threefold
needed to get the 4d N/ =2 SUYM theory from the IIB superstring theory in (40).

So now the combinatorial 3d CY categories and the 4d theories are linked directly to each
other. The common structure visible in both is the cluster structure.

It is interesting to note that formula (24) involves both the 3d CY category used to define
the DT-transformation and the moduli space Xg s on which the element Cq s acts naturally.

5We thank Davide Gaiotto who pointed this to us at the 6d conference at Banff, and to Andy Neitzke for
providing some details.
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Notice that although the moduli space X g is closely related to the moduli space of G-local
systems on S, the element Cg s does not act on the latter.

In general there is no canonical moduli space linked to the DT-transformation. We have
only a cluster variety: it describes a lot of features of the space, yet it is different.

1.9 Other ramifications and applications

Duality conjectures for moduli spaces of G-local systems and Weyl group actions.
We assume for simplicity that S has no boundaries, only punctures.® Duality Conjectures suggest
a mirror duality between the Langlands dual moduli spaces Ags and XL g [FG1, Section 12],
[GS]. In particular, each integral tropical point [ of one space corresponds to a regular function
I(7) on the other space. The functions I(/) should be linearly independent. We observe that if S
has punctures, then {I(l)} can not span the space of regular functions on the space Aggs.

Indeed, each puncture p on S gives rise to a regular I's-invariant function W, on Aggs, the
potential [GS], see also Section 6. However, one can argue that the only I's-invariant finite
subset in the set XgLS(Zt) is the zero point. This is obvious if G is of type A; due to the
interpretation of the integral tropical points as laminations on S: the I's-orbit of any non-empty
integral lamination is infinite. The zero point 0 € XGL7S<Zt) maps under the duality to the
constant function on Ags. So the W, can not be a finite linear compbination of the functions
I(1), where [ € Xgz g(Z").

We conjecture that the space the functions I(7) span consists of all regular functions remaining
regular under the W"-action. The latter condition is forced by the following conjecture.

Conjecture 1.20. There is a I's x W"-equivariant duality between the spaces Ags and XGLS.

If the W™-action is not cluster, the W"-transformations play a role of cluster transformations.

Periodicity of DT-transformations. The periodicity of DT-transformations is closely re-
lated to the periodicity conjecture of Zamolodchikov [Z]. Keller solved the cases of square
products of Dynkin quivers [I[{]. As a consequence of Theorem 1.12, we immediately have

Theorem 1.21. If S has only punctures, then (DTgs)? = Id.
If S is a disk/punctured disc with k special points on its boundary, then (DTQS)IC““@’M = 1d.

Compatibility of the Cgs-transformations with covers. The transformation Cgs has
many nice geometric properties.

Let 7 : S —> S be a finite cover of decorated surfaces. By pull back, it induces a natural
positive embedding 7* : Xg s — XGS‘ The following diagram is commutative:

CG,§

Cas
Xas —AXas

SWhen S has boundaries / special points, the correct analog of the X-moduli space is the moduli space Pgr ¢
from [G:S], which we do not discuss here. In particular, dimAqs = dimPgr g. However dimAgs > dimXqz g if
S has holes. In the other direction, each boundary interval I on a boundary component of S gives rise a natural
map a1 from Ags to the Cartan subgroup H. Let Ag g be the subspace of Ag s consisting of points a such that
ar(a) = Id for all boundary intervals I. Then we have dimAg g = dimXqz g.

22



It would be interesting to establish a categorical interpretation of this diagram in the DT-theory.

Compatibility of the maps Cgs with the cluster ensemble structure. The transfor-
mation Cpqr,, s is birational. We define a similar map Csr,,, s on the space Agy,, s using quite
different construction. Remarkably, the two maps can be presented by the same sequence of
cluster (per)-mutations. So viewing the pair (Asr,, s, XpaL,..s) as a cluster ensemble, we have
the following commutative diagram:

CsLim,s
ASL s — ASLi s

CpGL, 8

XpPGLm,s — APGLw.S

Therefore the birational map Cpar,,, s is regular on the image of Agy,, s.

Configurations of points in CP™: the DT-transformation = the parity conjugation.
Denote by Conf, (CP™) the moduli space of configurations, that is PGLy,1-orbits, of points
(215 ...y 2m) in CP™. Tt has a cluster Poisson variety structure invariant under the cyclic shift
C: (21,0 2m) — (22, s, 2m, 21). Let hy := (Zk—m, ..., 2k—1) be a hyperplane in CP™ spanned
by the points zi_,, ..., zk_1, where the indices are modulo n. Then there is a birational map

P : Conf, (CP™) — Conf,(CP™),  (z1,...,2n) — (A1, ..., hy).
It was argued in [GGSVV] that P is a cluster transformation. Just recently D. Weng [We| proved
Theorem 1.22. The map P is the cluster DT-transformation for the cluster variety Conf,, (CP™).

When m = 3, the map C?P is the parity conjugation, which plays an essential role in the
theory scattering amplitudes in the N' = 4 super Yang-Mills. Namely, let P be the composition
of P with the complex conjugation. Scattering amplitudes are functions / forms on Conf,, (CP™)
which are invariant under the subgroup generated by the cyclic shift and the map P.

Double Bruhat cells: the DT-transformation =~ the twist map. Let G be a split semi
simple group. Let us fix a pinning (B, B~, z;, y;; ) of G, where B is a Borel subgroup of G, B~
is an opposite Borel subgroup, so that H := B~ n B is a Cartan subgroup, and the pair z;, y;
give rise to a homomorphism ~; : SLe — G for each i € I such that

i <(1) (11> =zi(a), v <61L ?) =yi(a), v (g a01> =aj(a).

Each pair of Weyl group elements u,v € W gives rise to a double Bruhat cell
G“":=BuB n B vB".

There are several maps involving the double Bruhat cells.
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e The involution i of the G:
i1:G— G, h— b7t zi(a) — yi(a), wila) — z4(a).
The involution ¢ exchanged B and B~. Therefore it induces an involution

i GUY—s GU, (41)

e The transposition G — G, g — ¢, defined as an anti-automorphism of G such that
W' =h,  zi(@)" =yi(a), wi(a)" =z(a).
It induces a similar involution

Gur G g g (42)

e For each w € W, we define two representatives w,w € G. If s; is a simple refection, then

— 0 -1 0 1
8i=%<1 0>, =%’<_1 O)'

The {5;} and {5;} satisfy braid relations. So given a reduced decomposition w = s;, ... s, ,

el

W=75;..-5ip, W=254...5.
Let U := [B,B], and U™ := [B~,B7]. Using the Gaussian decomposition Gy = UHU™,
any g € Gg can be written as g = [g]+[g]o[g]-. Consider the twist map

u,v u,v 1 71—1:1 11—1 T
n: G — G"Y, n(g) = ([v* gl v tgutgu=t]” ) : (43)

The map 7 is a slight modification of the Fomin-Zelevinsky twist map [FZ98, Section 1.5],
which plays crucial role in the factorization formulas [FZ98]. It is well-defined for all g € G*".

If G is simply connected, then the algebra O(G"") has a cluster algebra structure [BFZ].
The generalized minors are cluster variables. So G"" is a cluster A-variety.

If G has trivial center, then G has a cluster X-variety structure [F'G5]. Taking quotients
by the action of the Cartan group H on both sides, we get another X-variety

Xy := H\G™"/H. (44)

Alternatively, it is obtained by deleting all the frozen variables of the original X-variety G*.
It is easy to check that

n(hy - g-h2) =u(h2) -n(g) -vil(hl) Vhi,he e H, VYge G“".

Thus the twist map can be reduced to an isomorphism of &, ,. We still denote it by 7.
It is easy to see that the map 7 on the space &, , coincides with our involution 7.

Conjecture 1.23. The twist map 1 is the DT-transformation of X, ,,.
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Quantized DT-transformations and I'-invariant bilinear forms. Quantizing a cluster
Poisson variety X, we get a Hilbert space Hy with a scalar product (x,%)y. Each cluster
transformation C of X is quantized into a unitary operator C in Hxy. In particular we get a
unitary projective representation of the cluster modular group T in the Hilbert space Hx [FG4].

Suppose that the DT-transformation DT y of X is cluster. Recall the map Dy =iy o DTy,
see (29). It is involutive: Dyo o Dy = Idy. So we get a I'-invariant “symmetric” bilinear form

x:Hy x Hyo — C,  Bar(v,w) := (Dyu, whxe,

- (45)
BX(’U’w) =H- BX(w’U)’ |:u| =1L

Applying this to the moduli space Xg s, G = PGL,,, we get a Hilbert space Hgs [FG1, FGA].
It is conjecturally the space of conformal blocks for the higher Liouville theory related to G. Let
S° be the surface S with the opposite orientation. Then pairing (45) is a I's-invariant form

BGS:HGSXHGSO—)C. (46)

When S has punctures only, the cluster transformation Cg s is already involutive: C2 Gs = 1d.
So we get a new I's-invariant Hermitian symmetric form in the Hilbert space (Hg s, (¥, *>G s):

B'GS :Has x Has — C, B'GS(u,fu) = <CG,§ U, V)G.S- (47)

There might be a potential similarity between this form and the Drinfeld-Wang invariant bilinear
form [DW] in a space of automorphic forms on G(Ar)/G(F) where G = SLg, F' is a global field.
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2 Quantum cluster varieties

In Section 2, borrowed mostly from [F(G2], we present a careful definition of quantum cluster
transformations and quantum cluster varieties. Quantum cluster varieties have a quasiclassical
limit, called cluster Poisson variety, introduced in loc. cit. under the name cluster X-variety.

A cluster Poisson variety is obtained by gluing a collection of split algebraic tori, each
equipped with a Poisson structure, by birational transformations called cluster Poisson trans-
formations. It is not quite a variety: it is rather a prescheme, possibly non-separated. Yet it
has a lot of important geometric features, not available for general varieties: a well defined set
of points with values in any semifield, canonical cluster variety divisors at infinity, etc.

The algebra of regular functions on each of the cluster Poisson tori has a canonical ¢-
deformation, to a quantum torus algebra. Cluster Poisson transformations are quasiclassical
limits of certain isomorphisms of the non-commutative fields of fractions of quantum torus alge-
bras, called quantum cluster transformations. Quantum cluster transformations are the primary
objects of study. They are given by isomorphisms of quantum torus algebras, followed by the
birational transformations provided by the composition of conjugations by the quantum dilog-
arithm of certain cluster coordinates. Quantum cluster variety is just a collection of these
non-commutative fields related by quantum cluster transformations.

For the convenience of the reader we present all definitions in the “simply laced” case.
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Quiver mutations.

Definition 2.1. A quiver is a data

q= <A7 {ei}i617 (*7 *))7

where A is a lattice; {e;} is a basis of the lattice A parametrized by a given set I; and (x,*) is a
skewsymmetric Z-valued bilinear form on the lattice A.

The e-matriz associated to q is a matriz eq := (&), €ij = (ei,e;). Two quivers are called
isomorphic if their e-matrices are equal. ”

Every basis vector e provides a mutated in the direction e quiver q'. The quiver ¢ is
defined by changing the basis {e;} only. The lattice and the form stay intact. The new basis
{el} is defined via halfreflection of the basis {e;} along the hyperplane (e, ) = 0:

, {_ek ifi=k

Mk(ez) = ei = e + [(eh 6k)]+€k OtherWiSe. (48)

Here [+ := a if &« > 0 and [a]4 := 0 otherwise.

Relation with the Fomin-Zelevinsky quiver mutations. Formula (48) implies the Fomin-
Zelevinsky formula, which also appeared in Seiberg’s work in physics [Se95], telling how the
e-matrix changes under mutations:

v gij — eamin{0, —sgn(e;x)er;}  if k¢ {4, 7}.
Mutations of a given quiver can be encoded by the elements of the set I. Performing the
mutation at an element k € I twice, we get a basis

/)

e] 1= g o up(e;) = e; + (e, ex)er. (50)
So in general {e!} is a different basis than {e;}. However, it preserves the e-matrix:

(e7,€) = (ei ej) + (ei,en)(er, e5) + (ei,er)(ej, ex) = (e, €5). (51)

Each quiver can be mutated in n directions, where n = rk A, and mutations can be repeated
indefinitely. Thanks to (51), the double mutation in the same direction preserves the isomor-
phism class of a quiver. So we can picture the quivers obtained by mutations of an original
quiver q, and considered up to isomorphisms, at the vertices of an infinite n-valent tree T,,.

Precisely, consider a tree T,, such that the edges incident to a given vertex are parametrized
by the set I. We assign to each vertex a of the tree T,, a quiver q, considered up to an

isomorphism, so that the quivers q, and qp; assigned to the vertices of an edge a — b of T,
labeled by an element k € I are related by the mutations assigned to this edge:

A = pk(Qa)s  da = pr(ap)- (52)

Equivalently, the vertices of T,, are assigned e-matrices which are related by (49).
Summarizing, we arrive at the following definition.

" An isomorphism class of quivers from Definition 2.1 is the same thing as a geometric quiver without loops and
length two cycles, whose vertices are parametrized by a set I. Namely, every such a geometric quiver q determines
a matrix eq := (£45), €i; := F#{arrows from i to j} — #{arrows from j to i}, and vice versa.

26



Definition 2.2. A decorated tree T, is a treec whose edges are labeled by the elements of a given
set I, and whose vertices are decorated by the isomorphism classes of quivers so that

e The set of the edges incident to a given vertex is identified with the set 1.

k
e The quivers q, and qp at the vertices of any edge a — b are related by mutations (52).

Negative mutations. The halfreflection (48) is not the only natural way to describe muta-
tions of isomorphism classes of quivers. There is another transformation of quivers, acting on
the basis vectors only, given by

iy, (i) := { ei + [—(ei,ex)]rex  otherwise. (53)

The negative mutation pu, is the inverse of pj on the nose, not only up to an isomorphism.
Indeed, p;; © px(er) = ex, and the composition g, o px(e;) is computed as
e, e; =e; + [(ei,ek)]+€k
— e+ [—(eh )] (eh) = e + [(ed, en)]rex — [(eir ex)]ver = e

The negative mutation p, acts on the isomorphism classes of quivers in the same way as fi.
Note that changing the sign of the form (*,*) amounts to changing the p, to the j, .
Remark. Let ¢ := py o g be the transformation of bases {e;} — {e/}, see (50)-(51). We have

Mk =t O fly, = Hy, O . (54)
It is easy to check that {t;} satisfy the braid relations

tjoty =ty oty, if (ej,ek) =0
tjotyot; =tpotjoty, if (ej,er) = 1. (55)

Therefore the braid group acts on the bases in A, preserving the isomorphism class of quivers.
Moreover, one has
t; = Hi © biok, %f (e1,€5) 2 0, (56)
p; 0t o p; if (e;,e5) < 0.
It relates the braid group actions assigned to different vertices of T;,.
In fact, after categorification, the {t;} correspond to the Seidal-Thomas twist functors [ST],
which generate braid group actions on the category C(q, W).

From now on, all the quivers are considered up to isomorphisms, unless otherwise stated.
Abusing notation, we write q = ¢’ if q and ' are isomorphic.
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Quantum torus algebra. A lattice A with a form (x,*) : A A A — Z gives rise to a quantum
torus algebra Ty, which is a free Z[q, ¢~!]-module with a basis X,, v € A, and the product

q—(’Ul,U2)XU1XU2 = XU1+U2'
There is an involutive antiautomorphism making it into a =x-algebra:
%1 Ty — Ty, #(Xy) = Xy, *(q) =qh

A quiver q = (A, {e;}, (*,%)) gives rise to a quantum torus algebra Tq := Ta equipped
with a set {X,} of algebra generators corresponding to the basis vectors {e;}. Thanks to
parametrization of the basis vectors, if two quivers q and ' are isomorphic, then there is a
unique isomorphism identifying the associated quantum torus algebras

Tq— Ty,  Xe,— X (57)

Given a decorated tree T,,, each vertex a of T, is decorated by a quiver (A,{e;}, (*,*)),
considered up to isomorphisms. Therefore, each vertex a gives rise to a quantum torus algebra
T(a) := T with generators {X,,}, well-defined up to the isomorphism (57).

Denote by T(a) the non-commutative fraction field of the quantum torus algebra T(a). Our
goal is to assign to any pair of vertices (a,b) of the tree a unique quantum cluster transformation

®(a,b) : T(b) — T(a).

First, we assign a quantum cluster transformation to each oriented edge of the tree. Choose an
oriented path i on 7), connecting a and b. Denote by ®(i) : T(b) — T(a) the composition of the
cluster transformations assigned to i in the reversed order. We show that the composition of
the two quantum cluster transformations assigned to the path a — a’ — a is the identity map.
Therefore ®(a,b) := (i) is independent of the choice of i.

Notation. We denote by T(a) the quantum torus algebra assigned to a vertex a of the tree
T,, and by T(a) its non-commutative fraction field. At the same time, we have a quiver q,
assigned to the vertex a, well defined up to an isomorphism. We denote by Tq the quantum
torus algebra assigned to a quiver q, and by Tq its fraction field. They come with canonical
generators {X,} provided by the basis {e;} of the quiver. The quantum torus algebra itself
depends on the lattice A with the form only, and denoted also by Ty.

Our crucial tool to define quantum cluster transformations is the quantum dilogarithm.

The quantum dilogarithm formal power series. Let us recall its definition:

o0

W, (z) = [ [+ )" (58)

a=1

It is the unique formal power series starting from 1 and satisfying a difference relation
W, (q°z) = (1 + qz)P,(2). (59)
It is useful to note its equivalent form:

Ty(q %) = (1+ ¢ ") " Py (x). (60)
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It has the power series expansion, easily checked by using the difference relation:

o0

gz "z
C LT T D@D A LG (61

n=0 n=0

By (8), it has an exponential expression

¥, (z) = exp< Z %:p") (62)

n>1 n(qn —q

As a direct consequence, we get
U, (2)' =¥, (). (63)

Below we skip ¢ in the notation, setting ¥(z) := ¥, (x).

Quantum tori mutations. Take a decorated tree T),. Each vertex a of the tree T,, gives rise
to a quantum torus algebra T(a) with a set of generators X, considered up to an isomorphism.

Given an oriented edge a — a/, there is a unique isomorphism 2

igsa : T(a) — T(a), Xe; — Xp(en) (64)

transforming the generator X, of the algebra T(a') to the one X, () of the algebra T(a).
Abusing notation, we also denote by i,_,, the induced isomorphism of the fraction fields.

Definition 2.3. The quantum mutation at an edge a 5 is an isomorphism of fraction fields
®(a—d): T(a') — T(a)

defined as the composition of the isomorphism i,_., with the conjugation by the quantum dilog-
arithm ¥(X,, ):
®(a — d') = Adg(x,,) O laa; Y — O(X,, )igoa (V)T H(X,,). (65)
It is a remarkable fact, following from difference equations (59) - (60), that the conjugation
by the the quantum dilogarithm W(X,, ) is a rational transformation. One can look at Definition
2.3 as follows. The classical Scolem-Noether theorem tells that any automorphism of a simple
central algebra is inner. If the form (*,*) on A is non-degenerate, the quantum torus algebra
is an infinite dimensional simple central algebra. So the Scolem-Noether theorem can not be
applied. However one can get a birational automorphism of the quantum torus algebra by the
conjugation with the dilogarithm power series ¥, (X). Although the ¥,(X) does not belong to
the algebra, the induced automorphism deserves to be viewed as “inner”.

Quantum cluster transformations. Consider a path i on the tree T}, presented as a se-
quence of oriented edges labeled by the elements of the set I:

. k k km—1 k
i: a=a)"5a > ... am1 S a, =b. (66)

8Note that the isomorphism is in the reversed direction.
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The quantum cluster transformation ®(i) is the composition of mutations in the reversed order:
O(i) := P(ag > a1)o... o P(am—1 — am—2) 0 P(am-1 — am): T(b)—T(a).

Below we present ®(i) as a composition of an isomorphism of quantum tori algebras with a
sequence of conjugations by quantum dilogarithms.
Let {e;} be the basis for the quiver q, at the vertex a. Consider a composition of mutations

Hi = gy, © - oo O gy - (67)
It changes the basis {e;} to a basis {u;(e;)} of the same lattice A for the quiver q,:
0)y Mk 1)y Hk Mo, m
e = {67} =2 e} =5 ™) = ) (68)

The basis {p;(e;)} defines a quiver isomorphic to qp. Denote by {e}} the basis for the quiver qp.
There is a unique isomorphism of quantum torus algebras identifying the generators:

i(i) : T(b) — T(a), Xer —> Xpy(ey)-

Let us define vectors f1, ..., fi, of the lattice A for the quiver q, by setting

fs = e](:s_l), s=1,...m (69)

Proposition 2.4. One has
q)(i) :Ad\I’(Xfl)O---OAd\I'(Xfm)OZ'(i)' (70)
Proof. Follows from the very definitions. U

Lemma 2.5. The composition of cluster mutations

dadBa)=0abad)odld Ba): T(a) —> T(a)) —> T(a) is the identity map.

Proof. Let v € A be the basis vector which we use to define the mutation a — a’. Then
lg—a’ Ola’ —q 18 the reflection map w — w+ (w,v)v. The following lemma calculates the “quantum
dilogarithm part” of the composition ®(a — a’) o ®(a’ — a).

Lemma 2.6. One has
Adgx,)Adwx_ ) (Xw) = Xu(w,0)o- (71)

Proof. The general case reduces to the case when (v, w) = 1. Assuming (v, w) = 1, we have

‘II<XU)‘II<X—U)X1U = Xw‘I’<q2Xv)‘I’(q_2X_U) (w)

X1+ gX)®(X)(1+¢ ' X)) ' (X ) = ¢Xu X, T(X,)T(X_,).

Since (v, w) = 1 implies that ¢X, X, = Xy 4w, and w — (w,v)v = w + v, we get (71). O
Therefore

P(a —a)o®(a' — a) = Adg(x,) 0 Adg(x_,) © lamsa’ © la—a = 1d. (72)

O
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Remark 1. It is tempting to write

?
Ady(x,)Adyx_,) = Adwx,)w(x_,)- (73)

However the product ¥(X ~1)¥(X) does not make sense as a power series. The formula starts
to make sense if we replace the quantum dilogarithm power series by their modular double, given
by the quantum dilogarithm function ®5(x), see (15).

Remark 2. Formula (70) is a composition of two transformations. The first one is an isomor-
phism i(i) : T(b) — T(a). The second one is a birational automorphism

Adg(x,)o..-0Adgx, ): T(a) — T(a). (74)

By Lemma 2.5, there is a unique rational map assigned to any pair a, b of vertices of T},, called
the quantum cluster transformation map:

O(a,b) : T(b) — T(a). (75)

Another approach is to view mutations of quivers as transformations of bases in a given
lattice A. Then the lattices assigned to the vertices ag, ..., a,, of the path i are identified with A.
So cluster transformations can be understood as birational automorphisms (74) of the quantum
torus algebra T . However then gy o puy is no longer the identity map, and therefore the cluster
transformation depends on the path i rather then on the vertices it starts and ends. Yet the
advantage is that pgopuyg is identified with the symplectic reflection ¢, discussed in the beginning
of this Section, incorporating the braid group action into the cluster transformation story.

Alternative formulas for quantum cluster transformations. Recall the negative muta-

tion (53). Given an oriented edge a LAY , there is an isomorphism

it T(@) > T(@), Xy X, (76)
Since i ', =i, ., and ¥(X,) commutes with ¥(X_,), formula (72) is equivalent to
Adg(x,) 0 tasa = Adg(x_,)-1 90,4 (77)
Therefore the quantum cluster mutation ®(a — a’) can be defined by a different formula
P (a—d):=Adg(x_,)-1 0y, Pla—ad)=d (a—d). (78)

So for any sequence of signs €5 € {1} we can write the quantum cluster transformation as
O(i) = P (ag > a1) o ... 0 D™ (ay—1 — am).

Recall the bases {e;} and {e} for the quivers q, and q;. We consider the sequence of
mutations along the path i:

c1
k1

fer} = (e0) 1 (o0y M 0y o) (79)
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There is an isomorphism of quantum torus algebras:
Z€<1) : T(b) - T(CL), Xe’i i Xuis(ei)-

Set

—1 .o
fo= €S'€l(ci ) = ey to.omlt(er,), s=1,..,m. (80)

The same quantum cluster transformation ®(i) can be written in a different form as
@(i) = Ad‘p(Xff)El o...0 Ad‘p(Xf’rSn)sm ¢} Ze(i) (81)

As we will see in Section 2.4, there is a unique sequence of signs ¢4 € {£1} for which all power
series W(Xy=)®* in (81) lie in the same completion of the quantum torus algebra T'y.

Cluster modular groupoid. Let 7 be an arbitrary permutation of the set I. It gives rise to
a new quiver which does not necessarily preserve the isomorphism class of the original quiver:

q =7(q) := {A, {e}}, (x,%)}, where €] := e -1(;y, Viel.
There is an isomorphism between their associated non-commutative fraction fields

O(m) : Ty — Ty, Xei- — Xeﬂﬂ(i)-
A quiver cluster transformation is a composition of quiver mutations and permutations. It
induces a quantum cluster transformation of the associated non-commutative fraction fields.

Definition 2.7. If two quiver cluster transformations 01,02 : q — q' induce the same quantum
cluster transformation, i.e,
®(01) = ®(02) : Tqy — Tq,

then we say o1 and o9 are equivalent, denoted by o1 = 02.
Two quivers are equivalent if they are related by a quiver cluster transformation.

Definition 2.8. The cluster modular groupoid Gq is a groupoid whose objects are quivers equiv-
alent to q, and morphisms are quiver cluster transformations modulo equivalence. The funda-
mental group I'q of the groupoid at q is the cluster modular group.

Below we call both quiver cluster transformations and quantum cluster transformations just
cluster transformations, and use similar convention for mutations.

Cluster Poisson transformations. Setting ¢ = 1, the quantum cluster transformation (75)
becomes a birational transformation preserving the Poisson structure given by the quasiclassical
limit of the commutator in the quantum torus algebra. It is called the cluster Poisson map.® °

9Kontsevich and Soilbelman considered another specilization ¢ = —1.
ONotice that it is important to present first the map (75) as a rational transformation, and only then set ¢ = 1.
Indeed, setting ¢ = 1 first we get a commutative algebra, so the conjugation becomes the identity map.
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To write it explicitly, let us consider the quiver mutation py : q — q'. We assign to q a set
of cluster Poisson coordinates {X;}ic1. Denote by {X/} the cluster Poisson coordinates assigned
to q'. Setting ¢ = 1, the quantum cluster transformation (88) becomes the cluster Poisson map

¥ X! if i =k (82)
’ Xi(1+ Xk_sgn(a"k))*eik otherwise.

Note that (82) is subtraction free. Such a transformation is called positive. Its tropicalization is

:E/ — Tk ifi =% (83)
¢ x; — eiemin{0, —sgn(e; )z} otherwise.

Tropical points of cluster Poisson varieties. A collection of quivers {q} related by quiver
cluster transformations determines a cluster Poisson variety X'. It is given by a collection of
cluster Poisson tori

Xq := Hom(A, G,,) (84)

glued by cluster Poisson maps. A cluster Poisson variety X’ gives rise to a set X'(Z!), called the
set of integral tropical points of X', equipped with an action of the cluster modular group I'.
Namely, for each quiver q there is a set

Xy(Z") := Hom(Gyy, Xyq) = AY = Hom(A, Z).
A mutation o : @ — ¢’ gives rise to an isomorphism of sets ¢'(0) : Xq(Z') — Xy (Z') given in
coordinates by the transformation (83).
Definition 2.9. An integral tropical point | € X(Z"') as a collection of lq € Xq(Z') related by

mutations: ¢'(o)(lq) = lg-

Frozen variables and integral tropical points of cluster Poisson variaties. Proposition
2.10 below is borrowed from [F(2, ArXive version 2, Proposition 2.44].
Given a quiver q = (A, {e;}, (%, *)), take a lattice

K = A &) Zeo
generated by A and a new basis vector ey. It has a basis {e;} U eg.

Proposition 2.10. There is a canonical bijection between the extensions of the skew-symmetric
form (x,%) from A to A, and the set of integral tropical points X (7).

Proof. We encode a quiver q by a skew-symmetric Z-valued function €;; on I x I. The rank one
extensions of the quiver are parametrised by similar functions on (I U {0})?, i.e. by the integers
{ei0}ier- The desired bijection is then given by

{Eio} I {xz} € Xq(Zt), T = €50

We have to show that the numbers {&;0} and coordinates {x;} of a Z-tropical point x € X(Z') in
the tropical coordinate system assigned to the quiver q change under mutations the same way.
Indeed, under the mutation in the direction k € I one has

/ —XT; ifi = k,
x; — eiemin{0, —sgn(e; )z} otherwise.
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On the other hand, we have
Eio - Al . _ ) .
;0 — €ixmin{0, —sgn(e;;)exo} otherwise.
The two formulas coincide under the assumption z; = g4. O

Quantum cluster algebras with principle coefficients. Given a quiver q, the basis {e;}
of the lattice A provides a dual basis {f;} of the dual lattice A° := Hom(A,Z). The basis {f;}

mutates as follows: .
Fl= —fe+ 2jerl—enile fy it
v i if

k
k. (85)
We need a lattice

Ap:=ADA°.

Let [#,%] : A x A° — Z be the canonical pairing. Togerther with the skew symmetric form
(%,%) on A, it provides the lattice Ap with a skew symmetric bilinear form (x,#)s,:

(e 1), (€ f Dap = (es€) + [e, fO] = [€, ]

It gives rise to a quantum torus =-algebras Ty,. The basis {e;, f;} of the lattice Ap provides its
generators {B;, X}, where B; := By, and X := X,.. The relations are the following:

qBiX; =q 'X;B;, BiX;=X;Bi, i=3j, q “X;X;=q “X;X;, B;Bj=DB;B;. (86)

Denote by Tp(a) the quantum torus algebra assigned to a vertex a of the tree T, and by

Tp(a) its fraction field. Given oriented edge a LAWY, , there is a unique isomorphism of algebras
igsa : Tp(a') — Tp(a), Xeg > X (es) Bf{ — By, () (87)

Abusing notation, we also denote by i,_,, the induced isomorphism of the fraction fields.

Definition 2.11. The quantum mutation at an edge a X o s an 1somorphism of fraction fields

Op(a—d): Tp(a') — Tp(a)

Op(a—d') = Adg(x,,) © laa; Y — U(X,, )igoa (V)T H(X,,). (88)

k

In coordinates,

B; if =k,

Ad\I’(Xek) 1 Bi— { Bk<1 + Qka) if 1=k

Indeed, the relation X;.B; = ¢?B; X}, implies U, (X;)B; = B;¥,(¢*X}). It remains to use (59).
Since the B-variables commute, we can set

(89)

Bf .= [[ B, B, =[[BI W (90)

jel jel
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Then formula (85) translates into monomial transformations

B; it i=k
» - Bl— v ’
lamar + Bi { B, /B, if i=F. (91)
Formulas for the action on the generators X; are the same as for the X-space. Set
< y B
Xi=X; [[B}" = Xi-- (92)

jel BI;
Then the X’, commutes with the X;. So mutations act on the X’, by monomial transformations.

Let us work out the formulas for the mutations of B-coordinates in the ¢ — 1 limit. The
conjugation (89) preserves B,j and B, . So we get

S {Bi if =k, (03)
p Dy — By e 93
7Bk(liX;€) if k.

~ +
Let us set A; := Bi_l. Then X; = X,-%. So the mutation formula can be written as
k
— L YV AT
(Ak + XkAk)

bp(a—ad)* : A —> A ;

bp(a—a) : A, — A;, i =k. (94)
So mutation formulas of the coordinates (A;, X ;) in the ¢ — 1 limit coincide with the mutation
formulas [FZIV] for the cluster algebra with cluster variables A; and principle coefficients X

We denote by Aprin,q the quantum cluster variety with principal coefficients obtained by
gluing the symplectic tori assigned to the lattices Ap by the mutations ®p(a — a’). Denote by
T the split torus with the group of characters A, and by T, the corresponding quantum torus.
Then the quantum space Ay g Projects canonically to the product of the quantum torus T
and the quantum cluster variety X,, and the fiber of the map 7t is the cluster variety A:

A Aprin,g TLXTx Ty x Xy, w1 X = )2,-, X =X, j(A) = 7@1(6).

The subalgebra 75 (O(Ty)), that is the subalgebra generated by the Xi’s, see (92), is the
subalgebra of ”coefficients”, explaining the name. The A;’s are the cluster algebra generators.

The quantum symplectic double D, defined in [F'G:3, Definition 3.1] is similar to the double
Aprin,g. The difference is that the mutation automorphisms are defined differently:

D, : We use the conjugation by the ratio of two quantum dilogarithms: ¥,(X})/ \Ilq()N( k)
Aprin,q : We use the conjugation by single quantum dilogarithm: ¥, (Xy).
3 DT-transformations of cluster varieties and Duality Conjec-
turs

In Section 3.1 we discuss a basic question: when do two quantum cluster transformations co-
incide? A considerable part of Section 3.1 is due to Nagao [N10] and Keller [IK11, K12, K13],
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although we present the story from a different perspective, emphasizing the role of certain in-
tegral tropical points of cluster Poisson variaties, called basic positive laminations, rather then
using the C-matrices. Proposition 2.10 provides the dictionary relating the two points of view.

In Section 3.2 we recall cluster DT-transformations following Keller [[<12]. We interpret
them as quantum cluster transformations, and prove that a cluster DT-transformation is a
central element of the cluster modular group. In Section 3.3 we recall the isomorphism i from
[FG4, Sect.3.2]. In Section 3.4 we relate the cluster DT-transformations to Duality Conjectures.
3.1 When do two cluster transformations coincide?

A quiver cluster transformation o : q — q’ induces a quantum cluster transformation
P(0) : Ty — Tg.
Setting ¢ = 1, we get a positive birational isomorphism of the Poisson tori
(o) : Xg —> Ko,
Its tropicalization is a piecewise-linear map of the set of tropical points
(o) : Xg(Z') — Xg(Z').

If two quiver cluster transformations 01,09 : @ — ¢’ induce the same quantum cluster
transformations ®(o1) = ®(02), then their tropicalisations evidently coincide: ¢!(o1) = ¢t(02).
Remarkably, the converse is true:

ol (o1) = ¢'(02) implies that ®(o1) = ®(09).

It follows from a stronger Theorem 3.2, proved by Keller [[<11], [[X12, Sect.7] and Nagao [N10]
in a different formulation. It also follows from Duality Conjectures, as we show in Section 3.4.

Basic X-laminations. Recall that an equivalent class of quivers gives rise to a cluster Possion
variety X'. Fix a quiver q. Each vertex i € {1,..., N} of q corresponds to a rational function
X; on X. The set ¢q := {X1,...,Xn} is a rational cluster Poisson coordinate system on X. Its
tropicalization identifies the set X'(Z!) of Z-tropical points of X with Z":

et X(Zh) SN, L— (X{(),.... X§(1).
Let ¢; = (0,...,1,...,0) be the i-th unit element of Z*.

Definition 3.1. The Z-tropical points l:;i (respectively l;i) of X such that

t to—
cq(l:;i) = e, cq(lqﬂ-) = —e; (95)
are called basic positive (respectively negative) X-laminations associated to the quiver q.

We usually call basic positive X laminations just basic laminations, or basic X'-laminations.
We also frequently write lii instead of l;{i when there is no confusion.
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Basic laminations and cluster transformations. Using basic laminations, we can state
now the strongest version of the criteria determining when two cluster transformations coincide.

Theorem 3.2. Let 01,09 : q — q' be two cluster transformations between the same quivers.
The following are equivalent

1. q)(O'l) = <I>(O'2).

2. gpt(al)(l:;’i) = cpt(ag)(l;i) for alliel.

It looks surprising that such a strong statement is true, and even more surprising that basic
laminations play key role in the formulation. The proof of Proposition 3.3 below explains both.

Proposition 3.3. Theorem 3.2 follows from Duality Conjectures [F(2].

We prove Proposition 3.3 in Section 3.4, after a discussion of Duality Conjectires.

3.2 Cluster Donaldson-Thomas transformations

Theorem 3.4. Let 0 : q — q' be a cluster transformation such that
gpt(a)(l:;i) =lysy Viel

Then the quivers q and q' are isomorphic. The quantum cluster transformation ®(c), unique
by Theorem 3.2, coincides with the Kontsevich-Soibelmam DT -transformation.

Theorem 3.4 suggests the following definition.

Definition 3.5. A cluster transformation K : q — q is called a cluster Donaldson-Thomas

transformation if
@t(K)(l:{,i) =g, Viel (96)

A cluster DT-transformation K may not exist. If it does, it is unique by Theorem 3.2.

Theorems 3.2 and 3.4 were proved by Keller [[<11], [X12, Th 6.5, Sect 7.11] in a different
formulation, using c-vectors and C-matrices [F'Z1V], which we review in Section 4.1, rather than
the tropical points of cluster Poisson varieties. See an exposition in a nice short paper [X13]. The
equivalence of two points of view follows from Proposition 2.10. One of the benefits of using the
tropical points is that then Definition 3.5 make sense for any positive rational transformation,
not necessarily a cluster one.

Theorem 3.6. Let 0 : q — ' be a cluster transformation. If K : q — q is a cluster DT-
transformation, then so is co Koo 1 .

Theorem 3.6 is proved in Section 4.4. It asserts that the cluster DT-transformation is
independent of the choice of q. Therefore it associates a canonical cluster transformation to
the cluster variety X', which is independent of the choice of coordinate system cgq.

Corollary 3.7. The cluster DT -transformation K : q — q is in the center of the cluster modular
group I'y.

Proof. Let 0 € I'q. By Theorem 3.6, 0 o K o 07! is a DT-transformation. By the uniqueness of
a DT-transformation, c c Koo~ ! = K. O
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3.3 The isomorphism ¢, the contravariant functor F', and DT-transformations.

We recall the isomorphism i following [FG4, Sect.3.2]. It gives rise to a contravariant functor F'.

Let —q be the quiver obtained by reversing the sign of the form in the quiver q. Equivalently,
it is obtained by reversing the arrows in the geometric quiver q. We use the notation (u,v), :=
—(u,v) for the form. The quantum torus algebra T_q has generators X, u € A satisfying

XoX] = g Xg,, (97)
There is a natural “antilinear” isomorphism
T q— Ty, Xor— X4, ¢—q (98)
Indeed, the isomorphism * sends the relation (97) to X_,X_, = D G
FXX)) = X WX, (g0 X0y ) = "X ey = TN,
Lemma 3.8. The isomorphism i commutes with the quantum cluster transformations.

Proof. Clearly ¢ commutes with the permutations of basis. It suffices to show that ¢ commutes
with the mutations.

Recall the isomorphisms (64), (76). The mutation p : —q — —q’ acts on the basis vectors
in the same way as the negative mutation p, : q — q'. So the following diagram commutes

Pk
qu’ Z—> Tq/

Zqﬂq/l l’lqﬂq,
i

T_q v Tq

By (63), we get
F(Pg(X7)) = gr (Xp) = Ty (X)) (99)
Therefore the following diagram commutes

i*
T_q——Tq

Adq,(ng)l lAd\p(xek)l
;%

']I',q o ']I'q

By (77), one can combine the above two diagrams, getting the following commutative diagram:
e

T_q —— Ty
7k

cb(#k)l lcb(l/«k)

T_q——Tq
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Thanks to Lemma 3.8, we get a functor I : Gq — G_q, which assigns to a quiver q the quiver
—q, and to a (per)-mutation o : @ — q' the one 0 : —q — —¢’.

7

It is useful to introduce a “contravariant” version of the functor I.

Definition 3.9. The contravariant functor F': Gq —> G_q assigns to quiver q the quiver —q,
and to a cluster transformation o : q — o' the one I(c™1) : —q' — —q.

This allows to us to state the following result, which we prove in Section 4.4.

Theorem 3.10. A cluster transformation K is a cluster DT-transformation if and only if F'(K)
18 a cluster D'T-transformation.

3.4 DT-transformations of cluster varieties and Duality Conjectures

Definition 3.5 of cluster DT-transformations looks mysterious: it refers to a particular cluster
Poisson coordinate system, and uses positive and negative basic laminations in this coordinate
system, which seem out of the blue. Independence of a cluster coordinate system looks surprising.

A DT-transformation of a cluster variety is always defined as a formal automorphism. How-
ever even if it is rational, it may not be a cluster transformation, even in the most basic cases,
for example when G = PG Ly and S is a surface of positive genus with a single puncture.

We suggest, using formal Duality Conjectures, a conjectural property of DT-transformations
of cluster varieties which characterizes them uniquely, makes their crucial properties obvious,
and in the case when it is a cluster transformation implies immediately that it is the cluster
DT-transformation.

We believe that this is the “right” definition of DT-transformations of cluster varieties, while
Definition 3.5 is a convenient technical characterization of those DT-transformations of cluster
varieties which are cluster transformations.

We formulate a conjecture relating rationality of DT-transformations to existence of canon-
ical bases in the space of regular functions on cluster varieties.

Let us recall first some features of Duality Conjectures.

Duality Conjectures [F'G2, Section 4]. For any cluster variety Y, a regular function on Y
is a function which, in any cluster coordinate system, is a Laurent polynomial in the cluster co-
ordinates with positive integral coefficients. We denote by O()) the algebra of regular functions
on V.

A formal function on ) assigns to each cluster coordinate system a Laurent series with
integral coefficients in the cluster coordinates, related by the cluster transformations. We denote

=~

by O()) the algebra of formal functions on ). There is a canonical map
0:0()) — O). (100)

A quiver gives rise to a dual pair of cluster varieties of the same dimension: a Ks-cluster
variety A, and a cluster Poisson variety X, as well as the Langlands dual cluster varieties AY
and XV [FG2]. In the “simpli-laced” case AY = A and X¥ = X. The cluster modular group T’
acts by their automorphisms.

The algebra O(A) is closely related to the cluster algebra. By the Laurent phenomenon
theorem [I'Z] the algebra O(A) is “big”: every cluster coordinate A; lies in the O(A). So the
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dimension of the spectrum of the algebra O(A) equals to the dimension of A. As was shown
in [GHI], the algebra O(X) could have smaller dimension then X. Yet for generic quiver, e.g.
with a non-degenerate form (x,*) on the lattice, the algebra O(X) is “big”.

Duality Conjecture [F(G2, Section 4] predict a duality between cluster varieties A and X'V.
In particular, one should have canonical I'-equivariant pairings

I4: A(ZY) x XY — Al

101
Iy:Ax XY(Z") — Al (10D

This means that each [ € A(Z') and each m € X'V (Z') give rise to functions
I4(0) :=Ta(l, %) on XY, and  Iy(m):=Iy(m,*) on AV.

Since we can consider either formal or regular functions, there are two kinds of canonical pairings.
In the formal setting we should have canonical I'-equivariant maps

Ia: A(Z) — O(XY),

R (102)
Ly : X(Z') — O(AY).

In a quite general setting, pairings (101) should produce I'-equivariant maps to regular functions:

. t v
Tg: A(Zt) — O(XY), (103)
Iy:X(Z") — O(AY).
Being composed with the embedding (100), they produce the maps (102).
The main feature of the maps (102) / (103) is that they should parametrise canonical lin-
ear bases in the corresponding space of functions on the target space. Below we discuss two
properties of canonical maps (102) / (103) relevant to our story.

1. Positive tropical points and cluster algebras [FG2, Conjecture 4.1, part 2)].
The first basic property is this. If a tropical point [ € X(Z!) has non-negative coordinates
Iy, .., In) € Zgo in a cluster coordinate system assigned to a quiver q, then the function Iy ()
on AV is a monomial in the cluster A-coordinates assigned to the same quiver:

Tv(l) =] [ AL (104)
iel

By the Laurent Phenomenon theorem [I'7], one has Iy (1) € O(AY). By the very definition, the
functions Iy (1) generate the cluster algebra related to AY.
This immediately implies Proposition 3.3.

Proof of Proposition 3.3. The cluster transformation of quivers o Loy : @ — q acts identi-
cally on the basic positive laminations. So by (104), it acts as the identity on the cluster algebra.
It preserves the canonical 2-form on the spectrum of cluster algebra:

Q= Z (€i,e;)dlog(A;) A dlog(A;).

i,j€l
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Therefore o, Loy preserves the form (%,%). This means that the map oy o9 i q — qis an
isomorphism of quivers. Since it acts as the identity on the cluster coordinates, it acts as the
identity on the set AY(Z!). Therefore, thanks to the formal Dulaity Conjecture, it acts as the
identity on the canonical formal basis on X. Therefore it is the identity map of X'. The claim
that the corresponding quantum cluster transformation is also the identity follows then by using
arguments from [FG4]. Alternatively, one can just use the quantum formal Dulaity Conjecture.

2. The parametrization of canonical bases [FFG2, Conjecture 4.1, part 1)]. Thisis the
second basic property. It tells how to recover the integral tropical point [ € A(Z!) parametrizing
a canonical basis vector ' on X'V. In the cluster coordinate system assigned to a quiver q, the
F' is given by a Laurent polynomial / series Fq(X1, ..., X,). Let us right it as

Fy(X1,.., Xy) = HXZ‘“ + lower order terms.

i€l

Then the exponents (aq, ..., a,) are the coordinates of a tropical point [ € A(Z!) in the cluster
coordinate system assigned to the quiver q. In other words, the exponents of the upper term
of Fq(Xy,...,X,) change under the cluster transformations as the coordinates of an integral
tropical point of A. This way one should get a bijection between the canonical basis elements
and the set [ € A(Z"). This is the “upper” parametrisation of the canonical basis on X'V.

The involutions i4 and iy [FFG4, Lemma 3.5]. There are isomorphisms of cluster varieties
ig: A— A% iy X — X° (105)

which in any cluster coordinate system act as follows:
A Ay, i XD e X (106)

The maps (106) are compatible with mutations, which means that they define isomorphisms
(105). They are also compatible with the canonical projection p : A — X. By Lemma 3.8, the
map iy is the classical limit of an isomorphism of quantum cluster varieties

ix Xy — A (107)
which in any cluster coordinate system is given by an “antilinear” isomorphism of x-algebras

i 0,(X%) — O,(X), (XD = X, ibla) =g (108)

The lower parametrization of canonical bases. One can also parametrize canonical basis
elements F' on X'V by the exponents of the lowest term by writing

Foq(X1,...X,) = HXZI" + higher order terms.

i€l

Namely, assigning to F' the exponents (b1, ..., b,) one should get a well defined integral tropical
point of A. This is the “lower” parametrization of the canonical basis on X'V.

Lemma 3.11. The existence of lower parametrization follows from the existence of the upper.
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Proof. The isomorphism iy transforms a canonical basis on X'V to a canonical basis on X'V°.
Evidently, in any cluster coordinate system one has

The lower term of i%., (F') = The upper term of F.
O

The duality between cluster varieties A and X'V is not compatible with the isomorphisms i 4
and iyv. Conjecture 3.12 suggests that the DT-transformations DTy and DT 4 of the cluster
varieties A and X tell the failure of the isomorphisms ¢4 and iy to be compatible with the
duality. Precisely, set

Dy:=i40DTy, Dy:=ixyoDTy. (109)
The duality should intertwine D 4 with iy v, and i4 with Dyv. So, very schematically, we should
have diagrams

A — XV A «— XV
Dyl Lixv ial | Dxv (110)
AO «—> X\/O AO «—> XVO

They become commutative diagrams when one of the columns is tropicalised, and the other is
replaced by the induced map of algebras of functions. So there are four commutative diagrams.
The horizontal arrows are the canonical maps, going in the direction “from the tropical column”.
Let us state this precisely.

Conjecture 3.12. Let (A, X) be a dual pair of cluster varieties satisfying formal Duality Con-
jectures. Then
i) There are commutative diagrams

x(zhH 2 OAY) Az 2 Oxv)
ZE\? ! ! Djlvo Zf4 ! ! D;‘(vo (111)
XO(Zt) %) @(Avo) AO(Zt) k @(X\/o)

it) Assume that the transformations DT 4 and DTy are positive rational maps, e.g. clus-
ter transformations, so their tropicalisations DTf4 and DTY, are defined. Then they have the
following properties:

e The canonical pairings are DT-equivariant, that is
T4: AZY) x XY — AY, T4(DTY(a),DTxv (2)) = La(a,z),

. 1 . (112)
Iyv :AXxXY(Z') — A, TIxyv(DTg(z),DT%. (7)) = Ixv(a,z).
e Recall the maps (109). Then there are commutative diagrams
Xz o O(AY) Az = O@)
DY, | L% D, | Vit (113)
x°(zh 5 O(Ave) AT S O(Xve)
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Few comments are in order.

1.

The right commutative diagram in (111) just means that, for any element F' of the canon-
ical basis, the upper parametrization of DT% (F') = the lower parametrization of F'.

It tells that the canonical basis on X'V is essentially'! invariant under the involution Dy.

. The transformation DT y satisfies the property characterizing cluster DT-transformations:

DT4 () =1;. (114)
Indeed, since % (A;) = A;, we have, using the left diagram (113):
DY IF) = ify o D) = 17
Applying to this the map i%.., and using ixo o iy = Id and i%(I;") = I;, we get (114).

So if the transformation DTy is cluster, it is the cluster DT-transformation.

. The DT-equivariance (112) can be stated as follows:

I4(DTY(a)) = DT%. (Ia(a)), ie. I40DTY =DT%. olyu.

115
Lyv (DT%. (2)) = DT (Iyv (z)), ie. IyvoDTh, = DT%olyv. (115)

. The transformation DT 4 is uniquely determined by (114) and (115), since its action on

the cluster coordinates is determined by these conditions.

. Commutative diagrams (113) plus (115) imply the commutative diagrams (111). Indeed,

the maps iy and i 4 are involutive, in the sense that
tyo oty =ldy, dg0o0ig=1Idy.

Diagrams (113) commute, so the maps DY, and D!, are involutive in the same sense. Thus

it = (i%o) ™! = DTh. 0 ity 0 DT,. (116)
Using this, we have:
Lo oty "2 e 0 DTYe o 0 DTY 22 DT 0T o ity 0 DTS, 2 (117)
DT%.- o Ty- o DY 2 DT 0o i oy P2 Dx L. o Ty,

The argument for the second diagram is similar.

. Since the maps iy and i4 are involutive and diagrams (111) commute, the maps Dy and

D4 must be involutive:
DycoDy =Idy, DgooDy=1Idy. (118)
Using DT x ¢ 0 iy instead of Dy in the left diagram (113) would not make the diagram

commute for basic positive laminations. So we have no choice but to use the tropicalised
ix o DTy in the left diagram (113) rather than the one DTy oiy.

H “Essentially” reflect the fact that they are canonical bases on different spaces.
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DT-transformations and Duality Conjectures for the double. Recall the cluster variety
Aprin, see the end of Section 2. The algebra of regular functions O(Apyin) is the upper cluster
algebra with principal coefficients [FZIV]. The cluster variety Apyin contains the cluster variety
A and projects onto the cluster Poisson variety X'

AL A > X
There is a canonical involution, compatible with the involutions i 4 and iy in the obvious way:'?

ip Aprin - -Aprin-

\

Duality Conjectures can be casted as a duality between cluster varieties Apin and Aprin. In

the ”simply laced” case, which we mostly focus on in this paper, Agrin = Aprin-

In particular, one should have canonical I'-equivariant pairings
Ip : Aprin(Z') x Ay — A (119)
This means that each | € Apyyin(Z') give rise to functions
Ip(l) :==Ip(l,*) on Aj;,.
In the formal setting we should have canonical I'-equivariant maps

Ip : Aprin(ZY) —> O(Ads). (120)

Under certain assumptions, pairing (119) should produce a I'-equivariant map to regular func-
tions, which should parametrise a canonical linear basis in the space of functions on the target:

Ip : Apin(Z') — O(Ain)- (121)

The duality Appin <> AY;, is not compatible with the isomorphism ip. The DT-transformation

prin

DTp tells the failure of the isomorphism ipv to be compatible with the duality. Precisely, set
Dp :=ip o DTp. (122)
Then the duality should intertwine Dp with ipv. So, schematically, we should have a diagram

-Aprin ~—AY

prin
o Vo
prin ‘Aprin

It becomes a commutative diagram when one of the columns is tropicalised, and the other is
replaced by the induced map of algebras of functions. The horizontal arrows are the canonical
maps, going “from the tropical column”. Let us state this precisely.

12We use the subscript P - ”principal” - for maps related to the cluster variety Aprin, the subscript PV for the
Aprin, ete.
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Conjecture 3.13. Let Apin be a cluster A-variety with principal coefficients. Then
i) The formal transformation Dpv, see (122), makes the following diagram commutative:

Aprin(Zt) —Z= O( A1)

prin

iﬁ,l ) lev (123)

A0 (7 2P (A

prin prin

it) Assume that the DT-transformation DTp is a positive rational map, so that the tropi-
calised transformation D%; is defined. Then:

e The canonical pairing is DT-equivariant:
Ip : Apin(Z') x Ay — A, Ip(DTh(2),DTp () = Ip(e,y).  (124)
e There is the second commutative diagram

I ~
‘Aprin(Zt) = O( ;\)/rin)

D%,L lp (125)
o Ipo A o

prin (Zt) i O( ;\)/rin)

Few comments are in order.

1. The DT-equivariance (124) can be stated as follows:
Ip(DT5(2)) = DT%. (Ip(z)), ie. IpoDThH =DTh, olp. (126)
2. The transformation DTp is uniquely determined by (126), since its action on the canonical
basis is determined by this conditions.

3. Commutative diagram (125) plus (126) imply that the diagram (123) is commutative.
Indeed, the maps ip are involutive, in the sense that

i’Do o ip = Idp.

Since diagram (111) is commutative, the map D, is involutive in the same sense. Thus

it = (i)' = DThe 0 il 0 DT. (127)
Using this, we have:
Ipo o it "2 Ipe 0 DTh. o i 0 DTS 2% DT, 0 Ips o ity 0 DT} 122 (125)
DT, o Ipe 0 Db U2V DT%.. 0 iy o Ly 22 D o Ip.

4. Since the map ip is involutive and diagram (125) commute, the map Dp must be involutive:

Dpo 0 Dp = Idp. (129)
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Rationality of DT-transformation and regular canonical bases.

Lemma 3.14. Let us assume Conjecture 3.12i). Then:
i) If the map DT x is cluster, then the formal canonical basis consists of Laurent polynomials.
it) The same is true if DTy is a positive rational map, and the canonical pairing I is
DT-equivariant, see (112).

Proof. 1) The duality map is compatible with cluster transformations. So if the DT’s are cluster,
then we can compose the vertical maps in the right diagram in (111) with the inverse of DT xv
on the right, and with DTf4 on the left. The tropical side becomes i’y o DTf4. The function side
becomes iyv. Note that z'th takes lower order terms to upper order terms. So all the canonical
basis element are bounded by top terms and bottom terms, i.e., they are all polynomials.

ii) Same argument using commutativity of diagram (111) plus DT-equivariance (112). O

Conjecture 3.15. The map DT x (respectively DT 4) is rational if and only if the formal canon-
ical basis in O(X) (respectively O(A)) is regular, i.e. lies in O(X) (respectively O(A)).

Here are the arguments supporting Conjecture 3.15.

a) If the map DT y is a cluster DT-transformation, then by Theorem 1.17, which uses [GHIKI,
Theorem 0.10], we get a canonical basis in O(X).

b) Lemma 3.14 tells that if DTy is positive rational then, assuming Conjecture 3.12, there
is a canonical basis in O(X).

c¢) A map A — A is rational if and only if it takes the cluster coordinates A; to rational
functions. So Conjecture 3.12 implies that if a canonical basis in O(A) exists, then the map
DT 4 must be rational.

DT-transformations and the target vector spaces in Duality Conjectures. Consider
the largest subalgebras on which the powers of the transformation DT act:

Opt(A) :={f e O(A) | DT (f) € O(A),Vn € Z}.
Opr(X) :=={fe O(X) | DT%(f) € O(X),Vn € Z}.
We can state now the enhanced version of Duality Conjectures for cluster varieties.

Conjecture 3.16. Let (A, X) be a dual pair of cluster varieties. Assume that the DT transfor-
mation DT 4 and DT x are rational. Then there is a I' x DT-equivariant mirror duality between
the spaces A and XV . In particular there are canonical I' x DT-equivariant isomorphisms

Ia: Z[A(Z")] = Opr(XY), Iy :Z[X(Z")] = Opr(AY). (130)

The very existence of the DT-equivariant pairing Iy implies that the image of the map Iy
lies in the subspace Opr(AY). Indeed, if Iy (1) € O(AY), then by the DT-equivariance,

H;(((DTEY)”(Z)) — DT Ix(l), VnelZ.
It remains to notice that the left hand side always lies in O(A).

Conjecture 3.16 is a cluster generalisation of Conjecture 1.20. We want to stress that the
Opr(A) could be smaller then O(A). Let us elaborate on this.
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One can associate to the moduli space Agg several a priori different algebras. One is
the algebra O(Ags) of regular functions on the moduli space Aggs. The other is the algebra
O.(Ag,s) of regular functions on the corresponding cluster A-variety, which in this case is just
the corresponding upper cluster algebra. The third one is the algebra Opr(Ag.s).

Proposition 3.17. i) Assume that a decorated surface S has > 1 punctures. Then the algebras
Op1(Acs) and Oq(Acgs) are smaller then O(Ags).
i) If S has 1 puncture and no special points, then Opr(Asr,.s) is smaller then Oq(Asr,s)-

Proof. i) The Weyl group W acts in this case by cluster transformations. Therefore, by the
very definition, its action preserves the algebra O (.A). Recall the potential W, at a puncture
p introduced in [GS], see also (24). it is a regular function on Ags. However for any nontrivial
w € W, the function w*W, is not regular on Ags. So we conclude that

Wy e O(Ags), Wp ¢ Oua(Aas), W, ¢ Opr(Ags)-

The same is true for any partial potential W, ,.
ii) Indeed, W, ¢ Op1(Asr,s), but W, € Oq(Asr,s). This also tells that the Weyl group
action on Agr, s is not cluster. O

4 Properties of cluster DT-transformations

In Section 4.1 we discuss a special presentation of quantum cluster transformations provided by
the sign-coherence of the C-matix. In Section 4.2 we elaborate the cluster DT-transformation
and the quantum canonical basis for the cluster X-variety of type As, demonstrating their
compatibility.
In Section 4.3 we show that the unitary operator quantizing the cluster DT-transformations
leads to a I'-equivariant bilinear form on the Hilbert space assigned to a cluster Poisson variety.
In Section 4.4 we prove some results on cluster DT-transformations stated in Section 3.2.

4.1 Sign-coherence and cluster transformations

Definition 4.1. Let 0 : q — (' be a cluster transformation. The matriz C, is a matriz whose
J-th column (c1j, caj, ...,cnj)T 18 given by the coordinates of l:;j in the coordinate system cq .

By Proposition 2.10, the matrix C, coincides with the Fomin-Zelevinsky C-matrix [FZIV].
It is easy to show that det(C,) = 1. Therefore C, is invertible. The matrix C, has many
other nice properties. The most important one is the sign-coherence.
Sign-coherence. Let ¢; = (¢i1,. .., ¢p) be the i-th row vector of Cj.
Theorem 4.2 ([DWZ2]). The entries of ¢; are either all non-negative, or all non-positive.

This allows to introduce the sign sgn(c;) € {£1} as the sign of the entries of the row ¢;.
Let 0 : @ — d’ be a cluster transformation. Let e = (€},). Let p : ' — q” be a mutation.

Lemma 4.3. The i-th row vector ¢, of Cy,o0 is

L —Ck ’ifi = k,
o { ci + [sgn(cp)el, ver  if i # k. (131)

/
C;
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Proof. Let C, 00 = (cgj) By definition, the c;j are given by the tropicalization formula (83):

&= { ki , , if4 =k, (132)
cij — €y, min{0, —sgn(el, Jepit = cij + [sgn(ekj)ei,|+cny  if i # k.

The Lemma follows immediately. O

Let 0 : q — q' be a cluster transformation, presented as a sequence of mutations followed
by a permutation:

oia=qo 25 g 22 g s (133)
Following (131), we get a sequence of C-matrices

Id=Cy 250y 2 o, s o (134)
Denote by cgs) the i-th row vector of Cj.
Definition 4.4. The canonical sequence € = (£1,...,em) of signs for the cluster transformation

(133) is given by €4 1= Sgn(C/(iil))-

Recall the half reflections 5, and 1, of basis defined by (48) and (53) respectively.
The canonical sequence € = (g1,...,&y,) of signs gives rise to the following composition of
bases mutations and permutation assigned to the cluster transformation (133):

o) I=To " oL ot

Let {e;} be a basis of A defining the quiver q. Then ¢®) transforms it to a new basis {el} of A,
defining a quiver isomorphic to q':

(0) “211 (1) “Zz Hiom (m)y = /
fei} ={e; '} —{e; '} — ... = {e; 7} — {eg} (135)
Lemma 4.5. The matriz C, = (c¢;;) expresses the vectors {e} via {e;}:

e, = Y cijej, Viel (136)
jel

Proof. Since ey = sgn(c,(js_l)), the half reflection 4i;* coincides with the transformation (132). O
Corollary 4.6. The skew-symmetric matric e of q' is given by eq = C’oeqC’;:F.
Proof. It follows directly from (136) and the definition of eq. O

Corollary 4.6 asserts that C, determines the isomorphism class of . In particular, if o is a
cluster DT-transformation (i.e.,C, = —Id), then ¢’ = q.
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A sign-coherent presentation of cluster transformations. Recall the vectors f{ and the
quantum cluster transformation ®(i), see (80) and (81):

o(i) = Ad\I;(Xfls)sl 0...0 Ad\p(stl)sm 0 i°(i). (137)
We consider the positive cone generated by the basis {e;}
AT 1= ®@ier Zsoei.
The sign-coherence property of C-matrices from Theorem 4.2 is equivalent to the following.

Theorem 4.7. Given a quiver cluster transformation o : q — q’, for the canonical sequence

of signs we have
fee At Vse{l,...,m}. (138)

This is the unique sequence of signs for which (138) holds.
Proof. By the definition (80) of the vectors f£, they are exactly the vectors ase,(i_l) in (135). O

Recall that 'i‘q is the algebra of g-commutating power series in the basis {X,,}. Since for
the canonical sequence of signs € each of the Xy: is a monomial with non-negative exponents in
this basis, it make sense to consider a product of formal power series:

(i) = U( Xy ) .. O(Xy: ) € Ty (139)
Then the quantum cluster transformation (81) can be written as

(i) = Adg o i(i). (140)

Decompositions of cluster transformations. One can exchange permutations 7 and quiver
mutations: 7o pig = pr(x) © 7. Therefore every quiver transformation o can be decomposed as

0 =Ty 0o,

where i, is a sequence of cluster mutations and 7, is a permutation. By (140), we can decompose
the quantum cluster transformation ® (o) into two parts

®(0) := Adg,) © X0, Yo =1 (iy) 0 ®(m,) (141)
By Lemma 4.5, the X, corresponds to the change of basis, also encoded by the C-matrix.
Theorem 4.8 ([IX13]). Let 01,09 be two cluster transformations starting from the same quiver.

1. The following are equivalent

Do) =P(o2) <= Yy =%, < C, =0C,,. (142)

2. If o100y Yis a permutation, then the corresponding formal power series are the same

‘I’(im) = ‘I’(im) (143)
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Remark. The first part of Theorem 4.8 is a reformulation of Theorem 3.2. It asserts that
the C-matrices determine cluster transformations. The second part asserts that every cluster
transformation o : @ — q’ canonically determines a formal power series

A~

W, = 1+ higher order terms € Tq (144)

which does not depend on the decomposition of o.

As an application, the ¢ — 1 limit of Adg,_ gives rise to the F-polynomials from [FZIV].
Precisely, recall the double of the quantum torus algebra T obtained by adding new generators
{Ag, }ier satisfying

q2Aerei ifi=j,
Ae; Xe, otherwise.

AeiAej = AejAei; XeiAej = {
Let [¥,, A;] := \IloAi\IlglAzl € ’i‘q. Then the F-polynomials associated to o are
F; = linri[\Ilo,Ai], 1€l
q*)
Now we can state the following crucial result.

Theorem 4.9 ([K12, Th.6.5]). If K is a cluster DT-transformation, then the formal power
series Wk is the quantum Donaldson-Thomas series (10).

4.2 An example: quantum cluster variety for the quiver of type A,

Let q = (A, {e1, e}, (*, *)) be a rank 2 quiver with (ej,e2) = 1. Then

XelXeg = qX61+62 = querel'

DT-transformation and the quantum pentagon relation. Let oy = poopuy. The canon-
ical sequence of signs for o1 is ¢ = {1,1}. The ¥,, is determined by a change of basis:

{er,e2} =5 {—e1,e2} 22 {—e1, —e2}. (145)
We have
ff = €1, f2€ = €2.
Therefore

lI’(iUl) = lI’(Xel)lIl(XGQ)'

Let 09 = 79 0 o 0 g 0 g, where 715 is the permutation exchanging 1 and 2. The canonical
sequence of signs for o9 is ¢ = {1,1,1}. The %,, is determined by a change of basis:

{61762} 2, {61 + e, —62} RN {—61 - 62761} £, {—627 —61} = {—617 —62}- (146)

We have
fi=ex fi=e+e [5=ce1.

Therefore
lI’(iUz) = ‘I’(Xez)l:[l(XelﬂLez)‘I’(Xel)'
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Note that ¥,, = X,,. Therefore o is equivalent to 2. In this case, the identity (143) gives

rise to the Faddev-Kashaev pentagon relation of quantum dilogarithms

‘I’(Xel)lIl(XeQ) = lI’(XGQ)lII(XerGQ)‘I’(Xel)' (147)

By Definition 3.5, 01 = o9 is the cluster DT-transformation for q. Formula (147) factorizes
the quantum DT-series Eq in two different ways.

The canonical basis and DT-transformation. There are 5 basic polynomials

Pl = X617 P2 = X—€27 P3 = X—61—62+X—617 P4 = X—el +X62—61+X€27 PS = X€2+X€1+62

satisfying

P oP,=1+qP;1, 1€ Z/5Z

The polynomials
qich 'C+1P id’

)

C,d € Z)O, 1€ Z/5Z
give rise to a linear basis of O,(Xy) parametrized by Aq(Z")

¢ Py Py if a>0,b<0;
q PPt ifa>0,b=0;
Ta(a,b) =< q®PiP ifa<0,b>0;
g pimapstif 0 < b < 0;
PP ifh<a <0

The basis {I4(a,b)} admit the following properties:

1. T4(a,b) = Xqe,+be, + higher order terms.

2. T4(a,b) is selfdual for the involutive anti-automorphism # such that *X, = X,,, *q = ¢~ ..

3. {I.a(a,b)} is compatible with cluster mutations.

4. The DT-transformation is a Z[q, ¢~ !]-linear isomorphism preserving the basis

DT : Oy(Xy) = Of(Xy), P> Py (148)

The map Dy. Consider the opposite quiver —q = (A, {e1,ea}, (*,*)O) such that (e1,e2)o =
—1. Its associated quantum torus T_q has generators X,, v € A and relations

X°oX2 = glvwe xe

vtw:

There are 5 basic polynomials

Q1= X +X¢

ej+ez?

Q2 = X° +X§1762+X§17 Q3 = Xierez*'Xiez’

—eo

Q4 = Xielv Q5 = ng'

satisfying

Qi+2Qi =1+ ¢ 'Qis1, i € 7/5Z.
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Similarly the polynomials
Q5,1 QY, c,deZ=q, i€Z/5

provide a linear basis of Oy (Xye)

Q5 Q8 if a>0,b<0;
7*Q4Q} ifa>0,b>0;
Lao(a,b) = § ¢ *°Q5QL° ifa<0,b>0;

q(a—b)sz—anb ifa<b<O0;
O IQ QY ifb<a<O.

Here {I4-(a,b)} satisfy the same properties as {I4(a,b)}.
There is an natural isomorphism

it T_q— Tq X0 — X_,, q—q L.
The map Dy is an isomorphism

Dy :=DTqo0i: Oy(X_q) — O4(Xy), Tao(a,b) —> Ta(a,b), g q ' (149)

4.3 Canonical bilinear form on =representations of quantum cluster varieties

Let Hy be a split torus with the group of characters given by the kernel of the form (x,*) on
the lattice A. Then, see [F'G2, Section 2.2], the cluster Poisson variety X is fibered over the Hy:

0: X — Hy.

The subalgebra of functions §*O(Hy) is the center of the Poisson algebra O(X).
There is a g-deformation of the Poisson algebra O(X) is given by the #-algebra O, (X).
The center of O,(X) is canonically identified with the algebra O(Hy) ['G2, Section 3.4.1].
A cluster Poisson variety X gives rise to a Hilbert space Hy with the scalar product (x, )
together with the following quantisation data [FGA]:

e A unitary projective action of the cluster modular group I' in the Hilbert space Hx.
e A I'-equivariant =-representation of the #-algebra O, (X) in the Hilbert space Hx.

e A decomposition of the unitary representation Hxy of the cluster modular group I' into an
integral of Hilbert spaces Hx ), parametrised by the real positive points A € Hy (R%):

Hy = f Hoe adA. (150)
)\EHx(Rj)

A point A € Hy (R ) gives rise to a character Cy of the center of Oy(X'), given by evaluation
of polynomials P € O(Hx) on A. The center acts on the Hx y by the character C}.

e Any cluster transformation C of X’ gives rise to a unitary operator
C:Hyr— Hun (151)

One has CI/O\CQ = - (/]\1 o 6\2, where p e C*, |u| = 1.
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In this section we establish one more feature of this picture:

Theorem 4.10. Assume that the Donaldson-Thomas transformation for a cluster Poisson va-
riety X is a cluster transformation, denoted by DT y. Then there is

e A T'-equivariant non-degenerate bilinear form, symmetric up to a unitary scalar py € U(1):
By :Hx®Hye — C,  Bx(v,w) = px - Byo(w,v), |ux|=1. (152)

It provides a non-degenerate pairings
Bxx:Hx x®@Hxo—y — C. (153)
Proof. According to (151), the cluster DT-transformation DT y gives rise to a unitary operator
DTy : Ha — Ha. (154)

Since the cluster transformation DTx is in the center of the cluster modular group, the
operator DTy commutes with the action of the cluster modular group I'.

Recall the isomorphism of quantum spaces from Lemma 3.8:
iyt Xy —> Xr;jv iyt Og(X°) — Oy(X), (155)
(X)) = X7 R@=q"

Let H be the complex conjugate of a complex vector space H. It is the same real vector
space with a new complex structure given by cov :=¢cv, ce C, v e H.

Let {X]} be cluster coordinates in O,-1(X), and {X;} the ones in Oy(X). Given a repre-
sentation p of the x-algebra O, (X) in a Hilbert space Hx we get a new representation p of the
s-algebra Og(X) in Hy by setting

PXD) = p(Xi),  X[e OgX), Xi e OglX).
Indeed, we have
PX, X, =7V X} 1) = p(Xa)p(Xp) — 4 p(Xass) = 0.

This construction is compatible with interwiners between the Hilbert spaces assigned to
quivers, lifting cluster transformations. In particular the assignment Hy — Hy is I-equivariant.

Assume now that |¢| = 1. Then the I'-equivariant representation p of the %-algebra O,(X°)
in the Hilbert space H yo gives rise to a I'-equivariant representation p of the *-algebra O, -1(X°)
in Hxo. Applying the isomorphism i} we get a I'-equivariant unitary isomorphism

iyt Hy — Hao. (156)
The composition of the operators (154) and (156) is a I-equivariant unitary operator
]A)X ::a’\g o ﬁ‘x : Hy—Hao.
Therefore we get a complex bilinear I'-equivariant non-degenerate form

By : Hx @Hye — C, By (v,w) := (v,Dx(w)). (157)
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Since Dyo oDy = Idy is the identity map, the composition of the unitary operators D x and
Do is the identity map up to a unitary constant py € U(1):

Dyo oDy : Hy —> Hx, DxcoDy =px-Id, |px|=1. (158)
Therefore
B, ) = 0 D)) = (Bo(v), D o D)) "2 (150
px - (Do (v),w) = pry - (w, Do (v)) = px - Bae (w,v).
O

Applications. Given an oriented decorated surface S, we denote by S° the decorated surface
S with the opposite orientation. Then we have a canonical isomorphism:

Xos = Xg e
Therefore the map D% = (ix o DT)* provides us an involution
D% : O4(Xg5) — Op1(XG5) = Og-1(Xas0).

4.4 Proof of Theorems 3.10, 3.6

Proof of Theorem 3.10. By definition, K is a cluster DT-transformation if and only of
Ck = —Id. The rest follows directly from the next Lemma.

Lemma 4.11 ([N7, Th.1.2, (1.12)]). For any cluster transformation o, we have Cp(,)Cy = 1d.

Proof of Theorem 3.6. It suffices to show that
Ck =-1d = C,ikgop—1 = —Id.

It is trivial when o is a permutation. We prove the case when o = py is a cluster mutation.
Set eq = (&i5). By Lemma 4.3 we get

0 if j # k,
CﬂkOK =—-Id+ D, where D = (Dij)7 Dij = [—Eik]Jr lfj = k,l #* k, (160)
2 ifj=k,i=F.

2

Note that D? = 2D. Therefore (CMkOK) = (— Id + D)2 =Id—2D + D? =1d. By Lemma 4.11,

Cr@)om, = Criuor) = (Crpor) = —1d + D.

Here F(K) o pu, is a cluster transformation from —p(q) to —q. Note that e_q = (—&;5). Using
Lemma 4.3 again, we get C,, cp(K)oy, = —1d. By Lemma 4.11, we have

CupoKop, = (CF(;U'kOKO;U'k))il - (CﬂkOF(K)Oﬂk)il = —Id.
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A combinatorial characterization of cluster DT-transformations [[K12]. A transfor-
mation o : q — q’ is reddening if all the entries of C, are non-positive.

Lemma 4.12. If o is reddening, then F(co) is reddening.

Proof. If F(0) is not reddening, then at least one of the entries of Cp () (say dij) is positive.
By the sign-coherence of C-matrix, the entries on the i-th row of Cp(,) are all non-negative.
Since o is reddening, the entries on i-th row of the product Cp(5)Cy are all non-negative, which
contradicts the fact that Cp(,)Co = 1d. O

Proposition 4.13. If o : q — q’ is reddening, then there exists a unique permutation 7 : q — ¢
such that wo o is the cluster DT-transformation for q.

Proof. Let ¢; be the i-th row vector of C,. Let d; = (d;1, .. . d;y) be the i-th row vector of C’F(J).
Let e; = (0,...,1,...,0) be the i-th unit vector. By Lemma 4.11

diici + digco + ... + dipc, = €, Vi e {1, ,’I’L}

By Lemma 4.12, every d;xck € (Zx0)"™. Therefore for each i there is a unique j := m(¢) such that
dijCj = €;. Since dij € Zgo and cj € (Zgo)n, we get dij = —1, Cj; = —€;. Thus Cﬂoo = —Id. O

Corollary 4.14. If 0 : @ — q’ is reddening, then the formal power series W, in (143) is the
quantum DT-series for q.

Proof. Follows directly from Theorem 4.9 and Proposition 4.13 U

The following Proposition provides a criterion for recognizing permutations. Its proof goes
the same line as that of Proposition 4.13.

Proposition 4.15. A cluster transformation o : q — q' is a permutation if and only if all the
entries of Cy are mon-negative.

Proof. We prove the “if” part. The other direction is clear. Using the same argument as in the
proof of Lemma 4.13, it follows that there is a cluster permutation 7 such that C,., = Id. By
Corollary 4.6, 7 o ¢ maps the quiver q to itself. By Theorem 3.2, 7 o ¢ is an identical map. [

5 Two geometric ways to determine cluster DT-transformations
for XPGLQ,S

5.1 X-laminations and cluster DT-transformations for Xpqr, s

We start with a geometric interpretation of integral tropical points of the space Apqr,.s.

Laminations on closed surfaces were defined by Thurston. An important subclass of lamina-
tions is given by integral laminations. There are two kinds of laminations on decorated surfaces,
discussed in [FG1, Section 12], [FG1a]. Let us recall the important for us integral X-laminations
(also called unbounded measured laminations in loc.cit.).

We alter a decorated surface S by cutting little discs around the punctures. Abusing notation,
we denote it by S. We define the punctured boundary of S as the boundary of S minus the special
points. It is a union of punctured boundary components, which are either boundary circles or
boundary intervals. The boundary circles are parametrized by the punctures on the original
decorated surface. Each boundary interval is bounded by special points.
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Definition 5.1. An integral X -lamination on a decorated surface S is a union of finitely many
non-intersecting and mon-self-intersecting simple closed loops and arcs connecting punctured
boundary components, each considered with a positive integral weight, plus

e A choice of an orientation of each boundary circle of S which bears an arc of the lamination.
In addition, we require that

e There are no trivial arcs between the neighboring boundary intervals.

e There are no loops homotopy equivalent to boundary circles.
Denote by Lx(S;7Z) the set of integral X -lamination on S.

The group (Z/2Z)™ acts on Lx(S;7Z) by altering orientations of the boundary circles bearing
arcs of the laminations. The action of (Z/2Z)" on Xpcr,s by altering framings assigned to
punctures is positive. Therefore it can be tropicalized and acts on the set Xpgr, s(Z).

The mapping class group I's acts on both Lx(S;Z) and Xpgr, s-

The following result is [F'G1, Theorem 12.1] in the case of rational laminations on a surface
with punctures. See the general case in [F'Gla].

Theorem 5.2. There is a canonical T's x (Z/27)"-equivariant isomorphism of sets
ﬁ/\/(S; Z) — XpGLZ’S(Zt).

Each ideal triangulation 7 of S gives rise to a cluster Poisson coordinate system {Xpg} of
XpGL, s, parametrized by the edges E of 7. The tropicalization of these coordinates is a cluster
tropical coordinate system {xp} on the set Lx(S;Z), defined as follows.

Let l € Lx(S;Z). We twist each of its arcs ending at a boundary circle infinitely many times
along the orientation of this boundary circle entering the definition of [, see Figure 7.

&

Figure 7: Rotating arcs of a lamination ending on a boundary circle.

We count the minimal intersection number of each connected component of the obtained finite
collection of curves as explained on Figure 8, and multiply it by the weight of the component.
Note that the part of a curve rotating around a vertex does not contribute to the coordinates. In
particular, the infinite number of intersections of an arc circling around a vertex do not count.

Each ideal triangulation T of S gives rise to a collection of basic laminations {l;ﬂ} assigned
to the edges E of 7. The lamination ZE is a single arc on S with multiplicity 1, defined as
follows. Take an end of E. If it goes to a puncture, we just add the canonical orientation of the
corresponding boundary circle, determined by the orientation of S. If it ends at a special point,
we rotate the end slightly following the orientation of the boundary.

Let {zr} be the coordinate system assigned to the triangulation 7. By Figure 8, we have

rp(lf) =1, otherwise zp(l}) = 0.
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Figure 8: Counting contribution of an arc to the coordinate xp assigned to a diagonal E of a
quadrilateral. An arc going around a single vertex contributes 0. An arc crossing the diagonal
left-to-right contributes +1, and the arc crossing the diagonal right-to-left contributes —1. These
rules do not require an orientation of the arc.

It means that {I5} are the basic positive laminations for the ideal triangulation 7. The termi-
nology “basic positive laminations” was suggested by this example.

The longest element wo = (1,1, ...,1) € (Z/2Z)" acts on Lx(S;7Z) by altering the orientations
assigned to all boundary circles. Recall the cyclic shift by one action rg € I's. We consider

Cs =rsowgel's x (Z/2)". (161)
Proposition 5.3. The map Cs sends a positive basic lamination lg to a negative one:
zp(Cs(if)) = =1,  otherwise xp(Cs(lf)) = 0.

Proof. Given an edge F of the ideal triangulation 7, there are three cases:

1. The edge F connects two boundary circles, which could coincide. Altering orientations of
the boundary circles we change the counting sign for the arc intersecting F, see Figure 8.

2. The edge F connects two boundary intervals. The rotation rs by one changes the multi-
plicity +1 intersection to the multiplicity —1 intersection, see Figure 9.

N

Figure 9: An edge E connecting two boundary intervals.

3. The edge F connects a boundary circle with a boundary interval. The resulting lamination
Cs(1%) is shown on the right of Figure 10.

TN

Figure 10: An edge F connecting a boundary circle with a boundary interval.



The following result is the G = PGLs case of Theorem 1.3.
Theorem 5.4. IfS is admissible, then the action of Cs on Xpar, s is the cluster DT-transformation.

Proof. If S is admissible, then the action of Cg is a cluster transformation ([F'GG1]). The rest
follows from Theorem 3.4 and Proposition 5.3. O

When S has a single puncture and no special points, i.e., S is not admissible, the action
of Cs = wy € Z/27 is not a cluster transformation. For example, when S is a punctured
torus, all cluster transformations preserve each of two tropical hemispheres, but the action of
wp interchanges them (c¢f. [FG3)).

5.2 Cluster divisors at infinity and cluster DT-transformations for Apqy, s

We recall the correspondence between basic laminations and cluster divisors of X-variety at
infinity borrowed from [F(:3]. Using this correspondence, we give an alternative (rather simple)
proof of Proposition 5.3 for the case when S is a disk without punctures. We wish to apply the
same approach to more general cases in the future.

Basic laminations and cluster divisors at infinity. Let X be a cluster coordinate on a
cluster Poisson variety X, assigned to a basis vector ej of a quiver q = (A, {e;}, (¥, *)). Deleting
e, we obtain a subquiver q, , whose lattice is spanned by the basis vectors different from ey,
with the induced form. Mutating the quiver q., we get a cluster Poisson variety X, of dimension
one less than that of X

The variety X, sits naturally on the boundary of X in two different ways:

ek
Xf o X o . (162)

Namely, adding the coordinate Xj to any cluster coordinate system {X]’} on X, we get a
rational cluster coordinate system on X. The cluster divisor X' is given in this coordinate
system by the equation X = 0. Mutations at the other directions do not change the equation
X} =0, as is clear from (82). Similarly, the cluster divisor & is obtained by setting X}, = co.

Recall the basic laminations l}k, Iy eX (Z') associated to the coordinate Xj,. For a generic
p € X;& one has X (p) = 0, while the values {X;(p)} of the rest coordinates {X;} are well defined
and non-zero. Thus the irreducible divisor X% can be naturally identified with l;}k:

ord s (X) = X{(I5,) =1, ordyy (X;) = X}(1%,) =0

Equivalently, l}k is represented by a generic path p(¢) in X' which approaches p as t — 0.
Similarly, the divisor X, _is identified with l;(k.

If the DT transformation DTy of X is a cluster transformation, then it maps l}k to l%k.
Therefore it gives rise to a birational map from X' to X . Note that X and X are both
isomorphic to the cluster Poisson variety &, . Therefore DT » induces a birational map

DTy : X, — X, (163)
Conjecture 5.5. The induced map (163) is the DT-transformation of X, .
Remark. If ¢ is a sink of the quiver q, i.e., (eg,e;) = 0 for all j, then the Conjecture follows

directly from [IXS1, p.138, Proposition 16].
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The cluster divisors at infinity for the space Apgr, s [FG3]. Let us adopt a dual point of
view on the definition of the space Xpqr, 5. We assume that given a framed PGLs-local system
on S, the framing is defined as a covariantly constant section of the associate P'-bundle over
the punctured boundary of S, that is over dS — {special points}.!* A dual ideal triangulation
T of S is a triangulation of S whose vertices are either in the boundary circles, or inside of the
boundary intervals, so that each boundary interval carries just one vertex of 7.

P €3

Figure 12: Cutting a punctured disk along the ideal edge F, getting two new special points.

Given an ideal edge F of S, the cluster variety assigned to F, sitting on the boundary of the
space Xpqr,,s, is described as follows, see Figures 11-12. Cut the surface S along the edge F,
getting a new decorated surface Sg, which may be disconnected. Its special points are the ones
inherited from S plus two new ones: the centers of the two new edges obtained by cutting the
edge E. If E ends at a boundary circle, then cutting along FE, the boundary circle becomes a
boundary interval ending at the two new special points. The pair of divisors at infinity assigned
to I/ are both identified with the moduli space Apgr, s;:

+ Y —
XpaLy sy © APaLys 2 Apar, s,
Proposition 5.3 is a direct consequence of Proposition 5.6.

Proposition 5.6. For any decorated surface S, the rational functions CE(X;) on the space
XpcL,,s have the following property:

1. Ifi is different from k, the function CE(X;), evaluated on a generic path p(t) representing
the basic lamination l}k, has a finite nonzero limit as t — 0.

2. The function C(Xy), evaluated on such a path p(t), has a simple pole as t — 0.

Proposition 5.7. Proposition 5.6 is true when S is a disk without punctures.

131n the original definition, the framing is a reduction to a Borel subgroup near every marked point.
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Proof. Let C be a finite subset of the circle S'. Let R be an edge with the vertices {re,7,} <
S1 — C. It seperates S* into two arcs. The points of C' on the arc going clockwise from r, form
a subset C. The rest points of C' form another subset C,. Therefore C' = C, u C,.

Denote by X the space of configurations of points on P!, parametrized by the set C. Its
partial compactification X'¢ has a divisor X&L (R) consisting of the configurations, of which the
points parametrized by C, are “very close” to a given point z, € P'. Equivalently, the points
parametrized by C, are “very close” to a given point on z, € P!, see Figure 13.

Figure 13: The red dashed edge R describes a divisor at infinity.

Consider the two connected intervals of ST — C containing the points re,7,. Their ends are
two e-vertices and two o-vertices. They form a quadrilateral. Let £ and F' be its diagonals. We
assume that E crosses R “from left to right”, see Figure 14.

Figure 14: Rotating the set C clockwise and keeping the triangulation intact, amounts to rotating
the triangulation counterclockwise. So the edge E moves to the edge F.

Let 7 be a triangulation of the disc with vertices at C', containing the edge E. Let D
be an edge of 7. Denote by Qp the quadrilateral of 7 containing D as a diagonal. Every
configuration in X assigns to the vertices of Qp a quadruple x1, ..., 24 € P! so that D = (21, z3).
Its corresponding cluster X'-coordinate is the cross-ratio of z1, ..., x4:

(21 — x2) (w3 — w4)

(2 — 73) (21 — 7). (164)

Xp =rt(z1,22,23,24) :=

Let p(t) be a path approaching a generic point p of X7 (R). We consider the limit of Xp(p(t))
as p(t) approaches p. If D is different from FE, then Qp cannot contain two e-vertices and two
o-vertex simultaneously. Therefore Xp(p(t)) has a finite nonzero limit. For the edge FE, the
quadrilateral ) contains two e-vertices and two o-vertex. By (164), Xg(p(t)) — 0 as p(t) — p.
Thus the path p(t) represents the basic positive lamination Z}E.

Let 7’ be the “counterclockwise rotation by one” of 7. It contains the edge F. By (164),

Xr(p(t)) = Cs(Xp)(p(t)) —» 0, as p(t) —p.
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For any edge D’ of T different from F, the limit of X/ (p(t)) is finite and nonzero. These are
precisely the properties we needed in Proposition 5.6. ]

6 Birational Weyl group action on the space Ags

Let G be a split semi-simple group. Let us assume that S has n many punctures.

— 0
0 -1
SLy — G. A twisted G-local system on S is a G-local system on the tangent bundle of S minus
zero section with monodromy sg around a loop given by rotating a tangent vector by 360° at a
point of S. Since sé = 1, the loop orientation is irrelevant.

Recall the principal affine space A = G/U. Elements of A are called decorated flags.

The canonical central element sg € G is the image of under a principal embedding

Definition 6.1. The moduli space Ags parametrizes twisted G-local systems on S with an
additional data, a decoration, given by a reduction to a decorated flag near each marked point.

This implies that the monodromy around each puncture is unipotent. However, thanks to
the freedom of choices of decorations, the dimension of dim.Ag s will not decrease. For example,
if S has only punctures, then one has

dimAgs = dim&gs.

If the group G has trivial center, then the principal affine space A is the moduli space of
pairs (U, x), where U is a maximal unipotent subgroup of G, and x : U — A! is a non-degenerate
character (c¢f. [GS, Section 1]). For general G, there is a canonical non-degenerate character ya
assigned to a decorated A € A.

The group G acts on A on the left. The stabilizer Up of A € A is a maximal unipotent
subgroup of G. Recall the set I indexing simple positive roots of G. The character xa provides
an isomorphism

ian: Up/[Ua, Ua] = AL (165)

Let ¥ : AT — A! be the sum map. Then xA = X oia. This characterizes the map ia.

Let p be a puncture. A decoration at p is a decorated flag A, in the fiber of £4 near p,
invariant under the monodromy around p. It defines a conjugacy class in the unipotent subgroup
Up, preserving A,. So we get a regular map

pp : Acs — Un,/[Ua,, Up,] = AL, (166)

The composition p, o o is called the total potential VW, at the puncture p. It is a sum of the
components, called partial potentials, parametrized by the simple positive roots a:

Wy = Wya. (167)

ael

Let R be the lattice spanned by the simple positive roots of G. For any abelian group A,
we have Hom(R, A) = A’. Using the embedding G,,, < A we get an open embedding

i:T:=Hom(R,G,) = (G, — AL
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The monodromy map, followed by the birational isomorphism i~!, provides a rational map
fip =i tou,: Ags — T. (168)
Summarizing, we arrive at a commutative diagram, related to a puncture p on S:
T = Hom(R, G,,,)
fip J{
(2
Hp T 2
Ags ——U/[U,U] = A' —— A

The Cartan group H of G acts from the right on A. Therefore the group H" acts on Ag s
by rescaling decorations at punctures

H" x Ags — Aggs, (h,a) —> h-a (169)

Forgetting the decorations near punctures, we get a principal H”-fibration over the moduli space
Locg’s of twisted G-local systems on S with unipotent monodromies around the punctures:

pa: Acs — Locgs. (170)

The projection p4 and the rational map & =: [ [ /i, provide a diagram

Ags—l
pAl (171)
Locg’s
The Weyl group acts on the lattice R, and hence on the torus T.

Theorem 6.2. For each puncture p of S, there is a canonical birational action of the Weyl
group W on the space Ags such that

1. The group W acts along the fibers of the projection pa. It alters only the decoration at p.
The projection i, is W -equivariant.

The actions at different punctures commute. So the group W™ acts birationally on Ags.

> e e

The action o of the group W™ intertwines the action - of H* on Ags:

H" x Ags — Ags, wo(h-a)=w(h) (woa), weW", heH" aeAgs.

Proof. The map p4 has a multivalued “section” i~!(1). For any generic u € Locg’s, we choose
an element

s€ i, (1) npy'(u).

Since the fiber p;ll(u) is an H™-torsor, the s chosen induces an isomorphism

H" — p;ll (u), h+—h-s. (172)
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We define an action o of the group W™ on the fiber p;ll (u), making it W™-equivariant, setting
wo (h-s):=wh)-s. (173)

It remains to show that the action o does not depend on the choice of s. Let X*(Y) be
the character group of a split torus Y, and X,(Y) the cocharacter group. There is a natural
embedding X*(T"™) < X*(H"). Its dual X,(H") — X.(T™) provides an isogeny:

H" = X,(H") ®G,, — T" = X, (T") ® Gy, (174)
Following the definition of f, it is easy to show that (174) coincides with the map

H" (172) —1 A ™"
— Dy (u) — . (175)

The choices of s are differed by kernel elements of (174). Since (174) is W™-equivariant, its
kernel is W™-invariant. Thus the W"-action o in (173) does not depend on the choices of s. [

Comparing with the rational Weyl group action on the space Xgs. For any G, the
group W™ acts by birational automorphisms of the space Xgs, see Section 1.2. Although it
looks like the W™-action on the space Ags has nothing to do with it, they are closely related.

Here is an analog of diagram (171) for the space Xgs. There is a W"-equivariant projection

m: Xgs — H", (176)

given by the semisimple part of the monodromies at the punctures, enhanced by framings.
For example, when G = GL,,, a generic monodromy a each puncture has m many different
eigenvalues. A framing near the puncture is equivalent to an ordering of these eigenvalues. It
gives rise to the projection (176). The Weyl group acts on Xg s by changing the ordering.
Forgetting the framing, we get a projection onto the moduli space of G-local systems

px : Xgs — Locgsgs. (177)
The projection py and the map 7 provide a diagram

Xos ——H"

pxl (178)

Locg s

The Weyl group acts along the fibers of the map py. The projection 7 is W"-equivariant. The
projection py is a Galois cover over the generic point with the Galois group W™.

Weyl group action for G = SLs and tagged triangulations. The action of the group
(Z/2Z)™ on the space Agt,, s was introduced in [FG1, p.186]. It is very closely related to the ideal
tagged triangulations of Fomin-Shapiro-Thurston [FST], [FT]. Namely, any ideal triangulation
T of S provides a cluster coordinate system C7y on Agr,s. However if S has more than one
puncture, not all cluster coordinate systems on the space Asy,, s can be interpreted this way. In

63



this case the group (Z/2Z)" acts by cluster transformations, and so for any element w € (Z/2Z)"
there is a new cluster coordinate system C,,7 := w*Cr.
Any element w € (Z/27)" is determined uniquely by a subset P,, of the punctures, so that

w=TT

PEPw

Here w, is the generator of Z/2Z assigned to a puncture p. The cluster coordinate system
Cw7 coincides with Fomin-Shapiro-Thurston’s cluster coordinate system assigned to the tagged
triangulation obtained by putting tags at the ends of all arcs of T" ending at the punctures p € P,.
This way we get almost all cluster coordinate systems, but not all of them. The exceptional ones
are assigned to tagged triangulations which can have a puncture with just two arcs entering,
which must be isotopic arcs, one is tagged, one is not, so that their other ends are either both
tagged, or not. We discussed tagged triangulation in detail in Section 7.2.

The very existence of the W™-action suggests a generalization of majority of tagged trian-
gulations for the group SL,,: they are obtained by the action of elements of the group W" on
the cluster coordinate systems assigned to ideal webs on S studied in [G].

7 Example of cluster DT-transformations

We consider a basic example of the DT-transformation for the punctured disk, which serves as
a basic model for studying the cluster nature of Weyl group actions in the next Section.

7.1 Cluster DT-transformation for the punctured disc
Cluster set-up. A quiver q can be described by a skew-symmetric matrix eq = (£;;), where
i,jel={1,...,N}, €ij = #{arrows from i to j} — #{arrows from j to ¢}.

Let Fq = Q(X1,..., XN, A1,...,An) be the field of rational functions associated to q.
Each k € I gives rise to a mutated quiver q' = u4(q) such that ey is given by Formula (49).
Let Foy := Q(X1,..., Xy, A}, ..., AY). Consider an isomorphism pj : Foy — Fq:

R if i =k (179)
luk‘ T T XZ<1 + X]{—Sgn(aik))*€ik lf Z ;ﬁ k7

-1 —&ij Eij Y
P AL :{ ﬁlf Ijjey<0 457 + Tjjey=0 457) iz ;]’z (180)

The map puf is the cluster mutation at the direction k. It is involute.
Let 7 be a bijection from I to itself. Let @' = 7(q) be the quiver obtained via relabeling the
vertices ¢ of q by 7(7). It induces an isomorphism 7* : Foy — Fy, called a cluster permutation:

W*XZ( = X7r71(2-), W*A;- = Aﬂ.fl(i).
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q2 qs3 q4

o
or
[\)

Figure 15: The quivers qo, qs, and qg.

Basic example. Let N > 2. Let qu be a quiver of N vertices. When N = 2, it has no arrows.
When N > 2, it is a cycle with vertices labelled clockwise from 1 to N. See Figure 15. 14
Let (i1,1i2,...,in) be a permutation of {1,2,..., N}. Define a cluster transformation of qy

TN = fliy © ... O flin | OTin yin O Min g O--- O fligs (181)

where py, is the cluster mutation at the directions k, and m;, , i, is the cluster permutation
switching the labels iy_1, ixy. We frequently write 7 instead of 7.

Theorem 7.1. The cluster transformation Tn does not depend on the choices of permutation.
It maps the quiver qn to itself. Thus Tn is an order 2 element of the cluster modular group
Iqy- The induced isomorphism 7y of the field Fq, is determined by

F;

Tjthz = AZW, TK;XZ = 7Xi_1ﬂ_27

(182)

where

N

W= 5
j AjAj+1

Fi=1+X;+ X;X; 1+...+ X;X,1... X;_nNuo.

Let r be the cluster permutation that relabels the vertex i of qy by ¢ — 1. Since qu is
rotation invariant, r € I'q, .
Corollary 7.2. The composition K := r o Ty is the DT-transformation of qy.

Proof. By Theorem 7.1, we have

Fiqa
K*X, = 75 X401 = XZ-FZ{ (183)
By the explicit formulas of F;, we have F! (l;r) =0 for all i,j € I. Therefore
(K*X:)' (1) = Fia (i) = FL (1) = Xi() = = X{() = X[ (7).
]

14 Starting from a Dynkin diagram of type Dy, we assign orientations to each edge, obtaining quivers called
the Dynkin quivers of type Dn. It is known that all the Dynkin quivers of type Dy are equivalent to qn.
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7.2 Tagged ideal triangulations of a once-punctured disk.

We present a combinatorial model for the cluster transformation 7.

Let Dy be a once-punctured disk with N special points on its boundary. The special points
of Dy divide its boundary into N boundary intervals. Let m be the set of special points and
the puncture of Dy. An ideal arc  is a curve up to isotopy in Dy such that:

e the endpoints of v are two different points'® in m;

e ~v does not intersect itself;

e except for the endpoints, v is disjoint from m and the boundary of Dy;
e v is not isotopic to a boundary interval of Dy .

Following [F'ST, Definition 7.1], a tagged arc «y is an ideal arc v tagged with some extra combi-
natorial data such that:

e if v connects the puncture and a special point, we tag v either plain or notched,
e if v connects two special points, then we do not assign any data.

In the figures, the plain tags are omitted and the notched tags are presented by the < symbol.

Denote by A™(Dy) the set of tagged arcs of Dy. Two different tagged arcs a, f € A™(Dy)
are called compatible when one of the following cases holds:

e if o and S both contain the puncture, then o and [ are tagged in the same way unless
they correspond to the same ideal arc;

e if either o or § is disjoint from the puncture, then we require that a and (8 are disjoint
except for their endpoints.

Definition 7.3 ([F'ST]). A tagged ideal triangulation of Dy is a mazimal collection of piecewise
compatible tagged arcs. Let v be a tagged arc contained in a tagged ideal triangulation T of Dy .
A flip of T at 7y is a transformation of T that removes v and replace it with a (unique) different
tagged arc ' that, together with the remaining arcs, forms a new tagged ideal triangulation T'.

Figure 16: A tagged ideal triangulation corresponding to the quiver qy

BWe require that the endpoints of v are different in the case of once punctured disk. For a general decorated
surface S, the the endpoints of v may coincide.
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The cardinality of every tagged ideal triangulation of Dy is N ([F'ST, Theorem 7.9]). Let us
fix a tagged ideal triangulation 7. Let us label the tagged arcs in 7 by 1 through N. It gives
rise to a quiver q by placing a vertex in the midpoint of each tagged arc and assigning an arrow
from the vertex i to the vertex j if the corresponding tagged arc i is to the right of the tagged
arc j. For example, the tagged ideal triangulation in Figure 16 gives rise to the quiver qy.

It is easy to show that a flip at a tagged arc is equivalent to the cluster mutation at the
corresponding vertices of the corresponding quiver. Therefore the transformation 7 in Theorem
7.1 can be presented by a sequence of flips of the tagged ideal triangulations of Dy.

Example. If N =2, then 79 = pj om 20 py. As shown on Figure 17, we start from a tagged
ideal triangulation of Dy with arcs labelled by 1 and 2. The first cluster mutation gy removes
the plain arc 1 and replaces it with the notched arc 1 on the second graph. The permutation
m1,2 exchanges the labels of these two arcs. The last cluster mutation p1 removes the plain arc

1 and replaces it with the notched arc 1 on the last graph. To summarize, the transformation
To preserves the underlying triangulation but replaces each plain arc by a notched one.

DG~

Figure 17: The transformation 7o = p11 o 712 © 1.

Similarly, for N > 2, 7y notches all plain arcs, and therefore preserves qy. See Figure 18.

AN - AA
Y DY

Figure 18: The transformation 7.

7.3 Proof of Theorem 7.1

We prove Theorem 7.1 in a more general setting for future use.

Definition 7.4. Let q be a quiver containing qy. The vertices of q are labelled by J. The
vertices of qn are labelled by I = {1,... N} c J. We further assume that for each vertex k not
m qpn, the number of arrows from k to qn equals the number of arrows from qy to k, i.e.,

VkeJ -1, D ep =0 (184)

i€l
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Lemma 7.5. Let q be as above. For k€ J —1, there is a unique ci, = (ck1,...,cxn) € ZN such
that

Eki = Chki — Ckyi—1, Viel; (185)
min{ckl, . 7CkN} = 0. (186)
Proof. The existence of ¢ follows from (184). The uniqueness of c¢;, follows from (186). O

Example 7.6. The quiver q on the left of Figure 19 contains qs and satisfies (184). We have
cs = (0,1,0,0,0), cr =(1,1,1,0,2).

Mutating q at the direction 5, we obtain a new quiver q on the right. Note that q contains qq
and satisfies condition (184). We have

¢s = (0,0,0,1), ¢s = (0,1,0,0), ¢7 = (1,1,1,min{0,2}) = (1,1,1,0).

4 4
7 7
3 3
6 6
2 1 2 1
Figure 19: The right quiver is mutation of the left one at vertex 5. Both satisfy condition (184).

Theorem 7.7. Let q,cy be as above. The cluster transformation T applying on the sub quiver
an maps q to itself. The induced isomorphism of Fq is given by

_ o X; o
T]”\‘;Aj—{AJW ifjel T;\‘/Xj—{—yjyjl ifjel

Aj ifj¢l, X[l Y7 ifj¢l
where
W:= L Qii= ] A (187)
o Aidin keJ—1
X,Fi_
Y= L Fi=1+X;+XiX; 1+ ...+ XiXi1... Xi_nyo (188)
3

Proof. Theorem 7.7 is a generalization of Theorem 7.1. We prove it by induction on .
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1. Theorem 7.7 holds for N = 2. The cluster transformation 7 mutates the quiver at the
vertices labelled by 1 and 2, then switch them. Condition (184) asserts that

€1+ e =0, Vkel.
It follows directly 72(q) = q. By definition, we have
¢ = (ck1,ck2) = (max{0, ex1}, max{0,ex2}).

Therefore

Hk\€k2>0 Aikz + Hk\€k2<0 A;Em = Al (H AZM H AZM

Ay Az Ay * A1 Ay ) =AW

T2*A1 = ,u;Ag =

Similarly, 75 Ao = AoW. The rest A; remain intact.
For the X-part, note that F; = 1 + X; for i € {1,2}. So

1+ Xy 1+ X,

Vi=—22 Vo=—""l  ViVy= X1 X,

Tl x ! 2Tl x,! 12 12

Therefore b% X
T;Xlzug‘Xg:X;l:T;/z, Xy = X! = Y252/1

For ke J — {1,2}, we have

Xy = Xp(1 + X5 E)ymen (g 4 ey e,
If g1 = 0, then ¢, = (cg1, ck2) = (€x1,0). Therefore

5 X = Xp(1+ X717 (1 4+ Xo)™ = X, VR V%2,

The same formula holds for 5o = 0.

2. The transformation 7y maps q to itself. When N > 2, without loss of generality, let
us first mutate the quiver q at the direction N, obtaining a new quiver uyx(q) = q. Note that
q contains qy—1 and satisfies condition (184). Let 71 be the cluster transformation applying
on qy—1. Using induction, we have 7y_1(q) = q. Therefore

v(a) = pn o TN-1 0 pyv(@) = pi (@) = q.
3. Proof of the A-part. By (49), the vectors ¢, of @ = pun(q) are
(N:N = (O,...,O, 1), ék = (ckl,...,ck,N,g,min{chN,l,ckN}), Vkel—1 (189)

See Figure 19 for example.
Let {X;, A;} be pairs of variables assigned to vertices i of . By induction, we have

o AW ifje{l,...,N—1} (190)
N—141j A; otherwise.
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where

— N-2 .
W = % + &, QZ = H Akcm
An—1Ar o Aildia kg{l,...N—1}
Now we compute u}"VWN/ Note that
N Ay, if k#N
pNAR = 4o T a4 0ot g A T g mmint0meen) e g — (191)
keJ—1 keJ—1
It follows directly from (189), (191) that
Vie{l,....N -2}, p%Q;=Q;. (192)
Meanwhile
— ~Ck,N— 189)(191 _— min{cg y_1,c
MT\/QN—lZ,U?\I< 1—[ AkkN 1)( )( )<NTVAN) HAk {ck,N—1,c6N}
k¢{1,..,N—1} keJ—1
_ ﬂ gmin{er, N —1,cen }—min{0,exn} n An—1 gmin{er, v—1,cn }—min{0,—epn}
AN k An k
keJ—1 keJ—1
(185) A1 [ [rey1 AP AN O T ey 1 AT
== -
AN AN
A _ An_
_ AQn LAy 10N (193)
Ay Ay
Therefore
* W _ i = W.
HN ; AiAi
We consider the following cases.
(a) If j ¢ 1, then clearly 754, = Aj.
(b) If je{l,...,N — 1}, then
* * # # * w0 (190) 4 oo~
TNA; = i o Tho1 0 ui(Ay) = ik (TR 1 45) = pN(A;W) = A;W. (194)
(c) If j = N, then
~ ~ —min{0,exn} —_— ~ —min{0,—exn}
A A + An— A
WAy = 1erJ71 k NN 1erJ71 k (195)
An
Note that T]”\‘,_lANk = ANk for k¢ {1,...,N — 1}. Therefore
~ ~ —min{0,exn} —_— ~ —min{0,—exn}
A A + An— A ~
TEAN = ME( 1 Treg 14k N 1 Treg1 A% 'W> — AW,
AN
(196)

70



4. Proof of the X-part. By induction, we have

~Xl if k=1,
erY\VI/V71
~ X . B
TN_1Xk =4 YaYea ifke{2,...,N -1}, (197)
XnYno1 ifk=N,
Xvk H;V;ll 37}'% otherwise.

Here Y; is defined similarly via (188). Now we compute ,u}“vz Note that

Xp(1 4+ X)) e if ke J 1,

N X! if k=N,
pN Xk =< X1(1+Xy) if k=1, (198)
Xno1(1+X5H)t if k=N —1,
X, if ke {2,...,N -2},

By explicit calculations one obtains

F, ifief{l,... N—2},

* 7 i
pv ki {FN(1+XN)1 ifi=N—1.

Therefore { \
o Y; ifre{l,...,N =2
* p— (2 7 7 b
MY { YaYnoy ifi=N-1,
We consider the following cases.

(a) If ke {2,...,N — 2}, then p}, X} = X},. Therefore

~

~ X X
TEX = kol Xp = *(NN): . 199
NG = UN ©CTN_1 122\ AT A (199)
(b) If k = N, then
——1 1 XN
X = ik o Ty 0 WA (Xn) = ik 0 TR (KN ) = e = o (200)
NN<XNYN—1) NIN-1
(c) If ke J—1, then
T]ﬂ:[Xk :MTVOT]’:[_:L((l+X/Tvsgn(akN))akNXNk) (201)
Note that
— YnYn_ Xy_1Fn_ Fy+Xny_1Fy_
N?VOT;\}71(1+XN):1+NN1:1+N1N2:N N-1FN-2
XN Fy Fy
1+ Xn)Fn_ _
_ U Xy F]]VV) ML= (14 x3hY. (202)
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If exn = cunv — cx,nv—1 > 0, by (197)(201)(202), we get

5 —~ ~
TEX), = ((1 + Xj;l)YN) o <Xk f’”)
j=1
N No1
_ ((1 + X;fl)akNM*NXk> <Y]$kN*Ck,N71M}x<V( ij k3)>
j=1
N
Ck i
= Xp [ [V (203)
j=1
By the same argument, the same formula holds for g,y < 0.
(d) If k=N —1, by (197), we have
— Xn_1 Xy_1(14+ X3!
Komho (Xnv) =i (=) = N) 204
py o TN_1(Xn-1) = py Yo alna YNYN1YN 2 (204)
Note that pujXy_1 = m(l + X/Tv) Therefore
— —~ \ (204)(202) Xy_1(1 + X 5!
X1 = o mho (XN (1 + X)) P X F XN )™ 0y v
YNYN 1YN 2
XN-1
= 205
Yn_1YN_2 (205)
If k = 1, then by similar calculations we get 75X = Yf(—)}N
O

8 The Weyl group acts on Apgr, s and Agp, s by cluster trans-

formations

Let S be an admissible decorated surface. We recall the construction of cluster coordinates of
the pair (XpqL,, s, AsL,, s) introduced in [FG2, Section 9, 10]. If S is a sphere with 3 punctures,
then we assume m > 2. We show that the Weyl group actions on both Apq1,, s and Agy,,, s are

cluster transformations.

/
3 2

Figure 20: A 5-triangulation. The o- vertices are of distance 3 to the vertex 1.
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An m-triangulation of a triangle gives rise to a quiver whose vertices are parametrized by
Iy ={(a,b,c) |a+b+c=m, a,b,ceZ=o}—{(m,0,0),(0,m,0),(0,0,m)}, (206)

and arrows compatible with the orientation of the triangle. The vertices (a, b, ¢) with a,b,c € Z~g
are called inner vertices. The other vertices are on the edges of the triangle. See Figure 20.

From now on, let us fix a puncture p of S. An ideal triangulation of S is a triangulation of S
whose vertices are marked points (i.e., punctures or special points) of S. Since S is admissible,
it admits an ideal triangulation 7 such that

e 7 contains no self-folded triangles. See Figure 21.

Figure 21: Self-folded triangle

e 7 contains no edge whose both vertices are p.

The ideal triangles in 7 surrounding p gives rise to a punctured disk.

We assign an m-triangulation to each triangle t € T, getting a quiver q. Leti e {1,...,m—1}.
Denote by q,; the subquiver consists of vertices of distance m — ¢ to the puncture p. Note that
dp,i is a cycle. The pair (q,qp ;) satisfies conditions in Definition 7.4.

Denote by 7, ; the cluster transformation (181) on the subquiver qy ;.

Example 8.1. Let m = 4. If there are 4 ideal triangles surrounding p, then the quiver q locally
looks like Figure 22. The o- quiver q,1 consists of vertices of distance 3 to the puncture p.

Figure 22:

In this section, we assign to each vertex v of q a function A, (respectively X,) of the space
Ast,,,, s (respectively Xpar,, s). The set {A,} (respectively {X,}) provides a cluster coordinate
system for Agy, . s (respectively Xpar,, s)-

Recall that the puncture p corresponds to a Weyl group (of type A,,—1) action on both
Asgt,, s and Xpgr,, s. The Weyl group is generated by simple reflections s, ;, ¢ € {1,...,m — 1}.

m moy
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Theorem 8.2. The map s, ; is exactly the cluster transformation 7, ;, i.e.,
Spile = TpiAu, 85Xy =17, Xy. Vv € {vertices of q.} (207)

We prove Theorem 8.2 in the rest of this section.

8.1 The moduli space Ag,, s

The decorated flag variety Agp,,. Let V;, be an m-dimensional vector space with a volume
form w e detV,:. A flag F, is a collection of subspaces in V;,:

Fichc...cF,;, dimF;=q1. (208)

A decorated flag is a flag F, with a choice of non-zero vectors f(; € AYFy for each i =
1,...,m — 1 called decorations. The decorated flag variety Agy,,, parametrizes decorated flags

for SLy,:= SL(V;,,). The group SL,, acts on Agj,,, on the left. The Cartan subgroup of SL,, acts
on Agp,, on the right by rescaling the decorations. Note that Agy, = G/U.

Additive characters associated to decorated flags. Let F € Ag, be a decorated flag. Its

m

stabilizer Up is a unipotent subgroup of SL,,. A representative of F is a linear basis (fi,..., fm)
of V,,, which gives rise to decorations of F

T =fiA...Afie AFy, Vie{l,...,m—1}; inco A fpywy =1,

Let u € Up. Note that e; := u(fi4+1) — fi+1 € F;. The vector fa—nynei€ A'Fy is independent
of the representative (f1,..., fm) chosen. It determines a unique yr;(u) € A! such that

f(ifl) N € = XF,Z(u)f(Z)v Vie {177m_1} (209)
Therefore we associate to Up a set of additive characters

(XP.1,- s XEmo1) : Up — AL (210)

The moduli space Agy,, s. The moduli space Ag,, s parametrizes pairs (£,v = {F,}) where
L is a twisted SL,,-local system on S, and ~ assigns to every marked point s a section Fy of
L ®st,,,, AsL,,. For a puncture p, the assigned section F), is invariant under the monodromy w,,

around p. Thus u, is unipotent and belongs to the stabilizer of F,,. The functions
Wi = XFpi(up),  i€{l,...,m—1} (211)

are called partial potentials of Agr,, s associated to the puncture p.
For each puncture p of S, there is a Weyl group action on Agy, s by rescaling the decorations

m

of the flat section F). If the decorations of F), are presented by the nonzero vectors f, k =
{1,...,m — 1}, then the action of the simple reflection s, ; changes the decorations to

f(l)v . 7Wp,if(i)a c 7f(m—1)7 (212)

and keeps the rest intact.
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Local picture: configurations of three decorated flags. Let (F,G,H) be a configuration
of three decorated flags, described by sets of nonzero vectors:

F=(fa - fm-1)), G=00) - 9m-1)), H=(hay s hum-1))
Recall the m-triangulation of a triangle. Each vertex (a, b, c) € (206) gives rise to a function
Aa,b,c(Fa G7H) = <f(a) NGy N h(c)7w>' (213)

Forgetting the decorations, we get a natural projection 7 : Agr,, — Bsr,,,. If (F, G, H) is generic,
then there is a unique u € Up such that u - 7(H) = 7(G). We define the potential

WFJ'(F, G, H) = XF,i(u)- (214)

F

(a+1,b,c—1)
(a,b,¢) (a,b+1,c—1)

(a—1,b+1,¢)

Figure 23:

Let a be the arrow (a,b,¢) < (a,b+ 1,¢ — 1) in the m-triangulation. As shown on Figure
23, there is a unique rhombus with the diagonal a. Its vertices correspond to functions in (213).
Set Apy0,0 = Aom,o = No,0,m = 1. We consider the ratio

Aa-‘:—l,b,c—lAa—l,b-}-l,c (215)

R, =
Aa,b,cAa,b-i-l,c—l

Lemma 8.3 ([G5, Section 3]). The potential (214) is

Wr; = > R,. (216)

)

ac{arrows of row i}
Example 8.4. Let G = SLs. There are three thombi in row 2 as shown on Figure 24. Therefore

A3020113 N A311012 N As320A131

. 217
Nop3Aoi12  Agi12Ms01 Ao 1As3 (217)

Wr2 =
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Figure 24:

Global picture: cluster coordinates of Agy,, s. Recall the quiver q associated to an ideal
triangulation 7 of S. Let v be a vertex of q. Assume that v is contained in a triangle t € T
and labelled by (a,b,c) € I'y,. Restricting the data (£,7) € Agy,,, s to the triangle t, we get a
configuration (F, G, H) of three decorated flags. We set

Ay = Dgpe(F, G, H). (218)

The set {A,} is a coordinate system of Agy,, s.
The subquiver qy; is a cycle. Every arrow a of q,; corresponds to a rhombi term R,. The
following Lemma is a direct sequence of Lemma 8.3.

Lemma 8.5. The potential (211) is
Wi = > Ra.
ae{arrows of q; p}

Example 8.6. Let G = SLy. If there are 4 ideal triangles surrounding p, then the function W, 1
is the sum of functions R, assigned to the shadowed rhombi in Figure 25.

Figure 25:

Proof of Theorem 8.2: A-Part. According the definition of A, and (212), we have

& A AW, if j is vertex of qp,
U otherwise.

Note that W, ; is exactly the function W in Theorem 7.7. Therefore we have T;’iAv = s;’iAv.

8.2 The moduli space Apgy,, s

A flag F, for PGL,, is a nested collection (208) of subspaces in a vector space V;,,. The flag
variety Bpgr,, parametrizes flags for PGL,,. First we consider the cases when m = 2, 3.
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Local picture: the moduli space Apgr, p,. The flag variety Bpqr, parametrizes lines in
Va. Let (Li,...,Ls) be a quadruple of lines. Let w € detV,* be a volume form. We choose
nonzero vectors l; € L;. Let A(l; A 1) := (l; A lj,w). We set the cross ratio
A(ll AN lg)A(lg N l4)
A(ll AN l4)A(lg N lg) '

Let D,, be a punctured disk with n special points on its boundary. We label the special
points clockwise from 1 to n. The space Xpgr,, p, parametrizes data (L£,v = {Lp, L1,..., Ly}),
where £ is a PGLa-local system on D,, and ~ assigns to the puncture p a flat section L, of
L ®paL, BraL, invariant under the monodromy around p, and to each special point 7 a flat
section L;. We connect each special point and the puncture, obtaining a triangulation of D,,.
We restrict the pair (£,) to the ideal quadrilateral with vertices p, i — 1, 7, i + 1. We consider

Xi = T’Jr(Lp,LZ',l,LZ‘,LZ‘Jrl). (220)

r¥(L1, L2, Ly, Ly) := (219)

The set {X1,...,X,} gives rise to a coordinate system of Xpgr,.p,,-
If the monodromy around the puncture is generic, then there is another flat section L;,
invariant under the monodromy. We get a Z/2-action on XpgL, p, Via replacing L, by L;,. Let

Xy{ = T+ (L;/m Li—la Li7 Li+1)7 }/7, = T+ (Lw Lp7 Li+17 L;/n)
Lemma 8.7 ([F'G1, Lemma 12.3]). We have
XiFic o X F;

Y, = ) = )
‘ F; Y XiaiFio

where F; = 1+ X, + X, X1+ ...+ X ... Xi_nao.

Cross-ratio versus triple ratio. We consider a triple of flags for PGLg
F. = (Fl (- Fg), G. = (Gl (- Gg), H. = (Hl (e HQ)

Let w € detV5" be a volume form. We choose nonzero vectors fi € Fy, fa € A2F, and the same
for G, and H,. The following triple ratio is independent of the choices of w and f;, g;, h;,

_ N1rg2,0) g A hg,w) Cha A fo,w)
(fr A h,w) (g1 A fa,w) (R A ga,w)
If the triple (F,, G,, H,) is of generic position, then it gives rise to a quadruple of lines in F,
Li:=F, Ly:=GynFy, L3:=(G ®H)nF,, Ly:=HynF,.
The following Lemma was proved in [G94, Lemma 3.8]. We provide a proof for completeness.
Lemma 8.8. The triple ratio (221) is equal to the cross ratio v (Ly, Lo, L3, Ly).
Proof. We choose g1 € G1, hy € Hy such that
A(x) = (x A g1,w)y = (kA hp,w), Vs e A2F.
Therefore we get (g1 A fo,w) = {(h1 A fa,w). Let I3 := g1 — hy € G1 @ Hy. Note that fo Alg =0.
So I3 € F5. Therefore 3 € L. Let ls € Ly such that go := Iy A g1. Therefore we get
Aly Al3) = A(=l3 Ale) ={=l3 Ay A g1,w) ={(—I3 A g2,w) = (h1 A g2,w). (222)
Let Iy € Ly such that hg := ly Ahy. Then A(l3Aly) = Iz Alynhi,wy = {3 Aho,w) = (g1 Aha,w).
Let Iy = f1 € Fy. Then we get
Al Ale) =y Alg A grywy ={f1 A ga,w), A(ly Aly) =y Alg A hp,wy ={f1 A hy,w).

Combining the above equations, the Lemma is proved. O

ry (Fv,G., H,) : (221)
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Global picture: cluster coordinates of Apqgr, s. Recall that the moduli space Xpar,, . s
parametrizes pairs (£,v = {F},}), where £ is a PGL,,-local system on S, and ~y assigns to each
puncture p a flat section F}, of £ ®pqt,, BraL,, invariant under the monodromy around p.

Recall the quiver q associated to an ideal triangulation 7 of S. We assign a function X, of
XpalL,,.s to each vertex v of q. There are two cases.

1. The vertex v is an inner vertex of a triangle t € 7. By restricting a generic pair (£,7) €
XpaL,, s to the triangle t, we obtain a configuration (F,, G, H,) of flags for PGL,,,. Let us
choose decorations for each flag. Recall the function (213). If v is labelled by (a, b, c) € I'y,,
then there are 6 vertices in the m-triangulation adjacent to the vertex v. See Figure 26.
We consider the triple ratio

X, = Agp—1,c4180-1p+1,c8a+1,b,c—1 (223)

A[l*1,b,C+1A[l,b‘f’l,C*lA[l*f’l,b*l,C

Note that X, is independent of the choices of decorations. So it is a function of Xpqr,, s-

(a+1,b—1,¢) (a+1,b,c—1)

(a,b—1,c+1) (a,b+1,c—1)

(a—1,b,c+1) (a—1,b+1,¢)

G.

Figure 26: Triple ratio corresponding to an inner vertex.

We consider the following lines in the quotient F,1/F, 1

Ly =F,/Fo1, Lo= ((qu @ Hepr) N Fa+l>/Fa—la

Ly = <(Gb @®H:) N Fa+1>/Fa717 L, = <(Gb+1 ®H. 1) N Fa+1)/Fa71-
Lemma 8.9. We have X, = r* (L, Lo, L3, Ly).

Proof. We project (F,, G4, H,) onto the quotient

Vin
For1®Gp1®Heq’

obtaining a configuration of flags for PGL3
F‘ = (Fa/Fa—l = Fa+1/Fa—l)7 60 = (Gb/bel o Gb+1/bel)7 Fo = (Hc/Hc—l < Hc+1/Hc—1)-

Clearly X, = 3 (Fo,G., Ho). By Lemma 8.8, r{ (Fo,Ge, Hs) = r* (L1, Lo, L3, Ly). O
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2. The vertex v belongs to an edge e in 7. Restricting a generic (£, ) € XpgL,, s to the unique

mo

ideal quadrilateral containing e as a diagonal, we get a configuration (Fs, G, He, F,). Let

us choose decorations f(x),k =1,...,m—1for F,, and similarly for G,, H,, F.. There are
4 vertices adjacent to v in the quiver, see Figure 27. We consider the cross ratio
Ah A €(1),w A
X, = <f (b—1) ><fa 1) N9 ;W) (224)
<fa1/\h W><f /\h(b1w>

Note that X, is independent of the decorations chosen. So it is a function of Apqr,,, s-

H,

Figure 27: Cross ratio corresponding to an edge point.
We consider the following lines in the quotient F, 1/F,_1:
Ly = Fy/Fo1, L2= <<Gl ® Hy_1) N Fa+1>/Fa—17

Ly = (Hyn Fyy1)/Fa1, Li= <(Hb—1 ® Ep) n Fa+1>/Fa71'
Lemma 8.10. We have X, = r(Ly, Ly, L3, Ly).

Proof. We project (F,, G4, He, Eo) on to the quotient

Vin
, 225
Fafl @® Hb—l ( )
Obta_inillg_él l_ines F =F,)F, 1,G =G,H = Hy/H, {,FE = E. Clearly we have X, =
r*(F,G,H,E). We prOJect_FaH_n_ (225) identifying Fyy1/Fu—1 = Vin/(Fae1 @ Hp—1)
It follows directly that »*(E,F,G, H) = r*(Ly, L2, L3, Ly). O
The functions {X,} provide a coordinate system for the space Xpqr,, s-
The map m,;. Let vq,...,v, be the vertices of the subquiver q, ;. Let us define a map

Tpi: APGL,S — XPGLo,Dns  (L£:7) — (Lpis{Lp, Luys - Ly, })-
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Take a generic (£,v) € XpaL,,.s- The framing of £ near p is given by a flag of local subsystems

my

of £ near p, or, what is the same, by a flat section of the local system of flags associated to L:
Fo=(F1cFc...cFy). (226)

The two dimensional subquotient Fjy;/F;_1 of the local system £ near p provides us with a
PGLs-local system L, ; of a punctured disk and an invariant line L, := F;/F;_;.

Let vi, belong to an m-triangulation of a triangle t € T, locally labelled by (i, b, ¢) € T';,. The
data (L, ) restricts to a configuration (F,, G, H,). We assign to vy a line

Ly, := <(Gb @ H.) N Fi+1>/Fz’—L
The data (L£pi, {Lp, L1,...,Ly}) defines the map m, ;.
Lemma 8.11. In the coordinate systems of Xpar,,,.s and XpGi,,p, , the map 7, ; is a projection
Tpi i APGL,.S — APGLyy  (Xupseooy Xy o) — (X, oo Xon)
Proof. Follows from Lemmas 8.9, 8.10. U
Weyl group action on Apgr,,s. The Weyl group acts on Xpqr,, s via changing the flat
section F), around p, see (226), and keeping the rest intact. The simple reflection s, ; maps F,

to
FIé:(F1C...Fi,lcFi’CFZ-HC...Fm,l) (227)
such that FIQ is invariant under the monodromy around p.

Recall the Z/2-action s on Xpgr,, p,. By definition, the following map commutes

Sp,i
XpPGLys — > XPGLyn S
wl lw (228)

AXpGLy, D, —5> APGL, D,

Proof of Theorem 8.2: X-Part. We consider the following cases.

1. The vertex v belongs to g, ;. By Lemma 8.11 and (228), we reduce the case to Xpgr,,p,, -
Comparing transition maps in Lemma 8.7 and Theorem 7.7, s7 . X, = s*X, = 7, X,,.

2. The vertex v is of distance m — ¢ — 1 to the puncture p. If v is an inner point of an
ideal triangle t € T labelled by (i + 1,b,¢), then the function X, is defined by (223).
Let (Fp,,G., Hs) be the configuration obtained by restricting (£,7) on t. Let us choose
decorations for each flag. The action s, ; maps F, to F, as in (227). Let us pick an nonzero
vector f(’l.) € A'F]. Together with f(, € AEFy k # i, it gives rise to decorations of F). Set

A =l A 9G) A gy w)-
Using (223), we get

* /
Sp,in Ai,b+17cAi,b,c+1 I ,
= 7 =T (LluLp7L27Lp)7
X A; A
v Z,bJrl,C Z,b,CJrl
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where L, = Fj/F;_q, Lfn = F!/F;_;, and

L1 = ((Go1 @ Ho) 0 Fint ) /Pt Lo = ((Gy @ Hern) m Fivt ) /Fia

are lines in the quotient Fjq/F;_;. Comparing Theorem 7.7 and Lemma 8.7, we get
sy iXv = 7, ;Xy. Similarly, the same formula holds when v belongs to an edge in 7.

3. The vertex v is of distance m — i + 1 to the p. By a similar argument, s; , X, = 7,7, X,.

4. For the rest v, we have s;’in = T;Z-Xv = X,.

9 The s-involution and its cluster nature

In this section, S is a decorated surface which admits an ideal triangulation without self-folded
triangles.

Let «; (i € IT) be simple positive roots. There is a Dynkin diagram automorphism such that
a;x = —wp(ey). Let us fix a pinning of G. We get an involution # : G — G defined in (2).

The involution of G preserves the subgroups B and U. Therefore it acts on the moduli spaces
ApaL,, s and Agr,, s. Indeed, they are defined as the local systems on S with a chosen reduction
the subgroups B or U near the marked points. Since all pinnings in G are G-conjugated, this
does not depend on the choice of pinning which we use to define B or U. Abusing notation, we
denoted all of these actions by .

Recall the cluster structure of Xpar,, s and Agr, s in the previous section.

my moy

Theorem 9.1. The involution * on (AsL,,. s, XpaL,, s) is a cluster transformation.

We prove Theorem 9.1 in Sections 9.1-9.2. We give a GL,,-specific proof since we feel that
it may contain more information that just the claim. We present an explicit sequence of cluster
transformations equivalent to the involution .

9.1 Involution on Conf,(As,,)

We give an equivalent definition of the involution * on Conf, (Agr,,).

The moduli space Conf, (Agr,,). Let V be an m-dimensional vector space with a volume
form w. A decorated flag F = (F, {fx)}) on (V,w) is a decorated flag in V' with (f(,,),w) = 1.

See Section 8.1. Denote by Ay, the space of decorated flags on (V,w). The group Aut(V,w) =
SL(V') acts on it on the left. Set

Conf,(Ay) := Aut(V, w)\(Av,w)n. (229)

An isomorphism g : (V,w) — (V’,«’) induces an isomorphism Ay, — Ay and therefore an
isomorphism
Conf,(Ay,,) — Conf,(Ay /). (230)

Different isomorphisms g differ by an automorphism of the (V,w). Since Conf,(Ay,,) is the
space of Aut(V,w)-coinvariants, isomorphism (230) does not depend on g. We set

Conf,(Ast,,) := Conf,(Ay,,). (231)
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The dual decorate flags. Let V* be the dual vector space of V. For each k € {1,... ,m}
there is a non-degenerate bilinear map

(=, —): /\kV X /\kV* — Q, U1 A oAU O A A Gy = det((vy, 05)). (232)
There is a canonical isomorphism
* /\kV — /\m_kV*, such that (v, *uy = (u A v,w). (233)
Let W be a k-dimensional subspace of V. Set W+ := {¢ € V* | (w, ¢) = 0 for all w e W}.

Lemma 9.2. If ue AN"W, then sue N™ FW-.

Proof. Let us choose a linear basis (e1,...,e,) of V such that u = e; A eg A ... A €, and
le1 Aeg A ... Aem,w)=1. Thus (e,...,e) is a linear basis of W. Let (e!,€?,...,e™) be the
basis of V* dual to (e1,...,en). Then w =e* A ... A ™. Therefore

wnv,wy=unvet n . ef AT AL A ™ =P A LA ™). (234)

Since W+ is the linear span of (e5+1, ... e™), by (233) we get #u = eF*1 A Aeme AR
U

Lemma 9.3. Let w* be the volume form of V* dual to w, i.e. {w*,w) = 1. Then one has

(u A vyw)y = (W™, =u A #v), Vu e /\mikV, Yo e /\kV. (235)

Proof. 1t suffices to the prove for v = ey A ea A ... A €. By the proof of Lemma 9.2, we set

w'=e1AeaA...ANeEp xv ="t A Ae™
Therefore
W sunsvy ={er Ao Aem,sun e TUA LA™y = (e AL A e, #u) = (v, #u) = (u A v,w).
]
The dual flag F;- is a flag on V*
F:r  c...c FfcFL (236)

The isomorphism # : Ay, = Ay %, (Fu, {f}) — (FL, {*f(m—r)}) from Lemma 9.2 provides
a canonical isomorphism x : Conf,,(Ay,,) —> Conf,, (Ay+ ,+). So we get a canonical involution

# : Conf,,(Agr,,,) — Conf, (AsL,,)- (237)

Using (234), it is easy to show that (237) is the involution defined via the involution = in (2).
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(va, $1) < (v2, P3) (v1, ) < (v3, P2)

\
(v1, po) < (V1 Ava Avz,w) —(v3,¢9) ————>  (vg, ) —(W", b1 A 2 A dp3)—(vg, p3)

NN \

(v1, P3) (v3, P1) (v3, P1) <=~ (v1, ¢3)

Figure 28: The involution * on Confs(Agr,,) is a cluster transformation. The dashed arrows
connect frozen vertices.

Example. When dimV = 3, decorated flags in Ay, are canonically identified with pairs
(0, 0) €V xV*,  v£0, ¢#0, (,¢)=0. (238)

Switching v and ¢, we get the map * : Ay, — Ays ¢, (v,0) — (¢, 0).
In particular, it acts on the triples of decorated flags as follows:

1 ((v1,01), (v, 92), (v3,¢3)) — ((¢1,v1), (D2,v2), (¢3,03)).

Lemma 9.4. We have

(v1 A v A3, wXW™, d1 A Do A p3) = (v1, P2 ) V2, P3)(v3, P1) + (v2, P1){v3, P2){v1, P3). (239)

Therefore the involution * is a cluster transformation of Confs(AsL,), which mutates the inner
vertex of the left quiver on Figure 28, and then switches the pair of vertices on each edge.

Proof. By (232) we have
(v1 A v Avg,wXw*, o1 A do A ¢3) = (W, W)V A V2 A U3, PL A G2 A P3)
0 (v, 2y {v1,P3)
= det <U27 ¢1> 0 <U27 ¢3>
(vg, 1) V3, P2) 0
= (v1, ¢2) V2, 3) V3, P1) + {V2, P1) V3, P2 ) V1, P3).

O
Intersection of decorated flags. Let us fix a generic triple of decorated flags in Ay,
F=(Fo{fw}):, G=(Gedgw}): H=(He {hu})
The pair (F,G) determines a basis (fi,..., fm) of V such that
foy=Ffnfan.confe, o€ FeoGuyik (240)
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The pair (G, H) determines a basis (A, ...,h1) of V such that
h(k) = hk A hk,1 VANV hl, hk € Gn+17k N Hk. (241)
For convenience, the subscripts of the wedge product decomposition of ) is reversed. We set
fs,(k) = fst1 A fst2 Ao A stk h(k),s = Nsik Ao A Dyt (242)
Let (a,b,c,s) be a quadruple of nonnegative integers such that
a+b+c=m-—s. (243)
By definition, fs ) A 9y A B(e),s € N "Gm—s. We set
abc = <fs (@) N 9b) N h( )s7w8>7 (244)
where wy is a volume form of G,,,—s such that
<g(m—s)7ws> = <f(s) A g(m—s)7w><g(m—s) A h(s)7w>' (245)
Lemma 9.5. Let us assume that a,b,c > 0. One has
Z,b,cAijlfl,c = AZ“t’l,b*l CAZJri ,bye + Ai,bfl,chlAZlec 1 (246)
Proof. Note that the vector fs, 1 a—1) A g(b) A B(c—1),s+1 belongs to the linear span of the vectors
Fst1,a) A 9o—-1) A Pe—1)s01 and for1 (a1) A Go—1) A Pye),s+1- Let us set
Jot1.a=1) AN 9@) A Pie—1),541 = Afsi1,(0) A 1) A Pe—1),s41 + BFsi1,(a-1) A 9o—1) A N(e)s1-
Then
Toa) A9y A Reys = Qs (as1) A Go—1) A Peys + Bsa) A 9o—1) A Bies1),s5
Jst1,(a=1) AN 9@) A Re)se1 = Afsi1,(a) A Go-1) A h(c),s+1,
Jort1,(a) AN Io) A e—1),541 = BFst1,@) A 9o—1) A Pe),st1-

Therefore
+1 +1 +1 +1
(Sl,b,c = aAtsl-i-l,b—l,c + 6A27b—17c+1’ AZ 1,b,c — OZAZ b—1,c’ AZ be—1 ﬁAZ,b—l,c'
Plugging them to (246), we get the Lemma. O

Remark. Consider the tetrahedron
4
Ty = {(z1, 22, 23,24) € R | Zﬂfz =m, x; =0} (247)

The quadruples (a, b, ¢, s) satisfying (243) are the integral points inside of T,,. Therefore the
functions A% , . can be attached to the integral points of T,,. The functions appearing in (246)
correspond to the vertices of an octahedron as illustrated by Figure 29. Therefore we call
Formula (246) the octahedral relation.'6

16 A similar but different octahedral relation was studied in [FC 1, Sect.10].
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Figure 29: The octahedral relation.

We show that all the functions A; , . can be expressed in terms of (213).

Lemma 9.6. One has
A(S],t,mfsft = As,mfs,oAQt,mft’ Ainfsft,t,o = Amftn‘/,OAOm”Lfs,s (248)
Proof. Set gy A him—s—t),s = Qg(m—s) Then

9@y A him—ty = (9) A hm—s—1),5) A sy = AGim—s) A T(s)-
Therefore s
AO,t,m—s—t _ AO,t,m—t
Ag,m_g,() AO,m—s,s .

By (245) we have A, .o = Asm—s000,5m—s- Plugging it to (249), we get the first identity.
The second follows by a similar argument. O

(249)

When s = 0, the functions (244) equal Ay in (213). They correspond to the integral points
on one face of the tetrahedron T,,. The functions (248) correspond to the integral points on
two other faces of T,,. See Figure 30. All of them can be expressed in terms of (213).

Using the octahedral relations (246) repeatedly, we express A7 . in terms of (213) layer by
layer as illustrated by Figure 31.

Coordinates of the dual configurations. Recall the set I';, in (206). We set

2,b,c = Athb#(*Fv +G, +H) = <W*’ *f(m—a) AN *G(m—b) N *h(M—c)>’ Y(a,b,c)el'y,. (250)
Lemma 9.7. One has
A:l;,b,c = Ag,O,a? V(CL, ba C) € Fm (251)

Remark. Note that the functions Alc),oﬂ correspond to the integral points on the base of T,.

Using the process illustrated by Figure 31, we express Az’b’ . in terms of (213).

85



Figure 30:

Figure 31:

Proof. By Lemma 9.6 and Lemma 9.3, we have
AG0m—b = Dbm—b0800m = Dym-b0 = Ay, b0
By moving #h(,,_) to the left, we get

*

Ak ye = (D)X thim_ey A * Fmea) A *Gm=t)) = (1N Gnot), *him—c) A *fim—a))
By definition <h(c),mfca *h(mfc)> = <h(mfc) N h(c),mfc7w> = (_1)c(m—c)‘ Therefore

A:,b,c _ A:,b,c ) A?),O,mfb _ (_1)c(m—c) <g(mfb)y *h(mfc) A *f(mfa)> ) <h(mfb),bawb>
Aboa  Ahppo Alga {G(m—b)> *f b)) o) A Pay,ps Wo)

:(_1fm%@<hmhwbﬁﬁvww>A*ﬂm—w>
o) A oy F )
) SPieym—c A Payps #*Pim—c) A #f(m—a))
)y A Fose) A Piaypr @)

) (e #Fim-a))
= (=1 c(m—c) h )om—cs xh m—c)/ ’ -
(-1) ), ( »<m%@AM%m@

_ (_1)c(m—c

1.

O
The involution  of Confs(Agy,,) is a cluster transformation. Recall the quiver associ-
ated to the m-triangulation of a triangle. See the left graph of Figure 32. Denote by fi, . the

cluster mutation at the vertex (a,b,c) € I';,. The o-vertices on edges are frozen vertices. We
mutate the e-vertices only. Let ¢ € {1,...,m —2}. We introduce several cluster transformations:

86



Figure 32: The cluster transformation D.

1. The sequence of cluster mutations at the e-vertices in row ¢ from the left to the right:

Ei = M1piO. .. Oi—1520 [ib1, where b =m — i — 1. (252)

2. The cluster transformation presented by a sequence of &;:
Si 2:510520...052'. (253)

It corresponds to a sequence of cluster mutations at the vertices included in the top triangle
of size i starting from the left bottom. See Figure 35.

3. The cluster transformation presented by a sequence of S;:

C:=8,208,-10...08]. (254)

4. The cluster permutation ¢ induced by an involution ¢ of I';;, such that

(0,¢,b) ifa=0,
o:Ty — T, o(a,b,c) =< (b,a,0) ifec=0, (255)
(c,b,a) else.

Proposition 9.8. The cluster transformation D := o o C maps the left quiver of Figure 32 to
the right. It creates arrows between frozen vertices on the edges, and keeps the rest intact. Recall
the cluster A-coordinates {Aqp.c} associated to the left quiver. We have

ohe =D Ngpe, V(a,b,c) €Ty, (256)

a,b,c

Proof. We start with proving the first part of the proposition. The proof is combinatorial and
based on several pictures below.

Note that the transformation & is a sequence of cluster mutations at e-vertices in a row.
Locally, the corresponding quiver mutation of & is illustrated by Figure 33. In particular, we
switch the vertex i (respectively i’) and the vertex j (respectively j') on the right quiver.
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AV
\VAVAVA

Figure 33: The cluster transformation &.

The cluster transformation S; is a sequence of ;. Using the above process repeatedly, the
corresponding quiver mutation of §; is illustrated by Figure 34. Note that at the last step we
switch the vertex 1 and 1’. Eventually S; take the bottom vertex on the side to the top of the
other side. The resulted quiver looks similar to the original one, but its size is enlarged by 1.

&

i
4'd AVA AvA
; ,AVAVAVAVA
AVAVAVAVAVAS

Figure 34: The cluster transformation Sy = &1 0 £y 030 &4.

The cluster transformation C is a sequence of S;. Using the above process inductively, the
corresponding quiver mutation of C is illustrated by Figure 35. After the action of C, the
orientation of all the arrows are reversed. In the last step we flip the whole quiver horizontally.
It is equivalent to the permutation . Eventually we obtain the quiver after the action of D.
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E—

Figure 35: The cluster transformation D =coC =008, 20...082087.

To prove the second part of the proposition, we compare the above process with Figure 31.
Indeed, the action of S; is equivalent to the transition from the i-th layer to the (i + 1)-th layer
in Figure 31. In particular, the octahedral relation (246) is compatible with the rule of cluster
mutation. For the cluster mutations at the leftmost and the rightmost e-vertices, besides the
octahedral relation, we also need the identities (248). Note that we exchange the subscripts
a and ¢ in (251). Therefore, by Lemma 9.7, after flipping the quiver horizontally, we get the
function A7, . eventually. O
Remark. The permutation (255) can be decomposed as o := 000, where o, switches vertices
on the edges only:

(0,¢,b) if a =0,

_} (¢,0,a) ifb=0,

oe(a,b,c) = (b,a,0) ifc=0,
(a,b,c) else,

and o; exchanges the inner vertices only:

‘ | (e,b,a) ifa,b,c>0,
a; (a, b, C) = { (a’ b’ C) else‘

We consider the following cluster transformation applying only on the inner vertices
Ci:=0;0C. (257)

Note that the definition of C; is not symmetric: one has to pick an angle of the triangle first.
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Corollary 9.9. Up to equivalence (in the sense of Definition 2.7), the cluster transformation
C; is independent of the angle chosen.

Proof. The cluster transformation D in Proposition 9.8 can be rewritten as D := 0. o C;. The
corollary is clear since D and o, are independent of the angle chosen. O

9.2 Proof of Theorem 9.1

The A—part. Let us fix an ideal triangulation 7 := (E,T) for the decorated surface S. Here
E is the set of all edges in T, and T is the set of all triangles in 7. We assign an m-triangulation
to each triangle t € T', obtaining a quiver q. We define the cluster transformation

D:=opgoCr (258)

where op is a permutation switching vertices of q on each edge e € FE, and Cp is a cluster
transformation applying (257) on each triangle t € T..

If e € F is a boundary edge, then the vertices of q on e are frozen. As illustrated by Figure
36, the cluster tranformation D will create new arrows among the frozen vertices.

If e € F is an internal edge, then it belongs to two different triangles t1,to € T. The extra
arrows on e created by C;, and Cy, will cancel.

Summarizing, the cluster transformation D only add new arrows among frozen vertices.

Figure 36: The involution D on Conf,(Agt,,, ).

Theorem 9.10. The action * on Agy,, s is exactly the cluster transformation D.

Proof. Note that the action = is local, i.e., the following diagram commutes

*
Ast,,, s Ast,,, s

l (259)
HCOHfg(.ASLm) — HCOHfs(ASLm)

teT teT

Meanwhile, the cluster coordinates (218) of Agr,, s are also local. The Theorem is a direct
consequence of Proposition 9.8. ]
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The X-—part. Let q be a quiver with vertices parametrized by I. Set eq = (ei;). Deleting
frozen vertices of q, we get a quiver q with vertices parametrized by J < 1. Consider the map

p: Aq — Xy, p*X; =457, viel. (260)

7 )
1€l

It is known that p commutes with cluster permutations and cluster mutations

o
Aqg — Auk(Q)

pl lp (261)
K
Xq X @
Therefore p commutes with all cluster transformations.

Theorem 9.11. The action * on Xpar,, s s exactly the cluster transformation D.

Proof. Since the action * on Xpqr,, s is local, it suffices to prove the case when Xpqr,,s =
Confs(BpaL,, ). Recall the projection from Agy, to Bpgr,, by forgetting decorations. It induces
a projection

p: CODf4(.ASLm) — CODf4(BpGLm). (262)

By (223)(224), the projection (262) coincides with the map (260). Thus p commutes with D:
p*(D*X,) = D*(p* Xo).

By the definition of *-involution, the following diagram commutes

Confy(Asy,, ) —— Confy(AsL,,)

pl lp (263)

Confy(Bpar,, ) — Conf,(BpaL,,)
Thus p*(xX,) = =(p*X,). By Theorem 9.10, =(p*X,) = D*(p*X,). Hence p*(xX,) = p*(D*X,).
Since p is onto in this case, p* is an injection. We get =X, = D*X,,. O
9.3 The Schiitzenberger involution

The involution S. Let V be an m-dimensional vector space with a volume form w. Set
W' = (=1)™m+1/2, We consider the isomorphism

t: Ay — Ay, (Fo, {fi)}) — (F, {(—1)k(k+1)/2f(k)})'
Let (F,G,H) be a triple of decorated flags. It is clear that!?
Aupe(F, G H) = Apypo(t(H), t(G), t(F)),  V(a,b,c) € [y,

Let us compose the involution * with the map ¢:

S : Confs(Agy,,) — Confs(AgL,, ), (F,G,H) —> (t(+H),t(G), t(«F)) (264)
Lemma 9.12. One has S*Ag . = AZ,O,C for all (a,b,c) € Ty,
Proof. 1t follows directly from Lemma 9.7. U

Note that we change the order of the decorated flags here.
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The space Conf(Agy,,, BsL,,, AsL,,). Recall the configuration space

Conf(ASLm,BSLm,ASLm) = SLm\(.ASL X BSLm X ASLm)- (265)

m

Let (a,b,c) be a triple of nonnegative integers such that a + b+ ¢ = m — 1. The functions

A
1%a,b,c = Aa,b,chl (266)
a+1,b,c
form a coordinate system on (265), referred to as the special coordinate system.

Theorem 9.13 ([GS, Theorem 3.2]). The special coordinate system on Conf(Asr, ,Bsy,,,AsL,,)
together with the potential YW = xa, + XA, provide a canonical isomorphism

{Gelfand-Tsetlin’s patterns for PGL,,} = Conf*(Agsy, ,BsL,,,AsL,,)(Z").

The Schiitzenberger involution. Using the special coordinate system, we study the invo-
lution

S: Conf(AsL, ,Bsy,,,Asw,, ) — Conf(Asy, , BsL,., AsL,, ),

(A1,Bg, Ag) — (t(xAs), *Bg, t(xA1)) (267)

Let (a,b,c,s) be a quadruple of nonnegative integers such that a + b+ c+ s = m — 1. Let us set

AW b,c+1
a,b,c
Rype = X . (268)
a+1,b,c
By definition, when s = 0, we have Rg be = Rabe-
Lemma 9.14. One has S*R, . = RZ&C for all (a,b,c) € I'y_1.
Proof. Tt follows directly from Lemma 9.12. O
Lemma 9.15. Let us assume that a,b,c > 0. One has
s+1
Rs+1 s R‘a—l,b,c + Rtsz,b—l,c—i-l (269)

b—1, be = 1 _ 1"
a ctab,c (RZLc—l) 1+(RZ+1,b—1,C) 1

Proof. Using Figure 37, let us assign variables (A, B,...,J) to the 10 vertices satisfying the
octahedral relations
JH = BF + EC, IG = BD + EA.

Let us assign ratios to the 6 red edges

J H B C E F
R1777 RQZEa R3227 R4:§7 R5:57 RGZE
Hhen JH BF+FEC F/E+C/B Rs + R
RiRy = 2L _BEXEC F/E+C/B | Ret R (270)

IG BD+EA D/E+A/B R;'+R;'

Recall the octahedral relations (246) illustrated by Figure 29. The Lemma follows by working
with the subscripts of R?, = carefully. O

a,b,c
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Figure 37:

We consider the special cases when a = 0 or ¢ = 0.

Lemma 9.16. We have
S
RO,bfl,chl

s+1 1 s -1
<R0,b,cfl) + (R‘l,bfl,c)

s+1 s
R b0 T Rop11

S —1 ’
<Ra+1,b—1,0)

S
s+1 s _ 0,b—1,1
RO,bfl,ORO,b,O - (Rs )_1’
1,6—1,0

s+1 s _
1%O,bfl,c 0,b,c —

9

s+1 s _
Ra,bfl,ORa,b,O -

Proof. Using Figure 38, let us assign variables (B, ...

JH = BF + EC,

Let us assign ratios to the 5 red edges

Then

s=m—-1—b—¢c, ¢>0, (271)
s=m—-1—a—b, a>0, (272)
s=m—1-0. (273)

,J) to the 9 vertices satisfying the relations

IG = BD.

Figure 38:
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JH BF+EC F/E+C/B  Rs+ R3

RiRy = — 274
T BD D/E R, @74)

For functions assigned to vertices on the face ¢ = 0, by Lemma 9.6, we have
Anid A e = AT oA (275)

Combining with the octahedral relations (246), we get the second identity. The proofs for the
first and the third identities are similar. O

Theorem 9.17. The tropicalization of the involution (267) is the Schiitzenberger involution of
the Gelfand-Tsetlin’s patterns.

Proof. Recall the Schiitzenberger involution 7 defined by Berenstein-Zelevinsky [B7Z, (8.5)].
Tropicalizing the formula (270), we get

R} = min{Rf, Ri} —min{-R., — R.} — R, = min{R{, R} + max{RL, R} — R,. (276)

Note that Formula (276) is exactly Formula (8.4) in loc.cit.. The tropicalizations of (271)-(273)
give (degenerate) formulas of (276). Recall the cluster transformation C in (254). The Theorem
is proved by comparing C with the involution 7 of Berenstein-Zelevinsky. O

10 Donaldson-Thomas transformation on Apgr,, s
Let S be an admissible decorated surface. Recall the transformation

Cs := % o rg o wp.
Theorem 10.1. The action Cg is a cluster transformation.

Proof. Note that rs is an element of the mapping class group of S. By Corollary 10.3, rs is a
cluster transformation. By Theorem 8.2, the action wg on Apqr,,, s is a cluster transformation.'®
By Theorem 9.1, the involution = is a cluster transoformation. U

Theorem 10.2. The action Cs is the Donaldson-Thomas transformation on Xpat,, s-

We prove Theorem 10.2 in the rest of this section.
By Theorem 10.1, it suffices to prove that Cs maps basic positive laminations to basic
negative laminations. The latter follows from Theorem 10.8, Theorem 10.9, and Theorem 10.11.

10.1 Cluster nature of the mapping class group action

Let 7 and 77 be two ideal triangulations of S without self-folded triangles. We assign an m-
triangulation to each ideal triangle in 7, obtaining a quiver q. Each vertex v of q gives rise to a
function X, of Xpqr,, s. The set c¢q = {X,} is a coordinate chart of Xpgr,, s. In the same way,
the refined m-triangulation q’ of 7" gives rise to a chart ¢ for Xpgr,,, s

mo

18When S is a sphere with 3 punctures and G = PGLs, the corresponding quiver has 3 vertices but no arrows.
In this case, the Weyl group action at a single puncture is not cluster. However, the action wy is still cluster,
which mutates at each of the three vertices once.
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Theorem 10.3 ([F'G1, Section 10]). There is a cluster transformation from q to q’ such that the
transition map between cq and cy coincides with the one provided by the cluster transformation.

Remark. Let e be a diagonal of an ideal quadrilateral in 7. A flip at e removes e and adds the
other diagonal of the ideal quadrilateral to 7. Note that any two ideal triangulations without
self-folded triangles can be connected by a sequence of flips that only involves ideal triangulations
without self-folded triangles. Therefore it suffices to show that every flip in the sequence is a
cluster transformation. Since a flip only involves a local quadrilateral, it is enough to prove
Theorem 10.3 for the case when S is a quadrilateral.

Flip

Figure 39: Flip.

Proof. For future use, we present below a sequence of quiver mutations that takes left quiver on
Figure 39 to the right by induction on m. We refer the reader to [FGG1, Section 10| for showing
that it gives the transition map between cq and cy.

Consider the integral points inside of the tetrahedron

4
T, := {(x1, 22,23, 24) € R* | 2 x; =m, x; =0}
i=1

We identify the vertices of the left quiver on Figure 39 with the integral points on the faces of
T,, when 1 = 0 or 9 = 0, and the vertices of the right with the integral points on the the
faces when z3 = 0 or x4 = 0. First we focus on the top tetrahedron of size m — 1. By induction,
after a sequence of mutations, we obtain the second graph of Figure 40. Then we mutate at
the vertices on the last layer, obtaining the third graph. Using the language of quivers, we first

Q&
o 2

mutate the sub quiver consisting of vertices on the top square of size m — 1. See the first quiver
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on Figure 41. By induction, we obtain the second quiver on Figure 41. Then we mutate at the
vertices contained in the bottom triangle, in the order of row by row, from bottom left to top
right, obtaining the final quiver.

Figure 41:

O
Corollary 10.4. The mapping class group I's of S acts on Xpqr,,, s by cluster transformations.

Proof. Let T be an ideal triangulation of S without self-folded triangles. Each element ~ € I's
maps 7 to another ideal triangulation v(7) without self-folded triangles. By Theorem 10.3, T
and (7)) are connected by cluster transformations. O

From now on let us assume that 77 is obtained from 7 by a flip at e. Recall the basic
laminations [, in the coordinate chart cq (Definition 3.1). We study their coordinates in ¢y .

Notation. The coordinates of X-laminations will be illustrated as in Figure 42: the o-vertices
with “+7 give 1, the o-vertices with “ —” give -1, and the rest give 0.

Lemma 10.5. 1. Ifwv is an inner vertex of an ideal triangle containing e, then the coordinates
of I in cq are illustrated by the second graph of Figure 42.

2. If v is on the edge e, then the coordinates of i} in cq are illustrated by the fourth graph
of Figure 42.

3. For the rest vertices v, the coordinates of I.7 remain intact.
Proof. Part 3 is clear. Part 2 is a special case of 1 when a = 0.

The proof uses induction on m in the same way as the proof of Theorem 10.3.
If m = 2, then (a,b,c) = (0,1,1). The Lemma follows due to direct calculation.

19Tn fact, every quiver mutation in the sequence gives a two by two move on the bipartite graph of Figure 4.

96



Figure 42: Basic laminations under a flip.

If m > 2, we prove the case when b > 1 (the proof for b = 1 is similar but easier). First
we apply cluster mutations to the top square of size m — 1. Using induction, the coordinates
of the basic lamination are shown on the second graph of Figure 43. Then we mutate at the
vertices contained in the bottom triangle, in such an order illustrated by Figure 41. By an easy
calculation, we get the last graph of Figure 43.

Figure 43:

10.2 Covering map of decorated surfaces

The cone of positive laminations. Let X be a cluster Poisson variety assigned to a quiver
q with N vertices indexed by I = {1,..., N}. The chart cq := {X;} provides a bijection

cht X(ZH =S 7N, Le— (XI(), ..., X))
Let N be the set of non-negative integers. We consider the cone of positive laminations in cq

Xzt = () M),

Lemma 10.6. If K is the cluster DT-transformation on X, then it maps positive laminations
to negative laminations:
ch,(K' (1) = —c(), ViexH(Z"). (277)
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Proof. By the commutative version of Formula (140), we have 2°

K*X; = X, * H F;ij, where the F-polynomials F}; are of constant term 1. (278)
jel

If I € X (Z'), then F}(I) = 0. We have

XIK! (1) = (K*X)'() = =X{(0) + D e Fy (1) = =X,

O

Covering map. Let 7 : S —> Shea covering map of decorated surfaces. By pulling back, it
induces a natural positive embedding j : Xgs — X 5.

Lemma 10.7. The following diagram commutes

Proof. Tt follows directly from the geometric meaning of Cs. O
Theorem 10.8. If Cg is the cluster DT-transformation on X g, then so is Cs on Xgs.

Proof. Thanks to Theorem 10.1, it remains to prove that Cg maps basic positive laminations to
basic negative laminations.

Let 7 be an ideal triangulation of S without self-folded triangles. Its m-refined triangulation
gives a quiver q with vertices indexed by I. By pulling back to S, we get an ideal triangulation
T of S, and a quiver g with vertices indexed by I. There is a natural projection 7 : I — 1.
Using the coordinate charts cq and cg, the embedding j is given by

ji Xas— Xgs (X)) = X, Yoel (279)

Its tropicalization is an injection j': Xgg(Z') — X &(Z").

Let I (i € I) be basic laminations in the coordinate chart cq. By (279), j¢(I) is a positive
lamination in the cone X; (Zh). 1If Cg is the cluster DT-transformation, by Lemma 10.6, we
have Ctg(jt(l;r)) = j*(l;"). By the commutative diagram in Lemma 10.7, we have j(CL((}")) =
Ctg(jt(lj)). Therefore j*(CL(I;")) = j*(I;). Since j' is an injection, we get CL(I;") = I;. O

208ee [FZTV, Prop 3.13] for the commutative version. See [DWZ72, Theorem 1.7] for the proof that F-polynomials
have constant 1. As an example, if q is a cycle, then K*X; is given by (183).
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10.3 The action w :=rs o wg on Xpgr,, s

From now on, let us assume that S admits an ideal triangulation 7 such that every edge in T
connects two different marked points. By Theorem 10.8, it is enough to prove Theorem 10.2 for
such decorated surfaces.

Let cq := {X,} be the cluster chart of Xpgr,, s given by the m-triangulation of 7. The
tropicalization of w := rg o wq is an isomorphism

w': Xpcr,, s(Z") — Xpar,, s(Z°) (280)
We consider the images of the basic positive X-laminations [} under w'. There are two cases.

Theorem 10.9. 1. Ifv is a vertex on an edge e of T, labelled by (a,b), then the coordinates of
w'(l1) are illustrated by Figure 44.

Figure 44:

2. If v is inside an ideal triangle t of T, labelled by (a,b,c) € Ty, then the coordinates of
wt(l}) are illustrated by Figure 45.

Figure 45:
We prove Theorem 10.9 in the rest of Section 10.3.

10.3.1 Tropicalization of Weyl group actions

Recall the quivers qy < q in Theorem 7.7. The vertices of qy are labelled by I = {1,..., N}
clockwise.

Lemma 10.10. Let i € I be a vertex of qn. Let l € Xq (Z') such that

1 ifk =i
Xih=<{ 0 ifkelandk#1i,
lp ifk¢l
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We have

0 ifkeland k #i+ 1,
lp +cp; if k¢l

1 ifk=i+1,

Proof. Recall F}, Y; in Theorem 7.7. By definition, F]t(l) = 0 for all j € I. Therefore

Vi) =1 Y0 =0, Vjel-{}.

Note that X} (7%(1)) = (7*Xx)*(!). The Lemma follows from Theorem 7.7. O

Recall the Weyl group action on &pqr,, s assigned to a puncture p of S. By Theorem 8.2,
the action of the simple reflection s, ; is exactly the cluster transformation 7, ;. Set

dk,p = Spm—k©C---98pm—2°Spm—1- (281)

Let v be a vertex of distance (m — i) to p. Using Lemma 10.10 repeatedly, the coordinates of I,
under the action d,,_1, are illustrated by Figure 46.

Figure 46: Here m = 6, d5, = 55,1 0...0 8p5.

10.3.2 Part 1 of Theorem 10.9.

We have the following three cases.
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1. The edge ¢ connects two different special points m; and ms. Let m! be the
previous special point of m;. By flips at edges other than e, we get an ideal triangulation 7~
containing the ideal quadrilateral of vertices (mq,m},mg,mb) as the left graph of Figure 47.
Note that flips at edges other than e keep the coordinates of I intact. So [} is still a basic
positive lamination in the coordinate chart given by 7.

We flip at the edge e. By Lemma 10.5, the coordinates of [ are illustrated by the second
graph?! of Figure 47. The action rg of transporting framings rotates the edge m/m/ back to e.
Finally, again by flips at edges other than e, we return to the original ideal triangulation 7.

The actions at other marked points preserve the lamination of the last graph of Figure 47.
So the coordinates of w(l,) is the same as predicted by the Theorem.

m m} my my my m}
b :
\ Flip / Rotate a
—_— —_— \5\
b
my ma mh my mh mo
Figure 47:
2. The edge e connects a puncture p and a special point m.  We consider the ideal

triangle of vertices p,m, m’. Recall the action dj, in (281). The action of the longest Weyl
group element on p is
wo,p = d17p ] d27p ©...0 dm_17p (282)

Using repeatedly the process illustrated by Figure 46, wg, maps [;7 to the lamination shown on
the second graph of Figure 48. The action rg rotates the edge pm’ back to e.

b b

b
A / \
wo,p / Rotate

\
\
\
\
N
\ /
\ /
\ /
\ /
\ /

m

m’ m m’

Figure 48:

3. The edge e connects two different punctures p; and p;. By the same process
described in Case 2, the action of wy on p; maps [ to the second graph of Figure 49. The
action of wy on po maps it to the last graph. The action at other point preserve the lamination
of the last graph.

21 The edges connecting m; and m; are boundary intervals. Since we consider the moduli space XrcL,, s, there
are no frozen vertices assigned to the boundary intervals.
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Ve \\\ /
//l \ //I
/ N\ Wo,ps /
y' \ /
y \ /
& Ay 7
=3 A
/b \ SN
Y, \ SN
/ \
e p

2 D2

A\

b2

Figure 49: 1

10.3.3 Part 2 of Theorem 10.9.

We have the following four cases.

1. The vertices of t consists of three different punctures pi,po,p3.  Set
W2,py 7= Am—c,py © - -+ © dm—1py, Wipy = d1py © -+ 0 daqp—1,ps-

By (282), the action of wg on pg is

Wo,py = W1,py © W2,py-

The actions on the other punctures/special points will not change the coordinates of I,. So
it suffices to consider the action wgy on pi,ps,p3. Note that Weyl group actions on different
punctures always commute. The action wy p, © wop, © Wop, © W p, is illustrated by Figure 50,
which coincides with Figure 45.

b2 b2 D2
W2,ps wo,ps J
£ ¥

pl/

Figure 50:

2. The vertices of t consist of two punctures p;,p> and a special point m. Let m/
be the previous special point of m. Set

W2,py = dm—b,m O...0dm—1,py, Wipy = d1py ©... 0 date—1,ps-
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It suffices to consider the ideal quadrilateral of vertices (p1,p2, m,m’). Figure 51 illustrates the
change of coordinates of [ after wq actions on p; and ps and a flip the edge pym. The action
rg rotates the triangle p;pom’ back to t. The actions on the other marked points will preserve
the coordinates of .

m m’ m
wa, Fli
| ¢
b1 D2 D2
7 / ' 3

/2 pe
Rotate ? Wi,py .

Figure 51:

3. The vertices of t consist of a puncture p and two special point m;, mo. Figure 52
illustrates the change of coordinates of [ after the wy action on p and flips at two edge. The
action rg rotates the triangle pm/)m/, back to t. The actions on the other marked points will
preserve the coordinates of [
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my

w2,p

=~ TNy

Figure 52:

4. The vertices of t consist of three special point m;, mo and m3. Figure 52 illustrates
the change of coordinates of [, after flips at four edges. The action rg rotates the triangle
mjmbyms4 back to t. The actions on the other marked points will preserve the coordinates of [,.

Flip

Rotate

Figure 53:
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10.4 The involution * on Xpqr,, s

Theorem 10.11. The involution * maps the laminations in Figures 54 to basic negative lami-
nations.

\ \
/
\ \
/
\ \
\, ! \,
[ N, —_— N,
/ Y / Y
\ \
/ \ / \
/ \ / \
/ /
/ \ / \
/ N / 5
/ b / Y
’ N \\
/ /
/s \ / \
/ \ / \

Figure 54:

Proof. The first case is clear. We prove the second case by induction on m.
If m =3, then a = b= c = 1. The second case is clear.
If m > 3, without loss of generality, let us assume that ¢ > 1. By Proposition 9.8, the

involution * locally equals
D .= O’OSm_Q OSm_g... 031.

Let us assume that Theorem 10.11 holds for m — 1. Then C’ := S,,,_3... 0 S maps the first
graph to the second one. Recall the exact sequence of S,,—2 as illustrated by Figure 34. It
follows directly that S,,_o maps the second graph to the third one. Finally, we flip the third
graph horizontally, getting the last graph that we want.

Figure 55:

References

[ACCERV] Alim M., Cecotti S., Cordova C., Espahbodi S., Rastogi A., Vafa C.: BPS Quivers
and Spectra of Complete N = 2 Quantum Field Theories. arXiv:1109.4941.

[BZ] Berenstein A., Zelevinsky A.: Canonical bases for the quantum group of type A, and
piecewise-linear combinatorics. Duke Math. J. 82(1996), no.3, 473-502.

[BZ2] Berenstein A., Zelevinsky A.:Quantum cluster algebras. Adv. Math. 195(2005), no.2, 405-
455. arXiv:math/0404446.

105



[BFZ] Berenstein A., Fomin S., Zelevinsky A. Cluster algebra III: Upper bounds and double
Bruhat cells. Duke Math J. 126, (2005), no 1, 1-56, math.RT /0305434.

[Br] Bridgeland T.: Stability conditions on triangulated categories. Ann. of Math. (2) 166(2007),
no.2, 317-345. arXiv: math/0212237.

[BrS] Bridgeland T., Smith I.: Quadratic differentials as stability conditions. Publ. Math. Inst.
Hautes Etudes Sci. 121 (2015), 155-278. arXiv:1302.7030.

[Bu] Bucher E.: Mazimal Green Sequences for Cluster Algebras Associated to the n-Torus.
arXiv:1412.3713.

[BuM] Bucher E., Mills M.R: Mazimal Green Sequences for Cluster Algebras Associated to the
Orientable Surfaces of Genus n with Arbitrary Punctures. arXiv:1503.06207.

[DWZ] Derksen H., Weyman J., Zelevinsky A. : Quivers with potentials and their representations
I: Mutations. Selecta Math. (N.S.) 14 (2008), no. 1, 59-119. arXiv:0704.0649.

[DWZ2] Derksen H., Weyman J., Zelevinsky A. : Quivers with potentials and their representa-
tions II: applications to cluster algebras. J. Amer. Math. Soc. 23 (2010), no. 3, 749-790.
arXiv:0904.0676v3

[DDP] Diaconescu D.-E., Donagi R., Pantev, T.: Intermediate Jacobians and ADE Hitchin
Systems. Math. Res. Lett. 14 (2007), no. 5, 745-756. arXiv:hep-th/0607159

[DW] Drinfeld V., Wang J.: On a strange invariant bilinear form in the space of automorphic
forms. arXiv: 1503:04705.

[FG1] Fock V.V., Goncharov A.B.: Moduli spaces of local systems and higher Teichmiiller theory.
Publ. Math. Inst. Hautes Etudes Sci. No. 103 (2006), 1-211. arXiv math.AG/0311149.

[FGla] Fock V., Goncharov A.B.: Dual Teichmiiller and lamination spaces. Handbook of Te-
ichmiiller theory. Vol. I, 647-684, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc.,
Ziirich, 2007. arXiv:math/0510312.

[FG2] Fock V., Goncharov A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci.
L’Ecole Norm. Sup. (2009). ArXiv: math.AG/0311245.

[FG3] Fock V., Goncharov A.B.: Cluster X-varieties at infinity. arXiv:1104.0407. To appear in
Selecta Mathematicae, 2016.

[FG4] Fock V., Goncharov A.B.: The quantum dilogarithm and representations of quantum
cluster varieties. Invent. Math. 175 (2009), no. 2, 223-286. arXiv:math/0702397.

[FG5] Fock V., Goncharov A.B.: Cluster X -varieties, amalgamation, and Poisson Lie groups.
Prog. Math, Birkhauser, 2005, math.RT/0508408.

[FST] Fomin S., Shapiro M., Thurston D.: Cluster algebras and triangulated surfaces. Part I:
Cluster complexes. Acta Math. 201 (2008), no. 1, 83-146. arXiv:math/0608367.

[FT] Fomin S., Thurston D.: Cluster algebras and triangulated surfaces. Part II1: Lambda lengths.
arXiv:1210.5569.

106



[FZ98] Fomin S., Zelevinsky A.: Double Bruhat cells and total positivity. JAMS, 12 (1999) no
2, 335-380. arXiv:math/9802056.

[FZ] Fomin S., Zelevinsky A.: The Laurent Phenomenon. Adv. in Appl. Math. 28 (2002), no.
2, 119-144. arXiv:math/0104241.

[FZI] Fomin S., Zelevinsky A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc. 15 (2002),
no. 2, 497-529. arXiv:math,/0104151v1

[FZIV] Fomin S., Zelevinsky A.: Cluster algebras IV: Coefficients. Compos. Math. 143 (2007),
no. 1, 112-164. arXiv:math/0602259v3

[GMN1] Gaiotto D., Moore G., Neitzke A.: Wall-crossing, Hitchin Systems, and the WKB
Approzimation. Adv. Math. 234 (2013), 239-403. arXiv:0907.3987.

[GMN2] Gaiotto D., Moore G., Neitzke A.: Framed BPS States. Adv. Theor. Math. Phys. 17
(2013), no. 2, 241-397. arXiv:1006.0146.

[GMN3]| Gaiotto D., Moore G., Neitzke A.: Wall-Crossing in Coupled 2d-4d Systems. J. High
Energy Phys. 2012, no. 12, arXiv:1103.2598.

[GMN4]| Gaiotto D., Moore G., Neitzke A.: Spectral networks. Ann. Henri Poincaré 14 (2013),
no. 7, 1643-1731. arXiv:1204.4824.

[GMN5] Gaiotto D., Moore G., Neitzke A.: Spectral Networks and Snakes. Ann. Henri Poincaré
15 (2014), no. 1, 61-141. arXiv:1209.0866.

[Gin] Ginzburg V. Calabi-Yau algebras. arXiv:math/0612139.

[GGSVV] Golden J., Goncharov A., Spradlin M., Vergu C., Volovich A.: Motivic Amplitudes
and Cluster Coordinates. arXiv:1305.1617.

[G94] Goncharov A.B.: Polylogarithms and motivic Galois groups. ”Motives”. Proc. Symp Pure
Math vol 55 N 2, 43-96.

[G] Goncharov A.B.: Ideal webs and Calabi- Yau categories. To appear.

[GS] Goncharov A.B., Shen L.: Geometry of canonical bases and mirror symmetry. Invent.
Math. 202 (2015), no. 2, 487-633. arXiv:1309.5922v2

[GHK] Gross, M., Hacking P., Keel S.: Mirror symmetry for log Calabi-Yau surfaces 1. Publ.
Math. Inst. Hautes Etudes Sci. 122 (2015), 65168. arXiv:1106.4977

[GHKK] Gross, M., Hacking P., Keel S., Kontsevich M.: Canonical bases for cluster algebras.
arXiv:1411.1394.

[DT] Donaldson S., Thomas R.: Gauge theory in higher dimensions. The geometric universe
(Oxford 1996), Oxford Univ. Press (1998).

[K11] B. Keller: On cluster theory and quantum dilogarithm identities. Representations of alge-
bras and related topics, 85116, EMS Ser. Congr. Rep., EMS, Ziirich, 2011. arXiv:1102.4148.

107



[K12] B. Keller: Cluster algebras and derived categories. Derived categories in algebraic geom-
etry, 123-183, EMS Ser. Congr. Rep., Eur. Math. Soc., Ziirich, 2012. arXiv:1202.4161.

[K13] B. Keller: Quiver mutation and combinatorial D T-invariants. Contribution to the FPSAC
2013. http://webusers.imj-prg.fr/ bernhard.keller/publ/index.html.

[K] B. Keller: The periodicity conjecture for pairs of Dynkin diagrams. Ann. of Math. (2) 177
(2013), no. 1, 111-170. arXiv:1001.1531v5

[KS] Kontsevich M., Soibelman Y.: Affine structures and non-Archimedean analytic spaces.
Prog. Math., vol. 244, Birkhauser Boston, 2006, pp. 321-385. arXiv:math.AG/0406564.

[KS1] Kontsevich M., Soibelman Y.: Stability structures, motivic Donaldson-Thomas invariants
and cluster transformations. arXiv:0811.2435.

[KS2] Kontsevich M., Soibelman Y.: Cohomological Hall algebra, exponential Hodge structures,
and motivic Donaldson-Thomas invariants. Commun. Number Theory Phys. 5 (2011), no.
2, 231-352. arXiv:1006.2706.

[KS3] Kontsevich M., Soibelman Y.: Wall crossing structures in Donaldson-Thomas invariants,
integrable systems and mirror symmetry. Homological mirror symmetry and tropical geom-
etry, 197-308, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014. arXiv:1303.3253.

[LF08] Labardini-Fragoso D. Quivers with potentials associated to triangulated surfaces. Proc.
Lond. Math. Soc. (3) 98 (2009), no. 3, 797-839. arXiv:0803.1328.

[L1] Lusztig G.: Total positivity in reductive groups. Lie Theory and Geometry: In Honor of
B.Kostant, Progr. in Math. 123, Birkhauser, 1994, 531-568.

[L2] Lusztig G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math.
Soc. 3 (1990), no. 2, 447498.

[MMNS] Morrison A., Mozgovoy S., Nagao K., Szendroi B., Motivic Donaldson-Thomas invari-
ants of the conifold and the refined topological vertex. Adv. Math. 230 (2012), no. 4-6,
2065-2093. arXiv: 1107.5017

[N10] Nagao K.: Donaldson-Thomas theory and cluster algebras. Duke Math. J. 162 (2013), no.
7, 1313-1367. arXiv: 1002.4884.

[NZ] Nakanishi T., Zelevinsky A.: On tropical dualities in cluster algebras. Algebraic groups and
quantum groups, 217-226, Cont. Math., 565, AMS, Providence, 2012. arXiv: 1101.3736v3.

[Se95] Seiberg N.: FElectric-magnetic duality in supersymmetric non-abelian gauge theories. Nu-
clear Phys. B 435(1-2):129-146, 1995. arXive:hep-th/9411149.

[ST] P. Seidal, R. Thomas, Braid group actions on derived categories of coherent sheaves. Duke
Math. J. 108(2001), no.1, 37-108.

[S]  Smith L.: Quiver algebras as Fukaya categories. Geom. Topol. 19 (2015), no. 5, 2557-2617.
arXiv: 1309.0452.

108



[Z] A.B. Zamolodchikov.On the thermodynamic Bethe ansatz equations for reflectionless ADE
scattering theories. Phys. Lett. B 253 (1991), no. 3-4, 391394.

[We] Weng D.: Donaldson-Thomas transformations of Grassmannians. (Yale PhD thesis.)

109



	1 Introduction
	1.1 Summary
	1.2 Definitions
	1.3 Cluster nature of the Weyl group action and of the -involution
	1.4 Donaldson-Thomas transformations
	1.5 DT-transformations for moduli spaces of local systems
	1.6 DT-transformations of cluster varieties and Duality Conjectures
	1.7 Ideal bipartite graphs on surfaces and 3d CY categories G
	1.8 Physics perspective
	1.9 Other ramifications and applications

	2 Quantum cluster varieties
	3 DT-transformations of cluster varieties and Duality Conjecturs
	3.1 When do two cluster transformations coincide?
	3.2 Cluster Donaldson-Thomas transformations
	3.3 The isomorphism i, the contravariant functor F, and DT-transformations.
	3.4 DT-transformations of cluster varieties and Duality Conjectures

	4 Properties of cluster DT-transformations
	4.1 Sign-coherence and cluster transformations
	4.2 An example: quantum cluster variety for the quiver of type A2
	4.3 Canonical bilinear form on -representations of quantum cluster varieties
	4.4 Proof of Theorems 3.10, 3.6

	5 Two geometric ways to determine cluster DT-transformations for XPGL2, S
	5.1 X-laminations and cluster DT-transformations for XPGL2, S
	5.2 Cluster divisors at infinity and cluster DT-transformations for XPGL2, S

	6 Birational Weyl group action on the space AG, S
	7 Example of cluster DT-transformations
	7.1 Cluster DT-transformation for the punctured disc
	7.2 Tagged ideal triangulations of a once-punctured disk.
	7.3 Proof of Theorem 7.1

	8 The Weyl group acts on XPGLm, S and ASLm, S by cluster transformations
	8.1 The moduli space ASLm, S
	8.2 The moduli space XPGLm, S

	9 The -involution and its cluster nature
	9.1 Involution on Confn(ASLm)
	9.2 Proof of Theorem 9.1
	9.3 The Schützenberger involution

	10 Donaldson-Thomas transformation on XPGLm, S
	10.1 Cluster nature of the mapping class group action
	10.2 Covering map of decorated surfaces
	10.3 The action w:=rS w0 on XPGLm, S
	10.3.1 Tropicalization of Weyl group actions
	10.3.2 Part 1 of Theorem 10.9.
	10.3.3 Part 2 of Theorem 10.9.

	10.4 The involution  on XPGLm, S


