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Abstract A decorated surface S is an oriented surface with boundary and a
finite, possibly empty, set of special points on the boundary, considered modulo
isotopy. Let G be a split reductive group over Q. A pair (G, S) gives rise to a
moduli spaceAG,S , closely related to the moduli space of G-local systems on S.
It is equipped with a positive structure (Fock and Goncharov, Publ Math IHES
103:1–212, 2006). So a set AG,S(Z

t ) of its integral tropical points is defined.
We introduce a rational positive function W on the space AG,S , called the
potential. Its tropicalisation is a function W t : AG,S(Z

t )→ Z. The condition
W t ≥ 0 defines a subset of positive integral tropical points A+G,S(Z

t ). For
G = SL2, we recover the set of positive integralA-laminations on S from Fock
and Goncharov (Publ Math IHES 103:1–212, 2006). We prove that when S is
a disc with n special points on the boundary, the set A+G,S(Z

t ) parametrises
top dimensional components of the fibers of the convolution maps. Therefore,
via the geometric Satake correspondence (Lusztig, Astérisque 101–102:208–
229, 1983; Ginzburg,1995; Mirkovic and Vilonen, Ann Math (2) 166(1):95–
143, 2007; Beilinson and Drinfeld, Chiral algebras. American Mathematical
Society Colloquium Publications, vol. 51, 2004) they provide a canonical basis
in the tensor product invariants of irreducible modules of the Langlands dual
group GL :

(Vλ1 ⊗ . . .⊗ Vλn )
GL

. (1)
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When G = GLm ,n = 3, there is a special coordinate system onAG,S (Fock and
Goncharov, Publ Math IHES 103:1–212, 2006). We show that it identifies the
set A+GLm,S(Z

t ) with Knutson–Tao’s hives (Knutson and Tao, The honeycomb
model of GL(n) tensor products I: proof of the saturation conjecture, 1998).
Our result generalises a theorem of Kamnitzer (Hives and the fibres of the
convolution morphism, 2007), who used hives to parametrise top components
of convolution varieties for G = GLm , n = 3. For G = GLm , n > 3, we prove
Kamnitzer’s conjecture (Kamnitzer, Hives and the fibres of the convolution
morphism, 2012). Our parametrisation is naturally cyclic invariant. We show
that for any G and n = 3 it agrees with Berenstein–Zelevinsky’s parametri-
sation (Berenstein and Zelevinsky, Invent Math 143(1):77–128, 2001), whose
cyclic invariance is obscure. We define more general positive spaces with
potentials (A,W), parametrising mixed configurations of flags. Using them,
we define a generalization of Mirković–Vilonen cycles (Mirkovic and Vilonen,
Ann Math (2) 166(1):95–143, 2007), and a canonical basis in Vλ1⊗ . . .⊗Vλn ,
generalizing the Mirković–Vilonen basis in Vλ. Our construction comes natu-
rally with a parametrisation of the generalised MV cycles. For the classical MV
cycles it is equivalent to the one discovered by Kamnitzer (Mirkovich–Vilonen
cycles and polytopes, 2005). We prove that the set A+G,S(Z

t ) parametrises top
dimensional components of a new moduli space, surface affine Grasmannian,
generalising the fibers of the convolution maps. These components are usually
infinite dimensional. We define their dimension being an element of a Z-torsor,
rather then an integer. We define a new moduli space LocGL ,S , which reduces
to the moduli spaces of GL -local systems on S if S has no special points. The
set A+G,S(Z

t ) parametrises a basis in the linear space of regular functions on
LocGL ,S . We suggest that the potential W itself, not only its tropicalization, is
important—it should be viewed as the potential for a Landau–Ginzburg model
on AG,S . We conjecture that the pair (AG,S,W) is the mirror dual to LocGL ,S .
In a special case, we recover Givental’s description of the quantum cohomol-
ogy connection for flag varieties and its generalisation (Gerasimov et al., New
integral representations of Whittaker functions for classical Lie groups, 2012;
Rietsch, A mirror symmetric solution to the quantum Toda lattice, 2012). We
formulate equivariant homological mirror symmetry conjectures parallel to
our parametrisations of canonical bases.
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1 Introduction

1.1 Geometry of canonical bases in representation theory

1.1.1 Configurations of flags and parametrization of canonical bases

Let G be a split semisimple simply-connected algebraic group over Q. There
are several basic vector spaces studied in representation theory of the Lang-
lands dual group GL :

1. The weight λ component U (N L)(λ) in the universal enveloping algebra
U (N L) of the maximal nilpotent Lie subalgebra in the Lie algebra of GL .

2. The weight μ subspace V (μ)
λ in the highest weight λ representation Vλ of

GL .
3. The tensor product invariants (Vλ1 ⊗ · · · ⊗ Vλn )

GL
.

4. The weight μ subspaces in the tensor products Vλ1 ⊗ · · · ⊗ Vλn .

Calculation of the dimensions of these spaces, in the cases (1)–(3), is a fasci-
nating classical problem, which led to Weyl’s character formula and Kostant’s
partition function.

The first examples of special bases in finite dimensional representations are
Gelfand–Tsetlin’s bases [28,29]. Other examples of special bases were given
by De Concini–Kazhdan [14].

The canonical bases in the spaces above were constructed by Lusztig
[59,61]. Independently, canonical bases were defined by Kashiwara [47].
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Canonical bases in representations of GL3, Sp4 were defined by Gelfand–
Zelevinsky–Retakh [27,68].

Closely related, but in general different bases were considered by Naka-
jima [66,67], Malkin [63], Mirković–Vilonen [65], and extensively studied
afterwards. Abusing terminology, we also call them canonical bases.

It was discovered by Lusztig [58] that, in the cases (1)–(2), the sets para-
metrising canonical bases in representations of the group G are intimately
related to the Langlands dual group GL .

Kashiwara discovered in the cases (1)–(2) an additional crystal structure on
these sets, and Joseph proved a rigidity theorem [44] asserting that, equipped
with the crystal structure, the sets of parameters are uniquely determined.

One of the results of this paper is a uniform geometric construction of the
sets parametrizing all of these canonical bases, which leads to a natural uniform
construction of canonical bases parametrized by these sets in the cases (2)–(4).
In particular, we get a new canonical bases in the case (4), generalizing the
Mirković–Vilonen (MV) basis in Vλ. To explain our set-up let us recall some
basic notions.

A positive space Y is a space, which could be a stack whose generic part is
a variety, equipped with a positive atlas. The latter is a collection of rational
coordinate systems with subtraction free transition functions between any pair
of the coordinate systems. Therefore the set Y(Zt ) of the integral tropical
points of Y is well defined. We review all this in Sect. 2.1.1.

Let (Y,W) be a positive pair given by a positive space Y equipped with a
positive rational function W . Then one can tropicalize the function W , getting
a Z-valued function

W t : Y(Zt ) −→ Z.

Therefore a positive pair (Y,W) determines a set of positive integral trop-
ical points:

Y+W(Zt ) := {l ∈ Y(Zt ) |W t (l) ≥ 0}. (2)

We usually omit W in the notation and denote the set by Y+(Zt ).
To introduce the positive pairs (Y,W) which play the basic role in this

paper, we need to review some basic facts about flags and decorated flags in
G.
Decorated flags and associated characters. Below G is a split reductive
group over Q. Recall that the flag variety B parametrizes Borel subgroups in
G. Given a Borel subgroup B, one has an isomorphism B = G/B.

Let G′ be the adjoint group of G. The group G′ acts by conjugation on pairs
(U, χ), where χ : U → A1 is an additive character of a maximal unipotent
subgroup U in G′. The subgroup U stabilizes each pair (U, χ). A character χ
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is non-degenerate if U is the stabilizer of (U, χ). The principal affine space1

AG′ parametrizes pairs (U, χ) where χ is a non-degenerate additive character
of a maximal unipotent group U. Therefore there is an isomorphism

iχ : AG′
∼−→ G′/U.

This isomorphism is not canonical: the coset [U] ∈ G′/U does not determine
a point of AG′ . To specify a point one needs to choose a non-degenerate
character χ . One can determine uniquely the character by using a pinning,
see Sects. 2.1.2–2.1.3. So writing AG′ = G′/U we abuse notation, keeping in
mind a choice of the character χ , or a pinning.

Having said this, one defines the principal affine space AG for the group G
by AG := G/U. We often write A instead of AG. The points of A are called
decorated flags in G. The group G acts on A from the left. For each A ∈ A,
let UA be its stabilizer. It is a maximal unipotent subgroup of G. There is a
canonical projection

π : A −→ B, π(A) := the normalizer of UA. (3)

The projection G → G′ gives rise to a map p : AG −→ AG′ whose fibers
are torsors over the center of G. Let p(A) = (UA, χA). Here UA is a maximal
unipotent subgroup of G′. It is identified with a similar subgroup of G, also
denoted by UA. So a decorated flag A in G provides a non-degenerate character
of the maximal unipotent subgroup UA in G:

χA : UA −→ A1. (4)

Clearly, if u ∈ UA, then gug−1 ∈ Ug·A, and

χA(u) = χg·A(gug−1). (5)

Example. A flag for SLm is a nested collection of subspaces in an m-
dimensional vector space Vm equipped with a volume form ω ∈ detV ∗m :

F• = F0 ⊂ F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm, dimFi = i.

A decorated flag for SLm is a flag F• with a choice of non-zero vectors fi ⊂
Fi/Fi−1 for each i = 1, . . . ,m − 1, called decorations. For example, ASL2

parametrises non-zero vectors in a symplectic space (V2, ω). The subgroup
preserving a vector f ∈ V2 − {0} is given by transformations u f (a) : v �−→
v + aω( f, v) f . Its character χ f is given by χ f (u f (a)) = a.

1 Inspite of the name, it is not an affine variety.
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Our basic geometric objects are the following three types of configuration
spaces:

Confn(A) = G\An, Conf(An,B) := G\(An × B),

Conf(B,An,B) := G\(B ×An × B). (6)

The potentialW . A key observation is that there is a natural rational function

χo : Conf(B,A,B) = G\(B ×A× B) −→ A1.

Let us explain its definition. A pair of Borel subgroups {B1, B2} is generic
if B1 ∩ B2 is a Cartan subgroup in G. A pair {A1, B2} ∈ A × B is generic
if the pair (π(A1), B2) is generic. Generic pairs {A1, B2} form a principal
homogeneous G-space. Thus, given a triple {B1, A2, B3} ∈ B ×A × B such
that {A2, B3} and {A2, B1} are generic, there is a unique u ∈ UA2 such that

{A2, B3} = u · {A2, B1}. (7)

So we define χo(B1, A2, B3) := χA2(u). Using it as a building block, we
define a positive rational function W on each of the spaces (6).

For example, to define the W on the space Confn(A) we start with a generic
collection {A1, . . . , An} ∈ An , set Bi := π(Ai ), and define W as a sum, with
the indices modulo n:

W : Confn(A) −→ A1, W(A1, . . . , An) :=
n∑

i=1

χo(Bi−1, Ai , Bi+1). (8)

Note that the potentialW is well-defined when each adjacent pair {Ai , Ai+1}
is generic, meaning that {π(Ai ), π(Ai+1)} is generic. Assigning the (deco-
rated) flags to the vertices of a polygon, we picture the potential W as a sum
of the contributions χA at the A-vertices (shown boldface) of the polygon, see
Fig. 1.

By construction, the potential WG on the space Confn(AG) is the pull
back of the potential WG′ for the adjoint group G′ via the natural projection
pG→G′ : Confn(AG)→ Confn(AG′):

WG = p∗G→G′WG′ . (9)

Potentials for the other two spaces in (6) are defined similarly, as the sums
of the characters assigned to the decorated flags of a configuration. A formula
similar to (9) evidently holds.
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Fig. 1 The potential W is a sum of the contributions χA at the A-vertices (boldface)

Parametrisations of canonical bases. It was shown in [17] that all of the
spaces (6) have natural positive structures. We show that the potential W is a
positive rational function.

We prove that the sets parametrizing canonical bases admit a uniform
description as the sets Y+W(Zt ) of positive integral tropical points assigned
to the following positive pairs (Y,W). To write the potential W we use an
abbreviation χAi := χo(Bi−1, Ai , Bi+1), with indices mod n:

1. The canonical basis in U (N L):

Y = Conf(B,A,B), W(B1, A2, B3) := χA2 .

2. The canonical basis in Vλ:

Y = Conf(A,A,B), W(A1, A2, B3) := χA1 + χA2 .

3. The canonical basis in invariants of tensor product of n irreducible GL -
modules:

Y = Confn(A), W(A1, . . . , An) :=
n∑

i=1

χAi . (10)

4. The canonical basis in tensor products of n irreducible GL -modules:

Y = Conf(An+1,B), W(A1, . . . , An+1, B) :=
n+1∑

i=1

χAi . (11)

Natural decompositions of these sets, like decompositions into weight sub-
spaces in (1) and (2), are easily described in terms of the corresponding con-
figuration space, see Sect. 2.3.2.

Let us emphasize that the canonical bases in tensor products are not the
tensor products of canonical bases in irreducible representations. Similarly, in
spite of the natural decomposition
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Vλ1 ⊗ · · · ⊗ Vλn = ⊕λVλ ⊗ (V ∗λ ⊗ Vλ1 ⊗ · · · ⊗ Vλn )
GL

,

the canonical basis on the left is not a product of the canonical bases on the
right.

Descriptions of the sets parametrizing the canonical bases were known in
different but equivalent formulations in the following cases:

In the cases (1)–(2) there is the original parametrization of Lusztig [58].
In the case (3) for n = 3, there is Berenstein–Zelevinsky’s parametrization

[12], referred to as the BZ data. We produce in Appendix of the online version
of our paper [39] an isomorphism between our parametrization and the BZ
data. The cyclic symmetry, evident in our approach, is obscure for the BZ
data.

The description in the n > 3 case in (3) seems to be new.
The cases (1), (2) and (4) were investigated by Berenstein and Kazhdan

[10,11], who introduced and studied geometric crystals as algebraic-geometric
avatars of Kashiwara’s crystals. In particular, they describe the sets parame-
trizing canonical bases in the form (2), without using, however, configuration
spaces. Interpretation of geometric crystals relevant to representation theory
as moduli spaces of mixed configurations of flags makes, to our opinion, the
story more transparent. See Appendix of the online version of our paper [39].
Kashiwara’s crystals were related to affine Grassmannians in [13].

To define canonical bases in representations, one needs to choose a maxi-
mal torus in GL and a positive Weyl chamber. Usual descriptions of the sets
parametrizing canonical bases require the same choice. Unlike this, working
with configurations we do not require such choices.2

Most importantly, our parametrization of the canonical basis in tensor prod-
ucts invariants leads immediately to a similar set which parametrizes a linear
basis in the space of functions on the moduli space LocGL,S of GL -local systems
on a decorated surface S. Here the approach via configurations of decorated
flags, and in particular its transparent cyclic invariance, are essential. See the
example when G = SL2 in Sect. 1.3.1.

Summarizing, we understood the sets parametrizing canonical bases as the
sets of positive integral tropical points of various configuration spaces. Let
us show now how this, combined with the geometric Satake correspondence
[9,34,62,65], leads to a natural uniform construction of canonical bases in the
cases (2)–(4).

We explain in Sect. 1.1.2 the construction in the case of tensor products
invariants. A canonical basis in this case was defined by Lusztig [61]. However
Lusztig’s construction does not provide a description of the set parametrizing

2 We would like to stress that the positive structures and potentials on configuration spaces
which we employ for parametrization of canonical bases do not depend on any extra choices,
like pinning etc., in the group. See Sect. 6.3.
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the basis. Our basis in tensor products is new—it generalizes the MV basis in
Vλ. We explain this in Sect. 2.4.

1.1.2 Constructing canonical bases in tensor products invariants

We start with a simple general construction. Let Y be a positive space, under-
stood just as a collection of split tori glued by positive birational maps [17].
Since it is a birational notion, there is no set of F-points of Y , where F is a
field. Let K := C((t)). In Sect. 2.2.1 we introduce a set Y◦(K). We call it
the set of transcendental K-points of Y . It is a set making sense of “generic
K-points of Y”. In particular, if Y is given by a variety Y with a positive ratio-
nal atlas, then Y◦(K) ⊂ Y (K). The set Y◦(K) comes with a natural valuation
map:

val : Y◦(K) −→ Y(Zt ).

For any l ∈ Y(Zt ), we define the transcendental cell C◦l assigned to l:

C◦l := val−1(l) ⊂ Y◦(K), Y◦(K) =
∐

l∈Y(Zt )

C◦l .

Let us now go to canonical bases in invariants of tensor products of GL -
modules (1). The relevant configuration space is Confn(A).The tropicalized
potential W t : Confn(A)(Zt ) → Z determines the subset of positive integral
tropical points:

Conf+n (A)(Zt ) := {l ∈ Confn(A)(Zt ) |W t (l) ≥ 0}. (12)

We construct a canonical basis in (1) parametrized by the set (12).
Let O := C[[t]]. In Sect. 2.2.2 we introduce a moduli subspace

ConfOn (A) ⊂ Confn(A)(K). (13)

We call it the space of O-integral configurations of decorated flags. Here
are its crucial properties:

1. A transcendental cell C◦l of Confn(A) is contained in ConfOn (A) if and
only if it corresponds to a positive tropical point. Moreover, given a point
l ∈ Confn(A)(Zt ), one has

l ∈ Conf+n (A)(Zt )⇐⇒ C◦l ⊂ ConfOn (A)⇐⇒ C◦l ∩ ConfOn (A) �= ∅.
(14)
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2. Let Gr := G(K)/G(O) be the affine Grassmannian. It follows immediately
from the very definition of the subspace (13) that there is a canonical map

κ : ConfOn (A) −→ Confn(Gr) := G(K)\(Gr)n.

These two properties of ConfOn (A) allow us to transport points l ∈
Conf+n (A)(Zt ) into the top components of the stack Confn(Gr). Namely, given
a point l ∈ Conf+n (A)(Zt ), we define a cycle

Ml := closure of M◦
l ⊂ Confn(Gr), where M◦

l := κ(C◦l ).

The cycle C◦l is defined for any l ∈ Confn(A)(Zt ). However, as it clear from
(14), the map κ can be applied to it if and only if l is positive: otherwise C◦l is
not in the domain of the map κ .

We prove that the map l �−→Ml provides a bijection

Conf+n (A)(Zt )
∼−→ {closures of the top dimensional components

of the stack Confn(Gr)}. (15)

Here the very notion of a “top dimensional” component of a stack requires
clarification. For now, we will bypass this question in a moment by passing to
more traditional varieties.

We use a very general argument to show the injectivity of the map l �−→Ml .
Namely, given a positive rational function F on Confn(A), we define a Z-
valued function DF on Confn(Gr). It generalizes the function on the affine
Grassmannian for G = GLm and its products defined by Kamnitzer [45,46].
We prove that the restriction of DF to M◦

l is equal to the value Ft (l) of the
tropicalization Ft of F at the point l ∈ Conf+n (A)(Zt ). Thus the map (15) is
injective.

Let us reformulate our result in a more traditional language. The orbits of
G(K) acting on Gr × Gr are labelled by dominant weights of GL . We write

L1
λ−→ L2 if (L1, L2) is in the orbit labelled by λ. Let [1] be the identity coset

in Gr. A set λ = (λ1, . . . , λn) of dominant weights of GL determines a cyclic
convolution variety, better known as a fiber of the convolution map:

Grc(λ) := {(L1, . . . , Ln) | L1
λ1−→ L2

λ2−→ · · · λn−→ Ln+1,

L1 = Ln+1 = [1]} ⊂ [1] × Grn−1. (16)

These varieties provide a G(O)-equivariant decomposition

[1] × Grn−1 =
∐

λ=(λ1,...,λn)

Grc(λ). (17)
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Since G(O) is connected, it preserves each component of Grc(λ). Thus the
components of Grc(λ) live naturally on the stack

Confn(Gr) = G(O)\([1] × Grn−1).

We prove that the cycles Ml assigned to the points l ∈ Conf+n (A)(Zt ) are
closures of the top dimensional components of the cyclic convolution varieties.
The latter, due to the geometric Satake correspondence, give rise to a canonical
basis in (1). We already know that the map (15) is injective. We show that the
λ-components of the sets related by the map (15) are finite sets of the same
cardinality, respected by the map. Therefore the map (15) is an isomorphism.

Our result generalizes a theorem of Kamnitzer [46], who used hives [54] to
parametrize top components of convolution varieties for G = GLm , n = 3.

Our construction generalizes Kamnitzer’s construction of parametrizations
of Mirković–Vilonen cycles [45]. At the same time, it gives a coordinate free
description of Kamnitzer’s construction.

When G = GLm , there is a special coordinate system on the space
Conf3(A), introduced in Section 9 of [17]. We show in Sect. 3 that it pro-
vides an isomorphism of sets

Conf+3 (A)(Zt )
∼−→ {Knutson−Tao’s hives [KT]}.

Using this, we get a one line proof of Knutson–Tao–Woodward’s theorem
[55] in Sect. 2.1.6.

For G = GLm , n > 3, we prove Kamnitzer conjecture [46], describing
the top components of convolution varieties via a generalization of hives—we
identify the latter with the set Conf+n (A)(Zt ) via the special positive coordinate
systems on Confn(A) from [17].

1.2 Positive tropical points and top components

1.2.1 Our main example

Denote by Conf×n (A) the subvariety of Confn(A) parametrizing configura-
tions of decorated flags (A1, . . . , An) such that the flags (π(Ai ), π(Ai+1)) are
in generic position for each i = 1, . . . , n modulo n. The potential W was
defined in (8). It is evidently a regular function on Conf×n (A).

Let P+ be the cone of dominant coweights. There are canonical isomor-
phisms

α : Conf×2 (A)
∼−→ H, Conf2(Gr) = P+. (18)
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Fig. 2 Going from an O-integral configuration of decorated flags to a configuration of lattices

Configurations (A1, . . . , An) sit at the vertices of a polygon, as on Fig. 2.
Let πE : Confn(A)→ Conf2(A) be the projection corresponding to a side E
of the polygon. Denote by π×E its restriction to Conf×n (A). The collection of
the maps {π×E }, followed by the first isomorphism in (18) provides a map

π : Conf×n (A) −→ Conf×2 (A)n
α= Hn.

Using similarly the second isomorphism in (18), we get a map

πGr : Confn(Gr) −→ Conf2(Gr)n=(P+)n.

Let {ωi } be a basis of the cone of positive dominant weights of H. The
functions π∗Eωi are equations of the irreducible components of the divisor
D := Confn(A)− Conf×n (A):

D := Confn(A)− Conf×n (A) = ∪E,i D
E
i .

Equivalently, the component DE
i is determined by the condition that the

pair of flags at the endpoints of the edge E belongs to the codimension one
G-orbit corresponding to the simple reflection si ∈ W .3

The space Confn(A) has a cluster A-variety structure, described for G =
SLm in [17, Section 10]. An important fact [21] is that any cluster A-variety
A has a canonical cluster volume form �A, which in any cluster A-coordinate
system (A1, . . . , An) is given by

�A = ±d log A1 ∧ . . . ∧ d log An.

The functions π∗Eωi are the frozen A-cluster coordinates in the sense of
Definition 11.5. This is equivalent to the claim that the canonical volume form

3 Indeed, ωi (α(A1, A2)) = 0 if and only if the corresponding pair of flags belongs to the
codimension one G-orbit corresponding to a simple reflection si .

123



500 A. Goncharov, L. Shen

�A on Confn(A) has non-zero residues precisely at the irreducible compo-
nents of the divisor D.4

All this data is defined for any split semi-simple group G over Q. Indeed,
the form � on Confn(A) for the simply-connected group is invariant under the
action of the center the group, and thus its integral multiple descends to a form
on Confn(AG). The potential WG is defined by pulling back the potential WG′
for the adjoint group G′. We continue discussion of this example in Sect. 1.4,
where it is casted as an example of the mirror symmetry.

The simplest example. Let (V2, ω) be a two dimensional vector space with
a symplectic form. Then SL2 = Aut(V2, ω), and ASL2 = V2 − {0}. Next,
Confn(ASL2) = Confn(V2) is the space of configuration (l1, . . . , ln) of n non-
zero vectors in V2. Set �i, j := 〈ω, li ∧ l j 〉. Then the potential is given by the
following formula, where the indices are mod n:

W :=
n∑

i=1

�i,i+2

�i,i+1�i+1,i+2
. (19)

The boundary divisors are given by equations �i,i+1 = 0. To write the
volume form, pick a triangulation T of the polygon whose vertices a labeled
by the vectors. Then, up to a sign,

� :=
∧

E

d log �E .

where E are the diagonals and sides of the n-gon, and �E := �i, j if E =
(i, j). The function (19) is invariant under li → −li , and thus descends to
Confn(APGL2) = Confn(V2/± 1).

1.2.2 The general framework

Let us explain main features of the geometric picture underlying our construc-
tion in most general terms, which we later on elaborate in details in every
particular situation. First, there are three main ingredients:
1. A positive space Y with a positive rational function W called the potential,

and a volume form �Y with logarithmic singularities. This determines the
set Y+W(Zt ) of positive integral tropical points—the set parametrizing a
canonical basis.5

4 Indeed, it follows from Lemma 11.3 and an explicit description of cluster structure on
Confn(A) that the form �A can not have non-zero residues anywhere else the divisors DE

i .
One can show that the residues at these divisors are non-zero.
5 The set Y(Zt ), the tropicalization W t , and thus the subset Y+W (Zt ) can also be determined
by the volume form �Y , without using the positive structure on Y .
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2. A subset of O-integral points YO ⊂ Y(K). Its key feature is that, given an
l ∈ Y(Zt ),

l ∈ Y+W(Zt )⇐⇒ C◦l ⊂ YO ⇐⇒ C◦l ∩ YO �= ∅. (20)

3. A moduli space GrY,W , together with a canonical map

κ : YO −→ GrY,W . (21)

These ingredients are related as follows:

• Any positive rational function F on Y gives rise to a Z-valued function DF
on GrY,W , such that for any l ∈ Y+W(Zt ), the restriction of DF to κ(C◦l )
equals Ft (l).

So we arrive at a collection of irreducible cycles

M◦
l := κ(C◦l ) ⊂ GrY,W , Ml := closure of M◦

l , l ∈ Y+W(Zt ).

Thanks to the •, the assignment l �−→Ml is injective.
Consider the set {Dc} of all irreducible divisors in Y such that the residue

of the form �Y at Dc is non-zero. We call them the boundary divisors of Y .
We define

Y× := Y − ∪Dc. (22)

By definition, the form �Y is regular on Y×. In all examples the potential
W is regular on Y×.

There is a split torus H, and a positive regular surjective projection

π : Y× −→ H.

The map π is determined by the form �Y . For example, assume that each
boundary divisor Dc is defined by a global equation �c = 0. Then the regular
functions {�c} define the map π , i.e. π(y) = {�c(y)}.

Next, there is a semigroup HO ⊂ H(K) containing H(O), defining a cone

P := HO/H(O) ⊂ H(Zt ) := H(K)/H(O) = X∗(H),
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such that the tropicalization of the map π provides a map π t : Y+W(Zt )→ P,
and there is a surjective map πGr : GrY,W → P. Denote by πO restricting of
π ⊗K to YO. These maps fit into a commutative diagram

Y+W(Zt )
val←− YO κ−→ GrY,W

π t ↓ πO ↓ ↓ πGr

P
val←− HO val−→ P

(23)

We define Gr(λ)
Y,W and Y+W(Zt )λ as the fibers of the maps πGr and π t over a

λ ∈ P. So we have

GrY,W =
∐

λ∈P
Gr(λ)

Y,W , Y+W(Zt ) =
∐

λ∈P
Y+W(Zt )λ. (24)

The following is a key property of our picture:

• The map l −→Ml provides a bijection

Y+W(Zt )λ ←→
{

Closures of top dimensional components of Gr(λ)
Y,W

}
.

Although the space GrY,W is usually infinite dimensional, it is nice. The map
πGr : GrY,W → P slices it into highly singular and reducible pieces. However
the slicing makes the perverse sheaves geometry clean and beautiful. It allows
to relate the positive integral tropical points to the top components of the slices.

Example. In our main example, discussed in Sect. 1.1 we have

Y = Confn(A), Y× = Conf×n (A), YO = ConfOn (A),

GrY,W = Confn(Gr), H = Hn, P = (P+)n.

The potential W is defined in (8), and decomposition (24) is described by
cyclic convolution varieties (17).

1.2.3 Mixed configurations and a generalization of Mirković–Vilonen cycles

Let us briefly discuss other examples relevant to representation theory. All of
them follow the set-up of Sect. 1.2. The obtained cycles Ml can be viewed
as generalisations of Mirković–Vilonen cycles. Let us list first the spaces Y
and GrY,W . The notation Confw0 indicates that the pair of the first and the last
flags in configuration is in generic position.
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Fig. 3 An integral
lamination on a pentagon of
type (4, 4, 1, 6, 3)

Fig. 4 An integral
lamination on a surface with
two holes, and no special
points

(i) Generalized Mirković–Vilonen cycles:

Y := Confw0(A,An,B), GrY,W := Confw0(A, Grn,B) = Grn.

If n = 1, we recover the Mirković–Vilonen cycles in the affine Grass-
mannian [65].

(ii) Generalized stable Mirković–Vilonen cycles:

Y := Confw0(B,An,B), GrY,W := Confw0(B, Grn,B) = H(K)\Grn.

If n = 1, we recover the stable Mirković–Vilonen cycles in the affine
Grassmannian. In our interpretation they are top components of the stack

Confw0(B, Gr,B) = H\Gr.

(iii) The cycles providing canonical bases in tensor products

Y := Conf(An+1,B), GrY,W := Conf(Grn+1,B) = B−(O)\Grn.

The spaces Y in examples (i) and (iii) are essentially the same. However
the potentials are different: in the case (iii) it is the sum of contributions of
all decorated flags, while in the case (i) we skip the first one. Passing from Y
to GrY,W we replace those A’s which contribute to the potential by Gr’s, but
keep the B’s and the A’s which do not contribute to the potential intact.

We picture configurations at the vertices of a convex polygon, as on Fig. 1.
Some of the A-vertices are shown boldface. The potential W is a sum of the
characters assigned to the boldfaceA-vertices, generalizing (8). The decorated
polygons in the cases (ii) and (iii) are depicted on the right of Fig. 8 and on
Fig. 6. We discuss these examples in detail in Sects. 2.3–2.4.
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1.3 Examples related to decorated surfaces

1.3.1 Laminations on decorated surfaces and canonical basis for G = SL2

1. Canonical basis in the tensor products invariants. This example can be
traced back to nineteenth century. We relate it to laminations on a polygon.

Definition 1.1 An integral lamination l on an n-gon Pn is a collection {β j }
of simple nonselfintersecting intervals ending on the boundary of Pn-vertices,
modulo isotopy Fig. 3.

Pick a vertex of Pn , and number the sides clockwise. Given a collection
of positive integers a1, . . . , an , consider the set Ln(a1, . . . , an) of all integral
laminations l on the polygon Pn such that the number of endpoints of l on
the k-th side is ak . Let (V2, ω) be a two dimensional Q-vector space with a
symplectic form. Let us assign to an l ∈ Ln(a1, . . . , an) an SL2-invariant map

Il : (⊗a1V2)⊗ . . .⊗ (⊗an V2) −→ Q.

We assign the factors in the tensor product to the endpoints of l, so that the
order of the factors match the clockwise order of the endpoints. Then for each
interval β in l we evaluate the form ω on the pair of vectors in the two factors
of the tensor product labelled by the endpoints of β, and take the product over
all intervals β in l. Recall that the SL2-modules SaV2, a > 0, provide all
non-trivial irreducible finite dimensional SL2-modules up to isomorphism.

Theorem 1.2 Projections of the maps Il , l ∈ Ln(a1, . . . , an), to Sa1V2⊗ . . .⊗
SanV2 form a basis in HomSL2(S

a1V2 ⊗ . . .⊗ SanV2, Q).

A quantum version was considered by Frenkel-Khovanov [24].

2. Canonical basis in the space of functions on the moduli space of
SL2 -local systems

Definition 1.3 Let S be a surface with boundary. An integral lamination l on
S is a collection of simple, mutually non intersecting, non isotopic loops αi
with positive integral multiplicities

l =
∑

i

ni [αi ] ni ∈ Z>0,

considered modulo isotopy. The set of all integral laminations on S is denoted
by LZ(S) Fig. 4.6

6 Laminations on decorated surfaces were investigated in [17, Section 12], and [19]. However
the two types of laminations considered there, the A- and X -laminations, are different then the
ones in Definition 1.3. Indeed, they parametrise canonical bases in O(XPGL2,S) and, respec-
tively, O(ASL2,S), while the latter parametrise a canonical basis in O(LocSL2,S). Notice that
a lamination in Definition 1.3 can not end on a boundary circle.
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In the case when S is a surface without boundary we get Thurston’s integral
laminations.

Given an integral lamination l on S, let us define a regular function Ml on
the moduli space LocSL2,S of SL2-local systems on S. Denote by Monα(L)

the monodromy of an SL2-local system L over a loop α on S. The value of
the function Ml on L is given by

Ml(L) :=
∏

i

Tr(Monniαi
(L)).

Theorem 1.4 [17, Proposition 12.2]. The functions Ml, l ∈ LZ(S), form a
linear basis in the space O(LocSL2,S).

Recall that a decorated surface S is an oriented surface with boundary,
and a finite, possibly empty, collection {s1, . . . , sn} of special points on the
boundary, considered modulo isotopy.

We define a moduli space LocSL2,S for any decorated surface S, so that
laminations on S provide a canonical basis O(LocSL2,S), generalising both
Theorem 1.2 (when S is a polygon) and Theorem 10.14, see Sect. 10.3.

Let us discuss now how to generalize constructions of Sect. 1.1.2 to the
decorated surfaces.

1.3.2 Positive G-laminations and top components of surface affine
Grassmannians

A pair (G, S) gives rise to a moduli space AG,S [17]. Here are two basic
examples.

• When S is a disc with n special points on the boundary, we recover the
space Confn(A).

• When S is just a surface, without special points, the moduli space AG,S is
a twisted version of the moduli space of G-local systems with unipotent
monodromy around boundary components on S equipped with a covari-
antly constant decorated flag near every boundary component of S.

The spaceAG,S has a positive structure [17]. We define in Sect. 10 apotential
W on the space AG,S . It is a rational positive function, with the tropicalization
W t : AG,S(Z

t ) −→ Z.

The condition W t ≥ 0 determines a subset of positive integral G-
laminations on S:

A+G,S(Z
t ) := {l ∈ AG,S(Z

t ) |W t (l) ≥ 0}. (25)

For any decorated surface S, the set A+SL2,S
(Zt ) is canonically isomorphic

to the set of integral laminations on S, see Sect. 10.3. An interesting approach
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to a geometric definition of laminations for G = SLm , which employs the
affine Grassmannian, was suggested by Ian Le [57].

There is a canonical volume form � on the spaceAG,S, which can be defined
by using an ideal triangulation of S and the volume forms on Confn(A). When
G is simply-connected, it is also the cluster volume form �A.

We also assign to a pair (G, S) a stack GrG,S , which we call the surface
affine Grassmannian. When S is a disc with n special points on the boundary,
we recover the stack Confn(Gr). In general it is an infinite dimensional stack.

The components of the punctured boundary ∂S − {s1, . . . , sn} isomorphic
to intervals are called boundary intervals. We define the torus H and the lattice
P by

H := H{boundary intervals onS}, P := (P+){boundary intervals on S}.

The map π is defined by assigning to a boundary interval I the element
i(A+, A−) ∈ H, see (18), where (A−, A+) are the decorated flags at the ends
of the interval I, ordered by the orientation of S, provided by the very definition
of the space AG,S .

Given a point l ∈ A+G,S(Z
t ), we define a cycle Mo

l ⊂ GrG,S. Given an
element λ ∈ P, we prove that the map l �−→ M◦

l gives rise to a bijection of
sets

A+G,S(Z
t )λ

∼−→ {closures of top dimensional components of Gr(λ)
G,S}. (26)

However in this case we can no longer bypass the question what are the “top
components” of an infinite dimensional stack, as we did in Sect. 1.1.2. So we
define in Sect. 10.5.1 “dimensions” of certain relevant stacks with values in
certain dimensionZ-torsors. As a result, although the “dimension” is no longer
an integer, the difference of two “dimensions” from the same dimension Z-
torsor is an integer, and so the notion of “top dimensional components” does
make sense.

To define the analog of the space of tensor product invariants for a decorated
surface S, we introduce in Sect. 10 a moduli space LocGL ,S . If S has no special
points, it is the moduli space of GL -local systems on S. If S is a disc with n
points on the boundary, it is the space Confn(AGL ). We prove there that the
set A+G,S(Z

t ) parametrizes a linear basis in O(LocGL ,S).

1.4 Canonical pairings and homological mirror symmetry

Below we write A for AG etc., and use notation AL for AGL etc.
For any split reductive group G, the space O(AL) of regular functions on

the principal affine space AL of GL is a model of representations of GL :
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every irreducible GL -module appears there once. This allows us to organize
the direct sum of all vector spaces of a given kind where the canonical bases
live into a vector space of regular functions on a single space. For example:

⊕

(λ1,...,λn)∈(P+)n

Vλ1 ⊗ . . .⊗ Vλn = O(An
L). (27)

⊕

(λ1,...,λn)∈(P+)n

(
Vλ1 ⊗ . . .⊗ Vλn

)GL = O(An
L)GL = O(Confn(AL)). (28)

Using this, let us interpret the statement that a canonical basis of a given
kind is parametrized by positive integral tropical points of a certain space as
existence of a canonical pairing.

1.4.1 Tensor product invariants and homological mirror symmetry

For any split reductive group G, the set Conf+n (A)(Zt ) parametrizes a canon-
ical basis in the space (28). So there are canonical pairings

IG : Conf+n (A)(Zt )× Confn(AL) −→ A1. (29)

IGL : Confn(A)× Conf+n (AL)(Zt ) −→ A1. (30)

So the story becomes completely symmetric. The idea that the set parame-
trizing canonical bases in tensor product invariants is a subset of Confn(A)(Zt )

goes back to Duality Conjectures from [17]. It is quite surprising that taking
into account the potential we get a canonical basis in the space of regular func-
tions on the same kind of space, Confn(AL), for the Langlands dual group.

To picture this symmetry, consider a convex n-gon Pn on the left of Fig. 5,
and assign a configuration (A1, . . . , An) ∈ Conf×n (A) to its vertices. The
potential W is a sum of the vertex contributions; so the vertices are shown
boldface. The pair of decorated flags at each side is generic; so all sides are
dashed. Tropicalizing the data at the vertices, and using the isomorphism
Conf+2 (A)(Zt ) = P+, we assign a dominant weight λk of GL to each side
of the left polygon. Consider now the dual n-gon ∗Pn on the right, and a con-
figuration of decorated flags (A′1, . . . , A′n) in GL at its vertices. The dominant
weight λk on the left corresponds to the irreducible representation Vλk , realised
in the model O(AL) assigned to the dual vertex of ∗Pn .

Tropical points live naturally at the boundary of a positive space, compacti-
fying the set of its real positive points [20]. An example is given by Thurston’s
boundary of Teichmüller spaces, realized as the space of projective measured
laminations.
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Fig. 5 Duality between configurations spaces of decorated flags for G and GL . The potential
is a sum of contributions at the boldface vertices. Pairs of decorated flags at the dashed sides
are in generic position. No condition on the pairs of decorated flags at the solid sides

It is tempting to think that canonical pairings (29) and (30) are manifestations
of a symmetry involving both spaces simultaneously, rather then relating the
tropical points of one space to the regular functions on the other space. We
conjecture that this elusive symmetry is the mirror symmetry, and the function
W is the potential for the Landau–Ginzburg model.

To formulate precise conjectures, let us start with a general set-up.
The A-model. Let M be a complex affine variety. So it has an affine embed-
ding i : M ↪→ CN . The Kahler form

∑
i dzi d z̄i on CN induces a Kahler

form on M(C) with an exact symplectic form ω. The wrapped Fukaya cat-
egory Fwr(M, ω) [2] does not depend on the embedding i . We denote it by
Fwr(M). A potential W on (M, ω) allows to define the wrapped Fukaya–
Seidel category FSwr(M) = FSwr(M, ω,W). The case of a potential with
only Morse singularities is treated in [72]. It also does not depend on the choice
of affine embedding. A volume form � provides a Z-grading on FSwr(M)

[71].
The positive A-brane. In our examplesM is a positive space over Q. So it has
a submanifold M(R>0) of real positive points. It is a Lagrangian submanifold
for the symplectic form ω induced by any affine embedding. The form � is
defined over Q, and so M(R>0) is a special Lagrangian submanifold since
it restricts to a real volume form on M(R>0). The potential W is a positive
function on M. So the special Lagrangian submanifold M(R>0) should give
rise to an object of the wrapped Fukaya–Seidel category of M, which we call
the positive A-brane, denoted by L+.
The projection/action data. In all our examples we have a mirror dual pair
M ↔ ML equipped with the following data: a projection π : M −→ H

onto a split torus H, an action of the split torus T on M preserving the volume
form and the potential, and a similar pair of tori HL , TL for ML . These tori
are in duality:

X∗(TL) = X∗(H), X∗(HL) = X∗(T).
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This projection/action data gives rise to the following additional structures
on the categories.

(i) The group Hom(X∗(H), C∗) = Ĥ(C) of C∗-local systems on the com-
plex torus H(C) acts on the category FSwr(M). Namely, we assume
that the objects of the category are given by Lagrangian submanifolds in
M(C) with U(1)-local systems. Then a U(1)-local system L on H(C)

acts by the tensor product with π∗(L), providing an action of the subgroup
Hom(X∗(H), U(1)) on the category. We assume that the action extends
to an algebraic action of the complex torus

Hom(X∗(H), C∗) = X∗(H)⊗ C∗ = X∗(Ĥ)⊗ C∗ = Ĥ(C).

(ii) Let TK be the maximal compact subgroup of the torus T(C). We assume
that the action of the group TK on the symplectic manifold (M, ω) is
Hamiltonian.7 Then any subgroup S1 ⊂ TK provides a family of sym-
plectic maps rt , t ∈ R/Z = S1. The map r1 provides an invertible func-
torial automorphism of Hom’s of the category FSwr(M), and thus an
invertible element of the center of the category. So the group algebra
Z[X∗(T)] = O(T̂) is mapped into the center:

O(T̂) −→ Center(FSwr(M)).

(iii) Clearly, there is a map O(H) −→ Center(DbCoh(M)), and the group T

acts on DbCoh(M).

The potential/boundary divisors. It was anticipated by Hori–Vafa [43] and
Auroux [4] that adding a potential on a space M amounts to a partial com-
pactification of its mirror ML by a divisor. More precisely, denote by M×
and M×

L the regular loci of the forms � and �L . The potential is a sum
W =∑c Wc. Its components Wc are expected to match the irreducible divi-
sors Dc of ML −M×

L . The divisors Dc are defined as the divisors on ML
where ResDc(�L) is non-zero. So we should have

W =
∑

c

Wc, ML −M×
L = ∪cDc, Wc

?↔ Dc. (31)

There are several ways to explain how this correspondence should work.

7 In our main examples the symplectic structure is exact, ω = dα. So averaging the form α by
the action of the compact group TK we can assume that it is TK -invariant. Therefore the action
is Hamiltonian: the Hamiltonian at x for a one parametric subgroup gt is given by the formula
α( d

dt g
t (x)).
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(i) The potentialWc determines an element [Wc] ∈ HH0(M), which defines
a deformation of the category DbCoh(M) as a Z/2Z-category. On the
dual side it corresponds to a deformation of the Fukaya category obtained
by adding to the symplectic form on ML a multiple of the 2-form ωc,
whose cohomology class is the cycle class [Dc] ∈ H2(ML , Z(1)) of the
divisor Dc.

(ii) The Landau–Ginzburg potential Wc should be obtained by counting the
holomorphic discs touching the divisor Dc, as was demonstrated by
Auroux [4] in examples.

(iii) In the cluster variety set up the correspondence is much more precise, see
Sect. 11.

Example. To illustrate the set-up, let us specify the data on the moduli space
Confn(A).

• A regular positive function, the potential W : Conf×n (A) −→ A1.
• A regular volume form � on Conf×n (A), with logarithmic singularities at

infinity.
• A regular projection π : Conf×n (A) −→ H onto a torus H :=

H{sides of the n−gon Pn}.
• An action r of the torus T := H{vertices of Pn} on Confn(A) by rescaling

decorated flags.

Changing G to GL we interchanges the action with the projection:

• The torus TL is dual to the torus H, i.e. there is a canonical isomorphism
X∗(TL) = X∗(H).

By construction, the potential is a sum

W =
∑

v

∑

i∈I

Wv
i (32)

over the vertices v of the polygon Pn , parametrising configurations
(A1, . . . , An), and the set I of simple positive roots for G. Indeed, a non-
degenerate character χ of U is naturally a sum χ =∑i χi .

On the other hand, the set of irreducible components of the divisor
Confn(AL)–Conf×n (AL) is parametrised by the pairs (E, i) where E are the
edges of the dual polygon ∗Pn , see Sect. 1.2.1:

Confn(AL)−Conf×n (AL) = ∪E ∪i∈I D
E
i . (33)

Since vertices of the polygon Pn match the sides of the dual polygon ∗Pn ,
the components of the potential (32) match the irreducible components of the
divisor at infinity (33) on the dual space.
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We start with the most basic form of our mirror conjectures, which does not
involve the potential.

Conjecture 1.5 For any split semisimple group G over Q, there is a mirror
duality

(Conf×n (A), �) is mirror dual to (Conf×n (AL), �L). (34)

This means in particular that one has an equivalence of A∞-categories

Fwr(Conf×n (A)(C))
∼−→ DbCoh(Conf×n (AL)). (35)

This equivalence maps the positive A-brane L+ to the structure sheaf O.
It identifies theactionof the group Ĥ(C)on the categoryFwr(Conf×n (A)(C))

with the action of the groupTL(C) on DbCoh(Conf×n (AL)), and identifies the
subalgebras

O(T̂) ⊂ Center(Fwr(Conf×n (A)(C))) and

O(HL) ⊂ Center(DbCoh(Conf×n (AL))).

The projection/action data for the pair (34) is given by

H = Hn, HL = Hn
L , T = Hn, TL = Hn

L .

The pair (34) is symmetric: interchanging the group G with the Langlands
dual group GL amounts to exchanging the A-model with the B-model.

Using the mirror pair (34) as a starting point, we can now turn on the
potentials at all vertices of the left polygon Pn . This amounts to a partial
compactification of the dual space. Namely, we take the space Confn(AL),
and consider its affine closure Confn(AL)a := Spec(O(An

L)GL
).

Since the action of the group Hn on Conf×n (A) alters the potentialW , and the
projection πL onto Hn

L does not extend to Confn(AL)a, the projection/action
data for the pair (48) is

H = Hn, HL = {e}, T = {e}, TL = Hn
L .

Therefore by turning on the potentials we arrive at the following Mirror
Conjecture:

Conjecture 1.6 For any split semisimple group G over Q, there is a mirror
duality

(Conf×n (A),W, �) is mirror dual to Confn(AL)a. (36)
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This means in particular that there is an equivalence of A∞-categories

FSwr(Conf×n (A)(C),W, �)
∼−→ DbCoh(Confn(AL)a). (37)

It maps the positive A-brane L+ to the structure sheaf O, and identifies
the action of the group Ĥ(C) on the category FSwr(Conf×n (A)(C)) with the
action of TL(C) on DbCoh(Confn(AL)a).

The geometry of mirror dual objects in Conjectures 1.5 and 1.6 is essentially
dictated by representation theory. Indeed, the tropical points are determined by
birational types of the spaces, and canonical bases tell the algebras of functions
on the dual affine varieties:8

The set Conf+n (A)(Zt ) parametrises a canonical basis in O(Confn(AL)).

(38)

The set Confn(AL)(Zt ) should parametrise a canonical basis in

O(Conf×n (A)). (39)

The potential W and the projection π define a regular map (π,W) :
Conf×n (A) −→ H×A1. The form � on Conf×n (A) and the canonical volume
forms on H and A1 provide a volume form �(a,c) at the fiber Fa,c of this map
over a generic point (a, c) ∈ H× A1.

More generally, we can turn on only partial potentials at the vertices of the
polygon Pn , which amounts on the dual side to taking partial compactifica-
tions, and then considering their affine closures. This way we get an array of
conjecturally dual pairs, described as follows.

For each vertex v of the polygon Pn parametrising configurations (A1, . . . ,

An) choose an arbitrary subset Iv ⊂ I of the set parametrising the simple
positive roots of G. It determines a partial potential

W{Iv} =
∑

v

WIv , WIv :=
∑

i∈Iv

Wv
i . (40)

On the dual side, subsets {Iv} determine a partial compactification of the
space Conf×n (AL), obtained by adding the divisors DEv

i where i ∈ Iv . Here
Ev is the side of the polygon ∗Pn dual to the vertex v of Pn:

Confn(AL){Iv} := Conf×n (AL)
⋃
∪v ∪i∈Iv DEv

i . (41)

8 Although the claim (39) is not addressed in the paper, it can be deduced from (38).
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For each vertex v of Pn there is a subgroup HIv ⊂ H preserving the partial
potential WIv at v. On the dual side, let HIv

L be the dual quotient of the Cartan
group HL . So we arrive at the projection/action data

H = Hn, HL =
∏

v

HIv
L , T =

∏

v

HIv , TL = Hn
L . (42)

So turning on partial potentials we arrive at Conjecture 1.7, interpolating
Conjectures 1.5 and 1.6:

Conjecture 1.7 For any split semisimple group G over Q, there is a mirror
duality

(Conf×n (A),W{Iv}, �) is mirror dual to the affine closure of Confn(AL){Iv}.
(43)

Its action/projection data is given by (42).

Needless to say, the positive integral tropical points of the left space para-
metrise a basis in the space of functions on the right space.

Here is another general principle to generate new mirror dual pairs. We
start with a mirror dual pair (M, �,W) ↔ ML , equipped with the projec-
tion/action data which involves a dual pair (T, HL). So T acts by automor-
phisms of the triple (M, �,W), and there is a dual projection πL : ML →
HL .

Choose any subgroup T′ ⊂ T, and consider the corresponding T′-
equivariant category. If the group T′ acts freely, this amounts to taking the
quotient of the space with potential (M,W) by the action of T′. A volume
form on T′ gives rise to a volume form on the quotient, obtained by construct-
ing the volume form � with the dual polyvector field on T′. The subgroup
T′ ⊂ T determines by the duality a quotient group HL −→ H′L , and therefore
a projection π ′L :ML → H′L .

• The quotient stack (M/T′,W) is mirror dual to the family π ′L :ML →
H′L .

In the examples below (M/T′,W) is just dual to a fiber π ′L
−1

(a) ⊂ML ,
a ∈ H′L .

In particular, starting from a mirror dual pair (43), we can choose any sub-
group T′ ⊂ T = ∏v HIv acting on the space with potential on the left. All
examples below are obtained this way.

Example. We start with the space Conf×(An+1) with the potential W1,...,n
given by the sum of the full potentials at all vertices but one, the vertex An+1.
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Fig. 6 Dual pairs (Conf×(A3,B),W1,2,3) and Confw0 (A3
L ,BL ) = A2

L . The H-components
of the projection λ sit at the A-decorated blue dashed edges on the left. The projection μ to H
is assigned to the red A3B4A1 (color figure online)

The action of the group H on the decorated flag An+1 preserves the potential
W1,...,n . Applying the above principle, we get a dual pair illustrated on Fig. 6.
The fiber over a, illustrated by the middle picture on Fig. 6, is canonically
isomorphic to the less symmetrically defined space illustrated on the right.

In the next section we consider this example from a different point of view,
starting from representation-theoretic picture, just as we did with our basic
example, and arrive to the same dual pairs.

1.4.2 Tensor products of representations and homological mirror symmetry

The set Conf+(An+1,B)(Zt ) defined using the potential W from (11) para-
metrises canonical bases in n-fold tensor products of simple GL -modules. So
using (27) we arrive at a canonical pairing

I : Conf+(An+1,B)(Zt )×An
L −→ A1. (44)

Let us present An
L as a configuration space. Recall that Confw0(An+1

L ,BL)

parametrises configurations (A1, . . . , An+1, Bn+2) such that the pair
(An+1, Bn+2) is generic. Generic pairs {A, B} form a GL -torsor. Let {A+, B−}
be a standard generic pair. Then there is an isomorphism

An
L

=−→ Confw0(An+1
L ,BL), {A1, . . . , An} �−→ (A1, . . . , An, A+, B−).

(45)

The subspace Conf×(An+1
L ,BL) parametrises configurations (A1, . . . ,

An+1, Bn+2) such that the consecutive pairs of flags are generic. It is the
quotient of Conf×n+2(A) by the action of the group H on the last decorated
flag. The projection Conf×n+2(A)→ Hn+2 induces a map, see (18),

π = (λ, μ) : Conf×(An+1,B) −→ Hn × H. (46)
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Fig. 7 Dual spaces Conf×(A3,B) (left) and Conf×(A3
L ,BL ) = (right)

(A1, . . . , An+1, Bn+2) �−→ (α(A1, A2), . . . , α(An, An+1))

×α(An+1, Bn+2)α(A1, Bn+2)
−1.

Then the symmetry is restored, and we can view (44) as a manifestation of
a mirror duality:

(Conf×(An+1,B),W, �, π) is mirror dual to (Confw0(An+1
L ,BL), �L , rL).

(47)

Here rL is the action of Hn+1
L by rescaling of the decorated flags. The

projection/action data is

H = Hn+1, HL = {e}, T = {e}, TL = Hn+1
L ,

The analog of mirror dual pair (34) and its projection/action data are given
by, see Fig. 7,

(Conf×(An+1,B), �) is mirror dual to (Conf×(An+1
L ,BL), �L). (48)

H = Hn+1, HL = Hn+1
L , T = Hn+1, TL = Hn+1

L ,

So we arrived at the two dual pairs and (47) and (48) using canonical pairings
as a guideline.

As discussed in the Example in Sect. 1.4, we can get them from the basic
dual pairs (36) and (34) using the action/projection duality •, which in this
case tells that the quotient by the action of the group H on one side is dual to
a fiber of the family of spaces over the dual group HL over a point a ∈ HL .

In particular, the dual pair (34) leads to the dual pair illustrated on Fig. 7.
Notice that configurations (A1, . . . , An+2) with α(An+1, An+2) = a ∈ H
are in bijection with configurations (A1, . . . , An+1, Bn+2) where the pair
(An+1, Bn+2) is generic. So the two diagrams on the right of Fig. 7 repre-
sent isomorphic configuration spaces, and we get the dual pair (48) from (34).
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The dual pair (47) is obtained from (48) by adding potentials at the A-vertices,
thus allowing arbitrary pairs of flags on the dual sides.

We conjecture that the analogs of Conjectures 1.5 and 1.6 hold for the pairs
(48) and (47).

1.4.3 Landau–Ginzburg mirror of a maximal unipotent group U and it
generalisations

We view Lusztig’s dual canonical basis in O(UL) as a canonical pairing, and
hence as a mirror duality:

I : U+χ (Zt )× UL −→ A1, (U∗, χ) is mirror dual to UL . (49)

To define U∗, we realise a maximal unipotent subgroup U as a big Bruhat
cell in the flag variety, and intersect it with the opposite big Bruhat cell. The
χ is a non-degenerate additive character of U, restricted to U∗. This example
is explained and generalised using configurations as follows.

Let Confw0(B,An,B) be the space parametrising configurations (B1, A2,

. . . , An+1, Bn+2) such that the pairs (B1, Bn+2) and (An+1, Bn+2) are generic,
see the right picture on Fig. 8. There is an isomorphism

UL ×An−1
L = Confw0(BL ,An

L ,BL), {B1, A2, . . . , An}
�−→ (B1, A2, . . . , An, A+, B−). (50)

The group Hn
L acts on Confw0(BL ,An

L ,BL) by rescaling decorated flags.
The subspace Conf×(B,An,B) parametrises configurations where each

consecutive pair of flags is generic. It is depicted on the left of Fig. 8. It is the
quotient of Conf×n+2(A) by the action of H×H on the first and last decorated
flags. Thus there is a map π , defined similarly to (46):

π = (λ, μ) : Conf×(B,An,B)→ Hn−1 × H. (51)

So the projection/action data in this case is

H = Hn, HL = {e}, T = {e}, TL = Hn
L ,

For example, Conf×(B,A,B) = U∗, in agreement with U∗ in (49).

Conjecture 1.8 The setConf+(B,An,B)(Zt ) parametrises a canonical basis
in O(UL × An−1

L ). The subset (λt , μt )−1(λ1, . . . , λn−1; ν) parametrises a
canonical basis in the weight ν subspace of

U(N L)⊗ Vλ1 ⊗ · · · ⊗ Vλn−1 .
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Fig. 8 Duality Conf×(B2,A3) ↔ Confw0 (B2
L ,A3

L ) = UL × A2
L . In the middle: the H-

components of the map λ sit at the dashed blue sides. The map μ is assigned to A2B1B5A4
(color figure online)

The analogs of Conjectures 1.5 and 1.6 hold for the following mirror dual
pairs:

(Conf×(B,An,B), �) is mirror dual to (Conf×(BL ,An
L ,BL), �L),

(Conf×(B,An,B),W, �, π) is mirror dual to (Confw0(BL ,An
L ,BL), rL)

These mirror pairs can be obtained from the basic mirror pairs (34) and (36)
by trading, using the action / projection principle •, the quotient by H2

L to the
fiber over (a, b) ∈ H2 on the dual side, see Fig. 8.

1.4.4 The Landau–Ginzburg mirror of a simple split group G

In this section we interpret a split simple group G as a configuration space, and
using this deduce its Landau–Ginzburg mirror from Conjecture 1.6 by using
our standard toolbox. The companion conjecture tells that the maximal double
Bruhat cells is selfdual, assuming that we change G to GL .

Denote by Conf×(B,A,B,A) the space parametrising configurations
(B1, A2, B3, A4) where all four consecutive pairs are generic. There is a poten-
tial given by the sum of the potentials at the A-vertices:

W2,4(B1, A2, B3, A4) := χA2(B1, A2, B3)+ χA4(B3, A4, B1).

The space with potential is illustrated on the left of Fig. 9. Let us describe
its mirror.

Recall the isomorphism α : Conf×(A,A) −→ H. Consider the moduli
space of configurations

(A1, A2, A3, A4) ∈ Conf4(AL) | (A1, A4), (A2, A3) are generic;
α(A1, A4) = α(A2, A3) = e. (52)

The picture on the right of Fig. 9 illustrates this moduli space.
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Fig. 9 The
Landau–Ginzburg model
(left) dual to GL (right)

Lemma 1.9 The moduli space (52) is isomorphic to the group GL .

Proof Pick a generic pair {A1, A2} with α(A1, A4) = e. Then for each GL -
orbit in (52) there is a unique representative {A1, A2, A3, A4} where {A1, A2}
is the chosen pair. There is a unique g ∈ GL such that g{A1, A4} = {A2, A3}.
The map (A1, A2, A3, A4)→ g provides the isomorphism. ��
Conjecture 1.10 The mirror to a split semisimple algebraic group GL over
Q is the pair

(Conf×(B,A,B,A),W2,4). (53)

Example. Let GL = PGL2, so G = SL2. Then A = A2 − {0}, B = P1, and

Conf×(B,A,B,A) = {(L1, v2, L3, v4)}/SL2. (54)

Here L1, L3 are one dimensional subspaces in a two dimensional vector
space V2, and v2, v4 are non-zero vectors in V2. The pairs (L1, v2), (v2, L3),
(L3, v4), (v4, L1) are generic, i.e. the corresponding pairs of lines are distinct.
Pick non-zero vectors l1 ∈ L1 and l3 ∈ L3. Then

W2,4 = �(l1, l3)

�(l1, v2)�(v2, l3)
+ �(l1, l3)

�(l3, v4)�(l1, v4)
.

It is a regular function on (54), independent of the choice of vectors l1, l3.
To calculate it, set

l1 = (1, 0), v2 = (x, 1/p), l3 = (1, y/p), v4 = (0, 1). (55)

Then

Conf×(BL ,AL ,BL ,AL) = {(x, y, p) ∈ A1 × A1 ×Gm − (xy − 1 = 0)}.

W2,4 = y/p

1/p · (xy/p − 1/p)
+ y/p

1 · 1 =
yp

xy − 1
+ y

p
. (56)
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Fig. 10 Duality between
configurations of decorated
flags for G and GL

Fig. 11 Dual pair of spaces
obtained on Step 2

The case G = PGL2, GL = SL2 is similar, except that now APGL2 =
A2 − {0}/± 1.

Let us explain how this conjecture can be deduced from our general
conjecture.
Step 1. Conjecture 1.6 tells us mirror duality, illustrated on Fig. 10:

(Conf×4 (A),W1,2,3,4)↔ Conf4(AL).

Step 2. We alter the pair (Conf×4 (A),W1,2,3,4) by removing the potentials at
the vertices A1 and A3. This reduces the potential W1,2,3,4 to a new potential:

W2,4(A1, A2, A3, A4) := χA2(B1, A2, B3)+ χA4(B3, A4, B1).

In the dual picture this amounts to removing two divisors from Conf4(AL),
illustrated by two punctured edges on the right of Fig. 11, dual to the vertices
A1 and A3 on the left. Precisely, we introduce a subspace C̃onf4(AL) such
that the pairs of decorated flags at punctured sides are generic. The obtained
dual pair is illustrated on Fig. 11. In particular there is a projection provided
by the two punctured sides:

C̃onf4(AL) −→ H2
L . (57)

Step 3. There is an action of the group H × H on Conf×4 (A) preserves the
potential W2,4, given by (A1, A2, A3, A4) −→ (h1 ·A1, A2, h1 ·A3, A4). The
quotient is the space (53):
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Fig. 12 The (tropicalised) Landau–Ginzburg model dual to GL is obtained by gluing the two
LG models dual to AL along their “vertical sides”, as shown on the left

(Conf×4 (A),W2,4)/(H× H) = (Conf×(B,A,B,A),W2,4).

Step 4. The action of the group H × H is dual to the projection (57). The
quotient by the H×H-action is dual to the fiber over e ∈ HL ×HL . The fiber
is just the space (52). On the level of pictures, this is how we go from Fig. 11
to Fig. 9. This way we arrived at Conjecture 1.10.

Canonical basis motivation. Let us explain how the positive integral tropical
points of the space from Conjecture 1.10 parametrise a canonical basis in
O(GL). One has O(GL) =⊕λ∈P+ Vλ ⊗ V ∗λ .

Recall that O(AL) = ⊕λ∈P+ Vλ. The decomposition of O(AL) into irre-
ducible GL -modules is provided by the HL -action on AL . According to our
general picture,

AL = Confw0(BL ,AL ,AL) is mirror dual to (Conf×(B,A,A),W2,3).

The canonical basis in Vλ is parametrised by the fiber of the projection
Conf+(B,A,A)(Zt ) −→ P+ over theλ ∈ P+. This projection is the tropical-
isation of the positive rational map Conf(B,A,A) −→ Conf(A,A). There-
fore the tensor product of canonical basis inVλ⊗V ∗λ is parametrised by the fiber
over λ of the tropicalisation of the positive rational map Conf(B,A,B,A) −→
Conf(A,A) (Fig. 12).

Lemma 1.11 The space Conf×(B,A,B,A) is isomorphic to the open double
Bruhat cell of G.

Proof Note that Conf×(B,A,B,A) is isomorphic to the moduli space
parametrizing the configurations (A1, A2, A3, A4) ∈ Conf4(A) such that
α(A1, A2) = α(A4, A3) = e and each consecutive pair (Ai , Ai+1) is generic.
There is a unique element g ∈ G such that {g · A1, g · A2} = {A4, A3}. Let
π(A1) = B and π(A2) = B−. Then we have

{A1, A4} = {A1, g · A1} is generic ⇐⇒ g ∈ Bw0B,

{A2, A3} = {A2, g · A2} is generic ⇐⇒ g ∈ B−w0B−.

123



Geometry of canonical bases and mirror symmetry 521

So the space is isomorphic to the open double Bruhat cell Bw0B
⋂

B−w0B−.
��

Conjecture 1.12 The open double Bruhat cell of G is mirror to the open
double Bruhat cell of GL .

1.4.5 Examples of homological mirror symmetry for stacks

As soon as our space M is fibered over a split torus H, the mirror dual space
ML acquires an action of the dual torus TL . Thus we want to find the mirror of
the stackML/TL . Let us discuss two examples corresponding to the examples
in Sects. 1.4.2 and 1.4.3.

Let us look first at the dual pair (47). The subgroup 1 × Hn
L acts freely on

the last n decorated flags in Confw0(BL ,An+1
L ), and the quotient is Bn

L . So
one has

Confw0(BL ,An+1
L )/(HL × Hn

L) = HL\Bn
L . (58)

We start with the problem reflecting the A-model to this stack.
1. Equivariant quantum cohomology of products of flag varieties. There
is a way to understand mirror symmetry as an isomorphism of two modules
over the algebra of h̄-differential operators Dh̄ : one provided by the quantum
cohomology connection, and the other by the integral for the mirror dual
Landau–Ginzburg model:

The quantum cohomology Dh̄-module of a projective (Fano) variety M =

The Dh̄-module for the Landau–Ginzburg mirror (π :M∨ → H,W, �),

defined by
∫

e−W/h̄�.

Here the space M∨ is fibered over a torus H, the � is a volume form on
M∨, and W is a function on M∨, called the Landau–Ginzburg potential. The
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form � and the canonical volume form on the torus H define a volume form
�(a) on the fiber of the map π over an a ∈ H. The integrals

∫
e−W/h̄�(a) over

cycles in the fibers are solutions of the Dh̄-module π∗(e−W/h̄�) on H.
This approach to mirror symmetry was originated by Givental [35], see also

Witten [76] and [16], and developed further in [43] and many other works.
See [4–6] for a discussion of examples of mirrors for the complements to
anticanonical divisors on Fano varieties.

In our situation M is a positive space and W is a positive function, so there
is an integral

FM(a; h̄) :=
∫

γ+(a)

e−W/h̄�(a), γ+(a) := π−1(a) ∩M(R>0). (59)

If it converges, it defines a function on H(R>0). This function as well as
its partial Mellin transforms is a very important object to study. It plays a key
role in the story. Below we elaborate some examples related to representation
theory.

Let ψs be the character of H(R>0) corresponding to an element s ∈
HL(R>0). Recall the projection μ : Conf×(An+1,B) → H from (46). Con-
sider the integral

FConf×(An+1,B)(a, s; h̄) :=
∫

γ+(a)

μ∗(ψs)e
−W/h̄�(a), (a, s)∈(Hn×HL )(R>0).

(60)

It is the Mellin transform of the function (59) along the torus 1×H ⊂ Hn+1.
If n = 1, one can identify integral (60) with an integral presentation for
the Whittaker–Bessel function of the principal series representation of G(R)

corresponding to the character ψs . The latter solves the quantum Toda lattice
integrable system [53].

Therefore it provides, generalising Givental’s work [37] for G = GLm
in non-equivariant setting, the integral presentation of the special solution of
equivariant quantum cohomology Dh̄-module for the flag variety BL studied
in [30–33,36,38,56,58,64,69,70].

Recall the special cluster coordinate system on Conf3(A) for G = GLm
from [17]. It has a slight modification providing a rational coordinate system
on Confw0(B,A,A), see Sect. 3.

Theorem 1.13 (i) Let G = GLm. Then the potentialW , expressed in the spe-
cial cluster coordinate systemonConfw0(B,A,A), is preciselyGivental’s
potential from [37].
The value of the integral FConf×(B,A,A)(a; s, h̄) at s = e coincides with
Givental’s integral for a solution of the quantum cohomologyDh̄ -module
QH∗(BL) [37].
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(ii) For any group G, the integral FConf×(B,A,A)(a; s) is a solution of the
Dh̄ -module QH∗HL

(BL).

Proof (i) It is proved in Sect. 3.2.
(ii) Since integral (60) provides an integral presentation for the Whittaker

function, it is equivalent to the results of [31,69]. Observe that the para-
meter a ∈ H(C) is interpreted as the parameter on H2(BL , C∗), which is
the base of the small quantum cohomology connection, while the parame-
ter s ∈ HL(R>0) is the parameter of the HL-equivariant cohomology. ��

For arbitrary n, integral (60) determines the equivariant quantum cohomol-
ogy Dh̄-module of Bn

L . The latter lives on Hn ×HL , it is a Dh̄-module on Hn ,
but only O-module along HL . Integral (60) is a solution of this Dh̄-module.

2.Mirror of equivariantB-model on Bn
L . The integral (60) admits an analytic

continuation in s provided by the analytic continuation of the character ψs in
the integrand. The complex integrand lives on an analytic space defined as
follows. Let H̃(C) is the universal cover of H(C). Denote by (B× . . .×B)

∗,a
n

the fiber of the map λ in (46) over an a ∈ Hn . It is a Zariski open subset of Bn .
Consider the fibered product

˜(B × . . .× B)
∗,a
n (C)

ẽxp−→ (B × . . .× B)
∗,a
n (C)

μ̃ ↓ μ ↓
H̃(C)

exp−→ H(C)

Let W̃ and �̃ be the lifts of W and � by the map ẽxp. We get a locally

constant family of categories FSwr(
˜(B × . . .× B)

∗,a
n (C), W̃, �̃) over Hn(C).

So the fundamental group π1(Hn(C)) acts on the category for any given a. The
group π1(H(C)) also acts on it by the deck transformations induced from the
universal cover H̃(C) −→ H(C).

On the other hand, the Picard group of the stack HL\Bn
L ,

Pic(HL\Bn
L) = X∗(HL)× Pic(Bn

L) = X∗(HL)× X∗(Hn
L)

acts by autoequivalences of the category DbCohHL (Bn
L).

Conjecture 1.14 There is an equivalence of A∞-categories

FSwr(
˜(B × . . .× B)

∗,a
n (C), W̃, �̃) ∼ DbCohHL (Bn

L). (61)

It intertwines the deck transformation action of π1(H(C)) × the mon-
odromy action of π1(Hn(C)) on the Fukaya–Seidel category with the action
of X∗(HL)× Pic(Bn

L) on the category DbCohHL (Bn
L).
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Fig. 13 Horizontal rays are
the rays of fast decay of the
potential. Together with the
vertical line, they form the
Lagrangian skeleton of the
Kontsevich model of
FSwr(C; a−1(et + e−t ), dt)
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The integral (60) over Lagrangian submanifolds supporting objects of the
Fukaya–Seidel category is a central charge for a stability condition on the
category.

Kontsevich argued [51] that there is a smaller class of stability conditions,
which he called “physical stability conditions”. Stability conditions above
should be from that class.

Examples.

1. Let n = 1. Then B∗,a1 is the intersection B∗ of two big Bruhat cells in
the flag variety B. It parametrising flags in generic position to two generic
flags, say (B+, B−).

2. Let G = SL2, n = 1. Then B∗,a1 = C∗ with the coordinate u, B̃∗,a1 = C

with the coordinate t , u = et , and W̃ = a−1(et + e−t ) where a ∈ C∗ is a
parameter. Next, BL = CP1, with the natural C∗-action preserving 0,∞.
Conjecture 1.14 predicts an equivalence

FSwr(C; a−1(et + e−t ), dt) ∼ DbCohC∗(CP1), a ∈ C∗.

The equivalence is a trivial exercise for the experts. It can be checked by
using the Kontsevich combinatorial model [1,15,49,73] for the Fukaya–Seidel
category as a category of locally constant sheaves on the Lagrangian skeleton
for a surface with potential in the case of (C, et + e−t ), shown on Fig. 13.

Varying the parameter a ∈ C∗ in the potential we get a locally constant
family of the Fukaya–Seidel categories. Its monodromy is an autoequivalence
corresponding to the action of a generator of the group Pic(P1). The translation
t �−→ t + 2π i is another autoequivalence corresponding to the action of a
generator of the character group X∗(C∗) = Z on DbCohC∗(CP1).

Let us consider now the oscillatory integral

∫

L
exp

(
1

h̄
(−a−1(et + e−t )− st)

)
dt =

∫

exp(L)

e−a−1(u+u−1)/h̄us/h̄
du

u
.
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Here L is a path which goes to infinity along the line of fast decay of the
integrand. This is an integral for the Bessel function. It defines a family of
stability conditions on the Fukaya–Seidel category depending on s ∈ C—it is
the value of the central charge on the K0-class of the object supported on L .
The parameter s reflects the equivariant parameter for the C∗-action.

3. Mirror of equivariant B-model on Bn
L × UL . There is an integral very

similar to (60):

FConf×(B,An ,B)(a, s) :=
∫

γ+(a)

μ∗(ψs)e
−W/h̄�(a), (a, s) ∈ (Hn−1 × HL)(R>0).

(62)

Denote by λ(51) the map λ onto Hn−1
L from (51). The integrand has an

analytic continuation in s which lives on the fibered product

˜
λ−1

(51)(a)(C)
ẽxp−→ λ−1

(51)(a)(C)

μ̃ ↓ μ ↓
H̃(C)

exp−→ H(C)

There is a conjecture similar to Conjecture 1.14 describing the category
DbCohHL (Bn−1

L × UL). For example, when n = 1 it reads as follows.

Conjecture 1.15 There is an equivalence of A∞-categories

FSwr(Ũ∗(C), W̃, �̃) ∼ DbCohHL (UL). (63)

It intertwines the deck transformation action of π1(H(C)) on the Fukaya–
Seidel category with the action of X∗(HL) on the category DbCohHL (UL).

Example. If G = SL2 and n = 1, then Confw0(B,A,B) = C with the C∗-
action. On the dual side, Conf×(B,A,B) = C∗, π = μ is the identity map,
W = u, � = du/u. The universal cover of C∗ is C with the coordinate t such
that u = et . The integral is

F(s) =
∫ ∞

0
e−uusdu/u = �(s).

The equivalence of categories predicted by Conjecture 1.15 is

FSwr(C, et , dt) ∼ DbCohC∗(C). (64)

It can be checked by using the Kontsevich combinatorial model [50] for the
Fukaya–Seidel category.
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1.5 Concluding remarks

1. Mirror dual of the moduli spaces of GL -local systems on S. The true
analog of the moduli space of GL -local systems for a decorated surface S is
the moduli space LocGL,S . We view the function W on the space AG,S as the
Landau–Ginzburg potential on AG,S , and suggest

Conjecture 1.16

(A×G,S,W, �, π) is mirror dual to (LocGL,S, �L , rL). (65)

It would be interesting to compare this mirror duality conjecture with the
mirror duality conjectures of Kapustin–Witten [48] and Gukov–Witten [42],
which do not involve a potential, and refer to families of moduli spaces, which
are somewhat different then the moduli spaces we consider. Mirror duality in
the case when S is a closed surface without punctures was studied by Hausel
and Thaddeus [74]. All these mirror dualities involve Langlands dual groups.
However they depend crucially on a choice of a complex structure on S, while
in our approach we do not use complex structure on S. See also Kontsevich
and Soibelman [52].

Notice also that if each boundary component of S has at least one special
point, then LocGL,S = AGL,S , and so in this case we have a more symmetric
picture:

(A×G,S,W, �, π) is mirror dual to (AGL,S, �L , rL). (66)

(A×G,S, �, π) is mirror dual to (A×
GL,S

, �L , rL). (67)

2. Oscillatory integrals. The analog of integral (59) in the surface case is an
integral

FG,S(a) :=
∫

γ+(a)/�S

e−W/h̄�(a). (68)

Since the integrand is �S-invariant, the integration cycles are defined by
intersecting the fibers with AG,S(R>0)/�S . Notice that AG,S(R>0) is the
decorated Higher Teichmuller space [17]. If G = SL2, the integral converges.
For other groups convergence is a problem.

Notice also that the three convergent oscillatory integrals

FConf×n (A,B,B)(s), FConf×(A,A,B)(a; s), FConf×3 (A)(a1, a2, a3),

ai ∈ H(R>0), s ∈ HL(R>0)
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are continuous analogs of the Kostant partition function, weight multiplicities
and dimensions of triple tensor product invariants for the Langlands dual group
GL(R).
3. Relating our dualites to cluster duality conjectures [18]. The latter study
dual pairs (A,X∨), where A is a cluster A-variety, and X∨ is the Langlands
dual cluster X -variety:

A is dual to X∨.

There is a discrete group � acting by automorphisms of each of the spaces
A and X∨, called the cluster modular group. So it acts on the sets of tropical
points A(Zt ) and X∨(Zt ). Cluster Duality Conjectures predict canonical �-
equivariant pairings

IA : A(Zt )× X∨ −→ A1, IX : A× X∨(Zt ) −→ A1. (69)

As the work [41] shows, in general the functions assigned to the tropical
points may exist only as formal universally Laurent power series rather then
universally Laurent polynomials.

There are cluster volume forms �A and �X on the A and X spaces [21],
see Sect. 11.

We suggest that, in a rather general situation, there is a natural �-invariant
positive potential WA on the space A, a similar potential WX on the space X ,
and a certain “alterations” X̂∨ and Â∨ of the spaces X∨ and A∨ providing
mirror dualities underlying canonical pairings (69):

(A,WA, �A, πA) is mirror dual to (X̂∨, �X∨, rX∨). (70)

(X ,WX , �X , πX ) is mirror dual to (Â∨, �A∨, rA∨). (71)

Canonical pairings (69) should induce canonical pairings related to the
potentials and alterations:

I(A,WA) : A+WA(Zt )× X̂∨ −→ A1, I(X ,WX ) : X+WX (Zt )× Â∨ −→ A1.

This should provide a cluster generalisation of our examples. For instance,
there is a split torus HA associated to a cluster varietyA, coming with a canon-
ical basis of characters, given by the frozen A-coordinates. They describe the
projection πA : A→ HA, see Sect. 11.

An alteration Â∨, given by a partial compactification of the space A∨, and
a conjectural definition of the potential WX are given in Sect. 11.2.
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4. Conclusion. A parametrisation of a canonical basis, casted as a canonical
pairing I, should be understood as a manifestation of a mirror duality between a
space with a Landau–Ginzburg potential and a similar space for the Langlands
dual group.

Our main evidence is that canonical pairing (44) describing a parametri-
sation of canonical basis in tensor products of n irreducible GL -modules is
related via an integral presentation to the Dh̄-module describing the equivari-
ant quantum cohomology of (BL)n .

There is a remarkable mirror conjecture of Gross-Hacking-Keel [40], who
start with a maximally degenerate log Calabi–Yau Y and conjecture that the
Gromov–Witten theory of Y gives rise to a commutative ring R(Y ), with a
basis. Its spectrum is an affine variety which is conjectured to be the mirror
of Y .

Notice that in our conjectures we give an a priori description of the mirror
dual pair of spaces, while in [40] the mirror space is encrypted in the conjecture.
For example, mirror conjecture (34) is expected to be an example of the Gross-
Hacking-Keel conjecture, but we do not know how to deduce, starting from
the pair (Conf×n (A), �), the former from the latter, and in particular why the
Langlands dual group appears in the description of the mirror.

We want to stress that in our mirror conjectures we usually deal with mirror
dual pairs where at least one is a Landau–Ginzburg model, i.e. is represented
by a space with a potential. In particular canonical bases in representation
theory and their generalisations related to moduli spaces of G-local systems
on decorated surfaces S always require the dual space to be a space with a
non-trivial potential, unless S is a closed surface without boundary.

Finally, in applications to representation theory we are forced to deal with
stacks rather then varieties, as discussed in Sect. 1.4.5. This is a less explored
chapter of the homological mirror symmetry. See also a recent paper of Tele-
man [75] in this direction.

The space M(K) of K-points of a space M is a cousin of the loop space
�M(C). Heuristically, the quantum cohomology Dh̄-module is best seen in
the (ill defined) S1-equivariant Floer cohomology of the loop space �M(C)

[35], which are sort of “semi-infinite cohomology” of the loop space. It would
be interesting to relate this to the infinite dimensional cycles C◦l ⊂M◦(K).

It would be very intersecting to relate our approach to the construction of
canonical bases via cycles M◦

l to the work in progress of Gross–Hacking–
Keel–Kontsevich on construction of canonical bases on cluster varieties via
scattering diagrams.

Organization of the paper. In Sect. 2 we present main definitions and results
relevant to representation theory. We start from a detailed discussion of the
geometry of the tensor product invariants in Sects. 2.1–2.2. We discuss more
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general examples in Sects. 2.3. In Sect. 2.4 we construct a canonical basis
in tensor products of finite dimensional GL -modules, and its parametrization.
In Sects. 2 we give all definitions and complete descriptions of the results,
but include a proof only if it is very simple. The only exception is a proof of
Theorem 2.38 in Sect. 2.4. The rest of the proofs occupy the next sections.
In Sect. 10 we discuss the general case related to a decorated surface. In the
Sect. 11 we discuss the volume form and the potential in the cluster set-up.

2 Main definitions and results: the disc case

2.1 Configurations of decorated flags, the potential W , and tensor product
invariants

2.1.1 Positive spaces and their tropical points

Below we recall briefly the main definitions, following [18, Section 1].
Positive spaces. A positive rational function on a split algebraic torus T is a
nonzero rational function on T which in a coordinate system, given by a set of
characters of T, can be presented as a ratio of two polynomials with positive
integral coefficients.

A positive rational morphism ϕ : T1 → T2 of two split tori is a morphism
such that for each character χ of T2 the function χ ◦ ϕ is a positive rational
function.

A positive atlas on an irreducible space (i.e. variety/stack)Y over Q is given
by a non-empty collection {c} of birational isomorphisms over Q

αc : T −→ Y,

where T is a split algebraic torus, satisfying the following conditions:

• For any pair c, c′ the map ϕc,c′ := α−1
c ◦αc′ is a positive birational isomor-

phism of T.
• Each map αc is regular on a complement to a divisor given by positive

rational function.

A positive space is a space with a positive atlas. A split algebraic torus T
is the simplest example of a positive space. It has a single positive coordinate
system, given by the torus itself.

A positive rational function F on Y is a rational function given by a sub-
traction free rational function in one, and hence in all coordinate systems of
the positive atlas on Y .

A positive rational map Y → Z is a rational map given by positive rational
functions in one, and hence in all positive coordinate systems.
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Tropical points. The tropical semifield Zt is the set Z equipped with tropical
addition and multiplication given by

a +t b = min{a, b}, a ·t b = a + b, a, b ∈ Z.

This definition can be motivated as follows. Consider the semifield R+((t))
of Laurent series f (t) with positive leading coefficients: there is no “−” oper-
ation in R+((t)). Then the valuation map f (t) �→ val( f ) is a homomorphism
of semifields val : R+((t)) → Zt .

Denote by X∗(T) = Hom(Gm, T) and X∗(T) = Hom(T, Gm) the lattices
of cocharacters and characters of a split algebraic torus T. There is a pairing
〈∗, ∗〉 : X∗(T)× X∗(T)→ Z.

The set of Zt -points of a split torus T is defined to be its lattice of
cocharacters:

T(Zt ) := X∗(T).

A positive rational function F on T gives rise to its tropicalization Ft , which
is a Z-valued function on the set T(Zt). Its definition is clear from the following
example:

F = x1x2
2 + 3x2x5

3

x2x4
, Ft = min{x1 + 2x2, x2 + 5x3} −min{x2 + x4}.

Similarly, a positive morphism ϕ : T → S of two split tori gives rise to a
piecewise linear morphism ϕt : T(Zt )→ S(Zt ).

There is a unique way to assign to a positive space Y a set Y(Zt ) of its
Zt -points such that

• Each of the coordinate systems c provides a canonical isomorphism

αt
c : T(Zt )

∼−→ Y(Zt ).

• These isomorphisms are related by piecewise-linear isomorphisms ϕt
c,c′ :

αt
c′(l) = αt

c ◦ ϕt
c,c′(l).

We raise the above process to the category of positive spaces. It gives us
a functor called tropicalization from the category of positive spaces to the
category of sets of tropical points. For each positive morphism f : Y → Z ,
denote by f t : Y(Zt )→ Z(Zt ) its corresponding tropicalized morphism.

Pick a basis of cocharacters of T. Then, assigning to each positive coordi-
nate system c a set of integers (lc1, . . . , l

c
n) ∈ Zn related by piecewise-linear

isomorphisms ϕt
c,c′ , we get an element

l = αt
c(l

c
1, . . . , l

c
n) ∈ Y(Zt ).
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For a variety Y with a positive atlas, the set Y(Zt ) can be interpreted as the
set of transcendental cells of the infinite dimensional variety Y(C((t))), as we
will explain in Sect. 2.2.1.

The set of positive tropical points. Let (Y,W) be a pair given by a positive
space Y equipped with a positive rational function W . Let us tropicalize this
function, getting a map

W t : Y(Zt ) −→ Z.

We define the set of positive tropical points:

Y+W(Zt ) := {l ∈ Y(Zt ) |W t (l) ≥ 0}.
Example. The Cartan group H of G is a split torus and hence has a standard
positive structure. The set H(Zt ) = X∗(H) is the coweight lattice of G. Let
{αi } the set of simple positive roots indexed by I . We define

W : H −→ A1, h �−→
∑

i∈I
αi (h). (72)

The set of positive tropical points is the positive Weyl chamber in X∗(H):

H+(Zt ) := H+W(Zt ) = {λ ∈ X∗(H) | 〈λ, αi 〉 ≥ 0, ∀i ∈ I }.
2.1.2 Basic notations for a split reductive group G

Denote by H the Cartan group of G, and by HL the Cartan group of the Lang-
lands dual group GL . There is a canonical isomorphism X∗(HL) = X∗(H).

Denote by �+ ⊂ X∗(H) the set of positive roots for G, and by � := {αi } ⊂
�+ the subset of simple positive roots, indexed by a finite set I . We sometimes
use P instead of X∗(H). Denote by P+ the positive Weyl chamber in P. It is
also the cone of dominant weights for the dual group GL . Denote by Vλ the
irreducible finite dimensional GL -modules parametrized by λ ∈ P+.

Let U±i (i ∈ I ) be the simple root subgroup of U±. Let α∨i : Gm → H be
the simple coroot corresponding to the root αi : H → Gm . For all i ∈ I , there
are isomorphisms xi : Ga → U+i and yi : Ga → U−i such that the maps

(
1 a
0 1

)
�−→ xi (a),

(
1 0
b 1

)
�−→ yi (b),

(
t 0
0 t−1

)
�−→ α∨i (t) (73)

provide homomorphisms φi : SL2 → G.

Let si (i ∈ I ) be the simple reflections generating the Weyl group. Set
si := yi (1)xi (−1)yi (1). The elements si satisfy the braid relations. So we
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can associate to each w ∈ W its representative w in such a way that for any
reduced decomposition w = si1 . . . sik one has w = si1 . . . sik .

Denote by w0 be the longest element of the Weyl group. Set sG := w2
0. It

is an order two central element in G. For G = SL2 it is the element −Id. For
an arbitrary reductive G the element sG is the image of the element sSL2 under
a principal embedding SL2 ↪→ G. For example, sSLm = (−1)m−1Id. See [17,
Section 2.3] for proof.

2.1.3 Lusztig’s positive atlas of U and the character χA

Let w0 = si1 . . . sim be a reduced decomposition. It is encoded by the sequence
i = (i1, i2, . . . , im). It provides a regular map

φi : (Gm)m −→ U, (a1, . . . , am) �−→ xi1(a1) . . . xim (am). (74)

The map φi is an open embedding [58], and a birational isomorphism. Thus
it provides a rational coordinate system on U. It was shown in loc.cit. that
the collection of these rational coordinate systems form a positive atlas of U,
which we call Lusztig’s positive atlas. There is a similar positive atlas on U−
provided by the maps yi .

The choice of the maps xi , yi in (73) provides the standard character:

χ : U −→ A1, xi1(a1) . . . xim (am) �−→
m∑

j=1

a j . (75)

It is evidently a positive function in Lusztig’s positive atlas. Moreover it
is independent of the sequence i chosen. Similarly, there is a character χ− :
U− → A1, yi1(b1) . . . yim (bm) �→∑m

j=1 b j , which is positive in the positive
atlas on U−.

Let A := g · U be a decorated flag. Its stabilizer is UA = gUg−1. The
associated character is

χA : UA −→ A1, u �−→ χ(g−1ug).

For example, for an h ∈ H, the character χh·U is given by xi1(a1) . . .

xim (am) �−→∑m
j=1 a j/αi j (h).

2.1.4 The potentialW on the moduli space Confn(A).

Given a group G and G-sets X1, . . . , Xn , orbits of the diagonal G-action on
X1 × · · · × Xn are called configurations. Denote by {x1, . . . , xn} a collection
of points, and by (x1, . . . , xn) its configuration.
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Fig. 14 The potential is a
sum of the contribution at the
vertices
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We usually denote a decorated flag by Ai and the corresponding flag π(Ai )

by Bi . Denote the set {1, . . . , n} of consecutive integers by [1, n].
Definition 2.1 A pair {B1, B2} ∈ B × B of Borel subgroups is generic if
B1 ∩B2 is a Cartan subgroup in G. A collection {A1, . . . , Bm+n} ∈ An × Bm

is generic if for any distinct i, j ∈ [1,m + n], the pair {Bi , B j } is generic.

Set Conf(An,Bm) := G\(An × Bm). Note that if {A1, . . . , Bm+n}
is generic, then so is g · {A1, . . . , Bm+n} for any g ∈ G. Denote by
Conf∗(An,Bm) the subset of generic configurations.

Definition 2.2 A frame for a split reductive algebraic group G over Q is a
generic pair {A, B} ∈ A× B. Denote by FG the moduli space of frames.

The space FG is a left G-torsor. If G = SLm , then a K -point of FG is the
same thing as a unimodular frame in a vector space over K of dimension m
with a volume form. If G is an adjoint group, then a frame is the same thing
as a pinning.

Let {A1, . . . , An} be a generic collection of decorated flags. For each j ∈
[1, n], take the triple {B j−1, A j , B j+1}. Since FG is a G-torsor, there is a
unique u j ∈ UA j such that

{A j , B j+1} = u j · {A j , B j−1}. (76)

Consider the following rational function on An , whose definition is illus-
trated on Fig. 14:

W(A1, . . . , An) :=
n∑

j=1

χA j (u j ). (77)

Lemma 2.3 For any g ∈ G, we haveW(gA1, . . . , gAn) =W(A1, . . . , An).
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Proof Clearly {gA j , gB j+1} = gu j g−1 · {gA j , gB j−1}. The Lemma follows
from (5). ��

Since W is invariant under the G-diagonal action on An , we define

Definition 2.4 The potential W is a rational function on Confn(A), given by
(77).

Theorem 2.5 The potential W is a positive rational function on the space
Confn(A), n > 2.

Theorem 2.5 is a non-trivial result. It is based on two facts: the character χ

is a positive function on U, and the positive structure on Confn(A) is twisted
cyclic invariant, see Sect. 2.1.6. We prove Theorem 2.5 in Sect. 6.4.

Therefore we arrive at the set of positive tropical points of Confn(A):

Conf+n (A)(Zt ) := {l ∈ Confn(A)(Zt ) |W t (l) ≥ 0}, n > 2. (78)

Example. Let G = SL2. The space Conf3(A) parametrizes configurations
(v1, v2, v3) of vectors in a two dimensional vector space with a volume form
ω. Set �i, j := 〈vi ∧ v j , ω〉. Then

W(v1, v2, v3) = �1,3

�1,2 �2,3
+ �1,2

�2,3 �1,3
+ �2,3

�1,3 �1,2
. (79)

Therefore tropicalizing the function (79) we get

Conf+3 (ASL2)(Z
t ) = {a, b, c ∈ Z | a ≥ b + c, b ≥ a + c, c ≥ a + b}.

Notice that the inequalities imply a, b, c ∈ Z≤0.

2.1.5 Parametrization of a canonical basis in tensor products invariants

By Bruhat decomposition, for each (A1, A2) ∈ Conf∗2(A), there is a unique
hA1,A2 ∈ H such that

(A1, A2) = (U, hA1,A2w0 · U).

It provides an isomorphism, which induces a positive structure on
Conf2(A):

α : Conf∗2(A)
∼−→ H, (A1, A2) −→ hA1,A2 . (80)
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We extend definition (78) to n = 2 using the potential (72), so that one has
an isomorphism

αt : Conf+2 (A)(Zt )
∼−→ H+(Zt ) = P+.

See more details in Sect. 6.3, formula (188), and [17].
The restriction maps πi j . We picture configurations (A1, . . . , An) at the
labelled vertices [1, n] of a convex n-gon Pn . Each pair of distinct i, j ∈ [1, n]
gives rise to a map

πi j : Confn(A) −→ Conf2(A), (A1, . . . , An)−→
{

(Ai , A j ) if i < j,
(sG · Ai , A j ) if i > j.

The maps πi j are positive [17], and therefore can be tropicalized:

Confn(A)(Zt )
π t
i j−→ Conf2(A)(Zt ) = P

∪ ∪
Conf+n (A)(Zt )

π t
i j−→ Conf+2 (A)(Zt ) = P+

The fact that π t
i j (Conf+n (A)(Zt )) ⊆ P+ is due to Lemma 6.14.

In particular, the oriented sides of the polygon Pn give rise to a positive
map

π = (π12, π23, . . . , πn,1) : Confn(A) −→ (Conf2(A))n ! Hn. (81)

A decomposition of Conf+n (A)(Zt ). Given λ := (λ1, . . . , λn) ∈ (P+)n ,
define

Cλ = {l ∈ Conf+n (A)(Zt ) | π t (l) = λ}. (82)

The weights λ of GL are assigned to the oriented sides of Pn , as shown on
Fig. 15. Such sets provide a canonical decomposition (Fig. 16)

Conf+n (A)(Zt ) =
⊔

λ∈(P+)n

Cλ. (83)

Tensor products invariants. Here is one of our main results.

Theorem 2.6 Letλ1, . . . , λn ∈ P+. The setCλ1,...,λn parametrizes a canonical

basis in the space of invariants (Vλ1 ⊗ . . .⊗ Vλn )
GL

.
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Fig. 15 Dominant weights labels of the polygon sides for the set Cλ1,λ2,λ3,λ4

Fig. 16 The associativity λ
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Theorem 2.6 follows from Theorem 2.20 and geometric Satake correspon-
dence, see Sect. 2.2.4.

Alternatively, there is a similar set, defined by reversing the order of the side
(1, n):

Cλn
λ1,...,λn−1

:= {l ∈ Conf+n (A)(Zt ) | π t
i,i+1(l) = λi ,

i = 1, . . . , n − 1, π t
1,n(l) = λn}. (84)

Then

Cλ1,...,λn = C−w0(λn)
λ1,...,λn−1

.

The set Cλn
λ1,...,λn−1

parametrizes a basis in the space of tensor product
multiplicities

HomGL (Vλn , Vλ1 ⊗ . . .⊗ Vλn−1). (85)

2.1.6 Some features of the set Conf+n (A)(Zt ).

Here are some features of the set Conf+n (A)(Zt ). All of them follow immedi-
ately from the definition of the potential W and basic facts about the positive
structure on Confn(A). One of the most crucial is twisted cyclic invariance,
so we start from it.

The twisted cyclic shift. It was proved in [17, Section 8] that the defined there
positive atlas on Confn(A) is invariant under the twisted cyclic shift

t : Confn(A) −→ Confn(A), (A1, . . . , An) �−→ (A2, . . . , An, A1 · sG).
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Its tropicalization is a cyclic shift on the space of the tropical points:

t : Confn(A)(Zt ) −→ Confn(A)(Zt ). (86)

• Twisted cyclic shift invariance. The potential W is evidently invariant
under the twisted cyclic shift. Therefore the set (78) is invariant under the
tropical cyclic shift (86).

Given a triangle t = {i1 < i2 < i3} inscribed into the polygon Pn , there is
a positive map

πt : Confn(A) −→ Conf3(A), (A1, . . . , An) �−→ (Ai1, Ai2, Ai3).

Each triangulation T of Pn gives rise to a positive injection πT :
Confn(A) → ∏

t∈T Conf3(A), where the product is over all triangles t of
T . Set its image

ConfT (A) := ImπT ⊂
∏

t∈T
Conf3(A). (87)

For each pair (t, d), where t ∈ T and d is a side of t , there is a map given
by obvious projections

p(t, d) :
∏

t∈T
Conf3(A)

prt−→ Conf3(A)
prd−→ Conf2(A).

For each diagonald of T , there are two triangles, td1 and td2 , sharingd. A point
x of ConfT (A) is described by the condition that p(td1 , d)(x) = p(td2 , d)(x)
for all diagonals d of T .

Proposition 2.7 [17] There is an isomorphism of positive moduli spaces

πT : Confn(A)
∼−→ ConfT (A).

It leads to an isomorphism of sets of their Z-tropical points:

π t
T : Confn(A)(Zt )

∼−→ ConfT (A)(Zt ). (88)

Some important features of the potential W are the following:

• Scissor congruence invariance. For any triangulation T of the polygon,
the potentialWn on Confn(A) is a sum over the triangles t of T:

Wn =
∑

t∈T
W3 ◦ πt . (89)
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This follows immediately from the fact that χA is a character of the subgroup
UA. Combining this with the isomorphism (88) we get

• Decomposition isomorphism. Given a triangulation T of Pn , one has an
isomorphism

i t,+T : Conf+n (A)(Zt )
∼−→ Conf+T (A)(Zt ).

So one can think of the data describing a point of Conf+n (A)(Zt ) as of
a collection of similar data assigned to triangles t of a triangulation T of
the polygon, which match at the diagonals. Therefore each triangulation T
provides a further decomposition of the set (82). By Lemma 6.14, the weights
of GL assigned to the sides and edges of the polygon are dominant.

Consider an algebra with a linear basis eλ parametrized by dominant weights
λ of GL with the structure constants given by the cardinality of the set Cμ

λ1,λ2
:

eλ1 ∗ eλ2 =
∑

μ∈P+
|Cμ

λ1,λ2
|eμ. (90)

The following basic property is evident from our definition of the setCμ
λ1,λ2

:

• Associativity. The product ∗ is associative.

The associativity is equivalent to the fact that there are two different decom-
positions of the set Conf+4 (A)(Zt ) corresponding to two different triangula-
tions of the 4-gon (Fig. 16).

A simple proof of Knutson–Tao–Woodward’s theorem [55]. That theorem
asserts the associativity of the similar ∗-product whose structure constants
are given by the number of hives. The associativity in our set-up, where the
structure constant are given by the number of positive integral tropical points,
is obvious for any group G. So to prove the theorem we just need to relate hives
to positive integral tropical points for G = GLm , which is done in Sect. 3.

2.2 Parametrization of top components of fibers of convolution morphisms

2.2.1 Transcendental cells and integral tropical points

For a non-zero C = ∑k≥p ckt
k ∈ K such that cp is not zero, we define its

valuation and initial term:

val(C) := p, in(C) := cp.
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A decomposition of T(K). For each split torus T, there is a natural projection,
which we call the valuation map:

val : T(K) −→ T(K)/T(O) = T(Zt ).

Given an isomorphism T = (Gm)k , the map is expressed as (C1, . . . ,Ck) �→
(val(C1), . . . , val(Ck)).

Each l ∈ T(Zt ) gives rise to a cell

Tl := {x ∈ T(K) | val(x) = l}.
It is a projective limit of irreducible algebraic varieties: each of them is

isomorphic to (Gm)k×AN . Therefore Tl is an irreducible proalgebraic variety,
and T(K) is a disjoint union of them:

T(K) =
∐

l∈T(Zt )

Tl .

Transcendental K-points of T. Let us define an initial term map for T(K) in
coordinates:

in : T(K) −→ T(C), (C1, . . . ,Ck) �−→ (in(C1), . . . , in(Ck)) .

A subset {c1, . . . , cq} ⊂ C is algebraically independent if P(c1, . . . , cq) �=
0 for any P ∈ Q(X1, . . . , Xq)

∗.

Definition 2.8 A point C ∈ T(K) is transcendental if its initial term in(C)

is algebraically independent as a subset of C. Denote by T◦(K) the set of
transcendental points in T(K). Set

T◦l := Tl

⋂
T◦(K).

Lemma 2.9 Let F be a positive rational function on T. For any C ∈ T◦(K),
we have

val (F(C)) = Ft (val(C)) .

Proof It is clear. ��
Transcendental K-cells of a positive space Y .

Definition 2.10 A birational isomorphism f : Y → Z of positive spaces is a
positive birational isomorphism if it is a positive morphism, and its inverse is
also a positive morphism.

123



540 A. Goncharov, L. Shen

Theorem 2.11 Let f : T → S be a positive birational isomorphism of split
tori. Then

f (T◦l ) = S◦f t (l).

We prove Theorem 2.11 in Sect. 5. It is crucial that the inverse of f is also a
positive morphism. As a counterexample, the map f : Gm → Gm, x �→ x+1
is a positive morphism, but its inverse x �→ x − 1 is not. Let l ∈ Gm(Zt ) = Z.
If l > 0, then Theorem 2.11 fails: the points in f (T◦l ) are not transcendental
since in( f (T◦l )) ≡ 1.

Definition 2.12 Let αc : T → Y be a coordinate system from a positive atlas
on Y . The set of transcendental K-points of Y is

Y◦(K) := αc(T
◦(K)).

For each l ∈ Y(Zt ), the transcendental l-cell9 of Y is

C◦l := αc(T
◦
β t (l)), where β = α−1

c .

By Theorem 2.11, this definition is independent of the coordinate system
αc chosen. Similarly one can upgrade the valuation map to positive spaces:
given a positive space Y , there is a unique map

val : Y◦(K) −→ Y(Zt ) (91)

such that

C◦l = {y ∈ Y◦(K) | val(y) = l}.

The valuation map (91) is functorial under positive birational isomorphisms
of positive spaces. Therefore the transcendental cells are also functorial under
positive birational isomorphisms.

Thus there is a canonical decomposition parametrized by the set Y(Zt ):

Y◦(K) =
⊔

l∈Y(Zt )

C◦l .

Thanks to the following Lemma, one can identify each tropical point l with
C◦l .

9 By abuse of notation, such a cell will always be denoted by C◦l . The tropical point l tells which
space it lives.

123



Geometry of canonical bases and mirror symmetry 541

Lemma 2.13 Let F be a positive rational function on Y . For any C ∈ Y◦(K),
we have

val (F(C)) = Ft (val(C)) .

Proof It follows immediately from Lemma 2.9 and Theorem 2.11. ��
2.2.2 O-integral configurations of decorated flags and the affine

Grassmannian

Recall the affine Grassmannian Gr. Recall the moduli space FG of frames
from Definition 2.2.

Lemma-Construction 2.14 There is a canonical onto map

L : FG(K) −→ Gr, {A1, B2} �−→ L(A1, B2) (92)

Proof Let {U, B−} ∈ FG(Q) be a standard frame. There is a unique g{A1,B2} ∈
G(K) such that

{A1, B2} = g{A1,B2} · {U, B−}.

It provides an isomorphism FG(K)
∼→ G(K). Composing it with the pro-

jection [·] : G(K)→ Gr,

L(A1, B2) := [g{A1,B2}] ∈ Gr. (93)

Note that FG(Q) is a G(Q)-torsor. So choosing a different frame in FG(Q)

we get another representative of the coset g{A1,B2}·G(Q). Since G(Q) ⊂ G(O),
the resulting lattice (93) will be the same. Therefore the map L is canonical.

��
Symmetric space and affine Grassmannian. The affine Grassmannian is
the non-archimedean version of the symmetric space G(R)/K, where K is a
maximal compact subgroup in G(R). A generic pair of flags {B1, B2} over
R gives rise to an H(R>0)-torsor in the symmetric space—the projection of
B1 ∩B2.10 Notice that H(R>0) = H(R)/(H(R)∩K). A generic pair {A1, B2}
determines a point11 Q(A1, B2) ∈ G(R)/K. So we get the archimedean analog
of the map (92):

10 Here is a non-archimedean analog: A generic pair of flags {B1, B2} over K gives rise
to an H(K)/H(O)-torsor in the affine Grassmannian—the projection of B1(K) ∩ B2(K) to
G(K)/G(O).
11 In the archimedean case, a maximal compact subgroup K is defined by using the Cartan
involution. A generic pair {A, B} determines a pinning, and hence a Cartan involution.
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Fig. 17 The metric q(h, y)
determined by a horocycle h
and a boundary point y

x

y

h

q(h, y)

Q : FG(R) −→ G(R)/K, {A1, B2} �−→ Q(A1, B2). (94)

Decorated flags and horospheres. For the adjoint group G′, the principal
affine space A can be interpreted as the moduli space of horospheres in the
symmetric space G′(R)/K in the archimedean case, or in the affine Grass-
mannian Gr. The horosphere HA assigned to a decorated flag A is an orbit of
the maximal unipotent subgroup UA. Let B∗A be the open Schubert cell of flags
in generic position to a given decorated flag A. Then there is an isomorphism

B∗A −→ HA, B �−→ L(A, B) or B �−→ Q(A, B).

Examples. (1) Let G(R) = SL2(R). Its maximal compact subgroup K =
SO2(R). The symmetric space SL2(R)/SO2(R) is the hyperbolic plane H2. A
decorated flag A1 ∈ APGL2(R) corresponds to a horocycle h based as a point
x at the boundary. A flag B2 corresponds to another point y at the boundary.
Let g(x, y) be the geodesic connecting x and y. The point Q(A1, B2) is the
intersection of h and g(x, y), see Fig. 17:

q(h, y) := h ∩ g(x, y) ∈ H2.

(2) Let G = GLn . Recall that a flag F• in an n-dimensional vector space
Vn over a field is a data F1 ⊂ . . . ⊂ Fn , dimFi = i . A generic pair of flags
(F•,G•) in Vn is the same thing as a decomposition of Vn into a direct sum of
one dimensional subspaces

Vn = L1 ⊕ . . .⊕ Ln, (95)

where Li = Fi ∩ Gn+1−i . Conversely, Fa = L1 ⊕ . . . ⊕ La and Gb =
Ln−b+1 ⊕ . . .⊕ Ln.

Over the field R, this decomposition gives rise to a (R∗>0)
n-torsor in the

symmetric space, given by a family of positive definite metrics on Vn with the
principal axes (L1, . . . , Ln):

a1x
2
1 + . . .+ anx

2
n , ai > 0. (96)
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Here (x1, . . . , xn) is a coordinate system for which the lines Li are the
coordinate lines.

A decorated flag A in Vn is a flag F• plus a collection of non-zero vectors
li ∈ Fi/Fi−1. A frame in FGLn is equivalent to a generic pair of flags (F•,G•)
and a decorated flag A over the flag F•. It determines a basis (e1, . . . , en) in Vn
and vice verse. Here ei ∈ Li and ei = li under the projection Li −→ Fi/Fi−1.
This basis determines a metric—the positive definite metric with the principal
axes Li such that the vectors ei are unit vectors.

(3) Over the fieldK, decomposition (95) gives rise to an H(K)/H(O) = Zn-
torsor in Gr, given by the following collection of lattices in Vn .

Otk1e1 ⊕ . . .⊕Otkn en, ki ∈ Z.

These lattices are the non-archimedean version of the unit balls of the metrics
(96).
O-integral configurations of decorated flags.

Definition 2.15 A collection of decorated flags {A1, . . . , An} over K is O-
integral if it is generic and for any i ∈ [1, n] the lattice L(Ai , B j ) does not
depend on the choice of j different than i .

Let g ∈ G(K). Note that L(gAi , gB j ) = g · L(Ai , B j ). Therefore if
{A1, . . . , An} is O-integral, so is g · {A1, . . . , An}. Thus we define

Definition 2.16 A configuration in Confn(A)(K) is O-integral if it is a G(K)-
orbit of an O-integral collection of decorated flags. Denote by ConfOn (A) the
space of such configurations.

The archimedean version of Definition 2.16 is trivial. For example, let G =
SL2(R). Then there are no horocycles (h1, h2, h3) such that their boundary
points (x1, x2, x3) are distinct, and the intersection of the horocycle hi with
the geodesic g(xi , x j ) do not depend on j �= i .

In contrast with this, we demonstrate below that the non-archimedean ver-
sion is very rich. The difference stems from the fact that in the archimedean
case the intersection K ∩ U = e is trivial, while in the non-archimedean
G(O) ∩ U(K) = U(O).

Transcendental cells and O-integral configurations. The following fact is
crucial.

Theorem 2.17 If l ∈ Conf+n (A)(Zt ), then there is an inclusion C◦l ⊂
ConfOn (A). Otherwise C◦l ∩ ConfOn (A) is an empty set.

Theorem 2.17 gives an alternative conceptual definition of the set of positive
integral tropical points of the space Confn(A), which refers neither to the
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potentialW , nor to a specific positive coordinate system. However to show that
the set Conf+n (A)(Zt ) is “big”, or even non-empty, we use the potentialW and
its properties, which imply, for example, that the set Conf+n (A)(Zt ) is obtained
by amalgamation of similar sets assigned to triangles of a triangulation of the
polygon. We prove Theorem 2.17 in Sect. 6.4.

2.2.3 The canonical map κ and cycles on Confn(Gr)

The canonical map κ . Recall the configuration space

Confn(Gr) := G(K)\(Gr × . . .× Gr).

Given an O-integral collection {A1, . . . , An} of decorated flags, we get a
collection of lattices {L1, . . . , Ln} by setting Li := L(Ai , B j ) for some j �= i .
By definition, the lattice Li is independent of j chosen. This construction
descends to configurations, providing a canonical map

κ : ConfOn (A) −→ Confn(Gr), (A1, . . . , An) �−→ (L1, . . . , Ln). (97)

The map is evidently cyclic invariant, and commutes with the restriction to
subconfigurations:

κ(Ai1, . . . , Aik ) = (Li1, . . . , Lik ) for any 1 ≤ i1 < · · · < ik ≤ n.

The cycles Ml in Confn(Gr). Let l ∈ Conf+n (A)(Zt ). Thanks to Theorem
2.17, we can combine the inclusion there with the canonical map (97):

C◦l ⊂ ConfOn (A)
κ−→ Confn(Gr). (98)

Definition 2.18 The cycleMl ⊂ Confn(Gr) is a substack given by the closure
of κ(C◦l ):

Ml :=M◦
l , M◦

l := κ(C◦l ) ⊂ Confn(Gr), l ∈ Conf+n (A)(Zt ). (99)

Lemma 2.19 The cycleMl is irreducible.

Proof For a split torus T, the cycle Tl is irreducible. So the cycles C◦l and Ml
are irreducible. ��

In other words, Ml is a G(K)-invariant closed subspace in Grn . There is a
bijection

{G(K)-orbits inGrn} 1:1←→ {G(O)-orbits in[1] × Grn−1}. (100)
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Therefore one can also view the cycles Ml as G(O)-invariant closed sub-
spaces in [1] × Grn−1. Let us describe them using this point of view.

2.2.4 Top components of the fibers of the convolution morphism

Given λ = (λ1, . . . , λn) ∈ (P+)n , recall the cyclic convolution variety

Grc(λ) := {(L1, . . . , Ln) ∈ Grn | L1
λ1−→ L2

λ2−→ . . .
λn−→ Ln+1,

L1 = Ln+1 = [1]}.
It is a finite dimensional reducible variety of top dimension

ht(λ) := 〈ρ, λ1 + . . .+ λn〉.
It is the fiber of the convolution morphism, and therefore, thanks to the geo-

metric Satake correspondence [34,62,65], there is a canonical isomorphism

IHht(λ)(Grc(λ)) =
(
Vλ1 ⊗ . . .⊗ Vλn

)GL

. (101)

Each top dimensional component of Grc(λ) provides an element in the space
(101). These elements form a canonical basis in (101). Let Tλ be the set of
top dimensional components of Grc(λ). Recall the set Cλ of positive tropical
points (82), and the cycle Ml from Definition 2.18.

Theorem 2.20 Let l ∈ Cλ. Then the cycle Ml is the closure of a top dimen-
sional component ofGrc(λ). The map l �−→Ml provides a canonical bijection
from Cλ to Tλ.

Theorem 2.20 is proved in Sect. 9.4. It implies Theorem 2.6.

2.2.5 Constructible equations for the top dimensional components

We have defined the cycles Ml as the closures of the images of the cells C◦l .
Now let us define the cycles Ml by equations, given by certain constructible
functions on the space Confn(Gr). These functions generalize Kamnitzer’s
functions Hi1,...,in for G = GLm [46].

Constructible function DF . Let R be a reductive algebraic group over C.
We assume that there is a rational left algebraic action of R on Cn . Let
C(x1, . . . , xn) be the field of rational functions on Cn . We get a right algebraic
action of R on C(x1, . . . , xn) denoted by ◦.

LetK(x1, . . . , xn) be the field of rational functions withK-coefficients. The
valuation of K× induces a natural valuation map
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val : K(x1, . . . , xn)
× −→ Z.

Let F,G ∈ K(x1, . . . , xn)×. The valuation map has two basic properties

val(FG) = val(F)+ val(G), (102)

val(F + G) = val(F), if val(F) < val(G). (103)

The group R(K) acts on K(x1, . . . , xn) on the right. We have the following

Lemma 2.21 Let F ∈ K(x1, . . . , xn)×. If h ∈ R(O), then val(F ◦ h) =
val(F).

Proof For any k ∈ K×, we have (kF) ◦ h = k(F ◦ h). Therefore it suffices to
prove the case when val(F) = 0.

Note that the group R is reductive. It is generated by

xi (a) ∈ U, yi (b) ∈ U−, α(c) ∈ H, where i ∈ I and α ∈ Hom(Gm, H).

Since the action of R is algebraic, for any f ∈ C(x1, . . . , xn)×, we have
f ◦ xi (a) ∈ C(x1, . . . , xn, a)×. Note that f ◦ xi (0) = f . Therefore we get

f ◦ xi (a) = f + a f1 + . . .+ al fl
1+ ag1 + . . .+ amgm

, where f j , g j ∈ C(x1, . . . , xn).

(104)

If a ∈ C, then f ◦ xi (a) ∈ C(x1, . . . , xn). Moreover f ◦ xi (a) is non zero.
Otherwise, f = ( f ◦ xi (a)) ◦ xi (−a) = 0. If a ∈ tO, then by the basic
property (103), we get val( f ◦ xi (a)) = val( f ) = 0.

Let a = a0 + b = a0 + a1t + a2t2 + . . . ∈ O. Then f ◦ xi (a) = ( f ◦
xi (a0)) ◦ xi (b).

Note that f ◦ xi (a0) ∈ C(x1, . . . , xn)× and b ∈ tO. Combining the above
arguments we get

val( f ◦ xi (a)) = val( f ◦ xi (a0)) = 0 = val( f ), ∀a ∈ O. (105)

Now let F ∈ K(x1, . . . , xn)× such that val(F) = 0. Then F can be
expressed as

F = f0 + bl f1 + . . .+ bl fl
1+ c1g1 + . . .+ cmgm

.
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Here f0, f p, gq ∈ C(x1, . . . , xn)×, bp, cq ∈ K×, val(bp) > 0, val(cq) >

0,. By definition, we have

F ◦ xi (a) = f0 ◦ xi (a)+ b1 f1 ◦ xi (a)+ . . .+ bl fl ◦ xi (a)

1+ c1g1 ◦ xi (a)+ . . .+ cmgm ◦ xi (a)
.

Let a ∈ O. By (105), we get

val( f0 ◦ xi (a)) = 0,

val(bp f p ◦ xi (a)) = val(bp)+ val( f p ◦ xi (a)) = val(bp) > 0,

val(cqgq ◦ xi (a)) = val(cq)+ val(gq ◦ xi (a)) = val(cq) > 0.

By the basic property (103), we get val(F ◦ xi (a)) = val( f0 ◦ xi (a)) = 0.
Hence we prove that

val(F ◦ xi (a)) = val(F), ∀a ∈ O.

By the same argument, we show that

val(F ◦ yi (b)) = val(F), ∀b ∈ O, val(F ◦ α(c)) = val(F), ∀c ∈ O×.

Note that R(O) is generated by the elements xi (a), yi (b), α(c), a, b ∈
O, c ∈ O×. The Lemma is proved. ��

Let X be rational space over C, i.e., C(X)
∼= C(x1, . . . , xn). Similarly, there

is a valuation map val : K(X)× → Z. We assume that there is left algebraic
action of R on X. Lemma 2.21 implies

Lemma 2.22 Let F ∈ K(X)×. If h ∈ R(O), then val(F ◦ h) = val(F).

Constructible equations for top components. LetX := An and let R := Gn .
Let F ∈ C(An) and let (g1, . . . , gn) ∈ Gn . Then Gn acts on C(An) on the
right:

(F ◦ (g1, . . . , gn))(A1, . . . , An) := F(g1 · A1, . . . , gn · An),

∀(A1, . . . , An) ∈ An. (106)

By definition, a nonzero rational function F ∈ C(Confn(A)) is also a G-
diagonal invariant function on An

F(gA1, . . . , gAn) = F(A1, . . . , An).
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There is a Z-valued function

DF : G(K)n −→ Z, DF (g1(t), . . . , gn(t)) :=val (F ◦ (g1(t), . . . , gn(t))) .

(107)

Lemma-Construction 2.23 The function DF is invariant under the left diag-
onal action of the group G(K) on G(K)n, and the right action of the subgroup
G(O)n ⊂ G(K)n. Therefore DF descends to a function Confn(Gr) → Z

which we also denote by DF.

Proof The first property is clear since F ∈ C(An)G. The second property is
by Lemma 2.22. ��

Let Q+(Confn(A)) be the semifield of positive rational functions on
Confn(A). Take a non-zero function F ∈ Q+(Confn(A)). Therefore it gives
rise to a function DF on Confn(Gr). Meanwhile, its tropicalization Ft is a
function on Confn(A)(Zt ).

Theorem 2.24 Let l ∈ Conf+n (A)(Zt ) and F ∈ Q+(Confn(A)). Then
DF (κ(C◦l )) ≡ Ft (l).

Theorem 2.24 is proved in Sect. 8. It implies that the map in Theorem 2.20
is injective. It can be reformulated as follows:

For any l and F as above, the generic value of DF on the cycle Ml is Ft (l).

(108)

When G = GLm , one can describe the set Cλ by using the special collec-
tion of functions on the space Confn(A) defined in Section 9 of [17]. The
obtained description coincides with Kamnitzer’s generalization of hives [46].
He conjectured in [46] that the latter set parametrizes the components of the
convolution variety for GLm . Therefore Theorems 2.20 and 2.24 imply Con-
jecture 4.3 in [46].

2.3 Mixed configurations and a generalization of Mirković–Vilonen cycles

In this section we discuss several other examples. Each of them fits in the
general scheme of Sect. 1.2. We show how to encode all the data in a polygon.

2.3.1 Mixed configurations and the map κ

Definition 2.25 (i) Given a subset I ⊂ [1, n], the moduli space ConfI(A;B)

parametrizes configurations (x1, . . . , xn), where xi ∈ A if i ∈ I, otherwise
xi ∈ B.
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(ii) Given subsets J ⊂ I ⊂ [1, n], the moduli space ConfJ⊂I(Gr;A,B) para-
metrizes configurations (x1, . . . , xn) where

xi ∈Gr if i ∈ J, xi ∈A(K) if i ∈ I − J, xi ∈ B(K) otherwise.

We set ConfI(Gr;B) := ConfI⊂I(Gr;B).

A positive structure on the space ConfI(A;B) is defined in Sect. 6.3. This
positive structure is invariant under a cyclic twisted shift. See Lemma 6.8 for
the precise statement.

Definition 2.26 Let J ⊂ I ⊂ [1, n]. A configuration in ConfI(A;B)(K) is
called O-integral relative to J if

1. For all j ∈ J and k �= j , the pairs (A j , Bk) are generic. Here Bk = π(Ak)

if k ∈ I.
2. The lattices L j := L(A j , Bk) given by the above pairs only depend on j .

Denote by ConfOJ⊂I(A;B) the moduli space of such configurations.

By the very definition, there is a canonical map

κ : ConfOJ⊂I(A;B) −→ ConfJ⊂I(Gr;A,B). (109)

It assigns to A j the lattice L j when j ∈ J and keeps the rest intact.
Recall u j ∈ UA j in (76). The potential WJ on ConfI(A;B) is a function

WJ :=
∑

j∈J

χA j (u j ). (110)

Positivity of WJ is proved in Sect. 6.4.
Next Theorem generalizes Theorem 2.17. Its proof is the same. See Sect. 6.4.

Theorem 2.27 Let l ∈ ConfI(A;B)(Zt ). A configuration in C◦l is O-integral
relative to J if and only ifW t

J(l) ≥ 0.

Denote by Conf+J⊂I(A;B)(Zt ) the set of points l ∈ ConfI(A;B)(Zt ) such
that W t

J(l) ≥ 0. Set

M◦
l := κ(C◦l ) ⊂ ConfJ⊂I(Gr;A,B), l ∈ Conf+J⊂I(A;B)(Zt ). (111)

These cycles generalize the Mirković–Vilonen cycles, as we will see in
Sect. 2.3.3.
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Fig. 18 The invariants
μ(A1, B2, A3) ∈ H and
μ(A1, B2, B3, A4) ∈ H

A 41 A
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2.3.2 Basic invariants

Recall the isomorphism (80):

α : Conf∗(A,A)
∼−→ H, α(A1 · h1, A2 · h2) = h−1

1 w0(h2)α(A1, A2).

(112)

Given a generic triple {A1, B2, A3}, we choose a decorated flag A2 over the
flag B2, and set

μ(A1, B2, A3) := α(A1, A2)α(A3, A2)
−1 ∈ H.

Due to (112), it does not depend on the choice of A2. We illustrate the
invariant μ by a pair of red dashed arrows on the left in Fig. 18.

Given a generic configuration (A1, B2, B3, A4), see the right of Fig. 18,
choose decorated flags A2, A3 over the flags B2, B3, and set

μ(A1, B2, B3, A4) := α(A2, A1)α2(A2, A3)
−1α(A4, A3) ∈ H.

These invariants coincide with a similar H-valued μ-invariants from
Sect. 1.4.

There are canonical isomorphisms:

πGr : Conf(Gr, Gr)
=−→ P+,

αGr : Conf(A, Gr)
=−→ P,

α′Gr : Conf(Gr,A)
=−→ P. (113)

The first map uses the decomposition G(K) = G(O) · H(K) · G(O):

Conf(Gr, Gr) = G(O)\G(K)/G(O) = W\H(K)/H(O) = P+.

The second map uses the Iwasawa decomposition G(K) = U(K) · H(K) ·
G(O):

Conf(A, Gr) = G(K)\ (G(K)/U(K)× G(K)/G(O)) = U(K)\G(K)/G(O)

= H(K)/H(O) = P.
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The third map is a cousin of the second one:

α′Gr(L, A) := −w0 (αGr(A, L)) .

Remark. These isomorphisms parametrize G(O), U(K) and U−(K)-orbits of
Gr. Each coweight λ ∈ P = H(Zt ) = H(K)/H(O) corresponds to an element
tλ of Gr. Then

πGr([1], g · tλ) = λ, ∀g ∈ G(O);
αGr(U, u · tλ) = λ, ∀u ∈ U(K);
α′Gr(v · t−λ, w0 · U) = λ, ∀v ∈ U−(K). (114)

We define Grassmannian versions of μ-invariants:

μGr : Conf(Gr,B, Gr) −→ P, μGr : Conf(Gr,B,B, Gr) −→ P

μGr(L1, B2, L3) := α′Gr(L1, A2)− α′Gr(L3, A2) ∈ P.

μGr(L1, B2, B3, L4) := αGr(A2, L1)− val ◦ α(A2, A3)+ α′Gr(L4, A3) ∈ P.

Let pr : B−(K) → H(K) → P be the composite of standard projections.
The first map has an equivalent description:

μGr([b1], B−, [b2]) = pr(b−1
1 b2), b1, b2 ∈ B−(K).

More generally, take a chain of flags starting and ending by a decorated flag,
pick an alternating sequence of arrows, and write an alternating product of the
α-invariants. We get regular maps

μ : Conf∗(A,B2n+1,A) −→ H, (115)

(A1, B2, . . . , B2n+2, A2n+3) �−→ α(A1, A2)

α(A3, A2)

α(A3, A4)

α(A5, A4)
. . .

α(A2n+1, A2n+2)

α(A2n+3, A2n+2)
.

μ : Conf∗(A,B2n,A) −→ H, (116)

(A1, B2, . . . , B2n+1, A2n+2) �−→ α(A2, A1)

α(A2, A3)

α(A4, A3)

α(A4, A5)
. . . α(A2n+2, A2n+1).

Given a cyclic collection of an even number of flags, there is an invariant
which for n = 2 and G = SL2 recovers the cross-ratio:
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Fig. 19 Generalized MV
cycles Ml ⊂ Gr3 =
Confw0 (A, Gr3,B)
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Fig. 20 One has λ ∈ P+
and μ ∈ R+
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Conf∗2n(B) −→ H, (B1, . . . , B2n) �−→ α(A1, A2)

α(A3, A2)

α(A3, A4)

α(A5, A4)

. . .
α(A2n−1, A2n)

α(A1, A2n)
.

One gets Grassmannian versions by replacing A by Gr, and α by one of the
maps (113).

These invariants provide decompositions for both spaces in (111).
Let us encode all the data in a polygon, as illustrated on Fig. 19. Let l ∈

Conf+J⊂I(A;B)(Zt ). We show on the left an element of C◦l . Flags or decorated
flags are assigned to the vertices of a convex polygon. The vertices labeled by J
are boldface. Note that although we order the vertices by choosing a reference
vertex, due to the twisted cyclic invariance the story does not depend on its
choice.

The solid blue sides are labeled by a pair of decorated flags. There is an
invariant λE ∈ P assigned to such a side E . It is provided by the tropicaliza-
tion of the isomorphism (112) evaluated on l. The collection of dashed edges
determines an invariant μ ∈ P.

Recall the cone R+ ⊂ P generated by positive coroots. The O-integrality
imposes restrictions on basic invariants, summarized in Lemma 2.28, and illus-
trated on Fig. 20.

Lemma 2.28 (i) Let (A1, A2, B3) ∈ C◦l ⊂ ConfO(A,A,B). Then val ◦
α(A1, A2) ∈ P+.

(ii)Let (B1, A2, B3)∈C◦l ⊂ConfO(B,A,B). Thenval◦μ(A2, B1, B3, A2)∈
R+.

Proof Here (i) follows from Lemma 6.14, and (ii) follows from Lemmas 5.3
& 6.4(4). ��

Applying the map κ , we replace the decorated flag at each boldface vertex
by the corresponding lattice. Others remain intact. We use the notation A for
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the decorated flags which do not contribute the character χA to the potential—
they are assigned to the unmarked vertices. For example, we associate to the
polygons on Fig. 19 the following maps

κ : C◦l −→ Conf(A, Gr3,B), l ∈ Conf+(A,A3,B)(Zt ).

π : Conf∗(A,A3,B) −→ H3, μ : Conf∗(A,A3,B) −→ H,

(π t , μt ) : Conf+(A,A3,B)(Zt ) −→ P × (P+)2 × P,

(πGr, μGr) : Conf(A, Gr3,B) −→ P × (P+)2 × P. (117)

It is easy to check that the targets of the invariants assigned to configurations
of flags are the same as the targets of their Grassmannian counterparts.

2.3.3 Generalized Mirković–Vilonen cycles

Let us recall the standard definition of Mirković–Vilonen cycles following
[3,45,65].

For w ∈ W , let Uw = wUw−1. For w ∈ W and μ ∈ P define the semi-
infinite cells

Sμ
w := Uw(K)tμ. (118)

Let λ, μ ∈ P. The closure Sλ
e ∩ Sμ

w0 is non-empty if and only if λ − μ ∈
R+. In that case, it is also well known that Sλ

e ∩ Sμ
w0 has pure dimension

ht(λ− μ) := 〈ρ, λ− μ〉.
Definition 2.29 A component of Sλ

e ∩ Sμ
w0 ⊂ Gr is called an MV cycle of

coweight (λ, μ).

Since H normalizes Uw, for each h ∈ H(K) such that [h] = tν , we have
h · Sμ

w = Sμ+ν
w . Therefore if V is an MV cycle of coweight (λ, μ), then h · V

is an MV cycle of coweight (λ + ν, μ + ν). The H(K)-orbit of an MV cycle
of coweight (λ, μ) is called a stable MV cycle of coweight λ− μ.

Let λ = (λ1, . . . , λn) ∈ (P+)n . Consider the convolution variety

Grλ = {(L1, L2, . . . , Ln) | [1] λ1−→ L1
λ2−→ . . .

λn−→ Ln} ⊂ Grn. (119)

Let prn : Grn → Gr be the projection onto the last factor. Set

Grμλ := Grλ ∩ pr−1
n

(
Sμ

w0

)
. (120)

When n = 1, under the geometric Satake correspondence, the components of
Grμλ give a basis (the MV basis) for the weight space V (μ)

λ , see [65, Corollary
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7.4]. It is easy to see that they are precisely MV cycles of coweight (λ, μ)

contained in Grλ, see [3, Proposition 3].
Now we restrict constructions in preceding subsections to four main exam-

ples associated to an (n + 2)-gon. The n = 1 case recovers the above three
versions of MV cycles. In this sense, the following can be viewed as a gener-
alization of MV cycles.

Example 1. J = [2, n + 1] ⊂ I = [1, n + 1]. Let Confw0(A, Grn,B) ⊂
ConfJ⊂I(Gr;A,B) be the substack parametrizing configurations (A1, L2, . . . ,

Ln+1, Bn+2) where (A1, Bn+2) is generic.
Recall FG in Definition 2.2. Then

Confw0(A, Grn,B) = G(K)\ (FG(K)× Grn
)
.

Since FG is a G-torsor, we get an isomorphism

i : Grn
=−→ Confw0(A, Grn,B), (L1, . . . , Ln) �−→ (U, L1, . . . , Ln, B−).

(121)

From now on we identify Grn with Confw0(A, Grn,B).
There is a map, whose construction is illustrated on the right of Fig. 19:

πGr : Confw0(A, Grn,B) −→ P := P × (P+)n−1 × P.

Its fibers are finite dimensional subvarieties Grμ
λ;λ:

Grn =
∐

Grμ
λ;λ, where (λ, λ, μ) ∈ P × (P+)n−1 × P. (122)

By (114) we see that

Grμ
λ;λ =

{
(L1, . . . , Ln) ∈ Grn | L1

λ2−→ . . .
λn−→ Ln, L1 ∈ Sλ

e , Ln ∈ Sμ
w0

}
,

λ := (λ2, . . . , λn).

When n = 1, it is the intersection Sλ
e ∩ Sμ

w0 . Note that the very notion of
MV cycles depends on the choice of the pair H ⊂ B. We transport the MV
cycles to Confw0(A, Gr,B) by the isomorphism (121). It is then independent
of the pair chosen. In general we define

Definition 2.30 The irreducible components of Grμ
λ;λ are called the general-

ized Mirković–Vilonen cycles of coweight (λ, λ, μ).
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Similarly the left of Fig. 19 provides a map

π t : Conf+(A,An,B)(Zt ) −→ P × (P+)n−1 × P. (123)

Let Pμ

λ;λ := Conf+(A,An,B)(Zt )
μ

λ;λ be the fiber of map (123) over
(λ, λ, μ). Then

Conf+(A,An,B)(Zt ) =
∐

Pμ

λ;λ where (λ, λ, μ) ∈ P × (P+)n−1 × P.

(124)

By definition π t ◦ val and πGr ◦ κ deliver the same map from C◦l to P. Thus
we arrive at

Ml :=M◦
l ⊂ Grμ

λ;λ, l ∈ Pμ

λ;λ := Conf+w0
(A,An,B)(Zt )

μ

λ;λ. (125)

Theorem 2.31 The cycles (125) are precisely the generalized MV cycles of
coweight (λ, λ, μ).

Example 2. J = I = [2, n + 1]. Let Confw0(B, Grn,B) ⊂ ConfJ⊂I(Gr;A,B)

be the substack parametrizing configurations (B1, L2, . . . , Ln+1, Bn+2) where
(B1, Bn+2) is generic.

Similarly, we get an isomorphism of stacks

is : H(K)\Grn
=−→ Confw0(B, Grn,B),

(L1, . . . , Ln) �−→ (B, L1, . . . , Ln, B−). (126)

Here the group H(K) acts diagonally on Grn . Let h ∈ H(K). If [h] = tμ,

then h · Grν
λ;λ = Grν+μ

λ+μ;λ. It provides an isomorphism between the sets of
components of both varieties.

Definition 2.32 The H(K)-orbit of a generalized MV cycle of coweight
(λ, λ, ν) is called a generalized stable MV cycle of coweight (λ, λ− ν).

When n = 1, it recovers the usual stable MV cycles. The generalized stable
MV cycles live naturally on the stack H(K)\Grn . The isomorphism (126)
transports them to Confw0(B, Grn,B).

The solid blue arrows and the triple of dashed reds on Fig. 21 provide a
canonical projection

(π t , μt ) : Conf+(B,An,B)(Zt ) −→ (P+)n−1 × P.

Let Aμ
λ := Conf+(B,An,B)(Zt )

μ
λ be its fiber over (λ, μ). Then

Conf+(B,An,B)(Zt ) =
∐

Aμ
λ where λ ∈ (P+)n−1, μ ∈ P. (127)
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Fig. 21 Generalized stable
MV cycles
Ml ⊂ Conf(B, Gr3,B) =
H(K)\Gr3 κ
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Fig. 22 Generalized MV
cycles
Ml ⊂ Conf(Gr4,B) =
B−(O)\Gr3 κ
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On the other hand, our general construction provides us with the irreducible
cycles

Ml :=M◦
l ⊂ H(K)\Grn = Confw0(B, Grn,B), l ∈ Aμ

λ . (128)

Theorem 2.33 The cycles (128)are precisely the generalized stableMVcycles
of coweight (λ, μ).

Example 3. J = I = [1, n + 1]. By Iwasawa decomposition we get an
isomorphism

ib : B−(O)\Grn
=−→ Conf(Grn+1,B),

(L1, . . . , Ln) �−→ ([1], L1, . . . , Ln, B−). (129)

There are two projections, illustrated on Fig. 22:

(πGr, μGr) : Conf(Grn+1,B) −→ (P+)n × P, (130)

(π t , μt ) : Conf+(An+1,B)(Zt ) −→ (P+)n × P. (131)

Their fibers over (λ, μ) ∈ (P+)n × P provide decompositions

Conf(Grn+1,B) =
∐

λ,μ

Conf(Grn+1,B)
μ
λ . (132)

Conf+(An+1,B)(Zt ) =
∐

λ,μ

Conf+(An+1,B)(Zt )
μ
λ . (133)

By definition, these decompositions are compatible under the map κ .
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We get irreducible cycles

Ml :=M◦
l ⊂ B−(O)\Grn = Conf(Grn+1,B),

l ∈ Bμ
λ := Conf+(An+1,B)(Zt )

μ
λ . (134)

The connected group B−(O) acts diagonally Grn . It preserves components
of subvarieties Grμλ in (120). Hence these components live naturally on the

stack B−(O)\Grn . We transport them to Conf(Grn+1,B) by (129).

Theorem 2.34 The cycles (134) are precisely the components ofB−(O)\Grμλ .

Example 4. J = I = [1, n + 2]. There is an isomorphism

ig : G(O)\Grn+1 =−→ Confn+2(Gr),

(L1, . . . , Ln+1) −→ ([1], L1, . . . , Ln+1). (135)

We arrive at irreducible cycles defined in Definition 2.18:

Ml :=M◦
l ⊂ G(O)\Grn+1 = Confn+2(Gr) l ∈ Cλ := Conf+n (A)(Zt )λ.

This example recovers Theorem 2.20.
Specializing Theorems 2.31–2.34 to n = 1, we get

Theorem 2.35 (1) Mirković–Vilonen cycles of coweight (λ, μ) are precisely
the cycles

Ml ⊂ Gr, l ∈ Pμ
λ := Conf+(A,A,B)(Zt )

μ
λ for W = χA2 .

(2) Stable Mirković–Vilonen cycles of coweight μ are precisely the cycles

Ml ⊂ H(K)\Gr, l ∈ Aμ := Conf+(B,A,B)(Zt )μ for W = χA2 .

(3) Mirković–Vilonen cycles of coweight (λ, μ) which lie in Grλ ⊂ Gr are
precisely the cycles

Ml ⊂ B−(O)\Gr, l ∈ Bμ
λ := Conf+(A,A,B)(Zt )

μ
λ

for W = χA1 + χA2

Theorem 2.35 is proved in Sect. 9.1.
Note that there is a positive birational isomorphism Conf(B,A,B)

∼= U.
Thus we identify Conf+(B,A,B)(Zt ) with the subset of U(Zt ) used by
Lusztig [58,59] to parametrize the canonical basis in Lemma 5.1. Then The-
orem 2.35 is equivalent to the main results of Kamnitzer’s paper [45]. Our
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Fig. 23 Mirković–Vilonen
cycles Ml ⊂
Confw0 (A, Gr,B) = Gr
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Fig. 24 Stable
Mirković–Vilonen cycles
Ml ⊂ Confw0 (B, Gr,B) =
H(K)\Gr
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Fig. 25 MV cycles which
lie in Grλ are the cycles
M◦

l ⊂ Conf(Gr, Gr,B)λ =
B−(O)\Grλ
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Fig. 26 Generalized MV
cycles
Ml ⊂ Conf(Gr, Gr, Gr)
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approach, using the moduli space Conf(B,A,B) rather than U, makes para-
metrization of the MV cycles more natural and transparent, and puts it into the
general framework of this paper.

To summarize, there are four different versions of the cycles relevant to
representation theory related to mixed configurations of triples, as illustrate
on Figs. 23, 24, 25, 26.

2.3.4 Constructible equations for the cyclesM◦
l

Let F be a rational function on the stack ConfI(A;B). We generalize the
construction of DF from Sect. 2.2.5. As an application, it implies that the
cycles M◦

l in (111) are disjoint.
Given J ⊂ I ⊂ [1, n], let m be the cardinality of J. We assume J =

{ j1, . . . , jm}.
Consider the space
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X := X1 × . . .× Xn, where Xi =
⎧
⎨

⎩

G if i ∈ J,
A if i ∈ I − J,
B otherwise.

Let X∗ be its subset consisting of collections {x1, . . . , xn}whose subcollec-
tions {xi1, . . . , xin−m }, is /∈ J, are generic.

Given a rational function F on ConfI(A;B), each x={x1, . . . , xn}∈X∗(K)

provides a function Fx on Am , whose value on {A j1, . . . , A jm } ∈ Am is

Fx (A j1, . . . , A jm ) := F(x ′1, . . . , x ′n) ∈ K, x ′i =
{
x j · A j if j ∈ J,

xi otherwise.

(136)

Then Fx ∈ K(Am)

Recall the map val : K(Am)× → Z. We get a Z-valued function

DF : X∗(K) −→ Z, DF (x) := val(Fx ). (137)

Recall the right action of Gm on C(Am). Thanks to Lemma 2.22 and the
fact that F ∈ Q(ConfI(A;B)), we have

∀g ∈ G(K), ∀h ∈ G(O)m, val(Fg·x ◦ h) = val(Fx ). (138)

Thus DF descends to

DF : Conf∗J⊂I(Gr;A,B) −→ Z. (139)

Here Conf∗J⊂I(Gr;A,B) is a subspace of ConfJ⊂I(Gr;A,B) consisting of
the configurations whose subconfigurations of flags and decorated flags are
generic.

By definition, M◦
l in (111) are contained in Conf∗J⊂I(Gr;A,B). The fol-

lowing Theorem is a generalization of Theorem 2.24. See Sect. 8 for its proof.

Theorem 2.36 Let l ∈ Conf+J⊂I(A;B)(Zt ). Let F ∈ Q+(ConfI(A;B)). Then
DF (M◦

l ) ≡ Ft (l).

2.4 Canonical bases in tensor products and Conf(An,B)

Recall that a collection of dominant coweights λ = (λ1, . . . , λn) gives rise
to a convolution variety Grλ ⊂ Grn . It is open and smooth. Its dimension is
calculated inductively:

dim Grλ = 2ht(λ) := 2〈ρ, λ1 + · · · + λn〉. (140)
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The subvarieties Grλ form a stratification S of Grn . Let ICλ be the IC-sheaf
of Grλ. By the geometric Satake correspondence,

H∗(ICλ) = Vλ := Vλ1 ⊗ . . .⊗ Vλn . (141)

Let prn : Grn → Gr be the projection onto the last factor. Recall the point
tμ ∈ Gr. Set

Sμ := pr−1
n (U(K)tμ) ⊂ Grn, Tμ := pr−1

n (U−(K)tμ) ⊂ Grn.

The sum of positive coroots is a cocharacter 2ρ∨ : Gm → H. It provides
an action of the group Gm on Grn given by the action on the last factor. The
subvarieties Sμ and Tμ are attracting and repulsing subvarieties for this action.
Set

Grμλ := Grλ ∩ Sμ.

Lemma 2.37 If Grμλ is non-empty, then it is a subvariety of pure dimension

dim Grμλ = ht(λ;μ) := 〈ρ, λ1 + . . .+ λn + μ〉. (142)

Denote by Irr(X) the set of top dimensional components of a variety X , and
by Q[Irr(X)] the vector space with the bases parametrised by the set Irr(X).

Theorem 2.38 There are canonical isomorphisms

H∗(Grn, ICλ) = ⊕μH2ht(μ)
c (Sμ, ICλ) = ⊕μQ[Irr(Grμλ )].

Proof Theorem 2.38 for n = 1 is proved in [65, Section 3]. The proof for
arbitrary n follows the same line. For convenience of the reader we provide a
complete proof.

Let m : C∗ × X → X be a map defining an action of the group C∗ on X .
Let D(X) be the bounded derived category of constructible sheaves on X . An
object F ∈ D(X) is weaklyC∗-equivariant, if m∗F = L�F for some locally
constant sheaf L on C∗.

Recall the action of Gm on Grn defined above. Denote by PS(Grn) the cate-
gory of weakly C∗-equivariant perverse sheaves on Grn which are constructible
with respect to the stratification S. ��
Lemma 2.39 The sheaf ICλ is locally constant along the stratification S. It
belongs to the category PS(Grn).
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Proof Given a subgroup G′ ⊂ G, denote by G′[k,n] ⊂ Gn the subgroup of
elements (e, . . . , e, g, . . . , g), with (n − k + 1) of g ∈ G′. Denote by G(L)

the subgroup stabilising a point L ∈ Gr. The group G(L)[k,n] preserves the
category PS(Grn). Take two collections (L1, . . . , Ln), (M1, . . . , Mn) ∈ Grn ,
with L1 = M1 = [1] and in the same stratum. We can move (L1, . . . , Ln)

by an element of G(L1)[1,n], getting (M1, M2, L ′3, . . . , L ′n). Then we move
it by an element of G(M2)[2,n], getting (M1, M2, M3, . . . , L ′′n), and so on,
using subgroups G(Ln)[k,n] for k = 3, 4, . . . n − 1. In the last step we get
(M1, . . . , Mn). The C∗-equivariance is evident. ��
Proposition 2.40 For all P ∈ PS(Grn) we have a canonical isomorphism

Hk
c(Sμ,P)

∼−→ Hk
Tμ

(Grn,P). (143)

Both sides vanish if k �= 2ht(μ). The functors Fμ := H2ht(μ)
c (Sμ,−) :

PS(Grn) −→ Vect are exact.

Proof Isomorphism (143) follows from the hyperbolic localisation theorem of
Braden [7]. Let us briefly recall how it works.

Let X be a normal complex variety on which the group C∗ acts. Let F be
the stable points variety. It is a union of components F1, . . . , Fk . Consider the
attracting and repulsing subvarieties

X+k = {x ∈ X | limt→0t · x ∈ Fk}, X−k = {x ∈ X | limt→∞t · x ∈ Fk},

Let X+ (resp. X−) be the disjoint union of all the X+k (resp. X−k ). There are
projections

π± : X± → F, π+(x) = limt→0t · x, π−(x) = limt→∞t · x .
Let g± : X± ↪→ X be the natural inclusions. Given an object F ∈ D(X),

define hyperbolic localisation functors

F !∗ := (π+)!(g+)∗F, F∗! := (π−)∗(g−)!F .

Combining Theorem 1 and Section 3 of [7], we have the following result,
which implies (143). ��
Proposition 2.41 IfF is weakly C∗-equivariant, the natural map F !∗ → F∗!
is an isomorphism.

Let us prove the vanishing. One has Hk
c(Grμλ , Q) = 0 for k > 2dimGrμλ =

2ht(λ;μ). Due to perversity, the restriction of any P ∈ PS(Grn) to Grλ lies in
degrees ≤ −dimGrλ = −2ht(λ). So
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Hk
c(Grμλ ,P) = 0 if k > 2ht(μ). (144)

Although Sμ is infinite dimensional, we can slice it by its intersections with
the strata Grλ. Since the estimate (144) on each strata does not depend on λ,
a devissage using exact triangles j! j∗A→ A→ i!i∗A tells that

Hk
c(Sμ,P) = 0 if k > 2ht(μ).

Applying the duality, and using the fact that ∗P = P , we get the dual
estimate

Hk
Tμ

(Grn,P) = 0 if k < 2ht(μ).

Combining with the isomorphism (143), we get the proof. The last claim is
then obvious.

Proposition 2.42 We have natural equivalence of functors

H∗ ∼= ⊕μ∈PH2ht(μ)
c (Sμ,−) : PS(Grn) −→ Vect.

Proof The proof of Theorem 3.6 in [65] works in our case. Namely, the
two filtrations of Grn by the closures of Sμ and Tμ give rise to two
filtrations of H∗, given by the kernels of H∗ → H∗c (Sμ,−) and the

images of H∗
Tμ

(Grn,−) → H∗. The vanishing implies H2ht(μ)
c (Sμ,−) =

H2ht(μ)
c (Sμ,−) and H2ht(μ)

Tμ
(Grn,−) = H2ht(μ)

Tμ
(Grn,−), and the composi-

tion H2ht(μ)
Tμ

(Grn,−)→ H2ht(μ) → H2ht(μ)
c (Sμ,−) is an isomorphism. So the

two filtrations split each other. ��
Corollary 2.43 The global cohomology functor H∗ : PS(Grn) −→ Vect is
faithful and exact.

Denote by Hp
perF the cohomology of an F ∈ Db

S(Grn) for the perverse
t-structure. Let j : Grλ ↪→ Grλ be the natural embedding, J!(λ, Q) :=
H0

per( j!Q[dimGrλ]), and J∗(λ, Q) := H0
per( j∗Q[dimGrλ]). The following

Lemma is a generalisation of Lemma 7.1 of [65].

Lemma 2.44 The category PS(Grn) is semi-simple. The sheaves J!(λ, Q),
J∗(λ, Q), and J!∗(λ, Q) are isomorphic.

Proof Let us prove first the parity vanishing for the stalks of the sheaf
J!∗(λ, Q): the stalks could have non-zero cohomology only at even degrees.
For n = 1 it is proved in [62]. It can also be proved by using the Bott–
Samelson resolution of the Schubert cells in the affine (i.e. Kac-Moody) case,
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as was explained to us by A. Braverman. Let F be a Kac-Moody flag vari-
ety. Take an element w = w1 . . . wn of the affine Weyl group such that
l(w) = l(w1) + · · · + l(wn). Denote by Fw1,...,wn the variety parametrising
flags (F1 = [1], F2, . . . , Fn) such that the pair (Fi , Fi+1) is in the incidence
relation wi . Choose reduced decompositions [w1], . . . , [wn] of the elements
w1, . . . , wn . Their product is a reduced decomposition [w] of w. It gives rise to
the Bott-Samelson variety X[w]. By its very definition, it is a tower of fibrations

X ([w1], . . . , [wn]) −→ X ([w1], . . . , [wn−1]) −→ . . . −→ X ([w1]).

The Bott-Samelson resolution of the affine Schubert cell Grλ is a smooth
projective variety Xλ with a map βλ : Xλ → Grλ which is 1 : 1 at the
open stratum, and which, according to [25,26], has the following property.
For each of the strata Grμ ⊂ Grλ, there exists a point pμ ∈ Grμ such that the
fiber β−1

λ (pμ) of the Bott-Samelson resolution has a cellular decomposition
with the cells being complex vector spaces. Therefore the stalk of the push
forward βλ∗QXλ of the constant sheaf on Xλ at the point pμ satisfies the
parity vanishing. By the decomposition theorem [8], the sheaf ICλ is a direct
summand of the push forward βλ∗QXλ of the constant sheaf on Xλ. Indeed, the
latter is a direct sum of shifts of perverse sheaves, and it is the constant sheaf
over the open stratum. Therefore the stalk of the sheaf ICλ at the point pμ

satisfies the parity vanishing. Since the cohomology of ICλ is locally constant
over each of the stratum Grμ, we get the parity vanishing. The general case of
Grλ is treated very similarly to the case of Grλ.

The rest is pretty standard, and goes as follows. The strata Grλ are simply
connected: this is well known for n = 1, and the strata Grλ is fibered over Grλ′
with the fiber Grλn , where λ = (λ′, λn). Since the strata are even dimensional
over R, this plus the parity vanishing implies that there are no extensions
between the simple objects in PS(Grn). Indeed, by devissage this claim reduces
to calculation of extensions between constant sheaves concentrated on two
open strata. Thus there are no extensions in the category PS(Grn), i.e. it is
semi-simple.

Let us show now that J!(λ, Q) = J!∗(λ, Q). Since Hp
per( j!QGrλ) = 0 for

p > 0, there is a map j!QGrλ → H0
per( j!QGrλ) = J!(λ, Q). If J!(λ, Q) �=

J!∗(λ, Q), since the category PS(Grn) is semisimple, there is a non-zero direct
summand B of J!(λ, Q) supported at a lower stratum. Composing these two
maps, we get a non-zero map j!QGrλ → B. On the other hand, given a space
X and complexes of sheaves A and B supported at disjoint subsets A and B
respectively, one has Hom( j!A,B) = 0, where j : A ↪→ X . Contradiction.
The statement about J∗ follows by the duality. ��
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Lemma 2.45 There are canonical isomorphisms

Fμ[J!(λ, Q)] = Q[Irr(Grμλ )] = Fμ[J∗(λ, Q)].

Proof We prove the first claim. The second is similar. We follow closely the
proof of Proposition 3.10 in [65]. Set F := J!(λ, Q). Let Grη be a stratum in

the closure of Grλ. Let iη : Grη ↪→ Grλ be the natural embedding. Then i∗ηF ∈
D≤−dimGrη−2

(Grη). Indeed, we use i∗η j!Q = 0, and Hp
per j!Q[dimGrλ] = 0 for

p > 0 and apply i∗η to the exact triangle

−→τ≤−1
per ( j!Q[dimGrλ])−→ j!Q[dimGrλ]−→H0

per( j!Q[dimGrλ])−→ . . . .

Due to dimension counts (140) and (142), we have Hk
c(Grη ∩ Sμ,F) = 0

if k > 2ht(μ) − 2. Thus the devissage associated to the filtration of Grn by
Grη tells that there is no contribution from the lower strata Grη to H2ht(μ)

c , i.e.

H2ht(μ)
c (Sμ,F) = H2ht(μ)

c (Grλ ∩ Sμ,F). Now we can conclude:

H2ht(μ)
c (Grμλ ,F) = H2ht(μ)+2ht(λ)

c (Grμλ , Q) = H
2dim(Grμλ )

c (Grμλ , Q).

The last cohomology group has a basis given by the top dimensional com-
ponents of Grμλ .

Lemma 2.45 implies that there is a canonical isomorphism H2ht(μ)
c (Sμ,

ICλ) = Q[Irr(Grμλ )]. Combined with Proposition 2.42 we arrive at Theorem
2.38. ��
Parametrisation of a canonical basis. Since the group B(O) is connected, the
projection

p : Grμλ −→ B(O)\Grμλ = Conf(Grn+1,B)
μ
λ

identifies the top components. So Theorem 2.34 tells that the cycles p−1(M◦
l ),

l ∈ Bμ
λ , see (134), are the top components of Grμλ . Theorem 2.38 plus (141)

implies that they give rise to classes [p−1(M◦
l )] ∈ Vλ. Moreover, the μ is the

weight of the class in Vλ. So we get the following result.

Theorem 2.46 The set Bμ
λ parametrises a canonical basis in the weight μ

part V (μ)
λ of the representation Vλ1 ⊗ . . .⊗ Vλn of GL. This basis is given by

the classes [p−1(Ml)], l ∈ Bμ
λ .

123



Geometry of canonical bases and mirror symmetry 565

3 The potential W in special coordinates for GLm

3.1 Potential for Conf3(A) and Knutson–Tao’s rhombus inequalities

Recall that a flag F• for GLm is a collection of subspaces in an m-dimensional
vector space Vm :

F• = F0 ⊂ F1 ⊂ . . . ⊂ Fm−1 ⊂ Fm, dimFi = i.

A decorated flag for GLm is a flag F• with a choice of non-zero vectors
fi ∈ Fi/Fi−1 for each i = 1, . . . ,m, called decorations. It determines a
collection of decomposable k-vectors

f(1) := f1, f(2) := f1 ∧ f2, . . . , f(m) := f1 ∧ · · · ∧ fm .

A decorated flag is determined by a collection of decomposable k-vectors
such that each divides the next one. A linear basis ( f1, . . . , fm) in the space
Vm determines a decorated flag by setting Fk := 〈 f1, . . . , fk〉, and taking the
projections of fk to Fk/Fk−1 to be the decorations.

Recall the notion of an m-triangulation of a triangle [17, Section 9]. It is a
graph whose vertices are parametrized by a set

�m := {(a, b, c) | a + b + c = m, a, b, c ∈ Z≥0}. (145)

Let (F, G, H) ∈ Conf3(A) be a generic configuration of three decorated
flags, described by a triple of linear bases in the space Vm :

F = ( f1, . . . , fm), G = (g1, . . . , gm), H = (h1, . . . , hm).

Let ω ∈ det V ∗m be a volume form. Then each vertex (a, b, c) ∈ (145) gives
rise to a function

�a,b,c(F, G, H) = 〈 f(a) ∧ g(b) ∧ h(c), ω〉.

There is a one dimensional space Lb,c
a := Fa+1 ∩ (Gb ⊕ Hc).

Let eb,ca ∈ Lb,c
a such that eb,ca − fa+1 ∈ Fa . It is easy to see that eb+1,c−1

a −
eb,ca ∈ Lb+1,c

a−1 . Therefore there exists a unique scalar α
b,c
a such that eb+1,c−1

a −
eb,ca = α

b,c
a eb+1,c

a−1 .

Lemma 3.1 One has

αb,c
a = �a−1,b+1,c�a+1,b,c−1

�a,b,c�a,b+1,c−1
. (146)
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Proof Set

α := αb,c
a , β := �a,b,c

�a+1,b,c−1
, γ := �a,b+1,c−1

�a+1,b,c−1
. (147)

By definition,

f(a) = f(a−1) ∧ eb,c+1
a−1 ,

f(a+1) = f(a) ∧ eb,ca = f(a) ∧ eb−1,c+1
a ,

g(b) ∧ h(c) = βeb,ca ∧ g(b) ∧ h(c−1),

g(b+1) ∧ h(c−1) = γ eb+1,c−1
a ∧ g(b) ∧ h(c−1).

Therefore,

g(b+1) ∧ h(c) = γ eb+1,c−1
a ∧ g(b) ∧ h(c)

= βγ eb+1,c−1
a ∧ eb,ca ∧ g(b) ∧ h(c−1)

= βγ (eb+1,c−1
a − eb,ca ) ∧ eb,ca ∧ g(b) ∧ h(c−1)

= βγαeb+1,c
a−1 ∧ eb,ca ∧ g(b) ∧ h(c−1).

So

f(a−1) ∧ g(b+1) ∧ h(c) = αβγ f(a+1) ∧ g(b) ∧ h(c−1).

Therefore,

αβγ = �a−1,b+1,c

�a+1,b,c−1
.

Go back to (147), the Lemma is proved. ��
As shown on Fig. 27, each zig-zag path p provides a basis Ep for F. For

example,

El :=
{
e0,n

0 , e0,n−1
1 , . . . , e0,1

n−1

}
, Er :=

{
en,0

0 , en−1,1
1 , . . . , e1,0

n−1

}

are the bases provided by the very left and very right paths.
Given two zig-zag paths, say p and q, there is a unique unipotent element

u pq stabilizing F, transforming Ep to Eq . Recall the character χF in section 1.
For each triple (p, q, r) of zig-zag paths, we have

χF(u pq) = −χF(uqp),

χF(u pr ) = χF(u pq)+ χF(uqr ).
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Fig. 27 Zig-zag paths and bases for the decorated flag F

If p, q are adjacent paths, see the right of Fig. 27, then by Lemma 3.1,

χF(u pq) = αb,c
a = �a−1,b+1,c�a+1,b,c−1

�a,b,c�a,b+1,c−1
.

One can transform the very left path to the very right by a sequence of
adjacent paths. Let u ∈ UF transform El to Er . Then

χF(u) =
∑

(a,b,c)∈�m ,a �=0,c �=0

αb,c
a =

∑

(a,b,c)∈�m ,a �=0,c �=0

�a−1,b+1,c�a+1,b,c−1

�a,b,c�a,b+1,c−1
.

Its tropicalization

χ t
F = min

(a,b,c)∈�n,a �=0,c �=0

{
�t

a−1,b+1,c +�t
a+1,b,c−1 −�t

a,b,c −�t
a,b+1,c−1

}

delivers 1/3 of Knutson–Tao rhombus inequalities. Clearly, same holds for the
other two directions. By definition,

W(F, G, H) = χF + χG + χH.

Our set Conf+3 (A)(Zt ) coincides with the set of hives in [54].
In Sects. 3.2–3.3 we show that the potential on the space Conf(A,A,B)

for GLm , written in the special coordinates there, recovers Givental’s potential
and, after tropicalization, Gelfand–Tsetlin’s patterns.
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Fig. 28 Calculating the
potential W on
Conf(A,A,B) in the special
coordinates for GLm

Fig. 29 The Givental quiver
and special coordinates on
Conf(A,A,B) for GL4

3.2 The potential for Conf(A,A,B) and Givental’s potential for GLm

Let G = GLm . Recall the set �m , see (145). For each triple (a, b, c) ∈ �m ,
there is a canonical function �a,b,c : Conf3(A)→ A1. Consider the functions
�a,b,c with (a, b, c) ∈ �m − (0, 0,m), illustrated by the •-vertices on Fig. 29.
For each triple (a, b, c) ∈ �m−1, let us set

Ra,b,c := �a,b+1,c

�a+1,b,c
. (148)

The functions Ra,b,c are assigned naturally to the ◦-vertices on Fig. 29. Each
of them is the ratio of the �-functions at the ends of the slant edge centered at a
◦-vertex. They are functions on Conf(A,A,B) since Ra,b,c(A1, A2, A3 ·h) =
Ra,b,c(A1, A2, A3) for any h ∈ H. The functions Ra,b,c form a coordinate
system on Conf(A,A,B), referred to as the special coordinate system.

The functions {Ra,b,0} provide the canonical map

Conf(A,A,B) −→ Conf(A,A) = (Gm)m−1. (149)

Consider now the Givental quiver �m−1, whose vertices are the ◦-vertices,
parametrised by the set �m−1, with the arrows are going down and to the
right, as shown on Fig. 29. For each arrow connecting two vertices, take the

123



Geometry of canonical bases and mirror symmetry 569

sourse/tail ratio of the corresponding functions. For example, see Fig. 28, the
vertical arrow α connecting (a + 1, b − 1, c) and (a, b − 1, c + 1) provides

Qα = Ra,b−1,c+1

Ra+1,b−1,c
= �a,b,c+1�a+2,b−1,c

�a+1,b−1,c+1�a+1,b,c
. (150)

Recall the function χA1, χA2 on Conf(A,A,B). Taking the sum of Qα over
the vertical arrows α, and a similar sum over the horizontal arrows β, and using
(150), we get

χA1 =
∑

α vertical
Qα, χA2 =

∑

β horizontal
Qβ.

Relating to Givental’s work. Givental [37, pages 3–4], introduced parameters
Ti, j , 0 ≤ i ≤ j ≤ m, matching the vertices of the Givental quiver:

T0,0
T01 T1,1
T02 T12 T2,2
T03 T13 T2,3 T3,3

He treats the entries on the main diagonal a = (T0,0, T1,1, . . . , Tm,m) as
parameters, and defines the potential as a sum over the oriented edges of the
quiver:

Wa =
∑

0≤i< j≤m

(
exp(Ti, j − Ti, j−1)+ exp(Ti, j − Ti+1, j )

)
.

Let Ya be the subvariety with a given value of a. Then Givental’s integral is

F(a, h̄) =
∫

Ya

exp(−Wa/h̄)

n∧

i=1

i−1∧

j=0

dTi. j .

Givental’s variables Ti, j match our coordinates Ra,b,c where a + b + c =
m − 1:

Rm−i−1, j,i− j = exp(Ti, j ).

Observe that Ya is the fiber of the map (149) over a point a =
(Rm−1,0, Rm−2,1, . . . , R0,m−1). Givental’s potential coincides with χA1+χA2.
Givental’s volume form on Ya coincides, up to a sign, with ours since
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Fig. 30 Gelfand–Tsetlin
patterns for GL4 and the
special coordinates for
Conf(A,A,B)

A B

A

A

A

A2

1

3

1

23

n∧

i=1

i−1∧

j=0

dTi. j = ±
∧

a+b+c=m−1,c>0

d log Ra,b,c.

3.3 The potential for Conf(A,A,B) and Gelfand–Tsetlin’s patterns for
GLm

Gelfand–Tsetlin’s patterns for GLm [28] are arrays of integers {pi, j }, 1 ≤ i ≤
j ≤ m, such that

pi, j+1 ≤ pi, j ≤ pi+1, j+1. (151)

Theorem 3.2 The special coordinate system on Conf(AGLm ,AGLm ,BGLm )

together with the potentialW = χA1+χA2 provide a canonical isomorphism

{Gelfand− Tsetlin’s patterns for GLm} = Conf+(AGLm ,AGLm ,BGLm )(Zt ).

Proof The space Conf(A3
GLm

, ωm) of GLm-orbits on A3
GLm

× detV ∗m has

dimension (m+1)(m+2)
2 . It has a coordinate system given by the functions�a,b,c,

a+b+c = m, parametrized by the vertices of the graph �m , shown on the left
of Fig. 30. The coordinates on Conf(AGLm ,AGLm ,BGLm ) are parametrized
by the edges E of the graph parallel to the edge A1A2 of the triangle. They are
little red segments on the right of Fig. 30. They are given by the ratios of the
coordinates at the ends of the edge E , recovering formula (148). Notice that
the edges E are oriented by the orientation of the side A1A2. The monomials of
the potential χA1+χA2 are parametrized by the blue edges, that is by the edges
of the graph inside of the triangle parallel to either side B3A1 or B3A2. We
claim that the monomials of potential χA1+χA2 are in bijection with Gelfand–
Tsetlin’s inequalities. Indeed, a typical pair of inequalities (151) is encoded
by a part of the graph shown on Fig. 31. The three coordinates (P1, P2, Q)

on Conf(AGLm ,AGLm ,BGLm ) assigned to the red edges are expressed via the
coordinates (A, B,C, D, F) at the vertices:

P1 = B

A
, P2 = C

B
, Q = E

D
.
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Fig. 31 Gelfand–Tsetlin
patterns from the potential

A

B

C

D

E

The monomials of the potential at the two blue edges are E A
DB and DC

EB . Their
tropicalization delivers the inequalities p1 ≤ q, q ≤ p2. ��

4 Proof of Theorem 2.11

Let T be a split torus. Let g :=∑α∈X∗(T) gαXα be a nonzero positive polyno-
mial on T, i.e. its coefficients gα ≥ 0 are non-negative. The integral tropical
points l ∈ T(Zt ) = X∗(T) are cocharacters of T. The tropicalization of g is a
piecewise linear function on T(Zt ):

gt (l) = min
α | gα>0

{〈l, α〉}.

Fix an l ∈ T(Zt ). Set

�g,l := {α ∈ X∗(T) | gα > 0, 〈l, α〉 = gt (l)}, gl :=
∑

α∈�g,l

gαX
α.

The set �g,l is non-empty. Therefore gl is a nonzero positive polynomial. If
f and g are two such polynomials, so is the product f · g. We have ( f · g)l =
fl · gl for all l ∈ T(Zt ).

Let h be a nonzero positive rational function on T. It can be expressed as a
ratio f/g of two nonzero positive polynomials. Set hl := fl/gl . Let h = f ′/g′
be another expression. Then

f/g = f ′/g′ $⇒ f · g′ = f ′ · g $⇒ fl · g′l = f ′l · gl $⇒ fl/gl = f ′l /g′l .

Hence hl is well defined.

Lemma 4.1 Let h, l be as above. For eachC ∈ Tl such that 12 hl(in(C)) ∈ C∗,
we have

val(h(C)) = ht (l), in(h(C)) = hl(in(C)). (152)

12 Every transcendental point C ∈ T◦l automatically satisfies such conditions.
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Proof Assume that h is a nonzero positive polynomial. By definition

∀C ∈ Tl, h(C) = hl(in(C))th
t (l) + terms with higher valuation.

If hl(in(C)) ∈ C∗, then (152) follows. The argument for a positive rational
function is similar. ��

Let f = ( f1, . . . , fk) : T → S be a positive birational isomorphism of
split tori. Let l ∈ T(Zt ). We generalize the above construction by setting
fl := ( f1,l, . . . , fk,l) : T −→ S.

Lemma 4.2 Let f , l be as above. Let C ∈ T◦l . Then

val( f (C)) = f t (l), in( f (C)) = fl(in(C)). (153)

Let h be a nonzero positive rational function on S. Then

in (h ◦ f (C)) = h f t (l) (in( f (C))) . (154)

Proof Here (153) follows directly from Lemma 4.1. Note that h f t (l) ◦ fl is a
nonzero positive rational function on T. Since C is transcendental, we get

h f t (l) (in( f (C))) = h f t (l) ◦ fl(in(C)) ∈ C∗.

Thus (154) follows from Lemma 4.1. ��
Proof of Theorem 2.11 It suffices to prove f (T◦l ) ⊆ S◦f t (l). The other direction
is the same.

Let C = (C1, . . . ,Ck) ∈ T◦l . Let f (C) := (C ′1, . . . ,C ′k). By (153),
we get f (C) ∈ S f t (l) and the field extension Q(in(C ′1), . . . , in(C ′k)) ⊆
Q(in(C1), . . . , in(Ck)).

Let g = (g1, . . . , gk) : S → T be the inverse morphism of f . Then C j =
g j ◦ f (C) for j ∈ [1, k]. The functions g j are nonzero positive rational
functions on S. Therefore

in(C j ) = in(g j ◦ f (C))
(154)= g j, f t (l)(in( f (C))) ∈ Q(in(C ′1), . . . , in(C ′k)).

Therefore Q(in(C1), . . . , in(Ck)) ⊆ Q(in(C ′1), . . . , in(C ′k)). Summariz-
ing, we get

Q(in(C1), . . . , in(Ck)) = Q(in(C ′1), . . . , in(C ′k)). (155)

Therefore f (C) is transcendental. Theorem 2.11 is proved. ��
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5 Positive structures on the unipotent subgroups U and U−

5.1 Lusztig’s data and MV cycles

Lusztig’s data. Fix a reduced word i = (im, . . . , i1) for w0. There are positive
functions

Fi, j : U −→ A1, xim (am) . . . xi1(a1) �−→ a j . (156)

Their tropicalizations induce an isomorphism fi : U(Zt )
=→ Zm, p �→

{Ft
i, j (p)}.
Let N = {0, 1, 2, . . .}. Lusztig proved [59] that the subset

f −1
i (Nm) ⊂ U(Zt ) (157)

does not depend on i, and parametrizes the canonical basis in the quantum
enveloping algebra of the Lie algebra of a maximal unipotent subgroup of the
Langlands dual group GL .

Lemma 5.1 The subset U+χ (Zt ) := {l ∈ U(Zt ) | χ t (l) ≥ 0} is identified with
the set (157).

Proof Note that χ = ∑m
j=1 Fi, j . It tropicalization is min1≤ j≤m{Ft

i, j }. Let
l ∈ U(Zt ). Then

χ t (l) ≥ 0 ⇐⇒ Ft
i, j (l) ≥ 0, ∀ j ∈ [1,m] ⇐⇒ fi(l) ∈ Nm .

��
Let l ∈ U(Zt ). Recall the transcendental cell C◦l ⊂ U(K).

Lemma 5.2 Let u ∈ C◦l . Then u ∈ U(O) if and only if l ∈ U+χ (Zt ).

Proof Set u = xim (am) . . . xi1(a1) ∈ C◦l . Note that u is transcendental. Using
Lemma 2.13, we get

χ t (l) = val(χ(u)); Ft
i, j (l) = val(a j ), ∀ j ∈ [1,m].

If l ∈ U+χ (Zt ), then val(a j ) = Ft
i, j (l) ≥ 0. Therefore a j ∈ O. Hence

u ∈ U(O).
Note that χ is a regular function of U. If u ∈ U(O), then χ(u) ∈ O.

Therefore χ t (l) = val(χ(u)) ≥ 0. Hence l ∈ U+χ (Zt ). ��
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The positive morphism β. Let [g]0 := h if g = u+hu−, where u± ∈ U±,
h ∈ H. Define

β : U −→ H, u �−→ [w0u]0. (158)

Let i = (im, . . . , i1) as above. Let wi
k := si1 . . . sik ∈ W . Let β i

k :=
wi
k−1(α

∨
ik
) ∈ P. The following Lemma shows that β is a positive map.

Lemma 5.3 [12, Lemma 6.4] For each u = xim (am) . . . xi1(a1) ∈ U, we have
[w0u]0 =∏m

k=1 β i
k(a

−1
k ).

Let l ∈ U(Zt ). The tropicalization β t becomes β t (l) = −∑m
k=1 F

t
i,k(l)β

i
k .

Note that β i
k ∈ P are positive coroots. If l ∈ U+χ (Zt ), then −β t (l) ∈ R+.

Hence

U+χ (Zt ) =
⊔

λ∈R+
Aλ, Aλ := {l ∈ U+χ (Zt ) | − β t (l) = λ}. (159)

The set Aλ is identified with Lusztig’s set parametrizing the canonical basis
of weight λ [59].
Kamnitzer’s parametrization of MV cycles. Kamnitzer [45] constructs a
canonical bijection between Lusztig’s data (i.e. U+χ (Zt ) in our set-up) and the
set of stable MV cycles. Let us briefly recall Kamnitzer’s result for future use.

Let U∗ := U∩B−w0B− and let U−∗ = U−∩Bw0B. There is an well-defined
isomorphism

η : U∗ → U−∗ , u �−→ η(u). (160)

such that η(u) is the unique element in U− ∩ Bw0u. The map η was used in
[22]. Set

κKam : U∗(K) −→ Gr, u −→ [η(u)]. (161)

Let l ∈ U(Zt ). Then C◦l ⊂ U∗(K). Define

MVl := κKam(C◦l ) ⊂ Gr. (162)

The following Theorem is a reformulation of Kamnitzer’s result.

Theorem 5.4 [45, Theorem 4.5] Let l ∈ Aλ. Then MVl is an MV cycle of
coweight (λ, 0). It gives a bijection betweenAλ and the set of such MV cycles.

A stable MV cycle of coweight λ has a unique representative of coweight
(λ, 0). Therefore Theorem 5.4 tells that the set Aλ parametrizes the set of
stable MV cycles of coweight λ.
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5.2 Positive functions χi ,Li ,Ri on U.

Let i ∈ I . We introduce positive rational functions χi , Li , Ri on U, and χ−i ,
L−i , R−i on U−.

Let i = (i1, . . . , im) be a reduced word for w0. Let

x = xi1(a1) . . . xim (am) ∈ U, y = yi1(b1) . . . yim (bm) ∈ U−.

Using above decompositions of x and y, we set

χi (x) :=
∑

p | i p=i
ap, χ−i (y) :=

∑

p | i p=i
bp.

By definition the characters χ and χ− have decompositions χ = ∑i∈I χi
and χ− =∑i∈I χ−i .

We take i which starts from i1 = i . Define the “left” functions:

Li (x) := a1, L−i (y) := b1.

We take i which ends by im = i . Define the “right” functions:

Ri (x) := am, R−i (y) := bm .

It is easy to see that the above functions are well-defined and independent
of i chosen.

For each simple reflection si ∈ W , set si∗ such that w0si∗ = siw0.
Set Adv(g) := vgv−1. For any u ∈ U, set ũ := Adw0(u

−1) ∈ U−.

Lemma 5.5 The map u �→ ũ is a positive birational isomorphism from U to
U−. Moreover,

χi (u) = χ−i∗ (̃u), Li (u) = Ri∗ (̃u), Ri (u) = Li∗ (̃u) ∀i ∈ I. (163)

Proof Note that Adw0(xi (−a)) = yi∗(a). Let u = xi1(a1) . . . xim (am) ∈ U.
Then

ũ = Adw0(u
−1) = yi∗m (am) . . . yi∗1 (a1).

Clearly it is a positive birational isomorphism. Identities in (163) follow by
definition. ��
Lemma 5.6 Let h ∈ H, x ∈ U and y ∈ U−. For any i ∈ I , we have

χi (Adh(x)) = χi (x) · αi (h), Li (Adh(x)) = Li (x) · αi (h),

Ri (Adh(x)) = Ri (x) · αi (h). (164)
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χ−i (Adh(y)) = χi (y)/αi (h), L−i (Adh(y)) = L−i (y)/αi (h),

R−i (Adh(y)) = R−i (y)/αi (h). (165)

Proof Follows from the identities Adh(xi (a)) = xi (aαi (h)) and Adh(yi (a)) =
yi (a/αi (h)). ��

5.3 The positive morphisms � and η

We show that each χi is closely related to L−i by the following morphism.

Definition 5.7 There exists a unique morphism � : U− −→ U such that

u−B = �(u−)w0B. (166)

Lemma 5.8 For each i ∈ I , one has

1/L−i = χi ◦�, 1/χ−i = Li ◦� (167)

Example. Let G = SL3. We have

y = y1(b1)y2(b2)y1(b3) = y2

(
b2b3

b1 + b3

)
y1(b1 + b3)y2

(
b1b2

b1 + b3

)
.

�(y) = x1

(
1

b1 + b3

)
x2

(
b1 + b3

b2b3

)
x1

(
b3

b1(b1 + b3)

)

= x2

(
1

b2

)
x1

(
1

b1

)
x2

(
b1

b2b3

)
.

1/L−1 (y) = χ1(�(y)) = 1

b1
, 1/L−2 (y) = χ2(�(y)) = b1 + b3

b2b3
.

1/χ−1 (y) = L1(�(y)) = b1 + b3, 1/χ−2 (y) = L2(�(y)) = b2.

The proof was suggested by the proof of Proposition 3.2 of [60].

Proof We prove the first formula. The second follows similarly by considering
the inverse morphism �−1 : U → U− such that uB− = �−1(u)w0B−.

Let i ∈ I . Let w ∈ W such that its length l(w) < l(siw). We use two basic
identities:

yi (b)xi (a) = xi (a/(1+ ab)) yi (b(1+ ab)) α∨i (1/(1+ ab)) . (168)
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yi (b)wB = xi (1/b)siwB. (169)

By (169), one can change yi (b) on the most right to xi (1/b). By (168), one
can “move” yi (b) from left to the right. After finite steps, we get

yi1(b1)yi2(b2) . . . yim (bm)B

= yi1(b1)xim (am)xim−1(am−1) . . . xi2(a2)si2 . . . simB. (170)

The last step is to move the very left term yi1(b1) to the right. Let

fs(c1, c2, . . . , cm) = xim (cm)xim−1(cm−1) . . . xis+1(cs+1)yi1(c1)xis (cs)

. . . xi2(c2)si2 . . . simB.

We will need the relations between {ci } and {c′i } such that

fs(c1, c2, . . . , cm) = fs−1(c
′
1, c

′
2, . . . , c

′
m)

By (168)–(169), if i1 �= is , then cp = c′p for all p. If i1 = is , then

c′p = cp for p = s + 1, . . . ,m;
c′s = cs/(1+ c1cs), c′1 = c1(1+ c1cs);
c′p = cp(1+ c1cs)

−〈α∨i1 ,αi p 〉 for p = 2, . . . , s − 1.

For each q = fs(c1, c2, . . . , cm), we set

h(q) := 1

c1
+

∑

p | i p=i1, p>s

cp. (171)

If is = i1, then

1

c′1
+

∑

p | i p=i1, p>s−1

c′p =
1

c1(1+ c1cs)
+ cs

1+ c1cs
+

∑

p | i p=i1, p>s

cp

= 1

c1
+

∑

p | i p=i1, p>s

cp.

Same is true for is �= i1. Therefore the function (171) does not depend
on s.
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Back to (170), we have

uB = yi1(b1)yi2(b2) . . . yim (bm)B

= yi1(b1)xim (am) . . . xi2(a2)si2 . . . sinB

= xim (cm) . . . xi2(c2)yi1(c1)si2 . . . sinB

= xim (cm) . . . xi2(c2)xi1(1/c1)si1 . . . sinB

= �(u)w0B

Hence �(u) = xim (cm) . . . xi1(c2)xi1(1/c1). Then

χi1(�(u)) = 1

c1
+

∑

p | i p=i1, p>1

cp = h(uB) = 1

b1
= 1

L−i1(u)
.

��
Lemma 5.9 Themorphism� : U− → U is a positive birational isomorphism
with respect to Lusztig’s positive atlases on U− and U.

Proof According to the algorithm in the proof of Lemma 5.8, clearly � is a
positive morphism. By the same argument, one can show that �−1 is a positive
morphism. The Lemma is proved. ��

The morphism η in (160) is the right hand side version of �, i.e. B−u =
B−w0η(u). Similarly,

Lemma 5.10 The morphism η : U → U− is a positive birational isomor-
phism. Moreover,

∀i ∈ I, 1/Ri = χ−j ◦ η, 1/χi = R−i ◦ η. (172)

5.4 Birational isomorphisms φi of U

Let i ∈ I . Define

zi (a) := α∨i (a)yi (−a), z∗i (a) := α∨i (1/a)yi (1/a).

Clearly zi (a)z∗i (a) = 1.

Lemma-Construction 5.11 There is a birational isomorphism

φi : U
∼−→ U, u �−→ si · u · zi (χi (u)) . (173)

Remark. The map φi is not a positive birational isomorphism.
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Proof We need the following identities:

si xi (a)zi (a) = xi (−1/a). (174)

z∗i (a)xi (b − a)zi (b) = xi (1/a − 1/b). (175)

If j �= i , then

z∗i (a)x j (b)zi (a) = x j
(
ba−〈α∨i ,α j 〉

)
(176)

Let i = (i1, i2, . . . , im) be a reduced word for w0 such that i1 = i . For each
s ∈ [1,m], define

I i,is := {p ∈ [1, s] | i p = i}.
Let u = xi1(a1) . . . xim (am) ∈ U. Set ds := ∑k∈I i,is

ak . In particular, d1 =
a1, dm = χi (u).

Let us assume that u ∈ U is generic, so that ds �= 0 for all s ∈ [1,m]. By
(174)–(176), we get

φi (u) = si · xi1(a1)xi2(a2) . . . xim (am) · zi (χi (u))

= (si xi1(a1)zi (d1)
) · (z∗i (d1)xi2(a2)zi (d2)

)

· . . . · (z∗i (dm−1)xim (am)zi (dm)
)

= xi1(a
′
1)xi2(a

′
2) . . . xim (a′m). (177)

Here a′1 = −1/d1. For s > 1,

a′s =
{

1/ds−1 − 1/ds, if is = i,

asd
−〈α∨i ,αis 〉
s , if is �= i.

(178)

Thus φi (u) ∈ U. The map φi is well-defined. By (178), we have χi (φi (u)) =
−1/χi (u). Therefore

φi ◦ φi (u) = si · si · u · zi (χi (u)) · zi (−1/χi (u)) = s2
i · u · s2

i .

Since s4
i = 1, we get φ4

i = id. Therefore φi is birational. ��
Let λ ∈ P+. Recall tλ ∈ Gr. Recall the G(O)-orbit Grλ of tλ in Gr.

Lemma 5.12 Let l ∈ U(Zt ). For any u ∈ C◦l , the element u · tλ ∈ Grλ if and
only if l ∈ U+χ (Zt ).
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Proof If l ∈ U+χ (Zt ), by Lemma 5.2, we see that u ∈ U(O). Hence u·tλ ∈ Grλ.
If χ t (l) = mini∈I {χ t

i (l)} < 0, then pick i such that χ t
i (l) < 0. Set μ :=

λ− χ t
i (l) · α∨i . Since yi (t 〈αi ,λ〉/χi (u)) ∈ G(O), we get

z∗i (χi (u)) · tλ=α∨i (1/χi (u)) · tλ · yi (t 〈αi ,λ〉/χi (u)) = α∨i (1/χi (u)) · tλ= tμ.

(179)

Recall the Uw(K)-orbit Sν
w of tν in Gr. We have

u · tλ = uzi (χi (u)) · z∗i (χi (u))tλ
(179)= uzi (χi (u)) · tμ (173)= s−1

i φi (u)si

·t si (μ) ∈ Ssi (μ)
si . (180)

It is well-known that the intersection Sν
w ∩ Grλ is nonempty if and only if

tν ∈ Grλ. In this case t si (μ) /∈ Grλ. Therefore Ssi (μ)
si ∩ Grλ is empty. Hence

u · tλ /∈ Grλ. ��

6 A positive structure on the configuration space ConfI(A;B)

6.1 Left G-torsors

Let G be a group. Let X be a left principal homogeneous G-space, also known
as a left G-torsor. Then for any x, y ∈ X there exists a unique gx,y ∈ G such
that x = gx,y y. Clearly,

gx,ygy,z = gx,z, ggx,y = ggx,y, gx,gy = gx,yg
−1, g ∈ G. (181)

Given a reference point p ∈ X , one defines a “p-distance from x to y”:

gp(x, y) := gp,x gy,p ∈ G. (182)

If i p : X → G is a unique isomorphism of G-sets such that i p(p) = e, then
gp(x, y) = i p(x)−1i p(y).

Lemma 6.1 One has:

gp(x, y)gp(y, z) = gp(x, z). (183)

gp(gx, gy) = gp(x, y), g ∈ G. (184)

y = gp(p, y) · p. (185)
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Fig. 32 A frame {Ai , B j }

Proof Indeed,

gp(x, y)gp(y, z) = gp,x gy,pgp,ygz,p = gp,x gz,p = gp(x, z),

gp(gx, gy) = gp,gx ggy,p
(181)= gp,x g

−1ggy,p = gp,x gy,p = gp(x, y),

y = gy,p · p = gp,pgy,p · p = gp(p, y) · p.

��
Recall FG in Definition 2.2. From now on, we apply the above construction

in the set-up

X = FG, p = {U, B−}.

Pick a collection {A1, . . . , An} representing a configuration in Confn(A).
We assign Ai to the vertices of a convex n-gon, so that they go clockwise
around the polygon. Each oriented pair {Ai , A j } provides a frame {Ai , B j },
shown on Fig. 32 by an arrow with a white dot.

6.2 Basic invariants associated to a generic configuration

We introduce several invariants that will be useful in the rest of this paper. We
employ · to denote the action of G on (decorated) flags.
The invariant uA2

B1,B3
∈ U. Let (B1, A2, B3) ∈ Conf(B, A, B) be a generic

configuration. Set

uA2
B1,B3

:= g{U,B−}({A2, B1}, {A2, B3}). (186)

By (184), the invariant uA2
B1,B3

is independent of the representative chosen.

Clearly, uA2
B1,B3

∈ U.
The invariant hA1,A2 ∈ H. Let (A1, A2) be a generic configuration. There is
a unique element hA1,A2 ∈ H such that

(A1, A2) = (U, hA1,A2w0 · U). (187)

Using the notation (182), we have

hA1,A2w0 = g{U,B−}({A1, B2}, {A2, B1}). (188)
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Fig. 33 Invariants of a
configuration

The invariant bA1,A2
B3

∈ B−. Let (A1, A2, B3) be a generic configuration.
Define

bA1,A2
B3

:= g{U,B−}({A1, B3}, {A2, B3}) ∈ B−.

Relations between basic invariants. Let (A1, . . . , An) ∈ Conf∗n(A). Set

hi j := hAi ,A j ∈ H, u j
ik := u

A j
Bi ,Bk

∈ U, bi jk := b
Ai ,A j
Bk

∈ B−. (189)

We denote these invariants by dashed arrows, see Fig. 33.

Lemma 6.2 The data (189) satisfy the following relations:

1. h12w0h21w0 = 1.
2. u1

23u
1
34 = u1

24, in particular u
1
23u

1
32 = 1.

3. b12
4 b23

4 = b13
4 .

4. b12
3 = u1

32h12w0u2
13 = h13w0u3

12w
−1
0 h−1

23 .

5. u1
32h12w0u2

13h23w0u3
21h31w0 = 1.

Proof We prove the first identity of 4. The others follow similarly. Let p =
{U, B−}. Let

x1 = {A1, B3}, x2 = {A1, B2}, x3 = {A2, B1}, x4 = {A2, B3}.

As illustrated by Fig. 33,

b12
3 =gp(x1, x4), u1

32=gp(x1, x2), h12w0 = gp(x2, x3), u2
13 = gp(x3, x4).

By (183), we get gp(x1, x4) = gp(x1, x2)gp(x2, x3)gp(x3, x4). ��
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Fig. 34 Invariants of a
configuration (A1, A2, B3)

Lemma 6.3 Let x ∈ Conf(A,A,B) be a generic configuration. Then it has
a unique representative {A1, A2, B3} with {A1, B3} = {U, B−}. Such a repre-
sentative is

{
U, u1

32h12w0 · U, B−
}
. (190)

Proof The existence and uniqueness are clear. It remains to show that it is
(190). By Fig. 34,

g{U,B−}({A1, B3}, {A2, B1}) = u1
32h12w0. (191)

If {A1, B3} = {U, B−}, then by (185), we get

{A2, B1} = g{U,B−}({A1, B3}, {A2, B1}) · {U, B−} = {u1
32h12w0 · U, B

}
.

��
Each b ∈ B− can be decomposed as b = yl · h = h · yr where h ∈ H,

yl, yr ∈ U−. Thus B− has a positive structure induced by positive structures
on U− and H. There are three positive maps

πl, πr : B− −→ U−, πh : B− −→ H, πl(b)= yl, πr (b)= yr , πh(b)= h.

(192)

These maps give rise to three more invariants.
The invariant μ

A1,A2
B3

∈ H. For each generic (A1, A2, B3), we define

μ
A1,A2
B3

:= πh

(
bA1,A2

B3

)
. (193)
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The invariant rB1,A2
B3

∈ U−. For any h ∈ H, we have

bA1·h−1,A2
B3

= h · bA1,A2
B3

. (194)

Thus we can define

rB1,A2
B3

:= πr

(
bA1·h−1,A2

B3

)
= πr

(
bA1,A2

B3

)
∈ U−. (195)

The invariant lA1,B2
B3

∈ U−. For any h ∈ H, we have

bA1,A2·h
B3

= bA1,A2
B3

· h. (196)

Define

lA1,B2
B3

:= πl

(
bA1,A2·h

B3

)
= πl

(
bA1,A2

B3

)
∈ U−. (197)

For simplicity, we set

μ
i j
k := μ

Ai ,A j
Bk

∈ H, r i jk := r
Bi ,A j
Bk

∈ U−, li jk := l
Ai ,B j
Bk

∈ U−. (198)

Recall that ũ = w0u−1w−1
0 . By Relations 3, 4 of Lemma 6.2, we get

μ12
4 μ23

4 = μ13
4 . (199)

b12
3 = l12

3 μ12
3 = μ12

3 r12
3 = u1

32h12w0u
2
13 = h13ũ3

21h
−1
23 . (200)

Recall the morphisms �, η and β in Sect. 5. By the definition of these
morphisms, we get

Lemma 6.4 We have

1. u1
32 = �(l12

3 ).
2. r12

3 = η(u2
13).

3. ũ3
21 = Adh−1

13
(l12

3 ) = Adh−1
23

(r12
3 ).

4. μ12
3 = h12β(u2

13) = h13h
−1
23 , beta(u2

13) = h13h
−1
23 h

−1
12 .

Proof By (200), we have

l12
3 μ12

3 = u1
32

(
h13w0u

2
13

)
.
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The first identity follows. Similarly, the second identity follows from

μ12
3 r12

3 = (u1
32h13w0

)
u2

13

The third identity follows from

l12
3 μ12

3 =h13ũ3
21h

−1
23 =Adh13

(
ũ3

21

)
h13h

−1
23 , μ12

3 r12
3 =h13h

−1
23 Adh23

(
r12

3

)
.

The identity μ12
3 = h12β(u2

13) follows from

μ12
3 r12

3 = u1
32h12 ·

(
w0u

2
13

)
.

The identity μ12
3 = h13h

−1
23 follows from

l12
3 μ12

3 = Adh13

(
ũ3

21

)
h13h

−1
23 .

��
Lemma 6.5 We have

χ(u3
21) =

∑

i∈I

αi (h13)

Li (u1
32)

=
∑

i∈I

αi (h23)

Ri (u2
13)

. (201)

αi (h12) = αi∗(h21), ∀i ∈ I. (202)

Proof Use Lemmas 5.5, 6.4, 5.6 and 5.8 , we get

χ
(
u3

21

) = χ−
(
ũ3

21

)
= χ−

(
Adh−1

13
(l12

3 )
)

=
∑

i∈I
αi (h13)χ

−
i

(
l12
3

) =
∑

i∈I

αi (h13)

Li (u1
32)

.

By the same argument, we get the other identity in (201). By Relation 1 of
Lemma 5.8, we get

h12 = w0h
−1
21 w−1

0 · sG.

Then (202) follows. ��
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Fig. 35 The map α1 for
I = {1, 3, 5} ⊂ [1, 6]

6.3 A positive structure on ConfI(A;B)

Let I ⊂ [1, n] be a nonempty subset of cardinality m. Following [17, Section
8], there is a positive structure on the configuration space ConfI(A;B). We
briefly recall it below.

Let x = (x1, . . . , xn) ∈ ConfI(A;B) be a generic configuration such that

xi = Ai ∈ A when i ∈ I, otherwise xi = Bi ∈ B. (203)

Set B j := π(A j ) when j ∈ I. Let i ∈ I. For each k ∈ [2, n], set

uik(x) := uAi
Bi+k ,Bi+k−1

, where the subscript is modulo n. (204)

For each pair i, j ∈ I, recall

πi j (x) :=
{
hAi ,A j , if i < j,
hsG·Ai ,A j , if i > j.

(205)

Lemma 6.6 Fix i ∈ I. The following morphism is birational

αi : ConfI(A;B) −→ Hm−1 × Un−2, x �−→ ({πi j (x)}, {uik(x)}),
j ∈ I − {i}, k ∈ [2, n − 1].

Example. Figure 35 illustrates the map α1 for I = {1, 3, 5} ⊂ [1, 6].
Proof Assume that i = 1 ∈ I. Clearly α1 is well defined on the subspace

C̃onfI(A;B) := {(x1, . . . , xn) | (x1, xk) is generic for all k ∈ [2, n]}.

Note that C̃onfI(A;B) is dense in ConfI(A;B). We prove the Lemma by
showing that α1 is a bijection from C̃onfI(A;B) to Hm−1 × Un−2,
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Let y = ({h j }, {uk}) ∈ Hm−1 × Un−2. Set u′n := 1. Set u′k := un−1 . . . uk
for k ∈ [2, n − 1]. Let x = (x1, . . . , xn) ∈ C̃onfI(A;B) such that

x1 := U; x j := u′j h jw0 · U ∈ A, j ∈ I− {1}; xk := u′k · B− ∈ B, k /∈ I.

(206)

Clearly α1(x) = y. Hence α1 is a surjection.
Let x ∈ C̃onfI(A;B) such that α1(x) = y. Note that x has a unique

representative {x1, . . . , xn} such that {x1, xn} = {U, B−} if n /∈ I, and
{x1, π(xn)} = {U, B−} if n ∈ I. By Lemma 6.3, each xi is uniquely expressed
by (206). The injectivity of α1 follows. ��

The product Hm−1 × Un−2 has a positive structure induced by the ones on
H and U.

When I = [1, n], we first introduce a positive structure on Confn(A) such
that the map α1 is a positive birational isomorphism. Such a positive structure
is twisted cyclic invariant:

Theorem 6.7 [17, Section 8] The following map is a positive birational iso-
morphism

t : Confn(A)
∼−→ Confn(A), (A1, . . . , An) �−→ (A2, . . . , An, A1 · sG).

Each αi determines a positive structure on Confn(A). Theorem 6.7 tells
us that these positive structures coincide. We prove the same result for
ConfI(A;B), using the following Lemmas.

Lemma 6.8 Let Y be a space equipped with two positive structures denoted
by Y1 and Y2. If for every rational function f on Y , we have

f is positive on Y1 ⇐⇒ f is positive on Y2,

then Y1 and Y2 share the same positive structure.

Proof It is clear. ��
Lemma 6.9 Let Y,Z be a pair of positive spaces. If there are two positive
maps γ : Y → Z and β : Z → Y such that β ◦ γ = idY , then for every
rational function f on Y we have

f is positive on Y ⇐⇒ β∗( f ) is positive on Z.

Proof If f is positive on Y , since β is a positive morphism, then β∗( f ) is
positive on Z .

If β∗( f ) is positive onZ , since γ is a positive morphism, then γ ∗(β∗( f )) =
f is positive. ��
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Lemma 6.10 Every αi (i ∈ I) determines the same positive structure on
ConfI(A;B).

Remark. Lemma 6.10 is equivalent to say that for any pair i, j ∈ I, the map
φi, j := αi ◦ α−1

j is a positive birational isomorphism of Hm−1 × Un−2.

Proof Let us temporary denote the positive structure on ConfI(X ;Y) by
Conf iI(A;B) such that αi is a positive birational isomorphism.

There is a projection β : Confn(A) → ConfI(A;B) which maps Ak to
Ak if k ∈ I and maps Ak to π(Ak) otherwise. By Lemma 6.7, β is a positive
morphism for all Conf iI(A;B).

Fix i ∈ I. Each generic x = (x1, . . . , xn) ∈ ConfI(A;B) has a unique
preimage γ i (x) := (A1, . . . , An) ∈ Confn(A) such that

A j = x j when j ∈ I, otherwise A j is the preimage of x j

such that πi j (γ
i (x)) = 1.

Clearly γ i a positive morphism from Conf iI(A;B) to Confn(A). By defin-
ition β ◦ γ i = id.

Let f be a rational function on ConfI(A;B). Let i, j ∈ I. By Lemma 6.8,

f is positive on Conf iI(A;B)⇐⇒ β∗( f ) is positive on Confn(A)

⇐⇒ f is positive on Conf j
I (A;B).

This Lemma follows from Lemma 6.9. ��
Thanks to Lemma 6.10, we introduce a canonical positive structure on

ConfI(A;B). From now on, we view ConfI(A;B) as a positive space.
Given k ∈ Z/n, we define the k-shift of the subset I by setting I(k) := {i ∈

[1, n] | i + k ∈ I}. The following Lemma is clear now.

Lemma 6.11 The following map is a positive birational isomorphism

t : ConfI(A;B)
∼−→ConfI(1)(A;B), (x1, . . . , xn) �−→(x2, . . . , xn, x1 · sG).

An invariant definition of positive structures. We have defined above posi-
tive structures on the configuration spaces using pinning in G, which allows to
make calculations. Let us explain now how to define positive structures on the
configurations spaces without choosing a pinning. When G is of type Am , such
a definition is given in [17, Section 9]. In general, given a decomposition of
the longest Weyl group element w0 = si1 . . . sin , for each generic pair {B, B′}
of flags, there exists a unique chain

B = B0
i1−→ B1

i2−→ . . .
in−1−→ Bn−1

in−→ Bn = B′.
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Here Bk−1
ik→ Bk indicates that {Bk−1, Bk} is in the position sik . The positive

structure of Conf(B,A,B) can be defined via the birational map

Conf(B,A,B) −→ (Gm)n, (B, A, B′) �−→ (χo(B0, A, B1),

χo(B1, A, B2), . . . , χ
o(Bn−1, A, Bn)).

Each generic pair {A, A′} ∈ A2 uniquely determines a pinning for G such
that

xi (a) ∈ UA, χA(xi (a)) = a, yi (a) ∈ UA′, i ∈ I.

The pinning gives rise to a representative w0 ∈ G of w0. There is a unique
element h ∈ π(A) ∩ π(A′) such that

A′ = hw0 · A.

Such an element h gives rise to a birational map from Conf2(A) to the
Cartan group of G, determining a positive structure of Conf2(A). The positive
structures of general configuration spaces are defined via the positive structures
of Conf2(A) and Conf(B,A,B).

6.4 Positivity of the potential WJ and proof of Theorem 2.27

Let J ⊂ I ⊂ [1, n]. Consider the ordered triples {i, j, k} ⊂ [1, n] such that

j ∈ J, and i, j, k seated clockwise. (207)

Let x ∈ ConfI(A;B) be presented by (203). Define p j;i,k(x) := u
A j
Bi ,Bk

. In
particular, we are interested in the triples { j − 1, j, j + 1}. Set

p j (x) := p j; j−1, j+1 = u
A j
B j−1,B j+1

, ∀ j ∈ J. (208)

Lemma 6.12 The following morphisms are positive morphisms

1. πi j : ConfI(A;B) −→ H, ∀ i, j ∈ I.
2. p j;i,k : ConfI(A;B) −→ U, ∀ {i, j, k} ∈ (207).

Proof The positivity of πi j is clear. By Relation 2 of Lemma 6.2, we get

u
A j
Bi ,Bk

= u
A j
Bi ,Bi−1

u
A j
Bi−1,Bi−2

. . . u
A j
Bk+1,Bk

.

The product map U×U → U, (u1, u2) �→ u1u2 is positive. The positivity
of p j;i,k follows. ��
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Positivity of the potential WJ. Recall the positive function χ on U.
Let x ∈ ConfI(A;B) be a generic configuration presented by (203). By
Lemma 6.3, each generic triple (B j−1, A j , B j+1) has a unique representative

{B−, U, u
A j
B j−1,B j+1

· B−}. In this case u j in (76) becomes p j (x). Therefore
χA j (u j ) = χ ◦ p j (x). The potential WJ of ConfI(A;B) becomes

WJ =
∑

j∈J

χ ◦ p j (209)

Since p j are positive morphisms, the positivity of WJ follows.
By Relation 2 of Lemma 6.2, we get

χ ◦ p j = χ ◦ p j; j−1,i + χ ◦ p j;i,k + χ ◦ p j;k, j+1 (210)

All summands on right side are positive functions. By (209), the set
Conf+J⊂I(A;B)(Zt ) of tropical points such that W t

J ≥ 0 is the set

{l ∈ ConfI(A;B)(Zt ) | ptj;i,k(l) ∈ U+χ (Zt ) for all {i, j, k} ∈ (207)}. (211)

Proof of Theorem 2.27. Recall the moduli space ConfOJ⊂I(A;B) in Definition
2.26.

Lemma 6.13 A generic configuration in ConfI(A;B)(K) is O-integral rela-

tive to J if and only if u
A j
Bi ,Bk

∈ U(O) for all {i, j, k} ∈(207).

Proof By definition L(A j , Bk) = [g{A j ,Bk},{U,B−}] ∈ Gr. Let {i, j, k} ∈ (207).
Then

L(A j , Bk)=L(A j , Bi )⇐⇒ g−1
{A j ,Bi },{U,B−}g{A j ,Bk},{U,B−} = u

A j
Bi ,Bk

∈ G(O).

The Lemma is proved. ��
Let l ∈ ConfI(A;B). Let x ∈ C◦l be presented by (203). By Lemma 5.2,

u
A j
Bi ,Bk

∈ U(O) if and only if ptj;i,k(l) ∈ U+χ (Zt ). Theorem 2.27 follows from
Lemma 6.13 and (211). ��

Tropicalizing the morphism (205), we get π t
i j : ConfI(A;B)(Zt ) →

H(Zt ) = P.

Lemma 6.14 Let i, j ∈ J. If l ∈ Conf+J⊂I(A;B)(Zt ), then π t
i j (l) ∈ P+.

Proof Since π t
i j (l) = −w0(π

t
j i (l)), we can assume that there exists k such that

{i, j, k} ∈ (207). Otherwise we switch i and j . Set λ := π t
i j (l), u1 := pti;k, j (l),
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u2 := ptj;i,k(l). We tropicalize (201):

χ t (u2) = min
r∈I

{〈λ, αr 〉 −Rt
r (u1)

}
. (212)

If l ∈ (211), then χ t (u1) ≥ 0, χ t (u2) ≥ 0. By the definition of Rr and χ ,
we get Rt

r (u1) ≥ χ t (u1). Therefore Rt (u1) ≥ 0. Hence

∀r ∈ I, 〈λ, αr 〉 ≥ 〈λ, αr 〉 −Rt
r (u1) ≥ χ t (u2) ≥ 0 $⇒ λ ∈ P+.

��

7 Main examples of configuration spaces

As discussed in Sect. 1, the pairs of configuration spaces especially important
in representation theory are:

{Confn(A), Confn(Gr)} , {
Conf(An,B), Conf(Grn,B)

}
,

{
Conf(B,An,B), Conf(B, Grn,B)

}
.

In Sect. 7 we express the potential W and the map κ in these cases under
explicit coordinates.

7.1 The configuration spaces Confn(A) and Confn(Gr)

Recall hi j , uki j in (189). Recall the positive birational isomorphism

α1 : Confn(A)
∼−→ Hn−1 × Un−2,

(A1, . . . , An) �−→ (h12, . . . , h1n, u
1
3,2, . . . , u

1
n,n−1). (213)

The potentialW on Confn(A) induces a positive functionWα1 :=W◦α1
−1

on Hn−1 × Un−2.

Theorem 7.1 The function

Wα1(h2, . . . , hn, u2, . . . , un−1)

=
n−1∑

j=2

(
χ(u j )+

∑

i∈I

αi (h j )

Ri (u j )
+
∑

i∈I

αi (h j+1)

Li (u j )

)
. (214)

Proof By the scissor congruence invariance (89), we get W(A1, . . . , An) =∑n−1
j=2 W(A1, A j , A j+1). The rest follows from (209) and Lemma 6.5. ��
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Fig. 36 The map ω expressed by two different choices of frames {Ai , Bα(i)}

Let us choose a map without stable points which is not necessarily a
bijection:

α : [1, n] −→ [1, n], α(k) �= k.

Let x = (A1, . . . , An) ∈ ConfOn (A). Define

ωk(x) := [g{U,B−}({A1, Bn}, {Ak, Bα(k)})] ∈ Gr. (215)

By the definition of ConfOn (A), the map ωk is independent of the map α

chosen. Define

ω := (ω2, . . . , ωn) : ConfOn (A) −→ Grn−1, x �−→ (ω2(x), . . . , ωn(x)).

(216)

Consider the projection

i1 : Grn−1 −→ Confn(Gr), {L2, . . . , Ln} �−→ ([1], L2, . . . , Ln)

Lemma 7.2 The map κ in (97) is i1 ◦ ω.

Proof Here ωk(x) = g{U,B−},{A1,Bn}L(Ak, Bα(k)). In particular ω1(x) = [1].
The Lemma follows. ��

Below we give two explicit expressions of ω based on different choices of
the map α. We emphasize that although the expressions look entirely different
from each other, they are the same map. As before, set x = (A1, . . . , An) ∈
ConfOn (A).

1. Let α(k) = k − 1. It provides frames {Ai , Bi−1}, see the first graph of
Fig. 36. Set

gk := g{U,B−}({Ak, Bk−1}, {Ak+1, Bk}) ∗= uAk
Bk−1,Bk+1

hAk ,Ak+1w0. (217)
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See Fig. 34 for proof of ∗. By (183), we get

ωk(x) = [g{U,B−}({A1, Bn}, {Ak, Bk−1})] = [g1 . . . gk−1], k ∈ [2, n]
(218)

Therefore

ω(x) = ([g1], . . . , [g1 . . . gn−1]) ∈ Grn−1. (219)

2. Let α(k) = n when k �= n. Let α(n) = 1. See the second graph of Fig. 36.
Set

bk := bAk ,Ak+1
Bn

, k ∈ [1, n − 2]; hn := hA1,An .

Then

ωk(x) = [g{U,B−}({A1, Bn}, {Ak, Bn})] = [b1 . . . bk−1],
k ∈ [2, n − 1]; ωn(x) = [hn]. (220)

Therefore

ω(x) = ([b1], . . . , [b1 . . . bn−2], [hn]) ∈ Grn−1. (221)

7.2 The configuration spaces Conf(An,B) and Conf(Grn,B)

Consider the scissoring morphism

s : Conf(Am+n+1,B)−→Conf(Am+1,B)× Conf(An+1,B),

(A1, . . . , Am+n+1, B0) �−→(A1, . . . , Am+1, B0)×(Am+1, . . . , Am+n+1, B0).

(222)

By Lemmas 6.6, 6.10, the morphism s is a positive birational isomorphism.
In fact, the inverse map of s can be defined by “gluing” two configurations:

∗ : Conf∗(Am+1,B)× Conf∗(An+1,B) −→ Conf(Am+n+1,B),

(a, b) �−→ a ∗ b. (223)

By Lemma 6.3, a has a unique representative {A1, . . . , Am, U, B−}, b has a
unique representative {U, A′1, . . . , A′n, B−}. We define the convolution product
a ∗ b := (A1, . . . , Am, U, A′1, . . . , A′n, B−). The associativity of the convolu-
tion product is clear.

Recall bi jk in (189). Recall the morphisms πr , πl in (192).
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Fig. 37 A map given by scissoring a convex pentagon

Theorem 7.3 The following morphism is a positive birational isomorphism

c : Conf(An,B) −→ (B−)n−1, (A1, . . . , An, Bn+1)

�−→
(
b1,2
n+1, . . . , b

i,i+1
n+1 , . . . , bn−1,n

n+1

)
. (224)

Proof Scissoring the convex (n+1)-gon along diagonals emanating from n+1,
see Fig. 37, we get a positive birational isomorphism Conf(An,B)

∼→
(Conf(A2,B))n−1. The Theorem is therefore reduced to n = 2. Recall α2
in Lemma 6.6. By Lemma 6.4, it is equivalent to prove that H × U→H ×
U−, (h, u) �→ (β(u)h, η(u)) is a positive birational isomorphism. Since η

is a positive birational isomorphism, and β is a positive map, the Theorem
follows. ��

The potentialW on Conf(An,B) induces a positive functionWc =W◦c−1

on (B−)n−1.

Lemma 7.4 The function

Wc(b1, . . . , bn−1) =
n−1∑

j=1

∑

i∈I

(
1

L−i ◦ πl(b j )
+ 1

R−i ◦ πr (b j )

)
(225)

Proof Note that

W(A1, . . . , An, Bn+1) =
n−1∑

j=1

W(A j , A j+1, Bn+1)

=
n−1∑

j=1

(
χ(u j

n+1, j+1)+ χ(u j+1
j,n+1)

)
.

The Lemma follows directly from Lemma 5.8, (172) and Lemma 6.4. ��
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Fig. 38 Frames assigned to (A1, . . . , An, Bn+1)

Define

τ : ConfO
(
An,B

) −→ Grn−1, (A1, . . . , An) �−→ {[b1,2
n+1], . . . , [b1,n

n+1]}.
(226)

Consider the projection

ib : Grn−1−→Conf(Grn,B), {L2, . . . , Ln} �−→ ([1], L2, . . . , Ln, B−).

Recall the map κ in (109). As illustrated by Fig. 38, we get

Lemma 7.5 When J = I = [1, n] ⊂ [1, n + 1], we have κ = ib ◦ τ .

7.3 The configuration spaces Conf(B,An,B) and Conf(B, Grn,B)

Recall r i jk in (198). Similarly, there is a positive birational isomorphism

p : Conf(B,An,B) −→ U− × (B−)n−1, (B1, A2, . . . , An+1, Bn+2)

�−→
(
r1,2
n+2, b

2,3
n+2, . . . , b

n,n+1
n+2

)
. (227)

The potential W on Conf(B,An,B) induces a positive function Wp :=
W ◦ p−1 on U− × (B−)n−1. We have

Wp(r1, b2, . . . , bn) =
∑

i∈I

1

R−i (r1)

+
∑

2≤ j≤n

∑

i∈I

(
1

L−i ◦ πl(b j )
+ 1

R−i ◦ πr (b j )

)
. (228)
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Fig. 39 Frames assigned to (B1, A2, . . . , An+1, Bn+2). Here π(A∗1) = B1

Recall the map κ in (109). Define

τs : ConfOw0
(A,Bn,A) −→ Grn, (B1, A2, . . . , An+1, Bn+2)

�−→
([
r1,2
n+2

]
,
[
r1,2
n+2b

2,3
n+2

]
, . . . ,

[
r1,2
n+2b

2,n+1
n+2

])
.

(229)

Consider the projection

is : Grn−→Confw0(B, Grn,B), {L2, . . . , Ln+1} �−→(B, L2, . . . , Ln+1, B−).

Let x = (B1, A2, . . . , An+1, Bn+2) ∈ ConfOw0
(A,Bn,A). Let A∗1 ∈ A be

the preimage of B1 such that b
A∗1,A2
Bn+2

= r1,2
n+2. As illustrated by Fig. 39, we get

Lemma 7.6 When J = I = [2, n + 1] ⊂ [1, n + 2], we have κ = is ◦ τs .

8 Proof of Theorems 2.24 and 2.36

8.1 Lemmas

LetY = Y1×. . .×Yk be a product of positive spaces. The positive structure on
Y is induced by positive structures on Yi . Let yi ∈ Y◦i (K). Let (yi,1, . . . , yi,ni )
be the coordinate of yi in a positive coordinate system ci . Define the field
extension

Q(y1, . . . , yk) := Q
(
in(y1,1), . . . , in(y1,n1), . . . , in(yk,nk )

)
. (230)

Thanks to (155), such an extension is independent of the positive coordinate
systems chosen.

Recall the morphisms πl , πr in (192).
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Lemma 8.1 Fix i ∈ I . Let (b, c) ∈ (B− ×Gm)◦(K). Recall yi (c) ∈ U−(K).
Then b′ := b · yi (c) ∈ (B−)◦(K).

Moreover, ifval(R−i ◦πr (b)) ≤ val(c), thenval(b′) = val(b)andQ(b′, c) =
Q(b, c).

Proof Let b = h · y. Fix a reduced word for w0 which ends with im =
i . It provides a decomposition y = yi1(c1) . . . yim (cm). Then b′ = h ·
yi1(c1) . . . yim (cm + c). The rest is clear. ��
Lemma 8.2 Let (b, h) ∈ (B− × H)◦(K). Then b′ := b · h ∈ (B−)◦(K).

Moreover, if h ∈ H(C), then val(b′) = val(b) and Q(b′, h) = Q(b, h).

Proof Let b = y · hb. The rest is clear. ��
Lemma 8.3 Let (b, p) ∈ (B− × B−)◦(K). Assume p ∈ B−(C).

1. If val(R−i ◦ πr (b)) ≤ 0 for all i ∈ I , then b · p is a transcendental point.
Moreover

val(b · p) = val(b), Q(b · p, p) = Q(b, p).

2. If val(L−i ◦πl(b)) ≤ 0 for all i ∈ I , then p−1 · b is a transcendental point.
Moreover

val(p−1 · b) = val(b), Q(p−1 · b, p) = Q(b, p).

Proof Combining Lemmas 8.1–8.2, we prove 1. Analogously 2 follows. ��

8.2 Proof of Theorem 2.36.

Our first task is to prove Theorem 2.36 for the cases when I = [1, n] ⊂
[1, n + 1].

Let J = { j1, . . . , jm} ⊂ I. Recall WJ in (110). Let l ∈ Conf(An,B)(Zt ) be
such that W t

J(l) ≥ 0.
Let x ∈ C◦l . Recall the map c in Theorem 7.3. Set c(x) := (b1, . . . , bn−1) ∈

(B−)n−1(K).

Lemma 8.4 For every i ∈ I , we have

1. val(L−i ◦ πl(b j )) ≤ 0 if j ∈ [1, n − 1] ∩ J,
2. val(R−i ◦ πr (bk−1)) ≤ 0 if k ∈ [2, n] ∩ J.

Proof Let j ∈ [1, n − 1] ∩ J. By definition b j = b
A j ,A j+1
Bn+1

. By Lemmas 5.8,
6.4, we get

val(L−i ◦ πl(b j )) = −val
(
χi

(
u

A j
Bn+1,B j+1

))
≤ −χ t

A j
(l) ≤ 0.
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The second part follows similarly. ��
As illustrated by Fig. 38, we see that

x=(g1 · U, g2 · U, . . . , gn · U, B−), g1 :=1, g j := b1 . . . b j−1, j ∈[2, n].
If j ∈ J, then L j := L(g j · U, B−) = [g j ] ∈ Gr. Therefore

κ(x) = (x1, . . . , xn, B−), x j =
{ [g j ] if j ∈ J,
g j · U otherwise.

Let {A j1, . . . , A jm } ∈ Am(C) be a generic point in the sense of algebraic
geometry. Define

y := (A′1, A′2, . . . , A′n, B−
) ∈ Conf(An;B), A′j =

{
g j · A j if j ∈ J,
g j · U otherwise.

Let F ∈ Q+(Conf(An;B)). By the very definition of DF , we have
DF (κ(x)) = val(F(y)).

Since {A j1, . . . , A jm } is generic, it can be presented by

{A j1, . . . , A jm } :={p j1 · U, . . . , p jm · U}, p={p j1, . . . , p jm } ∈ (B−)m(C).

(231)

We can also assume that (x,p) is a transcendental point, so that

(c(x),p) ∈ ((B−)m+n−1)◦ (K). (232)

Set p j = 1 for j /∈ J. Keep the same p j for j ∈ J. Then

y = (g1 p1 · U, . . . , gn pn · U, B−); c(y) = (b̃1, . . . , b̃n−1),

b̃ j := p−1
j b j p j+1 ∈ B−(K).

By Lemmas 8.3–8.4, we get

Q(c(x),p) = Q(b1, . . . , bn−1, pi1, . . . , pim )

= Q(b̃1, . . . , bn−1, pi1, . . . , pim ) = . . .

= Q(b̃1, . . . , b̃n−1, pi1, . . . , pim ) = Q(c(y),p). (233)

val(b j ) = val(b̃ j ), ∀ j ∈ [1, n − 1]. (234)

Therefore (c(y),p) ∈ ((B−)m+n−1)◦(K). Thus c(y) is a transcendental
point. Since val(c(y)) = val(c(x)) = ct (l), we get y ∈ C◦l . By Lemma 2.13,
val(F(y)) = Ft (l). Theorem 2.36 is proved.
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Now consider the general cases when J ⊂ I ⊂ [1, n]. Consider the positive
projection

dI = pI ◦ d : Conf(An;B)
d−→ Confn(A)

pI−→ ConfI(A;B).

Here the map d kills the last flag Bn+1. The map pI keeps Ai intact when
i ∈ I, and takes Ai to π(Ai ) otherwise.

Lemma 8.5 Let l ∈ Conf+J⊂I(A;B)(Zt ). There exists l ′ ∈ Conf(An;B)(Zt )

such thatW t
J(l
′) ≥ 0 and dtI (l

′) = l.

Proof We prove the case when J contains {1, n}. In fact, the other cases are
easier. Let x = (A1, . . . , An, Bn+1). Consider a map u : Conf(An;B) → U
given by x �→ uA1

Bn+1,Bn
. Then

WJ(x) =WJ(A1, . . . , An)+W(A1, An, Bn+1) =WJ(dI(x))

+ χ
(
uA1

Bn+1,Bn

)
+ χ

(
uAn

B1,Bn+1

)

=WJ(dI(x))+ χ(u(x))+
∑

i∈I

π1,n(dI(x))

Ri (u(x))
. (235)

By Lemma 6.14, we have λ := π t
1,n(l) ∈ P+. Clearly there exists l ′ ∈

Conf(An;B)(Zt ) such that dtI (l
′) = l and ut (l ′) = 0 ∈ U(Zt ). We tropicalize

(235):

W t
J(l
′) = min

{
W t

J(l), χ t (0), min
i∈I {〈λ, αi 〉 −Rt

i (0)}
}

= min

{
W t

J(l), 0, min
i∈I {〈λ, αi 〉}

}
= 0.

��

Let l, l ′ be as above. Let x ∈ C◦l . Clearly there exists z ∈ C◦l ′ such that
dI(z) = x. For any F ∈ Q+(ConfI(A;B)), we have

DF (κ(x)) = DF◦dI(κ(z)) = (F ◦ dI)
t (l ′) = Ft ◦ dtI (l ′) = Ft (l).

The second identity is due to the special cases discussed before. The rest
are by definition.
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9 Configurations and generalized Mircović–Vilonen cycles

9.1 Proof of Theorem 2.35

In this section we use extensively the notation from Sect. 6.2, such as uA2
B1,B3

,

rB1,A2
B3

∈ U−. We identify the subset Aν in Theorem 2.35 with the subset
Aν ⊂ U+χ (Zt ) in (159) by tropicalizing

α : Conf(B,A,B)
∼−→ U, (B1, A2, B3) �−→ uA2

B1,B3
. (236)

Thanks to identity 4 of Lemma 6.4, the index ν for both definitions match.

Proof of Theorem 2.35 (2). Let l ∈ Aν . Let x = (B1, A2, B3) ∈ C◦l . By

Lemma 6.4, rB1,A2
B3

= η(uA2
B1,B3

). Recall κKam in (161). Recall is in (126). By
Lemma 7.6, we get

κ(x) =
(

B,
[
rB1,A2

B3

]
, B−

)
=
(

B, κKam

(
uA2

B1,B3

)
, B−

)
= is(κKam(α(x))).

(237)

Recall MVl in (162). Then Ml = is(MVl). Thus (2) is a reformulation of
Theorem 5.4.

(1). Recall the map

pi : Conf(A,A,B) −→ U, (A1, A2, B3) �−→ uAi
Bi+2,Bi+1

, i = 1, 2.

(238)

Recall the map τ defined by (226)

τ : Conf(A,A,B)(K) −→ Gr, (A1, A2, B3) �−→ [bA1,A2
B3

]. (239)

Note that pt2 induces a bijection from Pμ
λ to Aλ−μ. The MV cycles of

coweight (λ− μ, 0) are

κKam ◦ p2(C◦l ) = κKam(C◦
pt2(l)

) = MVpt2(l)
, l ∈ Pμ

λ .

Let x = (A1, A2, B3) ∈ C◦l . Note that

τ(x) =
[
bA1,A2

B3

]
=
[
μ

A1,A2
B3

rB2,A1
B3

]
= μ(x) · κKam(p2(x)),

where [μ(x)] =
[
μ

A1,A2
B3

]
= tμ.
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We get τ(C◦l ) = tμ ·MVpt2(l)
. They are precisely MV cycles of coweight

(λ, μ). Recall the isomorphism i in (121). Clearly Ml = i(τ (C◦l )). Thus (1)
is proved.

(3). The set Bμ
λ is a subset of Pμ

λ such that pt1(B
μ
λ ) ⊂ U+χ (Zt ). By Lemma

6.14, Bμ
λ is empty unless λ ∈ P+. So we assume λ ∈ P+. Let l ∈ Pμ

λ . Let
x = (A1, A2, B3) ∈ C◦l . By Lemma 6.2,

τ(x) =
[
bA1,A2

B3

]
=
[
uA1

B3,B2
hA1,A2w0u

A2
B1,B3

]
= p1(x) · tλ. (240)

The last identity is due to pt2(l) ∈ U+χ (Zt ) (hence uA2
B1,B3

∈ U(O)).

By Lemma 5.12, τ(x) ∈ Grλ if and only if pt1(l) ∈ U+χ (Zt ). Therefore

τ(C◦l ) ⊂ Grλ ⇐⇒ pt1(l) ∈ U+χ (Zt )⇐⇒ l ∈ Bμ
λ . (241)

The rest follows from Lemma 7.5. ��

9.2 Proof of Theorems 2.31, 2.33, 2.34

By Theorem 2.35, we have

Sμ
w0
∩ Sλ

e =
⋃

l∈Pμ
λ

Nl, Sμ
w0
∩ Grλ =

⋃

l∈Bμ
λ

Ml, (242)

Here Nl (resp. Ml) are components containing τ(C◦l ) as dense subsets. They
are all of dimension 〈ρ, λ− μ〉. The closures Nl = τ(C◦l ) are MV cycles.

Proof of Theorem 2.31. Scissoring the convex (n+2)-gon along diagonals
emanating from the vertex labelled by n+2, see Fig. 37, we get a positive
birational isomorphism between Conf(An+1,B) and (Conf(A2,B))n . Its trop-
icalization provides a decomposition

Pμ

λ;λ =
⊔

μ1+...+μn=μ

Pμ1
λ × Bμ2

λ2
. . .× Bμn

λn
, λ = (λ2, . . . , λn) ∈ (P+)n−1.

(243)

Let l = (l1, . . . , ln) ∈ Pμ

λ;λ. We construct an irreducible subset

Cl := {([b1], [b1b2], . . . , [b1b2 . . . bn]) ∈ Grn | bi ∈ B−(K),

[b1] ∈ Nl1, [bi ] ∈ Mli , i ∈ [2, n]}.
By induction, Cl is of dimension 〈ρ, λ+ λ2 + . . .+ λn − μ〉.
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Lemma 9.1 Recall the subvarietyGrμλ,λ in (122). We haveGrμλ,λ = ∪Cl where

l ∈ Pμ

λ;λ.

Proof Thanks to the isomorphism B−(K)/B−(O)
∼→ Gr, each x ∈ Grμλ,λ

can be presented as ([b1], [b1b2] . . . , [b1 . . . bn]), where bi ∈ B−(K) for all
i ∈ [1, n]. By the definition of Grμλ,λ, we have

[bi ] ∈ Grλi , ∀i ∈ [2, n]; [b1] ∈ Sλ
e , [b1 . . . bn] ∈ Sμ

w0
.

Let pr : B−(K)→ H(K)→ H(K)/H(O) = P be the composite of standard
projections. Set pr(bi ) := μi . Then [bi ] ∈ Sμi

w0 .
When i = 1, [b1] ∈ Sμ1

w0 ∩ Sλ
e . Thus [b1] ∈ Nl1 for some l1 ∈ Pμ1

λ .
When i > 1, [bi ] ∈ Sμi

w0 ∩ Grλi . Thus [bi ] ∈ Mli for some li ∈ Bμi
λi

.
Note that μ1+ . . .+μn = pr(b1)+ . . .+pr(bn) = pr(b1 . . . bn) = μ. Thus

l := (l1, . . . , ln) ∈ Pμ
λ,λ. By definition x ∈ Cl . Therefore Grμλ,λ ⊆ ∪l∈Pμ

λ;λ
Cl .

The other direction follows similarly. ��
Let l ∈ Pμ

λ,λ. Recall the map

τ : Conf(An+1,B) −→ Grn, (A1, . . . , An+1, Bn+2)

�−→
([

bA1,A2
Bn+2

]
, . . . ,

[
bA1,An+1

Bn+2

])
.

Clearly τ(C◦l ) is a dense subset of Cl . Recall the isomorphism i in (121). Fol-
lowing Lemma 7.5, the isomorphism i identifies τ(C◦l ) with M◦

l . By Theorem
2.36, the cells M◦

l are disjoint. Theorem 2.31 follows from Lemma 9.1. ��
Proof of Theorem 2.33. The group H(K) acts diagonally on Grn . Let h ∈
H(K) be such that [h] = tν . Then h · Grμ

λ;λ = Grμ+ν

λ+ν;λ. One can choose h

such that [h] = t−μ. The rest follows by the same argument in the proof of
Theorem 2.31. ��
Proof of Theorem 2.34. By definition Bμ

λ1,λ2,...,λn
⊂ Pμ

λ1;λ2,...,λn
. The Theo-

rem follows by the same argument in the proof of Theorem 2.31. ��

9.3 Components of the fibers of convolution morphisms

Let λ = (λ1, . . . , λn) ∈ (P+)n . Recall the convolution variety Grλ in (119).
By the geometric Satake correspondence, IH(Grλ) = Vλ := Vλ1 ⊗ . . .⊗ Vλn .

Set |λ| := λ1 + . . . + λn . Set ht(λ;μ) := 〈ρ, |λ| − μ〉. The convolution
morphism mλ : Grλ → Gr|λ| projects (L1, . . . , Ln) to Ln . It is semismall,
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Fig. 40 The projection π3
induces a bijection

π t
3 : B̃μ

λ1,λ2
→ Bμ−λ2

λ1

i.e. for any μ ∈ P+ such that tμ ∈ Gr|λ|, the fiber m−1
λ (tμ) over tμ is of top

dimension ht(λ;μ). See [65] for proof.
By the decomposition theorem [8], we have

IH(Grλ) =
⊕

μ

Fμ ⊗ IH(Grμ).

Here the sum is over μ ∈ P+ such that tμ ⊆ Gr|λ|, and Fμ is the vector
space spanned by the fundamental classes of top dimensional components of
m−1

λ (tμ). As a consequence, the number of top components ofm−1
λ (tμ) equals

the tensor product multiplicity cμ
λ of Vμ in Vλ.

Recall the subsets Cμ
λ in (84). By Lemma 6.14, the set Cμ

λ is empty unless

(μ, λ) ∈ (P+)n+1. Recall the map ω in (216). In this subsection we prove

Theorem 9.2 Let Tμ
λ be the set of top components of m−1

λ (tμ). For each l ∈
Cμ

λ , the closure ω(C◦l ) ∈ Tμ
λ . It gives a bijection between C

μ
λ and Tμ

λ .

First we prove the case when n = 2. In this case, the fiber m−1
λ1,λ2

(tμ) is
isomorphic to

{L ∈ Gr | (L, tμ) ∈ Grλ1,λ2} = Grλ1 ∩ tμGrλ∨2 .

Here λ∨2 := −w0(λ2) ∈ P+. The following Theorem is due to Anderson.

Theorem 9.3 [3] The top components of Grλ1 ∩ tμGrλ∨2 are precisely the MV

cycles of coweight (λ1, μ− λ2) contained in Grλ1 ∩ tμGrλ∨2 .

Recall the positive morphisms

pi : Conf3(A) −→ U, (A1, A2, A3) −→ uAi
Bi−1,Bi+1

, i ∈ Z/3

Let us put the potential condition on two vertices, see the left of Fig. 40,
getting

B̃μ
λ1,λ2

:= {l ∈ Conf3(A)(Zt ) | (π12, π23, π13)
t (l) = (λ1, λ2, μ),

pt1(l) ∈ U+χ (Zt ), pt2(l) ∈ U+χ (Zt )}.
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Consider the projection π3 : Conf3(A) → Conf(A2,B) which maps
(A1, A2, A3) to (A1, A2, B3). Its tropicalization π t

3 induces a bijection13 from

B̃μ
λ1,λ2

to Bμ−λ2
λ1

. Recall ω2 in (220). By (241), the cycles

ω2(C◦l ) = τ(C◦
π t

3(l)
), l ∈ B̃μ

λ1,λ2

are precisely MV cycles of coweight (λ1, μ− λ2) contained in Grλ1 .
Let l ∈ B̃μ

λ1,λ2
. Let x = (A1, A2, A3) ∈ C◦l . By identity 2 of Lemma 6.2,

ω2(x) =
[
π13(x)w0 · (p3(x))

−1π32(x)
]
,

where [π13(x)] = tμ, [π32(x)] = tλ
∨
2 .

Therefore

ω2(x) ∈ tμGrλ∨2 ⇐⇒ t−μω2(x) ∈ Grλ∨2
⇐⇒ t−μπ13(x)w0 · [(p3(x))

−1π32(x)] ∈ Grλ∨2
⇐⇒ (p3(x))

−1 · tλ∨2 ∈ Grλ∨2 .

Here the last equivalence is due to the fact that t−μπ13w0 ∈ G(O). Therefore
for any l ∈ B̃μ

λ1,λ2
,

ω2(C◦l ) ⊂ tμGrλ∨2 ⇐⇒
(
p3(C◦l )

)−1 · tλ∨2 ⊂ Grλ∨2

By Lemma 5.2, Lemma 5.12, and the definition of Cμ
λ1,λ2

, we get

(
p3(C◦l )

)−1 · tλ∨2 ∈ Grλ∨2 ⇐⇒
(
p3(C◦l )

)−1 ∈ U(O)⇐⇒ p3(C◦l ) ∈ U(O)

⇐⇒ pt3(l) ∈ U+χ (Zt )⇐⇒ l ∈ Cμ
λ1,λ2

.

Let l ∈ Cμ
λ1,λ2

. Let x = (A1, A2, A3) ∈ C◦l . Note that ω3(x) = [hA1,A3] =
tμ. Therefore ω(x) = (ω2(x), ω3(x)) ∈ m−1

λ1,λ2
(tμ). The rest is due to Theo-

rem 9.3.

13 There is a positive Cartan group action on Conf3(A)(Zt ) defined via

H× Conf3(A) −→ Conf3(A), h × (A1, A2, A3) �−→ (A1, A2, A3 · h).

Its tropicalization determines a free H(Zt )-action on Conf3(A)(Zt ). By definition, one can thus
identify the H(Zt )-orbits of Conf3(A)(Zt ) with points of Conf(A,A,B)(Zt ). Note that each

element in Bμ−λ2
λ1

has a unique representative in B̃μ
λ1,λ2

. Hence the map π t
3 is a bijection.
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Now let us prove the general case. Consider the scissoring morphism

c = (c1, c2) : Confn+1(A) −→ Confn(A)× Conf3(A),

(A1, . . . , An+1) �−→ (A1, . . . , An−1, An+1)× (An−1, An, An+1)

(244)

Due to the scissoring congruence invariance, the map ct induces a decom-
position

Cμ
λ1,...,λn

=
⊔

ν∈P+
Cμ

λ1,...,λn−2,ν
× Cν

λn−1,λn
. (245)

Proposition 9.4 The cardinality ofCμ
λ is the tensor product multiplicity cμ

λ of
Vμ in Vλ.

Proof Decomposing the last tensor products in Vλ1 ⊗ . . .⊗ (Vλn−1 ⊗Vλn ) into
a sum of irreducibles, and tensoring then each of them with Vλ1 ⊗ . . .⊗Vλn−2 ,
we get

cμ
λ1,...,λn

=
∑

ν∈P+
cμ
λ1,...,λn−2,ν

cν
λn−1,λn

.

As a consequence of n = 2 case, |Cν
λ,μ| = cν

λ,μ. The Lemma follows by
induction and (245). ��
Lemma 9.5 For l ∈ Cμ

λ , the cycles ω(C◦l ) are disjoint.

Proof By Lemma 7.2, κ(C◦l ) = i1◦ω(C◦l ). The Lemma follows from Theorem
2.24. ��
Lemma 9.6 For any l ∈ Cμ

λ , we have ω(C◦l ) ⊂ m−1
λ (tμ).

Proof Let x = (A1, . . . , An+1) ∈ C◦l . Recall the expression (219). We have

[gi ] :=
[
uAi

Bi−1,Bi+1
hAi ,Ai+1w0

]
= uAi

Bi−1,Bi+1
· tλi ∈ Grλi , i ∈ [1, n].

Thus ω(x) ∈ Grλ. Meanwhile mλ ◦ ω(x) = [hA1,An+1] = tμ. The Lemma
is proved. ��
Lemma 9.7 Let l ∈ Cμ

λ . The closureω(C◦l ) is an irreducible variety of dimen-
sion ht(λ;μ).
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Proof By construction, ω(C◦l ) is irreducible. Note that m−1
λ (tμ) is of top

dimension ht(λ;μ). By Lemma 9.6, dim ω(C◦l ) ≤ ht(λ;μ). To show that
dim ω(C◦l ) ≥ ht(λ;μ), we use induction.

Set π t
n−1,n+1(l) := ν. Recall c = (c1, c2) in (244). Then ct1(l) ∈

Cμ
λ1,...,λn−2,ν

, ct2(l) ∈ Cν
λn−1,λn

. Consider the projection

pr : ω(C◦l ) −→ Grn−1, (L1, . . . , Ln−1, Ln) −→ (L1, . . . , Ln−2, Ln)

Its image pr(ω(C◦l )) = ω(C◦
ct1(l)

). Let b = (L1, . . . , Ln−2, Ln) ∈ ω(C◦
ct1(l)

).

The fiber over b is

pr−1(b) := {L ∈ Gr | (L1, . . . , Ln−2, L, Ln) ∈ ω(C◦l )}.

Let y = (A1, . . . , An−1, An+1) ∈ C◦
ct1(l)

such that ω(y) = b. Set by :=
bA1,An−1

Bn+1
. For any x ∈ C◦l such that c1(x) = y, we have pr(ω(x)) = ω(y) = b.

By (220), we have

ωn−1(x) =
[
bA1,An

Bn+1

]
= by · ω2(c2(x)) ∈ pr−1(b).

Then it is easy to see that by · ω2(C◦ct2(l)) ⊂ pr−1(b). Therefore

dim ω(C◦l ) ≥ dim ω(C◦
ct1(l)

)+ dim ω(C◦
ct2(l)

).

The case when n = 2 is proved above. The Lemma follows by induction.
��

Proof of Theorem 9.2 By Lemmas 9.6, 9.7, the mapCμ
λ −→ Tμ

λ , l �−→ ω(C◦l )
is well-defined. By Lemma 9.5 and the very construction of the cell C◦l , it is
injective. Since |Cμ

λ | = |Tμ
λ | = cμ

λ , the map is a bijection. ��

9.4 Proof of Theorem 2.20

We focus on the case when μ = 0 for Cμ
λ . Consider the scissoring morphism

c = (c1, c2) : Confn+1(A) −→ Confn(A)× Conf3(A),

(A1, . . . , An, An+1) �−→ (A1, . . . , An)× (A1, An, An+1).
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Due to the scissoring congruence invariance, the morphism (ct1, c
t
2) induces

a decomposition

C0
λ =

⊔

ν

Cλ1,...,λn−1,ν × C0
ν∨,λn

.

Note that C0
ν∨,λn

is empty if ν �= λn . Moreover |C0
λ∨n ,λn

| = 1. Thus ct1 :
C0

λ → Cλ is a bijection.
Consider the shifted projection

ps : Grn −→ Confn(Gr), {L1, . . . , Ln} −→ (Ln, L1, . . . , Ln−1).

Lemma 9.8 Let l ∈ C0
λ. Then ps ◦ ω(C◦l ) = κ(C◦

ct1(l)
).

Proof Let x = (A1, . . . , An+1) ∈ C◦l . Then u := uA1
Bn+1,Bn

∈ U(O). Let
y := c1(x) ∈ C◦

ct1(l)
.

Recall ωi in (215). Then ωn+1(x) = [1]. For i ∈ [2, n], we have

ωi (x) = [g{U,B−}({A1, Bn+1}, {Ai , B1})] = u · [g{U,B−}({A1, Bn}, {Ai , B1})]
= u · ωi (y).

Therefore

ps ◦ ω(x) = (ωn+1(x), u · ω2(y), . . . , u · ωn(y))

= ([1], ω2(y), . . . , ωn(y)) = κ(y).

Here the last step is due to Lemma 7.2. Since c1(C◦l ) = C◦
ct1(l)

, the Lemma

is proved. ��
Recall Grc(λ) and the set Tλ of its top components in Theorem 2.20. The

connected group G(O) acts on Grc(λ). It preserves each component of Grc(λ).
So these components live naturally on the stack Confn(Gr) = G(O)\([1] ×
Grn−1).

Recall the fiber m−1
λ ([1]) and the set T0

λ in Theorem 9.2. Note that

ps(m
−1
λ ([1])) = G(O)\Grc(λ) ⊂ Confn(Gr). It induces a bijection T0

λ

∼−→
Tλ.

Proof of Theorem 2.20. By Theorem 9.2 and above discussions, there is a
chain of bijections: Cλ

∼−→ C0
λ

∼−→ T0
λ

∼−→ Tλ. By Lemma 9.8, this chain is
achieved by the map κ . The Theorem is proved. ��
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10 Positive G-laminations and surface affine Grassmannians

A decorated surface S comes with an unordered collection {s1, . . . , sn} of
special points, defined up to isotopy. Denote by ∂S the boundary of S. We
assume that ∂S is not empty. We define punctured boundary

∂̂S := ∂S − {s1, . . . , sn}. (246)

Its components are called boundary circles and boundary intervals.
Let us shrink all holes without special points on S into punctures, getting a

homotopy equivalent surface. Abusing notation, we denote it again by S. We
say that the punctures and special points on S form the set of marked points
on S:

{marked points} := {special points s1, . . . , sn} ∪ {punctures}.

Pick a point ∗si in each of the boundary intervals. The dual decorated surface
∗S is given by the same surface S with the set of special points {∗s1, . . . , ∗sn}.
We have a duality: ∗ ∗ S = S.

Observe that the marked points are in bijection with the components of the
punctured boundary ∂̂(∗S).

10.1 The space AG,S with the potential W

Twisted local systemsanddecorations.Let T′S be the complement to the zero
section of the tangent bundle on a surface S. Its fiber T′y at y ∈ S is homotopy
equivalent to a circle. Let x ∈ T′y S. The fundamental group π1(T′S, x) is a
central extension:

0 −→ π1(T
′
y S, x) −→ π1(T

′S, x) −→ π1(S, y) −→ 0, π1(T
′
y S, x) = Z.

(247)

LetL be a G-local system on T′S with the monodromy sG around a generator
of π1(T′y S, x). Let us assume that G acts on L on the right. We call L a twisted
G-local system on S. It gives rise to the associated decorated flag bundle
LA := L×G A.

Let C be a component of ∂̂(∗S). There is a canonical up to isotopy section
σ : C → T′C given by the tangent vectors to C directed according to the
orientation of C. A decoration on L over C is a flat section of the restriction
of LA to σ(C).
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Geometry of canonical bases and mirror symmetry 609

Definition 10.1 [17] A twisted decorated G-local system on S is a pair (L, α),
where L is a twisted G-local system on S, and α is given by a decoration on
L over each component of ∂̂(∗S).

The moduli space AG,S parametrizes twisted decorated G-local systems on
S.

Abusing terminology, a decoration is given by decorated flags at the marked
points.
Remark. Since the boundary ∂S of S is not empty, the extension (247) splits:

π1(T
′S, x)

∼= π1

(
T′y S, x

)
× π1(S, y).

However the splitting is not unique. As a space, AG,S is isomorphic,
although non canonically if sG �= 1, to its counterpart of usual unipotent
G-local systems on S with decorations. The mapping class group �S acts
differently on the two spaces. For example, when S is a disk Dn with n
special points on the boundary, then �Dn = Z/nZ. Both moduli spaces
are isomorphic to the configuration space Confn(A). The mapping class
group Z/nZ acts on the untwisted moduli space is by the cyclic rotation
(A1, . . . , An) �→ (An, A1, . . . , An−1), while its action on AG,Dn is given
by the “twisted” rotation

(A1, A2, . . . , An) �−→ (An · sG, A1, . . . , An−1).

Theorem 10.2 (loc.cit.) The space AG,S admits a natural positive structure
such that the mapping class group �S acts on AG,S by positive birational
isomorphisms.

Below we give two equivalent definitions of the potential W on AG,S .
Potential via generalized monodromy. A decorated flag A provides an iso-
morphism

iA : UA/[UA, UA] ∼−→ ⊕α∈�A1. (248)

Let � : ⊕α∈�A1 → A1 be the sum map. Then χA = � ◦ iA. This charac-
terizes the map iA.

Let us assign to each component C of ∂̂(∗S) a canonical rational map,
called generalized monodromy at C: μC : AG,S −→ ⊕α∈�A1. There are two
possible cases.

(i) The component C is a boundary circle. The decoration over C is a decorated
flag AC in the fiber of LA on C, invariant under the monodromy around
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C. It defines a conjugacy class in the unipotent subgroup UAC preserving
AC. So we get a regular map

μC : AG,S −→ UAC/[UAC, UAC]
iAC= ⊕α∈�A1.

(ii) The component C is a boundary interval on a hole h. The universal cover of
h is a line. We get an infinite sequence of intervals on this line projecting to
the boundary interval(s) on h. There are decorated flags assigned to these
intervals. Take an interval C′ on the cover projecting to C. Let C′− and C′+
be the intervals just before and after C′. We get a triple of decorated flags
(A−, A, A+) sitting over these intervals. There is a unique u ∈ UA such
that B+ = u ·B−, where B± = π(A±) ∈ B. Projecting u to UA/[UA, UA],
we get a map μC : AG,S →⊕α∈�A1. It is clear that μC does not depend
on the choice of C′.

Composing the generalized monodromy μC with the sum map⊕α∈�A1 →
A1, we get

WC := � ◦ μC : AG,S −→ A1, (249)

called the potential associated with C.

Definition 10.3 The potential W on the space AG,S is defined as

W :=
∑

components C of ∂̂(∗S)

WC. (250)

Potential via ideal triangulations.

Definition 10.4 An ideal triangulation of a decorated surface S is a triangula-
tion of the surface whose vertices are the marked points of S.

Let T be an ideal triangulation of S. Pick a triangle t of T . The restriction
to t provides a projection14 πt from AG,S to Conf3(A). Recall the potential
W3 on the latter space.

Definition 10.5 The potential on the space AG,S is defined as

W :=
∑

triangles t of T

W3 ◦ πt . (251)

14 If the vertices of t coincide, one can first pull back to a sufficient big cover S̃ of S, and
then consider the restriction to a triangle t̃ ⊂ S̃ which projects onto t . Clearly the result is
independent of the pair t̃ ⊂ S̃ chosen.
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Changing T by a flip we do not change the sum (251) since the potential on
a quadrilateral is invariant under a flip (Sect. 2). Since any two ideal triangu-
lations are related by a sequence of flips, the potential (251) is independent of
the ideal triangulation T chosen.
The above definitions are equivalent. There is a natural bijection between
the marked points, that is the vertices of T , and the components of ∂̂(∗S).
Working with definition (251), the sum over all angles of the triangles shared
by a puncture is the potential WC assigned to the corresponding boundary
circle. A similar sum over all angles shared by a special point is the potential
WC assigned to the corresponding boundary interval. Thus the potentials (250)
and (251) coincide.
Positivity of the potential W . In the positive structure of AG,S introduced
in [17], the projection πt : AG,S → Conf3(A) is a positive morphism. By
Theorem 2.5 and (251), we get

Theorem 10.6 The potentialW is a positive function on the space AG,S.

Positive integral G-laminations. We define the set of positive integral G-
laminations on S:

A+G,S(Z
t ) = {l ∈ AG,S(Z

t ) |W t (l) ≥ 0}. (252)

By tropicalization, the mapping class group �S acts onAG,S(Z
t ). The poten-

tial W is �S-invariant. Thus �S acts on the subset A+G,S(Z
t ).

Partial potentials.Given any simple positive root α, there is a component χA,α

of the character χA so that χA = ∑α∈� χA,α . Let S be a decorated surface.
Then to each boundary component C ∈ ∂(∗S) one associates a function WC,α .
It is evidently invariant under the action of the mapping class group �S of S.

Theorem 10.7 Let S be a surface with n holes and no special points. Then the
algebra of regular �S-invariant functions on the space AG,S is a polynomial
algebra in nrk(G) variables freely generated by the partial potentials WC,α ,
where C run through all boundary circles on S, and α are simple positive
roots.

Proof It is well known that the action of the mapping class group �S on the
moduli space Locun

G,S of unipotent G-local systems on a surface S with holes
is ergodic. So there are no non-constant �S-invariant regular functions on this
space. On the other hand, there is a canonical �S-invariant projection given by
the generalised monodromy around the holes:

AG,S −→
∏

holes of S

(A1)
∏

.

Its fiber over zero is the space Locun
G,S . ��
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10.2 Duality conjectures for decorated surfaces

Definition 10.8 The moduli space LocG,S parametrizes pairs (L, γ ), where
L is a twisted G-local system on S, and γ assigns a decoration on L to each
boundary interval of ∂̂(∗S).

It is important to consider several different types of twisted G-local system
on S which differ by the data assigned to the boundary. Recall that components
of the punctured boundary ∂̂(∗S) are in bijection with the marked points of S.
There are three options for the data at a given marked point, which could be
either a special point, or a puncture:

(1) No data.
(2) A decoration, that is a flat section of the associated decorated flag bundle

LA near m.
(3) A framing, that is a flat section of the associated flag bundle LB near m.

In accordance to this, there are five different moduli spaces:

• AG,S: decorations at both special points and punctures.
• LocG,S: no extra data.
• LocG,S: decorations at the special points only. No extra data at the punc-

tures.
• PG,S: decorations at the special points, framings at the punctures.
• XG,S: framings at the special points and punctures.

If S does have special points, it is silly to consider LocG,S since it ignores
them.

If S has no punctures, then (besides LocG,S) there are three different moduli
spaces:

AG,S = LocG,S, PG,S, XG,S.

If S has no special points, i.e. it is a punctured surface, there are three
different moduli spaces:

AG,S, LocG,S = LocG,S, PG,S = XG,S.

Duality conjectures interchange a group G with the Langlands dual group
GL , and a decorated surface S with the dual decorated surface ∗S.15 Here are
some examples.

15 Although the decorated surface∗S is isomorphic to S, the isomorphism is not quite canonical.
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If S has no special points, the dual pairs look as follows:

AG,S is dual to PGL ,∗S = XGL ,∗S, (AG,S,W) is dual to

LocGL ,∗S = LocGL ,∗S.

If S does have special points, the moduli space XG,S plays a secondary role.
The key dual pair is this:

(AG,S,W) is dual to LocGL ,∗S.

There are plenty of other dual pairs, obtained from this one by degenerating
the potential, and simultaneously altering the dual space. Let us discuss some
of them.
Generalisations. Let us assign to each marked point m of S a subset Im ⊂ I ,
possibly empty.

First, let us define a new potential on the space AG,S . Observe that any
non-degenerate additive character χ of U is naturally decomposed into a sum
of characters parametrised by the set of positive simple roots: χ = ∑i∈I χi .
Then, replacing in the definition of the potential at a given marked point m the
nondegenerate character χ by the character

∑
i∈Im χi , we get a new function

Wm,Im at m, and set

W{Im} :=
∑

marked points m on S

Wm,Im . (253)

Next, let us define a modified moduli space P{Im}
GL ,∗S .

Recall that for each simple positive root αi there is a G-invariant divisor in
B×B. Let Di be its preimage in A×A. We say that a pair (A1, A2) ∈ A×A
is in position I − Im if (A1, A2) ∈ A×A− ∪i∈I−Im Di .

Recall that Cm is the boundary component of ∗S matching a marked point
m on S.

Definition 10.9 The moduli spaceP{Im}
GL ,∗S parameterizes twisted GL -local sys-

tems on S plus

a) A reduction of the structure group GL near each puncturem to the parabolic
subgroup of type I − Im .

b) A decoration at every boundary interval Cm of ∗S such that

• The decorated flags at the ends of the boundary interval Cm are in the
position I − Im .

So if I = Im , the data a) is empty, and the condition b) is vacuous.
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Finally, we consider the largest subspace

A{Im}G,S ⊂ AG,S

on which the potentialW{Im} is regular. This condition is vacuous at punctures,
and boils down to the •-condition from Definition 10.9 at boundary intervals
of ∗S. So if Im = ∅ at every special point m, then A{Im}G,S = AG,S .

Conjecture 10.10 (A{Im}G,S ,W{Im}) is dual to P{Im}
GL ,∗S.

Let us now formulate what the Duality Conjecture tells about canonical
bases for the most interesting moduli space LocGL ,S , leaving similar formula-
tions in other cases as a straightforward exercise.
Duality Conjecture for the space LocGL ,∗S . The group �S acts on the set
A+G,S(Z

t ), and on the space O(LocGL,∗S) of regular functions on LocGL ,∗S .

Conjecture 10.11 There is a canonical basis in the spaceO(LocGL ,∗S) para-
metrized by the set A+G,S(Z

t ). This parametrization is �S-equivariant.

Example. If S is a disc Dn with n special points on the boundary, then
�Dn = Z/nZ. Theorem 2.6 provides a �Dn -equivariant canonical basis. Thus
Conjecture 10.11 is proved.

If G = SL2 (or G = PGL2), then [17] provides a concrete construction of
the �S-equivariant parametrization, using laminations.

The following Theorem tells that the set A+G,S(Z
t ) is of the right size.

Theorem 10.12 Given an ideal triangulation T of a decorated surface S,
there is a linear basis in O(LocGL ,∗S) parametrized by the set A+G,S(Z

t ).

Remark.The parametrization depends on the choice of the ideal triangulations.
In particular, it is not �S-equivariant.

Proof The graph � dual to the triangulation T is a ribbon trivalent graph
homotopy equivalent to S. An end vertex of � is a univalent vertex of the
graph. It corresponds to a boundary interval of ∂̂S. Let LocGL ,� be the moduli
space of pairs (L, γ ), whereL is a GL -local system on �, and γ is a flat section
of the restriction of the local system LA to the end vertices of �.

Choose an orientation of the edges of �. Let V (�) and E(�) be the sets of
vertices and edges of �. Pick an edge E = (v1, v2) of �, oriented from v1 to
v2. Given a function λ : E(�) −→ P+, we assign irreducible GL -modules to
the two flags of E , denoted Vv,E :

V(v1,E) := Vλ(E), V(v2,E) := V−w0(λ(E)).
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Fig. 41 An integral
lamination on a surface with
two holes, with 2+ 3 special
points

According to [17, Section 12.5, (12.30)], there is a canonical isomorphism

O(LocGL ,�) =
⊕

{λ:E(�)−→P+}

⊗

v∈V (�)

⎛

⎝
⊗

(v,E)

Vλ(v,E)

⎞

⎠
GL

(254)

The second tensor product is over all flags incident to a given vertex v of
�. By Applying Theorem 2.6 parametrizing a basis in the GL -invariants of
the tensor product for each vertex of �, it follows that O(LocGL ,�) admits a
linear basis parametrized by A+G,S(Z

t ). Note that the central extension (247)
is split. Following the remark after Definition 10.1, the moduli space LocGL ,S
is isomorphic to LocGL ,�. The Theorem is proved. ��

10.3 Canonical basis in the space of functions on LocSL2,S

Given any decorated surface S, there is a generalisation of integral laminations
on S.

Definition 10.13 Let S be a decorated surface. An integral lamination l on S
is a formal sum

l =
∑

i

ni [αi ] +
∑

j

m j [β j ], ni ,m j ∈ Z>0. (255)

where {αi } is a collection of simple nonisotopic loops, {β j } is a collection
of simple nonisotopic intervals ending inside of boundary intervals on ∂S −
{s1, . . . , sn}, such that the curves do not intersect, considered modulo isotopy
(Fig. 41). The set of integral laminations on S is denoted by LZ(S).

Let Monα(L, α) be the monodromy of a twisted SL2-local system (L, α)

over a loop α on S.
Let us show that a simple path β on S connecting two points x and y on ∂̂S

gives rise to a regular function �β on LocSL2,S .
Let (L, α) be a decorated SL2-local system on S. The associated flat bundle

LA is a two dimensional flat vector bundle without zero section. Let vx and
vy be the tangent vectors to ∂S at the points x, y. The decoration α at x and
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y provides vectors lx and ly in the fibers of LA over vx and vy . The set Sβ of
non-zero tangent vectors to β is homotopy equivalent to a circle. Let us connect
vx and vy by a path p in Sβ , and transform the vector lx at vx to the fiber of
LA over vy , getting there a vector l ′x . We claim that �(l ′x , ly) is independent
of the choice of p. This uses crucially the fact that L is a twisted local system.
So we arrive at a well defined number �(l ′x , ly) assigned to (L, α). We denote
by �β the obtained function on LocSL2,S .

Given an integral lamination l on S as in (255), we a regular function Ml
on LocSL2,S by

Ml(L, α) :=
∏

i

Tr
(
Monniαi

(L, α)
)∏

j

�
m j
β j

(L, α).

Theorem 10.14 The functions Ml, l ∈ LZ(S), form a linear basis in the space
O(LocSL2,S).

Theorem 10.15 For any decorated surface S, there is a canonical isomor-
phism

A+PGL2,S
(Zt ) = LZ(S).

Theorem 10.15 is proved similarly to Theorem 12.1 in [17]. Notice that
APGL2,S is a positive space for the adjoint group PGL2, the potential W lives
on this space and is a positive function there. Theorem 10.14 is proved by
using arguments similar to the proof of Theorem 10.12 and [17, Proposition
12.2].

Combining Theorem 10.14 and Theorem 10.15 we arrive at a construction
of the canonical basis predicted by Conjecture 10.11 for G = PGL2.

10.4 Surface affine Grassmannian and amalgamation

The surface affine Grassmannian GrG,S . Given a twisted right G(K)-local
system L on S, there is the associated flat affine Grassmannian bundle LGr :=
L×G(K) Gr. Similarly to Definition 10.1, we define

Definition 10.16 Let S be a decorated surface. The moduli space GrG,S para-
metrizes pairs (L, ν) where L is a twisted right G(K)-local system on S, and
ν a flat section of the restriction of LGr to the punctured boundary ∂̂(∗S).

Abusing terminology, the data ν is given by the lattices Lm at the marked
points m on S.

The moduli space G̃rG,S parametrizes similar data (L̃, ν), where L̃ is a
twisted G(K)-local system on S trivialized at a given point of S. So one has
GrG,S = G\G̃rG,S.
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Example.Let Dn be a disc with n special points on the boundary. Then a choice
of a special point provides isomorphisms

GrG,Dn = Confn(Gr), G̃rG,Dn = Grn.

Cutting and amalgamating decorated surfaces. Let I be an ideal edge on a
decorated surface S, i.e. a path connecting two marked points. Cutting S along
the edge I we get a decorated surface S∗. Denote by I′ and I′′ the boundary
intervals on S∗ obtained by cutting along I.

Conversely, gluing boundary intervals I′ and I′′ on a decorated surface S∗,
we get a new decorated surface S. We assume that the intervals I′ and I′′ on
S∗ are oriented by the orientation of the surface, and the gluing preserves the
orientations.

More generally, let S be a decorated surface obtained from decorated sur-
faces S1, . . . , Sn by gluing pairs {I′1, I′′1}, …, {I′m, I′′m} of oriented boundary
intervals. We say that S is the amalgamation of decorated surfaces S1, . . . , Sn ,
and use the notation S = S1 ∗ · · · ∗ Sn. Abusing notation, we do not specify
the pairs {I′1, I′′1}, . . . , {I′m, I′′m}.
Amalgamating surface affineGrassmannians.There is a moduli space GrG,I
related to an oriented closed interval I, so that there is a canonical isomorphism
of stacks

GrG,I = Conf2(Gr).

Definition 10.17 Let I′, I′′ be boundary intervals on a decorated surface S∗,
perhaps disconnected. The amalgamation stack GrG,S∗(I′ ∗ I′′) parametrises
triples (L, γ, g), where (L, γ ) is the data parametrised by GrG,S∗ , and g is a
gluing data, given by an equivalence of stacks

g : GrG,I′
∼−→ GrG,I′′ . (256)

This immediately implies that there is a canonical equivalence of stacks:

GrG,S
∼−→ GrG,S∗(I

′ ∗ I′′). (257)

Given decorated surfaces S1, . . . , Sn and a collection {I′1, I′′1}, …, {I′m, I′′m}
of pairs of boundary intervals, generalising the construction from Definition
10.17, we get the amalgamation stack

GrG,S1∗···∗Sn = GrG,S1∗···∗Sn (I′1 ∗ I′′1, . . . , I′m ∗ I′′m).

Applying equivalences (257) we get
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618 A. Goncharov, L. Shen

Lemma 10.18 There is a canonical equivalence of stacks:

GrG,S
∼−→ GrG,S1∗···∗Sn (I′1 ∗ I′′1, . . . , I′m ∗ I′′m). (258)

Let T be an ideal triangulation of a decorated surface S. Let t1, . . . , tn be
the triangles of the triangulation. Abusing notation, denote by ti the decorated
surface given by the triangle ti , with the special points given by the vertices.
Denote by I′i and I′′i the pair of edges obtained by cutting an edge Ii of the
triangulation t , i = 1, . . . ,m. Then one has an isomorphism of stacks

GrG,S = GrG,t1∗···∗tn (I′1 ∗ I′′1, . . . , I′m ∗ I′′m). (259)

10.5 Top components of the surface affine Grassmannian

10.5.1 Regularised dimensions

Recall that if a finite dimensional group A acts on a finite dimensional variety
X , we define the dimension of the stack X/A by

dim X/A := dim X − dim A.

Our goal is to generalise this definition to the case when X and A could be
infinite dimensional.
Dimension torsors tn . Let us first define a rank one Z-torsor t. The kernel N

of the evaluation map G(O) → G(C) is a prounipotent algebraic group over
C. Let N be its finite codimension normal subgroup. We assign to each such
an N a copy Z(N ) of Z, and for each pair N1 ⊂ N2 such that N2/N1 is a finite
dimensional, an isomorphism of Z-torsors

iN1,N2 : Z(N1) −→ Z(N2), x �−→ x + dim N2/N1. (260)

Definition 10.19 A Z-torsor t is given by the collection of Z-torsors Z(N ) and
isomorphisms iN1,N2 . We set tn := t⊗n for any n ∈ Z.

In particular, t0 = Z. To define an element of tn means to exhibit a collection
of integers dN assigned to the finite codimension subgroups N of N related by
isomorphisms (260).
Example. There is an element dim G(O) ∈ t, given by an assignment

dim G(O) := {N �−→ dim G(O)/N ∈ Z(N )} ∈ t.

More generally, there is an element

n dim G(O) := {N �−→ dim (G(O)/N )n ∈ Z(N )} ∈ tn.
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For example, the stack ∗/G(O)n , where ∗ = Spec(C) is the point, has
dimension

dim ∗ /G(O)n = −n dim G(O) ∈ t−n.

If X and Y have dimensions dim X ∈ tn and dim Y ∈ tm , then dim X×Y ∈
tn+m .
Dimension torsors tnA. We generalise this construction by replacing the group
G(O) by a pro-algebraic group A, which has a finite codimension prounipotent
normal subgroup.16 Then there are the dimension torsor tA, its tensor powers
tnA, n ∈ Z, and an element dim A ∈ tA. One has tAn = tnA. Moreover,

n dim A ∈ tnA, tnA = {m + n dim A},m ∈ Z.

Regularised dimension. Given such a group A, we can define the dimension
of a stack X under the following assumptions.

1. There is a finite codimension prounipotent subgroup N ⊂ A such that

Nn acts freely onX .

2. There is a finite dimensional stack Y and an action of the group Am on Y
such that

Y/Am = X /Nn. (261)

3. There exists a finite codimension normal prounipotent subgroup M ⊂ A
such that the action of Am onY restricts to the trivial action of the subgroup
Mm on Y .

The last condition implies that we have a finite dimensional stack
Y/(A/Mm). The stack Y/Am is the quotient of the stack Y/(A/Mm) by the
trivial action of the group Mm .

In this case we define an element of the torsor tn−mA by the assignment

(N, M) �−→ dim(Y/Am)+ dim (Nn) := (n − m) dim A + dim Y
−n dim(A/N) ∈ tn−mA . (262)

Definition 10.20 Assuming (1)–(2), the assignment (262) defines the regu-
larised dimension

dim X ∈ tn−mA .

16 Taking the quotient by a unipotent group does not affect the category of equivariant sheaves.
This is why we require the prounipotence condition here.
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Remark. Often an infinite dimensional stack X does not have a canonical
presentation (261), but rather a collection of such presentations. For instance
such a presentation of the stack M◦

l defined below depends on a choice of
an ideal triangulation T of S. Then we need to prove that the regularised
dimension is independent of the choices.

10.5.2 Top components of the stack GrG,S

Suppose that a decorated surface S is an amalgamation of decorated surfaces:

S = S1 ∗ . . . ∗ Sn. (263)

Definition 10.21 Given an amalgamation pattern (263), define the amalgama-
tion

AG,S1(Z
t ) ∗ . . . ∗AG,Sn (Z

t ) := {(l1, . . . , ln) ∈ AG,S1(Z
t )

× . . .×AG,Sn (Z
t ) | (264) holds} :

π t
I′k
(li ) = π t

I′′k
(l j ) for any boundary intervals I′k ⊂ Si and I′′k ⊂ S j

glued in S. (264)

Lemma 10.22 Given an amalgamation pattern (263), there are canonical
isomorphism of sets

AG,S(Z
t ) = AG,S1(Z

t ) ∗ . . . ∗AG,Sn (Z
t ).

A+G,S(Z
t ) = A+G,S1

(Zt ) ∗ . . . ∗A+G,Sn
(Zt ).

In this case we say that l is presented as an amalgamation, and write l =
l1 ∗ . . . ∗ ln .

Let us pick an ideal triangulation T of S, and present S as an amalgamation
of the triangles:

S = t1 ∗ . . . ∗ tn. (265)

By Lemma 10.22, any l ∈ A+G,S(Z
t ) is uniquely presented as an amalga-

mation

l = l1 ∗ . . . ∗ ln, li ∈ A+G,ti
(Zt ). (266)
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Recall that given a polygon Dn , there are cycles

M◦
l := κ(C◦l ) ⊂ GrG,Dn , l ∈ A+G,Dn

(Zt ).

Definition 10.23 Given an ideal triangulation T of S and an l ∈ A+G,S(Z
t ) we

set, using amalgamations (265) and (266),

M◦
T,l =M◦

t1,l1 ∗ . . . ∗M◦
tn,ln , MT,l := Zariski closure of M◦

T,l .

Thanks to Lemma 6.14, the restriction to the boundary intervals of S leads
to a map of sets

A+G,S(Z
t ) −→ P+{boundary intervals ofS}

.

It assigns to a point l ∈ A+G,S(Z
t ) a collection of dominant coweights

λI1, . . . , λIn ∈ P+ at the boundary intervals I1, . . . , In of S.
For any decorated subsurface i : S′ ⊂ S there is a projection given by the

restriction map for the surface affine Grassmannian: rGr : GrG,S −→ GrG,S′ .
There are two canonical projections:

A+G,S(Z
t ) GrG,S

r tA ↓ ↓ rGr

Conf+G,S′(A)(Zt ) GrG,S′)

(267)

Theorem 10.24 Let S be a decorated surface.

(i) The stackMT,l does not depend on the triangulation T . We denote it by
Ml .

(ii) Let l ∈ A+G,S(Z
t ). Let {I1, . . . , In} be the set of boundary intervals of S,

and λI1, . . . , λIn are the dominant coweights assigned to them by l. Then

dim Ml = 〈ρ, λI1 + . . .+ λIn 〉 − χ(S) dim G(O) ∈ t−χ(S). (268)

(iii) The stacksMl , l ∈ A+G,S(Z
t ), are top dimensional components of GrG,S.

(iv) The map l �−→Ml provides a bijection

A+G,S(Z
t )

∼−→ {top dimensional components of the stackGrG,S}.

This isomorphism commutes with the restriction to decorated subsurfaces
of S.
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Proof Let us calculate first dimensions of the stacks M◦
T,l , and show that they

are given by formula (268). We present first a heuristic dimension count, and
then fill the necessary details.
Heuristic dimension count.Let us present a decorated surface S as an amalga-
mation of a (possible disconnected) decorated surface along a pair of boundary
intervals I′, I′′, as in Definition 10.17. The space of isomorphisms g from (256)
is a disjoint union G(K)-torsors parametrised by dominant coweights λ, since
the latter parametrise G(K)-orbits on Gr × Gr. Pick one of them.

Let L′0
λ−→ L′1 (respectively L′′0

λ−→ L′′1) be a pair of lattices assigned
to the vertices of the interval I′ (respectively I′′). Then the gluing data is a
map g : (L′0, L′1) −→ (L′′0, L′′1). Let Gλ be the subgroup stabilising the pair

L′0
λ−→ L′1. The space of gluings is a Gλ-torsor. The group Gλ is a subgroup

of codimension 2〈ρ, λ〉 in Aut L0
∼= G(O). So

dim Gλ = dim G(O)− 2〈ρ, λ〉 = dim G(O)− dim Grλ,λ∨ .

Take the stack M◦
t,l assigned to a triangle t and a point l ∈ Conf+3 (A)(Zt ).

Let λ1, λ2, λ3 be the dominant coweights assigned to the sides of the triangle
by l. Then M◦

t,l is an open part of a component of the stack Grλ1,λ2,λ3/G(O).
Thus

dim M◦
t,l = 〈ρ, λ1 + λ2 + λ3〉 − dim G(O) ∈ t−1. (269)

Let us calculate now the dimension of the stackM◦
T,l . Let |T | be the number

of triangles, and Eint (respectively Eext) the set of the internal (respectively
external) edges of the triangulation T . Then the dimension of the product of
stacks assigned to the triangles is

∑

E∈Eext

〈ρ, λE 〉 + 2
∑

E∈Eint

〈ρ, λE 〉 − |T | dim G(O) ∈ t−|T |.

Gluing two boundary intervals into an internal edge E , with the dominant
weights λE associated to it, we have to add the dimension of the corresponding
gluing data torsor, that is

dim G(O)− 2〈ρ, λE 〉 ∈ t.
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So, gluing all the intervals, we get

∑

E∈Eext

〈ρ, λE 〉 + (|Eint| − |T |) dim G(O)

=
∑

E∈Eext

〈ρ, λE 〉 − χ(S) dim G(O) = (268).

Notice that |Eint|− |T | = −χ(S). Indeed, the triangles t with external sides
removed cover the surface S minus the boundary, which has the same Euler
characteristic as S.
Rigorous dimension count. For each of the triangles t of the triangulation T
there are three dominant coweights λ(t) := λ1(t), λ2(t), λ3(t) assigned by l
to the sides of t . Pick a vertex v(t) of the triangle t . We present the stack GrG,t
as a quotient of the convolution variety

GrG,t = Grλ(t)/G(O). (270)

Namely, choose the lattice Lv(t) at the vertex v(t) to be the standard lattice
Lv(t) = G(O).

There exists a finite codimension normal prounipotent subgroup Nt,l ⊂
G(O) acting trivially on Grλ(t). It depends on the choice of coweights λ(t),
and, via them, on the choice of the t and l. We assign to each finite codimension
normal subgroup N ′t,l ⊂ Nt,l a finite dimensional stack

Grλ(t)

G(O)/N ′t,l
.

Its dimension is 〈ρ, λ1 + λ2 + λ3〉 − dim G(O)/N ′t,l . This just means that
we have formula (269).

There is a canonical surjective map of stacks

GrG,S −→
∏

t∈T
GrG,t =

∏

t∈T
Grλ(t)/G(O). (271)

Its fibers are torsors over the product over the set Eint of internal edges E
of T of certain groups Gλ(E) defined as follows. Let λ(E) be the dominant
coweight assigned to E by l. Consider the pair E ′, E ′′ of edges of triangles
glued into the edge E . For each of them, there is a pair of the lattices assigned
to its vertices. We get two pairs of lattices:

(
L−E ′

λ(E)−→ L+E ′
)

and

(
L−E ′′

λ(E)−→ L+E ′′
)

.
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Choose one of the edges, say E ′. Set Gλ(E) := Aut (L−E ′
λ(E)−→ L+E ′). There-

fore we conclude that

The fibers of the map (271) are torsors over the group
∏

E∈Eint

Gλ(E).

For each E , choose a finite codimension subgroup Nλ(E) ⊂ Gλ(E). Then
we are in the situation discussed right before Definition 10.20, where

X =M◦
l , A = G(O), N := ∩E∈Eint Nλ(E), M = ∩t N ′t,l ,
n = |Eint|, m = |T |.

So we get the expected formula for the regularised dimension of M◦
T,l .

The resulting regularised dimension does not depend on the choice of ideal
triangulation T—the triangulation does not enter to the answer.

Alternatively, one can see this as follows. Any two ideal triangulations of S
are related by a sequence of flips. Let T −→ T ′ be a flip at an edge E . Let RE
be the unique rectangle of the triangulation T with the diagonal E . Consider
the restriction map π : GrG,S −→ GrRE ,S . So one can fiber M◦

l over the
component M◦

π t (l). The dimension of the latter does not depend on the choice
of the triangulation of the rectangle.

A similar argument with a flip of triangulation proves (i). Combining with
the formula for the regularised dimension of M◦

T,l we get (ii).
(iii), (iv). Present S as an amalgamation of the triangles of an ideal triangu-

lation. It is known that the cycles Ml are the top dimensional components of
the convolution variety, and thus the stack GrG,t , assigned to the triangle. It
remains to use Lemma 10.18. ��

11 Cluster varieties, frozen variables and potentials

11.1 Basics of cluster varieties

Definition 11.1 A quiver q is described by a data (�, �0, {ei }, (∗, ∗)), where

1. � is a lattice, �0 is a sublattice of �, and {ei } is a basis of � such that �0
is generated by a subset of frozen basis vectors;

2. (∗, ∗) is a skewsymmetric 1
2Z-valued bilinear form on � with (ei , e j ) ∈ Z

unless ei , e j ∈ �0.

Any non-frozen basis element ek provides a mutated in the direction ek
quiverq′. The quiverq′ is defined by changing the basis {ei }only. The new basis
{e′i } is defined via halfreflection of the {ei } along the hyperplane (ek, ·) = 0:
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e′i :=
{
ei + [εik]+ek if i �= k
−ek if i = k.

(272)

Here [α]+ := α if α ≥ 0 and [α]+ := 0 otherwise. The frozen/non-
frozen basis vectors of the mutated quiver are the images of the ones of the
original quiver. The composition of two mutations in the same direction k is
an isomorphism of quivers.

Set εi j := (ei , e j ). A quiver can be described by a data q = (I, I0, ε), where
I (respectively I0) is the set parametrising the basis vectors (respectively frozen
vectors). Formula (272) amounts then to the Fomin–Zelevinsky formula telling
how the ε-matrix changes under mutations.

ε′i j :=
⎧
⎨

⎩

−εi j if k ∈ {i, j}
εi j if εikεk j ≤ 0, k /∈ {i, j}
εi j + |εik | · εk j if εikεk j > 0, k /∈ {i, j}.

(273)

We assign to every quiver q two sets of coordinates, each parametrised by
the set I: theX -coordinates {Xi }, and theA-coordinates {Ai }. Given a mutation
of quivers μk : q �−→ q′, the cluster coordinates assigned to these quivers are
related as follows. Denote the cluster coordinates related to the quiver q′ by
{X ′i } and {A′i }. Then

Ak A
′
k :=

∏

j |εk j>0

A
εk j
j +

∏

j |εk j<0

A
−εk j
j ; A′i = Ai , i �= k. (274)

If any of the sets { j |εk j > 0} or { j |εk j < 0} is empty, the corresponding
monomial is 1.

X ′i :=
{
X−1
k if i = k

Xi (1+ X−sgn(εik)

k )−εik if i �= k,
(275)

The tropicalizations of these transformations are

a′k := −ak +min

⎧
⎨

⎩
∑

j |εk j>0

εk j a j ,
∑

j |εk j<0

−εk j a j

⎫
⎬

⎭ ; a′i = ai , i �= k.

(276)

x ′i :=
{−xk if i = k
xi − εikmin{0,−sgn(εik)xk} if i �= k,

(277)

Cluster transformations are transformations of cluster coordinates obtained
by composing mutations. Cluster A-coordinates and mutation formulas (272)
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and (274) are main ingredients of the definition of cluster algebras [23]. Cluster
X -coordinates and mutation formulas (275) describe a dual object, introduced
in [18] under the name cluster X -variety.
The cluster volume forms [21]. Given a quiver q, consider the volume forms

VolqA := d log A1 ∧ . . . ∧ d log An, VolqX := d log X1 ∧ . . . ∧ d log Xn.

Cluster transformations preserve them up to a sign: given a mutation q �−→
q′, we have

Volq
′

A = −VolqA, Volq
′

X = −VolqX .

Denote by Or� the two element set of orientations of a rank n lattice �,
given by expressions l1 ∧ · · · ∧ ln where {li } form a basis of �. An orientation
or� of � is a choice of one of its elements. Given a basis {ei } of �, we define
its sign sign(e1, . . . , en) by e1 ∧ · · · ∧ en = sign(e1, . . . , en)or�. A quiver
mutation changes the sign of the basis, and the sign of each of the cluster
volume forms. So there is a definition of the cluster volume forms invariant
under cluster transformations.

Definition 11.2 Choose an orientation or� for a quiver q. Then in any quiver
obtained by from q by mutations, the cluster volume forms are given by

VolA = sign(e1, . . . , en)d log A1 ∧ . . . ∧ d log An,

VolX = sign(e1, . . . , en)d log X1 ∧ . . . ∧ d log Xn.

Residues of the cluster volume form VolA and frozen variables. Take a
space M equipped with a cluster A-coordinate system {Ai }.
Lemma 11.3 Let us assume that k ∈ I− I0 is nonfrozen, and εk j �= 0 for some
j . Then

ResAk=0(VolA) = 0. (278)

Proof We have ResAk=0(VolA) = ±∧i �=k d log Ai . Since k is nonfrozen,
there is an exchange relation (274). It implies a monomial relation on the
locus Ak = 0:

∏
j A

εk j
j = −1. Since εk j is not identically zero, this monomial

is nontrivial. Thus
∧

i �=k d log Ai = 0 at the Ak = 0 locus. ��
Corollary 11.4 A coordinate Ak, with εk j �= 0 for some j , can be nonfrozen
only if we have (278), i.e. the functions A1, . . . , Âk, . . . , An become dependent
on every component of the Ak = 0 locus.
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If we define a cluster algebra axiomatically, without referring to a particular
space on which it is realised, then any subset of an initial quiver can be declared
to be the frozen subset. However if a cluster algebra is realised geometrically,
we do not have much freedom in the definition of frozen variables, as Corollary
11.4 shows. This leads to the following geometric definition of the frozen
coordinates.

Definition 11.5 Let M be a space equipped with a cluster A-coordinate sys-
tem. Then a cluster variable A is a frozen variable if and only if the residue
form ResA(VolA) is not zero.

Non-negative real points for a cluster algebra. The space of positive real
points of any positive space is well defined. Let us define the space of non-
negative real points for a cluster algebra.

Let {Aq
i }, i ∈ I, be the set of all cluster coordinates in a given quiver q.

The cluster algebra Oaff(A) is the algebra generated by the formal variables
{Aq

i }, for all quivers q related by mutations to a given one, modulo the ideal
generated by exchange relations (274):

Oaff(A) := Z[Aq
i ]

( exchange relations )
. (279)

This ring is not necessarily finitely generated. Let Aaff be its spectrum.
Then the points of Aaff(R≥0) are just the collections of positive real numbers
{aqi ∈ R≥0} satisfying the exchange relations. The positive boundary is defined
as the complement to the set of positive real points:

∂Aaff(R≥0) := Aaff(R≥0)−Aaff(R>0).

Let A f be a frozen variable. Then {A f = 0}∩∂Aaff(R≥0) is of real codimen-
sion one inAaff(R≥0). Indeed, the frozenA-cluster coordinates do not mutate,
and so the codimension one domain given by the points with the coordinates
A ft = 0, Aq

j > 0 where j is different then ft is a part of the intersection.

Let Aq
k be a non-frozen variable. It is likely, although we did not prove this,

that in many cases

{Aq
k = 0} ∩ ∂Aaff(R≥0) is of real codimension ≥ 2in Aaff(R≥0). (280)

Indeed, the exchange relation for the Aq
k , restricted to the Aq

k = 0 hyper-
plane, reads

0 · Aq′
k =

∏

j |εk j>0

A
εk j
j +

∏

j |εk j<0

A
−εk j
j .
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So both monomials on the right, being non-negative, are zero, and each of
them is non-empty: the empty one contributes 1, violating 0 on the left. So we
get at least two different cluster coordinates equal to zero. It is easy to see that
then in any cluster coordinate system at least two of cluster coordinates are
zero.

11.2 Frozen variables, partial compactification Â, and potential on the
X -space

Potential on the X -space

Lemma 11.6 Any frozen f ∈ I0 gives rise to a tropical point l f ∈ A(Zt ) such
that in any cluster A-coordinate system all tropical A-coordinates except a f
are zero, and a f = 1.

Proof Pick a cluster A-coordinate system α = {A f , . . .} starting from a
coordinate A f . Consider a tropical point in A(Zt ) with the coordinates
(1, 0, . . . , 0). It is clear from (276) that the coordinates of this point are invari-
ant under mutations at non-frozen vertices. Indeed, at least one of the two
quantities we minimize in (276) is zero, and the other must be non-negative.

��
The potential. Let us assume that there are canonical maps, implied by the
cluster Duality Conjectures for the dual pair (A,X∨) of cluster varieties:

IA : A(Zt ) −→ L+(X∨), IX : X∨(Zt ) −→ L+(A).

Here L+(X∨) and L+(A) are the sets of universally Laurent functions.

Definition 11.7 Let us assume that for each frozen f ∈ I0 there is a function

WX∨, f := IA(l f ) ∈ L+(X∨)

predicted by the Duality Conjectures. Then the potential on the space X is
given by the sum

WX∨ :=
∑

f ∈I0

WX∨, f .

Partial compactifications of the A-space. Given any subset I′0 ∈ I0, we can
define a partial completion A

⊔
f ∈I′0 D f of A by attaching to A the divisor D f

corresponding to the equation A f = 0 for each f ∈ I′0. The duality should
look like
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⎛

⎝A
⊔

f ∈I′0

D f

⎞

⎠ <=>

⎛

⎝X∨,
∑

f ∈I′0

W f

⎞

⎠ .

The order of pole of IX (l) at the divisor D f should be equal to W t
f (l).

In particular, IX (l) extends to A
⊔

D f if and only if it is in the subset {l ∈
X∨(Zt ) |W t

f (l) ≥ 0} ⊂ X∨(Zt ).
Canonical tropical points of the X -space. Let i ∈ I. Given a cluster X -
coordinate system, consider a point ti ∈ X (Zt ) with the coordinates ε j i ,
j ∈ I.

Lemma 11.8 The point ti is invariant undermutations of clusterX -coordinate
systems. So there is a point ti ∈ X (Zt ) which in any cluster X -coordinate
system has coordinates ε j i , j ∈ I.

Proof Given a mutation in the direction of k, let us compare, using (277), the
rule how the X -coordinates {ε j i }, j ∈ I change with the mutation formulas
(273) for the matrix εi j .

Let us assume that k /∈ {i, j}. Then, due to formula (277) for mutation of
tropical X -points, we have to prove that

ε′j i
?= ε j i − ε jkmin{0,−sgn(ε jk)εki }. (281)

Let us assume now that ε jkεki < 0. Then sgn(−ε jk)εki > 0. So
min{0, sgn(−ε jk)εki } = 0, and the right hand side is ε j i . This agrees with
ε′i j = εi j , see (273), in this case.

If ε jkεki > 0, then sgn(−ε jk)εki < 0. So the right hand side is

ε j i − ε jkmin{0, sgn(−ε jk)εki } = ε j i − ε jksgn(−ε jk)εki = ε j i + |ε jk |εki .

Comparing with (273), we see that in both cases we get the expected formula
(281).

Finally, if k ∈ {i, j}, then ε′i j = −εi j , and by formula (277), we also get
−εi j . ��

Let us assume that, for each frozen f ∈ I0, there is a function IX (t f ) ∈
L+(A∨). predicted by the duality conjectures. Then we conjecture that in
many situations there exist monomials M f of frozen A-coordinates such that
the potential on the space A is given by

WA∨ :=
∑

f ∈I0

M f · IX (t f ).
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