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Abstract

Big Data bring new opportunities to modern society and challenges to data scientists. On one 

hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities 

that are not possible with small-scale data. On the other hand, the massive sample size and high 

dimensionality of Big Data introduce unique computational and statistical challenges, including 

scalability and storage bottleneck, noise accumulation, spurious correlation, incidental 

endogeneity, and measurement errors. These challenges are distinguished and require new 

computational and statistical paradigm. This article gives overviews on the salient features of Big 

Data and how these features impact on paradigm change on statistical and computational methods 

as well as computing architectures. We also provide various new perspectives on the Big Data 

analysis and computation. In particular, we emphasize on the viability of the sparsest solution in 

high-confidence set and point out that exogeneous assumptions in most statistical methods for Big 

Data can not be validated due to incidental endogeneity. They can lead to wrong statistical 

inferences and consequently wrong scientific conclusions.
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1 Introduction

Big Data promise new levels of scientific discovery and economic value. What is new about 

Big Data and how they differ from the traditional small or medium-scale data? This article 

overviews the opportunities and challenges brought by Big Data, with emphasis on the 

distinguished features of Big Data and statistical and computational methods as well as 

computing architecture to deal with them.
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1.1 Background

We are entering the era of Big Data — a term that refers to the explosion of available 

information. Such a Big Data movement is driven by the fact that massive amounts of very 

high dimensional or unstructured data are continuously produced and stored with much 

cheaper cost than they used to be. For example, in genomics we have seen a dramatic drop 

in price for whole genome sequencing [1]. This is also true in other areas like social media 

analysis, biomedical imaging, high frequency finance, analysis of surveillance videos and 

retail sales. The existing trend that data can be produced and stored more massively and 

cheaply is likely to maintain or even accelerate in the future [2]. This trend will have deep 

impact on science, engineering, and business. For example, scientific advances are 

becoming more and more data-driven and researchers will more and more think of 

themselves as consumers of data. The massive amounts of high dimensional data bring both 

opportunities and new challenges to data analysis. Valid statistical analysis for Big Data is 

becoming increasingly important.

1.2 Goals and Challenges of Analyzing Big Data

What are the goals of analyzing Big Data? According to [3], two main goals of high-

dimensional data analysis are to develop effective methods that can accurately predict the 

future observations and at the same time to gain insight into the relationship between the 

features and response for scientific purposes. Furthermore, due to large sample size, Big 

Data give rise to two additional goals: To understand heterogeneity and commonality across 

different sub-populations. In other word, Big Data give promises for: (i) Exploring the 

hidden structures of each sub-population of the data, which is traditionally not feasible and 

might even be treated as “outliers” when the sample size is small; (ii) Extracting important 

common features across many sub-populations even when there are large individual 

variations.

What are the challenges of analyzing Big Data? Big Data are characterized by high 

dimensionality and large sample size. These two features raise three unique challenges: (i) 

High dimensionality brings noise accumulation, spurious correlations, and incidental 

homogeneity; (ii) High dimensionality combined with large sample size creates issues such 

as heavy computational cost and algorithmic instability; (iii) The massive samples in Big 

Data are typically aggregated from multiple sources at different time points using different 

technologies. This creates issues of heterogeneity, experimental variations, and statistical 

biases, and requires us to develop more adaptive and robust procedures.

1.3 Paradigm Shifts

To handle the challenges of Big Data, we need new statistical thinking and computational 

methods. For example, many traditional methods that perform well for moderate sample size 

do not scale to massive data. Similarly, many statistical methods that perform well for low 

dimensional data are facing significant challenges in analyzing high dimensional data. To 

design effective statistical procedures for exploring and predicting Big Data, we need to 

address Big Data problems such as heterogeneity, noise accumulation, spurious correlations, 

and incidental endorgeneity, in addition to balancing the statistical accuracy and 

computational efficiency.
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In terms of statistical accuracy, dimension reduction and variable selection play pivotal roles 

in analyzing high dimensional data. This is designed to address noise accumulation issues. 

For example, in high dimensional classification, [4] and [5] showed that conventional 

classification rules using all features perform no better than random guess due to noise 

accumulation. This motivates new regularization methods [6, 7, 8, 9, 10] and sure 

independence screening [11, 12, 13]. Furthermore, high dimensionality introduces spurious 

correlations between response and unrelated covariates, which may lead to wrong statistical 

inference and false scientific conclusions [14]. High dimensionality also gives rise to 

incidental endogeneity, a phenomenon that many unrelated covariates may incidentally be 

correlated with the residual noises. The endogeneity creates statistical biases and causes 

model selection inconsistency that lead to wrong scientific discoveries [15, 16]. Yet, most 

statistical procedures are based on unrealistic exogenous assumptions that can not be 

validated by data (see Section 3.4 and [17]). New statistical procedures with these issues in 

mind are crucially needed.

In terms of computational efficiency, Big Data motivate the development of new 

computational infrastructure and data storage methods. Optimization is often a tool, not a 

goal, to Big Data analysis. Such a paradigm change has led to significant progresses on 

developments of fast algorithms that are scalable to massive data with high dimensionality. 

This forges cross-fertilizations among different fields including statistics, optimization, and 

applied mathematics. For example, [18] showed that the NP-hard best subset regression can 

be recasted as a L1-norm penalized least squares problem which can be solved by the interior 

point method. Alternative algorithms to accelerate this L1-norm penalized least squares 

problems, such as least angle regression [19], threshold gradient descent [20], and 

coordinate descent [21, 22], iterative shrinkage-thresholding algorithms [23, 24], are 

proposed. Besides large-scale optimization algorithms, Big Data also motivate the 

development of majorization-minimization algorithms [25, 26, 27],“large-scale screening 

and small-scale optimization” framework [28], parallel computing methods [29, 30, 31], and 

approximate algorithms that are scalable to large sample size.

1.4 Organization of This Article

The rest of this article is organized as follows. Section 2 overviews the rise of Big Data 

problem from science, engineering, and social science. Section 3 explains some unique 

features of Big Data and their impacts on statistical inference. Statistical methods that tackle 

these Big Data problems are given in Section 4. Section 5 gives an overview on scalable 

computing infrastructure for Big Data storage and processing. Section 6 discusses the 

computational aspect of Big Data and introduces some recent progress. Section 7 concludes.

2 Rises of Big Data

Massive sample size and high dimensionality characterize many contemporary datasets. For 

example, in genomics, there have been more than 500, 000 microarrays that are publicly 

available with each array containing tens of thousands of expression values of molecules; In 

biomedical engineering, there have been tens of thousands of terabytes of fMRI images with 

each image containing more than 50, 000 voxel values. Other examples of massive and high 

dimensional data include unstructured text corpus, social medias, and financial time series, 
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e-commerce data, retail transaction records, surveillance videos. We now briefly illustrate 

some of these Big Data problems.

2.1 Genomics

Many new technologies have been developed in genomics and enable inexpensive and high-

throughput measurement of the whole genome and transcriptome. These technologies allow 

biologists to generate hundreds of thousands of datasets and have shifted their primary 

interests from the acquisition of biological sequences to the study of biological function. The 

availability of massive datasets sheds light towards new scientific discoveries. For example, 

the large amount of genome sequencing data now make it possible to uncover the genetic 

markers of rare disorders [32, 33] and find associations between diseases and rare sequence 

variants [34, 35]. The breakthroughs in biomedical imaging technology allow scientists to 

simultaneously monitor many gene and protein functions, permitting us to study interactions 

in regulatory processes and neuron activities. Moreover, the emergence of publicly available 

genomic databases enables integrative analysis which combines information from many 

sources for drawing scientific conclusions. These researches give rise to many 

computational methods as well as new statistical thinking and challenges [36].

One of the important steps in genomic data analysis is to remove systematic biases (e.g., 

intensity effect, batch effect, dye effect, block effect, among others). Such systematic biases 

are due to experimental variations such as environmental, demographic, and other technical 

factors, and can be more severe when we combine different data sources. They have been 

shown to have substantial effects on gene expression levels and failing to taking them into 

consideration may lead to wrong scientific conclusions [37]. When the data are aggregated 

from multiple sources, it remains an open problem on what is the best normalization 

practice.

Even with the systematic biases removed, another challenge is to conduct large-scale tests to 

pick important genes, proteins, or SNPS. In testing the significance of thousands of genes, 

classical methods of controlling the probability of making one falsely discovered gene are 

no longer suitable and alternative procedures have been designed to control the false 

discovery rates [38, 39, 40, 41, 42] and to improve the power of the tests [42]. These 

technologies, though high-throughput in measuring the expression levels of tens of 

thousands of genes, remain low-throughput in surveying biological contexts (e.g., novel cell 

types, tissues, diseases, etc.).

An additional challenge in genomic data analysis is to model and explore the underlying 

heterogeneity of the aggregated datasets. Due to technology limitations and resource 

constraints, a single lab usually can only afford performing experiments for no more than a 

few cell types. This creates a major barrier for comprehensively characterizing gene 

regulation in all biological contexts, which is a fundamental goal of functional genomics. On 

the other hand, the NCBI Gene Expression Omnibus (GEO) and other public databases have 

cumulated more than 500, 000 gene expression profiles, including microarray, exon array, 

and RNA-seq samples from thousands of biological contexts. Public ChIP-chip and ChIP-

seq data generated by different labs for different proteins and in different contexts are also 

steadily growing. Together, these public data contain enormous amounts of information that 
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have not been fully exploited so far. Massive data aggregated from these public databases 

shed light on systematically studying many biological contexts in a high-throughput way. 

However, how to systematically explore the underlying heterogeneity and unveil the 

commonality across different sub-populations remains an active research area.

2.2 Neuroscience

Many important diseases, including Alzheimer's disease, Schizophrenia, Attention Deficit 

Hyperactive Disorder, Depression, and Anxiety, have been shown to be related to brain 

connectivity networks. Understanding the hierarchical, complex, functional network 

organization of the brain is a necessary first step to explore how the brain changes with 

disease. Rapid advances in neuroimaging techniques, such as functional magnetic resonance 

image (fMRI) and positron emission tomography (PET) as well as electrophysiology, 

provide great potential for the study of functional brain networks, i.e., the coherence of the 

activities among different brain regions [43].

Take fMRI for example. It is a non-invasive technique for determining the neural correlates 

of mental processes in humans. During the past decade, this technique has become a leading 

method in the fields of cognitive and physiological neuroscience and kept producing 

massive amounts of high-resolution brain images. These images enable us to explore the 

association between brain connectivity and potential responses such as disease or 

psychological status. The fMRI data are massive and very high dimensional. Due to its non-

invasive feature, everyday many fMRI machines keep scanning different subjects and 

constantly produce new imaging data. For each data point, the subject's brain is scanned for 

hundreds of times. Therefore, it is a 3D time-course image which contains more than 

hundreds of thousands of voxels. At the same time, the fMRI images are noisy due to its 

technological limit and possible head motion of the subjects. Analyzing such high 

dimensional and noisy data poses great challenges to statisticians and neuroscientists.

Similar to the field of genomics, an important Big Data problem in neuroscience is to 

aggregate datasets from multiple sources. Brain imaging data sharing is becoming more and 

more frequent nowadays [44]. Primary sources of fMRI data arise from the International 

Data Sharing Initiative (INDI) and the 1,000 Functional Connectomes Project, Autism Brain 

Imaging Data Exchange (ABIDE) and ADHD-200 datasets. These international efforts have 

compiled thousands of resting-state fMRI scans along with complimentary structural scans. 

The largest of the datasets is the 1,000 Functional Connectomes Project, which focuses on 

healthy adults and includes limited covariate information on age, gender, handedness, and 

image quality. The ADHD-200 dataset is similarly structured, yet includes diagnostic 

information on disease status such as human IQ. The ABIDE dataset is similar to the 

ADHD-200 dataset, with diagnostic autism and symptom severity information. However, it 

has a greater balance between diseased and non-diseased subjects. These large datasets pose 

great opportunities as well as new challenges.

One of the main challenges, as in the area of genomics, is to remove the systematic biases 

caused by experimental variations and data aggregations. Moreover, statistically-controlled 

inclusion of a subject in a group study, i.e., testing whether a person should be rejected as 

outlier data, is often poorly conducted [45] and voxels cannot be perfectly aligned across 
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different experiments in different laboratories. Therefore, the collected data contain many 

outliers and missing values. These issues make data preprocessing and analysis significantly 

more complicated. Many traditional statistical procedures are not well-suited in this noisy 

high dimensional settings and new statistical thinking is crucially needed.

2.3 Economics and Finance

Over the past decade, more and more corporations are adopting the data-driven approach to 

conduct more targeted services, reduce risks, and improve performance. They are 

implementing specialized data analytics programs to collect, store, manage, and analyze 

large datasets from a range of sources to identify key business insights that can be exploited 

to support better decision making. For example, available financial data sources include 

stock prices, currency and derivative trades, transaction records, high-frequency trades, 

unstructured news and texts, consumers' confidence and business sentiments buried in social 

media and internet, among others. Analyzing these massive datasets helps measuring firms 

risks as well as systematic risks. It requires professionals who are familiar with sophisticated 

statistical techniques in portfolio management, securities regulation, proprietary trading, 

financial consulting, and risk management.

Analyzing large panel of economic and financial data is challenging. For example, as an 

important tool in analyzing the joint evolution of macroeconomics time series, the 

conventional vector autoregressive (VAR) model usually includes no more than ten 

variables, given the fact that the number of parameters grows quadratically with the size of 

the model. However, nowadays econometricians need to analyze multivariate time series 

with more than hundreds of variables. Incorporating all information into the VAR model 

will cause severe overfitting and bad prediction performance. One solution is to resort to 

sparsity assumptions, under which new statistical tools have been developed [46, 47].

Another example is portfolio optimization and risk management [48, 49]. In this problem, 

estimating the covariance and inverse covariance matrices of the returns of the assets in the 

portfolio plays an important role. Suppose that we have 1,000 stocks to be managed. There 

are 500, 500 covariance parameters to be estimated. Even if we could estimate each 

individual parameter accurately, the cumulated error of the whole matrix estimation can be 

large under matrix norms. This requires new statistical procedures. See, for example, [50, 

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] on estimating large covariance matrices and 

their inverse.

2.4 Other Applications

Big Data have numerous other applications. Taking social network data analysis for 

example, massive amount of social network data are being produced by Twitter, Facebook, 

LinkedIn, and YouTube. These data reveal numerous individual's characteristics and have 

been exploited in various fields. For example, [63] used these data to predict influenza 

epidemic; [64] used these data to predict the stock market trend; and [65] used the social 

network data to predict box-office revenues for movies. In addition, the social media and 

internet contain massive amount of information on the consumer preferences and 

confidences, leading economics indicators, business cycles, political attitudes, and the 
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economic and social states of a society. It is anticipated that the social network data will 

continue to explode and be exploited for many new applications.

Several other new applications that are becoming possible in the Big Data era include:

i. Personalized services: With more personal data collected, commercial enterprises 

are able to provide personalized services adapt to individual preferences. For 

example, Target (a retailing company in the United States) are able to predict a 

customer's need by analyzing the collected transaction records.

ii. Internet security: When a network-based attack takes place, historical data on 

network traffic may allow us to efficiently identify the source and targets of the 

attack.

iii. Personalized medicine: More and more health-related metrics such as individual's 

molecular characteristics, human activities, human habits, and environmental 

factors are now available. Using these pieces of information, it is possible to 

diagnose an individual's disease and select individualized treatments.

iv. Digital humanities: Nowadays many archives are being digitized. For example, 

Google has scanned millions of books and identified about every word in every one 

of those books. This produces massive amount of data and enables addressing 

topics in the humanities, such as mapping the transportation system in ancient 

Roman, visualizing the economic connections of ancient China, studying how 

natural languages evolve over time, or analyzing historical events.

3 Salient Features of Big Data

Big Data create unique features that are not shared by the traditional datasets. These features 

pose significant challenges to data analysis and motivate the development of new statistical 

methods. Unlike traditional datasets where the sample size is typically larger than the 

dimension, Big Data are characterized by massive sample size and high dimensionality. 

First, we will discuss the impact of large sample size on understanding heterogeneity: On 

one hand, massive sample size allows us to unveil hidden patterns associated with small sub-

populations and weak commonality across the whole population. On the other hand, 

modeling the intrinsic heterogeneity of Big Data requires more sophisticated statistical 

methods. Secondly, we discuss several unique phenomena associated with high 

dimensionality, including noise accumulation, spurious correlation, and incidental 

endogeneity. These unique features make traditional statistical procedures inappropriate. 

Unfortunately, most high-dimensional statistical techniques address only noise accumulation 

and spurious correlations issues, but not incidental endogeneity. They are based on 

exogeneity assumptions that often can not be validated by collected data, due to incidental 

endogeneity.

3.1 Heterogeneity

Big Data are often created via aggregating many data sources corresponding to different 

sub-populations. Each sub-population might exhibit some unique features not shared by 

others. In classical settings where the sample size is small or moderate, data points from 
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small sub-populations are generally categorized as “outliers” and it is hard to systematically 

model them due to insufficient observations. However, in the Big Data era, the large sample 

size enables us to better understand heterogeneity, shedding light toward studies such as 

exploring the association between certain covariates (e.g., genes or SNPs) and rare outcomes 

(e.g., rare diseases or diseases in small populations) and understanding why certain 

treatments (e.g. chemotherapy) benefit a subpopulation and harm another subpopulation. To 

better illustrate this point, we introduce the following mixture model for the population:

(3.1)

where λj ≥ 0 represents the proportion of the j-th subpopulation, pj (y; θj(x)) is the 

probability distribution of the response of the j-th subpopulation given the covariates x with 

θj(x) as the parameter vector. In practice, many subpopulations are rarely observed, i.e., λj is 

very small. When the sample size n is moderate, nλj can be small, making it infeasible to 

infer the covariate-dependent parameters θj(x) due to the lack of information. However, 

because Big Data are characterized by large sample size n, the sample size nλj for the j-th 

subpopulation can be moderately large even if λj is very small. This enables us to more 

accurately infer about the sub-population parameters θj(·). In short, the main advantage 

brought by Big Data is to understand heterogeneity of sub-populations such as the benefits 

of certain personalized treatments, which are infeasible when sample size is small or 

moderate.

Big Data also allow us to unveil weak commonality across whole population, thanks to large 

sample sizes. For example, the benefit of one drink of red wine per night on heart can be 

difficult to assess without large sample size. Similarly, health risks to exposure of certain 

environmental factors can only be more convincingly evaluated when the sample sizes are 

sufficiently large.

Besides the aforementioned advantages, the heterogeneity of Big Data also poses significant 

challenges to statistical inference. Inferring the mixture model in (3.1) for large datasets 

requires sophisticated statistical and computational methods. In low dimensions, standard 

techniques such as the expectation-maximization algorithm for finite mixture models can be 

applied. In high dimensions, however, we need to carefully regularize the estimating 

procedure to avoid overfitting or noise accumulation and to devise good computation 

algorithms [66, 67]

3.2 Noise Accumulation

Analyzing Big Data requires us to simultaneously estimate or test many parameters. These 

estimation errors accumulate when a decision or prediction rule depends on a large number 

of such parameters. Such a noise accumulation effect is especially severe in high dimensions 

and may even dominate the true signals. It is usually handled by the sparsity assumption [2, 

68, 69].

Take high-dimensional classification for instance. Poor classification is due to the existence 

of many weak features that do not contribute to the reduction of classification error [4]. As 

an example, we consider a classification problem where the data come from two classes:
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(3.2)

We want to construct a classification rule which classifies a new observation  into 

either the first or the second class. To illustrate the impact of noise accumulation in 

classification, we set n = 100 and d = 1, 000. We set μ1 = 0 and μ2 to be sparse, i.e., only the 

first 10 entries of μ2 are nonzero with value 3, and all the other entries are zero. Figure 1 

plots the first two principal components by using the first m = 2, 40, 200 features and the 

whole 1,000 features. As illustrated in these plots, when m = 2 we get high discriminative 

power. However, the discriminative power becomes very low when m is too large due to 

noise accumulation. The first 10 features contribute to classifications and the remaining 

features do not. Therefore, when m > 10, procedures do not get any additional signals, but 

accumulate noises: The larger m, the more noise accumulation, which makes the 

classification procedure deteriorates with dimensionality. For m = 40, the accumulated 

signals compensate the accumulated noise so that the first two-principal components still 

have good discriminative power. When m = 200, the accumulated noise exceeds the signal 

gains.

The above discussion motivates the usage of sparse models and variable selection to 

overcome the effect of noise accumulation. For example, in the classification model (3.2), 

instead of using all the features, we could select a subset of features which attain the best 

signal-to-noise ratio. Such a sparse model provides more improved classification 

performance [68, 69]. In other words, variable selection plays a pivotal role in overcoming 

noise accumulation in classification and regression prediction. However, variable selection 

in high dimensions is challenging due to spurious correlation, incidental endorgeneity, 

heterogeneity, and measurement errors.

3.3 Spurious Correlation

High dimensionality also brings spurious correlation, referring to the fact that many 

uncorrelated random variables may have high sample correlations in high dimensions. 

Spurious correlation may casue false scientific discoveries and wrong statistical inferences.

Consider the problem of estimating the coefficient vector β of a linear model

(3.3)

where  represents the response vector,  represents the 

design matrix,  represents an independent random noise vector, and Id is the d by d 

identity matrix. To cope with the noise accumulation issue, when the dimension d is 

comparable to or larger than the sample size n, it is popular to assume that only a small 

number of variables contribute to the response, i.e., β is a sparse vector. Under this sparsity 

assumption, variable selection can be conducted to avoid noise accumulation, improve the 

performance of prediction, as well as enhance the interpretability of the model with 

parsimonious representation.
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In high dimensions, even for a model as simple as (3.3), variable selection is challenging 

due to the presence of spurious correlation. In particular, [11] showed that, when the 

dimensionality is high, the important variables can be highly correlated to several spurious 

variables which are scientifically unrelated. We consider a simple example to illustrate this 

phenomenon. Let x1, . . . , xn be n independent observations of a d-dimensional Gaussian 

random vector X = (X1, . . . , Xd)T ~ Nd(0, Id). We repeatedly simulate the data with n = 60 

and d = 800 and 6, 400 for 1,000 times. Figure 2 (a) shows the empirical distribution of the 

maximum absolute sample correlation coefficient between the first variable with the 

remaining ones defined as

(3.4)

where  is the sample correlation between the variables X1 and Xj. We see that 

the maximum absolute sample correlation becomes higher as dimensionality increases.

Furthermore, we can compute the maximum absolute multiple correlation between X1 and 

linear combinations of several irrelevant spurious variables:

(3.5)

Using the same configuration as in Figure 2 (a), Figure 2 (b) plots the empirical distribution 

of the maximum absolute sample correlation coefficient between X1 and , where 

S is any size 4 subset of {2, . . . , d} and βj is the least squares regression coefficient of Xj 

when regressing X1 on {Xj}j∈S. Again, we see that even though X1 is utterly independent 

X2, . . . ,Xd, the correlation between X1 and the closest linear combination of any four 

variables of {Xj}j≠1 to X1 can be very high. We refer to [70] and [14] about more theoretical 

results on characterizing the orders of .

The spurious correlation has significant impact on variable selection and may lead to false 

scientific discoveries. Let XS = (Xj)j∈S be the sub-random vector indexed by S and let  be 

the selected set that has the higher spurious correlation with X1 as in Figure 2. For example, 

when n = 60 and d = 6, 400, we see that X1 is practically indistinguishable from  for a set 

 with . If X1 represents the expression level of a gene that is responsible for a disease, 

we can not distinguish it from the other 4 genes in  that have a similar predictive power 

although they are scientifically irrelevant.

Besides variable selection, spurious correlation may also lead to wrong statistical inference. 

We explain this by considering again the same linear model as in (3.3). Here we would like 

to estimate the standard error σ of the residual, which is prominently featured in statistical 

inferences of regression coefficients, model selection, goodness-of-fit test, and marginal 

regression. Let  be a set of selected variables and  be the projection matrix on the 

column space of . The standard residual variance estimator, based on the selected 

variables, is
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(3.6)

The estimator (3.6) is unbiased when the variables are not selected by data and the model is 

correct. However, the situation is completely different when the variables are selected based 

on data. In particular, [14] showed that when there are many spurious variables, σ2 is 

seriously underestimated, which leads further to wrong statistical inferences including model 

selection or significance tests, and false scientific discoveries such as finding wrong genes 

for molecular mechanisms. They also propose a refitted cross-validation method to attenuate 

the problem.

3.4 Incidental Endogeneity

Incidental endogeneity is another subtle issue raised by high dimensionality. In a regression 

setting , the term “endogeneity” [71] means that some predictors {Xj} 

correlate with the residual noise ε. The conventional sparse model assumes

(3.7)

with a small set S = {j : βj ≠ 0}. The exogenous assumption in (3.7) that the residual noise ε 

is uncorrelated with all the predictors is crucial for validity of most existing statistical 

procedures, including variable selection consistency. Though this assumption looks 

innocent, it is easy to be violated in high dimensions as some of variables {Xj} are 

incidentally correlated with ε, making most high-dimensional procedures statistically 

invalid.

To explain the endogeneity problem in more details, suppose that unknown to us, the 

response Y is related to three covariates as follows:

In the data collection stage, we do not know the true model, and therefore collect as many 

covariates that are potentially related to Y as possible, in hope to include all members in S in 

(3.7). Incidentally, some of those Xj's (for j ≠ 1, 2, 3) might be correlated with the residual 

noise ε. This invalidates the exogenous modeling assumption in (3.7). In fact, the more 

covariates are collected or measured, the harder this assumption is satisfied.

Unlike spurious correlation, incidental endogeneity refers to the genuine existence of 

correlations between variables unintentionally, both due to high-dimensionality. The former 

is analogous to find two persons look alike but have no genetic relation, whereas the latter is 

similar to bumping into an acquaintance, both easily occurring in a big city. More generally, 

endogeneity happens as a result of selection biases, measurement errors, and omitted 

variables. These phenomena arise frequently in the analysis of Big Data, mainly due to two 

reasons:
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• With the benefit of new high-throughput measurement techniques, scientists are 

able to and tend to collect as many features as possible. This accordingly increases 

the possibility that some of them might be correlated to the residual noise, 

incidentally.

• Big Data are usually aggregated from multiple sources with potentially different 

data generating schemes. This increases the possibility of selection bias and 

measurement errors, which also cause potential incidental endogeneity.

Whether incidental endogeneity appears in real datasets and how shall we test it in practice? 

We consider a genomics study in which 148 microarray samples are downloaded from GEO 

database and ArrayExpress. These samples are created under Affymetrix HGU133a platform 

for human subjects with prostate cancer. The obtained dataset contains 22,283 probes, 

corresponding to 12,719 genes. In this example, we are interested in the gene named 

“Discoidin domain receptor family, member 1” (abbreviated as DDR1). DDR1 encodes 

receptor tyrosine kinases, which plays an important role in communication of cells with their 

microenvironment. DDR1 is known to be highly related to the prostate cancer [72] and we 

wish to study its association with other genes in patients with prostate cancer. We took the 

gene expressions of DDR1 as the response variable Y and the expressions of all the 

remaining 12,718 genes as predictors. The left panel of Figure 3 draws the empirical 

distribution of the correlations between the response and individual predictors.

To illustrate the existence of endogeneity, we fit an L1-penalized least squares regression 

(Lasso) on the data and the penalty is automatically selected via ten-fold cross validation (37 

genes are selected). We then refit an ordinary least squares regression on the selected model 

to calculate the residual vector. In the right panel of Figure 3, we plot the empirical 

distribution of the correlations between the predictors and the residuals. We see the residual 

noise is highly correlated with many predictors. To make sure these correlations are not 

purely caused by spurious correlation, we introduce a “null distribution” of the spurious 

correlations by randomly permuting the orders of rows in the design matrix such that the 

predictors are indeed independent of the residual noise. By comparing the two distributions, 

we see that the distribution of correlations between predictors and residual noise on the raw 

data (labeled “raw data”) has heaviers tail than that on the permuted data (labeled “permuted 

data”). This result provides stark evidence of endogeneity in this data.

The above discussion shows that incidental endogeneity is likely to be present in Big Data. 

The problem of dealing with endogenous variables is not well understood in high 

dimensional statistics. What is the consequence of this endogeneity? [16] showed that 

endogeneity causes model selection inconsistency. In particular, they provided thorough 

analysis to illustrate the impact of endogeneity on high dimensional statistical inference and 

proposed alternative methods to conduct linear regression with consistency guarantees under 

weaker conditions. See also the next section.

4 Impact on Statistical Thinking

As has been shown in the previous section, massive sample size and high dimensionality 

bring heterogeneity, noise accumulation, spurious correlation, and incidental endogeneity. 
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These features of Big Data make traditional statistical methods invalid. In this section we 

introduce new statistical methods that can handle these challenges. For an overview, see [68] 

and [69].

4.1 Penalized Quasi-likelihood

To handle noise accumulation issue, we assume the model parameter β as in (3.3) is sparse. 

The classical model selection theory, according to [73], suggests to choose a parameter 

vector β that minimizes negative penalized quasi-likelihood:

(4.1)

where QL(β ) is the quasi-likelihood of β and ∥ · ∥0 represents the L0 pseudo-norm (i.e., the 

number of nonzero entries in a vector). Here λ > 0 is a regularization parameter that controls 

the bias-variance tradeoff. The solution to the optimization problem in (4.1) has nice 

statistical properties [74]. However, it is essentially combinatoric optimization and does not 

scale to large-scale problems.

The estimator in (4.1) can be extended to a more general form:

(4.2)

where the term  measures the goodness of fit of the model with parameter β and 

 is a sparsity-inducing penalty that encourages sparsity, in which λ is again 

the tuning parameter that controls the bias-variance tradeoff and γ is a possible fine-tune 

parameter which controls the degree of concavity of the penalty function [8]. Popular 

choices of the penalty function Pλ,γ(·) include the hard-thresholding penalty [75, 76], soft-

thresholding penalty [77, 6], smoothly clipped absolution deviation (SCAD, [8]), and 

minimax concavity penalty (MCP, [10]). Figure 4 visualizes these penalty functions for λ = 

1. We see that all penalty functions are folded concave, but the soft-thresholding (L1-) 

penalty is also convex. The parameter γ in SCAD and MCP controls the degree of concavity. 

From Figure 4(c) and Figure 4(d), we see that a smaller value of γ results in more concave 

penalties. When γ becomes larger, SCAD and MCP converge to the soft-thresholding 

penalty. MCP is a generalization of the hard-thresholding penalty which corresponds to γ = 

1.

How shall we choose among these penalty functions? In applications, we recommend to use 

either SCAD or MCP thresholding since they combine the advantages of both hard- and 

soft-thresholding operators. Many effcient algorithms have been proposed for solving the 

optimization problem in (4.2) with the above four penalties. See Section 5.

4.2 Sparsest Solution in High Confidence Set

The penalized quasi-likelihood estimator (4.2) is somewhat mysterious. A closely related 

method is the the sparsest solution in high confidence set, introduced in the recent book 
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chapter by [17], which has much better statistical intuition. It is a generally applicable 

principle that separates the data information and the sparsity assumption.

Suppose that the data information is summarized by the function  in (4.2). This can be 

a likelihood, quasi-likelihood, or loss function. The underlying parameter vector β0 usually 

satisfies , where  is the gradient vector of the expected loss function 

. Thus, a natural confidence set for β0 is

(4.3)

where ∥ · ∥∞ is the L∞-norm of a vector and γn is chosen so that we have confidence level at 

least 1 — δn, namely

(4.4)

The confidence set  is called high-confidence set since δn → 0. In theory, we can take any 

norm in constructing the high-confidence set. We opt for the L∞ norm, as it produces a 

convex confidence set  when  is convex.

The high-confidence set is a summary of the information we have for the parameter vector 

β0. It is not informative in high-dimensional space. Take, for example, the linear model (3.3) 

with the quadratic loss . The high-confidence set is then

where we take γn ≥ ∥XT ε∥m=infty so that δn = 0. If in addition β0 is assumed to be sparse, 

then a natural solution is the intersection of these two pieces of information, namely, finding 

the sparsest solution in the high-confidence set:

(4.5)

This is a convex optimization problem when  is convex. For the linear model with the 

quadratic loss, it reduces to the Dantzig selector [9].

There are many flexibilities in defining the sparsest solution in high-confidence set. First of 

all, we have a choice of the loss function . We can regard  as the estimation 

equations [78] and define directly the high confidence set (4.3) from the estimation 

equations. Secondly, we have many ways to measure the sparsity. For example, we can use a 

weighted L1-norm to measure the sparsity of β in (4.5). By proper choices of estimating 

equations in (4.3) and measure of sparsity in (4.5), [17] showed that many useful procedures 

can be regarded as the sparsest solution in the high-confidence set. For example, CLIME 

[79] for estimating sparse precision matrix in Gaussian graphic model and the linear 

programming discriminant rule [80] for sparse high-dimensional classification are both the 

sparsest solution in high confidence set. [17] also provided a general convergence theory for 
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such a procedure under a condition similar to the restricted eigenvalue condition in [81]. 

Finally, the idea is applicable to the problems with measurement errors or even endogeneity. 

In this case, the high-confidence set will be defined accordingly to accommodate the 

measurement errors or endogeneity. See, for example, [82].

4.3 Independence Screening

An effective variable screening technique based on marginal screening has been proposed 

by [11]. They aim at handling ultra-high dimensional data for which the aforementioned 

penalized quasi-likelihood estimators become computationally infeasible. For such cases, 

[11] proposed to first use marginal regression to screen variables, reducing the original 

large-scale problem to a moderate-scale statistical problem so that more sophisticated 

methods for variable selection can be applied. The proposed method, named sure 

independence screening, is computationally very attractive. It has been shown to possess 

sure screening property and to have some theoretical advantages over Lasso [83, 13]

There are two main ideas of sure independent screening: (i) It uses the marginal contribution 

of a covariate to probe its importance in the joint model; (ii) Instead of selecting the most 

important variables, it aims at removing variables that are not important. For example, 

assuming each covariate has been standardized, we denote  the estimated regression 

coefficient in a univariate regression model. The set of covariates that survive the marginal 

screening is defined as

(4.6)

for a given threshold δ. One can also measure the importance of a covariate Xj by using its 

deviance reduction. For the least-squares problem, both methods reduce to ranking 

importance of predictors by using the magnitudes of their marginal correlations with the 

response Y. [11] and [83] gave conditions under which sure screening property can be 

established and false selection rates are controlled.

Since the computational complexity of sure screening scales linearly with the problem size, 

the idea of sure screening is very effective in dramatic reduction of the computational 

burden of Big Data analysis. It has been extended in various directions. For example, 

generalized correlation screening was used in [12], nonparametric screening was proposed 

by [84], and principled sure independence screening was introduced in [85]. In addition, 

[86] utilized the distance correlation to conduct screening, [87] employed rank correlation, 

and [28] proposed an iteratively screening and selection method.

Independent screening has never examined multivariate effect of variables on the response 

variable nor has it used the covariance matrix of variables. An extension of this is to use 

multivariate screening, which examines the contributions of small groups of variables 

together. This allows us to examine the synergy of small groups of variables to the response 

variable. However, the bivariate screening already involves O(d2) submodels, which can be 

prohibitive in computation. Covariance assist screening and estimation in [88] can be 

adapted here to prevent examining all bivariate or multivariate submodels. Another possible 
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extension is to develop conditional screening techniques, which rank variables according to 

their conditional contributions given a set of variables.

4.4 Dealing with Incidental Endogeneity

Big Data are prone to incidental endogeneity that makes most popular regularization method 

invalid. It is accordingly important to develop methods that can handle endogeneity in high 

dimensions. More specifically, let's consider the high dimensional linear regression model 

(3.7). [16] showed that for any penalized estimators to be variable selection consistent, a 

necessary condition is

(4.7)

As discussed in the Section 3, the condition in (4.7) is too restrictive for real-world 

applications. Letting S = {j : βj ≠ 0} be the set of important variables, with non-vanishing 

components in β, a more realistic model assumption should be

(4.8)

In the paper by [16], they considered an even weaker version of Equation (4.8), called the 

“over identification” condition, such as

(4.9)

Under condition (4.9), [16] showed that the classical penalized least squares methods such 

as Lasso, SCAD, and MCP, are no longer consistent. Instead, they introduced the Focused 

Generalized Methods of Moments (FGMM) by utilizing the over identification conditions 

and proved that the FGMM consistently selects the set of variables S. We do not go into the 

technical details here but illustrate this by an example.

We continue to explore the gene expression data in Section 3.4. We again treat gene DDR1 

as response and other genes as predictors, and apply the FGMM instead of Lasso. By cross 

validation, the FGMM selects 18 genes. The left panel of Figure 5 shows the distribution of 

the sample correlations between the genes Xj (j = 1, . . . , 12718) and the residuals  after the 

FGMM fit. Here we find that many correlations are non-zero, but it does not matter, because 

we require only (4.9). To verify (4.9), the right panel of Figure 5 shows the distribution of 

the sample correlations between the 18 selected genes (and their squares) and the residuals. 

The sample correlations between the selected genes and residuals are zero, and the sample 

correlations between the squared covariates and residuals are small. Therefore, the modeling 

assumption is consistent to our model diagnostics.

5 Impact on Computing Infrastructure

The massive sample size of Big Data fundamentally challenges the traditional computing 

infrastructure. In many applications we need to analyze internet-scale data containing 

billions or even trillions of data points, which even makes a linear pass of the whole dataset 
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unaffordable. In addition, such data could be highly dynamic and infeasible to be stored in a 

centralized database. The fundamental approach to store and process such data is to divide 

and conquer. The idea is to partition a large problem into more tractable and independent 

subproblems. Each subproblem is tackled in parallel by different processing units. 

Intermediate results from each individual worker are then combined to yield the final output. 

In small scale, such divide-and-conquer paradigm can be implemented either by multi-core 

computing or grid computing. However, in very large scale, it poses fundamental challenges 

to computing infrastructure. For example, when millions of computers are connected to 

scale out to large computing tasks, it is quite likely some computers may die during the 

computing. In addition, given a large computing task, we want to distribute it evenly to 

many computers and make the workload balanced. Designing very large scale, high adaptive 

and fault-tolerant computing systems is extremely challenging and motivates the outcome of 

new and reliable computing infrastructure that supports massively parallel data storage and 

processing. In this section we take Hadoop as an example to introduce basic software and 

programming infrastructure for Big Data processing.

Hadoop is a Java-based software framework for distributed data management and 

processing. It contains a set of open source libraries for distributed computing using the 

MapReduce programming model and its own distributed file system called HDFS. Hadoop 

automatically facilitates scalability and takes cares of detecting and handling failures. Core 

Hadoop has two key components:

Core Hadoop = Hadoop distributed file system (HDFS) + MapReduce

• HDFS is a self-healing, high-bandwidth, clustered storage file system, and

• MapReduce is a distributed programming model developed by Google.

We dart with explaining HDFS and MapReduce in the next two subsections. Besides these 

two key components, a typical Hadoop release contains many other components. For 

example, as is shown in Figure 6, the Cloudera's open-source Hadoop distribution also 

includes HBase, Hive, Pig, Oozie, Flume and Sqoop. More details about these extra 

components are provided in the online Cloudera technical documents. After introducing the 

Hadoop, we also briefly explain the concepts of cloud computing in Sections 5.3.

5.1 Hadoop Distributed File System

HDFS is a distributed file system designed to host and provide high-throughput access to 

large datasets which are redundantly stored across multiple machines. In particular, it 

ensures Big Data's durability to failure and high availability to parallel applications.

As a motivating application, suppose we have a large data file containing billions of records 

and we want to query this file frequently. If many queries are submitted simultaneously 

(e.g., the Google search engine), the usual file system is not suitable due to the I/O limit. 

HDFS solves this problem by dividing a large file into small blocks and store them in 

different machines. Each machine is called a DataNode. Unlike most block-structured file 

systems which use a block size on the order of 4 or 8 KB, the default block size in HDFS is 

64MB, which allows HDFS to reduce the amount of metadata storage required per file. 

Furthermore, HDFS allows for fast streaming reads of data by keeping large amounts of data 
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sequentially laid out on the hard disk. The main tradeoff of this decision is that HDFS 

expects the data to be read sequentially (instead of being read in a random access fashion).

The data in HDFS can be accessed via a “write once and read many” approach: The 

metadata structures (e.g., the file names and directories) are allowed to be simultaneously 

modified by many clients. It is important that this meta information is always synchronized 

and stored reliably. All the metadata is maintained by a single machine, called the 

NameNode. Because of the relatively low amount of metadata per file (it only tracks file 

names, permissions, and the locations of each block of each file), all such information can 

be stored in the main memory of the NameNode machine, allowing fast access to the 

metadata. An illustration of the whole HDFS architecture is provided in Figure 7.

To access or manipulate a data file, a client contacts the NameNode and retrieves a list of 

locations for the blocks that comprise the file. These locations identify the DataNodes which 

hold each block. Clients then read file data directly from the DataNode servers, possibly in 

parallel. The NameNode is not directly involved in this bulk data transfer, keeping its 

working load to a minimum. HDFS has a built-in redundancy and replication feature which 

secures that any failure of individual machines can be recovered without any loss of data 

(e.g., each DataNode has 3 copies by default). The HDFS automatically balances its load 

whenever a new DataNode is added to the cluster. We also need to safely store the 

NameNode information by creating multiple redundant systems, which allows the important 

metadata of the file system be recovered even if the NameNode itself crashes.

5.2 MapReduce

MapReduce is a programming model for processing large datasets in a parallel fashion. We 

use an example to explain how MapReduce works. Suppose we are given a symbol sequence 

(e.g., “ATGCCAATCGATGGGACTCC”), and the task is to write a program that counts the 

number of each symbol. The simplest idea is to read a symbol, add it into a hash table with 

key as the symbol and set value to its number of occurrences. If the symbol is not in the hash 

table yet, then add the symbol as a new key to the hash and set the corresponding value to 1. 

If the symbol is already in the hash table, then increase the value by 1. This program runs in 

a serial fashion and the time complexity scales linearly with the length of the symbol 

sequence. Everything looks simple so far. However, imagine if instead of a simple sequence, 

we need to count the number of symbols in the whole genomes of many biological subjects. 

Serial processing of such a huge amount of information is time consuming. So, the question 

is how can we use parallel processing units speed up the computation.

The idea of MapReduce is illustrated in Figure 8. We initially split the original sequence 

into several files (e.g., 2 files in this case). We further split each file into several 

subsequences (e.g., 2 subsequences in this case) and “map” the number of each symbol in 

each subsequence. The outputs of the mapper are (key, value)-pairs. We then gather together 

all output pairs of the mappers with the same key. Finally, we use a “reduce” function to 

combine the values for each key. This gives the desired output:
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The Hadoop MapReduce contains three stages, which are listed as follows.

First Stage: Mappling—The first stage of a MapReduce program is called mapping. In 

this stage, a list of data elements are provided to a “mapper” function to be transformed into 

(key, value)-pairs. For example, in the above symbol counting problem, the mapper function 

simply transforms each symbol into the pair (symbol, 1). The mapper function does not 

modify the input data, but simply returns a new output list.

Intermediate Stages: Shuffling and Sorting—After the mapping stage, the program 

exchanges the intermediate outputs from the mapping stage to different “reducers”. This 

process is called shuffling. A different subset of the intermediate key space is assigned to 

each reduce node. These subsets (known as “partitions”) are the inputs to the next reducing 

step. Each map task may send (key, value)-pairs to any partition. All pairs with the same key 

are always grouped together on the same reducer regardless of which mappers they are 

coming from. Each reducer may process several sets of pairs with different keys. In this 

case, different keys on a single node are automatically sorted before they are fed into the 

next Reducing step.

Final Stage: Reducing—In the final reducing stage, an instance of user-provided code is 

called for each key in the partition assigned to a reducer. The inputs are a key and an iterator 

over all the values associated with the key. These values returned by the iterator could be in 

an undefined order. In particular, we have one output file per executed reduce task.

The Hadoop MapReduce builds on the HDFS and inherits all the fault-tolerance properties 

of HDFS. In general, Hadoop is deployed on very large-scale clusters. One example is 

shown in Figure 9.

5.3 Cloud Computing

Cloud computing revolutionizes modern computing paradigm. It allows everything — from 

hardware resources, software infrastructure to datasets — to be delivered to data analysts as 

a service wherever and whenever needed. Figure 10 illustrates different building 

components of cloud computing. The most striking feature of cloud computing is its 

elasticity and ability to scale up and down, which makes it suitable for storing and 

processing Big Data.

6 Impact on Computational Methods

Big Data are massive and very high dimensional, which pose significant challenges on 

computing and paradigm shifts on large-scale optimization [89, 29]. On one hand, direct 

application of penalized quasi-likelihood estimators on high dimensional data requires us to 

solve very large-scale optimization problems. Optimization with a large amount of variables 

is not only expensive but also suffers from slow numerical rates of convergence and 

instability. Such a large-scale optimization is generally regarded as a mean, not the goal of 

Big Data analysis. Scalable implementations of large-scale nonsmooth optimization 

procedures are crucially needed. On the other hand, the massive sample size of Big Data, 

which can be in the order of millions or even billions as in genomics, neuroinformatics, 
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marketing, and online social medias, also give rise to intensive computation on data 

management and queries. Parallel computing, randomized algorithms, approximate 

algorithms, and simplified implementations should be sought. Therefore, scalability of 

statistical methods to both high dimensionality and large sample size should be seriously 

considered in the development of statistical procedures.

In this section, we explain some new progress on developing computational methods that are 

scalable to Big Data. To balance the statistical accuracy and computational efficiency, 

several penalized estimators such as Lasso, SCAD, and MCP have been described in Section 

4. We will introduce scalable first-order algorithms for solving these estimators in Section 

6.1. We also note that the volumes of modern datasets are exploding and it is often 

computationally infeasible to directly make inference based on the raw data. Accordingly, to 

effectively handle Big Data in both statistical perspective and computational perspective, 

dimension reduction as an important data pre-processing step is advocated and exploited in 

many applications [90]. We will explain some effective dimension reduction methods in 

Section 6.2.

6.1 First-Order Methods for Nonsmooth Optimization

In this subsection, we introduce several first-order optimization algorithms for solving the 

penalized quasi-likelihood estimators in (4.2). For most loss functions , this 

optimization problem has no closed-form solution. Iterative procedures are needed to solve 

it.

When the penalty function Pλ,γ(·) is convex (e.g., the L1-penalty), so is the objective 

function in (4.2) when  is convex. Accordingly sophisticated convex optimization 

algorithms can be applied. The most widely used convex optimization algorithm is gradient 

descent [91], which finds a solution sequence converging to the optimum  by calculating 

the gradient of the objective function at each point. However, calculating gradient can be 

very time consuming when the dimensionality is high. Instead, [92] proposed to calculate 

the penalized pseudo-likelihood estimator using the pathwise coordinate descent algorithm, 

which can be viewed as a special case of the gradient descent algorithm: Instead of 

optimizing along the direction of the full gradient, it only calculates the gradient direction 

along one coordinate at each time. A beautiful feature of this is that even though the whole 

optimization problem does not have a closed-form solution, there exist simple closed-form 

solutions to all the univariate subproblems. The coordinate descent is computationally easy 

and has similar numerical convergence properties as gradient descent [93]. Alternative first-

order algorithms to coordinate descent have also been proposed and widely used, resulting 

in iterative shrinkage-thresholding algorithms [23, 24]. Prior to the coordinate descent 

algorithm, [19] proposed the least angle regression (LARS) algorithm to the L1-penalized 

least squares problem.

When the penalty function Pλ,γ(·) is nonconvex (e.g., SCAD and MCP), the objective 

function in (4.2) is no longer concave. Many algorithms have been proposed to solve this 

optimization problem. For example, [8] proposed a local quadratic approximation (LQA) 

algorithm for optimizing nonconcave penalized likelihood. Their idea is to approximate the 
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penalty term piece by piece using a quadratic function, which can be thought as a convex 

relaxation (majorization) to the nonconcave object function. With the quadratic 

approximation, a closed-form solution can be obtained. This idea is further improved by 

using a linear instead of a quadratic function to approximate the penalty term and leads to 

the local linear approximation (LLA) algorithm [27]. More specifically, given current 

estimate  at the kth iteration for problem (4.2), by Taylor's 

expansion,

(6.1)

Thus, at the (k + 1)th iteration, we solve

(6.2)

where . Note that problem (6.2) is convex so that a convex solver can be 

used. [54] suggested using initial values β(0) = 0, which corresponds to the unweighted L1 

penalty. This algorithm shares a very similar idea as in [94], both of which can be regarded 

as implementations of minimization of the folded-concave penalized quasi-likelihood [8] 

problem (4.2). If one further approximates the goodness of fit measure  in (6.2) by a 

quadratic function via Taylor expansion, then the LARS algorithm [19] and pathwise 

coordinate descent algorithm [92] can be used.

For the more general settings where the loss function  may not be concave, [95] 

proposed an approximate regularization path following algorithm for solving the 

optimization problem in (4.2). By integrating statistical analysis with computational 

algorithms, they provided explicit statistical and computational rates of convergence of any 

local solution obtained by the algorithm. Computationally, the approximate regularization 

path following algorithm attains a global geometric rate of convergence for calculating the 

full regularization path, which is fastest possible among all first-order algorithms in terms of 

iteration complexity. Statistically, they show that any local solution obtained by the 

algorithm attains the oracle properties with the optimal rates of convergence. The idea on 

studying statistical properties based on computational algorithms, which combine both 

computational and statistical analysis, represents an interesting future direction for Big Data. 

We also refer to [96] and [97] for researches in this direction.

6.2 Dimension Reduction and Random Projection

We introduce several dimension (data) reduction procedures in this section. Why do we 

need dimension reduction? Let's consider a dataset represented as a n by d real-value matrix 

D, which encodes information about n observations of d variables. In the Big Data era, it is 

in general computationally intractable to directly make inference on the raw data matrix. 

Therefore, an important data preprocessing procedure is to conduct dimension reduction 
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which finds a compressed representation of D that is of lower dimensions but preserves as 

much information in D as possible.

Principal component analysis is the most well known dimension reduction method. It aims 

at projecting the data onto a low dimensional orthogonal subspace that captures as much of 

the data variation as possible. Empirically, it calculates the leading eigenvectors of the 

sample covariance matrix to form a subspace . We then project the n×d data 

matrix D to this linear subspace to get a n×k data matrix . This procedure is optimal 

among all the linear projection methods in minimizing the squared error introduced by the 

projection. However, conducting the eigenspace decomposition on the sample covariance 

matrix is computational challenging when both n and d are large: The computational 

complexity of PCA is O(d2n + d3) [98], which is infeasible for very large datasets.

To handle the computational challenge raised by massive and high dimensional datasets, we 

need to develop methods that preserve the data structure as much as possible and is 

computational efficient for handling high dimensionality. Random projection [99] is an 

efficient dimension reduction technique for this purpose, and is closely related to the 

celebrated idea of compress sensing [100, 101, 102, 103, 104]. More specifically, random 

projection aims at finding a k-dimensional subspace of D such that the distances between all 

pairs of data points are approximately preserved. It achieves this goal by projecting the 

original data D onto a k-dimensional subspace using a random projection matrix with unit 

column norms. More specifically, let  be a random matrix with all the column 

Euclidean norms equal to one. We reduce the dimensionality of D from d to k by calculating 

matrix multiplication

This procedure is very simple and the computational complexity of the random projection 

procedure is of order O(ndk), which scales only linearly with the problem size.

Theoretical justifications of random projection are based on two results. [99] showed that if 

points in a vector space are projected onto a randomly selected subspace of suitable 

dimensions, then the distances between the points are approximately preserved. This 

justifies the random projection when R is indeed a projection matrix. However, enforcing R 
to be orthogonal requires Gram-Schmidt algorithm, which is computationally expensive. In 

practice, [105] showed that in high dimensions we do not need to enforce the matrix to be 

orthogonal. In fact, any finite number of high dimensional random vectors are almost 

orthogonal to each other. This result guarantees that RTR can be sufficiently close to the 

identity matrix. [106] further simplified the random projection procedure by removing the 

unit column length constraint.

To illustrate the usefulness of random projection, we use the gene expression data in Section 

3.4 to compare the performance of PCA and random projection in preserving the relative 

distances between pairwise data points. We extract the top 100, 500, and 2,500 genes with 

the highest marginal standard deviations, then apply PCA and random projection (RP) to 
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reduce the dimensionality of the raw data to a small number k. Figure 11 shows the median 

errors in the distance between members across all pairs of data vectors. We see that, when 

dimensionality increases, random projections have more and more advantages over PCA in 

preserving the distances between sample pairs.

One thing to note is that random projection is not the “optimal” procedure for traditional 

small scale problems. Accordingly, the popularity of this dimension reduction procedure 

indicates a new understanding of Big Data. To balance the statistical accuracy and 

computational complexity, the suboptimal procedures in small or medium scale problems 

can be “optimal” in large scale. Moreover, the theory of random projection depends on the 

high dimensionality feature of Big Data. This can be viewed as a blessing of dimensionality.

Besides PCA and random projection, there are many other dimension reduction methods, 

including latent semantic indexing (LSI) [107], discrete cosine transform [108], and CUR 

decomposition [109]. These methods have been widely used in analyzing large text and 

image datasets.

7 Conclusions and Future Perspectives

This paper discusses statistical and computational aspects of Big Data analysis. We 

selectively overview several unique features brought by Big Data and discuss some 

solutions. Besides the challenge of massive sample size and high dimensionality, there are 

several other important features of Big Data worth equal attention. These include

1. Complex data challenge: Due to the fact that Big Data are in general aggregated 

from multiple sources, they sometime exhibit heavy tail behaviors with nontrivial 

tail dependence.

2. Noisy data challenge: Big Data usually contain various types of measurement 

errors, outliers, and missing values.

3. Dependent data challenge: In various types of modern data, such as financial time 

series, fMRI and time course microarray data, the samples are dependent with 

relatively weak signals.

To handle these challenges, it is urgent to develop statistical methods that are robust to data 

complexity (see, for example, [110, 111, 112]), noises [113, 114, 58, 59], and data 

dependence [115, 116, 117, 47].
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Figure 1. 
Scatter plots of projections of the observed data (n = 100 from each class) onto the first two 

principal components of the best m-dimensional selected feature space. A projected data 

with “•” indicates the first class and “▲” indicates the second class.
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Figure 2. 
Illustration of spurious correlation. (a): Distribution of the maximum absolute sample 

correlation coefficients between X1 and {Xj}j≠1. (b): Distribution of the maximum absolute 

sample correlation coefficients between X1 and the closest linear projections of any 4 

members of {Xj}j≠1 to X1. Here the dimension d is 800 and 6,400, the sample size n is 60. 

The result is based on 1,000 simulations.
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Figure 3. 
Illustration of incidental endogeneity on a microarry gene expression data. Left panel: 

Distribution of the sample correlation . Right panel: 

Distribution of the sample correlation . Here  represents the residual noise after 

the Lasso fit. We provide the distributions of the sample correlations using both the raw data 

and permuted data.
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Figure 4. 
Visualization of the penalty functions. In all cases, λ = 1. For SCAD and MCP, different 

values of γ are chosen as shown in graphs.
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Figure 5. 
Diagnostics of the modeling assumptions of the FGMM on a microarry gene expression 

data. Left panel: Distribution of the sample correlations . 

Right panel: Distribution of the sample correlations  and  for only 

18 selected genes. Here  the residual noise after the FGMM fit.
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Figure 6. 
An illustration of Cloudera's open-source Hadoop distribution (source: cloudera website).
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Figure 7. 
An illustration of the HDFS architecture.
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Figure 8. 
An illustration of the MapReduce paradigm for the symbol counting task. Mappers are 

applied to every element of the input sequences and emit intermediate (key, value)-pairs. 

Reducers are applied to all values associated with the same key. Between the map and 

reduce stages are some intermediate steps involving distributed sorting and grouping.
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Figure 9. 
A typical Hadoop cluster (source: wikipedia).
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Figure 10. 
An illustration of the cloud computing paradigm.
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Figure 11. 
Plots of the median errors in preserving the distances between pairs of data points versus the 

reduced dimension k in large scale microarray data. Here “RP” stands for the random 

projection and “PCA” stands for the principal component analysis.
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