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Abstract

In this paper we introduce an appealing nonparametric method for estimating the

mean regression function. The proposed method combines the ideas of local linear

smoothers and variable bandwidth. Hence, it also inherits the advantages of both ap­

proaches. We give expressions for the conditional MSE and MISE of the estimator.

Minimization of the MISE leads to an explicit formula for an optimal choice of the vari­

able bandwidth. Moreover, the merits of considering a variable bandwidth are discussed.

In addition, we show that the estimator does not have boundary effects, and hence does

not require modifications at the boundary. The performance of a corresponding plug-in

estimator is investigated. Simulations illustrate the proposed estimation method.

1 Introduction

In case of bivariate observations, it is of common interest to explore the association between

the covariate and the response. One possible way to describe such an association is via the

mean regression function. A flexible estimation method does not make any assumption on
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(1.1)

the form of this function. This form should be determined completely by the data. In other

words, a nonparametric approach is preferable.

In this paper, we will concentrate on nonparametric kernel-type estimation, a popu-

lar approach in curve estimation. Let (Xl, Yd,···, (Xn , Yn ) be a random sample from a

population (X, Y), and denote by

m(x) = E(YIX = x)

the mean regression function ofY given X. Further, we use the notations fxO and 0'2(.)

for the marginal density of X and the conditional variance of Y given X, respectively.

Most regression estimators studied in the literature are of the form

n

L Wj(XjXb ··· ,Xn)¥j.
j=1

Such a kind of estimator is called a linear smoother, since it is linear in the response.

Among all linear smoothers, the best one in the minimax sense is obtained via a locallinear

regression. More precisely, the 'best' estimator is defined as m(x) = a, where a together

with bminimizes

n (X-X')~(Yj-a-b(x-Xj))2K h 3 ,

3=1 n

with K(·) a bounded (kernel) function, and hn a sequence of positive numbers tending to

zero, called the smoothing parameter or bandwidth. For an introduction to and a motivation

for the above estimator, see Stone (1977), Fan (1991). We will refer to the estimator m(x)

as a local linear smoother.

The smoothing parameter in (1.1) remains constant, Le. it does neither depend on the

location of x, nor on that of the data Xj. Such an estimator does not fully incorporate the

information provided by the density of the data points. Furthermore, a constant bandwidth

is not flexible enough for estimating curves with a complicated shape. All these considera­

tions lead to introducing a variable bandwidth hn/o.(Xj), where 0.(.) is some nonnegative

function reflecting the variable amount of smoothing at each data point. This concept of

variable bandwidth was introduced by Breiman, Meisel and Purcell (1977) in the density
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estimation context. Further related studies can be found in Abramson (1982), Hall and

Marron (1988), Hall (1990) and Jones (1990).

The estimation method considered in this paper combines the merits of the above two

procedures. We will study a local linear smoother with variable bandwidth. It is expected

that the proposed estimator has all the advantages of both, the local linear smoothing

method and the variable bandwidth idea. We now give a formal introduction of the esti­

mator. Instead of (1.1), we minimize

(1.2)

with respect to a and b. Denote the solution to this problem by a, b. Then the regression

estimator is defined as a, which is given by

n n

m(x) =a= L:wjYjIL:wj,
j=l j=l

where

with

(1.3)

(1.4)

1= 0,1,2. (1.5)

It will become clear in the next sections that the estimator (1.3) has several important

features. First of all, it shares the nice properties of the local linear smoother: it adapts

to both random and fixed designs, and to a variety of design densities Ix(·). Furthermore,

it does not have the problem of "boundary effects". Also the implementation of a variable

bandwidth leads to additional advantages. It gives a certain flexibility in smoothing various

types of regression functions. With a particular choice of the variable bandwidth, the

estimator will have a homogeneous variance (Le. independent of the location point x),

and this is a desirable property. The performance of the estimator can be studied via the

Mean Integrated Squared Error (MISE). Optimization over all possible variable bandwidths

improves this performance, and it turns out that such an optimal bandwidth coincides with
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our intuition. Other advantages of the proposed estimation method will show up in Sections

2-6.

The paper is organized as follows. In the next section, we study in detail the asymptotic

properties of the proposed estimator and derive an optimal choice for the variable band­

width. Section 3 focuses on boundary effects. In Section 4, we investigate the performance

of the local linear smoother with estimated variable bandwidth. The finite sample proper-

ties of the estimator are illustrated via simulations in Section 5. Some further remarks and

discussions are given in Section 6. The last section contains the proofs of the results.

2 Asymptotic properties and Optimal variable bandwidth

First of all, we study the asymptotic properties of the local linear smoother (1.3) introduced

in Section 1. In the following theorem we give an expression for the conditional Mean

Squared Error (MSE) of the estimator.

Theorem 1. Assume that !x('), a(·), m"(·) and 0'(.) are bounded functions, continuous

at the point x, where x is in the interior of the support of ! X ( •). Suppose that minz a(z) > 0,

limsuplul....oo IK(u)u51 < 00, and nhn - 00. Then, the conditional MSE of the estimator

(1.3) at the point x is given by

where

and

2( ) _ (Ji=[82 - U81]2K2(U)dU) a(x)0'2(x)
vn X - [8280 _ 8iF !x(x )nhn '

with 8/ =r-= K(u)u/du,(l =0,1,2,3).

(2.2)

(2.3)

If we take a(·) = 1, the above result slightly generalizes the known result for the esti­

mator with a constant bandwidth (see Fan (1991)). More precisely, here we do not require
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that the kernel function integrates out to one and has mean zero. In the special case that

the kernel function is a density with mean zero (Le., So = 1 and S1 = 0), expression (2.1)

reduces to

1[ II 2] 2 a(x )0'2 (x) 1+00 2 (4 1)4 m (x)s2(hn /a(x)) + fx(x)nh
n

-00 K (u)du+ Op hn + nh
n

• (2.4)

(2.5)

This result is similar to that for the estimator with constant bandwidth, but now with hn

replaced by hn / a(x).

Remark 1. The condition minz a(z) > 0 in Theorem 1 is not an obligatory one. The

result of the theorem remains valid if a(·) is continuous with at most a finite number of

roots, and liminflzl.....oo a(z) > o. Note that the function aopt(·), defined in (2.9), possibly

only satisfies this weaker condition. This remark also applies to Theorems 2 and 4.

Next, we investigate the global behavior of the estimator. A commonly-used, simple

measure of global loss is the Mean Integrated Squared Error (MISE). Theorem 2 provides

an expression for the conditional MISE. Let w(·) be a bounded function with bounded

support [a, b] which is contained in the interior of the support of fx(·). Assume that fx(·)

is bounded away from zero on [a,b].

To avoid technicalities in the proof of Theorem 2, we slightly modify the estimator (1.3)

as follows:
n n

m*(x) = L WjYj/(L Wj +n-2
).

j=1 j=1

The reason for introducing the factor n-2 in the denominator of (2.5) is to assure that this

denominator is bounded away from zero. We emphasize however that the above technical

modification has no impact on the forthcoming results in this paper. Moreover, it has no

practical implications.

Theorem 2. Assume that a(·), m"(.) and 0'(.) are bounded and continuous functions

on [a, b], and that fxO is uniformly Lipschitz continuous of order r > O. Suppose that
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minz o:(z) > 0, and that r~:: IK(u)uildu < 00 for all j ~ o. Then, the conditional MISE

oj-the estimator (2.5) is

provided that hn = dn --Y, with constants d > 0 and 0 < I < 1.

In the special case that the kernel function K is a density with mean zero, an asymptotic

expression for the conditional MISE is defined by

1+00 [1 ( )2 0:(X)0'2 (x) 1+00 ]MISE(m,m) = - m"(x)s2(hn /0:(x»2 + f ( ) h K 2(u)du w(x)dx.
-00 4 X x n n -00

(2.6)

Note that this expression is justified by Theorem 2 and the remark about the modification

preceding it. Throughout the rest ofthis section we will work with this simplified conditional

MISE.

We now discuss the optimal choice of the function 0:(.). In order to find such an optimal

function we proceed as follows. We first minimize the MISE (2.6) with respect to hn • This

yields the optimal constant bandwidth

Substituting this optimal choice into (2.6) leads to

MISE(m,m) = 5S% (r+oo
[m"(xWw(x)/0:4(X)dX [r+oo

0:(x)0'2(x)w(x)/fx(x)dx]4) 1/5 ,
4n i-oo L oo

(2.8)

where CK = s~/5[J.:r:: K 2(u)du]4/5. We now minimize (2.8) with respect to 0:(.). The

solution to this optimization problem is established in the following theorem.

Theorem 3. The optimal variable bandwidth is given by

{

b (tx(x)~m"(xW)1/5
( )

tT (x)
O:opt x =

0:*(x)

6

if w(x) > 0,

if w(x) =0,
(2.9)



(2.10)

where b is any arbitrarily positive constant and a*(x) can be taken to be any positive value.

Note that the optimal variable bandwidth aopt(') does not depend on the weight function

w('), Le. aopt(·) is intrinsic to the problem.

With the above optimal choice of a(·), the optimal constant bandwidth hn ,OI in (2.7) is

equal to

h _ b (Ii: K
2(U)dU) 1/5 -1/5

n,opt - s2 n.
2

An important feature is that this optimal choice of hn does not depend on unknown func-

tions. With these optimal choices of the constant and the variable bandwidth, the asymp-

totic MISE (2.8) is given by

(2.11)

On the other nand, the expression for the asymptotic MISE (2.6) with a(·) = 1 and an

optimal choice of the constant bandwidth is

5CK (1+00 1+00
)1/5MISEc,opt = 4n4/5 -00 [m"(x)]2w(x)dx [ -00 (72(x)w(x)j !X(X)dX]4

Now, it is easy to see that

MISEv,opt ~ MISEc,opt,

(2.12)

and this fact reflects one of the advantages of using a variable bandwidth.

The concept of variable bandwidth is intuitively appealing: a different amount of

smoothing is used at different data locations. Even in case of misspecification of the op-

timal variable bandwidth aopt('), the proposed method (with hn,opt given in (2.10) as the

constant bandwidth) can still achieve the optimal rate of convergence. Finally, the optimal

variable bandwidth aopt(') depends on !X('), (72(.) and [m"(.)]2 only through a t power

function. This implies that even if the unknown quantity is misestimated by, say, a factor 2,

the resulting aopt would differ only by a factor 1.15. Therefore, we expect that substitution
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of reasonable estimators for the unknown functions into (2.9) will lead to a good estimator

for the regression function.

Another intuitive choice for the variable bandwidth is a(x) = {,it:/. This choice implies

that a large bandwidth is used at low-density design points and also at locations with large

conditional variance. With such a variable bandwidth, the regression smoother (1.3) has a

homogeneous variance (see (2.3)). Hence, this intuitive choice of a(·) can be viewed as a

rule comparable to the one introduced in Breiman, Meisel and Purcell (1977), but now in

the regression setup. In contrast with aopt(·), this choice of a(·) is not optimal in the sense

that it does not minimize the conditional MISE.

3 Boundary effects

Let XI,··· ,Xn be LLd. random variables with a density !x(·), having bounded support.

Without loss of generality we consider this support to be the interval [0,1]. Theorem

1 provides an expression for the conditional MSE for points in the interior of [0,1]. In

this section we study the behavior of the estimator (1.3) at boundary points. Such an

investigation is necessary since it is not obvious that an estimator has the same behavior at

the boundary as in the interior of the support. For example, the Nadaraya-Watson (1964)

estimator and the Gasser-Miiller (1979) estimator both have so called "boundary effects".

In other words, the rate of convergence of these estimators at the boundary points is slower

than that for points in the interior of the support. In practical curve estimation, both

estimators require a modification at the boundary. For detailed discussions see Gasser and

Miiller (1979).

We now investigate the behavior of the estimator (1.3) at left-boundary points. Put

X n =chn , with c> 0. Assume that nhn - 00 and denote ao = a(O+).

Theorem 4. Assume that !x(·), a(·), m"(·) and 0'(.) are bounded on [0,1], and right

continuous at the point O. Suppose that minzE[O,l] a(z) > 0, and that limsupu...._oo IK(u)u5 1 <
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00. Then, the conditional MSE of the estimator (1.3) at the boundary point X n is given by

{ ! [mll(0+)Sle-S1,es~,e]2 (hn/0:0)4
4 S2,eSO,e - sl,e

+ (J~:[S2,e - US1,e]2K 2(U)dU) 0:00'2(0+)} (1 +op(l)), (3.1)
[S2,eSO,e - stJ2 fx(O+ )nhn

where Sl,e =J~: K(u)uldu, (I =0,1,2,3).

Remark 2. In an analogous way we obtain expressions for the conditional MSE of the

estimator at right-boundary points which are of the form X n = 1 - chn • More precisely, the

conditional MSE at X n =1 - chn is:

{ ! [mll(l-) s~,e - Sl,es~,e] 2 (hn/o:d4
4 S2 eSO e - sl c" ,

+ (J':lAs2,e - uS1,e]:K2(u)dU) 0:10'2(1-)} (1 +op(l)), (3.2)
[S2,eSO,e - Sl,e]2 fx(1- )nhn

where now Sl,e = J':leK(u)u1du,(I = 0,1,2,3), with 0:1 = 0:(1-). These expressions hold

through under conditions comparable to those in Theorem 4, but now translated to the

right-side of the boundary.

It follows from Theorem 4 and Remark 2 that the estimator (1.3) does not have bound-

ary effects. Indeed, its rate of convergence is not influenced by the position of the point

under consideration. Hence, the local linear smoother does not require modifications at the

boundary. This is also illustrated by some finite sample simulations (see Figures 4 - 6 in

Section 5). So, it turns out that the local linear smoother has an additional advantage over

other kernel-type estimators. The intuition behind this fact goes back to the construction

of the local linear smoother (see also Fan (1991)). The local linear approximation which

was used results into a second order approximation of the underlying regression function.

This holds through at all points of the support, including boundary points.

We now study how the constant factor

2 [ S~,e. - Sl,eS3
2
,e] 2

b (O:oc) ==
S2,eSO,e - sl,e
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in the squared bias (see expression (3.1)), and the constant factor in the variance

change with QOC' Remark that QOC measures how many effective bandwidths (Le. ~) the

point Xn = chn is away from the left-boundary. We plot both functions b2(.) and v(·) for

three commonly-used kernels:

the standard normal kernel: K(u) = vkexp(-u2j2),

the Epanechnikov kernel: K(u) = ~(1- '1.1.2 )+,

the uniform kernel: K ( '1.1.) =1ue[-0.5,0.5].

Insert here Figures 1 - 3.

Note that Figures 1 - 3 show the same behavior. A first feature is that

and 1
+00

}i.~ v(z) = -00 K
2
(u)du,

and these limits are exactly the constant factors appearing in respectively the squared bias

and the variance for an interior point. Further, it is clear from Figures 1 - 3 that b2(z) is

smaller than s~ and that v(z) is larger than J!": K2(u)du, for all values of z. This implies

that the squared bias of the estimator (1.3) is smaller at a boundary point than at an

interior point, at least if the value of mil at each of these points is the same and the same

amount of smoothing is used. On the other hand, the variance is larger at the boundary

point. That the bias is smaller is due to the fact that one uses a linear approximation on

a smaller interval around the boundary point. The variance however tends to be larger,

because on a smaller interval less observations contribute in computing the estimator.

4 Performance of the plug-in estimator

As already mentioned in Section 2, the optimal variable bandwidth Qopt(') depends on the

unknown functions Ix('), milO and (72 ( .). Hence, practical implementation of the local

linear smoother requires estimation of these unknown quantities. The estimated quantities
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are then substituted into the expression for aopt(·). In this section, we justify such a 'plug­

in' procedure. This validates the applicability of the local linear smoother with variable

bandwidth.

To emphasize the dependence of the local linear smoother (1.3) on the variable band­

width a(·), we denote, in this section, the estimator by m(x,a). With Qn(·) an estimator

of a(·), we define the 'plug-in' estimator as

n n

m(x,Qn) = LWjYj/LWj,
j=l j=l

where

with

The following theorem shows that the 'plug-in' estimator m(x,Qn) behaves asymptoti-

cally the same as m(x, a).

Theorem 5. Suppose that the conditions of Theorem 1 hold. Let Qn(·) be a consistent

estimator of a(·) such that sUPz IQn(z) - a(z)1 = op(an), where an - O. Assume that J(

is a uniformly Lipschitz continuous function such that lu3J((u)1 ~ G(u) for all large luI,

where G(u) is decreasing as lui increases and satisfies G(a;-1/5) = o(hn ). Then,

Note that if J( has bounded support, Theorem 1 states that any uniform consistent

estimator of a(·) will do the job.

Furthermore, Theorem 5 provides a tool for obtaining an asymptotic normality result for

the 'plug-in' estimator, via that for the local linear smoother. Proving asymptotic normality

for m(x,a) is, however, beyond the scope of this paper.
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A simple way to estimate the unknown functions !x('), m"(·) and (72(.) is as follows.

Starting with constant bandwidths, one can estimate !x(·) and m"(·) using cross-validation

techniques. Further, an estimator for (72(.) is based on the residuals Yj = Yj - m"(Xj).

These preliminary estimators are then substituted into the expression for aopt('), and the

resulting O:n,opt(-) is used to calculate m(·, O:n,opt).

5 Simulations

In this section, we illustrate the performance of the local linear smoother. For each of the

following examples we used the standard normal kernel function, and the optimal constant

and variable bandwidths (see expressions (2.10) and (2.9)). In a first example, we simulated

200 data points from a normal regression model

where Xj "'i.i.d. N(O, 1), Cj "'i.i.d. N(0,0.72
), and

m(x) = x +2exp(-16x2
).

Hence, here we have to detect linearity and a bump. Remark that only about 5% of the

design points lie outside the interval [-2,2]. Therefore, this interval can be viewed as a

bounded support corresponding to the design density. Figure 4 presents the true regression

curve together with 10 estimated regression functions, each based on one simulation.

Next, we considered a normal regression model

where Xj "'i.i.d. N(O,I), €j "'i.i.d. N(O,0.52
), and

m(x) =sin(2x) +2exp( -16x2
).

The results of 10 simulations (sample size 200) can be found in Figure 5.
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As a last example, we imposed the following binary response model:

if i = 1,

if i =0,

where Xj "'i.i.d. uniform(-2,2) and

m(x) =0.3exp(-4(x + 1)2) + O.7exp(16(x _1)2).

Note that in this example 0'2(x) = m(x)(I- m(x». The true regression function and its

simulated estimates (sample size 400) are shown in Figure 6.

Insert here Figures -I - 6 .

6 Further discussions

In the context of density estimation, Abramson (1982) aims at choosing a variable band­

width in order to reduce the order of the bias of the kernel estimator for f. This leads to

the choice hn / jl/2(Xj) for the smoothing parameter, which is known as the 'square root

law'. See also Silverman (1986) for expressions ofthe asymptotic bias. Hall (1990) considers

estimators of the following form:

(6.1)

where K(t) denotes the tth derivative of the symmetric probability density function K. He

provides a simple approach for calculating the bias of (6.1). In the special case of estimating

the mean regression function, Hall (1990) proposes to use the estimator

(nhn ,d-1Ei=l Yj o1(Xj)K (~Ol(Xj»)

(nhn ,2)-1 Ei=l 02(Xj)K (X':~i02(Xj») .
(6.2)

The function 01(-) (respectively 02('» is chosen in such a way that it reduces the bias of

the numerator (respectively the denominator). Heuristically, the resulting estimator will

have a reduced bias. Basically, this reduction is due to the fact that the estimator (6.2)
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does not have total weight one, which already introduces a kind of bias correction. Note

that the estimator (1.3) however has total weight one. In such a situation, there is no hope

of finding a variable bandwidth which results in a reduction of the order of the bias. In

other words, there will be no equivalent of the 'square root law' in this regression setup.

An attempt to reduce the order of the bias would be: estimate the bias of the estimator,

subtract it from the estimator, and define this as the new one. But, this would result in a

linear smoother which has total weight not equal to one.

An alternative way of introducing the idea of 'variable' bandwidth is to consider hn/ f3( xo)

as the smoothing parameter at the location point Xo. Knowing the value f3( xo) suffices to

estimate the regression function at this point. Hence, this type of variable bandwidth can be

viewed as a 'local' variable bandwidth. The variable bandwidth hn/o:(Xj) however requires

knowledge of the function 0: at each observation Xj. Therefore, one could refer to the latter

bandwidth as a 'global' variable bandwidth. For a location point Xo such that Im"(xo)1 is

small, the optimal 'local' variable bandwidth hn / f3opt(xo) will be very large. The resulting

estimator will misestimate the true value of m(xo). This illustrates that an estimator based

on a 'local' variable bandwidth relies too much on the particular value of f3(xo). For Gasser-

Muller type estimation of regression curves, using the idea of 'local' variable bandwidth,

see MUller and StadtmUller (1987).

7 Proofs

Theorems 1 and 4 will be proved along the same lines. The proof of Theorem 4 is more

involved and requires more details. For this reason we decide to prove Theorem 4 before

Theorem 1 and hence postpone the proofs of Theorems 1 and 2.

Proof of Theorem 3. We have to minimize (2.8) with respect to 0:(.). First of all,

note that

1
+00 1+00

~n -00 [mll(xWw(x)/0:4(x)dx[ -00 0:(x)q2(x)w(x)/fx(x)dx]4
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(7.1)

where Fa = {a(.) : J~=a(x)q2(x)w(x)/fx(x)dx = a}. In order to solve the second

minimization problem in (7.1), we use the method of Lagrange multipliers. Hence, we

search for the minimum of

1
+00 1+00

-00 [m"(x)]2w(x)/a4(x)dx +4A -00 a(x)q2(X)W(X)j fx(x)dx

with respect to a. This translates into minimizing

[m"(xWw(x)/a4(x) +4Aa(x)q2(x)w(x)/ fx(x),

for each x. The solution to problem (7.2) is given by

(7.2)

{

(
/x(x)[mll(x)j2)1/5

a.x(x) = .xu2
(x)

a*(x)

if w(x) > 0,

if w(x) = 0,
(7.3)

where a*(x) can be taken to be any nonnegative value, and A is chosen so that a.x E Fa.

Denote this choice of A by Aa • Substituting the solution (7.3) into (7.1), we find that the

objective function for the first minimization (that in terms of a) does not depend on a.

Hence, any choice of a, and therefore of Aa , is appropriate. This finishes the proof. 0

In the sequel we prove Theorem 4. This will involve the following two lemmas.

Lemma 1. Assume that fx('), a(·) and m"(·) are bounded on [0,1], and right continu­

ous at the point O. Suppose that minzE[O,l] a(z) > 0, and that lim sUPu-+_oo IJ( ( u)u1+41 < 00,

for a nonnegative integer 1. Then,
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Proof. . Throughout this proof, we use the notations dj, j = 1"",8, for arbitrarily

positive constants. Let Zn,j = o:(Xj)J( Crn~nXi o:(Xj») R(Xj)(xn - Xj)l, and note that

n

I:Zn,j
j=1

= E t Zn,j +Op ( var(t Zn,j»)
)=1 )=1

= nEZn,1 +Op (JnEZ~,I) . (7.4)

In the sequel, we will calculate the first two moments of Zn,l. By a change of variable, we

obtain

EZn,1 = 101
o:(y)K (Xn

h
: Yo:(y») R(y)(xn - y)lfx(y)dy

h~+llC O:(Xn - zhn)K(zo:(xn - zhn»R(xn - zhn)zlfx(xn - zhn)dz. (7.5)
c-l/hn

A two-term Taylor expansion gives that

(7.6)

where ~n is between Xn and Xn - zhn. We will now approximate (7.5) by !h~+3An with

An = l c
o:oJ((zo:o)m"(O+ )zl+2 fx(O+ )dz.

c-l/hn

Therefore, we study the following difference:

lic
o:(xn - zhn)J((zo:(xn - zhn»m"(~n)zl+2 fx(xn - zhn)dz - Ani

c-l/hn

< [i-M
+ jC ] Io:(xn - zhn)J((zO:(Xn - zhn»m"(~n)fX(xn - zhn)

c-l/hn -M

-o:oK(zo:o)m"(O+ )fx(O+)/lz ll+2dz

== I n ,1 + I n ,2,

with M a fixed positive number large enough such that

(7.7)

(7.8)

(7.9)

where 0:* = minzE[O,I] o:(z). Note that the tail-condition on K guarantees the existence of

such a number. Applying the dominated convergence theorem, together with the continuity
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assumptions, we obtain that limn -+oo In,2 = O. The term In,l is bounded by

I-
M

la(xn - zhn)K(za(xn - zhn))m"(en)JX(xn - zhn)llz I1+2dz
c-l/h,.

+d21~M laoK(zao)llzll+2dz

(7.10)

First note that

I n,2 = d31-::0I0 IK(u)u1+21 du,

and this tends to zero as M -+ 00. Using (7.9), the boundedness of a(·), m"(.) and !x('),

and the definition of ao we find

< d41-M IK(za(xn - zhn))llzll+2dz
c-l/h,.

:5 d41-M dllza(xn - zhn)I-I
- 4 IzI1+2dz

c-l/h,.

:5 dld4(a*)-1-4 1~M Izl-2dz,

which tends to zero as M -+ 00. By (7.10), we conclude that limM-+oo limn -+oo In,l = O.

Hence (7.8) leads to

I
c

a(xn - zhn)K(za(xn - zhn))m"(en)zl+2!x(xn - zhn)dz
c-l/h,.

= An +0(1)

= 1
c
oo aoK(zao)m"(O+ )zl+2!x(O+ )dz(l +0(1))

= m"(O+ )!x(O+ )aol- 21:
c

K(u)u1+2du(1 + 0(1)). (7.11)

Finally, by (7.5), (7.6) and (7.11) we get

(7.12)

For the second moment, we proceed as follows. Using (7.6) and (7.9), we obtain
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x[m"(~n)j2(zhn)4Z21 fx(xn - zhn)dz

< h~I+5d51c J(2(za(xn - Zhn»z2lHdz
c-l/hn

= h~'+5d5 [ic
+l-M

] J(2(za(xn - zhn»z2lHdz
-M c-l/hn

:$ h~'+5d5 [d6 +d71-M [za(xn - Zhn)r21-Sz2IHdZ]
c-l/hn

:$ dsh~'+5. (7.13)

Combining (7.4), (7.12) and (7.13), along with nhn - 00, completes the proof. 0

Lemma 2. Assume that fx(')' a(·), L(·) and S(·) are bounded on [0,1], and right con­

tinuous at the point O. Suppose that minzE[o,l] a(z) > 0, and that limsupu-+_oo IL( 1.1)1.1
'
+2

1 <

00, for a nonnegative integer 1. Then,

.t. a(Xj)L (X
n ~nXj a(Xj») S(Xj)(Xn - Xj)'

= nao(hn/ao)'+lS(O+)fx(O+) l.:c

i(u)u'du(1 + op(I».

Proof. The proof follows the same lines as that of Lemma 1.

Proof of Theorem 4. The conditional MSE of the estimator (1.3) is given by

[Eiwj(m(Xj) - m(xn »j2 Ei wJ(12(Xj)
(Ei Wj)2 + (Ei Wj)2 •

o

(7.14)

Recall the definition of Sn,1 (see (1.5». Applying Lemma 2, with L = J( and S = 1, we

obtain

(7.15)

and hence,

n

LWj =
1

18



Further, Lemma 1 with I = 0 yields

ta(Xj)K (Xn~ Xj a(Xj») R(Xj)
J=l n

= iao(hn/ao)3m"(0+ )fx(o+ )s2,c(1 + op(l».

Similarly, Lemma 1 with I = 1 leads to

n (X - X' )[;a(Xj)K n h
n

J a(Xj) R(Xj)(xn - Xj)

= iao(hn/ao)4ml/(0+ )fx(O+ )s3,c(1 + op(l».

Now, since Ei=l Wj(xn - Xj) = 0, we obtain from (7.15), (7.17) and (7.18) that

(7.17)

(7.18)

n

2: wj[m(Xj) - m(xn)]
j=l

= Sn,2 t a(Xj)K (xn ~ Xj a(Xj») R(Xj)
3=1 n

n (X - X' )-Sn,l ~a(Xj)K n h 3 a(Xj) R(Xj)(xn - XjJ
J=l n

2

= ~ a~(hn/ao)6ml/(0+ )fi(o+ )[s~,c - Sl,cS3,c](1 +op(l». (7.19)

Next, we write

2 ~ 2( ) 2 (Xn - Xj ) 2= sn,2 ~a Xj K h
n

a(Xj) U (Xj)

~ 2( ) 2 (Xn - Xj) 2-2Sn,lSn,2~ a Xj K h
n

a(Xj) (Xn - Xj)U (Xj)

2 ~ 2( ) 2 (Xn - Xj) 2 2+Sn,l ~a Xj K h
n

a(Xj) (Xn - Xj) U (Xj),

and apply Lemma 2 to each of the above three terms. This yields

n jaoc
~W;U2(Xj) = n3a~(hn/aofu2(0+)fi(0+) -00 [S2,c- US1,c]2K2(u)du(1+op(1». (7.20)

The result now follows from (7.14), (7.16), (7.19) and (7.20). 0

In order to prove Theorem 1, we need the following lemmas. Note that those are

comparable with Lemmas 1 and 2.
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(7.21)

Lemma 3. Assume that fx(·), a(·) and m"(·) are bounded functions, continuous at the

point x, which is in the interior of the support of fx(·). Suppose that minz a(z) > 0, and

that limsuPlul_oo IK(u)ulHI < 00, for a nonnegative integer l. Then,

t.a(Xj)K (X ~nXj a(Xj)) R(Xj)(x - Xj)'

n 1+00

= 2"a(x)(hn/a(x))'+3m"(x)fx(x) -00 K(u)ul+2du(l +op(l)),

where R(Xj) = m(Xj) - m(x) +m'(x)(x - Xj).

Proof. The basic ideas of this proof are similar to those in the proof of Lemma 1. We

highlight the main steps. Denote by Zn,j = a(Xj)K (x'h:i a(Xj)) R(Xj)(x - Xj)'. Using

a Taylor expansion, we have

h
l+3 1+00

EZn,l =~ -00 a(x - zhn)K(za(x - zhn))m"(~n)zl+2 fx(x - zhn)dz,

where ~n is between X and x - zhn • A further approximation is provided by.
1[:00 a(x - zhn)K(za(x - zhn))m"(~n)z'+2 fx(x - zhn)dz

-[:00 a(x)K(za(x))m"(x)z/+2 fx(x)dzl

< [f + f ] la(x - zhn)K(za(x - Zhn))m"(~n)fx(x - zhn)
Jlzl>M JlzlSM

- a(x)K(za(x))m"(x)fx(x)ll z l'+
2dz

== In,l + In,2,

with M a fixed positive number large enough such that

(7.22)

where a* =minz a(z). It is easy to see that limn _ oo In,2 =o. The term In,l is bounded by

d2 f IK(za(x - zhn))llzl'+2dz + d3 f IK(za(x))ll z l
'
+2dz.

~~>M ~~>M

Further, the first integral is less than or equal to
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which tends to zero as M -+ 00. Also the second integral converges to zero when M -+ 00.

Hence, limM->oo limn->oo In,l = o. We conclude that (7.22) tends to zero as n -+ 00.

Therefore,

1 1+00

EZn,l = 2a(x)(hn/a(x»'+3m"(x)fx(x) -00 K(u)ul+2du(1 +0(1».

Analogous arguments as those which lead to (7.13) yield

EZ2
- 0 (h2l+5

) - 0(nh2l+6 )n,l - n - n ,

provided that nhn -+ 00. Combination of (7.4), (7.23) and (7.24) finishes the proof.

(7.23)

(7.24)

o

Lemma 4. Assume that fx(·), a(·), L(·) and S(·) are bounded functions, continuous

at the point x, which is in the interior of the support of fx (.). Suppose that minz a(z) > 0,

and that limsuPlul->oo IL(u)u l+21 < 00, for a nonnegative integer 1. Then,

n (X-X-)~a(Xj)L h
n

1 a(Xj) S(Xj)(x - Xj)'

= na(x)(hn/a(x»'+lS(x)fx(x)1:00

L(u)ul du(1 +op(I».

Proof. Similar to the proof of Lemma 3. o

Proof of Theorem 1. The proof follows the same lines as that of Theorem 4, using

Lemmas 3 and 4 instead of Lemmas 1 and 2.

Proof of Theorem 2. Denote by dn(x) = E [(m*(x) - m(x»2IXI, ... ,Xn] - b~(x)­

v~(x). The proof of Theorem 1 in Fan (1990) yields that

Ed~(x)
h~ + (nhn)-l = 0(1) "Ix E [a,b],

d E~(x) • b d d .£ 1· d U . h C h S han moreover h1.+(nhn)-i IS oun e um orm y m x an n. smg t e auc y- c warz
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inequality, it follows that

E l b

Idn(x)w(x)ldx = l b

Eldn(x)w(x)ldx

< (b - a)'/' (l EId,,(Z)W(Z)I'dZ) 1/'

= o(h~+(nhn)-l).

Since Ll-convergence implies convergence in probability, we conclude that

which proves the theorem. o

In what follows we will prove Theorem 5. The proof will rely on the next two lemmas.

Lemma 5. Assume that fx(·)~ a(·) and m"(.) are bounded functions. Let &n(·) be a

consistent estimator of a(·) such that sUPz I&n(z) - a(z)1 = op(an), where an - o. Assume

that K is a uniformly Lipschitz continuous function such that lul+2K(u)1 ::5: G(u) for all

large lui, where G(u) is decreasing as lui increases and satisfies G(a;l!(IH)) = o(hn), for a

nonnegative integer 1. Further, suppose that minz a(z) > o. Then,

t. [&n(Xj)K (X ~nXj &n(Xj)) - a(Xj)K (X ~nXj a(Xj))] R(Xj)(x - Xj)l

= Op (nh~+3) , (7.25)

where R(Xj) =m(Xj) - m(x) +m'(x)(x - Xj).

Proof. In this proof dj,j =1,2,3,4, denote positive constants. Let

where a* = minz a(z). Denote the left-hand side of (7.25) by Dn(x) and write
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(7.26)

First of all, note that

where Fn(x) is the empirical distribution function of Xb··· ,Xn. Let Fx(·) denote the

corresponding distribution function of the Xjs. It is clear that

E#(I) = n [Fx(x +2(a*)-la;1/(I+4)hn) - Fx(x - 2(a*)-la;1/(l+4)hn)]

= 0 (na;l/(I+4) hn) ,

which implies that

(7.27)

We will now deal with each ofthe two terms in (7.26), starting with the first one. Using the

conditions on K(·), a(.), an (·) and m"(·), and incorporating the definition of I and (7.27),

we obtain

IDn ,l(X)1

I " [A (X - Xj A () (X - Xj )] (X - Xj)'l< hn feI an(Xj)K h
n

an Xj) - a(Xj)K h
n

a(Xj) R(Xj) h
n

< h~ fr I,,(X;) [K (X ~nX;&n(X;)) - K (X ~nX; ,,(X;)) ] R(X;) (X ~nX;)'1

+h~ L (an(Xj) - a(Xj))K (X ~ Xj an(Xj)) R(Xj) (X ~ Xj)'l
jeI n n

< d,h~ fr [IX ~X; II&n(X;) - ,,(X;)I] ~lm',({;)I(x - X;)'IX ~X;r

I
1 (X-X·)'l+d2h~ ~ (an(Xj) - a(Xj)) 2Im"({j)l(x - Xj)2 h

n
J

< d3 sup IOn(z) - a(z)lh~+2 [a;(l+3)/(I+4) + a;(l+2)/(I+4)] #(1)
z

= Op (nh~+3) , (7.28)
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where ~j lies between x and Xj. For the second term in (7.26) we rely on the conditions on

a(·) and m"(·), and the tail condition on J(, and find

IDn ,2(x)1

< h~+2 L J( (X ~ Xj On(Xj)) (X ~ Xj on(Xj)) 1+2 ( ~i\2(on(Xj))-(I+l)
j~I n n X J

+h~+2 L IJ( (X - Xj a(Xj)) (X - Xj a(Xj)) 1+2 ~Xj~ 2 (a(Xj))-(I+l)I
j~I hn hn (x X J )

= h~+2 L J( (X ~ Xj On(Xj)) (X ~ Xj On(Xj)) 1+2 ~m"(~j)(On(Xj))-(I+l)
j~I n n

+h~+2 L J( (X ~ Xj a(xj )) (X ~ Xj a(Xj)) 1+2 ~m"(~j)(a(Xj))-(I+l)
j~I n n

< [d4G(a;1/(I+4»)(a.)-(I+l)h~+2 L m"(~j)] Op(l)
j~I

= op (nh~+3) , (7.29)

where we used the fact that

The result now follows from (7.26), (7.28) and (7.29).

as n - 00.

o

Lemma 6. Assume that fx(')' a(·) and S{-) are bounded functions. Let on{-) be a

consistent estimator of a(·) such that supz IOn(z) - a(z)1 = op(an ), where an - O. Assume

that L is a uniformly Lipschitz continuous function such that lu1L(u)1 ~ G(u) for all large

lui, where G(u) is decreasing as lui increases and satisfies G(a;l/(I+2») = o(hn ), for a

nonnegative integer I. Further, suppose that minz a( z) > o. Then,

Proof. The proof uses similar arguments as that of Lemma 5 and is omitted. 0
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We now are in the position to prove Theorem 5.

Proof of Theorem 5. By the definitions of the estimators and a mean-variance de-

composition, we get

E [(m(x,an) - m(x,a))21 X b ••• ,Xn]

= E{ [t (E~Wj A. - E~Wj .)Y;]2 Xb ... ,Xn}j=1 ,=1 W, ,=1 W,

= It. (IT~: W; - E~:wJ m(Xj)] ' +t. (E;~: W; - IT::wJ' ,,'(Xj)

_ B~(x) +Vn(x). (7.30)

We first handle the term Bn(x). Using that E7=1 Wj(x-Xj) = 0 and E7=1 Wj(x-Xj) =

0, we rewrite Bn ( x) as follows

Ei=1 Wi
= E7=1 WjR(Xj)

Ei=1 Wi

E7=1 Wj(m(Xj) - m(x))

Ei=1 Wi

(7.31)

For the numerator of the first term in the above expression, we have

n

EWjR(Xj)
j=1

= Sn,2 tan(Xj)K (X ~ Xj an(Xj») R(Xj)
3=1 n

-Sn,1 tan(Xj)K (X ~ Xj an(Xj») R(Xj)(x - Xj).
3=1 n

(7.32)

Applying Lemmas 5 and 6, we find that

n

EWjR(Xj)
j=1

= [Sn.d op(nh~)] It.,,(Xj)K (X ~nXj ,,(Xj)) R(Xj) +op(nh~)]

- [Sn" + OP(nh~)llt."(Xj)K (X ~nXj ,,(Xj)) R(Xj)(x - Xj) + Op(nh~)] {7.33)
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Hence, Lemmas 5 and 6 allow us to replace on(') by a(·) in expression (7.32). Further,

using Lemmas 3 and 4 we can simplify (7.33) to

(7.34)

For the denominator of the first term in (7.31), we use similar arguments and obtain

n

L Wi = n2a2(x)(hn /a(x))4f}(x)[3230 - 3~](1 +op(l)).
i=1

(7.35)

Combination of (7.34) and (7.35) leads to

L'JE:j~(Xj) = -2
1m"(x)(hn /a(x))2 [3~ - 313~] (1 +op(l)). (7.36)

i=1 Wi 3230- 31
From the proof of Theorem 1 (which refers to that of Theorem 4), it can be seen that

(7.37)

Expressions (7.31), (7.36) and (7.37) assure that

(7.38)

We now deal with the variance term in (7.30). First use the boundedness of (12(.) to

obtain

(7.39)

Note that it suffices to evaluate the numerators of the first and the second term in (7.39).

Indeed, all the other factors appearing in that expression have been discussed previously.

Again relying on Lemmas 3 to 6 and the proof of Theorem 1, we find

n

LwJ
j=1

-2 ~ -2 (X )K2 (X - Xj - (X))
3n ,2~ an j h an j

3=1 n

26



-2Sn,1Sn,2 tO~(Xj)K2 (X ~ Xj On(Xj») (X - Xj)
1=1 n

+S~,1 t O~(Xj)K2 (X ~ Xj On(Xj») (X - Xj)2
1=1 n

= n3a4(x)(hn/a(x)f fi(x)1:00

[82 - U81]2 K 2(u)du(1 +op(1», (7.40)

and

n

L:WjWj
j=1

= Sn,2 8n,2 tOn(Xj)K (X ~-:Cj On(Xj») a(Xj)K (X ~ Xj a(Xj»)
1=1 n n

_ [8n,2Sn,1 + Sn,28n,1] tOn(Xj)K (X ~ Xj On(Xj») a(Xj)K (X ~ Xj a(Xj») (X - Xj)
1=1 n n

+Sn,18n,1 t on(Xj)K (X ~ Xj On(Xj») a(Xj)K (X ~ Xj a(Xj») (X _ Xj)2
1=1 n n

= n3a4(x)(hn/a(x)ffi(x)1:00

[82- U81]2K2(u)du(1 +op(1», (7.41)

Substituting the expressions we have evaluated so far, including those proved in Theorem

1, into (7.39) we get

Vn(X) = Op (n~n) .

The result now follows from (7.30), (7.38) and (7.42).

References

(7.42)

o

[1] Abramson, I.S. (1982). On bandwidth variation in kernel estimates-a square root law.

Ann. Statist. 10, 1217-1223.

[2] Breiman, L., Meisel, W. and Purcell, E. (1977). Variable kernel estimates of multivari­

ate densities. Technometrics 19, 135-144.

[3] Fan, J. (1990). A remedy to regression estimators and nonparametric minimax effi­

ciency.lnst. of Statist. Mimeo Series, #2028, Dept. of Statist., Univ. of North Carolina,

Chapel Hill.

27



[4] Fan, J. (1991). Design-adaptive nonparametric regression. Inst. 0/ Statist. Mimeo Se­

ries, #2049, Dept. of Statist., Univ. of North Carolina, Chapel Hill.

[5] Gasser, T. and Miiller, H.G. (1979). Kernel estimation of regression functions. In

Smoothing techniques for curve estimation. Lectures Notes in Math. 757, 23-68,

Springer-Verlag, New York.

[6] Hall, P. (1990). On the bias of variable bandwidth curve estimators. Biometrika 77,

529-535.

[7] Hall, P. and Marron, J.S. (1988). Variable window width kernel estimates of pro,!>ability

densities. Prob. Th. Rei. Fields 80, 37-49.

[8] Jones, M.C. (1990). Variable kernel density estimates and variable kernel density esti­

mates. Aust. J. Statist. 32, 361-371.

[9] Miiller, H.G. and Stadtmiiller, U. (1987). Variable bandwidth kernel estimators of

regression curves. Ann. Statist. 15, 182-201.

[10] Nadaraya, E.A. (1964). On estimating regression. Theory Probab. Appli., 9, 141-142.

[11] Silverman, B.W. (1986). Density Estimation/or Statistics and Data Analysis. Chapman

and Hall, London.

[12] Stone, C.J. (1977). Consistent Nonparametric Regression. Ann. Statist. 5, 595-645.

[13] Watson, G.S. (1964). Smooth regression analysis. Sankhya, Ser. A 26, 359-372.

28



oo
c:i

Normal kernel Normal kernel

~

~
GIl
c:i

:I ~

.! ~:.0

1
:>

~
>

If

1ft
c:i

N
c:i

0 0
c:i c:i

0 2 3 4 5 0 2 3 4 5

z z
FIgUre 1. Figur.lb

Epanechnikov kernel Epanechnikov kernel

~
c:i

S
c:i

~ 8

1 ~ .~c:i

If
>

0
c:i

0
0c:i

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

z z
Figur.2a Figur.2b

Uniform kernel Uniform kernel

GIl

§
c:i

'"

J §

.!c:i

1 ..
If

>

~
c:i N

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

z
Figur.3b



Estimated regression functions Estimated regression functions

t')

+++ true regression function
C\I

C\I

CD

:j
,
'~~ CD

f/) f/)
c: c:
0 0
0- 0-
f/) f/)

l!! l!!
0

:~ I
....

i i i

-2 -1 0 1 2

x
Figure 4

Estimated regression functions

:1 +++ true regression function
0

CD
CD 0f/)
c:
0
0-
f/)

l!! ~
0

C\I
0

q
0

I I I I I

-2 -1 0 1 2

x
Figure 6

-2 -1

+++ true regression function
r

o

x
Figure 5

2


