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of guidelines for safe and effective use of preclinical and clinical 
genomic data. Although previous studies have compared and bench-
marked individual steps in the model development process19, no 
prior published work has, to our knowledge, extensively evaluated 
current community practices on the development and validation of 
microarray-based predictive models.

Microarray-based gene expression data and prediction models are 
increasingly being submitted by the regulated industry to the FDA 
to support medical product development and testing applications20. 
For example, gene expression microarray–based assays that have 
been approved by the FDA as diagnostic tests include the Agendia 
MammaPrint microarray to assess prognosis of distant metastasis in 
breast cancer patients21,22 and the Pathwork Tissue of Origin Test 
to assess the degree of similarity of the RNA expression pattern in 
a patient’s tumor to that in a database of tumor samples for which 
the origin of the tumor is known23. Gene expression data have 
also been the basis for the development of PCR-based diagnostic 
assays, including the xDx Allomap test for detection of rejection of  
heart transplants24.

The possible uses of gene expression data are vast and include diag-
nosis, early detection (screening), monitoring of disease progression, 
risk assessment, prognosis, complex medical product characteriza-
tion and prediction of response to treatment (with regard to safety or 
efficacy) with a drug or device labeling intent. The ability to generate 
models in a reproducible fashion is an important consideration in 
predictive model development.

A lack of consistency in generating classifiers from publicly avail-
able data is problematic and may be due to any number of factors 
including insufficient annotation, incomplete clinical identifiers, 
coding errors and/or inappropriate use of methodology25,26. There 

the MicroArray Quality control (MAQc)-ii study of 
common practices for the development and validation 
of microarray-based predictive models

As part of the United States Food and Drug Administration’s (FDA’s) 
Critical Path Initiative to medical product development (http://www.
fda.gov/oc/initiatives/criticalpath/), the MAQC consortium began in 
February 2005 with the goal of addressing various microarray reli-
ability concerns raised in publications1–9 pertaining to reproducibility 
of gene signatures. The first phase of this project (MAQC-I) exten-
sively evaluated the technical performance of microarray platforms 
in identifying all differentially expressed genes that would potentially 
constitute biomarkers. The MAQC-I found high intra-platform repro-
ducibility across test sites, as well as inter-platform concordance of 
differentially expressed gene lists10–15 and confirmed that microarray 
technology is able to reliably identify differentially expressed genes 
between sample classes or populations16,17. Importantly, the MAQC-I 
helped produce companion guidance regarding genomic data submis-
sion to the FDA (http://www.fda.gov/downloads/Drugs/GuidanceCo
mplianceRegulatoryInformation/Guidances/ucm079855.pdf).

Although the MAQC-I focused on the technical aspects of gene 
expression measurements, robust technology platforms alone are 
not sufficient to fully realize the promise of this technology. An 
additional requirement is the development of accurate and repro-
ducible multivariate gene expression–based prediction models, also 
referred to as classifiers. Such models take gene expression data from 
a patient as input and as output produce a prediction of a clinically 
relevant outcome for that patient. Therefore, the second phase of the 
project (MAQC-II) has focused on these predictive models18, study-
ing both how they are developed and how they are evaluated. For 
any given microarray data set, many computational approaches can 
be followed to develop predictive models and to estimate the future 
performance of these models. Understanding the strengths and limi-
tations of these various approaches is critical to the formulation 
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Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of 
these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets 
to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in 
rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many 
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and independent investigators that evaluate methods for global gene expression analysis.
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are also examples in the literature of classifiers whose performance 
cannot be reproduced on independent data sets because of poor study 
design27, poor data quality and/or insufficient cross-validation of all 
model development steps28,29. Each of these factors may contribute 
to a certain level of skepticism about claims of performance levels 
achieved by microarray-based classifiers.

Previous evaluations of the reproducibility of microarray-based 
classifiers, with only very few exceptions30,31, have been limited 
to simulation studies or reanalysis of previously published results. 
Frequently, published benchmarking studies have split data sets at 
random, and used one part for training and the other for validation. 
This design assumes that the training and validation sets are produced 
by unbiased sampling of a large, homogeneous population of samples. 
However, specimens in clinical studies are usually accrued over years 
and there may be a shift in the participating patient population and 
also in the methods used to assign disease status owing to changing 
practice standards. There may also be batch effects owing to time 
variations in tissue analysis or due to distinct methods of sample 
 collection and handling at different medical centers. As a result, 
 samples derived from sequentially accrued patient populations, as 
was done in MAQC-II to mimic clinical reality, where the first cohort 
is used for developing predictive models and subsequent patients are 
included in validation, may differ from each other in many ways that 
could influence the prediction performance.

The MAQC-II project was designed to evaluate these sources of 
bias in study design by constructing training and validation sets at 
different times, swapping the test and training sets and also using 
data from diverse preclinical and clinical scenarios. The goals of 
MAQC-II were to survey approaches in genomic model develop-
ment in an attempt to understand sources of variability in prediction 
performance and to assess the influences of endpoint signal strength 
in data. By providing the same data sets to many organizations for 
analysis, but not restricting their data analysis protocols, the project 
has made it possible to evaluate to what extent, if any, results depend 
on the team that performs the analysis. This contrasts with previous 
benchmarking studies that have typically been conducted by single 
laboratories. Enrolling a large number of organizations has also made 
it feasible to test many more approaches than would be practical for 
any single team. MAQC-II also strives to develop good modeling 
practice guidelines, drawing on a large international collaboration of 
experts and the lessons learned in the perhaps unprecedented effort 
of developing and evaluating >30,000 genomic classifiers to predict 
a variety of endpoints from diverse data sets.

MAQC-II is a collaborative research project that includes 
participants from the FDA, other government agencies, industry 
and academia. This paper describes the MAQC-II structure and 
experimental design and summarizes the main findings and key 
results of the consortium, whose members have learned a great deal  
during the process. The resulting guidelines are general and should 
not be construed as specific recommendations by the FDA for  
regulatory submissions.

RESULTS
Generating a unique compendium of >30,000 prediction models
The MAQC-II consortium was conceived with the primary 
goal of examining model development practices for generating 
binary classifiers in two types of data sets, preclinical and clinical 
(Supplementary Tables 1 and 2). To accomplish this, the project 
leader distributed six data sets containing 13 preclinical and clini-
cal endpoints coded A through M (Table 1) to 36 voluntary par-
ticipating data analysis teams representing academia, industry 

and government institutions (Supplementary Table 3). Endpoints 
were coded so as to hide the identities of two negative-control end-
points (endpoints I and M, for which class labels were randomly 
assigned and are not predictable by the microarray data) and two 
 positive-control endpoints (endpoints H and L, representing the 
sex of patients, which is highly predictable by the microarray data). 
Endpoints A, B and C tested teams’ ability to predict the toxicity 
of chemical agents in rodent lung and liver models. The remaining 
endpoints were predicted from microarray data sets from human 
patients diagnosed with breast cancer (D and E), multiple myeloma 
(F and G) or neuroblastoma (J and K). For the multiple myeloma 
and neuroblastoma data sets, the endpoints represented event free 
survival (abbreviated EFS), meaning a lack of malignancy or disease 
recurrence, and overall survival (abbreviated OS) after 730 days  
(for multiple myeloma) or 900 days (for neuroblastoma) post treat-
ment or diagnosis. For breast cancer, the endpoints represented 
estrogen receptor status, a common diagnostic marker of this 
cancer type (abbreviated ‘erpos’), and the success of treatment 
involving chemotherapy followed by surgical resection of a tumor 
(abbreviated ‘pCR’). The biological meaning of the control end-
points was known only to the project leader and not revealed to 
the project participants until all model development and external 
validation processes had been completed.

To evaluate the reproducibility of the models developed by a data 
analysis team for a given data set, we asked teams to submit models 
from two stages of analyses. In the first stage (hereafter referred to as 
the ‘original’ experiment), each team built prediction models for up to 
13 different coded endpoints using six training data sets. Models were 
‘frozen’ against further modification, submitted to the consortium 
and then tested on a blinded validation data set that was not available 
to the analysis teams during training. In the second stage (referred 
to as the ‘swap’ experiment), teams repeated the model building and 
validation process by training models on the original validation set 
and validating them using the original training set.

To simulate the potential decision-making process for evaluating a 
microarray-based classifier, we established a process for each group 
to receive training data with coded endpoints, propose a data analysis 
protocol (DAP) based on exploratory analysis, receive feedback on 
the protocol and then perform the analysis and validation (Fig. 1). 
Analysis protocols were reviewed internally by other MAQC-II par-
ticipants (at least two reviewers per protocol) and by members of the 
MAQC-II Regulatory Biostatistics Working Group (RBWG), a team 
from the FDA and industry comprising biostatisticians and others 
with extensive model building expertise. Teams were encouraged to 
revise their protocols to incorporate feedback from reviewers, but 
each team was eventually considered responsible for its own analysis 
protocol and incorporating reviewers’ feedback was not mandatory 
(see Online Methods for more details).

We assembled two large tables from the original and swap experi-
ments (Supplementary Tables 1 and 2, respectively) containing 
summary information about the algorithms and analytic steps, or 
‘modeling factors’, used to construct each model and the ‘internal’ 
and ‘external’ performance of each model. Internal performance 
measures the ability of the model to classify the training samples, 
based on cross-validation exercises. External performance measures 
the ability of the model to classify the blinded independent validation 
data. We considered several performance metrics, including Matthews 
Correlation Coefficient (MCC), accuracy, sensitivity, specificity, 
area under the receiver operating characteristic curve (AUC) and 
root mean squared error (r.m.s.e.). These two tables contain data on 
>30,000 models. Here we report performance based on MCC because 
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it is informative when the distribution of the two classes in a data set 
is highly skewed and because it is simple to calculate and was available 
for all models. MCC values range from +1 to −1, with +1 indicating 
perfect prediction (that is, all samples classified correctly and none 
incorrectly), 0 indicates random prediction and −1 indicating perfect 
inverse prediction.

The 36 analysis teams applied many different options under each 
modeling factor for developing models (Supplementary Table 4) 
including 17 summary and normalization methods, nine batch-effect 
removal methods, 33 feature selection methods (between 1 and >1,000 
features), 24 classification algorithms and six internal validation 
 methods. Such diversity suggests the community’s common practices are 

Table 1 Microarray data sets used for model development and validation in the MAQC-II project

Date set 
code

Endpoint 
code

Endpoint  
description

Microarray  
platform

Training seta Validation seta

Comments and references
Number  

of samples
Positives 

(P)
Negatives  

(N)
P/N  
ratio

Number  
of samples

Positives  
(P)

Negatives 
(N)

P/N  
ratio

Hamner A Lung tumorigen 
vs. non-tumorigen 
(mouse)

Affymetrix Mouse 
430 2.0

70 26 44 0.59 88 28 60 0.47 The training set was first  
published in 2007 (ref. 50) and 
the validation set was generated 
for MAQC-II

Iconix B Non-genotoxic liver 
carcinogens vs.  
non-carcinogens  
(rat)

Amersham Uniset  
Rat 1 Bioarray

216 73 143 0.51 201 57 144 0.40 The data set was first published 
in 2007 (ref. 51). Raw microarray 
intensity data, instead of ratio 
data, were provided for MAQC-II 
data analysis

NIEHS C Liver toxicants vs. 
non-toxicants based 
on overall necrosis 
score (rat)

Affymetrix  
Rat 230 2.0

214 79 135 0.58 204 78 126 0.62 Exploratory visualization of the 
data set was reported in 2008 
(ref. 53). However, the phenotype 
classification problem was  
formulated specifically for  
MAQC-II. A large amount of  
additional microarray and 
phenotype data were provided to 
MAQC-II for cross-platform and 
cross-tissue comparisons

Breast 
cancer 
(BR)

D Pre-operative treat-
ment response (pCR, 
pathologic complete 
response)

Affymetrix Human 
U133A

130 33 97 0.34 100 15 85 0.18 The training set was first  
published in 2006 (ref. 56) and 
the validation set was specifically 
generated for MAQC-II. In addi-
tion, two distinct endpoints (D 
and E) were analyzed in MAQC-II

E Estrogen receptor 
status (erpos)

130 80 50 1.6 100 61 39 1.56

Multiple 
myeloma 
(MM)

F Overall survival  
milestone outcome 
(OS, 730-d cutoff)

Affymetrix Human 
U133Plus 2.0

340 51 289 0.18 214 27 187 0.14 The data set was first published 
in 2006 (ref. 57) and 2007 
(ref. 58). However, patient 
survival data were updated and 
the raw microarray data (CEL 
files) were provided specifically 
for MAQC-II data analysis. In 
addition, endpoints H and I were 
designed and analyzed specifically 
in MAQC-II

G Event-free survival 
milestone outcome 
(EFS, 730-d cutoff)

340 84 256 0.33 214 34 180 0.19

H Clinical parameter  
S1 (CPS1). The  
actual class label 
is the sex of the 
patient. Used as a 
“positive” control 
endpoint

340 194 146 1.33 214 140 74 1.89

I Clinical parameter  
R1 (CPR1). The 
actual class label is 
randomly assigned. 
Used as a “negative” 
control endpoint

340 200 140 1.43 214 122 92 1.33

Neuro-
blastoma 
(NB)

J Overall survival  
milestone outcome 
(OS, 900-d cutoff)

Different versions 
of Agilent human 
microarrays

238 22 216 0.10 177 39 138 0.28 The training data set was first 
published in 2006 (ref. 63). 
The validation set (two-color 
Agilent platform) was generated 
specifically for MAQC-II. In addi-
tion, one-color Agilent platform 
data were also generated for most 
samples used in the training and 
validation sets specifically for 
MAQC-II to compare the predic-
tion performance of two-color  
versus one-color platforms. 
Patient survival data were also 
updated. In addition, endpoints L 
and M were designed and  
analyzed specifically in MAQC-II

K Event-free survival 
milestone outcome 
(EFS, 900-d cutoff)

239 49 190 0.26 193 83 110 0.75

L Newly established 
parameter S (NEP_S).  
The actual class label 
is the sex of the  
patient. Used as a 
“positive” control 
endpoint

246 145 101 1.44 231 133 98 1.36

M Newly established 
parameter R (NEP_R). 
The actual class label 
is randomly assigned. 
Used as a “negative” 
control endpoint

246 145 101 1.44 253 143 110 1.30

The first three data sets (Hamner, Iconix and NIEHS) are from preclinical toxicogenomics studies, whereas the other three data sets are from clinical studies. Endpoints H and L are positive 
controls (sex of patient) and endpoints I and M are negative controls (randomly assigned class labels). The nature of H, I, L and M was unknown to MAQC-II participants except for the project 
leader until all calculations were completed.  
aNumbers shown are the actual number of samples used for model development or validation.
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well represented. For each of the models nominated by a team as being 
the best model for a particular endpoint, we compiled the list of features 
used for both the original and swap experiments (see the MAQC Web 
site at http://edkb.fda.gov/MAQC/). These comprehensive tables rep-
resent a unique resource. The results that follow describe data mining 
efforts to determine the potential and limitations of current practices for 
developing and validating gene expression–based prediction models.

Performance depends on endpoint and can be estimated 
during training
Unlike many previous efforts, the study design of MAQC-II provided 
the opportunity to assess the performance of many different modeling 

approaches on a clinically realistic blinded external validation data set. 
This is especially important in light of the intended clinical or preclini-
cal uses of classifiers that are constructed using initial data sets and 
validated for regulatory approval and then are expected to accurately 
predict samples collected under diverse conditions perhaps months or 
years later. To assess the reliability of performance estimates derived 
during model training, we compared the performance on the internal 
training data set with performance on the external validation data set 
for of each of the 18,060 models in the original experiment (Fig. 2a). 
Models without complete metadata were not included in the analysis.

We selected 13 ‘candidate models’, representing the best model for 
each endpoint, before external validation was performed. We required 

that each analysis team nominate one model 
for each endpoint they analyzed and we then 
selected one candidate from these nomi-
nations for each endpoint. We observed a 
higher correlation between internal and 
external performance estimates in terms 
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Figure 1 Experimental design and timeline  
of the MAQC-II project. Numbers (1–11)  
order the steps of analysis. Step 11 indicates  
when the original training and validation  
data sets were swapped to repeat steps 4–10. 
See main text for description of each step. 
Every effort was made to ensure the complete 
independence of the validation data sets from 
the training sets. Each model is characterized 
by several modeling factors and seven internal 
and external validation performance metrics 
(Supplementary Tables 1 and 2). The modeling 
factors include: (i) organization code; (ii) data 
set code; (iii) endpoint code; (iv) summary and 
normalization; (v) feature selection method; 
(vi) number of features used; (vii) classification 
algorithm; (viii) batch-effect removal method; 
(ix) type of internal validation; and (x) number 
of iterations of internal validation. The seven 
performance metrics for internal validation and 
external validation are: (i) MCC; (ii) accuracy; 
(iii) sensitivity; (iv) specificity; (v) AUC;  
(vi) mean of sensitivity and specificity; and  
(vii) r.m.s.e. s.d. of metrics are also provided for 
internal validation results.
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validation compared with external validation. 
(a) Performance of 18,060 models that were 
validated with blinded validation data.  
(b) Performance of 13 candidate models.  
r, Pearson correlation coefficient; N, number 
of models. Candidate models with binary and 
continuous prediction values are marked as 
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prediction results from each model. (c) Distribution  
of MCC values of all models for each endpoint in 
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validation performance. Endpoints H and L (sex of 
the patients) are included as positive controls and 
endpoints I and M (randomly assigned sample 
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of MCC for the selected candidate models  
(r = 0.951, n = 13, Fig. 2b) than for the overall 
set of models (r = 0.840, n = 18,060, Fig. 2a), 
suggesting that extensive peer review of 
analysis protocols was able to avoid select-
ing models that could result in less reliable 
predictions in external validation. Yet, even 
for the hand-selected candidate models, there is noticeable bias in the 
performance estimated from internal validation. That is, the internal 
validation performance is higher than the external validation per-
formance for most endpoints (Fig. 2b). However, for some endpoints 
and for some model building methods or teams, internal and external 
performance correlations were more modest as described in the fol-
lowing sections.

To evaluate whether some endpoints might be more predictable 
than others and to calibrate performance against the positive- and 
negative-control endpoints, we assessed all models generated for each 
endpoint (Fig. 2c). We observed a clear dependence of prediction 
performance on endpoint. For example, endpoints C (liver necrosis 
score of rats treated with hepatotoxicants), E (estrogen receptor status 
of breast cancer patients), and H and L (sex of the multiple myeloma 
and neuroblastoma patients, respectively) were the easiest to predict 
(mean MCC > 0.7). Toxicological endpoints A and B and disease 
progression endpoints D, F, G, J and K were more difficult to predict 
(mean MCC ~0.1–0.4). Negative-control endpoints I and M were 
totally unpredictable (mean MCC ~0), as expected. For 11 endpoints 
(excluding the negative controls), a large proportion of the submitted 
models predicted the endpoint significantly better than chance (MCC 
> 0) and for a given endpoint many models performed similarly well 
on both internal and external validation (see the distribution of MCC 
in Fig. 2c). On the other hand, not all the submitted models per-
formed equally well for any given endpoint. Some models performed 
no better than chance, even for some of the easy-to-predict endpoints, 
suggesting that additional factors were responsible for differences in  
model performance.

Data analysis teams show different proficiency
Next, we summarized the external validation performance of the 
 models nominated by the 17 teams that analyzed all 13 endpoints 
(Fig. 3). Nominated models represent a team’s best assessment of its 
model-building effort. The mean external validation MCC per team 
over 11 endpoints, excluding negative controls I and M, varied from 
0.532 for data analysis team (DAT)24 to 0.263 for DAT3, indicating 
appreciable differences in performance of the models developed by dif-
ferent teams for the same data. Similar trends were observed when AUC 

was used as the performance metric (Supplementary Table 5) or when 
the original training and validation sets were swapped (Supplementary 
Tables 6 and 7). Table 2 summarizes the modeling approaches that 
were used by two or more MAQC-II data analysis teams.

Many factors may have played a role in the difference of external vali-
dation performance between teams. For instance, teams used different 
modeling factors, criteria for selecting the nominated models, and soft-
ware packages and code. Moreover, some teams may have been more 
proficient at microarray data modeling and better at guarding against 
clerical errors. We noticed substantial variations in performance among 
the many K-nearest neighbor algorithm (KNN)-based models devel-
oped by four analysis teams (Supplementary Fig. 1). Follow-up inves-
tigations identified a few possible causes leading to the discrepancies in 
performance32. For example, DAT20 fixed the parameter ‘number of 
neighbors’ K = 3 in its data analysis protocol for all endpoints, whereas 
DAT18 varied K from 3 to 15 with a step size of 2. This investigation 
also revealed that even a detailed but standardized description of model 
building requested from all groups failed to capture many important 
tuning variables in the process. The subtle modeling differences not 
captured may have contributed to the differing performance levels 
achieved by the data analysis teams. The differences in performance 
for the models developed by various data analysis teams can also be 
observed from the changing patterns of internal and external valida-
tion performance across the 13 endpoints (Fig. 3, Supplementary  
Tables 5–7 and Supplementary Figs. 2–4). Our observations highlight 
the importance of good modeling practice in developing and validating 
microarray-based predictive models including reporting of compu-
tational details for results to be replicated26. In light of the MAQC-II  
experience, recording structured information about the steps and 
parameters of an analysis process seems highly desirable to facilitate 
peer review and reanalysis of results.

Swap and original analyses lead to consistent results
To evaluate the reproducibility of the models generated by each team,  
we correlated the performance of each team’s models on the original  
training data set to performance on the validation data set and 
repeated this calculation for the swap experiment (Fig. 4). The cor-
relation varied from 0.698–0.966 on the original experiment and from  
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0.532 0.982 0.910 0.845 0.748 0.575 0.557 0.311 0.323 0.244 0.193 0.168 0.011 −0.059

0.513 0.973 0.918 0.829 0.792 0.493 0.437 0.322 0.306 0.307 0.202 0.060 0.044 −0.041
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0.364 0.636 0.761 0.454 0.748 0.247 0.377 0.062 0.324 0.043 0.085 0.271 0.016 −0.020

0.284 0.856 0.054 0.709 0.751 0.455 −0.213 –0.078 0.114 0.479 −0.096 0.091 0.051 0.024

0.263 0.982 0.830 0.595 0.544 0.036 −0.090 −0.027 0.336 −0.143 −0.030 −0.142 −0.047 0.019
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1.0Figure 3 Performance, measured using MCC, 
of the best models nominated by the 17 data 
analysis teams (DATs) that analyzed all 13 
endpoints in the original training-validation 
experiment. The median MCC value for 
an endpoint, representative of the level of 
predicability of the endpoint, was calculated 
based on values from the 17 data analysis 
teams. The mean MCC value for a data analysis 
team, representative of the team’s proficiency 
in developing predictive models, was calculated 
based on values from the 11 non-random 
endpoints (excluding negative controls I and M).  
Red boxes highlight candidate models. Lack 
of a red box in an endpoint indicates that the 
candidate model was developed by a data analysis 
team that did not analyze all 13 endpoints.
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0.443–0.954 on the swap experiment. For all but three teams (DAT3, 
DAT10 and DAT11) the original and swap correlations were within 
±0.2, and all but three others (DAT4, DAT13 and DAT36) were within 
±0.1, suggesting that the model building process was relatively robust, 
at least with respect to generating models with similar performance. 
For some data analysis teams the internal validation performance 
drastically overestimated the performance of the same model in pre-
dicting the validation data. Examination of some of those models 
revealed several reasons, including bias in the feature selection and 
cross-validation process28, findings consistent with what was observed 
from a recent literature survey33.

Previously, reanalysis of a widely cited single study34 found that 
the results in the original publication were very fragile—that is, not 
reproducible if the training and validation sets were swapped35. Our 
observations, except for DAT3, DAT11 and DAT36 with correlation 
<0.6, mainly resulting from failure of accurately predicting the posi-
tive-control endpoint H in the swap analysis (likely owing to operator 
errors), do not substantiate such fragility in the currently examined 
data sets. It is important to emphasize that we repeated the entire 
model building and evaluation processes during the swap analysis 
and, therefore, stability applies to the model building process for 
each data analysis team and not to a particular model or approach. 
Supplementary Figure 5 provides a more detailed look at the cor-
relation of internal and external validation for each data analysis team 
and each endpoint for both the original (Supplementary Fig. 5a) and 
swap (Supplementary Fig. 5d) analyses.

As expected, individual feature lists differed from analysis group 
to analysis group and between models developed from the original 
and the swapped data. However, when feature lists were mapped to 
biological processes, a greater degree of convergence and concordance 
was observed. This has been proposed previously but has never been 
demonstrated in a comprehensive manner over many data sets and 
thousands of models as was done in MAQC-II36.

The effect of modeling factors is modest
To rigorously identify potential sources of variance that explain the 
variability in external-validation performance (Fig. 2c), we applied 
random effect modeling (Fig. 5a). We observed that the endpoint 

itself is by far the dominant source of variability, explaining >65% 
of the variability in the external validation performance. All other 
factors explain <8% of the total variance, and the residual variance 
is ~6%. Among the factors tested, those involving interactions with 
endpoint have a relatively large effect, in particular the interaction 
between endpoint with organization and classification algorithm, 
highlighting variations in proficiency between analysis teams.

To further investigate the impact of individual levels within each 
modeling factor, we estimated the empirical best linear unbiased pre-
dictors (BLUPs)37. Figure 5b shows the plots of BLUPs of the cor-
responding factors in Figure 5a with proportion of variation >1%. 
The BLUPs reveal the effect of each level of the factor to the corre-
sponding MCC value. The BLUPs of the main endpoint effect show 
that rat liver necrosis, breast cancer estrogen receptor status and the 
sex of the patient (endpoints C, E, H and L) are relatively easier to be 
predicted with ~0.2–0.4 advantage contributed on the correspond-
ing MCC values. The rest of the endpoints are relatively harder to 
be predicted with about −0.1 to −0.2 disadvantage contributed to 
the corresponding MCC values. The main factors of normaliza-
tion, classification algorithm, the number of selected features and 
the feature selection method have an impact of −0.1 to 0.1 on the 
corresponding MCC values. Loess normalization was applied to the 
endpoints (J, K and L) for the neuroblastoma data set with the two-
color Agilent platform and has 0.1 advantage to MCC values. Among 
the Microarray Analysis Suite version 5 (MAS5), Robust Multichip 
Analysis (RMA) and dChip normalization methods that were 
applied to all endpoints (A, C, D, E, F, G and H) for Affymetrix data,  
the dChip method has a lower BLUP than the others. Because 
 normalization methods are partially confounded with endpoints, it 
may not be suitable to compare methods between different confounded 
groups. Among classification methods, discriminant analysis has the 
largest positive impact of 0.056 on the MCC values. Regarding the 
number of selected features, larger bin number has better impact on  
the average across endpoints. The bin number is assigned by applying 
the ceiling function to the log base 10 of the number of selected features. 
All the feature selection methods have a slight impact of −0.025 to 0.025 

Table 2 Modeling factor options frequently adopted by MAQC-II data 
analysis teams

Modeling factor Option

Original analysis (training => validation)

Number  
of teams

Number  
of endpoints

Number  
of models

Summary and normalization Loess 12   3 2,563
RMA   3   7 46
MAS5 11   7 4,947

Batch-effect removal None 10 11 2,281
Mean shift   3 11 7,279

Feature selection SAM   4 11 3,771
FC+P   8 11 4,711
T-Test   5 11 400
RFE   2 11 647

Number of features 0~9 10 11 393
10~99 13 11 4,445
≥1,000   3 11 474
100~999 10 11 4,298

Classification algorithm DA   4 11 103
Tree   5 11 358
NB   4 11 924

KNN   8 11 6,904
SVM   9 11 986

Analytic options used by two or more of the 14 teams that submitted models for all endpoints in both  
the original and swap experiments. RMA, robust multichip analysis; SAM, significance analysis of 
microarrays; FC, fold change; RFE, recursive feature elimination; DA, discriminant analysis; Tree,  
decision tree; NB, naive Bayes; KNN, K-nearest neighbors; SVM, support vector machine.
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Figure 4 Correlation between internal and external validation is 
dependent on data analysis team. Pearson correlation coefficients 
between internal and external validation performance in terms of MCC are 
displayed for the 14 teams that submitted models for all 13 endpoints 
in both the original (x axis) and swap (y axis) analyses. The unusually low 
correlation in the swap analysis for DAT3, DAT11 and DAT36 is a result 
of their failure to accurately predict the positive endpoint H, likely due to 
operator errors (Supplementary Table 6).
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on MCC values except for recursive feature elimination (RFE) that  
has an impact of −0.006. In the plots of the four selected interactions, 
the estimated BLUPs vary across endpoints. The large variation across 
endpoints implies the impact of the corresponding modeling factor on 
different endpoints can be very different. Among the four interaction  
plots (see Supplementary Fig. 6 for a clear labeling of each inter-
action term), the corresponding BLUPs of the three-way interaction 
of organization, classification algorithm and endpoint show the high-
est variation. This may be due to different tuning parameters applied 
to individual algorithms for different organizations, as was the case  
for KNN32.

We also analyzed the relative importance of modeling factors on 
external-validation prediction performance using a decision tree 
model38. The analysis results revealed observations (Supplementary 
Fig. 7) largely consistent with those above. First, the endpoint code 
was the most influential modeling factor. Second, feature selection 
method, normalization and summarization method, classification 
method and organization code also contributed to prediction per-
formance, but their contribution was relatively small.

Feature list stability is correlated with endpoint predictability
Prediction performance is the most important criterion for evaluat-
ing the performance of a predictive model and its modeling process. 
However, the robustness and mechanistic relevance of the model and 

the corresponding gene signature is also important (Supplementary 
Fig. 8). That is, given comparable prediction performance between 
two modeling processes, the one yielding a more robust and repro-
ducible gene signature across similar data sets (e.g., by swapping the 
 training and validation sets), which is therefore less susceptible to 
sporadic fluctuations in the data, or the one that provides new insights 
to the underlying biology is preferable. Reproducibility or stability of  
feature sets is best studied by running the same model selection protocol 
on two distinct collections of samples, a scenario only possible, in  
this case, after the blind validation data were distributed to the data 
analysis teams that were asked to perform their analysis after swapping 
their original training and test sets. Supplementary Figures 9 and 10 
show that, although the feature space is extremely large for microarray 
data, different teams and protocols were able to consistently select the 
best-performing features. Analysis of the lists of features indicated that 
for endpoints relatively easy to predict, various data analysis teams 
arrived at models that used more common features and the overlap 
of the lists from the original and swap analyses is greater than those 
for more difficult endpoints (Supplementary Figs. 9–11). Therefore, 
the level of stability of feature lists can be associated to the level of dif-
ficulty of the prediction problem (Supplementary Fig. 11), although 
multiple models with different feature lists and comparable perform-
ance can be found from the same data set39. Functional analysis of the 
most frequently selected genes by all data analysis protocols shows 
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that many of these genes represent biological processes that are highly 
relevant to the clinical outcome that is being predicted36. The sex-
based endpoints have the best overlap, whereas more difficult survival 
endpoints (in which disease processes are confounded by many other 
factors) have only marginally better overlap with biological processes 
relevant to the disease than that expected by random chance.

Summary of MAQC-II observations and recommendations
The MAQC-II data analysis teams comprised a diverse group, some 
of whom were experienced microarray analysts whereas others were 
graduate students with little experience. In aggregate, the group’s  
composition likely mimicked the broad scientific community engaged 
in building and publishing models derived from microarray data. The 
more than 30,000 models developed by 36 data analysis teams for  
13 endpoints from six diverse clinical and preclinical data sets are a 
rich source from which to highlight several important observations.

First, model prediction performance was largely endpoint (bio-
logy) dependent (Figs. 2c and 3). The incorporation of multiple data 
sets and endpoints (including positive and negative controls) in the 
MAQC-II study design made this observation possible. Some end-
points are highly predictive based on the nature of the data, which 
makes it possible to build good models, provided that sound modeling 
procedures are used. Other endpoints are inherently difficult to pre-
dict regardless of the model development protocol.

Second, there are clear differences in proficiency between data 
analysis teams (organizations) and such differences are correlated 
with the level of experience of the team. For example, the top- 
performing teams shown in Figure 3 were mainly industrial participants  
with many years of experience in microarray data analysis, whereas 
bottom-performing teams were mainly less-experienced graduate 
students or researchers. Based on results from the positive and nega-
tive endpoints, we noticed that simple errors were sometimes made, 
suggesting rushed efforts due to lack of time or unnoticed implemen-
tation flaws. This observation strongly suggests that mechanisms are 
needed to ensure the reliability of results presented to the regulatory 
agencies, journal editors and the research community. By examining 
the practices of teams whose models did not perform well, future 
studies might be able to identify pitfalls to be avoided. Likewise, 
practices adopted by top-performing teams can provide the basis for 
developing good modeling practices.

Third, the internal validation performance from well-implemented, 
unbiased cross-validation shows a high degree of concordance with the 
external validation performance in a strict blinding process (Fig. 2).  
This observation was not possible from previously published studies 
owing to the small number of available endpoints tested in them.

Fourth, many models with similar performance can be developed 
from a given data set (Fig. 2). Similar prediction performance is 
attainable when using different modeling algorithms and parameters, 
and simple data analysis methods often perform as well as more 
complicated approaches32,40. Although it is not essential to include 
the same features in these models to achieve comparable prediction 
performance, endpoints that were easier to predict generally yielded 
models with more common features, when analyzed by different 
teams (Supplementary Fig. 11).

Finally, applying good modeling practices appeared to be more 
important than the actual choice of a particular algorithm over the 
others within the same step in the modeling process. This can be seen 
in the diverse choices of the modeling factors used by teams that pro-
duced models that performed well in the blinded validation (Table 2) 
where modeling factors did not universally contribute to variations in 
model performance among good performing teams (Fig. 5).

Summarized below are the model building steps recommended to 
the MAQC-II data analysis teams. These may be applicable to model 
building practitioners in the general scientific community.

Step one (design). There is no exclusive set of steps and procedures, 
in the form of a checklist, to be followed by any practitioner for all 
problems. However, normal good practice on the study design and 
the ratio of sample size to classifier complexity should be followed. 
The frequently used options for normalization, feature selection and 
classification are good starting points (Table 2).

Step two (pilot study or internal validation). This can be accom-
plished by bootstrap or cross-validation such as the ten repeats of a 
fivefold cross-validation procedure adopted by most MAQC-II teams. 
The samples from the pilot study are not replaced for the pivotal 
study; rather they are augmented to achieve ‘appropriate’ target size.

Step three (pivotal study or external validation). Many investigators 
assume that the most conservative approach to a pivotal study is to 
simply obtain a test set completely independent of the training set(s). 
However, it is good to keep in mind the exchange34,35 regarding the 
fragility of results when the training and validation sets are swapped. 
Results from further resampling (including simple swapping as in 
MAQC-II) across the training and validation sets can provide impor-
tant information about the reliability of the models and the modeling 
procedures, but the complete separation of the training and validation 
sets should be maintained41.

Finally, a perennial issue concerns reuse of the independent valida-
tion set after modifications to an originally designed and validated 
data analysis algorithm or protocol. Such a process turns the valida-
tion set into part of the design or training set42. Ground rules must 
be developed for avoiding this approach and penalizing it when it 
occurs; and practitioners should guard against using it before such 
ground rules are well established.

DISCUSSION
MAQC-II conducted a broad observational study of the current com-
munity landscape of gene-expression profile–based predictive model 
development. Microarray gene expression profiling is among the most 
commonly used analytical tools in biomedical research. Analysis of 
the high-dimensional data generated by these experiments involves 
multiple steps and several critical decision points that can profoundly 
influence the soundness of the results43. An important requirement 
of a sound internal validation is that it must include feature selection 
and parameter optimization within each iteration to avoid overly opti-
mistic estimations of prediction performance28,29,44. To what extent 
this information has been disseminated and followed by the scien-
tific community in current microarray analysis remains unknown33. 
Concerns have been raised that results published by one group of 
investigators often cannot be confirmed by others even if the same 
data set is used26. An inability to confirm results may stem from any 
of several reasons: (i) insufficient information is provided about the 
methodology that describes which analysis has actually been done;  
(ii) data preprocessing (normalization, gene filtering and feature 
selection) is too complicated and insufficiently documented to be 
reproduced; or (iii) incorrect or biased complex analytical methods26 
are performed. A distinct but related concern is that genomic data may 
yield prediction models that, even if reproducible on the discovery 
data set, cannot be extrapolated well in independent validation. The 
MAQC-II project provided a unique opportunity to address some of 
these concerns.

Notably, we did not place restrictions on the model building methods 
used by the data analysis teams. Accordingly, they adopted numerous 
different modeling approaches (Table 2 and Supplementary Table 4). 
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For example, feature selection methods varied widely, from statisti-
cal significance tests, to machine learning algorithms, to those more 
reliant on differences in expression amplitude, to those employing 
knowledge of putative biological mechanisms associated with the 
endpoint. Prediction algorithms also varied widely. To make internal 
validation performance results comparable across teams for different 
models, we recommended that a model’s internal performance was 
estimated using a ten times repeated fivefold cross-validation, but this 
recommendation was not strictly followed by all teams, which also 
allows us to survey internal validation approaches. The diversity of 
analysis protocols used by the teams is likely to closely resemble that 
of current research going forward, and in this context mimics reality. 
In terms of the space of modeling factors explored, MAQC-II is a sur-
vey of current practices rather than a randomized, controlled experi-
ment; therefore, care should be taken in interpreting the results. For 
 example, some teams did not analyze all endpoints, causing missing 
data (models) that may be confounded with other modeling factors.

Overall, the procedure followed to nominate MAQC-II candidate 
models was quite effective in selecting models that performed rea-
sonably well during validation using independent data sets, although 
generally the selected models did not do as well in validation as in 
training. The drop in performance associated with the validation 
highlights the importance of not relying solely on internal validation 
performance, and points to the need to subject every classifier to at 
least one external validation. The selection of the 13 candidate models 
from many nominated models was achieved through a peer-review 
collaborative effort of many experts and could be described as slow, 
tedious and sometimes subjective (e.g., a data analysis team could 
only contribute one of the 13 candidate models). Even though they 
were still subject to over-optimism, the internal and external perform-
ance estimates of the candidate models were more concordant than 
those of the overall set of models. Thus the review was productive in 
identifying characteristics of reliable models.

An important lesson learned through MAQC-II is that it is almost 
impossible to retrospectively retrieve and document decisions that 
were made at every step during the feature selection and model devel-
opment stage. This lack of complete description of the model building 
process is likely to be a common reason for the inability of different 
data analysis teams to fully reproduce each other’s results32. Therefore, 
although meticulously documenting the classifier building procedure 
can be cumbersome, we recommend that all genomic publications 
include supplementary materials describing the model building and 
evaluation process in an electronic format. MAQC-II is making avail-
able six data sets with 13 endpoints that can be used in the future as a 
benchmark to verify that software used to implement new approaches 
performs as expected. Subjecting new software to benchmarks against 
these data sets could reassure potential users that the software is 
mature enough to be used for the development of predictive models 
in new data sets. It would seem advantageous to develop alternative 
ways to help determine whether specific implementations of modeling 
approaches and performance evaluation procedures are sound, and to 
identify procedures to capture this information in public databases.

The findings of the MAQC-II project suggest that when the same 
data sets are provided to a large number of data analysis teams, many 
groups can generate similar results even when different model build-
ing approaches are followed. This is concordant with studies29,33 that 
found that given good quality data and an adequate number of inform-
ative features, most classification methods, if properly used, will yield 
similar predictive performance. This also confirms reports6,7,39 on 
small data sets by individual groups that have suggested that several 
different feature selection methods and prediction algorithms can 

yield many models that are distinct, but have statistically similar 
performance. Taken together, these results provide perspective on 
the large number of publications in the bioinformatics literature that 
have examined the various steps of the multivariate prediction model 
building process and identified elements that are critical for achieving 
reliable results.

An important and previously underappreciated observation from 
MAQC-II is that different clinical endpoints represent very different 
levels of classification difficulty. For some endpoints the currently 
available data are sufficient to generate robust models, whereas for 
other endpoints currently available data do not seem to be sufficient 
to yield highly predictive models. An analysis done as part of the 
MAQC-II project and that focused on the breast cancer data demon-
strates these points in more detail40. It is also important to point out 
that for some clinically meaningful endpoints studied in the MAQC-II 
project, gene expression data did not seem to significantly outperform 
models based on clinical covariates alone, highlighting the challenges 
in predicting the outcome of patients in a heterogeneous popula-
tion and the potential need to combine gene expression data with  
clinical covariates (unpublished data).

The accuracy of the clinical sample annotation information may 
also play a role in the difficulty to obtain accurate prediction results 
on validation samples. For example, some samples were misclassified 
by almost all models (Supplementary Fig. 12). It is true even for some 
samples within the positive control endpoints H and L, as shown 
in Supplementary Table 8. Clinical information of neuroblastoma 
patients for whom the positive control endpoint L was uniformly 
misclassified were rechecked and the sex of three out of eight cases 
(NB412, NB504 and NB522) was found to be incorrectly annotated.

The companion MAQC-II papers published elsewhere give more 
in-depth analyses of specific issues such as the clinical benefits of 
genomic classifiers (unpublished data), the impact of different 
modeling factors on prediction performance45, the objective assess-
ment of microarray cross-platform prediction46, cross-tissue pre-
diction47, one-color versus two-color prediction comparison48, 
functional analysis of gene signatures36 and recommendation of a 
simple yet robust data analysis protocol based on the KNN32. For 
example, we systematically compared the classification perform-
ance resulting from one- and two-color gene-expression profiles of 
478 neuroblastoma samples and found that analyses based on either 
 platform yielded similar classification performance48. This newly gene-
rated one-color data set has been used to evaluate the applicability of 
the KNN-based simple data analysis protocol to future data sets32. In 
addition, the MAQC-II Genome-Wide Association Working Group 
assessed the variabilities in genotype calling due to experimental or 
algorithmic factors49.

In summary, MAQC-II has demonstrated that current methods 
commonly used to develop and assess multivariate gene-expression  
based predictors of clinical outcome were used appropriately by 
most of the analysis teams in this consortium. However, differences 
in proficiency emerged and this underscores the importance  
of proper implementation of otherwise robust analytical methods. 
Observations based on analysis of the MAQC-II data sets may be 
applicable to other diseases. The MAQC-II data sets are publicly 
available and are expected to be used by the scientific community 
as benchmarks to ensure proper modeling practices. The experience 
with the MAQC-II clinical data sets also reinforces the notion that 
clinical classification problems represent several different degrees 
of prediction difficulty that are likely to be associated with whether 
mRNA abundances measured in a specific data set are informative for 
the specific prediction problem. We anticipate that including other 
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types of biological data at the DNA, microRNA, protein or meta-
bolite levels will enhance our capability to more accurately predict 
the clinically relevant endpoints. The good modeling practice guide-
lines established by MAQC-II and lessons learned from this unprec-
edented collaboration provide a solid foundation from which other 
high-dimensional biological data could be more reliably used for the 
purpose of predictive and personalized medicine.

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Accession codes. All MAQC-II data sets are available through 
GEO (series accession number: GSE16716), the MAQC Web site 
(http://www.fda.gov/nctr/science/centers/toxicoinformatics/maqc/), 
ArrayTrack (http://www.fda.gov/nctr/science/centers/toxicoinfor-
matics/ArrayTrack/) or CEBS (http://cebs.niehs.nih.gov/) accession 
number: 009-00002-0010-000-3.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METhODS
MAQC-II participants. MAQC-II participants can be grouped into several 
 categories. Data providers are the participants who provided data sets to the 
consortium. The MAQC-II Regulatory Biostatistics Working Group, whose 
members included a number of biostatisticians, provided guidance and standard 
operating procedures for model development and performance estimation. One 
or more data analysis teams were formed at each organization. Each data analysis 
team actively analyzed the data sets and produced prediction models. Other par-
ticipants also contributed to discussion and execution of the project. The 36 data 
analysis teams listed in Supplementary Table 3 developed data analysis protocols 
and predictive models for one or more of the 13 endpoints. The teams included 
more than 100 scientists and engineers with diverse backgrounds in machine 
learning, statistics, biology, medicine and chemistry, among others. They volun-
teered tremendous time and effort to conduct the data analysis tasks.

Six data sets including 13 prediction endpoints. To increase the chance 
that MAQC-II would reach generalized conclusions, consortium members 
strongly believed that they needed to study several data sets, each of high 
quality and sufficient size, which would collectively represent a diverse set of 
prediction tasks. Accordingly, significant early effort went toward the selec-
tion of appropriate data sets. Over ten nominated data sets were reviewed 
for quality of sample collection and processing consistency, and quality of 
microarray and clinical data. Six data sets with 13 endpoints were ultimately 
selected among those nominated during a face-to-face project meeting with 
extensive deliberations among many participants (Table 1). Importantly, three 
preclinical (toxicogenomics) and three clinical data sets were selected to test 
whether baseline practice conclusions could be generalized across these rather 
disparate experimental types. An important criterion for data set selection 
was the anticipated support of MAQC-II by the data provider and the com-
mitment to continue experimentation to provide a large external validation 
test set of comparable size to the training set. The three toxicogenomics data 
sets would allow the development of predictive models that predict toxicity 
of compounds in animal models, a prediction task of interest to the pharma-
ceutical industry, which could use such models to speed up the evaluation of 
toxicity for new drug candidates. The three clinical data sets were for endpoints 
associated with three diseases, breast cancer (BR), multiple myeloma (MM) 
and neuroblastoma (NB). Each clinical data set had more than one endpoint, 
and together incorporated several types of clinical applications, including 
treatment outcome and disease prognosis. The MAQC-II predictive modeling 
was limited to binary classification problems; therefore, continuous endpoint 
values such as overall survival (OS) and event-free survival (EFS) times were 
dichotomized using a ‘milestone’ cutoff of censor data. Prediction endpoints 
were chosen to span a wide range of prediction difficulty. Two endpoints,  
H (CPS1) and L (NEP_S), representing the sex of the patients, were used as 
positive control endpoints, as they are easily predictable by microarrays. Two 
other endpoints, I (CPR1) and M (NEP_R), representing randomly assigned 
class labels, were designed to serve as negative control endpoints, as they 
are not supposed to be predictable. Data analysis teams were not aware of 
the characteristics of endpoints H, I, L and M until their swap prediction 
results had been submitted. If a data analysis protocol did not yield models to 
accurately predict endpoints H and L, or if a data analysis protocol claims to 
be able to yield models to accurately predict endpoints I and M, something 
must have gone wrong.

The Hamner data set (endpoint A) was provided by The Hamner Institutes 
for Health Sciences. The study objective was to apply microarray gene expres-
sion data from the lung of female B6C3F1 mice exposed to a 13-week treat-
ment of chemicals to predict increased lung tumor incidence in the 2-year 
rodent cancer bioassays of the National Toxicology Program50. If successful, 
the results may form the basis of a more efficient and economical approach 
for evaluating the carcinogenic activity of chemicals. Microarray analysis was 
performed using Affymetrix Mouse Genome 430 2.0 arrays on three to four 
mice per treatment group, and a total of 70 mice were analyzed and used as 
MAQC-II’s training set. Additional data from another set of 88 mice were 
collected later and provided as MAQC-II’s external validation set.

The Iconix data set (endpoint B) was provided by Iconix Biosciences. 
The study objective was to assess, upon short-term exposure, hepatic tumor 
induction by nongenotoxic chemicals51, as there are currently no accurate and  

well-validated short-term tests to identify nongenotoxic hepatic tumorigens, 
thus necessitating an expensive 2-year rodent bioassay before a risk assessment 
can begin. The training set consists of hepatic gene expression data from 216 
male Sprague-Dawley rats treated for 5 d with one of 76 structurally and mecha-
nistically diverse nongenotoxic hepatocarcinogens and nonhepatocarcinogens. 
The validation set consists of 201 male Sprague-Dawley rats treated for 5 d with 
one of 68 structurally and mechanistically diverse nongenotoxic hepatocarcino-
gens and nonhepatocarcinogens. Gene expression data were generated using the 
Amersham Codelink Uniset Rat 1 Bioarray (GE HealthCare)52. The separation  
of the training set and validation set was based on the time when the micro-
array data were collected; that is, microarrays processed earlier in the study 
were used as training and those processed later were used as validation.

The NIEHS data set (endpoint C) was provided by the National Institute 
of Environmental Health Sciences (NIEHS) of the US National Institutes 
of Health. The study objective was to use microarray gene expression data 
acquired from the liver of rats exposed to hepatotoxicants to build classifiers 
for prediction of liver necrosis. The gene expression ‘compendium’ data set 
was collected from 418 rats exposed to one of eight compounds (1,2-dichloro-
benzene, 1,4-dichlorobenzene, bromobenzene, monocrotaline, N-nitro-
somorpholine, thioacetamide, galactosamine and diquat dibromide). All eight 
compounds were studied using standardized procedures, that is, a common 
array platform (Affymetrix Rat 230 2.0 microarray), experimental procedures 
and data retrieving and analysis processes. For details of the experimental 
design see ref. 53. Briefly, for each compound, four to six male, 12-week-old 
F344 rats were exposed to a low dose, mid dose(s) and a high dose of the toxi-
cant and sacrificed 6, 24 and 48 h later. At necropsy, liver was harvested for 
RNA extraction, histopathology and clinical chemistry assessments.

Animal use in the studies was approved by the respective Institutional 
Animal Use and Care Committees of the data providers and was conducted 
in accordance with the National Institutes of Health (NIH) guidelines 
for the care and use of laboratory animals. Animals were housed in fully 
accredited American Association for Accreditation of Laboratory Animal  
Care facilities.

The human breast cancer (BR) data set (endpoints D and E) was contributed 
by the University of Texas M.D. Anderson Cancer Center. Gene expression data 
from 230 stage I–III breast cancers were generated from fine needle aspiration 
specimens of newly diagnosed breast cancers before any therapy. The biopsy 
specimens were collected sequentially during a prospective pharmacogenomic 
marker discovery study between 2000 and 2008. These specimens represent 
70–90% pure neoplastic cells with minimal stromal contamination54. Patients 
received 6 months of preoperative (neoadjuvant) chemotherapy includ-
ing paclitaxel (Taxol), 5-fluorouracil, cyclophosphamide and doxorubicin 
(Adriamycin) followed by surgical resection of the cancer. Response to pre-
operative chemotherapy was categorized as a pathological complete response 
(pCR = no residual invasive cancer in the breast or lymph nodes) or residual 
invasive cancer (RD), and used as endpoint D for prediction. Endpoint E is the 
clinical estrogen-receptor status as established by immunohistochemistry55. 
RNA extraction and gene expression profiling were performed in multiple 
batches over time using Affymetrix U133A microarrays. Genomic analysis of 
a subset of this sequentially accrued patient population were reported previ-
ously56. For each endpoint, the first 130 cases were used as a training set and 
the next 100 cases were used as an independent validation set.

The multiple myeloma (MM) data set (endpoints F, G, H and I) was con-
tributed by the Myeloma Institute for Research and Therapy at the University 
of Arkansas for Medical Sciences. Gene expression profiling of highly purified 
bone marrow plasma cells was performed in newly diagnosed patients with 
MM57–59. The training set consisted of 340 cases enrolled in total therapy 2 
(TT2) and the validation set comprised 214 patients enrolled in total therapy 3  
(TT3)59. Plasma cells were enriched by anti-CD138 immunomagnetic bead 
selection of mononuclear cell fractions of bone marrow aspirates in a central 
laboratory. All samples applied to the microarray contained >85% plasma 
cells as determined by two-color flow cytometry (CD38+ and CD45−/dim) 
performed after selection. Dichotomized overall survival (OS) and event-free 
survival (EFS) were determined based on a 2-year milestone cutoff. A gene 
expression model of high-risk multiple myeloma was developed and validated 
by the data provider58 and later on validated in three additional independent 
data sets60–62.
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The neuroblastoma (NB) data set (endpoints J, K, L and M) was contributed 
by the Children’s Hospital of the University of Cologne, Germany. Tumor 
samples were checked by a pathologist before RNA isolation; only samples 
with ≥60% tumor content were used and total RNA was isolated from ~50 mg  
of snap-frozen neuroblastoma tissue obtained before chemotherapeutic  
treatment. First, 502 preexisting 11 K Agilent dye-flipped, dual-color replicate 
profiles for 251 patients were provided63. Of these, profiles of 246 neuroblas-
toma samples passed an independent MAQC-II quality assessment by majority 
decision and formed the MAQC-II training data set. Subsequently, 514 dye-
flipped dual-color 11 K replicate profiles for 256 independent neuroblastoma 
tumor samples were generated and profiles for 253 samples were selected to 
form the MAQC-II validation set. Of note, for one patient of the validation 
set, two different tumor samples were analyzed using both versions of the  
2 × 11K microarray (see below). All dual-color gene-expression of the MAQC-II  
training set were generated using a customized 2 × 11K neuroblastoma-related 
microarray63. Furthermore, 20 patients of the MAQC-II validation set were 
also profiled using this microarray. Dual-color profiles of the remaining 
patients of the MAQC-II validation set were performed using a slightly revised 
version of the 2 × 11K microarray. This version V2.0 of the array comprised 
200 novel oligonucleotide probes whereas 100 oligonucleotide probes of the 
original design were removed due to consistent low expression values (near 
background) observed in the training set profiles. These minor modifications 
of the microarray design resulted in a total of 9,986 probes present on both 
versions of the 2 × 11K microarray. The experimental protocol did not differ 
between both sets and gene-expression profiles were performed as described63. 
Furthermore, single-color gene-expression profiles were generated for 478/499 
neuroblastoma samples of the MAQC-II dual-color training and validation sets 
(training set 244/246; validation set 234/253). For the remaining 21 samples 
no single-color data were available, due to either shortage of tumor material 
of these patients (n = 15), poor experimental quality of the generated single-
color profiles (n = 5), or correlation of one single-color profile to two different 
dual-color profiles for the one patient profiled with both versions of the 2 × 
11K microarrays (n = 1). Single-color gene-expression profiles were generated 
using customized 4 × 44K oligonucleotide microarrays produced by Agilent 
Technologies. These 4 × 44K microarrays included all probes represented by 
Agilent’s Whole Human Genome Oligo Microarray and all probes of the ver-
sion V2.0 of the 2 × 11K customized microarray that were not present in the 
former probe set. Labeling and hybridization was performed following the 
manufacturer’s protocol as described48.

Sample annotation information along with clinical co-variates of the patient 
cohorts is available at the MAQC web site (http://edkb.fda.gov/MAQC/). The 
institutional review boards of the respective providers of the clinical micro-
array data sets had approved the research studies, and all subjects had provided 
written informed consent to both treatment protocols and sample procure-
ment, in accordance with the Declaration of Helsinki.

MAQC-II effort and data analysis procedure. This section provides details 
about some of the analysis steps presented in Figure 1. Steps 2–4 in a first 
round of analysis was conducted where each data analysis team analyzed 
MAQC-II data sets to generate predictive models and associated perform-
ance estimates. After this first round of analysis, most participants attended 
a consortium meeting where approaches were presented and discussed. The 
meeting helped members decide on a common performance evaluation pro-
tocol, which most data analysis teams agreed to follow to render performance 
statistics comparable across the consortium. It should be noted that some data 
analysis teams decided not to follow the recommendations for performance 
evaluation protocol and used instead an approach of their choosing, resulting 
in various internal validation approaches in the final results. Data analysis 
teams were given 2 months to implement the revised analysis protocol (the 
group recommended using fivefold stratified cross-validation with ten repeats 
across all endpoints for the internal validation strategy) and submit their final 
models. The amount of metadata to collect for characterizing the modeling 
approach used to derive each model was also discussed at the meeting.

For each endpoint, each team was also required to select one of its  
submitted models as its nominated model. No specific guideline was given 
and groups could select nominated models according to any objective or 
subjective criteria. Because the consortium lacked an agreed upon reference 

performance measure (Supplementary Fig. 13), it was not clear how the 
nominated models would be evaluated, and data analysis teams ranked models 
by different measures or combinations of measures. Data analysis teams were 
encouraged to report a common set of performance measures for each model 
so that models could be reranked consistently a posteriori. Models trained 
with the training set were frozen (step 6). MAQC-II selected for each end-
point one model from the up-to 36 nominations as the MAQC-II candidate 
for validation (step 6).

External validation sets lacking class labels for all endpoints were distrib-
uted to the data analysis teams. Each data analysis team used its previously 
frozen models to make class predictions on the validation data set (step 7). 
The sample-by-sample prediction results were submitted to MAQC-II by 
each data analysis team (step 8). Results were used to calculate the external 
validation performance metrics for each model. Calculations were carried 
out by three independent groups not involved in developing models, which 
were provided with validation class labels. Data analysis teams that still had 
no access to the validation class labels were given an opportunity to correct 
apparent clerical mistakes in prediction submissions (e.g., inversion of class 
labels). Class labels were then distributed to enable data analysis teams to 
check prediction performance metrics and perform in depth analysis of results.  
A table of performance metrics was assembled from information collected in 
steps 5 and 8 (step 10, Supplementary Table 1).

To check the consistency of modeling approaches, the original validation and 
training sets were swapped and steps 4–10 were repeated (step 11). Briefly, each 
team used the validation class labels and the validation data sets as a training 
set. Prediction models and evaluation performance were collected by internal 
and external validation (considering the original training set as a validation 
set). Data analysis teams were asked to apply the same data analysis protocols 
that they used for the original ‘Blind’ Training → Validation analysis. Swap 
analysis results are provided in Supplementary Table 2. It should be noted 
that during the swap experiment, the data analysis teams inevitably already 
had access to the class label information for samples in the swap validation set, 
that is, the original training set.

Model summary information tables. To enable a systematic comparison of 
models for each endpoint, a table of information was constructed containing 
a row for each model from each data analysis team, with columns containing 
three categories of information: (i) modeling factors that describe the model 
development process; (ii) performance metrics from internal validation; and 
(iii) performance metrics from external validation (Fig. 1; step 10).

Each data analysis team was requested to report several modeling factors for 
each model they generated. These modeling factors are organization code, data 
set code, endpoint code, summary or normalization method, feature selec-
tion method, number of features used in final model, classification algorithm, 
internal validation protocol, validation iterations (number of repeats of cross-
validation or bootstrap sampling) and batch-effect-removal method. A set of 
valid entries for each modeling factor was distributed to all data analysis teams 
in advance of model submission, to help consolidate a common vocabulary 
that would support analysis of the completed information table. It should be 
noted that since modeling factors are self-reported, two models that share a 
given modeling factor may still differ in their implementation of the modeling 
approach described by the modeling factor.

The seven performance metrics for internal validation and external valida-
tion are MCC (Matthews Correlation Coefficient), accuracy, sensitivity, spe-
cificity, AUC (area under the receiver operating characteristic curve), binary 
AUC (that is, mean of sensitivity and specificity) and r.m.s.e. For internal  
validation, s.d. for each performance metric is also included in the table. 
Missing entries indicate that the data analysis team has not submitted the 
requested information.

In addition, the lists of features used in the data analysis team’s nominated 
models are recorded as part of the model submission for functional analysis 
and reproducibility assessment of the feature lists (see the MAQC Web site at 
http://edkb.fda.gov/MAQC/).

Selection of nominated models by each data analysis team and selection  
of MAQC-II candidate and backup models by RBWG and the steering  
committee. In addition to providing results to generate the model information 
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table, each team nominated a single model for each endpoint as its preferred 
model for validation, resulting in a total of 323 nominated models, 318 of 
which were applied to the prediction of the validation sets. These nominated 
models were peer reviewed, debated and ranked for each endpoint by the 
RBWG before validation set predictions. The rankings were given to the 
MAQC-II steering committee, and those members not directly involved in 
developing models selected a single model for each endpoint, forming the 13 
MAQC-II candidate models. If there was sufficient evidence through docu-
mentation to establish that the data analysis team had followed the guidelines 
of good classifier principles for model development outlined in the standard 
operating procedure (Supplementary Data), then their nominated models 
were considered as potential candidate models. The nomination and selec-
tion of candidate models occurred before the validation data were released. 
Selection of one candidate model for each endpoint across MAQC-II was 
performed to reduce multiple selection concerns. This selection process turned 
out to be highly interesting, time consuming, but worthy, as participants had 
different viewpoints and criteria in ranking the data analysis protocols and 
selecting the candidate model for an endpoint. One additional criterion was 
to select the 13 candidate models in such a way that only one of the 13 models 
would be selected from the same data analysis team to ensure that a variety 
of approaches to model development were considered. For each endpoint, a 
backup model was also selected under the same selection process and criteria 
as for the candidate models. The 13 candidate models selected by MAQC-II 
indeed performed well in the validation prediction (Figs. 2c and 3).
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