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Abstract
The varying coefficient models are very important tool to explore the dynamic pattern in many
scientific areas, such as economics, finance, politics, epidemiology, medical science, ecology and so
on. They are natural extensions of classical parametric models with good interpretability and are
becoming more and more popular in data analysis. Thanks to their flexibility and interpretability, in
the past ten years, the varying coefficient models have experienced deep and exciting developments
on methodological, theoretical and applied sides. This paper gives a selective overview on the major
methodological and theoretical developments on the varying coefficient models.
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1 Why varying coefficient models?
1.1 Theoretical background

Parametric statistical inference always necessitates some model assumptions, linearity being
among the most convenient. Although their properties are very well established, linear models
are often unrealistic in applications. Moreover, mis-specification of the data generation
mechanism by a linear model could lead to large bias. To achieve greater realism, many other
parametric models as well as transformation methods have been proposed, each with its own
limitations.

Nonparametric modelling makes no assumption on the specification of the model, but it may
fail to incorporate some prior information and the resulting estimator of the unknown function
tends to incur greater variance. Worse still is the so-called ‘curse of dimensionality’, which
renders the standard nonparametric method practically impotent when the dimension of the
covariate is high. To ameliorate the ‘curse of dimensionality’, many methods have been
proposed to reduce dimension, which includes the projection pursuit (Huber, 1985), the sliced
inverse regression (Li, 1991), the single index models (Härdle and Stoker, 1990) and others.
There, the model takes the following basic form

(1.1)
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where y is a response variable, X a p dimensional covariate, ε a random error, and q an integer,
which, it is hoped, is much smaller than p. However, model (1.1) has its own limitations. When
q is large, the ‘curse of dimensionality’ remains. Actually, (1.1) is not very practical if the
sample size is moderate and q is larger than 2. The interpretability of the model can also arise.

An alternative approach is to relax the conditions imposed on traditional parametric models
and explore the hidden structure. Examples include additive models (Breiman and Friedman,
1985; Hastie and Tibshirani, 1990), varying coefficient models (Hastie and Tibshirani, 1993;
Fan and Zhang, 1999, 2000; Chiang et al.2001), low-dimensional interaction models (Friedman
1991, Gu and Wahba, 1992, Stone et al.1997), partially linear models (Wahba 1984; Green
and Silverman 1994), and their hybrids (Carroll et al.1997, Fan et al.1998, Heckman et al.
1998, Fan et al.2003), among others.

Among the above semiparametric models, the varying coefficient models arise in many
contexts. They have been successfully applied to multi-dimensional nonparametric regression,
generalized linear models, nonlinear time series models, analysis of longitudinal, functional,
and survival data, and financial and economic data.

1.2 Practical meaning
The varying coefficient models are not stimulated by the desire of purely mathematical
extension, rather they come from the need in practice. In many scientific areas where statistics
is needed, there are some commonly used traditional parametric models found by the people
in the area in the light of their experience. Those models are rational in some sense. However,
most of them ignore the dynamic feature which may exist in the data set, although the
exploration of such dynamic feature sometimes can be very compelling. To explore the
dynamic feature and make the model fit the data better, we need to reconsider the modelling
strategy. It would not be wise to completely abandon the existing models. It would probably
be more sensible to just let the constant parameters evolve with certain characteristics, which
leads to the varying coefficient models. For example, to analyse cross-country growth, linear
model assumptions are made in the standard growth analyses. However, these assumptions are
not supported by the data since the relationship between a set of controls and a particular
country’s growth rate will depend on its state of development, and the dynamical pattern of
this relationship is of importance. It would make much more sense to treat the parameters of
growth equations as functions of the state of development, which leads to a standard varying
coefficient model. Another example is the analysis of infant mortality in China. The commonly-
used model for the analysis of mortality is logistic regression model. Yet, the impacts of the
factors on mortality remain constant over time in the model. It is well known that China has
been changing dramatically since 1949. It would be implausible to assume the impacts of the
factors are constant. They must vary with time, and the dynamic patterns of these impacts are
of importance to social studies. Cheng and Zhang (2007) studied the infant mortality data in
China, and found the impacts were indeed varying with time. So, it is more sensible to change
the constant coefficients in the logistic regression to functional coefficients, which leads to
generalized varying coefficient models. The final example is about the circulatory and
respiratory problems in Hong Kong. What is interesting is how some environmental factors
affect the circulatory and respiratory problems, how the impacts of these factors vary with time.
Fan and Zhang (1999) studied this problem very carefully. Applying varying coefficient
models, they found the dynamic patterns of the impacts. We will give more detailed description
on this effect later.

1.3 Role in the development of statistical methodology
Varying coefficient models are basically locally parametric models. The computation involved
in the estimation is cheap and simple: Any existing software for parametric models can easily
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be adapted to the need of fitting varying coefficient models. They can be used as trial models
to test the efficiency or validity of new statistical methodology developed. For example, for
parametric setting, it is well known that in hypothesis test the asymptotic distribution of the
maximum likelihood ratio test statistic under null hypothesis does not depend on the nuisance
parameters involved in the null hypothesis. This is the so called Wilks phenomenon. Naturally,
people would ask whether the Wilks phenomenon still holds for nonparametric setting. Fan et
al.(2001) have systematically studied this question. They found maximum likelihood ratio test
statistics in general may not exist in nonparametric setting. Even if they exist, they would not
be optimal. They then introduced the generalized likelihood ratio statistics to overcome the
drawbacks of nonparametric maximum likelihood ratio test. They proved that the Wilks
phenomenon holds for their generalized likelihood ratio statistics in nonparametric setting.
This is a very important finding. The importance lies not only on the elegance of its
mathematical beauty but also the practical usage. One straightforward application of this
finding is to estimate the distributions of the test statistics under null hypothesis. When sample
size is moderate bootstrap method usually outperforms the asymptotic distribution based
method. However, the nuisance parameters involved in the null hypothesis have to be evaluated
when generating bootstrap samples. How to evaluate the nuisance parameters is the first
question one would come up against when using bootstrap. Thanks the Wilks phenomenon,
people can just simply assign some reasonable values to the nuisance parameters when
generating bootstrap sample to estimate the distribution of the generalized likelihood ratio
statistic under null hypothesis. The varying coefficient models as trial models play a very
important part in the development of the generalized maximum likelihood ratio test, see Fan
et al.(2001).

From Sections 1.1, 1.2 and 1.3, we can see that on application side the varying coefficient
models are very useful tool to explore the dynamic pattern in many scientific areas, such as
economics, finance, politics, epidemiology, medical science, ecology and so on. On theoretical
side, they are very useful semiparametric models to get around ‘curse of dimensionality’. They
are also very nice trial models for the development of new statistical methodology. In the past
ten years, the varying coefficient models have seen deep and exciting development. In this
paper, we are going to review the major developments on the methodological side of the varying
coefficient models.

2 Varying coefficient models
The varying coefficient models are introduced by Cleveland, Grosse and Shyu (1991) to extend
the applications of local regression techniques from one-dimensional to multi-dimensional
setting. Consider multivariate predictor variables, containing a scalar U and a vector X = (x1,
···, xp)T.

The varying-coefficient models assume the form of multivariate regression function as

(2.1)

for unknown functional coefficient a(U) = (a1(U), ···, ap(U))T, where m(U, X) = E(y|U, X) is
the regression function. An extension of the local regression was given by Hastie and Tibshirani
(1993).

In addition to the importance, mentioned in Sections 1.1, 1.2, 1.3, of the varying coefficient
models, from statistical modelling point of view, another advantage of the varying coefficient
models is that they allow the coefficients to vary smoothly over the group stratified by U and
hence permits nonlinear interactions between U and X.
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From statistical modelling point of view, the variable U in the varying coefficient models (2.1)
may not necessarily be a single variable. Fan, Yao and Cai (2003) proposed an adaptive
varying-coefficient model in which U = XTβ, and β was selected by a data driven algorithm.

Throughout this paper, we use f(u) to denote the density function of U, ek,m the unit vector of
length m with the k-th component being 1. For any function/functional vector g(u), we use
g(k)(u) to denote the kth, k ≥ 2, derivative of g(u) with respect to u, and ġ(u) the first derivative.
We also use 0p×q to denote a p × q matrix with each entry being 0, and set μi = ∫ uiK(u)du and
νi = ∫ uiK2(u)du.

2.1 Estimation methods
There are three approaches to estimate the a(·) in model (2.1). One is kernel-local polynomial
smoothing, see Wu et al.(1998),Hoover et al.(1998),Fan and Zhang (1999),Kauermann and
Tutz (1999). One is polynomial spline, see Huang et al.(2002,2004) and Huang and Shen
(2004). The last one is smoothing spline, see Hastie and Tibshirani (1993),Hoover et al.
(1998) and Chiang et al.(2001). The varying coefficient models, as they stand, are locally linear
models. It is more reasonable to use the kernel smoothing method to estimate. In the following,
we are going to outline the kernel-local polynomial smoothing method.

2.1.1 Estimation of the functional coefficient—Suppose that we have a sample
( ), i = 1, ···, n, from (U, XT, y).

with E(ε) = 0, and var(ε) = σ2(U). For each given u, the local linear estimator â(u) of a(u) is
the part corresponding to a of the minimizer of

(2.2)

where Kh(t) = K(t/h)/h, K(t) is a kernel function, usually taken to be the Epanechnikov kernel
K(t) = 0.75(1 −t2)+ and h is bandwidth.

Let

Then, we have

(2.3)

where Ip is a size p identity matrix, 0p is a size p matrix with each entry being 0.

The estimator â(u) is a linear estimator of a(u). It is asymptotically normally distributed.

Theorem 1: Under the conditions in Zhang and Lee (2000), we have

with
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The conditional bias and variance of the estimators are also derived in Carroll et al.(1998) and
Fan and Zhang (1999). Furthermore, the distribution of the maximum discrepancy between the
estimated coefficients and true coefficients is given by Xia and Li (1999) and Fan and Zhang
(2000).

It is very interesting to look into the asymptotic bias and covariance matrix of â(u). If we ignore
μ2 in the asymptotic bias of â(u), the asymptotic bias would be the remainder of the first-order
Taylor’s expansion of a(U) at u. This suggests the bias of â(u) purely comes from the
approximation error of the linear approximation of a(U). In the asymptotic covariance matrix
of â(u), the 2hf(u) is approximately the probability of U falling into the neighbourhood of u
with radius h, and 2nhf(u) is approximately the expected number of Ui in the neighbourhood
of u. If the kernel function is taken to be the uniform kernel K(t) = 0.5I(|t|< 1), ν0 would be 0.5,
and asymptotic covariance matrix of â(u) would be exactly the covariance matrix of the least
squares estimator of the linear model fitting the data in the neighbourhood of u only.

2.1.2 Estimation of bias and variance—Bandwidth selection is an important issue in
kernel smoothing. The basic idea of a data driven bandwidth selection procedure is to find an
estimator of mean squared error (MSE) of â(u) first, then minimize MSE with respect to
bandwidth. The optimal bandwidth is the one minimizing the MSE. To get the estimator of the
MSE of â(u), we only need to get the estimator of the bias of â(u) and covariance matrix of â
(u). So, it is of importance to estimate the bias and covariance matrix of â(u). In addition to
the estimation of MSE, the estimation of bias and covariance matrix are also very important
in many other aspects such as hypothesis test and confidence band. In the following, we will
briefly describe how to estimate the bias and covariance matrix. It follows the pre-asymptotic
substitution idea of Fan and Gijbels (1995).

Let . By Taylor’s expansion and simple calculation, we have

where the ith element of τ is

This naturally leads to the estimator of the conditional bias of â(u) given 

where τ̂ is τ with a(k)(u) being replaced by its estimator â(k)(u), k = 2, 3. The estimator â(k)(u),
k = 2, 3, can be obtained by local cubic fitting with an appropriate pilot bandwidth h*.

From (2.3), it can be seen

which leads to the estimator of the conditional covariance matrix of â(u) given
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The estimator σ ̂2(u) can be obtained as a byproduct when we use local cubic fitting with a pilot
bandwidth h* to estimate a(k)(u), k = 2, 3. It is

where  is Wu with h replaced by h*, and

Please refer to Zhang and Lee (2000) for more detail about the estimation of bias and covariance
matrix.

2.1.3 Bandwidth selection—For kernel smoothing approach, bandwidth selection is an
important issue. Larger bandwidth may gain on variance side, but loses on bias side. Smaller
bandwidth may gain on bias side, but loses on variance side. How to choose an optimal
bandwidth is of importance. Wu et al.(1998), Hoover et al.(1998) proposed to use cross-
validation to select the bandwidth. Zhang and Lee (2000) systematically investigated both
variable bandwidth and constant bandwidth selection.

Based on the form of varying coefficient models, it is reasonable to define the mean squared
error of â(·) as

where (U, XT) is a random vector which shares the same distribution with ( ), and is
independent of . It can be viewed as the future values of the covariates in the sense of
prediction. By a simple calculation, we have

where

Note that

For each i, we delete the ith observation, and apply the estimation procedures in Sections 2.1.1
and 2.1.2 to estimate a(Ui) and the bias and covariance matrix of the estimator of a(Ui) based
on the rest observations. Denote the resulting estimators of bias and covariance matrix of the
estimator of a(Ui) by

Let
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MSE(h) can be estimated by

The pilot bandwidth h* for estimating bias and covariance matrix can be chosen by the residual
squares criterion (RSC) proposed by Fan and Gijbels (1995). The optimal bandwidth is the one
minimizing .

For longitudinal data, it is better to delete the whole ith subject rather than just ith observation
when estimating MSE(h).

The selection of smoothing parameter issue remains for the other two approaches. For
polynomial spline approach, the number of knots can be chosen by some commonly used
criteria such as CV, AIC, AICc, BIC and MCV, see Huang et al.(2002, 2004), and Huang and
Shen (2004). Huang and Shen (2004) also studied how to place the knots. The smoothing
parameter with the smoothing spline approach can be selected by cross-validation, see Hoover
et al.(1998), Chiang et al.(2001).

2.1.4 Two-steps estimation—There is an interesting issue arising from the estimation.
When the components of a(·) have different degrees of smoothness, how to estimate a(·)?
Intuitively, the smoother components need larger bandwidth whilst the less smooth
components need smaller bandwidth. This means it is impossible to optimally estimate all
components simultaneously with a single choice of the bandwidth. Indeed, Fan and Zhang
(1999) have proved the estimation introduced in Section 2.1.1 (one-step estimation) can not
optimally estimate the smoother components no matter how to choose the bandwidth. They
then proposed a two-steps idea to estimate the smoother components of a(·). They have shown
that their proposed two-steps estimation always outperforms one step estimation when
estimating the smoother components. They have also shown that two-steps estimation and one-
step estimation work equally well when estimating the less smooth components. There is no
harm to appeal two-steps estimation scheme.

The idea behind Fan and Zhang’s two-steps estimation is to use a smaller bandwidth first to
get an initial estimator of the functional coefficient a(·). This initial estimator would have larger
variance but smaller bias. We then replace the less smooth components of a(·) by their initial
estimators, and apply higher order smoothing with a slightly larger bandwidth to get the final
estimator of the smoother components. The core idea here is that the variance can be reduced
by further smoothing, but bias can not be reduced by any kind of smoothing. This is why we
have to use a smaller bandwidth in the first step to get an initial estimator with smaller bias.

The two-steps estimation can be sketched as follows. Let Xi = (xi1, ···, xip)T and a(·) = (a1(·),
···, ap(·))T. Without loss of generality, we assume ap(·) is smoother than any aj(·), j = 1, ···, p −
1, which have the same degree of smoothness. To mathematically formulate it, we assume
aj(·), j = 1, ···, p − 1, have second derivative, and ap(·) has fourth derivative. We are aiming to
estimate ap(·). To make the description more clear, we write the varying coefficient models as

Fan and Zhang Page 7

Stat Interface. Author manuscript; available in PMC 2008 October 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2.4)

Applying the estimation introduced in Section 2.1.1 with a smaller bandwidth h, for any given
u, we have the initial estimator of a(u)

For j = 1, ···, p − 1, replacing aj(Ui) in model (2.4) by a˜j(Ui), the jth component of a˜(Ui), we
have the synthetic model

(2.5)

As ap(·) has a fourth derivative, by Taylor’s expansion, we have

when Ui is in a neighbourhood of u with length 2h1. This leads to the following local cubic
estimation procedure with bandwidth h1

(2.6)

Minimize (2.6) with respect to (ap,0, ap,1, ap,2, ap,3) to get the minimizer. The final estimator
of ap(u) is the part corresponding to ap,0 of the minimizer of (2.6), which is

where Y˜ = (y˜1, ···, y˜n)T, and

(2.7)

Based on the two-steps idea, ap(·) can also be estimated in another way which is slightly easier
to implement. The first step is the same as above, however, in the second step, we just simply
smooth a˜p(Ui) against Ui by local cubic modelling with bandwidth h1. For any given u, the
resulting final estimator of ap(u) is

where Q is defined in (2.7), Y ̌ = (a˜p(U1), ···, a˜p(Un))T.
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The two-steps idea can be widely used in the development of statistical estimation for various
models, some complex models in particular. For instance, based on the two-steps idea, Fan and
Zhang (2000) developed a novel estimation for longitudinal data analysis. Cheng and Zhang
(2007) developed an efficient and easily implemented two-steps estimation for generalized
multiparameter likelihood models, and successfully applied it to the analysis of the infant
mortality data in China.

2.1.5 Data driven choice of the varying variable—So far, we have assumed that the
variable U is known and observable. In an effort to remove this assumption, Fan et al.(2003)
introduced the following adaptive varying-coefficient model

(2.8)

where β ∈ ℜp is an unknown direction, X = (x1, …, xp)T. Comparing with the varying
coefficient model, U = βTX is an unknown index, including all situations U = x1, ···, U = xp as
specific examples. The identifiably conditions are given in Fan et al.(2003). Basically, they
shown that the model is identifiably unless

They proposed an iterative scheme to estimate β and the functional coefficients {gj(·)}. Given
β, the model (2.8) is really a varying-coefficient model and the functional coefficients can be
estimated by using the method in Section 2.1.1, resulting in the estimates {ĝ(·, β)}. Now,
substituting this into (2.8) yields a synthetic parametric model:

The least-squares method can then be applied to estimate β. Fan et al.(2003) gave details on
how to implement the estimator, how to select bandwidths, and how to select significant
variables in (2.8). They also gave the details on how to extend the techniques to the two-index
situations.

2.2 Confidence bands and hypothesis test
2.2.1 Confidence bands—Wu et al.(1998) and Chiang et al.(2001) studied the pointwise
confidence interval for the functional coefficients in varying coefficient models. Wu et al.
(1998) also investigated the Bonferroni-type confidence bands. For nonparametric inference,
the pointwise confidence interval doesn’t make much sense. This is because for an unknown
function g(·), its 1 − α pointwise confidence interval (g1(·), g2(·)) only guarantees that

which does not imply

where D is a compact set.

For nonparametric inference, what is really useful is confidence bands. In the construction of
the confidence bands for the functional coefficients in varying coefficient models, the most
challenge and important job is to derive the distribution of the maximum discrepancy between
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the estimated functional coefficient and true functional coefficient. Fan and Zhang (2000)
established the following theorem:

Theorem 2: Under the conditions in Fan and Zhang (2000), we have

for any given j, j = 1, ···, p, where

For any j, j = 1, ···, p, based on Theorem 2, the 1 − α confidence bands of aj(u) can be easily
constructed as

where

The estimator  of the conditional bias of âj(u) and the estimator  of
the conditional variance of âj(u) can be obtained through the estimation introduced in Section
2.1.2. Fan and Zhang (2000) have shown this confidence bands works quite well.

Huang et al.(2002, 2004) investigated the pointwise confidence intervals and confidence bands
based on polynomial spline approach and the Bonferroni adjustment.

2.2.2 Hypothesis test—In the varying coefficient model (2.1), the inference questions arise
naturally such as whether the coefficients are really varying and if certain components of
covariates X are statistically significant. This amounts to testing

(2.9)

Cj is a constant.

Cai, Fan and Yao (2000) developed a bootstrap based test for the hypothesis (2.9). The
generalized likelihood ratio (GLR) test was developed to address this kind of question. See
Fan et al.(2001) and Section 3.2. Fan and Zhang (2000) took another approach which was
based on the asymptotic distribution of the maximum discrepancy between the estimated
functional coefficient and true functional coefficient. They established the following Theorem

Theorem 3: Under the conditions in Fan and Zhang (2000), when aj(·) is a constant Cj we
have

where
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with

Based on Theorem 3, the test for the hypothesis (2.9) can be constructed as rejecting H0 if the
values of the test statistic Tj exceeds the asymptotic critical value cα= − log{−0.5 log(1 − α)}.

Taking polynomial spline approach, Huang et al.(2002) proposed a goodness-of-fit test for the
hypothesis (2.9) based on the comparison of the weighted residual sum of squares. They used
the bootstrap to implement their test. It is a specific incidence of GLR studied by Fan et al.
(2001).

2.3 Semivarying coefficient models
In practice, sometimes, some of the components of a(·) in model (2.1) are constant, while other
components have interactions with U. Without loss of generality, we can write the model as

(2.10)

where . Zi is a pi dimensional covariate, i = 1, 2, and p1 + p2 = p. Model (2.10)
cannot be treated statistically as a special case of varying coefficient models, as the information
that a2 is a constant vector should be fully utilized. Zhang et al.(2002) studied the semivarying
coefficient model (2.10). They proposed a two-steps estimation procedure, and showed their
estimator of a2 is of convergence rate OP (n−1/2), and their estimator of a1(·) is as well as when
a2 is known. For model (2.10), the estimation of a2 is of most interest. Because, a good estimator
â2 of a2 should be of convergence rate OP (n−1/2). After substituting â2 for the a2 in model
(2.10), (2.10) would become a standard varying coefficient models. As â2 is of convergence
rate OP (n−1/2), the substitution â2 for a2 would have little influence on the estimation of the
functional coefficient a1(·). So, the standard estimation for standard varying coefficient models
such as the one in Section 2.1.1 can be applied to estimate a1(·).

The estimation of a2 in Zhang et al.(2002) can be briefed as follows: We first treat a2 as
functional, and appeal the estimation in Section 2.1.1 to get an initial estimator of a2(Ui), i =
1, ···, n,

Then, we average a˜2(Ui) over i = 1, ···, n to get the final estimator of a2

Intuitively, the covariance matrix of â2 should be of order O(n −1) because for each i, a˜2(Ui)
is obtained locally around Ui and ( ), i = 1, ···, n, are independent with each other.
Indeed, Zhang et al.(2002) showed the conditional bias of the estimator â2 given  is of order
OP (h2), and the conditional covariance matrix of â2 given  is of order OP (n −1) under some
regularity conditions. This implies that when the bandwidth for the initial estimator a˜2(Ui) in
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the first step is taken to be of order O(n−1/4), the estimator â2 would have convergence rate
OP (n−1/2).

Although Zhang et al.’s estimation of a2 is easy to implement and the resulting estimator has
convergence rate of order OP (n−1/2), the asymptotic varaince of the estimator does not reach
the lower bound for the semiparametric model.

Fan and Huang (2005) have more deeply investigated model (2.10). They proposed a profile
least-squares technique to estimate a2, and established the asymptotic normality of the
estimator. They also introduced the profile likelihood ratio test and demonstrated that the test
statistic followed asymptotically χ2 distribution under null hypothesis which unveiled a new
Wilks type of phenomenon.

Fan and Huang’s profile least-squares estimation can be outlined as follows: We first pretend
a2 is known, and write the model (2.10) as

(2.11)

where . Applying the estimation in Section 2.1.1, we get the estimator of a1(Ui)

where Γ˜u is the Γu with X replaced by Z1,

Substituting a˜1(Ui) for a1(Ui) in model (2.11), we have the following synthetic model

which can be written in maxtrix form as

(2.12)

where

Appealing least squares estimation to model (2.12), we get the estimator of a2

(2.13)

Fan and Huang (2005) have shown the covariance matrix of â2 given in (2.13) reaches the
lower bound for semiparametric models.
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Theorem 4—Under the conditions in Fan and Huang (2005), the estimator â2 given in (2.13)
is asymptotic normal, i.e.

where

It can be shown Σ is a semiparametric efficient bound for semivarying coefficient models when
ε ~ N(0, σ2). Hence the profile least squares estimator of a2 is semiparametrically efficient.

Ahmad et al.(2005) used a general series method to estimate the semivarying coefficient model
(2.10). Xia, Zhang and Tong (2004) proposed a cross-validation based model selection
procedure to find which components are constant and which are functional in practice. This
can also be done by the GLR test of Fan et al.(2001). Li and Liang (2007) studied the variable
selection issue with the semivarying coefficient models, and Fan and Huang (2005) studied
the inference of parametric part a2 in the semi-varying modeling using GLR test.

2.4 The circulatory and respiratory problems in Hong Kong
We now briefly illustrate the standard varying coefficient models via an application to an
environmental data set. The data set used here consists of a collection of daily measurements
of pollutants and other environmental factors in Hong Kong between January 1, 1994 and
December 31, 1995 (Courtesy of Professor T.S. Lau). Three pollutants, Sulphur Dioxide (in
μg/m3), Nitrogen Dioxide (in μg/m3) and Dust (in μg/m3), are considered here.

An objective of the study is to understand the association between level of the pollutants and
number of daily total hospital admissions for circulatory and respiratory problems and to
examine the extent to which the association varies over time.

We consider relationship among the number of daily hospital admission (y) and level of
pollutants Sulphur Dioxide, Nitrogen Dioxide and Dust, which are denoted by x2, x3 and x4,
respectively. We took x1 = 1 − the intercept term, and U = time. The varying-coefficient model

(2.14)

is used to fit the data set.

As the two-steps estimation procedure stated in section 2.1.4 is better than one-step estimation,
the two-steps estimation procedure is employed to estimate the functional coefficients in (2.14).
Indeed, from the estimated functional coefficients, see Fig. 1, we can see the functional
coefficients have different degrees of smoothness, the two-steps estimation is necessary for
this data set.

Fig. 1 depicts the estimated functional coefficients. They describe the extent to which the
coefficients vary with time. Two short dashed curves indicate 95% confidence intervals with
bias ignored. The standard errors are computed based on the local cubic regression in the second
step. See Section 4.3 of Fan and Gijbels (1996) on how to compute the estimated standard
errors for the univariate local polynomial regression. The figure shows that there is strong time
effect on the coefficients, which suggests the impacts of the three pollutants concerned on the
circulatory and respiratory problems do vary with time.
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Given the type of this paper, we have not gone the details of the analysis for this data set. For
rigorous analysis for this data set, please refer to Fan and Zhang (1999).

3 Generalized varying-coefficient models
The varying-coefficient models can readily be extended to the exponential-family of
conditional distributions. This allows us to more effectively deal with various types of response
variables. Via the canonical link function g(·), the regression function is modeled as

(3.1)

Here, X is still a p dimensional covariate, and U a covariate of scalar.

To make our methodology and theory more general, we do not confine our discussion in the
exponential-family. Rather we only assume the log conditional density function (we define
density function as the probability function when y is discrete) of y given (U, XT) is ℓ(m(U,
X), y).

3.1 Estimation procedure
Among various estimation methods, the local maximum likelihood estimation seems more
natural and reasonable to estimate the functional coefficient a(·) in the generalized varying
coefficient models. The local maximum likelihood estimation can be briefly described as
follows.

Denote ȧ(u) by b(u). For any given u, the local maximum likelihood estimator (âT(u), b ̂T(u))
of (aT(u), bT(u)) is the maximizer of the local log-likelihood function

(3.2)

Cai et al.(2000) have established the asymptotic normality of the local maximum likelihood
estimator of a(u).

Theorem 5—Under the conditions in Cai et al.(2000), we have

where

From Theorem 5, we can see, the bias of â(u) is the same as that in standard varying coefficient
models. As we see before, the nhf(u)/ν0 in the asymptotic covariance matrix is the expected
number of data in the neighbourhood of u with the length 2h, and the Σ in the asymptotic
covariance matrix is like the Fisher information matrix in parametric setting. Theorem 5 is like
the local version of the asymptotic normality of maximum likelihood estimator in parametric
setting. Base on Theorem 5, it is obvious that the local maximum likelihood estimation is
efficient.
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If the conditional distribution of y given U and X belongs to the exponential-family, and the
link function g(·) is canonical link, the Σ in Theorem 5 can be simplified to E{XXTvar(y|U, X)|
U = u}.

Although the local maximum likelihood estimation is efficient, it could be difficult to
implement as the local maximum likelihood estimator in general does not have a closed form.
It is often computationally expensive to maximize (3.2). Instead of maximizing (3.2), Cai et
al.(2000) proposed a one-step Newton-Raphson estimation of a(u) to ease the computational
burden.

Let ℒ̇(a, b) and ℒ̈(a, b) be the first and second derivative of ℒ(a, b) respectively. Denote

(aT(u), bT(u))T by β(u). Let  be the initial estimator of β(u). The one-step Newton-
Raphson estimator of β(u) is

(3.3)

The one-step Newton-Raphson estimation can be implemented in the following way: Suppose
we wish to evaluate the function â(·) at grid points uj, j = 1, ···, m. Pinch the central point ui0,
i0 = m/2, compute the local maximum likelihood estimator β ̂(ui0), use this estimator as initial
estimator at ui0+1, and apply (3.3) to get the estimator β ̂os(ui0+1). Now use β ̂os(ui0+1) as initial
estimator at point ui0+2, and apply (3.3) to get β ̂os(ui0+2) and so on. Likewise, we can compute
β ̂os(ui0−1), β ̂os(ui0−2) and so on. In this way, we obtain our estimates at all grid points.

Cai et al.(2000) showed that the one-step Newton-Raphson estimator can save computational
cost in an order of tens without deteriorating its performance.

An interesting and important issue with generalized varying coefficient models is how to
estimate the covariance matrix of the local maximum likelihood estimator. Cai et al.(2000)
proposed a sandwich method to estimate the covariance matrix of â(u). According to the
sandwich method, the covariance matrix of â(u) can be estimated by,

(3.4)

with

where

Cai et al.(2000) showed the sandwich method worked quite well by extensive simulation
studies. Fan and Peng (2004) have proved the consistency of the sandwich estimator.

The bias and variance of the local maximum likelihood estimator can be estimated by using
the general method outlined in Fan et al.(1998). In general, it is difficult to accurately estimate
the bias of â(u) due to poor estimation of higher order derivative of a(u). In the construction
of confidence bands, an alternative approach to deal with the bias is to use a slightly smaller
bandwidth to make the bias ignorable.
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Like the standard varying coefficient models, the bandwidth plays a very important role in the
local maximum likelihood estimation for generalized varying coefficient models. A natural
approach to select the bandwidth is to appeal the cross-validation idea. For each i, we delete
the ith observation, and estimate a(Ui) based on the rest of the observations. Let â\i(Ui) be the
obtained estimator. The sum of cross-validation is defined as

We compute the CVs for different bandwidths in a reasonable range. The selected bandwidth
is the one minimizing the CV.

3.2 Hypothesis test
Like standard varying coefficient models, whether some certain coefficients are really varying
with U or whether some certain coefficients are significantly different from 0 is of interest and
importance. These questions can be formulated to the hypotheses

(3.5)

and

While these two problems look alike, there are very different statistically. The former tests the
parametric null hypothesis against the nonparametric alternative hypothesis, while the latter
tests against the nonparametric null hypothesis as the null hypothesis contains unknown
nonparametric components aj(·) for j ≠ k. Cai et al.(2000) discussed how to construct the
hypothesis test for these hypotheses based on the generalized maximum likelihood ratio test
developed by Fan et al.(2001). The generalized maximum likelihood ratio test is easy to
implement and has good power. Taking the hypothesis (3.5) as an example, the generalized
maximum likelihood ratio test statistic is the difference between the log likelihood functions
under the alternative and null hypotheses, which is

where â(·) is the local maximum likelihood estimator of functional coefficient a(·) under
alternative hypothesis, and â is the maximum likelihood estimator of the constant vector a =
(a1, ···, ap)T under null hypothesis. The test is that we reject the null hypothesis when T > cα,
where cα, is the critical value which can be computed by either asymptotic distribution of T or
bootstrap under null hypothesis.

The asymptotic distribution of T under null hypothesis is normal distribution and free of the
value of a. This is the so called Wilks phenomenon. For more rigorous justification, we refer
to the article by Fan et al.(2001). When sample size is moderate, it is better to use bootstrap
under null hypothesis to estimate the critical value cα. We have to evaluate a when generating
bootstrap samples under null hypothesis. Thanks the Wilks phenomenon, the distribution of
T under null hypothesis is free of the value of a, so we can just simply assign a reasonable
value to a. We recommend to evaluate a by the maximum likelihood estimator â of a under
the null hypothesis.
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Finally, we would like to point out that the local maximum likelihood method can be regarded
as a specific case of the local estimation equation method of Carroll et al.(1998). Kauermann
and Tutz (1999) proposed a graphical technique for checking the discrepancy between a
parametric model and a varying coefficient model. Qu and Li (2006) investigated a
nonparametric goodness of fit test for the generalized varying coefficient models.

4 Analysis of longitudinal and functional data
In many applications, data for different individuals are collected over a period of time. The
number of data points for different individuals can be different and so is the location of time.
Such a kind of data are called longitudinal data. Often, interest lies in studying the association
between the covariates and the response variable. To this end, a linear model is often employed:

(4.1)

for covariates and response variable collected at time t. See for example Diggle et al.(2002)
and Hand and Crowder (1996).

Despite of its success in many applications, model (4.1) does not allow the association to vary
over time, even though the covariates and the response variable change over time and
environment. To account for this, Zeger and Diggle (1994) proposed a semiparametric model,
by allowing the intercept term β0 to depend on the time, but not the other coefficients. To
genuinely examine whether the association changes over time, Brumback and Rice (1998) and
Hoover et al.(1998) propose the following varying coefficient model

(4.2)

where the functional coefficients are assumed to be smooth. The functional coefficients can
also be a function of other covariates instead of the time variable. This is a specific case of the
functional linear model discussed in Ramsay and Silverman (1997) for functional data analysis.
When covariates are absent, model (4.2) was studied by Rice and Silverman (1991) and Hart
and Wehrly (1993) for functional data.

The coefficients in model (4.2) can be estimated by the kernel, polynomial and smoothing
spline methods (Brumback and Rice, 1998;Hoover et al.1998,Huang et al.2002,2004). Fan and
Zhang (2000) proposed a two-steps method to overcome the computational burden of the
smoothing spline methods. The approaches for constructing confidence regions based on the
kernel method can be found in Wu and Chiang (2000) and Chiang et al.(2001). The construction
of confidence bands based on polynomial spline method can be found in Huang et al.(2002,
2004).

One important issue with longitudinal data analysis is how to incorporate the within subject
correlation structure into the estimation procedure. For parametric setting, this issue has been
thoroughly investigated, and the methodology has been well established; see e.g. Diggle et al.
(2002) and the references therein. The situation with nonparametric based longitudinal data
analysis is quite different, see Lin and Carroll (2001).

Various studies have been made on the partial linear model in which the coefficients β(t) in
(4.2) are constant. Lin and Ying (2001) employed a counting process approach which is
ameliorated by Fan and Li (2004). An important discovery made by Lin and Carroll (2001) is
that the commonly-used forms of the kernel method are local and can not incorporate the within
subject correlation. An innovative kernel method is proposed by Wang (2003), which
incorporates the true covariance structure. The idea has been successfully extended to the
partial linear model by Wang et al.(2003), which achieves the semiparametric efficient bound
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computed in Lin and Carroll (2001). Qu and Li (2006) proposed an estimation procedure for
the varying coefficient models based on the penalized spline and quadratic inference function
approaches. The advantage of Qu and Li’s estimation is it can directly incorporate within
subject correlation into the estimation without any need to estimate the nuisance parameters
associated with the correlation. Despite the need of within subject covariance for longitudinal
studies, few studies have been made.

Missing data such as dropout are common in long term longitudinal studies. Hogan et al.
(2004) studied the mixtures of varying coefficient models for longitudinal data with discrete
or continuous nonignorable dropout.

The within subject correlation structure plays a very important role in longitudinal data
analysis. This is because not only an estimator can be improved by incorporating the within
subject correlation structure into the estimation procedure, but also the within subject
correlation structure can sometimes shed valuable insights in practical problems, see Sun et
al.(2008). Fan et al.(2007) and Sun et al.(2008) have systematically studied the estimation of
the within subject correlation structure. In the following, we shall briefly introduce the
estimation of the within subject covariance matrix.

When p2 in the semivarying coefficient models (2.10) is 0, the semivarying coefficient models
becomes varying coefficient models. It is reasonable to view the semivarying coefficient
models as an extension of varying coefficient models. We therefore consider the semivarying
coefficient models

(4.3)

where Zi(t), i = 1, 2, is pi dimensional covariate, p1 + p2 = p, and Eε(t) = 0, and var(ε(t)) =
σ2(t) which is unknown. Modeling the covariance matrix is intrinsically challenging due to
sparse irregular observed time points for each individual. To take this structure into account,
Fan et al.(2007) proposed the following semiparametric model. The variance function σ2(·) are
modelled nonparametrically and the correlation function parametrically: For any t and s, the
correlation between ε(t) and ε(s) is ρ(s, t, θ). The function form of ρ(s, t, θ) is known, but θ is
unknown to be estimated. In this way, the variance function σ2(t) is estimable
nonparametrically as long as the collection of time points for all individuals are dense in a time
interval of interest. On the other hand, sparse individual observations (for those individuals
with at least two observations) can be aggregated to estimate the parameters in the correlation
function. The idea is indeed powerful and takes longitudinal data structure at heart. The
modeling biases of correlation functions can be reduced by expanding the family of parametric
functions, such as the linear combinations of the ARMA-correlation and random-effect-
correlation structure.

Suppose that a sample from (4.3) consists of n subjects. For each i, i = 1, ···, n, for the ith subject,
we have observation ( ) at time point tij, j = 1, ···, Ji. Let εi(tij) be the ε
(t) corresponding to ( ), and εi = (εi(ti1), ···, εi(tiJi))

T. Denote the
covariance matrix of εi by Σi.

Of interest is estimating model parameters a1(·), a2, σ2(·) and θ. On one hand, the estimation
of σ2 and θ depends on the estimation of a1(·) and a2. On the other hand, the estimation of
a1(·) and a2 can be improved by using the estimate of σ2 and θ. Therefore, the estimation must
be done in steps. The initial estimators of a1(·) and a2 are constructed by ignoring the within
subject correlation. With these estimators, we can estimate σ2 and θ. Finally, we can estimate
a1(·) and a2 more efficiently by using the estimators of σ2 and θ.
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Applying the profile least squares estimation in Section 2.3 with weighted least squares
estimation for the synthetic linear model (2.12), we have the estimator of a2

where S, Z2 and Y are the same as that in Section 2.3 but replacing

by

and W is a weight matrix. When estimators θ ̂ and σ ̂(tij) of θ and σ(tij) are available, it is

where Ci(θ) is the correlation matrix of εi.

After obtaining the estimator â2 of a2, we substitute â2 for a2 in model (4.3) and apply the
estimation in Section 2.1.1 to get the estimator â1(·) of a1(·). Let

A natural estimator of σ2(t) is the kernel estimator

Based on ri, we can estimate θ by minimizing the quasi-likelihood function

with respect to θ, and the minimizer is the estimator of θ. We name this estimator quasi-
likelihood estimator.

The quasi-likelihood estimator is a good estimator when the correlation structure is correctly
specified. However, when the correlation structure is misspecified, the quasi-likelihood
estimator may incur a larger bias. Fan et al.(2007) proposed another more robust estimator
which is based on minimizing the generalized variance of a2. Explicitly, the estimator of θ
based on the generalized variance method is the minimizer of determinant of the covariance
matrix of a2

where
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Their philosophy is to improve the estimating parametric component a2 even when the
semiparametric model on the covariance structure is wrong, as long as the model includes the
current working covariance structure as a specific case. That motivates the aforementioned
optimization criterion. Fan and Wu (2007) investigated the asymptotic properties of the
modeling parameter θ under the weaker conditions that a1(·) can be rough and introduced a
difference-based method to reduce the bias in estimating a1(·).

5 Survival analysis
Survival analysis is an important subject in statistics. It has been widely used in medical science,
economics, finance, social science, among others. The most popular model in survival analysis
is the Cox model proposed by Cox (1972), which assumes the hazard function h(t|X) of the
survival time T is the following proportional hazard function

(5.1)

where X is a p dimensional covariate, and h0(t) is the baseline hazard function. Cox (1972) also
proposed the partial likelihood estimation to estimate β.

Whilst the Cox model is very successful in many applications, it doesn’t address any dynamical
feature which may exist in the data set. Zhang and Steele (2004) studied the data set about the
contraceptive use in the Bangladesh, and found a very strong dynamical pattern with the data
set. From socioeconomic point of view, this kind of dynamical pattern is very important as it
may reveal how the society and political system change with time. To address the dynamical
feature, Zhang and Steele (2004) proposed a semiparametric multilevel survival model. On the
individual level, their model can be viewed as a special case of the varying coefficient
proportional hazard function models

(5.2)

where U is a scalar covariate. Fan et al.(2006) systematically studied models (5.2). They
proposed the local partial likelihood estimation to estimate a(·), and derived the asymptotic
normality of their estimators.

The local partial likelihood estimation is outlined as follows: Suppose we have a sample
( ), i = 1, ···, n. yi = min(Ti, Ci), δi = I(Ti > Ci), Ti and Ci are respectively the survival
time and censoring time of the ith sample member. The censoring mechanism is assumed to
be noninformative. Further, denote the distinct event times by y(1) < ··· < y(L) and the number
of events at time y(ℓ) by dℓ. Denote the set of indices for the individuals at risk up to time y(ℓ)
by Rℓ, and the set of indices for the events at y(ℓ) by ℓ. For any given u, the local partial
likelihood estimator of a(u) is the part corresponding to a of the maximizer of the following
local partial log-likelihood function

Fan et al.(2006) also discussed the estimation for the bias and variance of the local partial
likelihood estimators, as well as the variable selection issue.
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Cai et al.(2007a) successfully extended the local partial likelihood estimation to multivariate
survival data with partially linear hazard regression. They proposed a profile pseudo-partial
likelihood estimation. An iterative algorithm was developed to implement the estimation. They
also established the asymptotic normality of their estimators. The estimation for standard error
as well as hypothesis test for the parametric component are also discussed.

Cai et al.(2007b) investigated the semivarying coefficient hazard regression models for
multivariate survival data. Cai et al.(2007c) studied the marginal varying coefficient hazard
models for multivariate survival data. The B-Splines based estimation for model (5.2) was
established by Nan et al.(2005).

Tian et al.(2005) studied a slightly different varying coefficient proportional hazard function
models

(5.3)

The difference between (5.2) and (5.3) is the U with a(U) in (5.2) is observable, however, the
t with a(t) in (5.3) is the survival time which may be censored. The model (5.3) can still be
estimated by local partial likelihood approach, see Tian et al.(2005). Pointwise confidence
intervals and confidence bands of a(·) in model (5.3) are also discussed by Tian et al.(2005).

6 Nonlinear time series
Varying coefficient models have been elegantly applied to modeling and predicting time series
data (Nicholls and Quinn 1982; Chen and Tsay, 1993; Cai, et al., 2000; Huang and Shen,
2004). They are natural extensions of the threshold autoregression models, extensively
discussed in Tong (1990). Let {Xt} be a given time series. The varying coefficient model is of
the form,

(6.1)

for some given lags k and p. The geometric ergodicity of this model was studied by Chen and
Tsay (1993).

The local linear method applies readily to this autoregressive setting. The coefficient functions
can be fitted using the local linear technique in Section 2.1.1 by setting

if the observed time series is X1, ···, Xn. The joint asymptotic normality of such an estimator
has been studied in Cai et al.(2000). They proposed a method for bandwidth and a generalized
pseudo-likelihood test for testing the autoregressive models and thresholded models. The
method has been successfully applied by Hong and Lee (2003) for inference and forecast of
exchange rates.

The varying variable U is taken to be Xt−p in (6.1). Fan et al.(2003) allows the linear index
β1Xt−1 + ···+ βkXt−k to be the variable U. See (2.8) for additional details. In particular, it allows
U to be allow of the lag variables, not just a given Xt−p.

7 Time-varying diffusion models
Diffusion models are frequently used to describe the dynamics of stock prices and interest
rates. Let Xt be the log return of stock price or interest rate at time t. The one factor model
postulates that Xt satisfies a time-dependent continuous-time stochastic differential equation:
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(7.1)

Here Wt denotes the standard Brownian motion and the bivariate functions μ(t, Xt) and σ(t,
Xt) are called the instaneous return and volatility of the process {Xt} respectively. See, for
example, Duffie (1996) and Hull (2003). However, one can not estimate the bivariate functions
μ and σ nonparametrically, as we only observe a trajectory (t, Xt) on the bivariate space, which
is not dense. Therefore, further restrictions are needed.

One specification is the time-homogenous diffusion model:
(7.2)

The nonparametric model has been thoroughly studied by Stanton (1997), Fan and Yao
(1998), Chapman and Pearson (2000), and Fan and Zhang (2003), among others. It includes
many famous families of parametric models popularly used in the finance literature such as
the geometric Brownian motion for stock prices, and interest rate models of Vasicek (1977),
Cox, Ingersoll and Ross (CIR) (1985), Chan Karolyi, Longstaff and Sanders (CKLS) (1992),
among others.

Economic conditions change from time to time. Thus, it is reasonable to expect that the
instantaneous expected return and volatility depend on both time and price level for a given
state variable. To take this and estimability into consideration, Fan et al.(2003) proposed the
following time-varying coefficient model:

(7.3)

This is an extension of the CKLS model when all varying coefficients are indeed constant. It
is also an extension of the famous CIR model with

for modeling the short-term interest rate. Geometric Brown motion corresponds to

in (7.3).

Suppose that the process is observed at discrete time points with the data {Xti, i = 1, …, n+1}.
Denote by

According to the independent increment property of the Brownian motion, {Zti} are
independent and normally distributed with mean zero and variance Δi. Thus, the discretized
version of (7.3) can be expressed as

(7.4)

where  are independent and have a standard normal distribution. This is indeed a vary
coefficient model in both the conditional mean and conditional variance.

Fan et al.(2003) employed the local constant approach to estimate the coefficients α0(t) and
α1(t) in a similar manner to Section 2.1.1, i.e. minimizing with respect to a and b
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for each given t0, resulting the estimators α̂0(t) = â and α̂1(t0) = b̂, with â and b̂ being the
minimizer of the above local linear-squares problem. The reason that the local constant instead
of local linear technique is used is to avoid small arbitrary linear trend, created by the local
linear fit with a large bandwidth. After the time-varying coefficients α0(t) and α1(t) were
estimated, they employed the pseudo-likelihood method to estimate β0(t) and β1(t).

Let . Then, by (7.4), we have

(7.5)

At each given point t0, the following local pseudo-likelihood, which is the local normal-
likelihood if (7.5) holds exactly,

is maximized, yielding β ̂0(t0) = β ̂0 and β ̂1(t0) = β ̂1, where β ̂0 and β ̂1 are the maximizer of the
above local maximum likelihood estimator. Note that given β1, ℓ(β0, β1; t0) can be maximized
explicitly with respect to β0 and therefore, the problem reduces to the univariate optimization
problem.

Fan et al.(2003) suggested using one-sided kernel so that only past data are used. They also
proposed a method to select the bandwidth and to construct confidence intervals. The model
was also used as the alternative hypothesis for testing the famous time homogeneous model
such as the CIR and CKLS models. It was also applied to price zero-coupon bond.

8 Concluding remark
In this paper, we have given a selective overview on the developments on the varying
coefficient models. There are a vast of number of papers addressing various types of varying
coefficient models in the past ten years. Our citation in this paper is not exhaustive. In addition
to the applications to time series, longitudinal data analysis and survival analysis, the varying
coefficient models have also seen their applications in other subjects in statistics. For example,
Sentürk and Müller (2005) applied the varying coefficient models in covariate adjusted
correlation analysis.

We only focus on the major developments on the standard varying coefficient models and their
extensions in time series, longitudinal data analysis and survival analysis. Our emphasis is
placed on the methodological side. We have not cited the papers with main contributions on
applied side. Undoubtedly, varying coefficient models have seen their broad and exciting
applications in many scientific areas in the last ten years. Examples include that Ferguson et
al.(2007) applied the varying coefficient models to explore the complex ecological system at
Loch Leven, and obtained some insight into the combined effects of climate change and
eutrophication on water quality; Kauermann et al.(2005) used the varying coefficient models
to analyse the survival of 1123 newly founded firms in the state of Bavaria, Germany, and
investigate the time varying effects of risk factors. The varying coefficient models are
becoming more and more attractive to both applied and methodological statisticians. They are
being more and more frequently used in many scientific areas to explore the dynamic feature.
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Figure 1.
The impacts of Sulphur Dioxide, Nitrogen Dioxide and Dust on the number of daily total
hospital admissions for circulationary and respirationary problems
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