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Abstract

The effect of errors in variables in nonparametric regression estimation is examined.

To account for errors in covariates, deconvolution is involved in the construction of a new

class of kernel estimators. It is shown that optima/local and global rates of convergence

of these kernel estimators can be characterized by the tail behavior of the characteristic

function of the error distribution. In fact, there are two types of rates of convergence

according to whether the error is ordinary smooth or super smooth. It is also shown

that these results hold uniformly over a class of joint distributions of the response and

the covariates, which includes ordinary smooth regression functions as well as covariates

with distributions satisfying regularity conditions. Furthermore, to achieve optimality,

we show that the convergence rates of all nonparametric estimators have a lower bound

possessed by the kernel estimators.

oAbbreviated title. Error-in-variable regression

AMS 1980 subject classification. Primary 62G20. Secondary 62G05, 62J99.
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1 Introduction

A tremendous amount of attention has been focused on the problem of nonparametric

regression estimation. Most of this attention has been directed to data with standard struc-

ture. On the other hand, regression analysis with errors-in-variables is evolving rapidly. See

for example, Anderson (1984), Carroll et al (1984), Stefanski and Carroll (1985), Stefan­

ski (1985), Fuller (1986), Prentice (1986), Bickel and Ritov (1987), Stefanski and Carroll

(1987a), Schafer (1987), Whittemore and Keller (1988), and Whittemore (1989). However,

the latter has centered around the parametric approach. That is, the regression function is

assumed to take on a particular functional form. Attempts to unify these two approaches

form the subject of this paper.

Let (X, Z) denote a pair of random variables and suppose it is desired to estimate the

regression function m(x) = E(ZIX = x). However, due to the measuring mechanism or

the nature of the environment, the variable X is measured with error and is not directly

observable [Fuller (1986), p.2]. Instead, Y = X +c is observed, where c is a random distur- e
bance whose distribution is known, and is independent of (X, Z). Three interesting issues

arise naturally: (a) How can a nonparametric regression function estimator be constructed

to reflect the fact that there are errors in variables? (b) How well does it behave? (c) Does

it possess some optimalities? The discussions of the issues center the core of the paper.

Suppose that (Y}, Zl),"" (Yn, Zn) is a random sample from the distribution of (Y, Z).

We address the first issue by considering the following kernel type estimator

m(x) = EWn,j(Y}, ... ,Yn)Zj,
j

where Wn,j(Y1, •.• , Yn) is a weight function normalized so that L:j Wn,j(Y}, ... ,Yn) = l.

These weights are constructed so that they will account for the errors in the covariate X.

The idea is related with that of density estimation using deconvolution techniques. See

Stefanski and Carroll (1987b), Fan (1988) and Section 2 for more details.

The second issue is addressed through two types of error distributions. An error is called
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ordinary smooth if the tails of its characteristic function decay to zero at an algebraic rate. It

is called super smooth if its characteristic function has tails approaching zero exponentially

fast. See Fan (1988) and Section 3 for a formal definition. For example, distributions such

as double exponential and gamma are ordinary smooth, while normal and Cauchy are super

smooth. The current paper examines to what extend that the distribution of € affects the

rates of convergence of the above nonparametric estimators, both locally and globally.

Depending whether the error is ordinary smooth or super smooth, the rates of conver­

gence of the kernel estimators are quite different-the local and global rates are slower in

the super smooth model while they are faster in the ordinary smooth model. These results

also hold uniformly over a class of joint distributions of (X, Z) which includes regression

functions possessing smoothness conditions, and covariates with distributions satisfying reg­

ularity conditions. For more details, see Section 3.

An interesting consequence of the results in Section 3 is worth mentioning. Our error-in­

variable model includes the usual nonparametric regression model in the absence of error.

Thus, as a corollary of Theorem 4, we show that kernel estimators attain optimal global

rates of convergence under weighted Lp-Ioss ( 1 ~ p < 00). The result, to our knowledge,

appears to be new even in the ordinary nonparametric regression.

The third issue is focused on rate optimality. We construct minimax lower bounds on

the rates of convergence-both locally and globally. The dependence of the lower rates on

the smoothness of error distribution is clearly addressed.

The rates of convergence of the kernel estimators can also be characterized through the

error distribution. Indeed, in Section 4, we will show that these rates provide lower bounds

for all nonparametric regression function estimators when the covariates are measured with

errors. These results hold locally and globally, as well as uniformly over the aforementioned

class of joint distributions of (X, Z).

In contrast with previous results in parametric regression involving errors in variables,

our investigation shows that one should be cautious about using normal as an error dis-
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tribution, since the optimal estimators based on normal errors have very slow rates of

convergence.

The paper is outlined as follows. Section 2 describes the idea of deconvolution and kernel

estimators. Our assumptions and issues on rates of convergence are presented in Section

3. Section 4 deals with optimality. Section 5 contains further remarks. Proofs are given in

Section 6.

2 Kernel estimators

Let (XI, Zl), ... , (Xn, Zn) denote a random sample from the distribution of (X, Z) and

let K (.) denote a kernel function. Recall that in the case that X is observable, the kernel

estimator of the regression function E(ZIX = x) is obtained by averaging the Z's with

weights proportional to K«x - Xj)Jhn ):

(2.1)

where hn is a smoothing parameter and In(x) = (nhn)-l Li K(x"h: i ) is a kernel estimator

of the density of covariate X.

Since the variables XI, ... ,Xn are not observable, the kernel estimator In(X) will be

constructed from l'j = Xj +Cj, j = 1, ... ,n. Denote the densities of Y and X by fy(·) and

fx('), respectively. Let F~(.) denote the distribution function of c. Then

(2.2)

This suggests that the marginal density function fxO can be estimated by the deconvo­

lution method. Using a kernel function K(·) with a bandwidth hn , Stefanski and Carroll

(1987b) and Fan (1988) consider the following estimator:

(2.3)
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(2.4)

where 4>KO is the Fourier transform of the kernel function K(·), 4>~(') is the characteristic

function of the error variable e and 4>n(') is the empirical characteristic function:

A 1 n .
4>n(t) = - L:exp(ztlj).

n 1

Note that this estimator can be rewritten in the kernel form

A 1 ~ x-Y-
fn(x) = -h LJKn( h J),

n n 1 n

with

(2.5)

(2.6)

Some other recent contributions to nonparametric deconvolution include Carroll and Hall

(1988), Fan (1990), Liu and Taylor (1990), Zhang (1989), etc.

Eqs (2.1), (2.5) and (2.6) motivate the following regression function estimator involving

errors in variables:

(2.7)

proportional to Kn((x -lj)/hn).

3 Performance of kernel estimators

The sampling behaviors of the kernel estimators (2.7) considered in the previous section

will be treated here. The rates of convergence of these estimators depend on the smoothness

of error distributions, which can be classified into:

• Super smooth of order {3: if the characteristic function of the error distribution 4>~(')

satisfies

where do,d1 ,{3,'Y are positive constants and {30,{31 are constants.
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• Ordinary smooth of order {3: if the characteristic function of the error distribution

¢>e( .) satisfies

for positive constants do, db {3.

For example,

(3.2)

Super smooth distributions:
{

N(O,l)

1 1
if 1+x2

with {3 = 2,

Cauchy (0,1) with {3 = 1.

Ordinary smooth distributions: {
O/P p-l -O/X (Gamma) 'th {3r(p)x e WI = p,

!e-1xl (double exponential) with {3 =2 .

The rates of convergence depend on {3, the order of smoothness of the error distribu­

tion. They also depend on the smoothness of the regression function m(x) and regularity

conditions on the marginal distribution. Specifically, these conditions are

Condition 1.

i. Let a < b. The marginal density fx(-) of the unobserved X is bounded away from zero

on the interval [a, b], and has a bounded kth derivative.

11. The characteristic function of X is absolutely integrable.

iii. The characteristic function of the error distribution ¢>e(') does not vanish.

iv. The regression function m(·) has a bounded kth derivative.

v. The conditional variance of (12(x) = Var(ZIX = x) is bounded and continuous.

The rates depend on the following condition of the kernel function:

Condition 2. The kernel K(·) is a kth order kernel. Namely,

L: K(y)dy = 1,L: yk K(y) dy =1= 0,

L: yj K(y)dy = 0, for j = 1, ... ,k - 1.
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Each of the following subsections contains two sets of results. The first set discusses the

local and global rates of convergence. The second addresses the uniform results.

The global rates are described in terms of weighted Lp-norms which are defined as

follows: Let g(.) denote a real-valued function on the R and let w(·) be a non-negative

weight function. Put

IIg(')lIwoo = sup Iw(x)g(x)l·
x

To state the uniform results, we need to introduce a class of joint densities of (X, Z).

Let B denote a positive constant and [a, b] be a compact interval. Denote the smallest

integer exceeding p/2 by rp: rp ~ p/2. Define

:Fk,B,p = {f(x,z) : Im(k)(')1 ~ B, Im(')1 ~ B, Ifr\)1 ~ B,i: l4>x(t)1 dt ~ B,

E(/ZlrpIX = x) ~ B, min fx(x) ~ B- 1
}. (3.3)

a:5x:5b

3.1 Super smooth error distributions

Rates of convergence of kernel estimators under super smooth error models will be

considered in this section. Let

where fx is the marginal density of X. The following result treats the local and global

rates:

Theorem 1. Suppose that Conditions 1 - 2 hold and that the first half inequality of (3.1)

is satisfied. Assume that 4>K(t) has a bounded support on ItI ~ Mo. Then, for bandwidth

hn = c(logn)-1/.B with c> Mo(2h)1/.B,

(3.4)

and

(3.5)
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Remark 1. Estimating regression functions in the presence of super smooth errors are

extremely difficult, since the rates of convergence are very slow. Nevertheless, the variance

of a kernel estimator can be very large (even goes to infinite), if c < Mo(2h)1/(3, where

c is the constant factor of the bandwidth. However, when c > M o(2h)1/(3, the variance

converges to 0 much faster than the bias does.

The above result also holds uniformly over Fk,B,2:

Theorem 2. Suppose that </>~(.) and K(.) satisfy the conditions of Theorem 1. If the

weight function w( x) has a support [a, b], then

and

sup Elmn(x) - m(xW = 0«10gn)-2k/(3),
!E:Fk,B,2

(3.6)

1 $ p $ 00. (3.7)

An interesting feature of Theorem 2 is that mn (·) converges to m(·) with the same rates

for both weighted Lp-loss (1 $ p < 00) and Loo-loss. The result is not true for the ordinary

nonparametric regression, where the global rates of convergence under Loo-loss are slower

(see Stone (1982».

3.2 Ordinary smooth error distributions

This section considers kernel estimators under ordinary smooth error distributions. To

compute the variance of the kernel density explicitly, we need the following condition on

the tail of </>~(t):

It(3+l</>~(t)1 = 0(1), ast-+oo (3.8)

for some constants c f; O.

Theorem 3. Suppose Conditions 1 - 2 hold and that
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Then, under the ordinary smooth error distribution (3.8) and hn = dn- I /(2k+2,6+l) with

d> 0,

and

l
b

( 21c)E a Imn(x) - m(xWdx = 0 n- 2(1c+,6l+1 ,

where v(x) is defined by

1 100
t,6 2 100vex) = 2 P ( ) - I4>K(tWdt q2(x - v)fx(x - v)dF~(v).

1r x x -00 c -00

(3.9)

(3.10)

A reason for computing the bias and variance explicitly in Theorem 3 is that such a

result will be useful for bandwidth selection and asymptotic normality of kernel regression

estimators. To justify rate optimality, we need the above results hold uniformly in a class

of densities. Formally, we have the following theorem.

Theorem 4. Under the conditions of Theorem 3 on 4>~(-) and K(·), if the weight

function has a bounded support [a, bj, then

and

(3.11)

A direct consequence of (3.12) yields

1 ~ p < 00.

1 ~ p < 00.

(3.12)

Remark 2. For a regression function with a bounded k-th derivative, the following

table illustrates various rates (optimal local and global rates) of convergence according to

the error distribution. The rate optimality will be justified in next section.
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Error distribution Rates of convergence Error distribution Rates of convergence

N(0,1) (logn)-k/2 Gamma(a,p) n-k/(2k+2p+l)

Cauchy (0,1) (logn)-k Double exponential n-k/(2k+5 )

Note that the optimal rates are achieved by kernel estimators whose kernel and band­

width satisfy the conditions of Theorem 2 and 4.

4 Rate Optimality

It appears that the rates of convergence in the previous section are slower than the

ordinary rates for nonparametric regression in the absence of errors. In particular, for

super smooth error distributions such as the normal, the rates of the proposed estimators

are extremely slow (see Section 3.1). In this section, we show that it is not possible to

improve their performances, as far as rates of convergence are concerned. In other words,

the rates of convergence presented in Section 3 are in fact an intrinsic part of regression e
problems with errors in variables, and are not an artifact of kernel estimators.

In order to justify the claim above, we need to make some restrictions on the distribution

of the error variable c. Note that the distribution function of c is assumed known and the

conditions we impose here can be easily checked (see examples and Remark 2 in Section 3).

A formal statement of these conditions is given in Theorem 5 below, which deals with local

and global lower rates for super smooth cases.

Theorem 5. Suppose that the characteristic function </>~(-) of error variable c satisfies

the second half inequality of (3.1) and that

for some 0 < ao < 1 and a > 1.5 +ao. Then, for any fixed point x, there exists a positive

constant D 1 such that

i!lf sup EfITn(x) - m(xW > D 1(1ogn)-2k/iJ ,
Tn !E:Fk,B,2
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here inftn denotes the infimum over all possible estimators Tn. Moreover, if the weight

function w(·) is positive and continuous on an interval, then there exists a positive constant

D2 such that

Theorem 5 includes the commonly used super smooth distributions such as normal,

Cauchy, and their mixtures as an error variable. Theorem 6 examines the ordinary smooth

cases, which include all gamma distributions, and symmetric gamma distributions (e.g.

double exponential distributions) as specific examples.

Theorem 6. Suppose that the characteristic function c/>eO of error variable £ satisfies

Then, for any fixed point x, there exists a positive constant D3 such that

i~f sup E!ltn(X)-m(x)12>D3n-2(k;~)+1.
Tn !E:Fk,B,2

(4.3)

Moreover, if the weight function w(·) is positive and continuous on an interval, then there

exists a positive constant D4 such that

Remark 3. According to our notation, Fk,B,p C Fk,B,2 [see (3.3)]. Thus, lower rates

with f E Fk,B,p is stronger than lower rates with f E Fk,B,2' In fact, according to our proof,

one can replace f E Fk,B,2 in (4.1)-(4.3) by f E Fk,B,p to get a stronger result. In other

words, the existence of conditional moments is not an intrinsic part of the lower rates of

convergence.

The idea of establishing the lower bound is interesting and can be highlighted as follows.

We use pointwise estimation (4.1) and (4.3) to illustrate the idea; the global lower bound
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can be treated similarly by combining the argument on pointwise estimation with the idea

of adaptively local I-dimensional subproblem of Fan (1989).

Suppose the problem is to estimate the regression function at the point 0 and that we

want to obtain a lower bound for

i~f sup EJITn(O) - m(0)12
•

Tn JE:Fk,B,2

Let !I(-,') and 12("') denote two points in Fk,B,2 and put ml(O) = Eh(ZIX = 0),

m2(0) =Eh(ZIX =0). Then

(4.5)

where ~ = Iml(O) - m2(0)1/2. One can view the second factor of (4.5) as the sum of the

probabilities of type I and type II errors of the best testing procedure for the problem:

Ho : f(x,z) =!I vs. HI: f(x,z) = h· (4.6)

Now, if the testing problem (4.6) can not be tested consistently based on the data (l'j,Zj)

( j = 1,2, ..., n), then the second factor of (4.5) would be bounded away from 0, and hence

then the difference of the functional values Iml(O) - m2(0)1 consists of a lower rate for

estimating EJ(ZIX = 0). See Donoho and Liu (1988) for a related idea. Thus the problem

of establishing a lower bound of nonparametric regression becomes the problem of finding a

pair of densities !I and 12 so that (a) the distance ~ = Iml(O) - m2(0)1/2 can be computed

explicitly, and (b) the hypotheses (4.6) can not be tested consistently.

Finding the pair !I and h. Let fo, go denote symmetric density functions such that

i: l</>o(t)1 dt ~ B and (4.7)

where </>o(t) is the characteristic function of fo. Put It(x, z) = fo(x )go(z). Then It E Fk,B,2'
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Now let hoex) be a function satisfying

i: ziho(z)dz = j, j = 0,1

and let {an} denote a sequence of positive numbers with an -+ O. Put

h(x,z) = lo(x)go(z) +a~H(xjan)ho(z),

(4.8)

(4.9)

where the function H (.) will be specified in the proofs of Theorem 5 and 6 so that 12 E :Fk,B,2.

By (4.7) - (4.9), mI(O) = 0 and m2(0) = a:H(O)j10(0). Hence

(4.10)

This yields a lower rate of estimating Ej(ZIX = 0).

Recall that F~ is the cdf of the error distribution. Let /i *F~(y, z) = f /i(y - x, z) dF~(x)

(j = 1,2) denote the densities of (Y, Z) under Ho and HI, respectively. The hypotheses (4.6)

can not be tested consistently if II *F~ is too close to 12 * F~. In terms of the X2-distance,

this is given by

J
OO JOO (II * F~ - 12 * F~)2 dydz = 0 (!) .

-00 -00 II * F~ n
(4.11)

One advantage of using X2-distance is that it can be readily approximated by the L 2 distance

so that Parseval's identity can be used. See Fan (1988) for further discussions on using

various distances in obtaining lower bounds in deconvolution problems.

Note that [(II - h) * F~] (y,z) = a:ho(z)[H(-jan) *F~(y)] and II *F~(y,z) = go(z)[fo *

F~(y)]. By (4.11),

(4.12)

Combining (4.10) and (4.12), the lower rate of estimating m(O) is a~ with an satisfying

(4.13)

If we use the same argument for estimating a density Ix at the point 0 from the convo-

lution model Y = X + £, we will end up exactly the same problem: finding an from (4.13).
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See Section 3 of Fan (1988). Now for the deconvolution problem, the solution of an is found

by Fan (1988). By the result of Fan (1988), we get the desired lower rates for estimating

the regression function at a point.

Let's illustrate how an is related to the tail behavior of the characteristic function of

the error variable. By suitable choice of 10, H, it can be shown that the x2-distance is

equivalent to the L2 distance:

(4.14)

By Parseval's identity,

(4.15)

If 4>H(t) vanishes when ItI ::; 1, then (4.15) depends only on the tail of 4>~(t). In other words,

we would choose an so that

(4.16)

and it is easy to do so by our assumption of the tail of characteristic functions.

One final remark: our method of perturbation is quite different from those in the liter­

ature of nonparametric regression (see e.g. Stone (1980, 1982) and among others), where

perturbation is applied directly to the regression function for some famous submodel (e.g.

normal submodel). Our idea is to reduce explicitly the problem to a related density estima-

tion problem so that some known facts from density estimation can be used. Indeed, the

traditional construction can not handle our more sophisticated error-in-variable problems.

We should also mention that the connection has other applications as well. For example, it

can be used to determine the minimax risk of nonparametric regression, by connecting the

risk with the minimax risk of estimating a nonparametric density.
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5 Concluding Remarks

Nonparametric regression has been very popular because of its flexibility in fitting a

large variety of data sets. However, this method breaks down in situations when covariates

are measured with errors. To remedy this, the current approach proposes a new method

in nonparametric estimation of regression function with errors-in-variables. This is accom­

plished by modifying the usual kernel method so that deconvolution is involved to provide

an estimate of the marginal density for the unobserved covariates. We then examine the

effects of errors-in-variables on the modified regression estimators. It is shown that the

current approach possesses various optimal properties depending the type of error distri­

butions, and a lot of insights have been gained in this investigation. Some of these are

highlighted as follows:

• The difficulty of nonparametric regression with errors-in-variables depends strongly

on the smoothness of error distribution: the smoother, the harder. This provides a

new understanding of intrinsic features of the problems, which is expected to have

other applications such as "ill-posed" problems.

• As opposed to the approach to regression analysis with errors-in-variables based on

normal error distributions, our study shows that this popular method suffers the draw

back that the kernel estimators have extremely slow rates of convergence. We also

show that this is the intrinsic part of the problem and is not an artifact of the kernel

method.

• For error distributions such as gamma or double exponential, the convergent rates of

the modified kernel estimators are reasonable and behave very similarly to the usual

kernel method. In fact, these results show that the usual kernel approach is a special

case of our method.

• Traditional arguments for establishing lower bounds for nonparametric regression es-
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timators are difficult to generalize to the context of errors-in-variables. The current

approach develops these bounds by reducing the regression problem to the correspond-

ing density estimation problem via a new line of arguments.

6 Proofs

Let f(x, z) and g(y, z) denote the joint densities of (X, Z) and (Y, Z), respectively. By

the independence of c and (X, Z) and Y = X +c ,

g(y,z) =Jfey - x,z)dFe(x),

where Fee-> is the cdf of c. We always denote the marginal density of X by fx(x).

6.1 Proof of Theorem 1.

The proof of this theorem depends on the following lemmas.

Lemma 6.1. Under the conditions of Theorem 1,

Esup lin(x) - fx(x)IP = 0(1),
x

where in is defined by (2.5).

Proof. Let 4>x(t) be the characteristic function of X. By (2.3),

. 1 100 ~n(t)
sup Ifn(x) - fx(x)/ ::; -2 I4>K(thn):z--() - 1114>x(t)1 dt.

x 1r -00 o/y t

Then

(6.1)

(6.2)

(6.3)

It follows from Holder's inequality and the fact that there exists a constant cp such that
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that

By the first half of (3.1), there exists a constant M such that

IcPe(t)1 > (do/2)ltI PO exp(-ltIP!r) for ItI > M.

Therefore, by the bounded support of cPK(t),

Combining (6.4)-(6.6), the conclusion follows from the choice of hn •

Lemma 6.2. Let An(x) = (nhn)-l EKn((x - lj)/hn)[Zj - m(x)]. If cPK(') vanishes

outside the interval [-Mo, Mo], then

1100 x-uEAn(x) = h
n

_oo[m(u)-m(x)]K(~)fx(u)du.

Proof. According to (6.1) and (2.6),

hnEAn(x) = EKn((x - Yd/hn)[Zl - m(x)]

= I:I: Kn((x - y)/hn)[z - m(x)]g(y,z)dydz

100 100 100
x - y= -00 -00 _ooKn(~)[z-m(x)]J(Y-U,Z)dFe(U)dydz

= 100 100 100 100

~ exp( -it(x - y)/hn ) cP~Ki2 )
-00 -00 -00 -00 211" e t n

X [z - m(x )]J(y - u, z) dtdFe ( u)dydz. (6.7)
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Note that Fourier transform of convolution is equal to the product of transforms:

I:I: exp(ity/hn)f(y - u,z) dF~(u)dy

= 4>~(t/hn)I: exp(ity/hn)f(y, z) dy.

Thus

(6.8)

here the last equality follows from the inversion of Fourier transform: the inversion of the

products of two Fourier transforms equals to the convolution. By (6.7) and (6.8),

EAn(x) h
1
nI: l:[z - m(x)]K(X~ y)f(y,z)dydz

1 rX) x-u
= h

n
i-oo [meu) - m(x)]K( --;;:- )fx(u) duo

Proof of Theorem 1. According to Lemma 6.1, in(x) = fx(x) + [in(x) - fx(x)] is

bounded from below in probability. By linearization,

mn(x) - m(x) = [mn(x) - m(x)] ~;~:» (1 + ~n(x»

= n-
1
Lh~lKn((x -lj)/hn)[Zj - m(x)](l C ( » (6.9)

fx(x) +I,n X ,

where ~n(x) = [jx(x) - in(x)Jlin(x). By Lemma 6.1, EI~n(x)12 = 0(1). Thus, the leading

term is An(x)/ fx(x), which by Lemma 6.2 has "bias"

1 [00 x - u
EAn(x) = h

n
i-co [me u) - m(x)]K( --;;:- )fx(u) du

= fx(x)bk(X)h~(1 +0(1».

Let a2(x) = E((ZI - m(x)?IX = x). Since X and c are independent,

h~Var(An(x» = ~Var (Kn(x ~nY )[Z - m(x)])

18
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< ~EIKn (X ~nY) 1
2[Z - m(x)]2

= ~EK~ (X - ~ - E) U2(X).

By (2.6) and (6.6),

It follows from (6.11) and hn = c(logn)-l/.B that

(6.11)

Eq. (3.4) now follows from the usual bias and variance decomposition. Since (6.10) and

(6.12) hold uniformly in X E (a,b), the second conclusion is also valid.

6.2 Proof of Theorem 2.

Note that (6.2) also holds uniformly in the class of f E Fk,B,2' That is,

sup Esup IJn(x) - fx(x)IP = 0(1).
!eFIc,B,2 :r:

Thus, by the linearization argument (6.9), we need only to argue that

(6.13)

sup EsupIAn(x)12 < 2 sup supIEAn(x)1 2+2 sup EsupIAn(x)-EAn(xW
!eFIc ,B,2 :r: !eFIc,B,2 :r: !eFIc,B,2 :r:

= O((logn)-2k/.B), (6.14)

where

An(x) = n-1 Lh;;l Kn((x - Yj)jhn)[Zj - m(x)]
j

(6.15)

Note that (6.14) has the usual bias-variance decomposition. By (6.10),

(6.17)

Thus, we need only to argue that the "variance" term in (6.14) has the right order. Put

Uj(t) = exp(itYj)Zj - Eexp(itYj)Zj and Vj(t) = exp(itYj) - Eexp(itYj).
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Then, according to (6.16) and the fact that Im(x)1 :5 B,

(211"S~P IAn(x) - EAn(x)I)2

< [I: (I~ f.U;(tJ1 +=1f.V;(tJ1) 1¢~;;~)H2
By Holder's inequality, the last display is bounded by

Note that

By (6.18),

1~ 12 1 2EI- L..J Uj(t) :5 -EZ
n . 1 n

J=

and
1 n 1

EI- L Vj(t)1 2 :5 -.
n j=l n

2 (1 [jOO I4>K(thn )1 ]2)sup E sup /An(x) - EAn(x)1 =0 - /4> ()I dt .
!E:FIc ,B,2 x n -00 e t

By (6.6) and the choice of hn , the last expression has order o((logn)-A) for any A > O.

This completes the proof of Theorem 2.

6.3 Proof of Theorem 3.

The proof uses the previous linearization argument, which in turn depends on the

following result for ordinary smooth models.

Lemma 6.3. Under the conditions of Theorem 3, if hn -+ 0 and nh2f3+2 -+ 00, then

E sup lin(x) - fx(x)IP = 0(1),
x

where in is defined by (2.3).

Proof. By (6.4) and (6.5), it is sufficient to verify that

20
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In fact, according to (3.8), there are positive constants M and Cl such that

(6.21)

Therefore

Proof of Theorem 3. It follows from Lemma 6.3 that the linearization argument given

in the proof of Theorem 1 also holds in the ordinary smooth models. Thus, to prove the

theorem, it suffices to compute the bias and the variance of

An(x) = n-1 ~h;lKn((x -lj)/hn)[Zj - m(x)].
j

(6.23)

Since the bias of An(x) does not depend on the error distribution (see Lemma 6.2), it follows

from (6.10) that

The variance is given by

EAn(x) = fx(x)bk(X)h~(1 +0(1)). (6.24)
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To this end, note that by (3.8) and the dominated convergence theorem

1 100 t{3 d f
h~Kn(Y) -+ -2 exp( -itY)-<PK(t) dt ~ J(y).

1r -00 C

By Lemma 6.4 (to be given at the end of this section),

for some positive constant C. According to (6.25) and Lemma 2.1 of Fan (1990),

1 100 100

Var(An(x)) = I+2{3 J2(u)du 0'2(x - v)fx(x - v)dF~(v)[l + 0(1)].
nhn -00 -00

By Parseval's identity,

Hence

(6.26)

(6.27)

1 1 100 It{31
2 100

Var(An(x)) = I+2{3 • -2 - I<PK(tWdt 0'2(x - v)fx(x - v)dF~(v)[l + 0(1)].
nhn 1r -00 C -00

The conclusion follows from bias and the variance decomposition.

Lemma 6.4. Under the conditions of Theorem 3,

for some constant C.

Proof. By the definition of Kn(x) and (6.22),

Now, by integration by parts, and the similar virtue as (6.22),

(6.28)

(6.29)

where D is a positive constant. The desired conclusion follows from (6.28) and (6.29).
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6.4 Proof of Theorem 4

The local rate (3.11) follows the similar argument given in Theorem 3. We focus on

proving the global results (3.12):

(6.30)

If we show that [see (6.23) for the definition of An(x)]

(6.31)

then by linearization (6.9), we have

sup E I b
IAn(x)IPw(x) [(1 + ~n(x»/ fx(xW dx

!e:FIc,B,p a

< BP sup El
b

IAn(x)IPw(x)dx(1 +0(1»
!e:FIc,B,p a

= 0 (n -2(1c.r~)+1 ) •

The middle inequality follows from the fact that Lemma 6.3 also holds uniformly in f E

Now, let's turn to prove (6.31). By Lemma 6.2 and (6.24)

sup sup IEAn(x)1 = O(h~).
!e:FIc,B,p x

Thus,

sup ElbIAn(x)IPw(x)dx
!e:FIc,B,p a

< 2P sup ElbIAn(x)-EAn(x)IPw(x)dx+O(n-2(1c.r~)+1). (6.32)
!e:FIc,B,p a

Hence, we need only to justify that the first term of (6.32) is of the right order 0 (n 2(1c+~)+1).

Let r be the smallest integer exceeding p/2 and put
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Then
.1!..

EJAn(x) - EAn(x)J' = EI~ tT;(xll'::; (EI~tT;(X)I'}' (6.33)

Moreover,

sup sup E (.!. tTj(X»)2r = 0 ((.!.h~-2(I+,B)r). (6.34)
JeFIc,B ,p xe[a,b] n j=l n

[Proof of (6.34) will be given shortly.] The conclusion of the theorem follows from (6.32)-

(6.34).

We now prove (6.34) by a pair of lemmas, which hold uniformly in f E Tk,B,p<

Lemma 6.5. Under the conditions of Theorem 4,

supEIT1(x)11 =0 (h~-l(,B+1») for j = 2, ... ,r.
x

(6.35)

Proof. Let vr(x) = E(IZnX = x). Then, vr(x) :$ B, by (3.3). It follows from the

inequality la +bl1:$ 21(lal1+ Ib11) that

h~EITl(X)ll < 21+1E IKn((x - YI)/hn)[Zl - m(x)]11

< 221+1 [EIKn((x - Y)/hn)Zl l +B1EIKn((x - Y)/hn)11]

= 221+1 [E/Kn((x - X - c)/hn)11Vl(X) + B1EIKn((x - Y)/hn)11]

< 221+1(B + B1)EIKn((x - X - c)/hn)11. (6.36)

Recall that fy(y) is the density of Y = X + c. Then by Lemma 6.4,

EIKn((x - X - c)/hn)11 < hn1: IKn(y)11fy(x - yhn) dy

:$ Clh~-l,B 1: (1 +1
IY

l)lfy(X - yhn)dy

= 0 (h~-l,B) . (6.37)

The desired result follows from (6.36) and (6.37).

Lemma 6.6. Under the conditions of Lemma 6.5,
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Proof. Write Tj = Tj(x). By the multinomial formula,

(J"",.=n

1

Tj( X)) 2r = k~=r1 "",' (2r)! 1 ""," T~1 ... T":1e
L...J L...J L...J rl!'" rk! k! L...J J1 JIe '

where E' sums over k-tuples of positive integers (rt. , rk) satisfying rl +... + rk = 2r

and E" extends over k-tuples of distinct integers (it, ,jk) in the range 1 ~ j ~ n.

By independence and that Tj has mean zero,

E (J"",.=nITj (X))2r = k~=r1"",111 (2r)! .!. ""," E(T~1) ... E(T:Ie)
L...J L...JL...J rl! ... rk lk! L...J J1 JIe '

where E'" sums over k-tuples of positive integers (rl,"" rk) satisfying r1 +... + rk = 2r

and rj ~ 2 (j = 1, ... , k). Thus k ~ r. By Lemma 6.5,

"I: E(TJn· .. E(TJ:) < n
k E(TJn· .. E(T;:)

< nkO (h;-r1 (.8+l)) ... 0 (h;-rle(.B+l))

= 0 (nr (hl - 2(.B+l))r 1 )
n (nhn)r-k

= 0 (nr (h;-2(.B+l)f)

since nhn -+ 00. The desired result follows. This completes the proof of Lemma 6.6.

6.5 Proof of Theorem 5 & 6

We first justify the local lower rates of Theorems 5 and 6, Le. (4.1) and (4.3). The

basic idea is outlined in Section 4. For simplicity, we prove only for the case x = 0 in (4.1)

and (4.3).

We now specify the functions fo,90' ho, and H according to the heuristic argument of

Section 4. Define

and

( )

-1 z2
90(z) = v'2ib exp( - 2b2 ) (6.38)
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where Cr = f~oo(1 + x2 )-rdx, and b, T will be chosen later. Note that ho satisfies (4.8).

To construct the function H, note that the heuristic argument suggests that the Fourier

transform ¢H(t) of the function H should vanish for ItI ::; 1, and in order to make the

integrability of (4.15), it is imposed that ¢H(-) vanishes when It I ~ 2. (Note that the

interval [1, 2] is chosen for convenience.) Now let's show how to construct such a function.

Take a nonnegative symmetric function ¢(t), which vanishes when It I ¢ [1,2], and has

continuous moth derivatives, for some given mo. Moreover,

Let H(·) be the Fourier inversion of ¢(t):

112
H(x) = - cos(tx)¢(t)dt.

11" 1

Then, H(·) has following properties:

• H(O) :f: O.

• H(x) has all bounded derivatives.

• IH(x)l::; co(1 +x2)-mo/2, for some constant Co > O.

• ¢H(t) = 0, when ItI ¢ [1,2], where ¢H is the Fourier transform of H.

By the proper choice of T, b, the pair of densities It, h defined by (4.9) will be members

of Fk,B,2. By the argument in Section 4, a~ would be the lower rates if an satisfies (4.13).

According to Fan (1988) and the conditions of Theorem 5, there is a positive constant Cl

such that the solution of an to (4.13) is given by

Similarly, for Theorem 6, the solution is given by

a - C n-1/(2k+2iJ+I)
n - 2 ,
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where C2 is a positive constant. Thus, the conclusion of (4.1) and (4.3) follows.

Now, let's turn to the global rates (4.2) and (4.4). We use the idea of adaptively local

I-dimension subproblem of Fan (1989). Specifically, see Theorem 1 of that paper. In the

following discussion, we may assume that w( x) > 0 on [0,1]. Let mn denote a sequence

of positive integers tending to infinity and Xj = j /mn (j = 1,2, ... , mn ) be a grid point of

[0,1]. Let 0 = (fh,"', 9mn ) E {O,I}mn be a vector of 0, and 1. Construct a sequence of

functions
mn

mO(x) = m;k L 9jH (mn(x - Xj)).
j=1

Define a family of densities:

(6.42)

where 10,90, and ho is defined by (6.38) and (6.39).

For suitable choice of b > 0, r > 0.5 and 8 > 0, we now show that lo(x, z) E Fk,B,p,

which is a subset of Fk,B,2' It is easy to see that Iho(z)1 ~ C390(Z) for all z, and by Lemma

6.7, Imo(x)1 ~ c4(1 + x2)-mO/2. Thus, for sufficiently small 8 > 0 and r - 0.5> 0, 10 is a

density function satisfying

lo(x,z);::: 0.5/0(X)90(Z),

Now, the conditional mean is given by

(6.43)

By Lemma 6.7 again, the kth derivative of the conditional expectation is bounded by the

constant B for small 8 > O. Similarly, the conditions of conditional moments and the

marginal density are satisfied for suitable choice of r > 0.5 and 8 > O. Hence, lo(x,z) E

Fk,B,p for all 0 E {O,1}mn.

Denote
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and

Then there is a positive constant Cs so that the difference of functional values for the pair

of densities satisfies

IEJe. (ZIX = x) - EJe. (ZIX = x)1
)0 )1

Put

b"m~kIH(mn(x- xj))I/fo(x)

> csIH(mn(x - xj))lm~k, for x E [0,1] .

~e. *Ft:(Y,z) = roo ~e. (y - x,z)dFt:(x),
)0 J-oo )0

By Theorem 1 of Fan (1989), if

then

(6.44)

.inf sup EJ r1
ITn (x) - m(x)IPw(x)dx

Tn(x) JErk,B,p Jo

~ 1 - J12~:~P( -C6) 11
w(x)dx 11IH(x)IPdx(csm~k)P. (6.45)

Thus m~k is the global lower rate.

Now, let's determine m n from (6.44). By (6.43), we have

Note that there exists a positive constant C7 such that foe x) > cdo(x - xj) for all xj E [0, 1].

Using this fact in the denominator of (6.46) with a change of variable, we have
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In other words, we need to determine m n from the equation

(6.48)

The problem (6.48) is exactly the same as problem (4.13), by thinking of an = m;l. The

conclusion follows again from Fan (1988) [see also (6.40) and (6.41)].

Lemma 6.7. Suppose that the function G(x) satisfies

IG(x)1 S C(1 +x2 )-m (m > 0.5).

Then, there exists a positive constant C1 such that for any sequence mn -+ 00,

mn

~ IG(mnx - j)1 s C1(1 +x2 )-m.
j=l

Proof. If Ixl ~ 2, then there is a positive constant C1 such that

(6.49)

mn

~ IG(mnx - j)1
j=l

When Ixl < 2,
mn mn 1
~IG(mnx-j)lsC~1 ( 2 ')m =0(1),
j=l j=l + mnx - J

as have to be shown.
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