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SUMMARY

Using locally polynomial regression, we develop nonparametric estimators for the con-
ditional density function and its square root, and their partial derivatives. Two measures
of sensitivity to initial conditions in nonlinear stochastic dynamic systems are proposed,
one of which relates Fisher information with initial-value sensitivity in dynamical systems.
We propose estimators for these, and show asymptotic normality for one of them. We
further propose a simple method for choosing the bandwidth. The methods are illustrated
by simulation of two well-known models in dynamical systems.
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1. INTRODUCTION

Nonlinear dynamical systems which exhibit chaos are characterised by the phenomenon
that a small perturbation in the initial condition can lead to a considerable divergence of
the states of the system in the short or medium term. In a deterministic dynamical system,
this phenomenon has been very well documented and is usually analysed by the well-
known Lyapunov exponents (Eckmann & Ruelle, 1985). However, for a stochastic, i.e.
noisy, system, further understanding is required. The issue of initial-value sensitivity in a
stochastic dynamical system is at the heart of a proper understanding of chaos in a random
environment, see e.g., Yao & Tong (1994b), and has in addition important implications
for the theory and practice of nonlinear prediction; see e.g. Yao & Tong (1994a). Tong
(1995) and the discussion therein has summarised the various recent approaches to date,
including those proposed by Crutchfield, Farmer & Huberman (1982), Kifer (1986, p. 27),
Wolff (1992) and Yao & Tong (1994a, b).

The goal of this paper is two-fold. First, we note the increasing recent use of nonpara-
metric density estimation to provide diagnostic tools for nonlinear time series modelling.
Thus Robinson (1991) used the Kullback-Leibler information criterion for testing nested
hypotheses. H. J. Skaug and D. Tjestheim, in the unpublished report 'Measures of distance
between densities with application to testing for serial independence,' applied several
different distance measures for density functions in testing serial independence. See also
TJ0stheim (1994) and the references therein. In all the above work, the standard kernel
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estimator of a density function was used as the basic building block, and the conditional
density function was typically estimated indirectly. We aim to develop a direct estimation
method, with good sampling properties. In this paper, the conditional density functions
and their square roots, and their partial derivatives, are estimated directly using locally
polynomial regression. For more details of the latter method, see, e.g., Fan (1992), the
unpublished report by J. Fan et al. 'Local polynomial fitting: a standard for nonparametric
regression', and Ruppert & Wand (1994). The proposed estimators have been applied to
construct predictive distributions for nonlinear time series (Yao & Tong, 1995), and to
test for independence, as will be reported in a forthcoming paper.

Secondly, we set out to develop some suitable statistical tools to aid understanding of
initial-value sensitivity in a stochastic dynamical system. Following Yao & Tong (1994b),
we adopt the Kullback-Leibler mutual information and a simple L2-distance to measure
the initial-value sensitivity of the conditional distribution of the state variables in a non-
linear dynamical system. Since both measures are functionals of the conditional density
function, we estimate them using our proposed estimators of the conditional density and
its partial derivatives.

The plan of the paper is as follows. In § 2, we concentrate on the estimators of conditional
density functions and the derivatives using, respectively, locally linear and locally quadratic
regression. In § 3, we discuss two sensitivity measures for a stochastic dynamical system
and their estimators. In both sections, the asymptotic normality of the estimators is stated,
some methods for bandwidth selection are also suggested, and two simulated examples
are used as illustration. All technical proofs are briefly outlined in the Appendix.

2. ESTIMATION OF CONDITIONAL DENSITY AND ITS DERIVATIVE

21 . Estimators
We assume that {(Yt, X,)} is a strictly stationary process having the same marginal

distribution as (Y, X), where Y is a scalar and X is a <i-dimensional vector. Let g{y\x) be
the conditional density of Y given X, assumed smooth in both x and y. We use g{y\x) to
denote the partial derivative of g(y\x) with respect to x. Of interest is the estimation of
the functions g(y\x) and g\y\x) based on a sequence of observations (Yu Xy),..., (Yn, Xn).

Estimating the conditional density and its derivatives can be regarded as a nonpara-
metric regression problem. To make this connection, note that, as h2 -> 0,

E{Kh2(Y-y)\X = x}^g(y\x), (2-1)

where K is a nonnegative density function and Kh(z) denotes K(z/h)/h. The left-hand side
of (21) can be regarded as the regression of Kh2(Yi — y) on {Xt}. Recent nonparametric
regression theory (Fan, 1992; Ruppert & Wand, 1994) suggests that we may use a locally
polynomial regression to estimate g(y | x) and g(y\x). For the conditional density, a locally
linear fit should be employed, while for its first derivative, locally quadratic fitting is
preferable (Fan & Gijbels, 1995). We treat here the locally quadratic fit more thoroughly,
since it is more involved. By Taylor's expansion about x = (xl,..., xd)

r e Rd, we have
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where g\y\x) is the Hessian matrix of g(y\x) with respect to x,

v e c ( i 4 ) ~ ( f l n , a22,..., adyd, al2,..., aUd, a 2 3 , . . . , a d _ M ) T e

for any d x d symmetric matrix A = {au), and

'd2g(y\x) d2g(y\x) d2g(y\x) d2g{y\x)

2dx\ ' 2dx\ ' • " • ' 2dx2
d ' dxidx2 " • "

d2g{y\x) d2g(y\x) d2g(y\x)\T

dxldxd ' dx2dx3 ' ' dxd-1dxdj

This suggests the following least squares problem: let p0 and /?t and p2 minimise

t lKh2(Yi-y)-po-pl(Xi-x)-pT
2vec{(X{-x){Xi-x)Tn2Whi(Xi-x), (2-2)

where W is a nonnegative kernel function, and /ix is the bandwidth. We can estimate

Here

=̂=(̂ o, Pi, Pi)1 = (^Trarr^ir^ (2-3)

where 3C is the design-matrix of the least squares problem (2-2), and

iT = diag(Whi(Xl-x),...,Whi(Xn-x)), <& = (Kh2(Y1-y),...,Kh2(Yn-y))T.

If we use locally constant fitting, setting /?j and p2 to 0 in (2-2), the least-squares
approach will lead to the conventional kernel estimator for the conditional density function
(Rosenblatt, 1969). For a locally linear fit, we set p2 = 0 in (2-2).

For simplicity of presentation, in the rest of this section we treat only univariate x, that
is d = 1. We have

Yi-y) U = o,
i=l \ nl /

where

with Tj the unit vector with (j + l)th element 1, and

Is 3 S \
^ _ j s s s _ y t]£. xVW (X x) (2"4)

1^2 S»3 S*J "J '=1

\ ' • ' 7

2-2. Selection ofbandwidths
In this section, we propose a simple and intuitively appealing method for choosing the

smoothing parameters. For given bandwidth h2, (2-2) is a standard nonparametric problem
of regressing Xt(y) = Kh2( Yt — y) on Xt. A simple and appealing bandwidth selection rule
is the Residual Squares Criterion proposed by Fan & Gijbels (1995), which translates into
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our specific case as follows. Let ^,(y) be the fitted value for the regression problem (2-2),
and define the normalised weighted residual sum of squares by

where Sn = 3^iKX and Tn = SC1^1^. Let
n

K)}, (2-5)

where Vn(x; / i j is the first diagonal element of the matrix S^1TnS~1. This estimates the
mean squared error at the point x.

For given h2 and y, the proposed bandwidth /zt for estimating g(y\x) using (2-2) is

hi(y) = adj x argmin,, RSC(X, y; h) dx, (2-6)

where the integration is over the regions for x where the curve has to be estimated. Here,
the constant 'adj', depending on the kernel function W, is used to adjust the selected
bandwidth so that it converges to the theoretically optimal one. From Table 1 of Fan &
Gijbels (1995), adj = 0-7643 for the Epanechnikov kernel W{x) = 0-75(1 - x2)+ and adj =
0-8403 for the Gaussian kernel W(x) = {2nyi exp(— x2/2). A similar discussion can be
made for the locally linear fit.

The proposed bandwidth (2-6) depends on y. If a constant suffices, we could select

ht = adj x argmin,, RSC(X, y; h) dx dy, (2-7)
J J

where the integration is over the region of x and y of interest.
Now consider h2. For simplicity, we use the normal referencing rule (Silverman, 1986,

p. 45) yielding

. r s^SK'wdx I1"

| J •
where sy is the sample standard deviation of Y. When K is the Gaussian kernel, h2 =
106syn~115; for the Epanechnikov kernel, h2 = 2-34syn~1/5.

2-3. Examples
We illustrate the methods via two simulated models. We choose both kernels K and W

to be Gaussian.

Example 1. We begin with a simple quadratic model

(t^l), (2-9)

where e, {t > 1) are independent random variables with the same distribution as the sum
of 48 independent random variables each uniformly distributed on [—0-25,0-25].
According to the central limit theorem, e, can be treated as nearly a standard normal
variable. However, it has bounded support [—12,12]. Bounded support is necessary for
stationarity (Chan & Tong, 1994). A sample of 1000 was generated from (2-9). We consider
three cases: Yt = Xt+m for m = 1, 2, 3. We obtained k2 = 0-98 from (2-8). Using (2-7), the
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selected values for hx are 0-62 for m = 1, 0-70 for m = 2, and 071 for m = 3. The estimated
conditional density functions g{y\x) = po(x,y) are displayed in Fig. 1, which shows that,
given Xt = x, the density of Xt+m is around /(m)(x), where f(x) = 0-23x(16 - x), and / ( m )

denotes the mth fold composition of / (m = 1, 2, 3).

Example 2. Consider the cosine model

! lo z lj+ e" (210)

where e, ( t ^ 1) are independent standard normal random variables. A sample of 1000
was generated from the above model. From (2-8), we obtain h2 = 3-65. Using (2-7) again,
the selected values for hx are 1-12 for m = 1, 1-32 for m = 2, and 1-51 for m = 3. The
estimated conditional density functions gm(y | x) = f}0(x, y) are displayed in Fig. 2.

2-4. Sampling properties
Let !F\ be the er-algebra of events generated by the random variables {XJy Yj^^j^k}

and L2{&rk
i) the collection of all &)-measurable square integrable random variables. Let

/, V)\ , _ n ,

denote the p-mixing coefficient (Kohnogorov & Rozanov, 1960). We first impose some
regularity conditions.

Condition 1. The kernel functions W and K are symmetric and bounded with bounded
supports.

Condition 2. The process {Xj, Y}) is p-mixing with E p(0< °°- Further, there exists a
sequence of positive integers sB->oo such that sn = o{(«/z1/z2)*} and {n/(/i1/j2)}*p(sn)->0.

Condition 3. The function g(y | x) has bounded continuous third order derivatives with
respect to x at (x, y), and p(x) is continuous at x.

Condition 4. The joint density of the distinct elements of (Xo, Yo, X,, Ij) (/ > 0) is
bounded by a constant independent of /.

Condition 5. The bandwidths hx and h2 converge to zero in such a way that
nh\h2-* oo.

Condition 1 is imposed for brevity of proofs, and could be removed. In particular, the
Gaussian kernel is allowed. The assumption on the convergence rate of p(l) in Condition 2
is also for technical convenience, and not the weakest possible.

THEOREM 1. Under Conditions 1-5, for xe{x : p(x) > 0}, the two random variables

) - ^ } , {nh\h2)H&y\x)-g{y\x)-SHa}
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Fig. 1. The estimated gn(y\x) for Example 1: the conditional density function
of Y,+m given Y, = x for the logistic model (2-9). (a) m = 1, (b) m = 2, (c) m = 3.
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Fig. 2. The estimated gm(y\x) for Example 2: the conditional density
function of Yl+m given l̂  = x for the cosine model (2-10). (a) m = l ,

(b)m = 2, (c)m = 3.
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are jointly asymptotically normal with mean values 0, variances a\{x, y) and a\(x, y), and
covariance 0, where

1 d2g(y\x)i2 g(y\x)vovK
 2 {2

K ^ — h l + o{h\ + hl) ai(xy)hl + o{h\ + hl), ai(x,y) ^ ^

d3g(y\x) 1 d3g(y\x) g(y\x)vK vov2

hl + ^ h + O{hl + h 1 ^ ^

Remark. If our interest is to estimate the conditional density, then locally linear, rather
than locally quadratic, regression suffices. In that case, the asymptotic normality admits
a more symmetric form:

(nh1h2)*lg(y\x)-g(y\x)-i'2

under Conditions 1-4 and n/j^-KX). Our results and proofs can be readily extended to
higher order polynomial regression.

3. INITIAL-VALUE SENSITIVITY OF A STOCHASTIC DYNAMICAL SYSTEM

3-1. Sensitivity measures
A discrete-time stochastic dynamical system can be described by the equation

Xt = F{Xt-uet), (3-1)

for t ̂  1, where X, denotes a state vector in Rd, F(.) is a real vector-valued function, and
{et} is a noise process satisfying E(et\Xt-, for s ^ l ) = 0. The additive dynamic noise
model, Xt = F{Xt_i) + e,, is a special case. The nonlinear autoregressive model can also
be regarded as a special case of model (31). Suppose that {Ĵ , — oo < t < oo} is a one-
dimensional strictly stationary time series, which is d-dependent (d^ 1) in the sense that,
given { l ^ . i ^ t } , the conditional distribution of Yt+1 depends on {Yh i^t} only through
X,t=(Yt, Yt.u..., Yt-d+1)

T. Let f(x) = E{Y^\Xo = x). Then Yt can be expressed as

(3-2)

where e, = Yt -f(Xt.{). Define

, et = (et,0,...,0)T.

Then equation (31) holds with additive noise.
For a stochastic system with additive noise, several recent attempts have been made to

extend the notion of a Lyapunov exponent from a deterministic system to a stochastic
system. However, the problem of measuring the sensitivity of a stochastic dynamical
system is still open. For example, Crutchfield et al. (1982) and Kifer (1986, p. 27) suggested
the use of a probability average in the conventional definition of the Lyapunov exponent,
initially designed for a deterministic system. However, this seems to lose its intuitive
appeal. Wolff (1992) proposed a local Lyapunov exponent, which replaces the above
probability average by a local average. Yao & Tong (1994a) considered the divergence of
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the conditional expectation with respect to a small disturbance in initial values. The
approaches of Wolff and Yao & Tong appear to be closely related to each other, in that
both concentrate on the divergence of the average orbit and both are designed to capture
only the short- to medium-term divergence. The measures proposed by Yao & Tong
(1994a) were directly motivated by the pointwise prediction problem.

An alternative and more informative way is to consider the global divergence of the
conditional distribution of Xm given Xo. Similarly to Wolff (1992) and Yao & Tong (1994a),
we only consider the case that m is finite, because, due to the accumulation of noise through
the time evolution, the system seems unlikely to have a strong memory of its initial value
after a long time. Let gm(y\x) denote the conditional density of Xm given Xo = x. Several
measures for the discrepancy of two densities are available; see, for example, Blyth (1994).
In this paper, we adopt the following two indices. Let x and x + 5 e Rd be two nearby
initial values. The L2-distance is simply defined as

Dm(x;8)= {gm(y\x + 5)-gm(y\x)}2dy.
J

We also consider the mutual information based on the Kullback-Leibler information,
which may be expressed as

" J - 5)-gm(y\x)}log{gm(y\x

We assume that gm(y\x) is smooth in both x and y, and partial differentiation with respect
to x and integration with respect to y of the function gm{y\x) are interchangeable where
required. We also assume that integrations in (3-3) and (3-5) below exist and are finite. It
follows from the Taylor expansion that

where

h,m(x)= jgm(y\x)gT
m{y\x)dy. (3-3)

Also, for small 8, Km(x; d) has the approximation

(3-4)

where

hjx)= ^gm{y\x)gl(y\x)/gm(y\x)dy, (3-5)

(Kullback, 1967, § 2.6). If we treat the initial value x as a parameter vector of the distri-
bution, I2,m(x) is the Fisher information matrix, which represents the information on the
initial value X0 = x contained in Xm. Roughly speaking, (34) may be interpreted as saying
that the more information Xm contains about the parameter, the more sensitive the
distribution depends on the initial condition.

The measures defined above are more informative than those which only focus on the
divergence of some characteristics, e.g. the mean, of the conditional distribution (Yao &
Tong, 1995, § 2.2). For example, the measure /2,m(x) is directly useful in assessing the
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initial-value sensitivity of predictive intervals (Yao & Tong, 1995, Proposition 2). Further,
by Theorem 4 1 of Blyth (1994), we have the following inequality when the system is one-
dimensional:

22(Y\

^ W ^ , (3-6)

where

and Xm(x)>=d{E(Xm\X0 = x)}/dx measures the sensitivity of the conditional expectation
(Yao & Tong, 1994a). Relation (3-6) suggests that, when the conditional variance is large,
the sensitivity measure would be small, in agreement with intuition; also see Figs. 3 and 4
below. Inequality (3-6) generalises to multivariate cases. As for other measures for the
divergence in short or medium term, the actual numerical values of Ilm(x) and I2,m(x) a r e

not informative, so much as their relative magnitudes. For example, the maximiser of
h,m(x) is the location in the state space from which the system diverges the most after m
steps of time evolution.

3-2. Estimating sensitivity measures
It is of both practical and technical interest to consider the divergence in one particular

component, e.g. the first component, of system (31); see also the time series model (3-2).
Thus, given data (Yu Xx),..., (Yn, Xn) as in § 21 , of interest is estimation of the functionals

I2(x)= [ g(y\x)gr(y\x)/g(y\x)dy.

For clarity, we assume henceforth that d = 1.
Using the estimators of g(y\x) and g\y\x) derived in § 2 1 leads to the following esti-

mator for /i(x):

Assume that the kernel K(.) is symmetric. Then

Y( - y)Kh2(Yj-y)dy =J-
where K* = K*K is the convolution of the kernel function K with itself. Thus, the pro-
posed estimator can be expressed as

'»- £ t t »! (^) V, (^) W, - W (37,
Estimation of a quadratic functional of the form 6k = \fw{y)2 dy, with f{y) a density,

has been extensively studied in the literature. See, for example, Hall & Marron (1987),
Fan (1991) and Hall & Wolff (1995b) and the references therein. Hall & Marron (1987)
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Fig. 3. Example 1: estimated sensitivity measures for the logistic model (2-9). (a) Estimated curve Ii,m(x) with m = 1 (solid curve), m = 2 (dotted
curve) and m = 3 (dashed curve). (b)-(d) Estimated sensitive measure I2 m(x) f° r "»= 1, 2, 3; solid curve estimated by (3-8), dotted curve estimated

by (3-9).
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propose to reduce the bias by leaving diagonal terms out, similar to the terms with i = j
in /j(x); while Jones & Sheather (1991) argue in favour of keeping them. When estimating
80, under mild conditions both versions have bias of order o{n~*) for a large range of
bandwidths. For estimating f^x), since the derivative is taken with respect to x, its behav-
iour is analogous, and hence the difference between the 'diagonal-in' and 'diagonal-out'
estimators is negligible under mild conditions.

For /2(x), an intuitive estimator is

to= hl(x,y)/kx,y)dy, (3-8)

with the usual convention 0/0 = 0. The integral is typically finite. However, (3-8) cannot
easily be simplified. We thus propose an alternative. Let q(x, y) denote {g(y|x)}*. Then

h(x) = 4 I {q(x,y)}2dy.

For given bandwidths /it and h2, define, for 1 ̂  i ̂  n,

C(Xh Yt) = #{(Xt, Yt),l^t^n:\Xt- X,\ ^ h, and | Yt - Yt\ < h2},

C{X() = #{Xt, 1 ^ t ̂  n: \Xt - Xt\ < h,}.

Then

Zt>=[C(Xt,Y,)/{C(Xt)h2}-]*

is a natural estimate of q(x, y) at (x, y) = (Xt, Yt). Using locally quadratic regression, we
may estimate q(x, y) and its first and second order partial derivatives with respect to x,
q(x, y) and <?(x, y), by

q(x, y) = a, q(x, y) = b, q(x, y) = c,

where (&, b, c) minimises the function

tiZ.-a-b(Xt-x)-c(Xt-xf/2}2H (*^,^

H being a probability density function on R2. Then, we estimate /2(x) by

to = 4 [{4(x,y)}2dy. (3-9)

3-3. Selecting bandwidths for I^x) and I2(x)
We propose a simple and intuitively appealing method for choosing the smoothing

parameters h^ and h2 for estimating I^x) and I2{x), using (3-7) and (3-8). For estimator
(3-9), we have not found a systematic way to choose hx and h2.

For estimating the first derivative, the optimal bandwidth of hx is of the order O(nip)
under the assumption that the third derivative with respect to x exists. For that choice of
hi, there are about N = O(n6p) data points in the neighbourhood of x ± ht. The choice
of bandwidth h2 is not very crucial to ^(x) and /2(

x)» owing to the integration over y
(Fan, 1991; Hall & Marron, 1991). The choice of order O(iV~7/3O) = O(n~il5) would be
sufficient. To make this order of magnitude meaningful in terms of the scale of y and that
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of K, we suggest using

2(x)dx T / 5 ,.« , NJ s'" " (310)

where a e [0-5,1) is a specified constant, which makes h2 smaller than h2 in (2-8). This is
natural, since the integration over y in the definitions of T^x) and T2(x) reduces the noise
level of the estimators, and allows us to use a smaller bandwidth to reduce bias. The
above choice of ft2 is also supported by Theorem 2 below: see Remark in §35.

Once h2 is selected, the choice of the bandwidth hx is determined by (2-7), which
minimises the average mean squared errors for the derivative curve estimation, as
explained above.

We do not claim that any one of the bandwidths (2-6)-(2-8) and (310) would be the
best choice for all statistical problems. They are quick and simple selection procedures
which take the structure and the scale of the data into account, and give us an initial idea
as to how much smoothing should be done.

3-4. Examples {cont)

Example 1. The skeleton of (2-9) is a transformed logistic map with coefficient 368
(=16 x 0-23), which is deterministically chaotic. For further relevant discussion of the
logistic map, we refer to Hall & Wolff (1995a). With the same sample as used before
(n = 1000), we estimate /i,m(x) and I2,m(x) for m = 1, 2 and 3. Using h2 = 0-8/J2, we estimate
/ l im(x) using (3-7). The estimated curves are plotted in Fig. 3(a). The sensitivity does vary
with the initial value. For example, for m = 1, / t(x) attains its minimal value at x = 8,
monotonically increasing as x moves away from 8 in either directions. Similar but more
complicated conclusions can be drawn for the cases m = 2, 3. See also § 4.1 of Yao & Tong
(1994b), and Example 1 of Yao & Tong (1994a). Figures 3(b)-(d) show the estimated
curves of I2,m(x) using both (3-8) and (3-9). We expect the curves obtained using (3-8) to
be somewhat wiggly, owing to the estimator /?0(x, y) in the denominator. The curves
estimated by (3-9) are smoother. However, it remains open how to choose the smoothing
parameters using (3-9). For this example, we manually chose bandwidths {huh2) =
(0-34,0-68), (0-41,0-89) and (0-46,0-85) for m = l, 2 and 3 respectively. Although the
magnitudes of the functions /i,m(x) and /2,m(x) are different, their profiles are similar.

Example 2. For model (210), the skeleton of this model has a limit point x = 20. With
n = 1000, we estimate /lfBI(x) and /2>m(x) for m = 1, 2 and 3 again using h2 = 0-8/J2. The
resulting estimates are depicted in Fig. 4(a). Figures 4(b)-(d) report the estimated curves
of I2 m(x). As in Example 1, the curves obtained using (3-8) are wiggly, while those estimated
by (3-9) are smoother. In applying (3-9), we use bandwidths (hlt h2) = (0-89,1-88),
(0-94,200), (1-48,2-14) for m = l , 2 and 3 respectively. The sensitivity measures drop
sharply as m increases. Further, for fixed m, the sensitivity varies with the initial value
although, owing to the accumulation of considerable random noise, the variation becomes
less pronounced when m increases; compare (3-6). This example shows that initial-value
sensitivity should be taken into account for a nonlinear stochastic system even when it
has a non-chaotic skeleton.
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3-5. An asymptotic result
THEOREM 2. Under Conditions 1-5 given in §2-2, if nh\h\-*co, for xe {x:p(x)> 0},
fci)*{Ti(x) — /x(x) — Sn} is asymptotically normal with mean value 0 and variance a2, where

\x)d3g(y\

j.
Remark. The choice of /i2 for estimating /j (x) is not as sensitive as that for estimating

the conditional density. In fact, for h2 in the range (nh\)~114 » h2 »(nh\)~i, the asymptotic
bias and variance of /t(x) remain approximately the same; i.e. the term 0{h\) in $„ becomes
negligible. Thus, the optimal choice of bandwidth is h1 = cn~1/1 and n~in »h2»n~2p,
where

x) J1J
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APPENDIX

Proofs

Proof of Theorem 1. Let m(x, y)<=E{Kh2(Y, - y)\X, = x}, H.= diag(l, hu h\) and

P>=(mo(x, y), my{x, y), m2(x, y))Tt= ( m(x, y), — m(x, y), - —~2 m{x, y) J .

It follows from (2-3) that

H$-p) = H{s?irs)-Wiirw-xp) = srl{{tn,o,'„.!> tn.iV + (y-.o,v..uy,.2)
T}, (A-i)

where

».j = - E ( ~ \ — ) ^ i ( x i - x) \ m(xi> y) - m(x> y) - mi(x>
L

and SJ is a 3 x 3 matrix with the (i,;') element s,*+j_2. Let S and S be 3 x 3 matrices with (i, j)
elements ni+j-2 and vl+J_2 respectively, and y=(fi3, /x4, /z5)

T. The basic idea is to establish:
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(a) S* converges to p(x)S in mean square,
(b) K3(yny0,yn>l,yB,2)

T converges to 6~1p(x)yd3g{y\x)/dx3 in mean square,
(c) (n/ii/i2)*(tBio, tn,i, £»,2) is asymptoticaly normal with mean 0 and variance g{y\x)p(x)vovKI..
Combining these with (Al), we have

where <I>(.) denotes the standard normal distribution function. It follows from the Taylor expansion
that

Using this expansion and considering the marginal distribution of (A-2), we obtain the result.
Conclusions (a) and (b) can be proved by computing the means and the variances of s*j and ynj

by using the stationarity and mixing conditions.
To prove (c), we consider arbitrary liner combinations of tnj with constant coefficients rj}

(7 = 0,1,2). Let

= «"* t (h1h2)*Dki(Xi-x){Kh2(Yi-y)-m(Xhy)}, (A-3)

where D{u) = {r]0 + rjtu + f/jU2)^^). Write QB = n~i(ZKi0 + ... + Zn^y). Note that QH is the sum
of a stationary mixing sequence. Asymptotic normality follows from standard small-block and
large-block arguments. Details are given by J. Fan, Q. Yao and H. Tong in the unpublished report
'Estimating measures of sensitivity of initial values to nonlinear stochastic systems with chaos'.

Proof of Theorem 2. We adopt the notation introduced in the proof of Theorem 1. Let £Kj(x, y) =
(tnj + y^yhi. To prove Theorem 2, we need the following asymptotic results:

(d) E f tfM(x, y)}2 dy = 0{h\ + {nh\h2)-
1} = o{h\ + (nfc?)"*};

(e) in distribution

w M4P(x) [Sg{y\x)d3g{y\x) 1 . . . . . .
, y) dy - — — —^ ^ — dyh\ + o{h\)\ ->N(0, at),

where o2
0 = v2p(x)tf{g(y\x)}2g{y\x)dy-{lg(y\x)g(y\x)dy}2l

By (Al), we have that

^1(x,>')-m1(x,>-) = (0,l,0)S:-1(^,o,^,i.^,2)T-
It follows from (a) that

Ti(x) - J {mi(x, y)}2 dy= \ {fax, y) - m^x, y)}2 dy + l \ m,(x, y){fax, y) - m^x, y)} dy

i(x> y) dy+^k I ̂ -i(x> ̂ )mi(X) y) dy}
(A-4)

Since

[ s i U 2 J 7 ^ , 1 . 2 f

Theorem 5-2 follows immediately from (d), (e) and (A-4).
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The proof of (d) is similar to that of (a) and is omitted here. To prove (e), we define

U(xu yu x, y)'=hi2(Xi - x)Whi(Xl - x){Khi(y1 -y)- m{x, y) - m^x, y)[xy - x)

-m2{x,y)(x1-x)2/2}>

'=

Then

[ L.Ax, y)mi(x, y) dy = n~l{V{Xu YJ+...+ V{Xn, Ym)}.

It can be shown via a Taylor expansion that

ns/v v> PM/^ (3g(y\x) d^g{y\x)
EV(XU Yt) = — — — —5— dyh\ + o{h\)

0 J OX OX

—
J0 J OX OX

and that

EU*(XU yi; x,y)U*(Xu y,; x,y + h2z) = h;>h^g(y\x)p(x)v2 { K(u)K(u +z)du{l{ K(u)

where U*(xu y^, x, y) = K\xx - x)Wki(x1 - x)Khj(y! - y). Thus,

var{V(XU Yt)} = EV2(XU Yt) + O(hi)

= h2 j J EU*{XU 7,; x, y)U*(Xlt Y,;x,y + h2z)mi(x, y)mi(x, y + h2z) dy dz

- E I | / . r 2 ( ^ i - x)Whi(X1 - x)m(Xuy)mi(x, y) dy\ {1 +

Now, using big-small block arguments, we establish (e).
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