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Abstract

A method for exploring the structure of populations of complex objects, such
as images, is considered. The objects are summarized by feature vectors. The
statistical backbone is Principal Component Analysis in the space of feature vectors.
Visual insights come from representing the results in the original data space. In an
ophthalmological example, endemic outliers motivate the development of a bounded
influence approach to PCA.
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1 Introduction

The “atoms” of traditional statistical analyses are numbers or perhaps vec-
tors. But a number of data sets, from diverse areas of science, provide
motivation for generalizing the notion of the atom of the statistical analy-
sis to more general data types. Ramsay and Silverman (1997) have coined
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the term “functional” for such data. That monograph contains a wide array
of examples, and also makes a good start on the development of statistical
methods for their analysis.

While this type of new statistical analysis makes use of classical multi-
variate analysis methods, such as Principal Component Analysis, substan-
tial adaptation and new development is typically needed. For example,
when the atoms of the analysis are “curves”, e.g. longitudinal data, they
can typically be effectively digitized to vectors. However classical meth-
ods make little use of the “smoothness” that is present in many data sets.
Hence they are poorly suited for analysis in such cases. One reason is that
the needed covariance matrices are singular, or nearly so. A second reason
is that classical statistical methods tend to be powerful in an “omnibus”
way, and thus tend to trade away power in the particular directions that are
more important for functional data analysis (e.g. in directions correspond-
ing to “smoothness”). See Fan and Lin (1998) for interesting discussion
of this point, and some useful hypothesis testing ideas in functional data
analytic contexts.

This paper considers the statistical analysis of data types that go bevond
the idea of “curves as data”, that was the focus of Ramsay and Silverman
(1997}, into more complicated data structures. There are two main points.
The first is that complicated data types can be effectively handled and ana-
lvzed through summarizing them in terms of “feature vectors”. The second
is that robust methods are very useful, and are perhaps more important
in functional situations than in classical ones, since there tend to be more
wayvs for outliers to impact very high dimensional statistical analyses.

The motivating example used in this paper comes from ophthalmology.
An important component of the human visual system is the shape of the
outside surface of the cornea, the outer surface of the eye. The shape of
this surface is responsible for 85% of the refraction that results in an image
focused on the retina. Corneal topography measurement instruments such
as the Keratron (Optikon 2000, Rome) typically use color-coded maps to
display anterior corneal shape information in two dimensions. A useful
convention is the mapping of radial curvature that depicts low curvature
as blue, then green, vellow, orange, and red as the curvature increases.

Two such images are shown in Figure 1. These show two features often
seen in populations of corneas. The first has fairly constant curvature
(shown by nearly constant color), while the second has a vertical orange
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band, representing astigmatisin with a vertical axis.

This type of image provides a useful diagnostic tool. For example, Fig-
ure 2 shows a, curvature map from a patient with the disease of keratoconus,
in which the cornea grows into a highly curved cone shape.

In this paper, we study this type of data from a population viewpoint,
i.e. the atoms of our analvsis are such images. While the example is quite
specialized, we believe the methodology developed will be useful for a wide
variety of populations of images, and other complex objects.

In Section 2 we discuss effective summarization of each data point into
“feature vectors”, by fitting the Zernike orthogonal basis to each. In Sec-
tion 3 Principal Component Analysis is used to understand the structure
of a population of normal corneas. The analysis is actually done in the
“feature space” of Zernike vectors, but the results are viewed in the “data
space” of curvature images, since this is where visual insights are gained.
This idea was independently developed by Cootes, Hill, Taylor and Aslam
(1993) and Kelemen, Szekely, and Gerig (1997). In statistics, related meth-
ods are often used in “shape analysis”, see Dryden and Mardia (1998).

In Section 3 it is seen that this PCA reveals several clinically intuitive
aspects of the population. But a disturbing feature of the analysis is that
it is affected by outliers, caused by some of the images having some missing
regions. These outliers motivate a robust bounded influence approach to
PCA.

The first step in robust PCA is finding the centerpoint of the popu-
lation. A suitable robust estimate of “center” is developed in Section 4,
which is a modification of the standard L' M-estimate. Robust estimates
based on a useful surrogate for the covariance matrix are then developed
in Section 3. Standard robust estimates of the full covariance matrix are
useless here (and we expect this same difficulty to occur in many other very
high dimensional contexts) since the number of data points is less than the
dimensionality. We overcome this problem using “Spherical Principal Com-
ponent Analysis”, which is a robust version of PCA that is anticipated to
be broadly useful. Finally due to the special nature of these data, a simple
extension is made to “Elliptical Principal Component Analysis™. Details of
the Zernike decomposition are given in the Appendix.
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Figure 1: Two cornecal images showing radial curvature. The left shows relatively
constant curvature. The right shows more curvature near the center, and a marked

vertical astigmatism.
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Figure 2: Radial curvature of a cornea with Kerataconus. The red rogion is a cone

of high curvature.
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2 Reduction by Zernike Decomposition

The first challenge in the analysis of the corneal image data is that the raw
data are in the form of up to 6912 measurements at a polar grid of locations.
Classical multivariate analysis on these vectors is numerically intractable,
because of their large size, and because they contain many redundancies
and near redundancies.

The problem of reducing data of this type to more manageable “feature
vectors” is familiar to the field of statistical pattern recognition, see e.g.
Devijver and Kittler (1982). An effective summarization of an image of the
type in Figure 1, into a feature vector, is the vector of the coefficients of a
least squares fit of the Zernike orthogonal basis.

This two dimensional basis is supported on the disk, and is a tensor
product of the Fourier basis in the angular direction, and a special Jacobi
basis in the radial direction. The Jacobi basis is very carefully chosen to
avoid singularities at the origin. This basis is standard in optics, and is
well sunited to summarizing optical quantities such as spherical curvature
and astigmatism. Mathematical details are discussed in the Appendix.

The results of Zernike feature vector summarization, for the images of
Figure 1, as well as several others, are shown in Figure 3. There is some
loss in this type of image compression, but it is relatively small, and more
important the missing features are not of clinical interest.

Next we study a population of n = 43 normal corneal images, which
were obtained while screening patients for laser surgery. The images shown
in Figure 3 are a subset, chosen to represent the most important features.
Note that the raw curvature images from Figure 1 (top left and center
in Figure 3) now appear “smoothed”. This is the same effect that is ob-
served when a digitized smooth curve is Fourier transformed, and then the
transform is inverted using only the low frequency coefficients. The main
features arve still present, but the rough edges have been smoothed away.
Varyving degrees of astigmatisin are seen as vertical bands of steep curva-
ture in the top center and right, the middle left and center, and the bottom
center. Another feature widely observed in normal corneas is the tendency
to be steeper either near the top, or near the bottom, shown to varying
degrees in the top left and right, middle right and bottom right. Another
feature is extreme curvature caused by missing data in the iimages’ periph-
eries, which appear as the red and blue regions of extreme curvature. These
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Figure 3: Zernike reconstructions of some normal cornea images.
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are the results of artifacts, such as eyelids blocking the imaging device (the
extent of the missing data for each is shown by the thin white lines). The
missing data has a serious impact on the Zernike fit, which is reflected by
these regions of high curvature. These effects are seen to have an important
impact on the analysis of Section 3.

The difficulty of developing an intuitive understanding of the overall
structure of the population by viewing a collection of color-coded maps is
demmonstrated by these nine images. The challenge is overwhelming when all
43 images are included. This can be seen by viewing an MPEG movie of all
43, available from the web page: http://www.unc.edu/depts/statistics/
postscript/papers/marron/cornea-robust/, in the file normlwr.mpg.
The reason is simply that there is too much informastion present, and this
information is presented in a visual form that the human perceptual system
is not able to effectively comprehend.

3 Ordinary principal components analysis

PCA can provide an effective solution to this quite general problem of
understanding the structure of complex populations. Classical PCA seeks
one dimensional “directions of greatest variability”, by studying projections
of the data onto direction vectors starting at the sample mean. The variance
of these projections is maximized in the direction of the first eigenvector
(i.e.  the one with the largest corresponding eigenvalue) of the sample
covariance matrix. A simple example is shown in Figure 4. Here the data
is a simple two dimensional point cloud, where each point i3 represented by
a circle. PCA can be viewed as “decomposing the point cloud” into pieces
which reveal the structure of the population. In Figure 4 it is centered at
the sample mean, where the two lines meet. The heavier line shows the first
direction of greatest variability, i.e. the direction of the first eigenvector
of the covariance matrix. The thinner line shows the direction of greatest
variability in the subspace that is the orthogonal complement (trivial in
this example, since that subspace is one dimensional, but otherwise found
via the eigenvector with second largest eigenvalue). Each data point is
projected onto the thick line to get its “first principal component”, shown
as a thick +, and is projected onto the thin line to get its “second principal
component”, shown as a thin 4. In each case the principal components
give a particular one dimensional view of the data. An important property
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Figure 4: Two dimensional example illustrating PCA. First cigenvector direction
(and projections of the data) shown with a thick line {thick plusses). Second
cigenvector direction (and projections of the data) shown with a thin line (thin
plusses)

of PCA is that it allows finding interesting low dimensional representations
of the data.

For application in functional data contexts, the key is to do the PCA “in
the feature space” (i.e. on the feature vectors), but then to gain insights
“in the data space”. For curves as data, Ramsay and Silverman (1997)
were successful with overlaying the curves that represent each data point.
The PCA directions are effectively displayed by projecting each data point
onto the eigenvector, and then representing each projected point again as
a curve. The family of curves then clearly displays the intuitive meaning of
the component of variability that is represented by that eigendirection. A
simulated example of the effectiveness of this type of visual representation
is given in Figure 5.

The upper left plot shows a simulated family of random curves, that is
considered here to be a population whose structure is to be analyzed. This
type of visual representation of high dimensional data was teried “paral-
lel coordinates” by Inselberg (1985) and Wegman (1990), who proposed it
as a general purpose device for the visualization of high dimensional data
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Figure 51 “Curves as data” example illustrating PCA. First row shows results of
“recentering”. Sccond row shows strongest componcent of variability. Third row
shows sccond most important component,

(i.e. of point clouds in high dimensional space). The next plot to the
right shows the sample mean of this population (i.e. of this point cloud).
Since the multivariate mean is calculated coordinate-wise, this is simply
the coordinate-wise mean of the curves. The next component shows the
residuals from subtracting the mean curve from the raw data. This repre-
sents the point cloud which results from shifting the original point cloud so
it i now centered at the sample mean.

Next PCA is used to understand the structure of the residual point
cloud. The first eigenvector is computed, and the data are projected as in
Figure 4. Two representations of the set of the projections (i.e. the heavy
plusses in Figure 4) are shown in the second row. Since these projections



10  N.Locantore, J.5. Marron, D.G.Simpson, N. Tripoli, J.T.Zhang, K.L.Cohen

are points in the mean residual space (i.e. the data space recentered at
the mean), one representation is a parallel coordinate plot overlay, shown
in the left plot in the second row. Another representation is shown in the
center plot of the second row, in the original data space, which is the mean
curve, together with just two extreme projections. Both displays show
that the dominant direction of variability is “vertical shift” (which was a
feature built into these simulated data). The right hand plot shows the
residuals from subtracting the projections from the recentered data (i.e. it
is the difference of the plot above, and the plot on the left). This shows
the projection onto the complementary subspace (represented by the thin
plusses in Figure 4). The direction of next greatest variability is analyzed
in the same way in the third row. Note that this direction reveals a “tilting
component” in the data that is not visually apparent in the raw data plot.
This gives a hint about the power of PCA in finding structure in populations
of complex objects. Further eigendirections are not shown for this data set,
since they do not reveal additional interesting structure.

While the parallel coordinates visual representation is very useful when
the data are curves (as shown in the left hand column of Figure 5), it
does not give an intuitively useful view when the data are images (as in
Figure 3) or more complex structures that are not usefully overlaid on a
single plot. For example note that Figure 11, a parallel coordinate plot for
the population of 43 normal corneal shapes, does not contain much insight
about the population of curvature images (a subset of which can be seen in
Figure 3). Since intuitive understanding comes in the feature space, that
is where the visualization of the PCA must be done. While overlays (as
in the left column of Figure 5) are no longer useful, representations of the
directions in terms of extremes, as shown in the center column of I'igure
5, are quite useful. Studying the mean, together with extremes in each
direction, gives insight into that “direction of variability”. Figure 6 shows
such a representation for the direction of the first eigenvector (i.e. the
direction of greatest variability) of the cornea data set shown in Figure 3.

The center panel of Figure 6 shows the population mean. This shows
a moderate amount of curvature, and some astigimastism, which are known
features of the population of normal corneas. The mean also has been
affected somewhat by the edge effects on some of the images, as can be
seen in Figure 3. The left and right panels of Figure 6 give an impression
of the direction (in the 66 dimensional feature space) of the first eigenvector.
This shows a combination of two known population features. First there is
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overall higher and lower curvature (shown as overall orange on the left, and
green on the right). Second there is stronger (left) and weaker (right) levels
of vertical astigmatism. There is some influence from the missing data also
on this direction, visible at the bottom.

Figure 7 shows the second most important direction of variability.

The direction in the 66 dimensional feature space, of the second eigen-
vector, shown in Figure 7, represents a feature of the population that was
discussed near Figure 3: corneas tend to be steeper either on the top or on
the bottom. In this direction, the influence of missing data is quite strong,
as indicated by the red and blue regions of extreme curvature at the top
and bottom.

Figure 8 shows the third direction of variability.

This tertiary variability also seems severely influenced by edge effects,
but shows another clinically intuitive aspect of the population: vertical
(and stronger than the mean) versus horizontal axes of the astigmatisin.

A visually compelling way to study the directions that are suggested by
Figures 6-8 is via a movie, which “morphs” between the three images shown.
MPEG movies of these can be seen in the files norm100.mpg, norm200 .mpg
and norm300.mpg, at the same web directory given at the end of Section 2.

4 Robust Estimation of Location

A simple example demonstrating the effect of outliers on the mean in two
dimensions is shown in Figure 9. Note that the single outlier pulls the
sample mean actually outside the range of the other observations.

Simple examples of this type suggest that the impact of outliers may
be overcome by simply deleting them. This was not effective for the cornea
data set, since as soon as the worst outliers are deleted, other images hecome
the next round of “outliers” (since the missing data problem was endemic
to this data set). When these are deleted, then other points appear in this
role. Outlier deletion results in loss of too much information, because a
very large fraction of the population needs to be deleted.

This motivates a “bounded influence” approach where the goal is to
use all of the data, but to allow no single observation to have too much
impact. Much work has been done on the development of such “robust”
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Figure 6: Mcan imagce of the population of normal corneas in the conter. Represen-
tatives of the first principal component direction on cither side give an impression
of the direction of greatest variability.

4 4 4
2 2 2 /
0 0 o
-2 -2 2|
-4 - -4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 7: Mean image of the population of normal corncas in the center. Rop-
resentatives of the second principal component diroction on cither side give an
impression of the sccond dircetion of greatest variability.
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Figure 8: Mcan imagoe of the population of normal corneas in the conter. Represen-
tatives of the third principal component direction on cither side give an impression
of the third direction of greatest variability.
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Figure 9: Two dimensional example to illustrate effect of outlicrs on sample mean.
Data arc shown as circles, sample mean as the heavy circle together with the x.

statistical procedures, see e.g. Hampel, Ronchetti, Rousseeuw and Sta-
hel (1986), Huber (1981}, Rousseenw and Leroy (1987) and Standte and
Sheather (1990).

The robust estimate studied here is the “L” M-estimate of location”,
see Section 6.3 of Huber (1981). Given multivariate data X1,..., X, € R?,
this is defined as:

n
6 = arg minz I1X; — 8|15,
0 X
=1

where ||-||, denotes the usnal Euclidean norm on R?. Here we consider
only the case p = 1, and note that & may be found as the solution of the

equation:
a n

Insight as to how this location estimate dampens the effect of outliers

b
. X, -8
Xi- oy =3 S (4.1)
* T 2K,
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Figure 10: Two dimensional example illustrating the L location cstimate. Raw
data shown as thin circles, projections onto candidate spheres shown as thin
plusses.  Averages of projections shown as thick plusscs, centors of sphores as
thick circles. Sample mean shown as thick circle and x.

comes from recognizing that
X, —48

4+ 6="Py X;
H‘sz _ 9”2 Sph,(o,l) i

i.e. the projection of X; onto the sphere centered at 8, with radius 1. Thus
the solution of {4.1) is the solution of

0 = avg {Psph((),l)Xi —Gd:i=1,... ,n} .

Hence amay be understood by considering candidate unit spheres centered
at 8, projecting the data onto the sphere, then moving the sphere around
until the average of the projected values is at the center of the sphere.
These ideas are illustrated in Figure 10, where the data are the samme as
in Figure 9, again represented as circles. This representation of the L1
location estimate was pointed out by Small (1990).

Note that the upper candidate sphere is not centered near any reason-
able “centerpoint of the data”. When the data are projected onto the sphere
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(represented by thin plusses), their centerpoint (shown as the thick plus)
is not near the center of the sphere (shown as the thick circle). However,
when the sphere is moved until the center of the projected data coincides
with the center of the sphere {as for the lower sphere where the thick plus
and the thick circle are the same), that location gives a sensible notion of
“center” of the point cloud. In particular, this notion of center gives the
outlying point only as much “influence” as the other points receive, it can
no longer move the center outside the range of the other points.

This insight makes it clear that in one dimension, g is any sample me-
dian. Hence 8 has been called “the spatial median” for higher dimensions.
Another consequence is that this location estimate is not unique. However,
Milasevic and Ducharme (1987) have shown that in higher dimensions @ is
unique, unless all of the data lie in a one dimensional subspace. Other ter-
minology has also been used, e.g. Haldane (1948) called it the “geometric
median” and made very early remarks on its robustness properties.

A simple and direct iterative method for calculating 8 comes from Gower
(1974) or from Section 3.2 of Huber (1981). Given an initial guess, 8,
iteratively define:

where

Wy = 7
X; — 96—1”
2

This iteration can be understood in terins of Figure 10 through the rela-
tionship

o a, 7 - -
é“e _ ’9‘“6 . + Z:’,:l w’.i (X’.l, - 96—1) _ a_g ) + %Z’:l:l Psph(()g_l,l)}ii — 86*1
i=1 i T2y wi

This shows that the next step is in the direction of the vector from the
current sphere center ﬁg_l (shown as the circle in Figure 10) to the mean
of the projected data, %ZLI Pophio,_,,1)Xi (shown as the plus in Figure
10). The length of the step is weighted by the harmonic mean distance of
the original data to the sphere center (so larger steps are taken when the
data are more spread). For the cornea data, and also for a few tests in
other high dimensional contexts, we had success taking g[] to be the sample
mean, and iterating until either 20 steps had been taken, or the relative
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difference between 0; and 0;_, was less than 10~% More work needs to be
done on verification and fine tuning of these choices, and it may be useful
to use a different starting point, such as the coordinate-wise median.

The L' estimate of the center of the cornea data from Figure 3 is shown
in Figure 12. Again the calculation is done in the feature space of vectors
of Zernike coeflicients, but the result is displayed as a curvature image.
Note that the impact of the outlying observations, caused by edge effects,
is substantially mitigated, when compared to the sample mean, as shown
in the center plots of Figures 6-8.

The I} location estimate is most sensible when the scales of the various
dimensions are comparable. However, this is not the case for the cornea
data, as shown in Figure 11.

The top plot is a parallel coordinate overlay of the raw feature vectors,
i.e. the Zernike coefficients, plotted as a function of dimension number (see
Appendix for details). At this scale, it is even impossible to tell how many
curves are overlaid, since the dominant features are two very negative co-
efficients (representing the height and the parabolic curvature components
of the eve shapes). The middle plot shows these same feature vectors,
with the coordinate-wise median subtracted. Now it is apparent that the
data ranges across coordinates differ by orders of magnitude. This effect is
similar to the Fourier expansion of a smooth signal having high frequency
coeflicients that are orders of magnitude smaller than the low frequency co-
efficients. In this context, it is sensible to modify the L! location estimate,
by first rescaling each coordinate using some measure of “spread”. Here
the Median Absolute Deviation from the median is used. The lower plot
in figure 11 shows the feature vectors when they have been rescaled in this
way. The result of modifying the L! location estimate, by first dividing
by the coordinate-wise MAD, then computing the L' location estimate,
and finally multiplying by the coordinate-wise MAD, for the cornea data
is shown in Figure 13. Since this is equivalent to replacing the sphere in
Figure 19 with an ellipse, we call this the elliptical L' location estimate.

This is an improvement, in terims of even less impact by the outliers,
over the “centerpoint” shown in Figure 12.
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Figure 11: Parallel Coordinate Plots of Zernike Cocefficients, for population of
normal corneas. Top uses the original Zernike scale, middle has coordinate-wise
median subtracted, bottom is also divided by coordinate-wise MAD.
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Figure 120 Spherical L' mean. Missing data cffects have less influence than on
the sample mean (shown in the centers of Figures 6-8).

-4
-4 -2 0 2 4

Figure 13: Elliptical L' mean. Here the impact of the missing data is nearly
completely eliminated.
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Figure 14: Two dimensional example showing how outliers affoct PCA. Data points
arc shown as circles. The first cigenvector direction is shown by the thicker line
scgment, the sccond by the thinner. The length of cach cigenvector is proportional
to the cigenvaluc.

5 Robust Estimation of Spread

While outliers can have a dramatic effect on the mean (the sample first
moiment), they often have an even stronger impact on traditional measures
of scale, such as covariances, since these are based on second moment quan-
tities.

A simple example, showing the potential effect of outliers on PCA is
given in Figure 14. Note that except for the single outlier, the direction of
greatest variability is in the direction of the second and fourth quadrants.
But the single outlier completely changes this, so the direction of greatest
variability goes towards the first and third quadrants. This is caused by
the large effect of the single outlier on the sample covariance matrix.

Figure 15 shows how a single “outlier” can drastically affect the PCA
of the simulated family of curves shown in Figure 5. A single new data
curve is clearly visible in the raw data plot on the upper left. Note that
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the new data point is not an outlier in any single coordinate direction, but
its shape is clearly different from the others (and it is clearly far away in
terms of Euclidean distance).

The new observation in Figure 15 has negligible impact on the mean,
as shown in the center plot on the top row. It has only a small impact
on the first principle component direction, as shown in the second row,
although it is visible in terms of the “ripples” that can be seen. But this
single observation clearly dominates the second PCA direction, as shown in
the third row. Because of this major impact, the important second feature
of the data, the “tilting” shown in the bottom row of Figure 5, now only
appears in the third PCA divection. This shows how “outliers” can hide
important features of the data. It also shows that a point can be an outlier,
even when none of its coordinates is unusually large, which is a perhaps
surprising property of high dimensional data (in the spirit of the fact that
a point on the vertex of the unit cube in d dimensions is distance v/d from
the origin).

Figure 16 shows how the spherical PCA approach gives a bounded in-
fluence version of PCA, for the same simple data set (point cloud oriented
towards the second and fourth quadrants, with a single outlier) as in Figure
14. The main idea is that of the projection approach to L' M-estimation:
project the data onto a sphere to reduce the effect of outliers.

In Figure 16, the circles are the raw data, and the result of projecting
them onto a sphere centered at the L' M-estimate are shown as the thin
plusses. Spherical PCA is based on the eigenanalysis of the covariance
matrix of these projected data. As for the location estimate, the influence
of the outlying observation is greatly reduced.

Figure 17, shows the result of a spherical PCA for the data set with the
outlier shown in Figure 15.

In Figure 17, the outlying observation now has almost no effect on the
first PCA direction (shown in the second row), i.e. the wiggliness in the
second row of Figure 15 is gone. But more important, the second PCA
direction (shown in the third row) now shows the important tilting feature
of the bulk of the data, and the outlier only appears in the third PCA
direction. This shows how spherical PCA can limit the effect of outliers on
this type of analysis.

As noted near the end of Section 4, projection onto a sphere may not
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Figure 15: PCA for data of Figure 5 with an outlior added.
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Figure 16: Two dimensional example showing how spherical PCA downweights
the influcnce of outlicrs. Data points arc shown as circles, projections onto the
shown sphere arc shown as pluses. The first cigenvector direction of the projected
data is shown by the thicker line segment, the second by the thinner. The length
of cach ecigenvector is proportional to the cigenvalue.

be completely effective if the data are on widely different scales in different
coordinate directions. The improvements gained by changing the sphere to
a suitable ellipse are present in this situation also. Visual insight into the
corresponding elliptical variation of PCA is given in Figure 18.

The upper left plot in Figure 18 shows a simple data set where elliptical
PCA is a substantial improvement over spherical PCA The upper right
plot shows the results of transforming the data so that the MAD of each
coordinate axis is 1. The vertical axis has been substantially compressed,
s0 that the bulk of the data now look spherical. Projection onto the sphere
is now done on this scale, as shown in the lower right plot. Finally the
data are transformed back to the original scale, as shown in the lower left
plot. Note that now the projected data lie on an ellipse, that appropriately
reflects the different scalings of the axes.

Figure 11 suggests that Elliptical PCA is appropriate for the cornea
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Figurc 17: Spherical PCA for data of Figure 15.
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Figure 18: Two dimensional example showing how clliptical PCA corroctly ac-
counts for differing axis scaling. Data points are shown as circles (top row), pro-
Joetions onto the shown sphere (or induced ellipse) are shown as plusses (hottom
row). Left hand plots are the original scale, right plots arc rescaled by the sample
Median Absolute Deviations. Elliptical ecigenveetor directions are shown in the
lower loft.
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data, and we observed the expected improvements over Spherical PCA (not
shown here to save space). The results are shown in the following figures.
Again the main idea is to do the numerics of the statistical analysis in the
66 dimensional feature space of Zernike coeflicient vectors, but to represent
the results in the visually intuitive space of curvature maps.

Figure 19 is an improved version of Figure 6, showing the dominant
direction.

Figure 19 has the same basic lessons as in Figure 6, except that the
stronger vertical astigmatism on the left is now more clear, and the dis-
tracting boundary behavior is nearly completely gone.

Figure 20 is an improved version of Figure 7.

Figure 20 has nearly completely eliminated the very strong boundary
effects from Figure 7. It also shows the steeper top and bottom regions more
clearly (in a way that looks more like these features as seen in Figure 3).

Figure 21 is an improved version of Figure 8.

Figure 21 has also essentially eliminated the very strong missing data
artifacts visible in Figure 8. It also makes it more clear that this direction
is representing differing axes of the astigmagisin.

MPEG movie versions of the Figure 19-21 are available at the web ad-
dress mentioned at the end of Section 2, in the files norm122.mpg,
nerm222.mpg, norm322.mpg.

A final comment concerns the relationship between PCA and Gaussian
data. Some have offered the opinion that the Gaussian assumption is im-
portant to PCA. This reservation is well justified when distribution theory
is used, for example in classical multivariate hypothesis testing. However,
it is not necessarily a problem when the goal, as here, is simply to find
“interesting directions”. The problems with outliers shown in Section 3
could be viewed in terms of “non-Gaussianity” of the data, but the solu-
tion recommended in Section 5 works effectively in a non-Gaussian way.

Appendix: Zernike basics

The Zernike polynomial coefficients are chosen to summarize the cornea
data because this basis has natural interpretation in ophthalmology. The
Zernike polynomials are orthonormal on the unit sphere, and are radially
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Figure 19: Cenier is Elliptical L' mean, dircciion shows first cigenvecior of Ellip-
tical PCA.
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Figure 21: Center is Elliptical L' mean, direction shows third cigenvector of El-
liptical PCA.
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svinmetric. Zernike polynomials are a combination of two components.
One component is a Fourier component in the angular direction. The other
is a Jacobi polynomial in the radial direction. The general form of the
Zernike polynomials (see Schwiegerling, et al. 1995) is defined as:

V2(n 4+ 1) R (r) cos(m8) for +m
ZZ" (r V2(n 4+ 1) R (r) sin(mf) for —m

(n+1) Ql() for m=0,

where n is the polynomial order, m is the Fourier order, and R'(r) is the
representation for the Jacobi polynomial.

The Jacobi polynomial is given by:

%(n—m)
. (=1)*(n —s)! I
R'ZL(T) - n—+m n—im A
D = G

An easier computational formula (Born and Wolf, 1980) for R (r) is:

T —17
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DISCUSSION
Graciela Boente Ricardo Fraiman
Universidad de Duenos Aires and Universidad de Duenos Atres and
CONICET, Argentina. Universidad de San Andrés, Argentina

This article presents several interesting ideas for dimension reduction
of complicated data structures. When data are curves, instead of finite
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dimensional vectors, Ramsay and Silverman (1997) described an extension
of principal components analysis, called Tunctional principal component
analysis.

Non—smooth principal components of functional data were considered
initially by Dauxois, Pousse and Romain {1982). Further analysis of this
problem has been developed by Besse and Ramsay (1986}, Rice and Sil-
verman (1991}, Ramsay and Dalzell (1991), Pezzulli and Silverman (1993),
Silverman (1996) and Ramsay and Silverman (1997), where smooth princi-
pal components for functional data, based on roughness penalty methods,
were considered. Boente and Fraiman (1998) studied a kernel-based ap-
proach to this problem. Several examples and applications can be found in
these references.

The authors’ approach goes beyond that direction and provides many
practical insights. They consider more complicated data structures, like
images, summarizing them through “feature vectors”. A second issue con-
sidered in this article is that of robust methods for this high dimensional
probleim. We expect this article to stiimulate more research in the area.

The authors analyze the shape of the outside surface of the cornea
measured through the 43 images given by a corneal topography. Their
method may be summarized as follows:

i) Smooth dimensional reduction through Zernike decomposition (com-
pression method). A least square fitting of the initial 6912-dimensional
vectors to the first 66 coefficients of the Zernike orthogonal basis, gives
the 66—dimensional “feature vectors”.

ii) Find a robust center for the 43 “feature vectors”. The authors con-
gider the spatial median.

iii) Apply the “spherical” principal component analysis proposed by the
authors; which is to perform a principal component analysis to the
projected data on the unit sphere (centered at the spatial median) in
RS, In order to deal with coordinates measured in different scales,
they propose an alternative approach which they called “elliptical
PCA”: it consists in scaling each component of the vector through a
robust scale estimate, project the scaled data onto the unit sphere,
rescale the projected data and then perform classical PCA.
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iv) Visualization of the PCA through a representation of the first prin-
cipal components directions in the feature space, where intuitive un-
derstanding is natural.

As pointed by the authors, the loss due to the compression method is
relatively small and not of clinical interest. This first reduction method
seems effective and attractive.

With respect to ii) and iii), the authors have to face the extra problem
of looking for multivariate robust methods when the number of data n is
less than the dimension p of the feature space. When n > p, several afline—
equivariant robust methods for estimating the location and the covariance
matrix are available in practice (see for instance, Tyler (1991) for a review).
In addition, the problem of looking for high breakdown point estimates be-
comes crucial for high-dimensional data. As it is well known, monotone
M-estimates have breakdown point less than 1/p, which makes them re-
sistant only when the number of outliers in the sample is very small (less
than n/p) and then inadequate for small data sets in high dimensional
spaces. On the other hand, the minimum volume ellipsoid estimators,
S-estimators, T—estimators, C'M-estimators and depth-based estimators,
such as the Donoho-Stahel estimator, are affine equivariant and have high-
breakdown point regardless of the dimension of the data. A shortcoming
of these proposals is their computational complexity. Up to our knowledge,
the proposed algorithms do not work when the sample size is smaller than
the dimension of the space since they are based on resampling methods.

Another drawback of all these estimates of the scatter matrix, except
for those based in depth notions, is that they are not well defined when the
numnber of data is less than the dimension of the space.

However, the problems of estimating the location parameter and of
finding the main principal components, make sense even in the case where
n < p.

In fact, a possible approach is that given by the authors. Their proposal
is computationally simple, rotationally equivariant but not affine equivari-
ant. Of course that —when possible— consistent, affine equivariant and
high breakdown point procedures are desirable, but this is not always possi-
ble. An enormous improvement with respect to classical PCA  under the
presence of outliers— is obtained with both methods. We think that these
proposals point in the right direction: an important improvement over non-
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robust methods using computationally simple estimates for an “ill-posed”
problem.

Going into a more detailed analysis, we found that ellipsoidal princi-
pal components have sometimes an asymptotic bias as illustrated in the
following example.

We performed 500 replications with samples of size 1000, of a vec-
tor x ~ N(0,CATY), where ' = (v,7,) with v, = (0.25,/15/16)",
Yo = (\/15/16, —0.25)" and A = diag(8,4). The mean, median, standard
deviation and MAD of the angles (measured in degrees on [-90,90]) between
the real and the estimated first principal direction are reported in the fol-
lowing table for the classical and the ellipsoidal principal components.

Principal Components | Mcan | Median sD MAD
Classical 0.0427 | 0.0534 | 1.1473 | 1.2026
Ellipsoidal 6.4997 | 6.5188 | 1.1277 | 1.1657

Moreover, in 499 of the 500 replications, the angle was greater than
3 degrees while for the classical PCA, 5 of the 500 replications had an
angle with absolute value larger than 3 degrees. This is due to the fact
that scaling each coordinate is adequate when the principal axes are the

canonical basis but not in general.

Indeed, assume that x has an ellipsoidal distribution, ie., x = A%z
with z spherically distributed, I'T' = T and A = diag(X1,..., ;). Then, as
is well known, if Ay > Az = --+ > Ay, the columns v;,...,7y, of T’ represent
the principal components of x and a g—dimensional reduction is obtained
by taking the q eigenvectors 7q,...,7y, related to the q largest eigenvalues.

In this setting, the proposed ellipsoidal components will be consistent
to the eigenvectors of the matrix

xx' L 7% Loy
E (—IIDXIIZ) —TA*E (—|DFA%Z2) AT, (1)

where D = diag(1/s11,...,1/8pp), 5% = Var(z;) with z; the éth component
of x and where we have assumed for simplicity that the vector x has a finite
covariance matrix.

Then if, the principal axes are the canonical basis, ie.,, I' = I, we will
have s7. = A; and so, the matrix on the left of (1) will be proportional to the
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scatter matrix of x and thus the elliptical components will be asymptotically
unbiased. However, if the principal axis are not the coordinate ones, the

matrix
!
B zz1
|Drats)?

is not necessarily diagonal and then, as in the example, the ellipsoidal
components are biased.

On the other hand, the proposed spherical components will alwavs be
congistent for any ellipsoidal random vector, since they will be consistent
to the eigenvectors of the matrix

! !
E(X_XQ)FA%E 27 ) Abr
[ |AZz)?

which is proportional to the identity in the spherical case, i.e., A =1.

However, when A # I, ¥ can be written as

S = TATWAIT,

!
o L
[Azz|2

sz vy
|Azz]2  |Azy|?

with y = 2//|z|| being uniform on the sphere, the distribution of U is the
same for any spherically distributed vector z and so the matrix ¥ can be
computed assuming z ~ N(0,I). In this case, it can be shown that W is
diagonal and thus, all the basis of eigenvectors is consistently estimated
through the spherical principal components.

If & = diag(¢1,...,¢p) = ATEAT = diag(A4, ..., A\pthy), it follows
easily that ¢; > 1/p and ¢, < 1/p, which entails that when p = 2, ¢1 >
¢ and thus the spherical principal components estimate adequately the
principal axis.

where

Since,
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Moreover, given 1 < j < p — 1, since A; > X;4; and z ~ N(0,I), we
have that

)\jz,z-
qu = E A 2 By 2 . by 2
P D Y SRR o) DRI V-

2
R AjZia1
2z Aa] + Dy M

Ay 12,2-

> E R = $is1

- 2 2 2 7 '
Aj+17 1+ AGE Y1 Az

Also, A; > Aji1 implies ¢; > ¢;41, which entails that even if the ma-
trix ¥ does not estimate consistently the scatter matrix DALY of x, it
allows to estimate consistently the principal components and the order of
the eigenvalues is preserved. The relative importance, i.e., the number of
eigenvectors that should be kept in order to obtain a representation which
corresponds a high percentage of the trace of the scatter matrix, may be
modified, as shown by the following example.

We generated a sample of size 5000 of a vector x ~ N{0,A), with
AT = diag(9.6,3,2,1.5). Thus, the main axis is the first coordinate axis
which gives a representation which explains 83% of the total variance. The
classical principal components give the following percentages:

A/ Zl<f<4 Ao | (A + )\2)/21<1’<4 Ai Zi 4 Aif 21<1’<4 Ai
0.8558304 0.9390217 0.9773178

while the spherical principal components give

A/ Zl<f<4 Ao | (A + )\2)/21<1’<4 Ai Zi 4 Aif 21<1’<4 Ai
0.6579615 0.8311586 0.931456

Therefore, the proposed spherical PCA are consistent for any elliptical
distribution and thus preferable to ordinary PCA which requires moment
conditions.

Obviously, spherical PCA will be resistant for any contamination model
which preserves the property of being elliptical. The following small simu-
lations shows, however, that spherical PCA is not resistant with respect to
other tvpe of contamination.



34  N.Locantore, J.5.Marron, D.G.Simpson, N. Tripoli, J.T.Zhang, K.L.Cohen

As above, we performed 500 replications with samples of size 1000, of
a vector x ~ N{0,TATY), where T' = (~y;,7,)" with v; = (0.25, \/15/16)',
Y2 = (/15/16,—-0.25)" and A = diag(6,5) and we compare the perfor-
mance of the estimates when we put 10% of contamination at the points
xp = 100y,sg(z1).

In this case, the number of times that the absolute value of the angle
between <y, and the estimated first principal direction is greater than 15
(N15), 30 (N3) and 45 (Ny5) degrees are reported in the following table for
the classical and the spherical principal components, for both the normal
data sets(Ch) and the contaminated (Cy1) ones.

Modcl | PCA Nis | Nso | Ngs
Ch Classical 0 0 0
Co Spherical | 21 1 1
Con Classical | 200 | 200 | 300
Con Spherical | 463 | 432 | 396

In higher dimensions, the behavior is quite similar. We made 100
replications for samples of size 5000 generated as follows. We generated
¥y ~ N(0,A) with A = diag(6,5,4.5,3). With probability 0.9, x = y and
with probability 0.1, x = 100sg(yz)e; where e3 = (0,1,0,0)" and sg(ys)
denotes the sign of the second—coordinate of the vector y. Thus, we have
introduced a 10% of contamination at the points 100es and —100es.

As expected, classical PCA interchanges the first two principal axis but
spherical PCA also behaves in the same way. The following table gives
the mean of the cosinus of the angles between the theoretical axis and the
estimated axis for both the uncontaminated and the contaminated data
sets.

Model | First Axis | Sccond Axis | Third Axis | Fourth Axis
Ca 0.9984 0.9954 0.9961 0.9995
Cax 0.0675 0.0676 0.9992 0.9996

On the contrary, if the contamination is put on the direction of ey,
classical PCA will move all the axis but spherical PCA just moves the
third and fourth ones.

The question that naturally arises is if nature is so wild to allow this
kind of outliers to appear frequently in practice, in particular, in the prob-
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lem studied by the authors. As mentioned above, spherical PCA is resis-
tant to any kind of contamination which preserves the property that the
underlying distribution is still elliptical. In this sense, spherical PCA are
robust, with respect to this kind of neighborhoods, without requiring any
moment condition, and thus it represents a great improvement over clas-
gical principal components. In particular, it provides a computationally
feasible alternative to the classical method for the case where n < p.
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Introduction

I would like to thank the authors for this fine piece of work. Their treatment
of the corneal image data beautifully illustrates the utility of principal com-
ponents analysis for characterizing high dimensional data objects. It also
firmly motivates the need for special adaptations to standard multivariate
techniques in the analysis of functional data. Moreover, it highlights the
need to customize these adaptations in practice,

The authors have also contributed a well-organized and insightful pre-
sentation of the ideas and methods used in their analysis. In my commen-
tary, I will link their “feature space” analysis to its dual in “data space”,
raise alternative possibilities for handling the missing data, and relate their
methods to others in the literature on functional principal components anal-
vsis.

Feature space + Data space analysis

Let the images be stored sequentially by pixel as J;-dimensional vectors Y7,
i=1,...,n, where n is the number of images available for analysis (n=43
in the cornea example.) We begin by assuming no data are missing, so that
Y; consists of J; = J = 6912 pixels indexed by polar coordinates (r;;,8;;).
The goal of principal components analysis is to summarize V = Var(Y;) by
its dominant eigenvectors. Modeling the images as i.i.d. realizations from
a process such as

Yi=p+di+e, (1)

where 41 + d; represents the noiseless image corrupted by additive noise ¢,
and Var(e;) = 0?1 (with 7 denoting the identity matrix), the goal is to find
the dominant eigenvectors of Var(Y;), or equivalently, those of Var(d;).
For ease of presemtation and without much loss of generality, it will be
assumed throughout much of the discussion that u = 0 or, alternatively,
that the images Y; have been pre-centered. The simplest estimate of V' is
Sy =n~1Y YiYiT, the sample covariance matrix. In the cornea example,
V' has dimension 6912 x 6912, but only 43 realizations of ¥; are observed.
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Does this necessarily invalidate the naive principal components analysis
based upon the dominant eigenvectors of Sy 7 If we believe the model in (1),
the answer depends upon the relative magnitudes of a2 and the eigenvalues
of Var(d;). Suppose, for instance, that ¢? = 0 and that the largest 5
eigenvalues of Var(4;) dominate the other 6907 by a factor of 100,000. In
this case, the first 5 eigenvectors of § should excellently approximate those
of V. Unfortunately, however, the sparsity of the cornea dataset renders
the relative magnitudes indeterminable; one can only guess whether it is
dominant eigenvectors that have been found, or junk.

This curse of dimensionality cannot be overcome by methods for fune-
tional data analysis except by making strong untestable assumptions. Tra-
ditionally, g + d; is assumed smooth. This assumption is a reasonable one
in mumerous applications, and it certainly appears sensible in Locantore et
al., who invoke it by modeling p + d; as a Zernike polynomial. That is, they
assume p = Uy and §; = U 3;, where the columns of U are the p (p = 66 in
Locantore et al.) orthonormal Zernike basis functions sampled at locations
(rij,0), 5 =1,...,J, which index the rows. Again assuming that y = 0
(or that the mean has already been subtracted). 3; can be estimated via
ordinary least squares regression,

B =UTY;,

where recall that orthonormality of U/ implies /7T = I. The information
stored in Y; is thereby compressed into the feature space representations
X = /}i = U"Y;. The authors compute the eigenvectors vy, & = 1,...,3
of Var (X))=8x =n! ZXng in the feature space; these are then reex-
pressed in the data space as vy, = Uwvgg. This produces smooth estimated
eigenvectors of V.

It can easily be shown that the v, are, in turn, the eigenvectors of
USxUT = UUT Sy UUT = PSy P,

where P = UU? is the projection in the data space onto the span of the
Zernike basis. Thus, the feature space analysis has a data space dual, in
which the eigenvectors of the smoothed sample covariance matrix

S, = PSy P (2)

are computed directly. The smoothed covariance matrix will have reduced
rank equal to p, the dimension of the Zernike basis.
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Missing data

When there is missing data, Locantore et al. modify the estimates of vy, as
follows. Let U; be analogous to U/ but with rows corresponding to missing
pixels deleted. The feature space representations are modified to X; —
B; = U;Tn-; the v are computed as before but using the modified version
of X;; the vy;, are then obtained as Uwvgy,. The analogue in data space is to
compute the v, directly as the eigenvectors of nty> PiYiY;TPi, with F; =
UUE. As the authors demonstrate, this method can lead to undesirable
consequences. Specifically, certain of the projections X; — F;Y; of iimages
with missing data turn up as outliers with excessive influence upon the
estimated principal components. I offer a possible explanation by way of
a simple example. Consider the toy dataset pictured below, with pixels
corresponding to a common angle 8 but distinct values of v (i.e. the toy
“images” are 1-dimensional):

subject

1 1 1 1

2 2 2 2

3 3 3 3
pixel | 7 3 3 3

? 3 3 3

? 3 3 3

Becanse the Zernike basis includes the linear functions, the missing
pixels from subject 1 will be substituted by 4, 5, and 6, leading to an outlier.
Although the data strongly suggest an overall mean of (1,2,3,3,3,3) with
zero variation thereabout, the first analysis of Locantore et al. would lead
to a contaminated estimate of the mean and a nontrivial estimated first
principal component. The robust approach adopted by the anuthors would
diminish the problem by downweighting the observation from subject 1 in
the analysis.

I would like to propose an alternative method for handling the miss-
ing data. The idea is to first estimate the elements of the complete data
covariance matrix V with

Vis,t) =ny" > Ads)Yil(s) Au(DYi(t).

where V'(s,1) represents the covariance between pixels s and ¢, A;(s) is the
missing data indicator (A;(s) = 1 if pixel s is observed for subject ¢), and
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st = ¥ Ay(8)A;(£). The smooth principal components are then computed
as the eigenvectors of PV P. This method presumes that the Y; have been
centered; a smooth group mean could be computed beforehand in an anal-
ogous manner by smoothing a weighted mean of the available data. The
effect of this approach will be to use other subjects rather than neighboring
pixels to fill in the missing data. Alternatively, one could borrow strength
simultaneously from other pixels and subjects via an enhanced model for
Y;; i.e., one could let §; = < +;, where -y is introduced as a shared random
effect to induce correlation between observations from different subjects.
See Brumback and Rice (1998) for a related discussion in the context of
mean estimation.

Related approaches

Still other approaches might be adopted. First, one might choose an alter-
native basis. The possible effects are illustrated in Figure 1. The top left
panel presents the true first three principal components for 20 1-dimensional
“images” simulated using Splus. The images were each sampled with ad-
ditive noise at 100 pixels. In all panels, the solid line represents the 1st
principal component, the dotted line the second, and the dashed line the
third. The true principal components correspond to the 5th, 6th, and 1st
functions of the Zernike basis generated for 1-dimensional quintic polyno-
mial images by setting # = 0 and (m,n) = (0,0),(1,1),(0,2), (1,3),(0,4)
and (1,5). The top right panel represents the first three estimated princi-
pal components using the unsmoothed covariance matrix. The middle left
panel shows the estimates computed as in Locantore et al. by projecting
onto the Zernike basis. The middle right panel uses an asyminetric Bspline
basis with knots at 60 and 80. The Bspline basis is smoother for the first
50 pixels than for the remainder. Notice the dramatic effect on the esti-
mated principal components, which demonstrates that the wrong choice of
basis can lead to serious consequences. This emphasizes the importance of
subject matter knowledge in performing functional PCA; when the curse
of dimensionality rears its head, the results begin to depend heavily upon
untestable assumptions.

Another option is to use a roughness penalty approach as in Rice and
Silverman (1991) or Silverman (1996). The first approach estimates the
principal components as the eigenvectors of V' + A1, V + A28, ..., where
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Figure 11 'True componcents shown at top left. In all panels, the solid line represents
the 1st principal component, the dotted line the sccond, and the dashed line the
third. Top right presents the first three cstimated principal componcents using
the unsmoothed covariance matrix. Middle left computes the cstimates using the
method of Locantore ot al. to smooth the covariance matrix by first projecting
the data onto the Zernike basis. Middle right uses an asymmetric Bspline basis
with knots at 60 and 80.
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! represents a covariance matrix with smooth dominant eigenvectors, and
Ap, & =1,... 18 a non increasing sequence of tuning parameters mediating
between eigenvectors of V and ©; eigenvectors of greater importance bear
more resemblance to those of €. Silverman (1996) modifies the procedure
for efficient computation by constraining the sequence of . With an em-
pirical choice of €}, the procedure of Locantore et al. can be embedded
within the roughness penalty framework; i.e. letting Q = PV P leads to
the procedure of Locantore et al. for large A;. However, the computational
cost of the roughness penalty approach may not be within reach. A compro-
mise would be to partially reduce the data using the method of Locantore
et al. with a midrange-dimensional basis and then to finish the reduction
using roughness penalty methods. But the approach of Locantore et al. has
been shown to yield insightful conclusions, and I do not recommend any
alterations. I would like to conclude by remarking upon the weighty compu-
tational challenges overcome by the authors; data storage and manipulation
of high dimensional data objects are often quite difficult, necessitating so-
phisticated software and clever programming strategies. The video images
of the cornea data are particularly impressive.
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Introduction

First of all I would like to congratulate the authors on their paper, which
presents a very nice analysis of a functional data set from ophthalmology
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using robust principal components. In this comment, I will focus on the
newly proposed method for robust PCA.

Several robustifications for PCA have been proposed in the past. The
most simple idea is to compute eigenvalues and eigenvectors of a robust
estimator of the covariance or correlation matrix of the data. Many sim-
ulation studies, starting with Devlin et al. 1981, have been carried out to
find out which robust estimator should be used, and recently some more
theoretical results were obtained by Croux and Haesbroeck (1999). As was
pointed out by the authors, these methods require that the number of vari-
ables d is smaller than the number of observations n, making them less
useful for functional data analysis.

Another approach to robustify PCA, based on projection pursuit (PP),
has been considered by Li and Chen (1985). It is known that a classical
principal component is determined by the direction for which the projec-
tions of the data onto that direction have maximal standard deviation,
under the constraint of orthogonality with all previously determined com-
ponents. Instead of maximizing the standard deviation, one uses now a
robust dispersion measure as “PP-index”, resulting in a robust PCA. Since
the principal components are computed sequentially, this approach can be
used even in the high dimensional case n < d.

The method proposed in this paper has both a projection aspect and an
eigenanalysis aspect. A important virtue of this method is its simplicity and
ease of implementation. In contrast with many other highly robust multi-
variate statistical procedures, the required computation time is extremely
limited.

Some Statistical Properties

For a sample X = {Xj,...,X,,} C B, the proposed robust PCA is carried
out by computing the eigenvectors v1(X),...,v(X) of the matrix

n . N

- X, —0.)(X; —6,)

En(X) — Z ( r’.', An)( :',r JE) , (1)
i X — O [[ X — 6]

with & =rank(%,(X)) and 6,, the L; location estimator. The “robust eigen-

vectors” vy (X),...,v(X) are the vectors of interest since the data will be

projected on them.
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Equivariance Properties: Although 3., is not affine equivariant covariance
matrix estimator, it is orthogonal equivariant which suffices in the context
of PCA. Indeed, denote oI'X + b = {al'z; + b,...,al'z, + b} where I’
is an orthogonal matrix, b a vector in R? and « a scalar, then the usual
equivariance property holds

vilal' X +b) =Tv;(X), forj=1,... k. (2)

By first prescaling the data, for example by dividing them by the co-
ordinatewise MAD, an equivalent of a correlation-based PCA is obtained.
This procedure is called elliptical PCA by the authors, and one has the
additional equivariance property v;(DX) = v;(X) for any diagonal matrix
D.

Influence Function: The authors claim that outliers have bounded influence
on their procedure. This can be made formal. To keep things simple,
suppose that we are in the bivariate normal case, and due to (2) suppose
w.Lo.g.

Xl,...,X.nii?FN(o,(é g)) 0<y<l.

The functional corresponding to the fln(X ) is given by

[T = TEO)
© = | T e

e

for an arbitrary distribution G. Denote then v (G), ..., vg(G) the eigen-
vectors of X(G). It is not difficult to show that

S(F) = N (0,diag(1/(/7+1),1/ (V7T + 1)),

implying Fisher consistency for the eigenvectors at bivariate normal dis-
tributions. Like in Critchley (1985), one can prove quite easily that the
influence function for v1 is given by

1—7v xz122

-2 el

and analogously for the second eigenvector. From (3} boundedness of the
influence function follows immediately.

TF((z1,23),v1, F) = (#) (3)
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Efficiency

T T T T T T
0o 0.2 0.4 0.6 0.8 1.0
gamma

Figure 1: Efficiency of the proposed estimator for the first cigenvoector of a bivariate
normal distribution as a function of ~, where v equals the sccond divided by the
first population cigenvaluc.

Efficiency: Since emphagis in the paper was on the use of the proposed
method as a tool for exploratory data analysis, efficiency considerations are
less important but nevertheless interesting. Take once again the simple case
where the data come from the bivariate normal distribution #. Assuming
that the functional ¥ is sufficiently regular, the asymptotic variance of vy
equals A
Y t

ASV('Ul, F) == WUZ(F)UQ(F) ,
which needs to be compared with the asymptotic variance of the classical
estimator of the first eigenvector (v/(y — 1)%)ve(F)va(F)E. In Figure 1 the
associated efficiency (defined as the ratio of the traces of the asymptotic
variance matrices) is pictured as a function of .

The efficiency of the method depends thus on v and never exceeds
50%: the more spherical the distribution, the higher the efficiency of the
method. This is in contrast with most other methods for robust PCA,
where the efficiencies are independent of v. The same problem will arise
for the elliptical version of the method.
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Some suggestions

(i) Tt is not so obvious to interpret the eigenvalues of 3,. As a measure of
dispersion of the data in the direction of v;(X), one could compute

A = S0 (X)X, v (X)X,

for y =1,...,k, with 5, a robust univariate scale estimator like the MAD.
Moreover, unlike the eigenvalues of X, the A; will be consistent estimators
for the eigenvalues of covariance matrices of normal distributions.
(ii) A generalization of (1) is given by

T

= T f S IR/
TalX) = Zw (Xi = 00)(Xi —65)

1 = TR
i=1 H-Xi - 9?1” H-Xi - 9?1”

where the assigned weights w; depends only on the rank of ||X; — &, and
>+ w; = 1. The location counterpart of the above estimator has been
studied by Hossjer and Croux (1995). By choosing the weights properly,
higher efficiencies can be obtained while not losing too much robustness.

(iii) The choice of the starting value for the algorithm computing the L,
estimator is not crucial, but the coordinatewise median might vield faster
convergence in noisy data sets than the sample mean. Using the Newton
steps of Bedall and Zimmerman (1979), the computation time of the L;
estimator could be even further reduced.
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When analyzing complex objects such as images, it is vital to have a
simple, effective, robust and computationally feasible approach that can ex-
plore salient population features. The authors are to be congratulated for
successfully outlining such an elegant method, which extracts and sumina-
rizes important clinical features. Deep insights are obtained via graphical
presentation and elegant exposition. I am very fortunate to associate with
this group for a long time and to witness how this interdisciplinary collabo-
ration vields fruitful statistical methodology innovation and useful clinical
results. Such a kind of joint efforts should be strongly encouraged and
greatly expanded.

The new method in this paper consists basically of the following steps:

a) extract important features;
b) find the center of the data in the feature space;

c) rescale the centered data in the feature space;

m il

) carry out the principal component analysis in the feature space by
normalizing each data point to have unit length;

e) present results in the original domain of data.

Such a kind of proposal appears ad hoc but effective. I welcome the
opportunity to make a few comments on some of these critical steps.
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Feature extraction

Feature extraction is extremely vital for analyzing high dimensional data
such as noisy signals and iiages. The aim is to significantly reduce dimen-
sionality without losing important information in the original data. This is
usually achieved by manually selecting a number of important characteris-
tics that are directly related to the objective of a study or via an orthogonal
transform (or local orthogonal transform such as spectrograms in speech
recognition). In the current context, the anthors reduce the dimensionality
from 6912 to 66 via a two-dimensional orthogonal system called the Zernike
transform. Other orthogonal bases can also be used, but this systemn has
better known optical properties.

Different orthogonal systems have different ability of information com-
pression, depending on the classes of signals. For example, the Fourier
transform is not effective to represent local features such as bumps or short
aberrations while wavelet bases are not very efficient in representing si-
nusoid signals. When choosing an orthogonal basis, the efficiency and the
interpretation of the orthogonal basis should be taken into serious consider-
ations. The role of the orthogonal transform here can be intuitively under-
stood as compressing original 6912 highly correlated dimensions (because
intensity of neighboring pixels is nearly the same) to 66 nearly independent
components.

Statistically, keeping a few coefficients in feature spaces is equivalent to
conducting heavy amount of smoothing for the original data. The param-
eter 66 can be regarded as a smoothing parameter. This results in keeping
prominent and stabilized features in the data, since disturbing noises have
been reduced. This technique is also very useful for hypothesis testing such
as comparing differences of cornea maps between two clinical groups. Due
to dimensionality reduction, only prominent features of images are now
tested and the power of resulting testing procedures are ameliorated. See
for example Fan and Lin (1998).

Orthogonal transforins are linear. They depend sensitively on outliers
in the original data. For the current application, outliers are mainly cansed
by missing data at boundaries of images. A natural question is then if
there are some imputation methods to implement or some robust nearly
orthogonal transforms to apply at this stage, rather than at a later stage.
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Centers in high-dimensional space

To find robust principal directions, the first step is to find robust estimation
for the center of high-dimensional data. The authors propose to use L' M-
estimate of location via minimizing

i

> IX: =0

i=1

While this method is far more robust than the sample mean, one may
naturally ask how robust it is when compared with the componentwise

median, which minimizes
i

> NIX: =01,

i=1
where || X; — 67 is the sum of componentwise distances. It appears clear
that the former is more robust than the componentwise median, but the
latter has computational advantages. If outliers do not occur as fearfully
as we think, the componentwise median can be an attractive alternative.
It is not clear to me why the componentwise median was not chosen as the
center of the images in the current application. 1t is also interesting to relate
these methods with the concept of data depths of Liu and Singh (1992).

Functional Principal Component Analysis

After locating the center of the data, the authors propose to carry out the
principal component analysis based on the projected data {{X — 9) /X —
6|2} (a weighted Ly-norm is used when the data are projected on an ellipse).
This is a powerful idea and a useful technique, but there is also some
hidden cost. To achieve robustness, we completely change the parameters
under estimation. Unless the distribution of | X — 6|2 is nearly constant,
the covariance or correlation matrix of the projected data can be quite
different from that of the original data. Hence, the population parameters
(the principal directions) for the two problems are completely different.
Strictly speaking, the principal component analysis based on the projected
data is not a robustified version of that based on the original data. Which
principal component analysis is more relevant depends critically on the
scope of applications.
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In a seminal paper, Rice and Silverman (1991) proposed to use smoothed
principal component analysis for the original data. An important feature
of that method is that the resulting principal component directions are
those that capture the greatest variabilities in the original data subject
to smoothness constraints. It poses, however, challenges to even modern
computers to carry out a 7,000-dimensional principal component analysis
in the original data domain, even without imposing smoothness constraints
on the principal directions. An important distinction of the current method
is that it is carried out in the feature space. This reduces computational
cost dramatically.

An intuitive alternative approach to that of Rice and Silverman (1991)
is to smooth curves or images first and then apply the ordinary principal
component analysis to the smoothed data. This also results in smooth di-
rections in the original data domain that capture the greatest variabilities
of smoothed curves or images (instead of original data). This approach
is indeed equivalent to that proposed by the authors, when the principal
components are obtained based on covariance matrices. To see this, sup-
pose that after an orthonormal transform we decide to keep the first p
transformed coefficients. Denote such coefficients by £ and the correspond-
ing first p orthogonal bases by X, an n x p orthonormal matrix. Then
the resulting smoothed images or curves are just truncated orthonormal
reconstruction: ¥ = X¢£. The covariance matrix of the smoothed images is

cov(Y) = Xeov(€)XT = XTA, T XT,

where I'A,I'7 is the principal component analysis (eigenvalue decomposi-
tion) for the covariance matrix cov(€) in the feature space. It is now very
easy to verify that the p directions in the matrix XT" are orthonormal.
Hence, the principal directions for the smoothed images V are the same as
those generated from the feature space. The same conclusion holds for “ro-
bustified” principal component analysis with the projection on the sphere
since ||Y]| = ||£]|, but does not hold when the smoothed data are projected
on an ellipse.

When the correlation matrix based principal component analysis is used
in the feature space, it does not appear to have an intuitive equivalent
method in the images domain. Indeed, it is not clear what the resulting
orthogonal directions represent in the image domain. Hence, the interpre-
tation and usefulness of such a kind of analysis remain questionable.
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The authors have written an interesting article. In the first part of
the paper they provide a well-written and very convincing introduction to
the use and the benefits of functional principal component analysis. A
particularly interesting point is the extension of these concepts developed
for the analysis of one-dimensional curves to two-dimensional images.

I only have a minor technical remark in this context. The authors do
not directly perform a PCA of the original data, their analysis is based on
the coefficients of a Zernike decomposition. This use of “feature vectors”
which is common in their field of application seems to be a good idea.
However, they write that data are in the form of 6912 measurements at
a polar grid of locations, and that classical multivariate analysis of these
vectors is numerically intractable. This is not true, and though I think
that their alternative approach is very reasonable in their context, I want
to show how to deal with such munerical problems in functional PCA, since
this might be useful in other applications.

In functional principal component analysis we usually have to treat n
different functions f; (one-dimensional or higher dimensional) which are
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given at m discretized grid points. In this context we generally have m 3
n (note that m = 6912 while n = 43 for the application discussed in
the paper). In fact, if the number m of data points is very large, then
evaluation of the m x m covariance matrix V' of these vectors will indeed be
numerically unstable. However, for any grid point z consider the n-vectors
flz) = (fi(z),..., fulz)), and determine their » x n covariance matrix
M. Calculation of the eigenvalues Ay > Az > ... of V as well as of the
corresponding eigenvectors 1, 7y2, ..., defining the principal components,
can then be done on the basis of the much smaller and numerically more
tractable matrix M. Some simple linear algebra shows that the eigenvalues
of M coincide with the eigenvalues Ay, Az, ... of V. Moreover, the principal
components g1, gz, ... are given by

gr(z) = }\;1/2 Zp-rifi(ﬂs)v

where p1 = (p11,....pn)sp2 = (P21y+..yP2n)'y... are the corresponding
eigenvectors of M. If m 3 n, this way of calculating principal components
in the context of FPCA is numerically much more stable.

In the paper, as in most other work, functional principal component
analysis is seen as a tool for analyzing i.i.d. samples of randoin functions.
This certainly is the standard application, but there is another way of rep-
resenting principal components which is more generally interpretable. Let
Ju = %Zz fi denote the average function. It is well known, the mathemait-
ical basis being the famous Karhunen-Loéve decomposition, that for any L
the first L principal components define the best possible projection of the
functions fq,..., f, into an L dimensional linear subspace. In other words,

g1, .-.,gr provide a best possible representation

L
fz(ﬂ?)_fy(gf) %Zgrig-r(z)s 1=1,...,n (1)
r=1

in the sense that they satisfy

L L
Z Hft - f,u - Zgrigrng - 1'111111}'2 Z 9 Hlin Hft - f,u - Zﬁriu‘rH% (2)
r=1 e v r=1

. . 1iy--nULd
) ] )

with respect to all possible v1,...,v,. An interpretation of principal com-
ponents in terms of (1) and (2) makes sense for many different families of
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curves and is quite independent of the underlying mechanism generating
the data. For example, it might be used in the context of time series of
curves as considered by Bosq (1991). A possible application is analysis of
electricity consumption curves for a mumber of consecutive days.

In the second part of their paper the authors present a robust version
of PCA in the context of functional data analysis. To my knowledge this
is the first work which explicitly deals with this question. The authors
convincingly argue that the importance of robust methods is even more
pronounced if the data are functions than in the multivariate context. The
reason is simple: when going over from vectors to functions or surfaces,
data structure become more complicated, and there are more and more
different ways an observation can be an outlier. Spherical or elliptical PCA
as introduced in the paper provides a simple way to robustify functional
principal component analysis, and it might thus prove to be an important
idea.

In view of (1) and (2), it seems to me that in principle there might exist
still more robust versions of PCA. After having replaced f, by the spatial
median as proposed by the authors, one might try to define more robust
principal components by determining the best linear approximation (1) in
terms of the L' norm, instead of minimizing with respect to the L? norm
as in (2). Of course, there is no straightforward solution to the resulting
complex optimisation problem.

An interesting and important general aspect of the paper is that it
demonstrates the possible complexity of functional data. As a final point
of my discussion | would like to add some remarks which illustrate this
complexity even further. In fact, there are important problems of functional
data analysis which do not even possess an analogue in usual multivariate
analysis.

I want to consider two of these problems. First of all, in many cases
the “true” curves or surfaces are unknown and have to be estimated from
discrete data. This is the case, for example, if we want to analyse families
of regression curves, or families of noisy images, where the “true” objects of
interest are not directly given, but only represented by noisy data. Some-
times data are fairly accurate and noise does not play an important role,
but in other applications the estimation error cannot be neglected. In this
case we run into two different data analytic and inferential problems: We
have to define procedures to analyse similarities and differences between
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the “true” functions, for example one might rely on PCA, and one has to
consider how to estimate principal components or other properties of in-
terest from the given data. In a certain sense one thus has to deal with an
unusual type of errors-in-variables problem. There is not much literature
on this subject, very often this point is simply ignored (see, however, Kneip,
1994, or Kneip and Utikal, 1999).

When following a term coined by Ramsay and Silverman (1997), a sec-
ond problem without multivariate analogue is the “registration problem?”.
Many samples of curves like growth curves, brain potentials, etc., do not
only differ in amplitudes but also in dynamics. For example assume that
there i8 a collection of one-dimensional functions fi,..., f, which only vary
in amplitude, location and scale according to the siimple model

filz) = 8ig (:E__ai) (3)

for some basic underlying function g. If the parameters v, 3;, quantifying
individual dynamics, are very different, then functional principal compo-
nent analysis is of no use for analyzing the structure of this curve family.
Too many principal components will be necessary to explain a large pro-
portion of variability, some of these components being derivatives of others.
The point is that, as can be seen from (1), PCA attempts to explain varia-
tion between curves by amplitude differences only, and it is not able to in-
corporate varying dvnamics. A possible remedy is first to “register” curves
in order to eliminate such differences in dynamics, and then to perform a
PCA in a second step. Some registration procedures have been proposed
by Kneip and Gasser (1992), Wang and Gasser (1995), Silverman (1995),
Ramsay and Li (1996}, or Kneip, Li, MacGibbon and Ramsay (1998).
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The movies for visualizing a principal component in the space of images
are revealing and delightful. They make a compelling argument for Web-
based journals.

Clearly, the authors gave careful consideration to the reduction of the
pixel information to the feature vectors. The Zernike basis appears to be an
excellent choice given the natural sphericity of eves. I wonder how poorly
the principal components would work if a less appropriate basis was used,
such as coordinatewise orthogonal polynomials. Do the authors have any
cautionary tales to tell?

The paper demonstrates the utility of the spherically based robust pro-
cedures without needing to make restrictive distributional assumptions. If
one does make some assumptions, then these procedures are also theoreti-
cally reasonable:

1. The spatial median is robust and efficient. In the spherical normal
case, Brown (1983) (see also Chaudhuri, 1996) has shown that for estimat-
ing the mean, the multivariate median has efficiency that approaches 1
as the dimension approaches infinity. For any dimension, the multivariate
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median has breakdown of 50%. Thus for high dimensional data as in this
paper, the multivariate median (in this special case) is much more robust
breakdown-wise, yet practically as efficient as the sample mean.

2. The population spherical principal components are the same
as the usual population principal components.

Suppose the m-dimensional random vector X can be written as
X =0QZ+5, (1)

where {1 is a fixed orthogonal matrix, b is a fixed vector, and Z is a random
vector that is coordinatewise symmetric about 0, that is, Z and

(£21,...,+Z),
have the same distribution. If Az = Couv(Z) exists, then it is diagonal, and
Cov(X) = QALY

Thus the columns of € are the eigenvectors of Cov(X), hence the usual
population principal components (in some order).
Marden (1999} shows that

X b
) — | = QA
Cov( Xb|) A

for some diagonal matrix A. Thus the columns of  are also the eigenvectors
of the covariance of the spherical variables, i.e., they are the population
spherical principal components.

There is no guarantee that magnitudes of the diagonal elements in Az
and A are in the same order, so it may be, e.g., that the first usual principal
component is the second spherical principal component.

Visuri, Koivunen and Oja (1999) note that if one is willing to assume
further that X has an elliptically symmetric distribution (a special case of
(1)), then the diagonal elements A; of A are known functions of the diagonal
elements Az; of Az:

Az U2
Az iU+ + Az U2,

N =E

Y

where the U;’s are independent standard normals. In particular, this re-
lationship shows that the two sets of diagonal elements are in the samne
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order, so that the ¢/® usual principal component is indeed the ¢** spherical
principal component.

The implication of these results is that the sample spherical princi-
pal components are estimating the usunal population principal components.
These papers give evidence that the robust estimates are robust and effi-
cient.
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This is an interesting paper and the authors should be congratulated
for presenting a thought-provoking analysis of a challenging problem. The
increasing availability of large data sets in high dimensions has led to a
growing need for exploratory tools that can reveal the hidden structure in
these data sets. The methods presented in this paper can be very useful in
this regard.

The standard multivariate statistical analysis assumes that we have
measured a vector variable on each sample point and, therefore, the data
is represented by a matrix X ., in which usually the columns are the
variables, the rows the elements in the sample and p < n. A natural
generalization of multivariate data is the class of functional data presented
in this paper. If instead of assuming a finite vector of p variables we measure
a function z(ty), & = 1,...,T at a finite set of points #; and we take the
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measurements for each realization of z(f) as one element of the sample,
the data will be still represented by a matrix X, .7 but now the variables
will be highly correlated, typically T > n, the covariance matrix will be
close to singular and the analysis of the data should take into account the
correlations induced by the smoothness of z(1).

The data set used in the paper can be considered as a scalar stochastic
process z{sy, {) along two directions, where { = 1,...,5, &k = 1,...,7T, and
the sample data is of the form (Xy,...,X,) where the X; are § x T
matrices that represent the measurements made on the ¢th sample element
of this process. More specifically, the data for each corneal image is a matrix
with 6912 elements (273%) corresponding to values z(s;,¢) in a grid of
angles and distances. A standard technique to suminarize this information
is to fit a basis to this bidimensional stochastic process and reduce the
analysis of the data to the study of the vector of fitted coefficients. That
is, for a specific choice of a finite subset of basis functions {b;{s,#)} szl on
[0, 27] x R we associate to each matrix X; a function ¢(X;) that returns the
f-dimensional vector of coefficients 8; providing the best fit of >, 8;;b,(s, 1]
to X;. In this way we can reduce the data space X; in dimension $ »x T’
to the feature space of dimension f corresponding to the vectors ;.

The problem considered in this paper is how to analyze the original data
by looking at the structure of these feature vectors in a robust way not af-
fected by outliers. It is clear that any analysis carried out in this manner
may depend greatly on the choice of basis functions, and the number of
coefficients f to use. Note that the procedure described in the paper is mo-
tivated by the need to avoid the high correlation that will appear between
the observations, due to the continuous nature of the process generating the
data. But the fitting process, and the subsequent analysis in the feature
space, will only be of help for this purpose if the munber of elements f in the
basis is very small. On the other hand, a reduced number of elements may
provide a poor fit, implying that the feature data may be an inadequate
representation of the original data. As the techniques used for the analysis
on the feature space are standard ones, this choice of a representation (a
basis and a number of elements) providing a balance between compactness
and precision becomes a key issue to justify the advantages of the proposed
procedure.

Unfortunately, the paper provides very little information about the ad-
vantages of the Zernike basis functions and how well they fit the data. For
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instance, Fan and Lin (1998) fit Legendre polynomials of order 7 followed
by a Fourier transfori to a similar set of cornea measures. It would be use-
ful if the authors comment on the pros and cons of different representations
for this type of data, and their impact on the subsequent statistical analy-
sis. Also, the crucial issue of the choice of dimension for the feature space
is not addressed in the paper. In figure 3 the plot of Zernike coefficients
seems to have 66 components but no indication is given on the reasons for
this choice, and the fit that can be achieved.

If we understand the paper correctly, the authors first subtract the
mean and then compute eigenvectors and eigenvalues of the covariance
matrix between the feature vectors M = T'T /n, where T has rows corre-
sponding to 8. Let v; be the f x 1 eigenvector associated to the largest
eigenvalue of M. The representation of the ¢th sample point in terms of
this first principal component is the function (87 v1) 37 v1;b;(s,t) and this
collection of functions represents the best approximation to the data. In

the same way, we can compute a second principal component to produce
T
(85 v2) >, vasbi(s,t) and so on.

The authors are interested in computing principal components not af-
fected by outliers. In many cases the most interesting problem is the dual
one, that is, the identification of outliers, which imeans detecting structures
in the data that deviate from the usual pattern. For instance, in clinical
analysis we may be more interested in identifying patterns that may corre-
spond to illness than in describing healthy individuals. This can be carried
out in the feature space of the vectors #;, because it i3 sensible to expect
that some type of aberrant behavior in the data space § x 1" will also be
captured in the feature space. The analysis of the relationship between
outliers in the data space and in the feature space is an interesting problem
that requires a deep study. For instance, a single outlier in the data space
due to some measurement error may lead to several outliers in the feature
space. But also a group of outliers in the data space due to some differ-
entiated behavior may lead to a single outlier in the feature space. The
problem is further complicated as the generation of the information in the
feature space (the computation of 8;) may produce groups of masked out-
liers, in addition to those that might exist in the original data. Therefore,
we should try to use robust estimates with a high breakdown point.

Several authors (see for instance Huber, 1985 and Jones and Sibson,
1987) have suggested that a useful way to detect outliers in multivariate
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samples is to search for univariate outliers on the projections of the data
over a set of directions obtained by maximizing some criterion. This is
the projection pursuit method, but the projection criteria to be used in
order to have a powerful high-breakdown procedure to identify outliers is
not clear. We have shown (Pefna and Prieto, 1997) that a useful procedure
to identify clusters of multivariate outliers is to look at the directions that
maximize either the fourth central moment for the projected data or its
kurtosis coefficient. If we apply this idea to the problem considered in this
paper, we have to find directions of projection di by maximizing

XL 0" — 3, 476!

d; = argmax — P — s 3
(ﬁzz'ﬂ(d 93‘ - ﬁZj:1d 93‘ ) )
s.t. Id|| =1

(1)

where 8"’ — 8; and in subsequent iterations

ol — (I— ! ddTM) ok
d"Md '

The outliers will be identified by computing univariate measures of distance
r; defined by

_ |dT9; — median(d’0;)]

B MAD(d” 8;) '

T3

These measures can also be used as weights w(r;) for the computation of
the scale estimator as a weighted sample covariance matrix. The approach
is related to Stahel (1981) and Donoho (1982), but instead of searching
directions at random we use the property proved in Pena and Prieto (1997)
that outliers must increase the kurtosis of the projected data.

We would also like to suggest that a possible alternative analysis of
this data set can be performed by using spatial time series (Bennet, 1979,
Droesbeke, 1987). Then, each corneal image is represented by a realization
of a spatial process and the way to identify structural behaviour will be to
carry out a factorial time series analysis of this spatial process. We can
also try to discriminate between normal corneal images and aberrant ones
by performing a cluster analysis of these spatial time series. The ideas of
Piccolo (1990) on clustering time series can be generalized to this setting.
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This fascinating paper marries some exciting ideas for the analysis and
display of functional models with some important and challenging data.
The result is some creative thinking that should have an impact well beyond
the context of this application. The new ideas for the display of the data
and principal components particularly impressed me. To react to all this
is a real pleasure.
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The authors wisely reduce the dimensions of the problem by replacing
the original nearly 7000 discrete observations by a basis function expansion
in terms of 66 Zernike polynomials. These polynomials are a tensor product
of familiar Fourier series functions and the Jacobi polynomials defined to
be orthogonal over [0, 1].

The authors refer to these polynomials as “features”. What do they
mean by this? A basis function can be called a feature if it captures some
structure that is known a priori to contribute much of the variation in
the data. Examples would be Fourier components in stationarv signals,
and perhaps B-splines and wavelets for data having local “bumps”. Are
these variations in corneal curvature that we see really well represented by
specific Zernike polynomial coeflicients? If not, the authors are just using
one handy basis among other possibilities that manages to represent the
data well in a manageable number of dimensions, and perhaps the term
“feature” should be reserved for effects in the data rather than in the basis.

Can we imagine better bases? The great virtue of [3-splines and wavelets
is their local character, which neither Jacobi polynomials nor Fourier series
possess. Periodic versions of B-splines are available, and perhaps these de-
fined for angular measure could be crossed with the usual B-splines for the
radial dimension.

Or, to consider a rather different approach, perhaps these analyses could
make use of finite element methods, now used widely to solve what are es-
sentially regularization problems, but defined in terms of partial differential
equations rather than explicit roughness penalties. I am finding in my own
work, and especially for multidimensional arguments such as here, that
the partial differential literature in general and finite element analysis in
particular appear to have a great deal to offer problems such as this.

Missing data are indeed a central and difficult problem in functional
data analyses. In fact, even in situations usually not thought of as involv-
ing missing data, we see similar issues arise. The estimate of the second
derivative of a function at a point near the boundary can become dramat-
ically unstable because the data become progressively more one-sided in
the information that they convey. While the estimates are unstable, they
are not, strictly speaking, outliers. Rather, outliers are usually understood
to be actual observations that are wildly inconsistent with sensible model
estimates, rather than model estimates that are wild because there are no
data to define them.
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The authors have elected to handle the missing data problem by in-
geniously modifving principal components analysis so as to render eigen-
functions insensitive to this type of instability. In so doing, they have
made a real contribution to robust estimation technology for functional
data analysis, and this is sure to be useful in the presence of what we
usually understand as outlying data.

An alternative approach is to use regularization, involving penalizing
the roughness of estimmated components, a topic that is a central theme
in our book, Functional Data Analvsis. When the data are not there, or
are sparse, the estimated components simply become smooth, as seems
reasonable. Regularization can also be thought of as a Bayesian approach
to functional data, since the roughness penalty can correspond to a prior
for the estimated function.

The regularization process can be viewed as borrowing information from
neighboring data points. We can also borrow information from other entire
images. That is, if a piece of an image is missing, and especially if it is on
the periphery, it seems reasonable to fill in the image with data from other
images that are in other ways similar it. This principle underlies what is
variously called in the linear modeling literature empirical Bayes, hierarchi-
cal linear models, or multi-level analysis. In that domain, it is postulated
that coefficients in a linear expansion are sampled from some population,
usually taken to have a Gaussian distribution. One of the main applica-
tions of these methods is in fact to compensate for missing time values in
longitudinal data. Brumback and Rice (1998), and the commentaries that
accompany it, use multi-level analysis for curves with missing data that are
represented by a linear combination of B-splines. Since these images are
linearly expanded in terms of Zernike polynomials, the application would
seem to be direct.

Finally, an option to explore is the rotation of principal components to
provide alternative and perhaps more easily described characterizations of
corneal curvature aberrations. PCA has as its main objective the identifi-
cation of a subspace within which much of the variability of the data can be
defined. Of course, the eigenfunctions play a key role in characterizing that
subspace, but this role is primarily computational. Once the subspace has
been determined, any nontrivial set of basis functions spanning the same
subspace, whether orthogonal or not, are potential candidates for describ-
ing what is happening within it. This principle, well understood by decades
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of psychometricians and other specialists in the analysis of behavioral sci-
ence data, needs to penetrate more deeply other areas of application of
PCA and related methods. These alternative coordinate functions should
be chosen to more directly evoke the features that ophthamologists actually
see through their instruments. Examples of rotating functional principal
components using the VARIMAX criterion can be found in our book.

But there is so much to admire in this paper as it stands, and T am sure
that analysts of functional data will derive benefit and stimulation from
this work for many years to come.
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This paper presents a nice application of the Functional Principal Com-
ponent Analysis (FPCA) to model ophthalmological data and an estima-
tion procedure based on a robust approach. In fact, the manuscript can be
clearly divided in two separated parts:

First, the functional data space of images is transformed into a space of
feature vectors by least-squares fitting on a functional subspace spanned by
an orthogonal basis of Zernike polynomials. Then, the stochastic problem
is reduced to a finite set of random variables as it is usual in dimensionality
reduction techniques.

Second, robust estimators of location and spread of the feature vectors
are calculated in order to reduce the outlier influence in the estimation
procedure of the FPCA.

The paper is written in a methodological way avoiding to give too much
technical developments and involves a very interesting and convincing ap-
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plication about the behaviour of robust estimation and compression pro-
cedures with spatial data. Nevertheless, perhaps some specific aspects of
the paper could be discussed and clarified by means of the following sug-
gestions:

1. The approach described in this paper is supported on the choice of
a Zernike basis so that the spatial FPCA is equivalent to the multivariate
PCA of the coefficients {feature vectors) in terms of such a basis. Aguilera
et al.(1999) have proved that this issue is valid for any Hilbertian random
variable with values in a finite dimensional space.

In order to extend this methodology to more general situations when we
deal with real data, different orthogonal basis could be considered such as
Bessel functions {Ruiz and Valderrama, 1997) or two-dimensional wavelet
functions that can be successful even for non smooth data.

2. Taking into account that the procedure used for obtaining the feature
vectors introduces certain noise in the measures, it could be performed
an interpolation of the iimages on the discrete data of the grid by means
of two dimensional splines of a suitable order. In fact, Aguilera et al.
(1996) have proved for the one-dimensional case that cubic splines provide
optimuim results with smooth curves. On the other hand, the interpolated
images preserve the observed data on the grid by assuming not noisy sample
information.

3. The estimation procedure developed in the paper is reduced to ro-
bust estimation of the location and spread measures of the feature vectors.
Nevertheless, a generalization to the FPCA could be outlined by means of
a direct robust estimation of the covariance operator instead of performing
it through the Zernike coeflicients, although it would give rise to a more
complicated problem.

Finallv, an alternative way to find robust functional principal compo-
nents would be to apply the “projection pursuit” approach developed by
Croux and Ruiz-Gazen (1996) by maximizing a robust estimation of the
variance.
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Rejoinder by N. Locantore, J.S5. Marron, D.G. Simpson,
N. Tripoli, J.T. Zhang and K.L. Cohen

We appreciate the many fine points raised by all of the discussants.
They have added much to the paper, and we have learned a lot. We are
also very grateful for the many important references that have been added.
Because complementary views have been provided by several discussants
on a number of topics, we have chosen to organize this rejoinder by topic.

Data summarization and choice of basis

Most discussants agreed with our expressed need to summarize the data,
and many interesting alternatives were suggested. Ramsay raises an inter-
esting point about the use of the term “features” and “features vectors” in
this context. We borrowed this from the field of statistical pattern recog-
nition, where it has become quite standard terminology. But we agree that
it would be better to reserve use of the word “feature” for something found
in the data, such as the bright red cone in Figure 2, not just a projection
onto a basis element.

We have direct experience with the Zernike basis, as in the paper, and
with a tensor product of the Fourier and Legendre bases, as discussed by
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Fan and by Pena and Prieto. The performance of these bases in this con-
text is not so different, and we got some similar PCA results using the
Fourier-Legendre basis. However, the Zernike basis is more efficient in
terms of giving similar representations with fewer terms (66 for the Zernike
basis corresponds to about 120 for the Legender-Fourier basis). A related
problem with the Legendre-Fourier basis is that it has some unpleasant sin-
gularities at the origin. Most angular tensor product bases will have this
problem, and it is a special property of the Zernike basis that its particular
Jacobi component can be viewed as carefully chosen to avoid this type of
singularity. The singularities were usually not a major problem for this
basis, since the signals being fit are smooth, but we believe it was the need
for basis functions to adapt properly for these singularities that entailed
more coefficients being needed than for the Zernike basis.

As suggested by Marden and by Pena and Prieto, there definitely are
some “knobs to turn” in fine tuning our method. The choice of munber
of terms in the Zernike representation certainly has an impact. As noted
by Brumback and by Fan, this is a smoothing parameter, and affects what
one sees in the familiar way. Here is a point where the clinical experience
of Tripoli and Cohen was essential. We addressed this by looking at a
set of raw data images, as in Figures 1 and 2, and comparing with their
reconstructions as in Figure 3, for a number of different coefficient numbers.
We chose 66 as best highlighting the important clinical features in these
images, while at the same time minimizing noise. We have not tried it,
but believe that the PCA will still find roughly the same directions for
a wide range of coefficient numbers (but with more noise, or else more
smoothing). Another knob to turn was the radius of the analysis region
(most images extend beyond the 4mm radius shown here). If this radius
is taken to be much larger, then even the robust Elliptical PCA can not
suppress completely the influence of the missing data (because nearly every
image then has edge artifacts). If the radius is taken much smaller, the the
edge artifacts are reduced, and thus there is less need for robust PCA.

Summarization by B-splines were suggested by Brumback, and by Ramn-
say. We considered B-splines at an early point in the research, but only the
traditional rectangular tensor product. We rejected it because it did not
seem to fit naturally in our circular region of interest. However, Ramsay’s
idea of an angular tensor product, and the other variations, sound very
sensible. The nice Brumback example may leave one skeptical (and it cer-
tainly highlights the importance of knot choice), but things are likely not
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that bad in the 2 dimensional world, because angular information will tend
to help with some of the problems shown there. We suspect this approach
could give similar performance to what we obtained with the Zernike basis.

Valderrama and Aguilera suggest some additional possibilities, based on
wavelets, and on Bessel functions. We expect that as long as these methods
can be adapted to our circular analysis region, thev will also give similar
good performance.

Dual problems

Kneip has pointed out a very powerful and promising approach to doing in
PCA in high dimensional contexts, that was new to us. 1. M. Chakravarti
has remarked that this observation can be viewed as a consequence of
Lemma (i) of Good (1969). The idea is well worth deeper investigation,
and may even prove to be useful in examples such as ours (66 dimensions,
but only 43 data points). We are reminded of the “dual problems” found
in the simplex method for linear programming.

Brumback has pointed to a different use of the term “dual”, which is
also an important concept for analyzing populations of complex objects,
when they are summarized by feature vectors.

Rotation of Principal Components

Ramsay brings up an important point about principal components in gen-
eral, and functional data in particular, which is that PCA should be viewed
as “finding low dimensional subspaces”, and these are not always best rep-
resented by the eigenvectors found by the original analysis. The original
eigenvectors were satisfactory for the set of normal cornea images analyzed
here, but we had exactly the problem Ramsay describes with other sets of
cornea data.

Even with the normal corneal images, we have contemplated (but have
not vet tried) investigating other subspaces. For example, the first op-
tometrical measurement is “spherical curvature”, and we could study the
component of the data in that direction by doing PCA only on the Fourier
order 0 basis elements in the Zernike representation. The second optomet-
rical measurement is astigmatism, which shows up mostly in the Fourier
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order 2 terms, so something similar could be done in that direction.

Performance of spherical and elliptical PCA

The bias effect in the elliptical PCA discovered by Boente and Fraiman's
is very interesting. We wonder if this simall effect could perhaps get worse
in higher dimensions. The clinically relevant results we got for the cornea
data suggest that this was not a mayor problem in that particular case.
We believe this was because the distributional major axes were roughly
parallel to the coordinate axes, as suggested by the middle panel of Figure
11, and thus bias was small. However, it will likely turn out be important
to understand this effect for other data sets.

We also enjoyed the simulations of Boente and Fraiman on the “fail-
ings” of spherical PCA. With any statistical method, insight comes from
“gtretching it until it breaks”, and a good job of that has been done here.
The key to this example is that the eigenvalues are very close, so the “prin-
cipal direction” becomes a rather fuzzy notion, and then a large amount of
contamination is added in a particular direction. When the contamination
is large enough, it easily overwhelms the difference between the eigenvalues
and gives systematically wrong answers. This can be viewed as showing
that the breakdown point of spherical PCA is quite small when the impor-
tant eigenvalues are close to each other.

To investigate this, we replicated their experiment, except that we
changed the eigenvalue matrix from A = (6,5) to A = (8,4) and A =
(3/2,3/4) (eigenvalues now separated by a factor of 2). The results are
shown below.

Classical, Cy 0 0 0 Classical, Cy 0
Spherical, Cy | 0 0 0 Spherical, Cy | 0 0 0
Classical, Cy.qy | 200 500 500 || Classical, Cy.p | 5
Spherical, Cyq | 77 7 1 Spherical, Cyy | 5

=
=

It appears that the breakdown point in the spherical method, observed by
Boente and Fraiman does not occur in these examples. In their example, the
first theoretical eigenvalue only accounts for 54.5% of the total variation of
the data. When we convert the data to the sphere, the eigenvalues become
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approximately Ag = (0.53,0.47). In both of our examples, it is 66.7%, and
the converted eigenvalues are approximately Ag = (0.58,0.42). Influence
function calculations, similar to those in Croux,’s (3) show why there is
breakdown in one case, but not the other. Using notation similar to Croux,
the influence function of an eigenvector is bounded by

1
TF((z1,22), 01, F) < oi———-
( ) ) 2(A1 — Ag)
When ¢ exceeds this value, the estimate will break down, since the amount
that the angle moves (in radians) is

s (o)

Note that this angular measurement will be undefined when e > 2(X; —
Xz). The estimate becomes very poor {i.e. off by 45°) when e = v/2(); —
Az). In their example the 10% contamination exceeds v/2(0.53 — 0.47) ~
0.085, 30 breakdown of the estimator is to be expected. In our examples,
spherical PCA showed some signs of weakness even though there was not
total breakdown. We also performed the simulation where the leading
eigenvalue accounted for 90% of the total variation, A = (9,1), and this
admirably withstood one-third contamination. Since the key to breakdown
of spherical PCA is the difference between eigenvalues for the sphered data,
we give a table of approximate values for these.

First PC’s % Al Ag \/§(>\1 — >\2)
55% [ 0.53 047 0.085
60% | 0.54 0.46 0.110
66.7% | 0.58 0.42 0.230
70% | 0.59 0.41 0.250
80% | 0.67 0.33 0.480
90% [ 0.75 0.25 0.500

We conjecture that other robust approaches will have similar problems
with breakdown in this type of simulation, which motivates construction of
a diagnostic based on eigenvalues. This would not be straightforward be-
cause of the problems with interpreting spherical and elliptical eigenvalues
pointed out by Brumback, and by Croux. This problem can perhaps be
tackled by replacing the eigenvalues with sums of squares of projections of
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the data (these are the eigenvalues for ordinary PCA, but not for spherical
PCA). The eigenvalues are quite different for the cornea data, so this does
not seem to be a practical problem here, but it seems well worth knowing
as it may appear with other data sets.

Croux has elucidated some very interesting and useful properties, in-
cluding equivariance, the influence function and efficiency. We note that
the dependence of the asymptotic relative efficiency (compared with classi-
cal PCA) on the eigenvalues is an inherent feature of estimation with n > d.
An interpretation of his “30% upper bound on the efficiency” may be that
when one uses only directional information, in a two dimensional context,
half of the information is lost. Given the increasing efficiency of the spatial
median as the dimension increases (see Marden’s comment), we conjecture
that the efficiency bound for spherical PCA will also increase, possibly to
1, as the dimension increases. Croux’s suggestion (ii) looks promising to
address this inefliciency.

We do not agree with Croux’s suggestion that elliptical PCA is an
“equivalent of correlation PCA”. To understand this point, note that cor-
relation PCA would be nearest to doing PCA in the lower right hand plot
of Figure 18 However, elliptical PCA is done in the left hand plot, which
can give quite different results.

We were interested to find that Marden (1999} had independently de-
veloped the idea of spherical PCA. This seems to be an idea whose “time
has come”. Marden’s remark about the population PCA directions being
the same as the spherical PCA directions was verv insightful and interest-
ing. A word of caution about the notion of “coordinate-wise symmetry” is
that for (non-trivial) empirical distributions, this seems to have the mini-
mal requirement of n > 2%, which seems quite far from the n < d situations
present for this type of data.

We agree with Kneip’s observation that PCA is quite capable of finding
“interesting directions”, even when the data are not normally distributed.
The need for normality is more about classical multivariate hypothesis test-
ing, than it is about finding directions.
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More approaches to missing data

Ramsay nicely elucidates the difference between “missing data” in individ-
ual iimages and “outliers” in the population sense. However, our missing
data problems do cause “outliers” in precisely Ramsay’s sense, i.e. data
points that are “wildly inconsistent with sensible model estimates”. TFor
example, when looking at projections onto eigenvectors that are driven by
outliers, e.g. the direction shown in in Figure 7, plots of the distributions
show that the outliers are easily 8 or more standard deviations from the
mean. Such plots were not put in the paper to save space, but are visi-
ble in the lower half of the accompanying MPEG movies. See for example
norm200.mpg. Another way to see that we have “outliers” in this sense is
the bottom panel of Figure 11. If these were multivariate Gaussian data
vectors, then the bottom curves would all lie in about the range (—3,3),
but there are a number of cases that go far outside that range.

Brumback’s analysis of the missing data problem nicely clarifies the
problems of the Zernike basis in this context. The wildly discolored re-
gions in Figure 3 are caused by the type of extrapolation illustrated in the
simple example, and the effect is heavily magnified by looking at second
derivatives. Brumback’s suggestion for how to counter this effect provides
a nice solution to the problem posed by Fan of “how can we do robust
imputation?” A possible downside is that it may be computationally very
slow with the 6912 x 6912 covariance matrix V.

Also promising is the regularization-Bayesian approach to the outlier
problem, suggested by Ramsay. This is especially natural when doing sum-
marization by B-splines.

Alternate versions of PCA

The possibility of “depth” based approaches to PCA suggested by Boente
and Fraiman sounds promising,.

We did consider some projection pursuit approaches, as suggested by
Croux, by Pena and Prieto and by Valderrama and Aguilera, but were too
intimidated by the very high dimensionality for our data. Examples we
have seen tend to be in something like 4 dimensions, with 10 dimensions
already causing concern. Our 66 dimensional space is very large, and we
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were not confident of being able to find an algorithm that would avoid
likely problems with multiple optima, etc. Pena and Prieto seem to hint at
an approach which could address the multiple optima problem. Another
approach may be to use elliptical PCA directions as starting values for this
type of approach, and then refine by iteration. The local optimum found
by this method would probably be useful, and might be better than the
elliptical PCA, especially in view of the bias problem pointed out by Boente
and Fraiman.

Robust estimation applied directly to the continuous covariance oper-
ator, as suggested by Valderrama and Aguilera sounds well worth further
study. One approach could be to use the spherical or elliptical projection
idea in that domain.

Robust location estimation

Croux made some very useful suggestions about improving the numerical
performance of the L' location estimate. Although starting with the mean
vector caused us no trouble with our data, we anticipate that starting with
the componentwise median, as Croux suggests, instead of the median will
improve the performance of the algorithin.

Fan asks why we use the spatial medians as a final location estimator
instead of the componentwise median. Certainly the componentwise me-
dian is a possible replacement. We note, however, that the spatial median
already has a 50% breakdown point (see Marden’s cominent), so it has
good “global” robustness. He and Simpson (1992) derived optimal “local”
robustness of the spatial median for directional data. Brown (1983) pre-
ferred the spatial median on the basis of its rotation equivariance and its
increasing efficiency as the dimension increases.

Clearly, finding an appropriate tradeoff between robustness, efficiency
and smoothness in high dimensions is a challenge. We anticipate many
improvements to our initial approach. Indeed the discussants have already
introduced many promising ideas.
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Additional topics

Kneip makes a good point about the importance of “errors in variable”
methods. We agree that there is a need to extend ideas in the direction
of functional data analysis. A good starting point may be the monograph
Carroll, Ruppert and Stefanski (1995). We also agree about the importance
of registration of functional data, and that was an issue in our analysis, that
we solved by using “pupil center” information.

Pefna and Prieto have anticipated some upcoming work, by asking how
this methodology can be useful for more just describing populations, but
in fact to find problems with corneal shape. Work is currently under way
on methods for the identification of Kerataconus, as shown in Figure 2.

The spatial time series approach of Pena and Prieto to these data sounds
interesting.

Ramsay's suggestion of the use of finite element models also has soine
appeal. An advantage is that one could perhaps make use of the many
known physical properties of cornea.
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