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Abstract  

A method for exploring the structure of populations of complex objects, such 
as images, is considered. The objects are summaa'ized by feature vectors. The 
statistical backbone is Principal Component Analysis in the space of feature vectors. 
Visual insights come from representing the results in the original data space. In an 
ophthalmological example, endemic outliers motivate the development of a bounded 
influence approach to PCA. 
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1 I n t r o d u c t i o n  

Tile  " a toms"  of  t r a d i t i o n a l  s ta t i s t i ca l  ana lyses  are n u m b e r s  or  p e r h a p s  vec- 

tors .  Bu t  a n m n b e r  of  d a t a  sets,  f rom diverse  areas  of  science, p rov ide  

m o t i v a t i o n  for genera l iz ing  the  no t ion  of t he  a t o m  of  the  s ta t i s t i ca l  ana ly -  

sis to  m o r e  genera l  d a t a  types .  R a m s a y  and  S i lve rman  (1997) have  coined 
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tile term "flmctional" for such data. That  monograph contains a wide array 
of examples~ and also makes a good start on the development of statistical 
methods for their analysis. 

While this type  of new statistical analysis makes use of classical multi- 
variate analysis methods,  such as Principal Component  Analysis, substan- 
tial adapta t ion and new development is typically needed. For example, 
when tile atoms of the analysis are "curves", e.g. longitudinal data, they 
can typically be effectively digitized to vectors. However classical meth- 
ods make little use of tile %moothness" that  is present in m a w  data  sets. 
Hence they are poorly suited for analysis in such cases. One reason is that  
tile needed covariance matrices are singular, or nearly so. A second reason 
is that  classical statistical methods tend to be powerful in an "omnibus" 
way, and thus tend to trade away power in the particular directions that  are 
more important  for functional data  analysis (e.g. in directions correspond- 
ing to %nloothuess").  See Fan and Lin (1998) for interesting discussion 
of this point, and some useful hypothesis testing ideas in functional data  
analytic contexts. 

This paper  considers tile statistical analysis of data  types that  go beyond 
the idea of "curves as data",  that  was the focus of Ramsay and Silverman 
(1997)I into more complicated data  structures.  There are two main points. 
The first is that  complicated data  types can be effectively handled and ana- 
lyzed through summarizing them in terms of "feature vectors". The second 
is that  robust  methods are very useful, and are perhaps more important  
in functional situations than in classical ones, since there tend to be more 
ways for outliers to impact very high dimensional statistical analyses. 

The motivating example used in this paper  comes Dora ophthahnology. 
An important  component  of the human visual system is tile shape of the 
outside surface of the cornea, the outer surface of the eye. The shape of 
this surface is responsible for 85% of the refraction that  results in an image 
focused on tile retina. Corneal topography measurement instrmnents sucll 
as the Keratron (Optikon 2000, Rome) typically use color-coded maps to 
display anterior corneal shape information in two dimensions. A useful 
convention is tile mapping of radial curvature that  depicts low curvature 
as blue, then green, yellow, orange, and red as the curvature increases. 

Two such images are shown in Figure 1. These show two features often 
seen in populations of corneas. The first has fairly constant curvature 
(shown by nearly constant color), while tile second has a vertical orange 
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band, representing ast igmatism with a vertical axis. 

This type of image provides a useful diagnostic tool. For example, Fig- 
ure 2 shows a curvature map from a patient with the disease of keratoconus, 
in which the cornea grows into a highly curved cone shape. 

In this paper, we s tudy this type of data  fl'om a population viewpoint, 
i.e. tile atoms of our analysis are such images. While the example is quite 
specialized, we believe tile methodology developed will be useful for a wide 
variety of populations of images, and other complex objects. 

In Section 2 we discuss effective summarizat ion of each data  point into 
"feature vectors", by fitting the Zernike orthogonal basis to each. In Sec- 
tion 3 Principal Component  Analysis is used to unders tand the structure 
of a population of normal corneas. The analysis is actually done in the 
"feature space" of Zernike vectors, but  tile results are viewed in tile "data 
space" of curvature images, since this is where visual insights are gained. 
This idea was independently developed by Cootes, Hill, Taylor and Aslam 
(1993) and Kelemen, Szekely, and Gerig (1997). In statistics, related meth- 
ods are often used in "shape analysis", see Dryden and Mardia (1998). 

In Section 3 it is seen that  this PCA reveals several clinically intuitive 
aspects of tile population. But a disturbing feature of the analysis is that  
it is affected by outliers, caused by some of tile images having some missing 
regions. These outliers motivate a robust bounded influence approach to 
PCA. 

Tile first step in robust PCA is finding tile centerpoint of the popu- 
lation. A suitable robust estimate of "center" is developed in Section 4, 
which is a modification of tile s tandard L 1 M-estimate. Robust estimates 
based on a useful surrogate for the covariance matrix are then developed 
in Section 5. Standard robust estimates of the full covariance matr ix  are 
useless here (and we expect this same difficulty to occur in many other very 
high dimensional contexts) since tile nmnber of da ta  points is less than the 
dimensionality. We overcome this problem using "Spherical Principal Com- 
ponent Analysis", which is a robust version of PCA that  is anticipated to 
be broadly useful. Finally due to tile special nature  of these data, a simple 
extension is made to "Elliptical Principal Component  Analysis". Details of 
tile Zernike decomposition are given in the Appendix. 
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Figure 1: Two cornea.l images showing radia.l cur~3.ture. Tile left shows rda.tivety 

construct cltrva.tltre. The i'J~llt shows i~oi'c CUFV~.tuFc llC~s tile contoF; and a marked 

vertical astigma.tism. 

Figure 2: Ra.diM curva.ture of a cornea with Kerata.conus. The red region is a. cone 

of  high cur~ture .  
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2 Reduction by Zernike Decomposit ion 

The first challenge in the analysis of the corneal image data  is that  the raw 
da ta  are in the form of up to 6912 measurements at a polar grid of locations. 
Classical multivariate analysis on these vectors is numerically intractable, 
because of their large size, and because they contain many redundancies 
and near redundancies. 

The problem of reducing da ta  of this type  to more manageable "feature 
vectors" is familiar to the field of statistical pat tern  recognition, see e.g. 
Devijver and Kittler (1982). An effective sunnnarization of an image of the 
type  in Figure 1, into a feature vector, is the vector of the coefficients of a 
least squares fit of the Zernike orthogonal basis. 

This two dimensional basis is supported on the disk, and is a tensor 
product  of the Fourier basis in the angular direction, and a special Jacobi  
basis in the radial direction. The aacobi basis is very carefully chosen to 
avoid singularities at the origin. This basis is s tandard in optics, and is 
well suited to summarizing optical quantities such as spherical curvature 
and astigmatism. Mathematical  details are discussed in the Appendix.  

The results of Zernike feature vector sunnnarization, for the images of 
Figure 1, as well as several others, are shown in Figure 3. There is some 
loss in this type of image compression, but  it is relatively small, and more 
important  the missing features are not of clinical interest. 

Next we s tudy a popnlat ion of n 43 normal corneal images, which 
were obtained while screening patients for laser surgery. The images shown 
in Figure 3 are a subset, chosen to represent the most important  features. 
Note that  the raw curvature images from Figure 1 (top left and center 
in Figure 3) now appear %moothed".  This is the same effect that  is ob- 
served when a digitized smooth curve is Fourier transformed, and then the 
transform is inverted using only the low Dequency coefficients. The main 
features are still present, but  the rough edges have been smoothed away. 
Varying degrees of ast igmatism are seen as vertical bands of steep curva- 
ture in the top center and right, the middle left and center, and the bo t tom 
center. Another feature widely observed in normal corneas is the tendency 
to be steeper either near the top, or near the bot tom,  shown to varying 
degrees in the top left and right~ middle right and bo t tom right. Another 
feature is extreme curvature caused by missing data  in the images ~ periph- 
eries, which appear as the red and blue regions of extreme curvature. These 
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Figm'e 3: Zernike reconstr~ctions of some norma.i cornea, images'. 
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are tile results of artifacts, such as eyelids blocking tile imaging device (the 
extent of the missing data  for each is shown by the thin white lines). The 
missing data  has a serious impact on the Zernike fit, which is reflected by 
these regions of high curvature. These effects are seen to have an important  
impact on the analysis of Section 3. 

The difficulty of developing an intuitive understanding of the overall 
s t ructure of tile population by viewing a collection of color-coded maps is 
demonst ra ted  by these nine images. The challenge is overwhehning when all 
43 images are included. This can be seen by viewing an MPEG movie of all 
43, available Dora the web page: h t t p  : / /www.unc.  e d u / d e p t s / s t a t i s t i c s /  
postscript/papers/marron/cornea-robust/, in the file normlwr.mpg. 
The reason is simply that  there is too nmch information present, and this 
information is presented in a visual form that  the human perceptual  system 
is not able to effectively comprehend. 

3 Ordinary principal components analysis 

PCA can provide an effective solution to this quite general problem of 
unders tanding the structure of complex populations. Classical PCA seeks 
one dimensional "directions of greatest variability", by studying projections 
of the data  onto direction vectors starting at tile sample mean. The variance 
of these projections is maximized in the direction of tile first eigenvector 
(i.e. the one with the largest corresponding eigenvalue) of the sample 
covariance matrix. A simple example is shown in Figure 4. Here the data  
is a simple two dimensional point cloud, where each point is represented by 
a circle. PCA can be viewed as "decomposing the point cloud" into pieces 
which reveal tile s tructure of the population. In Figure 4 it is centered at 
the sample mean, where the two lines meet. Tile heavier line shows tile first 
direction of greatest variability, i.e. the direction of the first eigenvector 
of tile covariance matrix. The thinner line shows the direction of greatest 
variability in the subspace that  is the orthogonal complement (trivial in 
this example, since that  subspace is one dimensional, but otherwise found 
via tile eigenvector with second largest eigenvalue). Each data  point is 
projected onto the thick line to get its "first principal component",  shown 
as a thick +,  and is projected onto the thin line to get its "second principal 
component",  shown as a thin +.  In each case tile principal components 
give a particular one dimensional view of the data. An important  property 
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Figm'e 4: T~;~ dhnensionM example illustrating PCA. Fh'st dgenvector dh'ection 
(and pFojections of the data) sho~vn with a thick ih~e (thick plusses). Second 
eigen~ctor direction (at~d projections of the data) shown with a thin line (thin 
plusses) 

of PCA is that it allows finding interesting low dimensional representations 
of tile data. 

For application in fimctional data contexts, the key is to do the PCA "in 
the feature space" (i.e. on the feature vectors), but then to gain insights 
"in the data space". For curves as data, Ramsay and Silverman (1997) 
were successful with overlaying the curves that represent each data point. 
The PCA directions are effectively displayed by projecting each data point 
onto the eigenvector, and then representing each projected point again as 
a curve. The family of curves then clearly displays the intuitive meaning of 
the component of variability that is represented by that eigendirection. A 
simulated example of the effectiveness of this type of visual representation 
is given in Figure 5. 

The upper left plot shows a simulated family of random cm'ves, that is 
considered here to be a population whose structure is to be analyzed. This 
type of visual representation of high dimensional data was termed "paral- 
lel coordinates" by Inselberg (1985) and Wegman (1990), who proposed it 
as a general purpose device for the visualization of high dimensional data 
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Figure 5: "Curves as data." example illustrating PCA. First row shows results of 

"recentering". Second row shows strongest component of va.ria.bitity, Third row 

shows second most hnportant component. 

(i.e. of point clouds in high dimensional space). Tile next plot to the 
right shows tile sample mean of this populat ion (i.e. of this point cloud). 
Since tile multivariate mean is calculated coordinate-wise, tills is sin, ply 
tile coordinate-wise mean of the curves. Tile next component shows the 
residuals from subtract ing tile mean curve fl'om tile raw data. This repre- 
sents the point cloud which results from shifting tile original point cloud so 
it is now centered at tile sample mean. 

Next PCA is used to unders tand the structure of the residual point 
cloud. Tile first eigenvector is computed,  and the data  are projected as in 
Figure 4. Two representations of tile set of tile projections (i.e. tile heavy 
plusses in Figure 4) are shown in tile second row. Since these projections 
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are points in tlle mean residual space (i.e. tile data  space recentered at 
tile mean), one representation is a parallel coordinate plot overlay, shown 
in tile left plot in the second row. Another  representation is shown in tile 
center plot of tile second row, in tile original da ta  space, which is tile mean 
curve, together with just  two extreme projections. Both displays show 
that  the dominant  direction of variability is "vertical shift" (which was a 
feature built into these simulated data). The right hand plot shows the 
residuals fl'om subtracting the projections fl'om the recentered data  (i.e. it 
is the difference of the plot above, and the plot on the left). This shows 
the projection onto the complementary subspace (represented by the thin 
plusses in Figure 4). Tile direction of next greatest variability is analyzed 
in the same way in tile third row. Note that  this direction reveals a %ilting 
component" in the data  that  is not visually apparent in the raw data  plot. 
This gives a hint about tile power of PCA in finding structure in populations 
of complex objects. Further  eigendirectious are not shown for this data  set, 
since they do not reveal additional interesting structure. 

While the parallel coordinates visual representation is very useful when 
the data  are curves (as shown in the left hand column of Figure 5), it 
does not give an intuitively useful view when the data  are images (as in 
Figure 3) or more complex structures that  are not usefully overlaid on a 
single plot. For example note that  Figure 11, a parallel coordinate plot for 
tile population of 43 normal corneal shapes, does not contain much insight 
about  the population of curvature images (a subset of which can be seen in 
Figure 3). Since intuitive understanding comes in tile feature space, that  
is where the visualization of the PCA must be done. While overlays (as 
in the left colmnn of Figure 5) are no longer useful, representations of the 
directions in terms of extremes, as shown in the center column of Figure 
5, are qnite useful. Studying tile mean, together with extremes in each 
direction, gives insight into that  ~direction of variability". Figure 6 shows 
such a representation for the direction of the first eigenvector (i.e. the 
direction of greatest variability) of the cornea data  set shown in Figure 3. 

The center panel of Figure 6 shows tile population mean. This shows 
a moderate  amount  of curvature, and some astigmatism, which are known 
features of tile population of normal corneas. The mean also has been 
affected somewhat by tile edge effects on some of the images, as can be 
seen in Figure 3. The left and right panels of Figure 6 give an impression 
of the direction (in tile 66 dimensional feature space) of the first eigenvector. 
This shows a combination of two known population features. First there is 
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overall higher and lower curvature (shown as overall orange on tile left, and 
green on tile right). Second there is stronger (left) and weaker (right) levels 
of vertical astigmatism. There is some influence Dora the nfissing da ta  also 
on this direction, visible at the bot tom.  

Figure 7 shows tile second most important  direction of variability. 

Tile direction in the 66 dimensional feature space, of the second eigen- 
vector, shown in Figure 7, represents a feature of the populat ion that  was 
discussed near Figure 3: corneas tend to be steeper either on the top or on 
tile bot tom. In this direction, tile influence of missing da ta  is quite strong, 
as indicated by tile red and blue regions of extreme curvature at tile top 
and bot tom.  

Figure 8 shows the third direction of variability. 

This ter t iary variability also seems severely influenced by edge effects, 
but  shows another clinically intuitive aspect of tile population: vertical 
(and stronger than tile mean) versus horizontal axes of the astigmatism. 

A visually compelling w w  to s tudy the directions that  are suggested by 
Figures 6-8 is via a movie, which "nlorphs" between the three images shown. 
M P E G  movies of these can be seen in the files norml00 .mpg, norm200 .mpg 
and norm300.mpg, at tile same web directory given at tile end of Section 2. 

4 R o b u s t  E s t i m a t i o n  of  Loca t ion  

A simple example demonstrat ing tile effect of outliers on the mean in two 
dimensions is shown in Figure 9. Note that  the single outlier pulls the 
sample mean actnally outside the range of the other observations. 

Simple examples of this type suggest that  tile impact of outliers may 
be overcome by simply deleting them. This was not effective for the cornea 
da ta  set, since as soon as the worst outliers are deleted, other images become 
the next round of "outliers" (since the missing data  problem was endemic 
to this data  set). When  these are deleted, then other points appear in this 
role. Outlier deletion results in loss of too much information, because a 
very large fraction of the populat ion needs to be deleted. 

This motivates a "bounded influence" approach where the goal is to 
use all of the data, but  to allow no single observation to have too ranch 
impact.  Much work has been done on the development of such "robust" 
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Figure 6: Me, at~ image of  the population of normat corneas in the center. Represen- 

tatives of the first principal component direction on either side give an impression 

of  the dfl'ection of greatest va~'iabiti(~,: 

Figure 7: Me, an flna.ge of  the population of  norma.i cornea.s in the center. Rep 

resenta.tL~s of  the second principal component direction on either side give at~ 

impression of the second direction of greatest variability. 

Figm'e 8: Mean image of  the population of normat corneas in the center. /~epresen- 
ta.tives of  the third prineipa] component direction on either side g~ve an impression 

of  tile third direction of  grea.test ~u'ia.bility. 
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Figure 9: Two dimensional example  to illustra.te effe, c t o f  outtiers on sample memo, 

Data are shown as ch'cles, sample  mean  a.s the heavy  ch'cle together  with the  x. 

statistical procedures, see e.g. Hampel, Ronchetti,  Rousseeuw and Sta- 
,,el (1986), Huber (1981), Rousseeuw and Leroy (1987) and Staudte and 
Sheather (1990). 

The robust estimate studied here is the "L p M-estimate of location", 
see Section 6.3 of Huber (1981). Given multivariate da ta  X 1 , . . . ,  X~ E R d, 
this is defined as: 

0"= arg min E II-XTi 0ll~' 
0 i--1 

where 11"112 denotes the usual Euclidean norm on R d. Here we consider 

only the case p = 1, and note that  0" may be found as the solution of the 
equation: 

() ~1 ~ Xi-O (4.1) 0 N IIXi-011  11 --0-12 
"= i=1  

Insight as to how this location est imate dampens the effect of outliers 
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Figure 10: Two  dimensional example  itlustra.ting the L ~ location est imate.  R a w  

da.ta sho~u~ a.s thin circles, project ions onto ca.ndida.te spheres sho~vn as thin 

plusses. A~,'erages o f  project ions sho~ui as thick plusses, centers of spheres a.s 

thiclc ch'ctes. Sample  mean  shown as thiclc ch'c]e a.nd x. 

comes fl'om recognizing that 

+ 0 -- PS,ph(O,1)Xi, 
I lX i  - o112 

i.e. tile projection of Xi onto the sphere centered at 0, with radius 1. Thus 
the solution of (4.1) is the solution of 

0 - avg  {P@h(o ,1 )Xi  - 0 : i - 1 , . . . , n } .  

Hence Omay be understood by considering candidate unit spheres centered 
at ~, projecting tile data onto tile sphere, then moving tile sphere around 
until the average of the projected values is at the center of the sphere. 
These ideas are illustrated in Figure 10, where the data are the same as 
in Figure 9, again represented as circles. This representation of the L 1 
location estimate was pointed out by Small (1990). 

Note that the upper candidate sphere is not centered near any reason- 
able :'centerpoint of the data". When the data are projected onto the sphere 
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(represented by thin plusses), their centerpoint (shown as the thick plus) 
is not near the center of the sphere (shown as the thick circle). However, 
when the sphere is moved until the center of the projected data  coincides 
with the center of the sphere (as for the lower sphere where the thick plus 
and the thick circle are the same), that  location gives a sensible notion of 
"center" of the point cloud. In particular, this notion of center gives the 
outlying point only as nmch "influence" as the other points receive, it can 
no longer move the center outside the range of the other points. 

This insi~,t  makes it clear that  in one dimension, 0 is any sample me- 
dian. Hence 0 has been called "the spatial median" for higher dimensions. 
Another  consequence is that  this location est imate is not unique. However, 
Milasevic and Ducharme (1987) have shown that  in tfigher dimensions @ is 
unique, unless all of the data  lie in a one dimensional subspace. Other  ter- 
nfinology has also been used, e.g. Haldane (1948) called it the "geometric 
median" and made very early remarks on its robustness properties. 

A simple and direct iterative method  for calculating 0 comes from Cower 
(1974) or from Section 3.2 of Hnber (1981). Given an initial guess, O0, 
iteratively define: 

~ i - - 1  wi 
where 

1 

Wi ~ Xi ~-1 2" 

This i teration can be understood in terms of Figure 10 through the re|a- 
tionship 

Ein l~i)i (Xi ~g-1) 
n q J) }-~-i= 1 i 

@'g 1 +  ~ 1 r~ 
n ~ i = 1  Wi 

This shows that  the next step is in the direction of the vector from the 
current  sphere center 0g-1 (shown as tile circle in Figure 10) to the mean 

1 Y ~ I  P@h(#c_l,i)Xi (shown as tile pills in Figure of the projected data, 
10). Tile length of the step is weighted by tile harmonic mean distance of 
the original da ta  to the sphere center (so larger steps are taken when the 
da ta  are more spread). For the cornea data, and also for a few tests in 
other high dimensional contexts, we had success taking @0 to be the sample 
mean, and iterating until either 20 steps had been taken, or the relative 
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difference between ~ and 0"g 1 was less than 10 6. More work needs to be 
done on verification and fine tuning of these choices, and it may be useful 
to use a different starting point, such as the coordinate-wise median. 

The L 1 est imate of the center of the cornea da ta  from Figure 3 is shown 
in Figure 12. Again the calculation is done in the feature space of vectors 
of Zernike coemcients, bnt  the result is displayed as a curvature image. 
Note that  the impact of the outlying observations, caused by edge effects, 
is substantial ly mitigated, when compared to the sample mean, as shown 
in the center plots of Figures 6-8. 

The L 1 location est imate is most sensible when the scales of the various 
dimensions are comparable. However, this is not the case for the cornea 
data, as shown in Figure 11. 

The top plot is a parallel coordinate over lw of the raw feature vectors, 
i.e. the Zernike coefficients, plot ted as a function of dimension nmnber (see 
Appendix for details). At this scale, it is even impossible to tell how many 
curves are overlaid, since the donfinant features are two very negative co- 
efficients (representing the height and the parabolic curvature components 
of the eye shapes). The middle plot shows these same feature vectors, 
with the coordinate-wise median subtracted.  Now it is apparent that  the 
da ta  ranges across coordinates differ by orders of magnitude. This effect is 
similar to the Fourier expansion of a smooth signal having high frequency 
coefficients that  are orders of magnitude smaller than the low fl'equency co- 
efficients. In this context, it is sensible to m o d i ~  the L 1 location estimate, 
by first rescaling each coordinate using sortie measure of "spread". Here 
the Median Absolute Deviation from the median is used. The lower plot 
in figure 11 shows the feature vectors when they have been rescaled in this 
ww.  The result of modifying the L* location estimate, by first dividing 
by the coordinate-wise MAD, then computing the L 1 location estimate, 
and finally multiplying by the coordinate-wise MAD, for the cornea data  
is shown in Figure 13. Since this is equivalent to replacing the sphere in 
Figure 19 with an ellipse, we call this the elliptical L 1 location estimate. 

This is an improvement,  in terms of even less impact by the outliers, 
over the "centerpoint" shown in Figure 12. 



Robust functional data analysis 1 7  

0 

-0.2 

-0.4 

-0.6 
0 

0.05 

-0.05 
0 

i . 
i i i i i i 

10 20 30 40 50 60 

i i i i 

10 20 30 40 
i i 

50 60 

20 

0 

-20 

10 20 30 40 50 60 

Figure 11: Pa~'altet Coordinate Plots of Zernike Coe~cients, for population of 

normal cornea.s. Top uses  the origina.I Zernike scale, middle has coordinate-wise 

media~l subtra.cted, bottom is also divided by coordinate-wise ~u 



18 N.Locanto~'e, J.S.Marron, D.G.Simpson~ N. Tvipoli, J.T.Zhang, K.L.Cohen 

Figure 12: Spherical L 1 mean. Missing data. effects ha.~ less influence than on 

the sample mea.n (shown in the cen~ers of Figures 6-S). 

Figure 13: Eltiptiea.i L 1 mea.n. Here the impact of the missfltg da.ta is nea.rty 

completely elimina.ted. 
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�9 

�9 

Figure 14: Two dimensional example showing how ou ttiers affect PCA. Data. points 

are shou~n as circles. The first eigenvector direction is shown by the thicker line 

segment, the second by the thinner. The length of each eig~nvector is proportional 

to the eJgen~,~tue. 

5 Robust  Est imation of Spread 

While outliers can have a dramatic effect on tile mean (tile sample first 
moment) ,  they often have an even stronger impact on traditional measures 
of scale, such as covariances, since these are based on second moment quan- 
tities. 

A simple example, showing the potential  effect of outliers on PCA is 
given in Figure 14. Note that  except for the single outlier, the direction of 
greatest variability is in tire direction of the second and fourth quadrants.  
But  tire single outlier completely changes this, so the direction of greatest 
variability goes towards tire first and third quadrants.  This is caused by 
the large effect of the single outlier on the sample covariance matrix. 

Figure 15 shows how a single "outlier" can drastically affect the PCA 
of the simulated family of curves shown in Figure 5. A single new data  
curve is clearly visible in tire raw da ta  plot on tire upper  left. Note that  
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the new data  point is not an outlier in any single coordinate direction, bnt  
its stmpe is clearly different from the others (and it is clearly far away in 
terms of Euclidean distance). 

The new observation in Figure 15 has negligible impact on the mean, 
as shown in the center plot on the top row. It lnas only a small impact 
on ttne first principle component  direction, as stnown in the second row, 
al though it is visible in terms of the ~ripples" that  can be seen. But this 
single observation clearly dominates the second PC A direction, as shown in 
tile third row. Because of this major impact, tile important  second feature 
of tim data, the "tilting;' shown in the bo t tom row of Figure 5, now only 
appears in ttne ttfird PCA direction. Tiffs shows tnow %utliers" can hide 
important  features of the data. It also shows tlmt a point can be an outlier, 
even when none of its coordinates is unusually large, which is a perhaps 
surprising proper ty  of high dimensional data  (in the spirit of tile fact that  
a point on the vertex of tile unit cube in d dimensions is distance V~ flom 
the origin). 

Figure 16 shows how ttne spherical PCA approactn gives a bounded in- 
fluence version of PCA,  for the same simple da ta  set (point cloud oriented 
towards tile second and fourth quadrants,  with a single outlier) as in Figure 
14. The main idea is that  of the projection approach to L 1 M-estimation: 
project  ttne da ta  onto a sptnere to reduce ttne effect of outliers. 

In Figure 16, ttne circles are ttne raw data, and tlne result of projecting 
them onto a sphere centered at tile L 1 M-estimate are shown as tile thin 
plusses. Spherical PCA is based on tile eigenanalysis of the covariauce 
matrix of tlnese projected data. As for tim location estimate, One influence 
of the outlying observation, is greatly reduced. 

Figure 17, shows tile result of a spherical PC A for the da ta  set with tile 
outlier shown in Figure 15. 

In Figure 17, tim outlying observation now tins almost no effect on the 
first PCA direction (stnown in ttne second row), i.e. tlne wiggliness in the 
second row of Figure 15 is gone. But more important ,  tlne second PC A 
direction (shown in the third row) now shows tile important  tilting feature 
of the bulk of the data, and the outlier only appears in the third PC A 
direction. This shows how spherical PCA can limit tile effect of outliers on 
this type of analysis. 

As noted near the end of Section 4, project ion onto a splnere may not 
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Figure 16: Two dflnensionat example showing how spherica.] PCA downweights 

the influence of outtiers, Da.ta pohlts a.re shown a.s ch'ctes, projections onto the 

shown sphere a.re sho~2 a.s pluses. The first cdgeltvcctor direction of the projected 

da.ta is shown by the thicker line segment, the second by the thinner. The length 

of each eigenvector is proportional to the eigenvatue. 

be completely effective if tile data  are on widely different scales in different 
coordinate directions. Tile improvements gained by changing the sphere to 
a suitable ellipse are present in this situation also. Visual insight into the 
corresponding elliptical variation of PCA is given in Figure 18. 

Tile upper  left plot in Figure 18 shows a simple data  set where elliptical 
PCA is a substantial  improvement over spherical PCA The upper right 
plot shows the results of transforming the da ta  so that  tile MAD of each 
coordinate axis is 1. The vertical axis has been substantial ly compressed, 
so that  the bulk of tile da ta  now look spherical. Project ion onto the sphere 
is now done on this scale, as shown in tile lower right plot. Finally the 
da ta  are t ransformed back to the original scale, as shown in the lower left 
plot. Note that  now tile projected data  lie on an ellipse, that  appropriately 
reflects the different scalings of the axes. 

Figure 11 suggests that  Elliptical PCA is appropriate for the cornea 
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data, and we observed tile expected improvements over Spherical PCA (not 
shown here to save space). The results are shown in tile following figures. 
Again the main idea is to do tlle numerics of tile statistical analysis in the 
66 dimensional feature space of Zernike coefficient vectors, but to represent 
tile results in tile visually intuitive space of curvature maps. 

Figure 19 is an improved version of Figure 6, showing tile dominant  
direction. 

Figure 19 has tile same basic lessons as in Figure 6, except that  tile 
stronger vertical ast igmatism on tile left is now more clear, and tile dis- 
tracting boundary  behavior is nearly completely gone. 

Figure 20 is an improved version of Figure 7. 

Figure 20 has nearly completely eliminated tile very strong boundary  
effects from Figure 7. It also shows the steeper top and bot tom regions more 
clearly (in a way that  looks more like these features as seen in Figure 3). 

Figure 21 is an improved version of Figure 8. 

Figure 21 has also essentially eliminated the very strong missing data  
artifacts visible in Figure 8. It also makes it more clear that  this direction 
is representing differing axes of tile astigmatism. 

MPEG movie versions of the Figure 19-21 are available at tile web ad- 
dress mentioned at the end of Section 2, in tile files norm122.mpg, 
norm222, mpg, norm322, mpg. 

A final comment  concerns tile relationship between PCA and G&ussian 
data. Some have offered tile opinion that  tile Gaussian assumption is im- 
por tant  to PCA. This reservation is well justified when distribution theory 
is used, for example in classical multivariate hypothesis testing. However, 
it is not necessarily a problem when the goal, as here, is simply to find 
"interesting directions". The problems with outliers shown in Section 3 
could be viewed in terms of "non-Gaussianity" of the data, but  the solu- 
tion recomnlended in Section 5 works effectively in a non-Gaussian way. 

A p p e n d i x :  Z e r n i k e  b a s i c s  

Tile Zernike polynomial coefficients are chosen to summarize tile cornea 
da ta  because this basis has natural  interpretat ion in ophthahnology. Tile 
Zernike polynomials are orthonormal on the unit sphere, and are radially 
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Figure 19: Center is Elliptical L 1 mean, direction shows first eigcn~z~,ctor of Ellip- 

tica.i PCA. 

F/gurc 20: Ccntcr is Elliptical L 1 mean, dh'cction shows sccond dgcnvcctor of 

Elliptical PCA. 

Figure 21: Ccntcr is Eiiiptica.l L 1 inca.n; direction sho~'  third eigcnvcctor of El 

iiptical PCA. 
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symmetric.  Zernike polynomials are a combination of two components. 
One component is a Fourier component in the angular direction. The other 
is a .Jacobi polynomial in the radial direction. The general form of the 
Zernike polynomials (see Schwiegerling~ et al. 1995) is defined as: 

V/2(n + 1)R:~(r) cos(toO) fo~" + m 
z--'~ (,-, 0) = v/2(,~ + 1)RI~(, -) sin(.~0) S o , -  - . ~  F~ 

V / ~  + 1)R:~(r) f o r  ,rt = O, 

where n is the polynomial order, m is the Fourier order, 
representation for the Jacobi polynomial. 

The Jacobi polynomial is given by: 

m I" and/~n  ( ) is the 

�89 
..~ ~ ( - 1 ) ' ~ ( n  - s ) !  

() - , ) '  
8 0 

r n - - 2 s .  

m I" An easier computat ional  formula (Born and Wolf, 1980) for/~,~ ( ) is: 

{ ( t 1 d ,, + ,~ 
R n ~ ( r ) -  ( ~ ) !  r m ~ (r2)--5--(r 2 1 ) ~  . 
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This article presents several interesting ideas for dimension reduction 
of complicated da ta  structures. When  data  are curves, instead of finite 
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dimensional vectors, Ramsay and Silverman (1997) described an extension 
of principal components analysis, called functional principal component 
analysis. 

Non-smooth principal components of functional data were considered 
initially by Dauxois, Pousse and Romain (1982). Further analysis of this 
problem has been developed by Besse and R a m s w  (1986), Rice and Sil- 
verman (1991), Ramsay and Dalzell (1991), Pezzulli and Silverman (1993), 
Silvennan (1996) and Ramsay and Silverman (1997), where smooth princi- 
pal components for functional data, based on roughness penalty methods, 
were considered. Boente and l%aiman (1998) studied a kernel-based ap- 
proach to this problem. Several examples and applications can be found in 
these references. 

The authors '  approach goes beyond that  direction and provides ninny 
practical insights. They consider more complicated data structures, like 
images, summarizing them through "feature vectors". A second issue con- 
sidered in this article is that  of robust methods for this high dimensional 
problem. We expect this article to stimulate more research in the area. 

The authors analyze the shape of the outside surface of the cornea 
measured through the 43 images given by a corneal topography. Their 
method m W be summarized as follows: 

Smooth dimensional reduction through Zernike decomposition (con> 
pression method).  A least square fitting of the initial 6912-dimensional 
vectors to the first 66 coefficients of the Zernike orthogonal basis, gives 
the 66 dimensional "feature vectors". 

ii) 

iii) 

Find a robust center for the 43 "feature vectors". The authors con- 
sider tile spatial median. 

Apply tile "spherical" principal component analysis proposed by tile 
authors; which is to perform a principal component analysis to tile 
projected data on tile unit sphere (centered at the spatial median) in 
IR c6. In order to deal with coordinates measured in different scales, 
they propose an alternative approach which they called "elliptical 
PCA": it consists in scaling each component of the vector through a 
robust scale estimate, project tile scaled data onto the unit sphere, 
rescale the projected data and then perform classical PCA. 
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iv) Visualization of the PCA through a representation of the first prin- 
cipal components directions in the feature space, where intuitive un- 
derstanding is natural. 

As pointed by the authors, the loss due to the compression method is 
relatively small and not of clinical interest. This first reduction method 
seems effective and attractive. 

With respect to ii) and iii), the authors have to face the extra problem 
of looking for multivariate robust methods when the number of data n is 
less than the dimension p of the feature space. When n > p, several affine 
equivariant robust methods for estimating the location and the covariance 
matrix are available in practice (see for instance, Tyler (1991) for a review). 
In addition, the problem of looking for high breakdown point estimates be- 
comes crucial for high-dimensional data. As it is well known, monotone 
M-estimates have breakdown point less than l/p, which makes them re- 
sistant only when the number of outliers in the sample is very small (less 
than n/p) and then inadequate for small data sets in high dimensional 
spaces. On the other hand, the minimum volume ellipsoid estimators, 
S-estimators, r -es t imators ,  CM-estimators and depth-based estimators, 
such as the Donoho-Stahel estimator, are alNne equivariant and have high- 
breakdown point regardless of the dimension of the data. A shortcoming 
of these proposals is their computational complexity. Up to our knowledge, 
the proposed algorithms do not work when the sample size is smaller than 
the dimension of the space since they are based on resampling methods. 

Another drawback of all these estimates of the scatter matrix, except 
for those based in depth notions, is that they are not well defined when the 
number of data is less than the dimension of the space. 

However, the problems of estimating the location parameter and of 
finding the main principal components, make sense even in the case where 
n < p .  

In fact, a possible approach is that given by the authors. Their proposal 
is computationally simple, rotationally equivariant but not afflne equivari- 
ant. Of course that - -when possible-- consistent, attine equivariant and 
high breakdown point procedures are desirable, but this is not always possi- 
ble. An enormous improvement with respect to classical PCA under the 
presence of outliers is obtained with both methods. We think that these 
proposals point in the right direction: an important improvement over non- 
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robust  methods using computat ional ly  simple estimates for an "ill-posed" 
problem. 

Going into a more detailed analysis, we found that  ellipsoidal princi- 
pal components have sonletimes an asymptot ic  bias as i l lustrated in the 
following example. 

We performed 500 replications with samples of size 1000, of a vec- 

tor x ~ ~ ( o ,  r A r ' ) ,  where F = (71,72) with 71 = (0.25, ~ ) ~ ,  
3'2 = (V/15/16, 0.25) ~ and A = diag(8,4). The mean, median, s tandard 
deviation and MAD of tile angles (measured in degrees on [-90,90]) between 
tile real and the est imated first principal direction are reported in tile fol- 
lowing table for the classical and tile ellipsoidal principal components.  

Principal Components Mean Median SD MAD 
Classical 0.0427 0.0534 1.1473 1.2026 
Ellipsoidal 6.4997 6.5188 1.1277 1.1657 

Moreover, in 499 of tile 500 replications, tile angle was greater than 
3 degrees while for the classical PCA,  5 of tile 500 replications had an 
angle with absolute value larger than 3 degrees. This is due to the fact 
that  scaling each coordinate is adequate when the principal axes are the 
canonical basis but  not in general. 

1 

Indeed, assume that  x has an ellipsoidal distribution, i.e., x = FATz 
with z spherically distr ibuted,  r ' r  = I and A = diag(A1, . . . ,  Ap). Then, as 
is well known, i f) , i  _> ),2 _> " "  _> Ap, the columns 0 '1, . . .  ,O'p of F represent 
the principal components of x and a q-dimensional  reduction is obtained 
by taking the q eigenvectors 0'1,- �9 -, 0'q related to the q largest eigenvalues. 

In this setting, the proposed ellipsoidal components  will be consistent 
to the eigenvectors of the matrix 

(xx, / 
115Eli r A r E  - - 1  2 A r', 

\ l l D r A , z l l  
(1) 

2 Var(xi) with xi the i th component  where D d i a g ( 1 / s i l , . . . ,  1/s'pp), sii 
of x and where we have assumed for simplicity that  the vector x has a finite 
covariance matrix. 

Then if, tile principal axes are tile canonical basis, i.e., I '  - I, we will 
2 Ai and so, the matrix on the left of (1) will be proport ional  to the have 8 ii  
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scatter matrix of x and thus tile elliptical components will be asymptot ical ly 
unbiased. However, if the principal a~xis are not the coordinate ones, tile 
matrix (++) 

E IIDFA�89 

is not necessarily diagonal and then, as in the example, the ellipsoidal 
components  are biased. 

On tile other hand, the proposed spherical components  will always be 
consistent for any ellipsoidal random vector, since they will be consistent 
to the eigenvectors of the matrix 

E . l l x l?  . r A T E  ATF', 
IIA zll 

which is proport ional  to the identity in the spherical case, i.e., A I. 

However, when A yL I, E can be wri t ten as 

1 1 
E = F A ~ A 7 1 - ' ,  

where 

Since, 

Z S t / 
q ~ = E  1 �9 

IIA zll 2 

z z ~ y y '  
U - -  - -  1 2 IIA zll IIAlyll 2 

with y ~/11~11 being uniform on the sphere, the distr ibntion of U is the 
same for any spherically dis tr ibuted vector z and so the matrix �9 can be 
computed  assuming z ~ N(O, I). In this case, it can be shown that  �9 is 
diagonal and thus, all tile basis of eigenvectors is consistently est imated 
through tile spherical principal components.  

If q, = d i ag (~ l , . . .  ,~p) = Alq~A 1 = diag(Al'(J1,. . . ,  Ap~(~p), it follows 

easily that  <~ > 1/p and <~p < l/p, which entails that  when p - 2, <~ > 
~5 2 and thus the spherical principal components est imate adequately the 
principal axis. 
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Moreover, given 1 < j < p 1, since kj > )'3+1 and z ~ N(0,  I), we 
have that  

�9 2 At~z 2 r E Ajz~ + kj+lz~+ 1 + ~ # j , j + l  

),jz~i+, 

E . 2 2 At~z~ /~lZj§ d- ~j+izj -4- ~ k # j , j §  

),j+ l z]i+ l 
> .E . 2 ajZ2 ahZ2 ~ j + l .  -- A:/+lZj+I -4- -4- ~k:;kj,j+i 

Also, /~j > /~j+l implies ~)j ~> q)j+l, which entails that  even if the ma- 
trix E does not estimate consistently the scatter matr ix  r a I "  or x, it 
allows to est imate consistently the principal components and the order of 
tile eigenvalues is preserved. The relative importance, i.e., tile number of 
eigenvectors that  should be kept in order to obtain a representation which 
corresponds a high percentage of the trace of the scatter matrix,  may be 
modified, as shown by the following example. 

We generated a sample of size 5000 of a vector x ~ N(0, A), with 
1 

A5 diag(9.6, 3,2, 1.5). Thus, the main axis is tile first coordinate axis 
which gives a representation which explains 83% of the total variance. Tile 
classical principal components give the following percentages: 

0.8558304 0.9390217 0.9773178 

while the spherical principal components give 

�9 ~1/~1<i<4~i (~1 +~2)/~1<i<4~i ~ i#4~i /~1<i<4~i  
0.6579615 0.8311586 0.931456 

Therefore, tile proposed spherical PCA are consistent for any elliptical 
distribution and thus preferable to ordinary PCA which requires moment 
conditions. 

Obviously, spherical PCA will be resistant for any contamination model 
which preserves tile property of being elliptical. The following small simu- 
lations shows, however, that  spherical PCA is not resistant with respect to 
other type of contamination. 
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As above, we performed 500 replications with samples of size 1000, of 
a vector x ~ N ( 0 , r A r ' ) ,  where r = ( ' h , ' r j '  with % = (0.25, ~ ) ' ,  
"7'2 = (V/i-5-/16, 0.25)' and A = diag(6,5) and we compare the p e r f o f  
mance of the estimates when we put  10% of contamination at the points 
x0 100"/2sg(xl ) . 

In this case, the number  of times that  the absolute value of the angle 
between % and the est imated first principal direction is greater than 15 
(N~5), 30 (Na0) and 45 (N4~) degrees are reported in the following table for 
the classical and the spherical principal components,  for bo th  the normal 
da ta  sets(C0) and the contaminated (C0.,) ones. 

Model PCA N,5 A%0 N45 
Co Classical 0 0 0 
Co Spherical 21 1 1 
Co.1 Classical 500 500 500 
Co.~ Spherical 463 432 396 

In higher dimensions, tile behavior is quite similar. We made 100 
replications for samples of size 5000 generated as follows. We generated 
y ~ N(0, A) with A diag(6, 5, 4.5, 3). With probabil i ty 0.9, x y and 
with probabil i ty 0.1, x 100sg(y2)e2 where e2 (0, 1, 0,0) '  and sg(y2) 
denotes the sign of the second coordinate of the vector y. Thus, we have 
introduced a 10% of contamination at tile points 100e2 and 100e2. 

As expected, classical PCA interchanges tile first two principal axis but  
spherical PCA also behaves in the same ww.  The following table gives 
the mean of the cosinus of the angles between tile theoretical axis and the 
est imated axis for both  the uncontaminated and the contaminated data  
sets. 

Model 
c0 
Co.i 

First Axis Second Axis Third Axis 
0.9984 0.9954 0.9961 
0.0675 0.0676 0.9992 

Fourth Axis 
0.9995 
0.9996 

On the contrary, if the contamination is put  on the direction of e4, 
classical PCA will move all the axis but  spherical PCA just  moves the 
third and fourth ones. 

Tile question that natural ly arises is if nature is so wild to allow this 
kind of outliers to appear frequently in practice, in particular, in the prob- 
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lem studied by the authors. As mentioned above, spherical PCA is resis- 
tant  to any kind of contamination which preserves the property that  the 
underlying distr ibution is still elliptical. In this sense, spherical PC A are 
robust,  with respect to this kind of neighborhoods, without  requiring any 
moment  condition, and thus it represents a great improvement over clas- 
sical principal components.  In particular, it provides a computat ional ly 
feasible alternative to the classical method for the case where n < p. 
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B a b e t t e  Brumbaek 
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I n t r o d u c t i o n  

I would like to thank the authors for this fine piece of work. Their t reatment  
of the corneal image data  beautifully illustrates the utility of principal con> 
portents analysis for characterizing high dimensional da ta  objects. It also 
firnfly motivates the need for special adaptat ions to s tandard multivariate 
techniqnes in the analysis of functional data. Moreover, it highlights the 
need to custonfize these adaptations in practice. 

The authors have also contributed a well-organized and insightful pre- 
sentation of the ideas and methods used in their analysis. In my commen- 
tary, I will link their "feature space;' analysis to its dual in "data space;', 
raise alternative possibilities for handling the missing data, and relate their 
methods to others in the l i terature on functional principal components anal- 
ysis. 

F e a t u r e  s p a c e  +-+ D a t a  s p a c e  a n a l y s i s  

Let tile images be stored sequentially by pixel as Ji-dimensional vectors Id, 
i 1 , . . . ,  n, where n is the number  of images available for analysis (n 43 
in the cornea example.) We begin by assuming no data  are missing, so that  
Yi consists of Ji - J - 6912 pixels indexed by polar coordinates (rij, Oij). 
Tile goal of principal components analysis is to summarize V = Var(Yi) by 
its dominant  eigenvectors. Modeling the images as i.i.d, realizations fl'om 
a process such as 

# + a i + < ,  (1) 

where # + b'i represents the noiseless image corrupted by additive noise ei, 
and Var(6~) = ~2I (with I denoting the identity matrix),  the goal is to find 
the dominant  eigenvectors of Var(Y~), or equivalently, those of Var(ad. 
For ease of presentation and without much loss of generality, it will be 
assumed throughout  much of the discussion that  # 0 or, alternatively, 
that  the images Yi have been pre-centered. The simplest estimate of V is 
&,- - n * ~ YiYi r ,  the sample eovariance matrix. In the cornea example, 
V has dimension 6912 • 6912, but only 43 realizations of Yi are observed. 
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Does this necessarily invalidate tile naive principal components analysis 
based upon the dominant eigenvectors of Sz?  If we believe the model in (1), 
tile answer depends upon tile relative magnitudes of o 2 and tile eigenvalues 
of Var(Si). Suppose, for instance, that  (r 2 - 0 and that  tile largest 5 
eigenvalues of Va~'(5i) dominate tlle other 6907 by a factor of 100,000. In 
this case, the first 5 eigenvectors of S should excellently approximate those 
of V. Unfortunately, however, the sparsity of the cornea dataset  renders 
tile relative magnitudes indeterminable; one can only guess whether it is 
dominant  eigenvectors that  have been found, or junk. 

This curse of dimensionality cannot be overcome by methods for func- 
tional da ta  analysis except by making strong untestable assmnptions. Tra- 
ditionally, # + 5i is assmned smooth. This assumption is a reasonable one 
in numerous applications, and it certainly appears sensible in Locantore et 
al., who invoke it by modeling p + b'i as a Zernike polynomial. That  is, they 
assmne # - U/)0 and 5i - U/3i, where the colmnns of U are the p (p - 66 in 
Locantore et al.) orthonormal Zernike basis functions sampled at locations 
(I'ij,Oij), j 1, . . .  , J ,  which index the rows. Again assuming that  # 0 
(or that  the mean has already been subtracted),  fli can be est imated via 
ordinary least squares regression, 

urn, 

where recall that  or thonormali ty  of U implies u T u  = I.  Tile information 
stored in Y/ is thereby compressed into the feature space representations 
Xi  - ) i  - UTYi. Tile authors compute  the eigenvectors v~:~, k - 1 , . . . ,  3 
of Var(Xi )  S x  n 1 ~ X i X i r  in the feature space; these are then reex- 
pressed in tlle data  space as vyt~ Uvxt~. This produces smooth  est imated 
eigenvectors of V. 

It can easily be shown that  tile Vyk are, in turn, tile eigenvectors of 

U S x U  r UUr  S y U U  r P S y P ,  

where P = UU T is tile projection in tile data  space onto the span of the 
Zernike basis. Thus, tile feature space analysis has a data  space dual, in 
which the eigenvectors of the sn~oothed sample covariance matrix 

& = P & - P  (2) 

are computed directly. Tile smoothed covariance matrix will have reduced 
rank equal to p, the dimension of the Zernike basis. 
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Missing data 

When there is missing data, Locantore et al. modify the estimates of Vyk. as 
follows. Let U / b e  analogous to U but with rows corresponding to missing 
pixels deleted. The feature space representations are modified to Xi - 
fli = U/~Y/; the va-k are computed as before but  using the modified version 
of Xi; the Vyk are then obtained as U%~. The analogue in data  space is to 
compute the Vyk directly as the eigenvectors of n 1 y~ PiYiYi2"pi, with Pi 
UUi r. As the authors demonstrate,  this method can lead to undesirable 
consequences. Specifically, certain of the projections Xi = P/Y/ of images 
with missing data  tu rn  up as outliers with excessive influence upon the 
est imated principal components.  I offer a possible explanation by way of 
a simple example. Consider the toy dataset  pictured below, with pixels 
corresponding to a common angle 0 but  distinct values of r (i.e. the toy 
"images" are 1-dimensional): 

sub jec t  
1 1 1 1 
2 2 2 2 
3 3 3 3 

pixel ? 3 3 3 
? 3 3 3 
? 3 3 3 

Because tile Zernike basis includes tile linear functions, tile missing 
pixels from subject 1 will be subst i tuted by 4, 5, and 6, leading to an outlier. 
Although the data  strongly suggest an overall mean of (1, 2, 3, 3, 3, 3) with 
zero variation thereabout,  the first analysis of Locantore et al. would lead 
to a contaminated estimate of the mean and a nontrivial est imated first 
principal component.  The robust approach adopted by the authors would 
diminish the problem by downweighting the observation from subject 1 in 
the analysis. 

I would like to propose an alternative method for handling the miss- 
ing data. The idea is to first estimate the elements of the complete data  
covariance matrix V with 

t) = 

where V(s, t) represems the covariance between pixels s and t, Ai(s) is the 
missing data  indicator (A~(s) = 1 if pixel s is observed for subject i), and 
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n,t  = Y~ A~ (s)A~(t). The smooth principal components are then computed 

as the eigenvectors of P V P .  This method presumes that  the Yi have been 
centered; a smooth group mean could be computed beforehand in an anal- 
ogous manner  by snloothing a weighted mean of the available data. The 
effect of this approach will be to use other subjects rather than  neighboring 
pixels to fill in the missing data. Alternatively, one conld borrow strength 
sinmltaneously Dora other pixels and subjects via an enhanced model for 
Yi; i.e., one could let 5i = 7 + %, where 7 is introduced as a shared random 
effect to induce correlation between observations flonl different subjects. 
See Brumback and Rice (1998) for a related discussion in the context of 
mean estimation. 

R e l a t e d  a p p r o a c h e s  

Still other approaches might be adopted. First, one might choose an alter- 
native basis. Tile possible effects are il lustrated in Figure 1. Tile top left 
panel presents tile true first three principal components for 20 1-dimensional 
"inlages" simulated using S p h s .  The images were each sampled with ad- 
ditive noise at 100 pixels. In all panels, the solid line represents the 1st 
principal component,  the dotted line the second, and the dashed line the 
third. The true principal components correspond to tile 5th, 6th, and 1st 
functions of the Zernike basis generated for 1-dimensional quintic polyno- 
nlial images by setting 0 0 and (rn, n) (0, 0), (1, 1), (0, 2), (1, 3), (0, 4) 
and (1, 5). The top right panel represents the first three est imated princi- 
pal components using the unsmoothed covariance matrix.  The middle left 
panel shows the estimates computed as in Locantore et al. by projecting 
onto the Zernike basis. The middle right panel uses an asymmetric  Bspline 
basis with knots at 60 and 80. The Bspline basis is smoother for the first 
50 pixels than  for the remainder.  Notice the dramatic  effect on the esti- 
mated  principal components,  which demonstrates that  the wrong choice of 
basis can lead to serious consequences. This emphasizes the importance of 
subject mat te r  knowledge in performing flmctional PCA; when the curse 
of dimensionality rears its head, the results begin to depend heavily upon 
untestable assumptions. 

Another  option is to use a roughness penalty approach as in Rice and 
Silverman (1991) or Silverman (1996). The first approach estimates the 
principal components as the eigenvectors of 1~ + )~1~, V + )~2~,..-, where 
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Figure 1: True components sl~own at top left. h] alt pa.nels, the solid line represents 

the 1st principal component, the dotted line the second, and the das'hed line the 

third. Top right presents the first three estima.ted princa'pal components using 

the unsmoothed co~qria.nce matrix. Middle left computes the estimates using the 

method of Locantore et al. to smooth the covamiance ma.trix by first projecth~% 

the data. onto the Zernike ba~'is. u right uses a.n a.symmetrie Bspline ba~'is 

with knots a.t 60 and 80. 
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represents a covariance matrix with smooth dominant eigenvectors, and 
),k, k -- 1, . . .  is a non increasing sequence of tuning parameters mediating 
between eigenvectors of 1}- and ~; eigenvectors of greater importance bear 
more resemblance to those of ~. Silverman (1996) modifies the procedure 
for efficient computation by constraining the sequence of Ak. With an em- 
pirical choice of ~, the procedure of Locantore et al. can be embedded 
within the roughness penalty framework; i.e. letting ~ PV-P leads to 
the procedure of Locantore et al. for large ),~. However, the computational 
cost of the roughness penalty approach may not be within reach. A compro- 
mise would be to partially reduce the data using the method of Locantore 
et al. with a midrange-dimensional basis and then to finish the reduction 
using roughness penalty methods. But the approach of Locantore et al. has 
been shown to yield insightful conclusions, and I do not recommend aW 
alterations. I would like to conclude by remarking upon the weighty compu- 
tational challenges overcome by the authors; data storage and manipulation 
of high dimensional data objects are often quite difficult, necessitating so- 
phisticated software and clever programming strategies. The video images 
of the cornea data are particularly impressive. 
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Chr is tophe  Croux 
Uuivcrsit5 Librc de Bruxclles 

I n t r o d u c t i o n  

First of all I would like to congratulate the authors on their paper, which 
presents a very nice analysis of a functional data set from ophthahnology 
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using robust principal components. In this comment, I will focus on the 
newly proposed method for robust PCA. 

Several robustifications for PCA have been proposed in the past. The 
most simple idea is to conlpute eigenvalues and eigenvectors of a robust 
estimator of the covariance or correlation matrix of the data. Many sin> 
ulation studies, starting with Devlin et al. 1981, have been carried out to 
find out which robust estimator should be used, and recently some more 
theoretical results were obtained by Croux and Haesbroeck (1999). As was 
pointed out by the authors, these methods require that the umnber of vari- 
ables d is smaller than the number of observations n, making them less 
useful for functional data analysis. 

Another approach to robustify PCA, based on projection pursuit (PP), 
has been considered by Li and Chen (1985). It is known that a classical 
principal component is determined by the direction for which the projec- 
tions of the data onto that direction have maximal standard deviation, 
under the constraint of orthogonality with all previonsly deternfined con> 
ponents. Instead of maximizing tlle standard deviation, one uses now a 
robust dispersion measure as '~PP-index", resulting in a robust PCA. Since 
the principal components are computed sequentially, this approacll can be 
used even in tile high dimensional case n < d. 

Tlle method proposed in this paper has both a projection aspect and an 
eigenanalysis aspect. A important virtue of this method is its simplicity and 
ease of implementation. In contrast with many other highly robust nmlti- 
variate statistical procedures, the required computation time is extrenlely 
limited. 

S o m e  S t a t i s t i c a l  P r o p e r t i e s  

For a sample X = { X I , . . . ,  X~}  C R d, tile proposed robust PCA is carried 
out by computing the eigenvectors Vl (X) , . . . ,  vk(X) of the matrix 

(1) 

with k = r a n k ( ~ ( X ) )  and t)~ the L1 location estimator. The "robust eigen- 
vectors" Vl(X) , . . . ,  vk(X) are the vectors of interest since the data will be 
projected on them. 



Robust functional data analysis 43 

Equivariance Properties: Although E,~ is not aJ~fine equivariant covariance 
matrix estimator, it is orthogonal equivariant which suffices in tile context 
of PCA. Indeed, denote (~FX + b = {~FXl + b,. . . ,e~Fx~ + b} where F 
is an orthogonal matrix, b a vector in R d and c~ a scalar, then the usual 
equivariance property holds 

~j(~rX+b) r~j(X), for:/ 1,...,k. (2) 

By first prescaling the data, for example by dividing them by the co- 
ordinatewise MAD, an equivalent of a correlation-based PCA is obtained. 
This procedure is called elliptical PCA by the authors, and one has the 
additional equivariance property vj(DX) vj(X) for any diagonal matrix 
D. 

hzflucncc Function: Tile authors claim that outliers have bounded influence 
on their procedure. This can be made formM. To keep things simple, 
suppose that  we are in the bivariate normM case, and due to (2) suppose 
w.l.o.g. 

( (, 0)) 
X 2 , . . .  , X .  n iid f f  N O, 0 T ' 

Tile functional corresponding to tile E.n (X) is given by 

~(c) f (y- ~'(c))(y- r(c))*dc(y ) 
F7 - ,, 2 

for an arbitrary distribution G. Denote then v,(G), . . .  ,Vd(G) tile eigen- 
vectors of E(G). It is not difficult to show that  

E(F)  N (0, diag(1/(v/-~7 + 1), 1 / (x /7  77 + 1)) ,  

implying Fisher consistency for the eigenvectors at bivariate normal dis- 
tributions. Like in Critchley (1985), one can prove quite easily that  tile 
influence function for vl is given by 

1 - -  ~ X l X  2 t r ~  

IF((xl ,X2),vI ,F) (1 v/-~) 2 Ilxll 2v2%*~ J (a) 

and analogously for tile second eigenvector. Ftom (3) boundedness of tile 
influence function follows immediately. 
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Figure 1: Ef~cienc 2 of the proposed estimator for the first eigenvector era biva.ria.te 
normal distribution as a function of 7, where 7 equals the second divided by the 

first popula.tion eigen~mhzc. 

Efficiency: Since emphasis in the paper was on the use of the proposed 
method  as a tool for exploratory data  analysis, efficiency considerations are 
less important  but  nevertheless interesting. Take once again the simple case 
where the da ta  come from the bivariate normal distribution F .  Assuming 
that  the functional ~ is sufficiently regular, the asymptotic  variance of vl 
equals 

ASV(v~, F)  2(1 V~ v2(S)v2 (V)~ VS) ~ 

which needs to be compared with the asymptotic  variance of the classical 
est imator of the first eigenvector (7 / (7  1)2)v2(F)v2(F)  ~. In Figure 1 the 
associated efficiency (defined as the ratio of the traces of the asymptotic  
variance matrices) is pictured as a fnnction of 7. 

The efficiency of the method depends thus on 7 and never exceeds 
50%: the more spherical the distribution, the higher the efficiency of the 
method.  This is in contrast with most other methods for robust PCA, 
where the efficiencies are independent of 7- The same problem will arise 
for the elliptical version of the method.  
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Some suggestions 

(i) It is not so obvious to interpret tile eigenvalues of E.~. As a measure of 
dispersion of the data  in the direction of vj(X) ,  one could compute 

Aj = & (vj ( X / X ~ , . . . ,  vj ( x ) t x~ ) ,  

for j 1 , . . . ,  k, with S~ a robust univariate scale estimator like tile MAD. 
Moreover, unlike tile eigenvalues of E~,, tile ),j will be consistent estimators 
for tile eigenvalues of covariance matrices of normal distributions. 

(ii) A generalization of (1) is given by 

%(x) 

where the assigned weights w~ depends only on the rank of IIX~ ~).~ll and 
Y~,i~*I wi 1. The location counterpart  of the above estimator has been 
studied by H6ssjer and Croux (1995). By choosing tile weights properly, 
higher efficiencies can be obtained while not losing too much robustness. 

(iii) The choice of the starting value for the algorithm computing the L1 
est imator is not crucial, but tile coordinatewise median might yield faster 
convergence in noisy data  sets than  tile sample nlean. Using tile Newton 
steps of Bedall and Zimmerman (1979), tile computat ion time of the L1 
est imator could be even further reduced. 
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When analyzing complex objects such as images, it is vital to have a 
simple, effective, robust  and computat ional ly feasible approach that  can ex- 
plore salient populat ion features. Tile authors are to be congratulated for 
successfully outlining such an elegant method,  which extracts and summa- 
rizes important  clinical features. Deep insights are obtained via graphical 
presentation and elegant exposition. I am very fortunate to associate with 
this group for a long t ime and to witness how this interdisciplinary collabo- 
ration yields fi'uitful statistical methodology innovation and useful clinical 
results. Such a kind of joint efforts should be strongly encouraged and 
greatly expanded. 

The new method in this paper consists basically of tile following steps: 

a) extract important  features; 

b) find tile center of tile data  in tile feature space; 

c) rescale tile centered data  in tile feature space; 

d) carry out tile principal component  analysis in tile feature space by 
normalizing each da ta  point to have unit length; 

e) present results in tile original domain of data. 

Such a kind of proposal  appears ad hoc but  effective. I welcome tile 
oppor tuni ty  to make a few comments on some of these critical steps. 
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Feature  e x t r a c t i o n  

Feature extraction is extremely vital for analyzing high dimensional data 
such as noisy signals and images. The aim is to significantly reduce dimen- 
sionality without losing important information in the original data. This is 
usually achieved by manually selecting a number of important ctmracteris- 
tics that are directly related to tile objective of a study or via an orthogonal 
transform (or local orthogonal transform such as spectrograms in speech 
recognition). In the current context, the authors reduce the dimensionality 
from 6912 to 66 via a two-dimensional orthogonal system called the Zernike 
transform. Other orthogonal bases can also be used, but this system has 
better known optical properties. 

Different orthogonal systems have different ability of information con> 
pression, depending on the classes of signals. For example, the Fourier 
transform is not effective to represent local features such as bmnps or short 
aberrations while wavelet bases are not very efficient in representing si- 
nusoid signals. When choosing an orthogonal basis, the efficiency and the 
interpretation of the orthogonal basis should be taken into serious consider- 
ations. The role of the orthogonal transform here can be intuitively under- 
stood as compressing original 6912 highly correlated dimensions (becanse 
intensity of neighboring pixels is nearly the same) to 66 nearly independent 
components. 

Statistically, keeping a few coefficients in featme spaces is equivalent to 
conducting heavy amount of smoothing for the original data. The param- 
eter 66 can be regarded as a smoothing parameter. This results in keeping 
prominent and stabilized features in the data, since disturbing noises have 
been reduced. This technique is also very useful for hypothesis testing such 
as comparing differences of cornea maps between two clinical groups. Due 
to dimensionality reduction, only prominent features of images are now 
tested and the power of resulting testing procednres are ameliorated. See 
for example Fan and Lin (1998). 

Orthogonal transforms are linear. They depend sensitively on outliers 
in the original data. For the current application, outliers are mainly caused 
by missing data at boundaries of images. A natural question is then if 
there are some imputation methods to implement or some robust nearly 
orthogonal transforms to apply at this stage, rather than at a later stage. 
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Centers in high-dimensional space 

To find robust  principal directions, the first step is to find robust  est imation 
for the center of high-dimensional data. The authors propose to use L 1 M- 
estinmte of location via nfininfizing 

.p~ 

l iNg - 0112. 
i = 1  

While this method is far more robust  than the sample mean, one may 
natural ly ask how robust  it is when compared with the componentwise 
median, which minimizes 

'D~ 

I l X i  - 011 , 
i - - 1  

where IIXi 0111 is the sum of componentwise distances. It appears clear 
that  the former is more robust  than the componentwise median, but  tile 
lat ter  has computat ional  advantages. If outliers do not occur as fearfully 
as we think, the componentwise median can be an at tractive alternative. 
It is not clear to me why the componentwise median was not chosen as the 
center of tile images in tile current application. It is also interesting to relate 
these methods with tile concept of data  depths of Liu and Singh (1992). 

Functional Principal Component Analysis 

After locating the center of tire data, the authors propose to carry out the 
principal component  analysis based on the projected data  {(X - O)/lIX - 
~)112} (a weighted L2-norm is used when the da ta  are projected on an ellipse). 
This is a powerful idea and a useful technique, but  there is also some 
hidden cost. To achieve robustness,  we completely change tile parameters  
under estimation. Unless the distr ibution of I IX - 0112 is nearly constant, 
tire covariance or correlation matrix of the projected data  can be quite 
different from that  of the original data. Hence, tire populat ion parameters  
(the principal directions) for the two problems are completely different. 
Strictly speaking, tile principal component analysis based on tile projected 
da ta  is not a robustified version of that  based on tile original data. Which 
principal component  analysis is more relevant depends critically on tire 
scope of applications. 
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In a seminal paper, Rice and Silverman (1991) proposed to use smoothed 
principal component  analysis for the original data. An important  feature 
of that  method is that  the resulting principal component  directions are 
those that  capture the greatest variabilities in the original data  subject  
to smoothness constraints. It poses, however, challenges to even modern 
computers  to carry out a 7,000-dimensional principal component  analysis 
in the original data  domain, even without  imposing smoothness constraints 
on the principal directions. An important  distinction of the current method 
is that  it is carried out in the feature space. This reduces computat ional  
cost dramatically. 

An intuitive alternative approach to that  of Rice and Silverman (1991) 
is to smooth curves or images first and then apply the ordinary principal 
component  analysis to the smoothed data. This also results in smooth di- 
rections in the original da ta  domain that  capture the greatest variabilities 
of smoothed curves or images (instead of original data). This approach 
is indeed equivalent to that  proposed by the authors, when the principal 
components  are obtained based on covariance matrices. To see this, sup- 
pose that  after an orthonormal transform we decide to keep the first p 
t ransformed coefficients. Denote such coefficients by ~ and the correspond- 
ing first p orthogonal bases by X, an n x p orthonormal matrix. Then 
the resulting smoothed images or curves are just  t runcated orthonormal 
reconstruction: Y = X{. The covariance matrix of the smoothed in:ages is 

coy(Y) = Xcov(e )x  = x r A p U x  

where FApF ~r is tile principal component analysis (eigenvalue decomposi- 
tion) for the covariance matrix cov(~) in the feature space. It is now very 
easy to verify that  the p directions in the matrix X P  are orthonormal.  
Hence, the principal directions for the smoothed images Y are the same as 
those generated from the feature space. The same conclusion holds for "ro- 
bustified" principal component analysis with the projection on the sphere 
since ]]Y]] = ]]~]], but  does not hold when the smoothed da ta  are projected 
on an ellipse. 

When the correlation matrix based principal component  analysis is used 
in the feature space, it does not appear to have an intuitive equivalent 
method  in the images domain. Indeed, it is not clear what the resulting 
orthogonal directions represent in the image domain. Hence, the interpre- 
tat ion and usefiflness of such a kind of analysis remain questionable. 
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The authors have writ ten an interesting article. In the first part of 
the paper they provide a well-written and very convincing introduction to 
the use and the benefits of functional principal component analysis. A 
particularly interesting point is the extension of these concepts developed 
for ti,e analysis of one-dimensional curves to two-dimensional images. 

I only have a minor technical remark in this context. The authors do 
not directly perform a PCA of the original data, their analysis is based on 
the coefficients of a Zernike decomposition. This use of "feature vectors" 
which is common in their field of application seems to be a good idea. 
However, they write that  da ta  are in tile form of 6912 measurements at 
a polar grid of locations, and that  classical multivariate analysis of these 
vectors is numerically intractable. This is not true, and though I ttfink 
tha t  their alternative approach is very reasonable in their context, I want 
to show how to deal with such numerical problems in functional PCA, since 
this nfight be useful in other applications. 

In functional principal component analysis we usually have to treat  n 
different functions fi (one-dimensional or higher dimensional) which are 
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given at m discretized grid points. In this context we generally have m >> 
n (note that  m - 6912 while n - 43 for the application discussed in 
tile paper).  In fact, if tile number  m of data  points is very large, then 
evaluation of the m x m covariance matrix V of these vectors will indeed be 
nnmerically unstable. However, for any grid point x consider the n-vectors 
f(x) ( f i ( x ) , . . . ,  f ~ ( x ) ) ' ,  and determine their n x n covariance matrix 
M.  Calculation of the eigenvalues A1 > A2 > . . .  of V as well as of the 
corresponding eigenvectors 71 ,7~ , - . . ,  defining the principal components,  
can then be done on the basis of tile much smaller and nnmerically more 
tractable matrix M.  Some simple linear algebra shows that  the eigenvalues 
of M coincide with the eigenvalues A1, A2,. �9 of V. Moreover, the principal 
components  gl, g2,.--  are given by 

g r(x) -- ~-~t~ Z p r J , ~ ( x )  ' 
i 

where Pi - ( P l i , . . .  ,Pi,~)',P2 - (P21, . . .  ,P2 , , ) ' , . . .  are the corresponding 
eigenvectors of M. If m >> n, this way of calculating principal components 
in the context of F P C A  is numerically much more stable. 

In tile paper, as in most other work, functional principal component  
analysis is seen as a tool for analyzing i.i.d, samples of random functions. 
This certainly is tile s tandard application, but  there is another way of rep- 
resenting principal components which is more generally interpretable. Let 
f~* : ~ i  f i  denote the average flmction. It is well known, the niathemat- 
ical basis being the famous Karhunen-Lo~ve decomposition, that  for any L 
tile first L principal components define tile best possible projection of the 
functions f l , . - . ,  f.~ into an L dimensional linear subspace. In other words, 
gl ,  �9 -, gL provide a best possible representation 

L 

- i - 1 , . . .  (1 )  
r - -1  

in tile sense ttiat they sa t i s~  

L 

rm.,-II  rain 
i r 1 

E n l l n  
�9 " J l i , . . - / J L . i  

7. 

L 

I l k -  f , , -  <-mrll  (2) 

with respect to all possible v l , . . . ,  Vn. An interpretat ion of principal con> 
ponents in terms of (1) and (2) makes sense for many different families of 

r 1 
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curves and is quite independent of tile underlying mechanisn: generating 
the data. For example, it might be used in the context of time series of 
curves as considered by Bosq (1991). A possible application is analysis of 
electricity consumption curves for a number of consecutive days. 

In the second part  of their paper  the authors present a robust  version 
of PCA in the context of functional data  analysis. To my knowledge this 
is the first work which explicitly deals with this question. The authors 
convincingly argue that the importance of robust  methods is even more 
pronounced if the data  are functions than in the nmltivariate context. The 
reason is simple: when going over from vectors to functions or surfaces, 
da ta  s tructure become more complicated, and there are more and more 
different ways an observation can be an outlier. Spherical or elliptical PCA 
as introduced in the paper  provides a simple way to robustify functional 
principal component  analysis, and it might thns prove to be an important  
idea. 

In view of (1) and (2), it seems to me that  in principle there might exist 
still more robust  versions of PCA. After having replaced fl~ by the spatial 
median as proposed by the authors,  one might t ry to define more robust  
principal components by deternfining the best linear approximation (1) in 
terms of the L:  norm, instead of minimizing with respect to the L 2 norm 
as in (2). Of course, there is no straightforward solution to the resulting 
complex optimisation problem. 

An interesting and important  general aspect of the paper  is that  it 
demonstrates  the possible complexity of functional data. As a final point 
of my discussion I would like to add some remarks which illustrate this 
complexity even further. In fact, there are important  problems of functional 
da ta  analysis which do not even possess an analogue in usual nmltivariate 
analysis. 

I want to consider two of these problems. First of all, in many cases 
the "true" curves or surfaces are unknown and have to be est imated from 
discrete data. This is the case, for example, if we want to analyse families 
of regression curves, or families of noisy images, where the "true" objects of 
interest are not directly given, but  only represented by noisy data. Some- 
times data  are fairly accurate and noise does not play an important  role, 
but  in other applications the est imation error cannot be neglected. In this 
case we run into two different data  analytic and inferential problems: We 
have to define procedures to analyse similarities and differences between 
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tile %rue" functions, for example one might rely on PCA,  and one has to 
consider how to est imate principal components or other properties of in- 
terest from tile given data. In a certain sense one thus has to deal with an 
unusual type of errors-in-variables problem. There is not much literature 
on this subject,  very often this point is simply ignored (see, however, Kneip, 
1994, or Kneip and Utikal, 1999). 

When following a term coined by Ramsay and Silverman (1997), a sec- 
ond problem without  multivariate analogue is tile "registration problem". 
Many samples of curves like growth curves, brain potentials,  etc., do not 
only differ in ampli tudes but  also in dynamics. For example assmne that  
there is a collection of one-dimensional functions f l , -  - �9 den which only vary 
in amplitude,  location and scale according to the simple model  

fi(x) Oig ( x - ~i ) k (3) 

for some basic underlying function 9. If the parameters  c~i, fii, quantifying 
individual dynamics, are very different, then functional principal compo- 
nent analysis is of no use for analyzing tile s tructure of this curve family. 
Too many principal components  will be necessary to explain a large pro- 
port ion of variability, some of these components being derivatives of others. 
The point is that,  as can be seen fl'om (1), PCA a t tempts  to explain varia- 
tion between curves by ampli tude differences only, and it is not able to in- 
corporate varying dynamics. A possible remedy is first to ~register" curves 
in order to eliminate such differences in dynamics, and then to perform a 
PCA in a second step. Some registration procedures have been proposed 
by Kneip and Gasser (1992), Wang and Gasser (1995), Silverman (1995), 
Ramsay and Li (1996), or Kneip, Li, MacGibbon  and Ramsay (1998). 
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Tile movies for visualizing a principal component in tile space of images 
are revealing and delightful. They make a compelling argument  for Web- 
based journals. 

Clearly, tile authors gave careful consideration to the reduction of tile 
pixel information to tile feature vectors. The Zernike basis appears to be an 
excellent choice given tile natural  sphericity of eyes. I wonder how poorly 
tile principal components would work if a less appropriate basis was used, 
such as coordinatewise orthogonal polynomials. Do the authors have ally 
caut ionary tales to tell'? 

The paper demonstrates  the utility of tile spherically based robust pro- 
cedures without needing to make restrictive distributional assumptions. If 
one does make some assumptions, then these procedures are also theoreti- 
cally reasonable: 

1. T h e  spa t i a l  m e d i a n  is r o b u s t  a n d  eff ic ient .  In the spherical normal 
case, Brown (1983) (see also Chaudhuri, 1996) has shown that for estimat- 
ing tile mean, the multivariate median has efficiency that  approaclles 1 
as the dimension approaches infinity. For any dimension, the multivariate 
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median has breakdown of 50%. Thus for high dimensional data  as in this 
paper, the multivariate median (in this special case) is much more robust 
breakdown-wise, yet practically as efficient as the sample mean. 

2. The  popula t ion  spherical  principal  c o m p o n e n t s  are the  same 
as the  usual popu la t ion  principal  c o m p o n e n t s .  

Suppose the m-dimensional  random1 vector X can be wri t ten as 

X = ~ Z  + b, (1) 

where ~ is a fixed orthogonal matrix, b is a fixed vector, and Z is a random 
vector that  is coordinatewise symmetr ic  about 0, that  is, Z and 

( zl, . . . 

have the same distribution. I f A z  Coy(Z) exists, then it is diagonal, and 

Coy(X) - ~Az f f .  

Thus the columns of ~ are the eigenvectors of Coy(X), hence the usual 
population principal components (in some order). 

Marden (1999) shows that  

( X - b )  ~ A ~ '  

IIX 
for some diagonal matr ix A. Thus the cohmms of ~ are also the eigenvectors 
of the eovariance of the spherical variables, i.e., they are the population 
spherical principal components.  

There is no guarantee that  magnitudes of the diagonal elements in Az 
and A are in the same order, so it may be, e.g., that  the first usual principal 
component is the second spherical principal component. 

Visuri, Koivunen and Oja (1999) note that  if one is willing to assume 
further  that  X has an elliptically symmetr ic  distribution (a special case of 
(1)), then the diagonal elenlents ,~i of A are known functions of the diagonal 
elements Azi of Az: 

[ ] 
E AziU  J:-: u ' 

where the Ui's are independent s tandard normals. In particular, this re- 
lationship shows that  the two sets of diagonal elements are in the same 
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order, so that  the i th usual principal component  is indeed the i th spherical 
principal component.  

The implication of these results is that  the sample spherical princi- 
pal components are estimating the usual populat ion principal components.  
These papers give evidence that  the robust  estimates are robust  and effi- 
cient. 
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This is an interesting paper and tile authors should be congratulated 
for presenting a thought-provoking analysis of a challenging problem. The 
increasing availability of large da ta  sets in high dimensions has led to a 
growing need for exploratory tools that  can reveal the hidden structure in 
these da ta  sets. The methods presented in this paper  can be very useful in 
this regard. 

The s tandard nmltivariate statistical analysis assumes that  we have 
measured a vector variable on each sample point and, therefore, the data  
is represented by a matrix X nxp~ in which usually the colmnns are the 
variables, the rows the elements in the sample and p < n. A natural  
generalization of multivariate da ta  is the class of functional data  presented 
in this paper. If instead of assuming a finite vector o fp  variables we measure 
a function x(tt~), k 1 , . . . , T  at a finite set of points tt~ and we take the 



Robust functional data analysis 57 

measurements  for each realization of x(t) as one element of tile sample, 
tile data  will be still represented by a matrix X.n• but  now tile variables 
will be highly correlated~ typically T ~ n~ the covariance matrix will be 
close to singular and the analysis of the data  should take into account the 
correlations induced by the smoothness of x(t). 

Tile da ta  set used in tile paper  can be considered as a scalar stochastic 
process x(s'l, t~) along two directions, where 1 1, ..., S, k 1, ...,T, and 
the sample data  is of the form ( X I , . . . , X n )  where the X i  are o e x T 
matrices that  represent the measurements made on the i th sample element 
of this process. More specifically, the data  for each corneal image is a matrix 
with 6912 elements (2732) corresponding to values x(s~,t~) in a grid of 
angles and distances. A s tandard technique to summarize this information 
is to fit a basis to this bidimensional stochastic process and reduce the 
analysis of the data  to the s tndy of the vector of fitted coefficients. That  

for a specific choice of a finite subset of basis functions {bj(~,t)}{_ 1 is, O i l  

[0, 27c] x ~ we associate to each matrix X i  a flmction 9(Xi) that  returns the 
f -dimensional  vector of coefficients 0~ providing the best fit of ~ O~jbj (s, t) 
to Xi.  In this way we can reduce the data  space X i  in dimension S x T 
to the feature space of dimension f corresponding to the vectors Oi. 

The problem considered in this paper  is how to analyze the original data  
by looking at the structure of these feature vectors in a robust  way not af- 
fected by outliers. It is clear that  any analysis carried out in this manner 
may depend greatly on the choice of basis functions, and the number  of 
coefficients f to use. Note that  the procedure described in the paper  is too- 
t ivated by the need to avoid the high correlation that  will appear between 
the observations, due to the continuous nature of the process generating the 
data.  But  the fitting process, and the subsequent analysis in the feature 
space, will only be of help for this purpose if the mnnber of elements f in the 
basis is very small. On the other hand, a reduced number of elements may 
provide a poor  fit, implying that the feature da ta  may be an inadequate 
representation of the original data. As the techniques used for the analysis 
on the feature space are s tandard ones, this choice of a representation (a 
basis and a number  of elements) providing a balance between compactness 
and precision becomes a key issue to just i fy the advantages of the proposed 
procedure. 

Unfortunately, the paper  provides very little information about  the ad- 
vantages of the Zernike basis functions and how well they fit the data. For 



58 N.Locantore, J.S.Marron, D.G.Simpson, N. Tripoli, J.T.Zhang, K.L.Cohen 

instance, Fan and Lin (1998) fit Legendre polynomials of order 7 followed 
by a Fourier transfornl to a similar set of cornea measures. It would be use- 
ful if the authors comment on the pros and cons of different representations 
for this type of data, and their impact on the subsequent statistical analy- 
sis. Also, tile crucial issue of tile choice of dimension for tile feature space 
is not addressed in the paper. In figure 3 tile plot of Zernike coefficients 
seems to have 66 components  but  no indication is given on the reasons for 
this choice, and the fit that  can be achieved. 

If we unders tand the paper correctly, the authors first subtract  the 
mean and then compute  eigenvectors and eigenvalues of tile covariance 
matrix between the feature vectors M = TIT~n, where T has rows corre- 
sponding to 0~. Let Vl be tile f • 1 eigenvector associated to tile largest 
eigenvalue of M .  The representation of the i th sample point in terms of 
this first principal component  is the function (0~vz) ~ vljbj(8, t) and this 
collection of functions represents the best approximation to the data. In 
tile same way, we can compute  a second principal component  to produce 
(OTv2) ~ i  v2jbj(s, t) a n d  so  o n .  

The authors are interested in computing principal components  not af- 
fected by ontliers. In many cases the most interesting problem is the dnal 
one, that  is, the identification of outliers, which means detecting structures 
in the da ta  that  deviate from the usual pattern.  For instance, in clinical 
analysis we may be more interested in ident i~ing patterns that  may corre- 
spond to illness than in describing healthy individuals. This can be carried 
out in the feature space of the vectors 0i, because it is sensible to expect 
that  some type of aberrant  behavior in the data  space S • T will also be 
captured in tile feature space. Tile analysis of the relationship between 
outliers in tile da ta  space and in tile feature space is an interesting problem 
that  requires a deep study. For instance, a single outlier in the data  space 
due to some measurement error may lead to several outliers in the feature 
space. Bnt  also a group of ontliers in the da ta  space due to some differ- 
entiated behavior may lead to a single outlier in the feature space. The 
problem is further complicated as the generation of tile information in tile 
feature space (tile computat ion of 0i) may produce groups of masked out- 
liers, in addition to those that  might exist in the original data. Therefore, 
we should try to use robnst  estimates with a high breakdown point. 

Several authors (see for instance Huber,  1985 and Jones and Sibson, 
1987) have suggested that  a useful way to detect outliers in multivariate 
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samples is to search for univariate outliers on the projections of the data  
over a set of directions obtained by maximizing some criterion. This is 
tile projection pursuit  method, but  tile projection criteria to be used in 
order to have a powerful high-breakdown procedure to ident i~  outliers is 
not clear. We have shown (Pefia and Prieto, 1997) that  a useful procedure 
to identify clusters of multivariate outliers is to look at the directions that  
maximize either the fourth central moment  for the projected data  or its 
kurtosis coefficient. If we apply this idea to the problem considered in this 
paper,  we have to find directions of projection d~ by maximizing 

dk a r g  l n a x  

s . t .  

~2~1 ~ ~(drOl k) -r;~jl v'~ 1 drO(k)~4j 

Ildll-- 1 

where 011) Oi and in subsequent iterations 

Tile outliers will be identified by computing univariate measures of distance 
ri defined by 

]d:rOi m e d i a n ( d r 0 j )  ] 

ri = MAD (d r Oj) 

These measures can also be used as weights w(ri) for the computat ion of 
the scale est imator as a weighted sample covariance matrix. The approach 
is related to Stahel (1981) and Donoho (1982), but  instead of searching 
directions at random we use tile proper ty  proved in Pefia and Prieto (1997) 
that  outliers must increase tile kurtosis of the projected data. 

We would also like to suggest that  a possible alternative analysis of 
this data  set can be performed by using spatial t ime series (Bennet, 1979, 
Droesbeke, 1987). Then, each corneal image is represented by a realization 
of a spatial process and the way to identify s tructural  behaviour will be to 
carry out a fuctorial time series analysis of this spatial process. We can 
also try to discriminate between normal corneal images and aberrant  ones 
by performing a cluster analysis of these spatial time series. The ideas of 
Piccolo (1990) on clustering time series can be generalized to this setting. 
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This fascinating paper  marries some exciting ideas for the analysis and 
display of functional models with some important  and challenging data. 
Tile result is some creative thinking that should have an impact well beyond 
the context of this application. The new ideas for the display of the data  
and principal components particularly impressed me. To react to all this 
is a real pleasure. 
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Tile authors wisely reduce tile dimensions of tile problenl by replacing 
tile original nearly 7000 discrete observations by a basis function expansion 
in terms of 66 Zernike polynomials.  These polynomials are a tensor product  
of familiar Fourier series functions and the Jacobi polynomials defined to 
be orthogonal over [0, 1]. 

The authors refer to these polynomials as "features". What  do they 
mean by this? A basis flmction can be called a feature if it captures some 
structure that  is known a priori to contribute much of tile variation in 
tile data. Examples would be Fourier components  in s tat ionary signals, 
and perhaps B-splines and wavelets for data  having local "bumps".  Are 
these variations in corneal curvature that  we see really well represented by 
specific Zernike polynomial  coefficients? If not, the authors are just  using 
one handy basis among other possibilities that  manages to represent the 
da ta  well in a manageable number of dimensions, and perhaps the term 
"feature" should be reserved for effects in the data  rather than in the basis. 

Can we imagine be t te r  bases? The great virtue of B-splines and wavelets 
is their local character, which neither Jacobi  polynomials nor Fourier series 
possess. Periodic versions of B-splines are available, and perhaps these de- 
fined for angular measure could be crossed with the usual B-splines for the 
radial dimension. 

Or, to consider a rather  different approach, perhaps these analyses could 
make use of finite element methods,  now used widely to solve what are es- 
sentially regularization problems, but  defined in terms of partial differential 
equations rather than explicit roughness penalties. I am finding in my own 
work, and especially for multidimensional arguments such as here, that  
the partial differential l i terature in general and finite element analysis in 
part icular appear  to have a great deal to offer problems such as this. 

Missing data  are indeed a central and difficult problem in functional 
da ta  analyses. In fact, even in situations usually not thought of as involv- 
ing missing data, we see similar issues arise. Tile est imate of tile second 
derivative of a flmction at a point near the boundary  can become dranmt- 
ically unstable because tile data  become progressively more one-sided in 
tile information that they convey. While tile estimates are unstable, they 
are not, strictly speaking, outliers. Rather,  outliers are usually unders tood 
to be actual observations that  are wildly inconsistent with sensible model 
estimates, rather  than model estimates that  are wild because there are no 
da ta  to define them. 
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Tile authors have elected to handle tile missing data  problem by in- 
geniously modifying principal components analysis so as to render eigen- 
functions insensitive to this type  of instability. In so doing, they have 
made a real contribution to robust  est imation technology for functional 
da ta  analysis, and this is sure to be useful in the presence of what  we 
usually unders tand as outlying data. 

An alternative approach is to use regularization, involving penalizing 
the ronghness of est imated components,  a topic that  is a central theme 
in our book, Functional Data  Analysis. When  the data  are not there, or 
are sparse, the est imated components simply become smooth, as seems 
reasonable. Regularization can also be thought of as a Bayesian approach 
to functional data, since the roughness penal ty can correspond to a prior 
for the est imated function. 

The regularization process can be viewed as borrowing information from 
neighboring data  points. We can also borrow information fl'om other entire 
images. That  is, if a piece of an image is missing, and especially if it is on 
the periphery, it seems reasonable to fill in the image with da ta  from other 
images that  are in other ways similar it. This principle underlies what is 
varionsly called in the linear modeling literature empirical Bayes, hierarchi- 
cal linear models, or nmlti-level analysis. In that  domain, it is postula ted 
that  coefficients in a linear expansion are sampled fl'om some population, 
usually taken to have a Gaussian distribution. One of the main applica- 
tions of these methods is in fact to compensate for nfissing t ime values in 
longitudinal data. Brmnback and Rice (1998), and the commentaries that  
accompany it, use nmlti-level analysis for curves with missing data  that  are 
represented by a linear combination of B-splines. Since these images are 
linearly expanded in terms of Zernike polynomials, the application would 
seem to be direct. 

Finally, an option to explore is the rotat ion of principal components  to 
provide alternative and perhaps more easily described characterizations of 
corneal curvature aberrations. PCA has as its main objective the identifi- 
cation of a subspace within which much of the variability of the data  can be 
defined. Of course, the eigenfunctions p l w  a key role in characterizing that 
subspace, but  this role is primarily computational .  Once the subspace has 
been deternfined, aW nontrivial set of basis functions spanning the same 
subspace, whether orthogonal or not, are potential  candidates for describ- 
ing what  is happening within it. This principle, well unders tood by decades 
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of psychometricians and other specialists in the analysis of behavioral sci- 
ence data~ needs to penetra te  more deeply other areas of application of 
PCA and related methods.  These alternative coordinate functions should 
be  chosen to more directly evoke the features that  ophthamologists actually 
see through their instruments.  Examples of rotat ing functional principal 
components  using the VARIMAX criterion can be found in our book. 

But there is so much to admire in this paper as it stands, and I am sure 
that  analysts of functional data  will derive benefit and stimulation from 
this work for many years to come. 

R e f e r e n c e s  
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Mariano J. Valderrama and A n a  M. Agui lera 
Universidad de Granada, Spain. 

This paper presents a nice application of tile Functional Principal Com- 
ponent Analysis (FPCA) to model  ophthalmological data  and an estima- 
tion procedure based on a robust  approach. In fact, the manuscript  can be 
clearly divided in two separated parts: 

First, the functional data  space of images is t ransformed into a space of 
feature vectors by least-squares fitting on a functional subspace spanned by 
an orthogonal basis of Zernike polynomials.  Then, the stochastic problem 
is reduced to a finite set of random variables as it is usual in dimensionality 
reduction techniques. 

Second, robust  estimators of location and spread of the feature vectors 
are calculated in order to reduce the outlier influence in the estimation 
procedure of the FPCA.  

The paper is wri t ten in a methodological way avoiding to give too nmch 
technical developments and involves a very interesting and convincing ap- 
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plication about  the behaviour of robust  est imation and compression pro- 
cedures with spatial data. Nevertheless, perhaps some specific aspects of 
tile paper could be discussed and clarified by means of tile following sug- 
gestions: 

1. The approach described in this paper  is suppor ted  on tile choice of 
a Zernike basis so that  tile spatial F P C A  is equivalent to tile nmltivariate 
PCA of the coefficients (feature vectors) in terms of such a basis. Aguilera 
et a1.(1999) have proved that  this issue is valid for any Hilbert ian random 
variable with values in a finite dimensional space. 

In order to extend this methodology to more general situations when we 
deal with real data, different orthogonal basis could be considered such as 
Bessel functions (Ruiz and Valderrama, 1997) or two-dimensional wavelet 
functions that  can be successful even for non smooth data. 

2. Taking into account that  tile procedure used for obtaining tile feature 
vectors introduces certain noise in tile measures, it could be performed 
an interpolation of the images on the discrete da ta  of tile grid by means 
of two dimensional splines of a suitable order. In fact, Aguilera et al. 
(1996) have proved for the one-dimensional case that  cubic splines provide 
opt imum results with smooth curves. On the other hand, tile interpolated 
images preserve tile observed data  on the grid by assuming not noisy sample 
information. 

3. The est imation procedure developed in the paper  is reduced to ro- 
bust  est imation of tile location and spread measures of the feature vectors. 
Nevertheless, a generalization to the F P C A  could be outlined by means of 
a direct robust  est imation of tile covariance operator  instead of performing 
it through the Zernike coefficients, al though it would give rise to a more 
complicated problem. 

Finally, an alternative way to find robust  functional principal compo- 
nents would be to apply tile "projection pursuit" approach developed by 
Croux and Ruiz-Gazen (1996) by maximizing a robust  est imation of tile 
variance. 
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Rejoinder  by N. Locantore,  J.S. Marron,  D.G.  S impson,  
N. Tripoli, J.T. Zhang and K.L. Cohen  

We appreciate the many fine points raised by all of the discussants. 
They  have added much to the paper, and we have learned a lot. We are 
also very grateful for the m a w  important  references that  have been added. 
Because complementary views have been provided by several discussants 
on a number of topics, we have chosen to organize this rejoinder by topic. 

D a t a  s u m m a r i z a t i o n  a n d  cho ice  o f  bas i s  

Most discussants agreed with our expressed need to summarize the data, 
and many interesting alternatives were suggested. Ramsay raises an inter- 
esting point about  the use of the term "features" and "features vectors" in 
this context. We borrowed this from the field of statistical pa t te rn  recog- 
nition, where it has become quite s tandard terminology. But  we agree that  
it would be bet ter  to reserve use of the word "feature" for something found 
in the data, such as the bright red cone in Figure 2, not just  a projection 
onto a basis element. 

We have direct experience with the Zernike basis, as in tile paper, and 
with a tensor product  of the Fourier and Legendre bases, as discussed by 
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Fan and by Pefia and Prieto. Tile performance of these bases in this con- 
text is not so different, and we got some similar PC A results using tile 
Fourier-Legendre basis. However, the Zernike basis is more efficient in 
terms of giving similar representations with fewer terms (66 for the Zernike 
basis corresponds to about  120 for the Legender-Fourier basis). A related 
problem with the Legendre-Fourier basis is that  it has some unpleasant sin- 
gularities at the origin. Most angular tensor product  bases will have this 
problem, and it is a special property of the Zernike basis that  its particular 
Jacobi component  can be viewed as carefully chosen to avoid this type of 
singularity. The singularities were usually not a major problem for this 
basis, since the signals being fit are smooth, but  we believe it was the need 
for basis functions to adapt  properly for these singularities that  entailed 
more coefficients being needed than for the Zernike basis. 

As suggested by Marden and by Pefia and Prieto, there definitely are 
some "knobs to turn" in fine tuning our method. The choice of number 
of terms in the Zernike representation certainly has an impact. As noted 
by Brumback and by Fan, this is a smoothing parameter,  and affects what  
one sees in the familiar way. Here is a point where the clinical experience 
of %'ipoli and Cohen was essential. We addressed this by looking at a 
set of raw data  images, as in Figures 1 and 2, and comparing with their 
reconstructions as in Figure 3, for a number of different coefficient numbers. 
We chose 66 as best highlighting the important  clinical features in these 
images, while at tile same time minimizing noise. We have not tried it, 
but  believe that  the PCA will still find roughly the same directions for 
a wide range of coefficient numbers (but with more noise, or else more 
smoothing).  Another knob to turn was the radius of the analysis region 
(most images extend beyond the 4ram radius shown here). If this radius 
is taken to be much larger, then even the robust  Elliptical PCA can not 
suppress completely the influence of the missing da ta  (because nearly every 
image then has edge artifacts). If the radius is taken much smaller, the the 
edge artifacts are reduced, and thus there is less need for robust  PCA. 

Summarizat ion by B-splines were suggested by Brumback,  and by Ram- 
say. We considered B-splines at an early point in the research, but  only the 
tradit ional rectangular tensor product .  We rejected it because it did not 
seem to fit natural ly in our circular region of interest. However, Ramsay 's  
idea of an angular tensor product ,  and the other variations, sound very 
sensible. Tile nice Brmnback example may leave one skeptical (and it cer- 
tainly highlights tile importance of knot choice), but  things are likely not 
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that bad in tile 2 dimensional world, because angular information will tend 
to help with some of the problems shown there. We suspect this approach 
could give similar performance to what we obtained with the Zernike basis. 

Valderrama and Aguilera suggest some additional possibilities, based on 
wavelets, and on Bessel functions. We expect that as long as these methods 
can be adapted to our circular analysis region, they will also give similar 
good performance. 

D u a l  p r o b l e m s  

Kneip has pointed out a very powerful and promising approach to doing in 
PCA in high dimensional contexts, that was new to us. I. M. Chakravarti 
has remarked that this observation can be viewed as a consequence of 
Lemma (i) of Good (1969). The idea is well worth deeper investigation, 
and may even prove to be useful in examples such as ours (66 dimensions, 
but only 43 data points). We are reminded of the "dual problems" found 
in the simplex method for linear programming. 

Brumback has pointed to a different use of tile term "dual", which is 
also an important concept for analyzing populations of complex objects, 
when they are summarized by feature vectors. 

Rotation of Principal Components 

Ramsay brings up an important point about principal components in gen- 
eral, and functional data in particular, which is that PCA should be viewed 
as "finding low dimensional subspaces", and these are not always best rep- 
resented by the eigenvectors found by tile original analysis. Tile original 
eigenvectors were satisfactory for the set of normal cornea images analyzed 
here, but we had exactly the problem Ramsay describes with other sets of 
cornea data. 

Even with the normal corneal images, we have contemplated (but have 
not yet tried) investigating other subspaces. For example, the first op- 
tometrical measurement is "spherical curvature", and we could study the 
component of the data in that direction by doing PCA only on the Fourier 
order 0 basis elements in the Zernike representation. The second optomet- 
rical measurement is astigmatism, which shows up mostly in tile Fourier 
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order 2 terms, so something similar could be done in that  direction. 

P e r f o r m a n c e  o f  s p h e r i c a l  a n d  e l l i p t i c a l  P C A  

Tile bias effect in the elliptical PCA discovered by Boente and h 'a iman ' s  
is very interesting. We wonder if this small effect could perhaps get worse 
in higher dimensions. The clinically relevant results we got for the cornea 
da ta  suggest that  this was not a mayor problem in that  part icular case. 
We believe this was becanse the distributional major  axes were roughly 
parallel to the coordinate axes, as suggested by the middle panel of Figure 
11, and thus bias was small. However, it will likely turn  out be important  
to unders tand this effect for other data  sets. 

We also enjoyed the simulations of Boente and Fi'aiman on the "fail- 
ings" of spherical PCA. With any statistical method,  insight comes from 
"stretching it until it breaks", and a good job of that  has been done here. 
Tile key to this example is that  tile eigenvalues are very close, so tile "prin- 
cipal direction" becomes a ra ther  fuzzy notion, and then a large amount  of 
contaminat ion is added in a particular direction. When the contamination 
is large enough, it easily overwhehns the difference between the eigenvalnes 
and gives systematically wrong answers. This can be viewed as showing 
that  tile breakdown point of spherical PCA is quite small when tile impor- 
tant  eigenvalues are close to each other. 

To investigate this, we replicated their experiment, except that  we 
changed the eigenvalne matr ix  fl'om A (6, 5) to A (8, 4) and A 
(3/2, 3/4) (eigenvalues now separated by a factor of 2). The results are 
shown below. 

A (8,4) N15 N30 N45 A (3/2,3/4)  N15 ~N~0 N45 
Classical, Co 
Spherical, Co 
Classical, 6'0.1 
Spherical, C0.1 

0 0 0 
0 0 0 
500 500 500 
77 7 1 

Classical, C0 
Spherical, 6'o 
Classical, C0., 
Spherical, C0., 

0 0 0 
0 0 0 
500 500 500 
58 4 1 

It appears that  tile breakdown point in tile spherical method,  observed by 
Boente and F~'aiman does not occur in these examples. In their example, the 
first theoretical eigenvalue only accounts for 54.5% of the total variation of 
the data. When we convert the data  to the sptmre, the eigenvalues become 
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approximately As = (0.53, 0.47). In both  of our examples, it is 66.7%, and 
the converted eigenvalues are approximately As' - (0.58,0.42). Influence 
function calculations, similar to those in Croux,'s (3) show why there is 
breakdown in one case, but  not the other. Using notation similar to Croux, 
the influence flmction of an eigenvector is bounded by 

F) _< 

When e exceeds this value, tile estimate will break down, since the amount  
that  tile angle moves (in radians) is 

s i n - 1  " 

Note that  this angular measurement  will be undefined when e > 2(~1 
~ ) .  The estimate becomes very poor (i.e. off by 45 ~ whe ,  e ~ V~(A~ - 
A2). In their example the 10% contamination exceeds v/2(0.53 - 0.47) 
0.085, so breakdown of tile est imator is to be expected. In our examples, 
spherical PCA showed some signs of weakness even though there was not 
total  breakdown. We also performed the simulation where the leading 
eigenvalue accounted for 90% of the total  variation, A = (9, 1), and this 
admirably withstood one-third contamination. Since the key to breakdown 
of spherical PCA is tile difference between eigenvalues for tile sphered data, 
we give a table of approximate values for these. 

First PC's  % )~1 )~2 V/2(,~l )~2) 
55% 
60% 

66.7% 
70% 
80% 
90% 

0.53 0.47 0.085 
0.54 0.46 0.110 
0.58 0.42 0.230 
0.59 0.41 0.250 
0.67 0.33 0.480 
0.75 0.25 0.500 

We conjecture that  other robust approaches will have similar problems 
with breakdown in this type of simulation, which motivates construction of 
a diagnostic based on eigenvalues. This would not be straightforward be- 
cause of the problems with interpreting spherical and elliptical eigenvalnes 
pointed out by Brumback, and by Croux. This problem can perhaps be 
tackled by replacing tile eigenvalues with stuns of squares of projections of 
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the data  (these are the eigenvalues for ordinary PCA,  but  not for spherical 
PCA).  The eigenvalues are quite different for the cornea data, so this does 
not seem to be a practical problem here, but  it seems well worth knowing 
as it may appeal" with other data  sets. 

Croux has elucidated some very interesting and useful properties, in- 
cluding equivariance, the influence function and efficiency. We note that  
the dependence of the asymptot ic  relative efficiency (compared with classi- 
cal PCA) on tile eigenvalues is an inherent feature of estimation with n > d. 
An interpretat ion of his "50% upper  bound  on tile efficiency" nmy be that  
when one uses only directional information, in a two dimensional context, 
half of the information is lost. Given the increasing efficiency of the spatial 
median as the dimension increases (see Marden's  connnent), we conjecture 
that  the efficiency bound for spherical PC A will also increase, possibly to 
1, as the dimension increases. Croux's suggestion (ii) looks promising to 
address this inefficiency. 

We do not agree with Croux's suggestion that elliptical PCA is an 
"equivalent of correlation PCA".  To unders tand this point, note that  cor- 
relation PCA would be nearest to doing PCA in tile lower right hand plot 
of Figure 18. However, elliptical PCA is done in the left hand plot, which 
can give quite different results. 

We were interested to find that  Marden (1999) had independently de- 
veloped the idea of spherical PCA. This seems to be an idea whose "time 
has come". Max'den's remark about  the populat ion PCA directions being 
the same as the spherical PCA directions was very insightful and interest- 
ing. A word of caution about  the notion of "coordinate-wise symmetry"  is 
that  for (non-trivial) empirical distributions, this seems to have the mini- 
real requirement of n > 2 el, which seems quite far from the n < d situations 
present for this type of data. 

We agree with Kneip's observation that PCA is quite capable of finding 
"interesting directions;', even when the data  are not normally distributed. 
The need for normality is more about  classical multivariate hypothesis test- 
ing, than it is about  finding directions. 
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M o r e  a p p r o a c h e s  t o  m i s s i n g  d a t a  

Ramsay nicely elucidates tile difference between '~missing data" in individ- 
ual images and "outliers" in the population sense. However, our missing 
data problems do cause "outliers" in precisely Ramsay's sense, i.e. data 
points that are "wildly inconsistent with sensible model estimates". For 
example, when looking at projections onto eigenvectors that are driven by 
outliers, e.g. the direction shown in in Figure 7, plots of the distributions 
show that tile outliers are easily 8 or more standard deviations from the 
mean. Such plots were not put in the paper to save space, but are visi- 
ble in the lower half of the accompanying MPEG movies. See for example 
rmrm200.mpg. Another way to see that we have "outliers" in this sense is 
tile bottom panel of Figure 11. If these were nmltivariate Gaussian data 
vectors, then the bottom curves would all lie in about the range ( 3,3), 
but there are a number of cases that go far outside that range. 

Brumback's analysis of tile missing data problem nicely clarifies the 
problems of the Zernike basis in this context. Tile wildly discolored re- 
gions in Figure 3 are caused by tile type of extrapolation illustrated in the 
simple example, and the effect is heavily magnified by looking at second 
derivatives. Brumback's suggestion for how to counter this effect provides 
a nice solution to tile problem posed by Fan of "how can we do robust 
imputation?" A possible downside is that it may be computationally very 
slow with tile 6912 • 6912 covariance matrix V. 

Also promising is tile regularization-Bayesian approach to tile outlier 
problem, suggested by Ramsay. This is especially natural when doing sum- 
marization by B-splines. 

A l t e r n a t e  v e r s i o n s  o f  P C A  

The possibility of "depth" based approaches to PCA suggested by Boente 
and h 'aiman sounds promising. 

We did consider some projection pursuit approaches, as suggested by 
Croux, by Pefia and Prieto and by Valderrama and Aguilera, but were too 
intimidated by the very high dimensionality for our data. Examples we 
have seen tend to be in something like 4 dimensions, with 10 dimensions 
already causing concern. Our 66 dimensional space is very large, and we 



72 N.Locantor< J.S.Marron, D.G.Simpson, N. Tripoli, J.T.Zhang, K.L.Cohen 

were not confident of being able to find an algorithm that wonld avoid 
likely problems with multiple optima, etc. Pefia and Prieto seem to hint at 
an approach which could address the multiple optima problem. Another 
approach may be to use elliptical PCA directions as starting values for this 
type of approach, and then refine by iteration. The local optimum found 
by this method would probably be useflfl, and might be better than the 
elliptical PCA, especially in view of the bias problem pointed out by Boente 
and Fraiman. 

Robust estimation applied directly to the continuous covariance oper- 
ator, as suggested by Valderrama and Aguilera sounds well worth further 
study. One approach could be to use the spherical or elliptical projection 
idea in that domain. 

R o b u s t  l oca t ion  e s t i m a t i o n  

Croux made some very useful suggestions about improving the numerical 
performance of tile L 1 location estimate. Although starting with the mean 
vector caused us no trouble with our data, we anticipate that starting with 
the componentwise median, as Croux suggests, instead of tile median will 
improve tlle performance of the algorithm. 

Fan asks why we use the spatial medians as a final location estimator 
instead of the componentwise median. Certainly the componentwise nle- 
dian is a possible replacement. We note, however, that the spatial median 
already has a 50% breakdown point (see Marden's comment), so it has 
good ~'global" robustness. He and Simpson (1992) derived optimal ~qocal" 
robustness of the spatial median for directional data. Brown (1983) pre- 
ferred the spatial median on the basis of its rotation equivariance and its 
increasing efficiency as the dinlension increases. 

Clearly, finding an appropriate tradeoff between robustness, efficiency 
and smoothness in high dimensions is a challenge. We anticipate many 
improvements to our initial approach. Indeed the discussants trove already 
introduced many promising ideas. 
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Addit ional  topics 

Kneip makes a good point about  the importance of "errors in variable;' 
methods.  We agree that  there is a need to extend ideas in the direction 
of functional da ta  analysis. A good starting point may be the monograph 
Carroll, Rupper t  and Stefanski (1995). We also agree about  tile importance 
of registration of functional data, and that  was an issue in our analysis, that  
we solved by using ~pupil center;' information. 

Pefia and Prieto have anticipated some npcoming work, by asking how 
this methodology can be useful for more just  describing populations,  but  
in fact to find problems with corneal shape. Work is currently under way 
on methods for the identification of Kerataconus, as shown in Figure 2. 

The spatial time series approach of Pefia and Prieto to these da ta  sounds 
interesting. 

Ramsay 's  suggestion of the use of finite element models also has some 
appeal. An advantage is that  one could perhaps make use of the many 
known physical properties of cornea. 
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