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Abstract

The desire to recover the unknown density when data are contaminated with errors
leads to nonparametric deconvolution problems. Optimal global rates of convergence
are found under the weighted L,-loss (1 < p < o0). It appears that the optimal rates of
Aconvergence are extremely slow for supersmooth error distributions. To overcome the
difficulty, we examine how large the noise level can be for deconvolution tc; be feasible,
and for the deconvolution estimate to be as good as the ordinary density estimate. It
is shown that if noise level is not too large, nonparametric Gaussian deconvolution can

still be practical. Several simulation studies are also presented.

0 Abbreviated title. Supersmooth Deconvolution.
AMS 1980 subject classification. Primary 62G20. Secondary 62GO0S5.
Key words and phrases. Deconvolution, Fourier transforms, kernel density estimates, Ly-norm, global

rates of convergence, minimax risks.



Section 4 examines how the theory works for moderate sample sizes via simulation

studies. Futher remarks are given in section 5. Proofs are deferred in section 6.

2. Optimal Global Rates

Let’s give a global lower bound on rates for supersmooth error distributions. Let’s assume

that the second half inequality of (1.4) holds:

B[t~ exp(t|®/7) < dr (as t — ), (2.1)
for some constants 8,4 > 0, d; > 0, and B;, and that
Ple — 2] < [2]%} = O (j2=9),  (as 2~ 2oo), (22)

forsome0<apg<landa>1+a.
Theorem 1. Suppose that the distribution of error variable ¢ satisfies (2.1) and (2.2)
and f € Cm p. Then, no estimator can estimate f()(z) faster than the rate O ((log n)=(m-=0/ ‘3) .
in the sense that for any estimator T.,(z),
liminf sup (logn)™ = MAE|Ta(-) = F(Mlup > Cpus (2.3)
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for all 1 < p< oo, promded that the weight function w(-) is positive continuous on some

o oalo@dn 2ZTALL
znterval where C pl 1S G posztwe constant independent of the estimator.
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In terms of techmca.l a.rgument of Theorem 1, we will use the technique of adaptively
S9atsrdo e1s (viorsD 1o lsmros 1,0 =
, local one-dlmensxonal subproblems developed by Fan (1989), and then reduce the global
% L oemeroed T zioatlozer w47 Lgo:
{roblm to a pointwise estxmatxon problem so that the existing lower bound (Fan (1990))
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on pointwise rates of convergence can be used. To our knowledge, the technical argument
.bozzanh .

_ appea.rs to be new'

Now, let s show that the rate above is indeed attained by the deconvolution kernel

estimator (1.3), and hence it is optimal. Some assumptions on kernel function K(-) are

Condition 1:




o X(-)is bounded continuous, and [+ |y|™|K(y)|dy < occ.

o The Fourier transform ¢x of K has a bounded support |t| < My. Moreover, ¢x(t) =

1+ 0(t|™).

Theorem 2. Assume that ¢.(t) # O for any t, and that

|6e(2)I[t= exp([t]/7) 2 da, (24)

for some positive constants 8,v,d2 and constant 3. If the kernel function K satisfies

Condition 1, then for h, = cMo(2/7)/P(logn)-1/# with ¢ > 1,
52 D0 = £2()llup = O ((logm)=m-0/%) (25)
m, B

for all 0 < p < o0, provided that the weight function is integrable.

In light of the bandwidth given by Theorem 2, there is no much room for bandwidth
selection. If ¢ > 1, then the variance converges to 0 much faster than the bias does, while
if ¢ < 1, the variance goes to infinity. Thus, practical selection of bandwidth would select a
constant c close to 1 in Theorem 2.

The distributions satisfying conditions (2.1), (2.2), and (2.4) include normal, mixture

normal, and Cauchy distributions. For these supersmooth error distributions, nonpara-
LA ron x> > 1
metric deconvolution is extremely hard: the optzmal rate of t?onvergexfce is only of order
39 9uli20q o 2d 3 D svedw doviutas
(logn)~™/8. One way of resolving this dxfﬁculty will be discussed in the next sectmn
5 rreinpis oiadist Yo emrer ol
Some special global results (basically p = m = 2,1 = 0, € normal or Cauchy) are obtained
- wmeldoiqcre lsmolamezuili-sgo [sool
independently by Zhang (1990) under dlﬁ'erent formulatmn The results in Theorem 1 &
Coirsmidze salwiaiog s of meldor
2 provide better insights: it shows that both lower and upper bounds depend on F, only
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through the tail of ¢,, and the dependence is exphcxtly addressed
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Remark 1. In an early version of the proof of Theorem 1 (see Fan (1988) for wlnch the
results in this section are based), a 1-dimensional subproblem is hard enough to capture the
difficulty of the full global deconvolution problem. In contrast with the ordinary density

estimation (Stone (1982)), in order to construct an attainable lower bound under the global



and

(91, J—l’l 0; J+1s° mn)'

Let F, be the distribution of ¢, and x2(f,g9) = [(f - g)?/fdz be the x2-distance. By
Theorem 1 of Fan (1989), if

2
lgsﬁnoeg,?fmnx (f 6jo "fo )<c1/n, (6.3)
then
nf o By [ 1)~ S Pule)de
Ta(z) fECm B |
_,/'_7_5. o
2 : 4 /w(x)dz/ [HO(2)|Pdz(m_(m=D)P. (6.4)
Thus, m, ~(m=1) s the global lower rate.

Let’s determine m,, from (6.3). Note that there exists a positive constant ¢, such that

fo(z) > c2fo(z + j/mn) (1 £ j £ m,). By (6.1) and (6.2) with a change of variable, we

have
—2m [T [H(ma(")) * Fe)?
2 2 2m
BB aeB ¥ oyt Frfoy, + F) < 28mim [ P EE i,
§mgim ¥ [H(ma(")) * FJ?
2 C2 -/—cc fox F, dz. (6.5)

To construct a pomthse xmmmax lower bound, one has also to select m,, such that (6.5)
is of order O(1/n), wlnch is determmed by Fan (1990) to be m, = c3(logn)!/8, for some
constant c3 > 0. Consedugntly, the global rate is of order m (™" = ;™D (log n)=tm-01/8,

The conclusion follows.
svedow O <V

2. Braphof Phsgrem2 -

V}’e x}eed ?nly to prove the result for p = o0o; the other result follows from
s 101 (P {gpolile i

ENFOC) = 2 Mwp < ENFOE) = £FPVloos
by assuming that [+ w(z)dz = 1.
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Note that

Ef@) = [ 196 - by K@)y,

which is independent of the error distribution F,. Thus, by the results in the ordinary
density estimation, or Taylor’s expansion

+00
E r(zl) . (l) oo B / (m- g d h(m—l)
fesginll KRG =50 _(m Il lyl*™ =7 K (y)ldy

(6.6)
Thus, we need only to verify that
sip E|f() = EFP()leo = O ((logm)("=1/%) .
fecm,B
Note that by (1.3),
; ; 1 [+ E|da(t) — ¢y (1)l
(’)--E(')-“,<—/ (tha)lltl dt
"fn () fn ()" = 2 Jewo |¢1\( )” | I¢¢(t)|
o maxiéx] Igx(thalltl
= 2mn? Jjeroshe [0e(2)]
M; max |¢x| 1 ‘
2o MARIPK] —dt, 6.7
27n1/2R5Y Jiic Mo [@e(t/ha)l (6.7)
by using the fact that ¢ has a support [- My, Mp], and that
Eldalt) - oy ()] < (Eldalt) - ey (0IF) " < n=02.

O N SOy A Foa P
By (2.4), there exists a constant tg such that when || > 7o,
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|8e(t)][ti~P2 exp(|t]®/7) 2 duyf@secoD .0 < g3 1ussened

.awollol zoizyldzod sr[;
Consequently, by (6.7) and the fact that min <, |[$e(t)| > 0, we have

1FOC) - EFO( e = 0 (hz= 1= 230 10 95T

ot wlra baag
With the bandwidth given by Theorem 2, the last display is of order o((log n) - ) for any
positive constant d. This completes the proof.
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6.5. Proof of Theorem 5

First, using the integration by parts twice, it is easy to see that K, defined by (3.5) is
bounded by
|[Kn(z)] <

To57 (for some constant C),

i.e. Kn(z)is bounded and decays at the rate |z|~2 as |z| — co. Thus, F* is well defined,

and can be expressed as

Fou 1 = o [T — YJ
Er(z) = ;zljn ( - )
with K*(z) = [ Kn(y)dy. Note that
A +oo
sup |EF;(z) - F(z) =sup| [ Fx(z - hap)K(s)dy = F(z)| = O(h3) = O(n~/%).
x - 4 -_00
Thus, we need to prove that

E|lF7(:) = EFz(NMup = O(n13),

which follows from Marcinkiewicz-Zugmund’s inequality (Chow and Teicher (1988), p356)

or direct expansion by assuming p = 25 as Theorem 4,

GO ED)

for some constant D, as had to be shown.

4
< Dn~?/?,
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