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ABSTRACT

We discuss the difficulties of estimating quadratic functionals based on observa-
tions Y (¢) from the white noise model

Y()=[fu)du + o W(), 101,
0

where W(t) is a standard Wiener process on [0, 1]. The optimal rates of convergence

(as o —> 0) for estimating quadratic functionals under certain geometric constraints are
1

found. Specially, the optimal rates of estimating j (f ®)(x)]? dx under hyperrectangular
0

constraints I={f:x;(f)<Cj7") and weighted 1, -body constraints
L, =X 1x;(f)1P <C} are computed explicitly, where x;(f) is the jth Fourier-
1

Bessel coefficient of the unknown function f. We invent a new method for developing
lower bounds based on testing two highly composite hypercubes, and address its advan-
tages. The attainable lower bounds are found by applying the hardest 1-dimensional
approach as well as the hypercube method.

We demonstrate that for estimating regular quadratic functionals (i.e., the function-
als which can be estimated at rate O (6?), the difficulties of the estimation are captured
by the hardest one dimensional subproblems and for estimating nonregular quadratic
functionals (i.e. no O (c?)-consistent estimator exists), the difficulties are captured at cer-
tain finite dimensional (the dimension goes to infinite as ¢ —> 0) hypercube subprob-
lems.
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1. Introduction

The problem of estimating a QUadratic functional was considered by Bickel and Ritov
(1988), Hall and Marron (1987b), and Ibragimov et a/ (1987). Their results indicate the fol-
lowing phenomena: for estimating a quadratic functional, the regular rate of convergence can
be achieved when the unknown density is smooth enough, and otherwise a singular rate of
convergence will be achieved. Naturally, one might ask: what is the difficulty of estimating a
nonlinear functional nonparametrically? The problem itself is poorly understood and the

pioneering works show that the new phenomena need to be discovered.

Let us consider the following problem of estimating a quadratic functional. Suppose that

we observe y = (y;) with

Yj =Xj +Zj, (1.1)
where z,, 2,5, - - are ii.d. random variables distributed as N (0,-0'2), and
x=(x:j=1,2, ---) is an unknown element of a set £ < R”. We are interested in
estimating a quadratic functional

Q)= A xf  (A;20) (1.2)
j=1

with some geometric constraint £. The geometric shapes of £ we will use are either a hyper-

rectangle
= {x: lle ‘<‘Aj}' (13)

or a weighted /,-body
Z={x:38lx;1”P <C}. (14)
1

These are two interesting geometric shapes of constraints, which appear quite often in the
literature of non-parametric estimation ( Donoho e! al (1988), Efroimovich and Pinsker (1982),

Parzen (1971), Pinsker (1980), Prakasa Rao (1983), etc.). The connections of such geometric




constraints with the usual constraints on the bounded derivatives will be discussed in section 4.

An interesting feature of our study is the use of geometric idea, including hypercube sub-
problem, inner length, and hardest hyperrectangle subproblem. We use the difficulty of a
hypercube subproblem to develop a lower bound. We show in section 3 and 4 that for some
geometric shapes of constraints (e.g. hyperrectangles, ellipsoids, and weighted /,-bodies), the
difficulty of a full nonparametric problem is captured by a hypercube subproblem. We com-
pare the hypercube bound with the minimax risk of a truncated quadratic estimator, and show
that the ratio of the lower bound and the upper bound is bounded away from 0. Thus, in
minimax theory at least, there is little to be gained by nonquadratic procedures, and hence,

consider quadratic estimators are good enough for estimating a quadratic functional.

A related approach to ours is the hypersphere method developed by Ibragimov e: al
(1987). The notion of their method is to use the difficulty of a hypersphere subproblem as that
of a full nonparametric problem. Their results indicate that for estimating a spherically sym-
metric functional with an ellipsoid constraint, the difficulty of the full problem is captured by a
hypersphere subproblem. We might ask more generally: can the hypersphere method apply to
some other symmetric functionals (see (2.1)) and 6ther shapes of constraints to get attainable
lower rates? Unforetunely, the answer is "No". We show in section 6 that the hypersphere
method can not give attainable lower rates of convergence for some other kind of constraints
(e.g. hyperrectangles) and some other kind of symmetric functionals (e.g. (1.5) with ¥ # 0). In
contrast, our hypercube bound can give attainable rates in these cases. Indeed, in section 5, we
demonstrate that our hypercube method can give a lower bound at least as sharp as the hyper-
sphere method, no matter what kinds of constraints and functionals are. In other words, the
hypercube method is strictly better than the hypersphere method. Our arguments also indicate
that the hypercube method has potential applications to some other symmetric functionals, as

the value of a symmetric functional remains the same on the vertices of a hypercube.



Comparing our approach to the traditional approach of measuring the difficulty of a linear
functional (see Donoho and Liu (1987 a, ¢, 1988), Fan (1989), Farrell (1972), Hall and Marron
(1987a), Khas'minskii (1979), Stone (1980), Wahba (1975) and many others), the hypercube
method uses the difficulty of an ng-dimensional (ng— o) subproblem, instead of I-
dimensional, as the difficulty of the full nonparametric problem. It has been shown that for
estimating a linear functional, the difficulty of a 1-dimensional subproblem can capture the
difficulty of a full problem with great generality. However, totally phenomena occur if we are
trying to estimate a quadratic functional. The difficulty of the hardest 1-dimensional subprob-
lem can only capture the difficulty of a full non-parametric problem for the regular cases (the
case that the regular rate can be achieved). For nonregular cases, the hardest 1-dimensional
subproblem can not capture the difficulty of the full problem. Thus, any 1-dimensional based
methods fail to give an attainable rate of convergence. The discrepancy is, however, resolved
by using multi-dimensionally based hypercube method. Our hypercube method indicates that
the difficulty of the full problem for a nonregular case is captured at an ns-dimensional sub-

problem.

Let us indicate briefly how the problem (1.1)-(1.4) is related to estimating a quadratic
functional of an unknown function. See also Donoho et al (1988), Ibragimov et al (1987),

Efroimovich and Pinsker (1982), Nussbaum (1985). Suppose we are interesting in estimating
b
T() = i ©e e (.5)
a
with a priori information that f is smooth, but f is observed in a white noise
4 t
Y () =jf(u)du +ofaww), tela, bl (1.6)
a a

where W (¢) is a Wiener process.
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Let us assume that {a, b} = [0, 1). Take an orthogonal basis to be the usual sinusoids:

0,1(1) =1, 9,;(1) = \/fcos(Zn:jt), and ¢ , (1) = *ffsin(ant). Then, (1.5) can be rewritten as
T(f)=Qn* f;j“xﬁ + O, x2, 1.7
j=2

and the model (1.6) is equivalent to

Yj =% + 0z, (1.8)

1 1 1
where y; = 1[ 0;(t) dY (1), x; = ([ 0,(t) f(t) dt, zj = t[ 0;(t) aW (z), and &, = 1, if k = 0, and
o, =0, otherwise. Suppose that we know a smoothness priori that the Fourier-Bessel

coefficients of f decay rapidly:
Ixj1 SAj,Aj o 0,if j = oo

Then, the problem reduces to (1.1)-(1.3). Specially, if the (p — 1) derivatives of f are
bounded, and these derivatives satisfy periodic boundary conditions at 0, and 1. Then,
Ixj} £ Cj® for some C. Thus, A; = Cj™P is a weakening condition that f have (p — 1)
bounded derivatives.

1
If a priori smoothness condition is £ = {f: l [f ®X1))%dr < C}. Then, by Parseval’s

identity, £ is an ellipsoid Z= {x: ¥ j*x?< C/@2n)*}. Thus, we reduce the problem to
=2

(1.1), (1.2) with a constraint (1.4).

The white-noise model (1.6) is closely related to the problems of density estimation, and
spectral density. It should be no surprise that the results allow one to attack certain asymp-
totic minimax problems for estimating the asymptotic variance of a R-estimate (Bickel and
Ritov (1988), Hall and Marron (1987b)), and the asymptotic variance of similar problem in
time series, and even some problems in bandwidth selection (Hall and Marron (1987a, 1987b)).

Other comments on the applications of the white noise model (1.6) can be found in Donoho ez



al (1988).

Even though we discuss the possible applications on a bounded interval [0, 1], the notion

above can be easily extended to an unbounded interval.

In this paper, we consider only for observations (1.1) taking it for granted that the results
have a variety of applications, such as those just mentioned. We also take it for granted that
the behavior as ¢ — 0 is important, which is natural when we make connections with density

estimation.

Content. We begin by introducing the hypercube method of developing a lower bound in
section 2, and then show that the hypercube method gives an attainable rate of convergence for
hyperrectangular constraint in section 3. The estimator that achieves the optimal rate of conver-
gence is a truncated estimator. In section 4, we extend the results to some other shapes of
constraints, e.g. ellipsoids, /,-bodies. In section 5, we demonstrate that our hypercube method
is a better technique than the hypersphere method of Ibragimov et al (1987). In section 6, we
give some further remarks to show that the hypercube method is strictly better than hyper-
sphere method. Some comments are further discussed in section 7. Technical proofs are given

in section 8.

2. The hypercube bound

Let’s introduce some terminologies. Suppose that we want to estimate a functional T (x)
under a constraint x € £ C R™. Let Iy c Z. We call estimating T(x) on £, as a subproblem
of the estimation, and estimating T(x) on X as a full problem of the estimation. We say that
the difficulty of a subproblem captures the difficulty of the full problem, if the best attainable
rates of convergence for both problems are the same. In terms of minimax risk, the minimax

risks for the subproblem and the full problem are the same within a factor of constant.

Now, suppose that we want to estimate a symmetric functional T (x), i.e.




T(ﬂl,ﬂz, '--)=T(x,,,x2' s '), (21)
based on the observations (1.1) under a geometric constraint . Assume without loss of gen-
erality that T(0) =0, and O e Z. Let /,(X) be the supremum of the half lengths of all n-

dimensional hypercubes centered at the origin lying in £ (Figure 1). We call it the n-

dimensional inner length of Z.

Figure 1. Testing a point P uniformly on the hypercube is as difficutty
as testing a point Q uniformly on the sphere.

The idea of constructing a lower bound of estimating T is to use the difficulty of estimat-
ing T on a hypercube as a lower bound of the difficulty of the full problem. More precisely,

take the largest hypercube of dimension n (which depends on ¢ ) in the constraint Z, and
assign probability 2% to each vertex of the hypercube, and then test the vertices against the
origin. When no perfect test exists ( by choosing some critical value n, depending on o), the
difference in functional values at vertices of two hypercubes supplies a lower bound. The

approach we use is related to the one of Ibragimov et al (1987), who, however use a hyper-

sphere rather than a hypercube.

To carry out the idea, we formulate a testing problem
Hy x;,=0@G =1, ---,n) <>Hy ;=L )@ =1 ---,n) 22)

based on the observations (1.1), i.e. we want to test the origin against the vertices of the largest

hypercube with a uniform prior. The problem is equivalent to the testing problem
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Hyy, ~ NO,dDG=1, - ,n) <> (2.3)
Hiyi = 5 0004, 0)+ 00, =L, oL (=1, -, n),

where ¢(y, ¢, o) is the density function of N (z, o?), and l, =1,(X). The result of the testing

problem can be summarized as follows:

Lemma 1. The sum of type I and type Il errors of the best testing procedure is

Vn (, | ©)

2
2 ¢(—"T)(1 +0(1)), 2.4)

ifn 12 a, ! o)’>c (as 6 —> 0), where () is the standard normal distribution function.

Choose the dimension of the hypercube n4 to be the smallest integer satisfying
Vn [L(E))%6* < d, (d > 0). 2.5)
By Lemma 1, there is no perfect test for problem (2.2), i.e. (as 6 — 0)

05?(;?5 (B0 00) + E1 (1 =00 )} 2 2= dB)(1 + o (1)) (2.6)

(the sum of the type I and type II errors is bounded away from 0), where E,, and E, mean
that take the expectation of y distributed as (1.1) with the prior x = 0, and the prior of x dis-

tributed uniformly on the vertices of the hypercube, respectively. Let
r, = TH)-THPY12=I1T(x,)I/2 2.7

be the half of the difference of the value of T(x) on the vertices from that of the origin, where

X, =0,&), ---,1,2),0,0, ---)is a vertex of the hypercube.

Theorem 1. Suppose that T (x) is a symmetric function with T(0)=0, and 0 € . For

any estimator &(y) based on the observations (1.1),

sp_ Py (180) = TGl 27,,) 2 - %8) 1 +o(1)),
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and for any symmetric nondecreasing loss function l1(*),
swp_ B, [1('—59);,&)] 210) & 5+ 0(1),
where ng is the smallest integer n satisfying (2.5).

Proof. By (2.6) and (2.7), for any estimator 9,

sup_ P {180) - T@)1 27,)

2>

(Po(18Y)I 21, ) + P1(18() = T, ) 27, ))

8 |

2

(Po18()! 27, ) + P(180)1 < 7,))

=

ZCD(—%S)+0(1),

where Py and P, are the probability measures generated by y distributed according to (1.1)
with the prior x = 0, and the prior of x distributed uniformly on the vertices of the hypercube,

respectively. Now for any symmetric nondecreasing loss function

sup E, [1(FBD =T )51y sup P, {18G)=Tx) 27, ).
x € X r,,o x e X °
The second conclusion follows.
In particular, under the assumptions of Theorem 1, we have for any estimator
2 d, 2
Sup_ E,3(p)-T(x) 2 ®(- ?g)r,.,(l +o(1)). (2.8)

Thus, O(— -iis—) r2 is a lower bound under the quadratic loss.

N

Corollary 1. Suppose that T (x) is symmetric and

liminfIT(,(Z), -+, 1,(Z),0,0,:---)=T@©O)! >0.

n—> oo
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If liminf n {, (X))2 > 0, no uniform consistent estimator exists for T (x) on the basis of the
n

observations (1.1).

For any regular symmetric functionals, in order to have a uniformly consistent estimator,

1
the inner length /,(X), a geometric quantity, must be of order o(n *

). Thus, we give a

geometrical explanation when there is no uniformly consistent estimator exists.

3. Truncation estimators

Let us start with the model (1.1). Suppose we observe
y=x+0z (3.1

with a hyperrectangular type of constraint (1.3). An intuitive class of quadratic estimators to

estimate
Q&)= i A x2 (3.2)
1

(where Xj 2 0 ) is the the class of estimators defined by

93()=y'By +c, 3.3)

where B is a symmetric matrix, and ¢ is a constant. Simple algebra shows that the risk of

gp (y) under the quadratic loss is
RB,x) L E, (gp(y) - Q(x)) (3.4)
= (x'Bx + 6® rB + ¢c—Q (x))* + 26° rB? + 40® x'B%x. (3.5)

The following proposition tells us that the class of quadratic estimators with diagonal matrices

is a complete class among all estimators defined by (3.3).

Proposition 1. Let Dy be a diagonal matrix, whose diagonal elements are those of B.

Then for each symmetric B ,
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max R(B,x)2 max R(Dg, x),
x € X x e I

where X is defined by (1.3).

Thus only diagonal matrices are needed to be considered. For a diagonal matrix

B =diag(by, by, -+ ), (3.6)
the estimator (3.3) has risk
RB,x)= (T bjx? + > Thj +¢c = ¥ LixP)? + X bf 20* + 40% x). (3.7
1 1 1 1

A natural question is when the estimator (3.3) with B defined by (3.6) converges almost surely.

Proposition 2. Under model (3.1), qg(y) converges almost surely for each x € X iff

Y bi(A2 + ) < o (3.8)
1

Even for the diagonal matrices, it is hard to find the exactly optimal quadratic estimator
(see Sacks and Ylvisaker (1981)). For the infinite dimensional estimation problem, usually the
bias is a major contribution to the risk. Thus, we would prefer 10 use the unique unbiased

quadratic estimator
- 2_ 2
; A - o),

but it might not converge in Lz, and even it does converge, it might contribute too much in
g g g g

variance term. Thus, we consider a truncated quadratic estimator
- 2
qur) =X A7 - o)), (3.9)
1

and choose m to minimize its maximum MSE. For the estimator gy7(y), the maximum MSE

is

max_R (qur, ¥) = (f‘)»,-A})Z +3 AH20* + 40%4 ). (3.10)
x € m 1
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Our main result of estimating quadratic functionals under hyperrectangular constraints can be

summarized as follows. The lower bound will be established in Theorem 3 below.

Assumption A. Assume that when n is large, the following conditions hold.

i) nA,,“ is a strictly decreasing sequence, which goes t0 0 as n —> oo, and

n

<o, 3 A;j ~dn}, for some d > 0.

n 1

n-1

limsup

n —> oo

i) ¥ AjA%=0@(nX, A7), and if limsup n'A2A4.2 = o, then 3 4742 = 0 (n"5A242).
n 1

n —> oo

Theorem 2. Under Assumption A, the optimal rate (6—>0 ) of estimating

Q(x)=23 A, sz under the quadratic loss with a hyperrectangular constraint (1.3) is
1

0(c* + (2%)2 A, (3.11)
1

where ng is the smallest integer such that
Vn (A,lo) < ¢, (3.12)

Jor some ¢ > 0. Moreover, the optimal rate is achieved by the truncated estimator (3.9) with
P Y

m=ng.

When A; =9 and A; =Cj™ P, (p >(¢ +1)/2), the conditions of Theorem 2 are
satisfied. In order to know how efficient the truncated estimator is, let’s evaluate its MSE

more carefully as 6 — 0. By (3.10), the estimator

m

S0 - oY (3.13)

1

has its maximum risk

23 +1 m -@p-q-1
LI+ 4C%* 3% % + CHB—
Rm) £ 5 =o' +o()+ c&z}y + O, — o)A+,
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When (g + 1)/2 < p < g + 0.75, simple algebra shows that the optimal m, which minim-
izes R(m), is

1 4

mo=[(CYCp ~q —1)¥ -1 1], (3.14)

and the maximum risk of the optimal truncated estimator (3.13) with m = my is

20§q+1 C(;Z(Zp—q—-l)

+ 2
29+1  (2p-q-1

C4Qq+1)dp-1) {

o 4-20Qg+1)
+4%j758, s} o PN A +o), (3.15)
1

1
4 -1

where co=(2p —q — 1) ,and 8, 4075 = 1,if p = ¢ +0.75, and = 0, otherwise.

4

When p > g + 0.75, the optimal mg = dc- 4=1 for a positive constant d, with the risk

4C*y j¥ " 6X(1 + 0 (1), (3.16)
1
In summary,

Corollary 2. Suppose that A; = j% and A; = Cj~ 7, (p > (q + 1)/2). Then the best trun-
cated estimator is given by (3.13) with m = mqy. The optimal my is defined by (3.14) when

(q+1D2<p <q+0.75 with the maximum risk given by (3.15), and the optimal

4

mg= dc- -1 yhen p > g + 0.75 with the maximum risk given by (3.16). Moreover, the

estimator achieves the optimal rate of convergence.

When p 2 g + 0.75, the regular rate 0 (o?) is achieved by the best truncated estimator,
and hence the difficulty of the full problem of estimating Q (x) is captured by a 1-dimensional
subproblem. However, the situation changes when p < ¢ + 0.75. The difficulty of the hardest
1-dimensional subproblem can not capture the difficulty of the full problem any more (Com-

pare (7.2) with (3.15)). Thus, we need to establish a larger lower bound for this case by
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applying Theorem 1. By our method of construction, intuitively we need an n s-dimensional
subproblem, not 1-dimensional subproblem, in order to capture the difficulty of the full prob-

lem for this case.

Theorem 3. Suppose that Vj A jz is decreasing in j, when j is large. Let ng be the smal-

lest integer such that
Vn (A,/0)? < c.
Then, for any estimator T(y), the maximum MSE of estimating Q(x) is no smaller than

( ®(- c /N8

sup 2 8) ()]f AP ALY A +0(1) (as 6 0).

Moreover, for any estimator T (y),

(Zo}"j) AnztJ

sup_ P {ITQ) - Q)1 2 ———

c
> } 2 o= &) (1 +o).

When A; = Cj™ and A; = j%, we can calculate the rate in Theorem 3 explicitly.

Corollary 3. When A; = Cj® and A;j = j?, for any estimator, the maximum risk under
the quadratic loss is no smaller than

429 +1)
4 -
Qq+2y"2c4a+ W - 6 -1 (14+0(1)). (3.17)

Moreover, for any estimator T (y),
_2+1
sup_ PITO)-Q(x)l 2 (2q +2) W dolC? -1 4a°
X €

> - %)(1 +o(1),

where
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2_4g+2 d
= d -1 o-—=).
Ep.q = MaX C 7

>

In the following examples, we assume that the constraint is £ = {x: Ix;|1 < Cj~7}.

1
Example 1. Suppose that we want to estimate 7(f) = ([fz(t) dt from the model (1.6).

Let { ¢;(t) } be a fixed orthonormal basis. Then T(f) = > sz. Thus, the optimal truncated
j=1

mo
estimator is ¥ A; (v — 0%), where
1

4

0w -1y, ifp >075
mo= ] 4

(C%2p —1)% -t o %1, if05<p <075

Moreover, when p > 0.75, the estimator is an asymptotic minimax estimator (see (7.3)). For

0.5 < p £0.75, the optimal rates are achieved.

Example 2. Let orthonormal basis be {¢;(z)}, where ¢; =1, ¢y; = V2cos2njt, and
0 41 = V2sin2mjr. We want to estimate

1

T()= 1[ FOOR di = Qe Tj* 52 (k2 1)
i=2

mo
The estimator which achieves the optimal rate of convergence is m)* ¥ j* (37 - o9,
j=2

where

4

0@ -1, ifp >2k +0.75
mo= 1 4

(CY%@2p =2k = 1)1 g -1, ifk +05<p <2k +0.75

Moreover, the estimators achieve the optimal rates given by

0(c?, ifp >2k +0.75

. 3.18
o Ak + ) (3.18)
O *~1), ifk+0S5<p <2k +075
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Example 3. (Inverse Problem) Suppose that we are interested in recovering the
indirectly observed function f (¢) from data of the form

u U

Y(u)=£ K@, s)f (t)dt ds +o£dw, u €[0, 1],

where W is a Wiener process and K is known. Let K: L,[0, 1] = L,[0, 1] have a singular

system decomposition (Bertero et al (1982)):

[K@ wf = T A B M),
i=1

where the {A;} are singular values, the {&;} and {n;} are orthogonal sets in L5[0, 1]. Then

the observations are equivalent to

yi=h6; +0¢g,i=12, -,

1
where y; = J M; (u)dY (u) is the Fourier-Bessel coefficient of the observed data, 8; = (f, E,),

1
and €; = ([n ;u)dWu) are iid. NO, 1),i =1,2,---. Now suppose that we want to esti-
mate

1

z[Zmdt 292 zx. X2,

where x; = A; ©;. If the non-parametric constraint on @ is a hyperrectangle, then the constraint
on x is also a hyperrectangle in R™. Applying Theorem 2, we can get an optimal estimator in
terms of rate of convergence. Moreover, we will know roughly how efficient the estimator is
if we apply Table 7.1 and 7.2. If, instead, the constraint on @ is a weighted I,-body defined
by (1.4), then the constraint on x is also a weighted l,-body, and we can apply the results in

section 4 to get the best possible estimator in terms of rate of convergence.
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4  Extension to quadratically convex sets

In this section, we will find the optimal rate of convergence for estimating the quadratic

functional
Q(x)= i:; Ajx? @.1)
under a geometric constraint
z, ={x:i::5j Ix; 1P <C}, 4.2)

called the weighted l,-body. We use the hypercube method to develop the attainable rate of
convergence. From these studies, we demonstrate that the hypercubical subproblem captures
the difficulty of the full problem with great generality. We will make some general assump-
tions:

Assumption B.

i)  The sequences {A,}, and {8, } are positive nondecreasing sequences.

ii)  There exists a positive constant ¢ such that
n n
ﬂj>cn7\.n' ZSJ >Cfl6n .
1 1

Let’s study the weighted /,-bodies (ellipsoids) first. Consider the truncated estimator

(3.9), whose risk under the quadratic loss is

R(qur.x) = ()Ex,xﬁ)z vy A6 + 40%x). 4.3)
m i

Assumption C.

a) limsup¥n A%S, = liminf¥n A2/5,.

n —> oo N > oo

b) max AYS; =0 AYS,), if AME, —> e
1€j<n

¢) {A;/8;} is a non-increasing sequence.



- 18 -
Theorem 4. Under Assumption B & C, the optimal rate of convergence for estimating
Q (x) under the quadratic loss with an ellipsoid constraint T, defined by (4.2) is

0 (c?), if limsup nA%82 < o

n —> oo

if imsup nAM8? = oo 4.4)
ncl3°04, n —> oo

Moreover, an estimator which achieves the optimal rate of convergence is the truncated esti-

ng
mator Y, lj (yj2 — o?), where ng is the largest integer such that
1

ndlc*<d, “4.5)
and d is a positive constant.

When A; = j? and §; = j”, the conditions of Theorem 4 are satisfied. We can compute

14 8¢ - q)
the optimal rate explicitly. In this case, ng=[d¥ *'c ¥ *!], and nok,,zoo“ =0(@c ¥+,

where [a] denotes the largest integer which does not exceed a. In summary,

Corollary 4. When A; = j? and §; = j", the optimal rate of estimating Q (x) under the

weighted l,-body constraint (4.2) is

0 (c?), ifr 229 +0.5
J . (4.6)
3¢ -q) if2g +05>r>¢g
0(6 2r + 1 )’

Re
Moreover, the truncated estimator Y, j9 (yj2 - &%) achieves the optimal rate of convergence,
1

1 4

where ng=[d¥ *'c ¥ *1], disa positive constant.

Example 4. (estimating integrated squared derivatives) Suppose that we want to estimate

1
T(f)= l[ (f ®¥)(2))* dr under the non-parametric constraint that
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1

= (fG): :[ F@@rdascy.
Let the orthonormal basis {¢;(7)} be defined by Example 2. Then,
T(f) = Qny* (%ﬁ" xP+m xf)

where M, =1, if k =0, and n, =0, if k # 0, and x; is the jth Fourier coefficient. Assume
additionally that 1x;| < B, a finite constant, when & = 0. The non-parametric constraint  can

be rewritten as an ellipsoid

il C
T = {x: 2002 < }.
J§2‘, J (2“)20’

Ro
By Corollary 4, the truncated estimator 2m)2*( j* (v - 6 + N, (7 - %) with
2

1 4
nc,=[d 4u+lc 4u+l], (d>0)

achieves the optimal rate of convergence given by

)
0 (69, if 0> 2k +0.25
) - 4.7)
16@-k)  if2k +025>a>k
o 4a + 1 ,

Now, let’s give the optimal rate for the weighted [, -body constraints (p > 2).

Assumption D.

a) limfup n®p = 4Y@P) ) 25— 2p — Jiminf nGp — V@) 25, 2P,

b)  ZAPC & 2N = 0 (naf0D 57207,
n

n 3p—4
) Y x}p/@—z) 57 WDz O (n 20072 20/0-2) §-20-D)y if lim"sup nGP=4Y2P) 25-2p — o
1

d)  8YPn¥P ~1increases to infinite as n —> o,
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Theorem 5. Under the Assumption B & D, the optimal rate of convergence of estimating
Q (x) under the weight I, -body constraint (4.2) is given by

0@, iflimsup nGP — @) \25-2P ¢ o
n

ce s - - . 4.8
ng l,,zoc“, if hmnsup nGp -4V )25 2P = o (4.8)

Re
Moreover, the truncated estimator Y, kj (yj2 — 6%) achieves the optimal rate of convergence,
1

where ng is the largest integer such that
3P pir —lg% < g 4.9)

for some positive constant d .

Corollary 5. When A; = j% and d; = j", the optimal rate of estimating Q (x) under the

weighted 1, -body constraint (4.2) (p > 2) is

r

0 (o), if r2075 - 1+pg
(4.10)
82(r+1)-plg + 1))
O “*D=P 1 if p(g+1)2-1<r<075p —1+pg

.

fg
Moreover, the truncated estimator Y. j9 (yj2 — ©%) achieves the optimal rate of convergence,
1

where ng = [(d/c*y P *4=P)] 4 is a positive constant.

Remark 1. Geometrically, the weighted I, -body is quadratically convex ( convex in sz )
when p 2 2, and is convex when 1 £ p <2, and is not convex when 0 < p <1 (Donoho et al
(1988)). To understand the difficulty of estimation problem under some constraint, it is good
to try to study such a kind of geometric constraint first. Our results in this section show that
for the special quadratically convex constraints, the difficulty of estimating a quadratic func-

tional is captured by a hypercubical subproblem. As the hardest hyperrectangular subproblem
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is at least as difficult as a hypercubical subproblem, the difficulty of estimating Q (x) under a

weighted /,-body is further captured by the hardest hyperrectangular subproblem.

Remark 2. The constraints on the condition that the kth derivative is bounded, and the
constraints that the Fourier coefficients fall in certain R™ set are both smoothness constraints.
A simple connection is that

1

{f(z):gtf<“’(z)]2dxsc1={x: yjexrs Sy

= T en™

Thus, the optimal rates under the bounded derivative constraints should be the same as those
under /,-body constraints. Indeed, in density estimation setting, Bickel and Ritov (1988) give
the optimal rate of convergence for estimating the functional discussed in Example 4 under cer-
tain constraint on the boundedness of derivatives of a density, and the optimal rate is precisely
the same as (4.7) ( witho = n~1? ). Thus, the special /,-body constraints are the same as con-
straints on the boundedness of derivatives. Also, for estimating quadratic functionals, optimal
rates under a hyperrectangular constraint {x: lx;l1 < C;j7?} and the optimal rates under a
bounded a-derivative constraint agree when p = o+ 0.5. (compare (3.18) with Bickel and

Ritov (1988) or (4.7)).

5. Comparison with Ibragimov-Nemirovskii-Khas’minskii

Our method of developing a lower bound is similar to that of Ibragimov er al (1987).
Their method is based on testing the largest inner sphere instead of testing the vertices of a
hypercube. Let’s walk through the main steps of Ibragimov et al’s method:

i) inscribe the largest n-dimensional hypersphere S" into the constraint Z;
ii) test the origin against S” based on the observations (1.1);
ili) choose dimension n (depending on o) such that no perfect testing procedure exists;

iv) compute the difference of functional inf 1T(x) — T(0)!, and use it as the rate of a lower
xe S
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bound.

We expect that their method can only apply to spherically symmetric functionals, as the
values of such functionals remain the same on the sphere (see Remark 4). Furthermore, it is
not hard to argue that if the method of Ibragimov et al (1987) gives an attainable lower bound
(sharp in rate) for some symmetric functionals under some geometric constraints, our method
does in the same setting, and on the other hand, even though the method of Ibragimov et al

(1987) can not give an attainable lower bound for some geometric constraints (e.g. hyperrec-

tangle constraints, estimating a spherically symmetric functional T(x) =Y, sz; see Remark 3)
1

and for some symmetric functionals (e.g. T(x) = > x?, q # 0; see Remark 4), our method
1

does. Therefore, it turns out that our method has much broader applications not only in the
shapes of geometric constraints (e.g. hyperrectangle; see Remark 3) but also in the classes of

symmetric functionals being estimated (see Remark 4).

The argument of the above statement is as follows. Let r,(Z) be the n-dimensional inner
radius of a set Z (Figure 1), namely, the supremum of the radii of all n-dimensional discs cen-
tered at 0 lying in Z (see Ibragimov er al (1987) and Chentsov (1980)). Then it is easy to see
that our n-dimensional inner length [ (Z) > r,(Z)Nn because if one can inscribe an n-
dimensional inner disc into Z, then one can also inscribe an n-dimensional inner hypercube
inside the disc (Figure 1). The key Lemma (Lemma 3.1) used by Ibragimov e al (1987) to

develop a lower bound is that

Lemma I (Ibragimov et al (1987)). Suppose we want to test the hypothesis:

Hg y, ~N(©,6%,)<=>H;y, ~N@,, 64,), (5.1)

with a prior of x, uniform on the sphere { |ix,||=7r, }.

Then the sum of the type | and type Il errors of the best testing procedure for testing problem
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(5.1) is
2 O(- r,2(V8n o)1 + 0 (1)),

if o/r, —> 0 (Note that n depends on G in the current setting).

Comparing Lemma I and the Lemma 1 of the present paper, we find out that testing an
n-dimensional sphere with the uniform prior against the origin is as difficult as testing the ver-
tices (with uniform prior) of the largest inner hypercube of the sphere (Figure 1), i.e. the sum
of type I and type II errors of the best testing procedures for the both testing problems is
asymptotically the same (as r, = Vnl,). For simplicity of notations, assume without loss of
generality that the largest n-dimensional hypersphere is arttained at

Sn={x;x12+ +xn2=rn2(z)vxn+l=07xn+2=0' ok

and assume that we want 10 estimate a functional T (x) (not necessary a symmetric functional)

based on observations (1.1) with T(0) = 0. Let
C" = {&r,ONn, -, 2r,(ODNn,0,0, )}

be the vertices of the largest inner hypercube of § " Then, by Lemma 1 and Lemma I, choos-

ing the dimension n:, (the smallest one) such that
rt(nc? < d, (5.2)

the sum of type I and type II errors of testing problems (5.1) and (2.3) (with [, = r,/Nn ) is no

smaller than ®(—d /\/§).

Let R;f = inf [T (x)1/2 be the half difference between the functional values on S” and

xe S"

the functional value on the origin. Similarly, let Rf = inf |T(x)1/2. Then according to the

xeC"

proof of Theorem 1, the lower bound of Ibragimov et al (1987) is that for any estimator &y )

based on the observations (1.1),

sup P {180) = T(x)! 2 R3.} 2 ©(-d1B)(1 + o (1)), (5.3)
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and in terms of MSE

sup. E N18(3y)-Tx)I?22 O d/xfé)(R,f;)z(l + o(1)). (5.4)

Our hypercubical lower bound is exactly the same as (5.3) and (5.4) except replacing R’f; by

Rf-. Note that RnC- 2 Rf.. The claim follows.
[ [ .1

Note that we didn’t use the fact that hypercubes are easier to inscribe into geometric
regions than hyperspheres in the above argument; but use the fact that the difference of func-
tional values on the sphere from the value of the origin is no larger than the difference of func-
tional values on the vertices of the hypercube from the value of the origin, i.e. R; < RS. For

some geometric constraints X (e.g. hyperrectangle), even though the functional may be spheri-

cally symmetric (e.g. T(x) = ¥ x/ the differences of functional values RS and RS defined
1

above are the same), one can inscribe an n-dimensional inner hypercube with the inner length

[, (Z), but it is impossible to inscribe an n-dimensional inner sphere with radius vn 1, () (Fig-

ure 2). Hence, the hypersphere method can not give an attainable lower bound in these cases

(see Remark 3) even though the functional may be spherically symmetric.

L>r//Mm

S

Figure 2. The hypercube is easier than to inscribe into the hypercube than
a hypersphere. kis impossible to inscribe a hypersphere
withradiust, = | /M1 inside the hyperrectangle.
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In summary, the hypercube method is strictly better than the hypersphere approach.
Comparing with the hypersphere method, the hypercube method has the following advantages:
i) larger in difference of functional values (RE = R3; broader application in terms of estimat-
ing functionals),

ii) easier to inscribe ( [,(Z) 2 r, (Z)Nn ; broader application in terms of constraints).
Another advantage of our method is that it is easy to inscribe a hypercube into a nonsym-

metric constraint as we only require the vertices of the hypercube lying in the constraint

instead of the entire hypercube (see Example 5 below).

6. Further Remarks.

Remark 3: It appears that the hypersphere bound of Ibragimov et al (1987) would not

give a lower bound of the same order as we are able to get via hypercubes for estimating the

quadratic functional o)=Y j? sz with the hyperrectangular constraint
1

L={x e R™ lx;1 <Cj7}. The proof is simple. Assume that C = 1. The n-dimensional
inner radius of the hyperrectangle is r,(X) =n"?. By the Lemma 3.1 of Ibragimov ez al

(1987) (see Lemma I), the smallest dimension that we can not lest the origin and the sphere

4
with the uniform prior consistently is ng = [(Vd 6) * *!] (see (5.2)), which is of small order

4
of ng=[(Ndc) * ~1], the dimension that we can not test the vertices of the hypercube

against the origin perfectly, where d is a positive constant. By Corollary 6 of Ibragimov et al

4
4-
(1987), the lower bound under the quadratic loss is of order (R’ls:,)2 =0 **1), whichis

of lower order (R,,C; )? given by (3.17). It is clear that in the current setting a hypercube is
easier to inscribe into a hyperrectangle than a hypersphere, and hence hypersphere’s method
cannot give an attainable lower rate, while we can get the attainable lower bound via the

hypercube method.



- 26 -

Remark 4. Using the method of Ibragimov et al (1987) to develop the lower bound for

the weighted /,-body (A; = j%, §; = j”), we find that the lower bound is of order

_8@r+2-p)
0(0, ar +4-p )’

which is not an attainable rate when ¢ # 0. Thus, the hypersphere method does not work in

the current setting. The reason for this is that the value of the functional Q(x) = ) j"sz
1

changes when x lies on an n-dimensional sphere (note that when ¢ = 0, the hypersphere’s
method can also give an attainable lower rate as Q (x) remains the same when x is on the
sphere). Note that in the current setting, the largest n-dimensional inner hypercube lies in the
largest n-dimensional hypersphere (see Figure 1). Thus, the reason for our method to give a
larger lower bound is not due to the fact that the hypercube is easier to inscribe than the hyper-
sphere, but is due to the fact that for estimating a symmetric functional ((2.1)), the value of the

functional remains the same when x is on vertices of the hypercube.

7.  Discussions
a) Possible Applications

We have demonstrated that for special kinds of constraints of the hyperrectangles and the
weighted /,-bodies (p 2 2), the difficulties of estimating quadratic functionals are captured by
the difficulties of the hypercube subproblems. The notions inside the problems can be
explained as follows. For hypercube-typed hyperrectangles (i.e. the lengths of a hyperrectangle
satisfy Assumption A), the difficulties of estimating the quadratic functionals are captured by
the difficulties of the cubical subproblems (Theorem 2). Now, for estimating quadratic func-
tionals under the constraints of weighted l,-bodies (Theorem 4 & §), the difficulties of the
estimating quadratic functionals are actually captured by rectangular subproblems, which hap-
pen to be hypercube-typed. Thus, the difficulties of the estimating quadratic functionals under

the weighted [,-body constraints (Theorem 4 & 5) are also captured by the cubical
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subproblems. More general phenomena might be true: the difficulties of estimating quadratic
functionals under quadratically convex (convex in sz) constraints X (see Remark 1) are cap-

tured by the hardest hyperrectangular subproblems:

min max E, (q(y) — 0 (x))? € C max{ min max E.(q(y) - 0(x))?*: 01 e T},
(@) xe X q(y) x € B(7)

where ©(1) is a hyperrectangle with the coordinates 1, ¢ (y) is an estimator based on our model
(1.1), and C is a finite constant. For estimating linear functionals, the phenomenon above is

true (Donoho er (1988)).

We can apply our hypercube bound to a non-symmetric constraint, and also to an unsym-

metric functional. Let’s give an example involved the use of our theory.

Example 5. (Estimation of Fisher Information) Suppose that we want to estimate the
Fisher information
1

_ L)
l(f)_l Fx) “

based on the data observed from (1.6) under the nonparametric constraint that

1
feX = zNif: z[f(X) =1, f(x) 2 0}, where Z is a subset of R”. Take the same orthogo-
nal set as Example 2. Let /,(Z) be the n-dimensional inner length of Z (not £°). Inscribe the
largest n-dimensional inner hypercube into . The functions whose Fourier coefficients are on

the vertices of the hypercube are the set of functions
fn(x) =1+ In(z) Z :t¢}(X)
2

for all possible choices of signs £, where ¢;(¢) are sinusoid functions given by Example 2. If
nl, (Z) —> 0, all of these functions are positive and hence in the set of the our positivity con-
straints. By our hypercubical approach, for any estimator T (Y') based on the observations (1.6)

(see the proof of Theorem 1),



-28 -

sup  E(TXY)-I1(f)* 2 d(- %‘i) U (fa) — 1AL + 0(1))
feIM{f 20} V8

_d_) '1 2
=5 l(f,,o’(x))zdx (1+o0(1)

r

d
(D(— "/'8— )

ng 2
=— QiR () Y jz} (1+0(1)),
2

where nq is the smallest integer satisfying (2.5). Thus, if the nonparametric constraint ¥ is

defined as Example 4, then the minimax lower bound is at least as large as
g

0 (c®), if 2225

16(a - 1)
O( “**1 ) if225>a>1

-

and for the hyperrectangle constraint T = { Ix;(f )| < Cj~?}, the minimax lower bound is

r

0 (o, if p >2.75

16p —24
O %-1),if15<p <275

-

Thus, the lower bound for estimating Fisher information is at least as large as that of estimat-

1
ing { [f ’(x)]}? dx, and the lower bound is attainable if f is bounded away from 0. Note that

T is an unsymmetric set in this example and 7'(f) is an unsymmetric functional (see (2.1)).
Our hypercube method can also apply to estimating an unsymmetric functionals with an
unsymmetric positivity constraints.

1
The functional T(f ) above can also be replaced by T(f) = l[ F )1 ar.
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b) Constants

By using the hardest 1-dimension trick, we can prove the following lower bound (see Fan

(1989) for details):

Theorem 6. If L is a symmetric, convex set containing the origin, then minimax risk of

estimating Q (x) from the observations (1.1) is at least

0 (x)’c*
sup, LELE ol /.0, | (7.1)

and as ¢ = 0, for any estimator 8(y),

2
E _Qu)2 40°x) 52 (1 4 0(1)), 72
sup E;Qp) QG2 - sup e C (I+o0(1) (12

_ _ a2 _
where p(t, 1) = zrgf ’g‘ugtEe(S(z) 0°)°, and z N, D).

Comparing the lower bound (7.2) and the upper bound (3.16) for estimating ;7 sz with
1

a hyperrectangular constraint {x € R™: Ix;| < Cj™}, we have that whenp > g + 0.75,

2
| » Lower Bound Cipyg

2 2 , (aso—0), (7.3)
Upper Bound Cop Cop -2

where C, =Y j~" can be calculated numerically. Table 7.1 shows results of the right hand
1

side in (7.3).

From Table 7.1, we know that the best truncated estimator is very efficient. Thus, the
difficulty of the hardest 1-dimensional subproblem captures the difficulty of the full problem

pretty well in the case p > g + 0.75.
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Table 7.1: Comparison of the lower bound and upper bound
p=1+q+05i

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

g=0.0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
=0.5 | 0976 | 0.991 [ 0.996 | 0.998 | 0999 | 1.000 | 1.000 | 1.000
=1.0 | 0940 | 0.977 | 0.990 | 0.995 | 0.998 | 0.999 [ 0.999 | 1.000
=1.5 { 0910 | 0.963 | 0.984 | 0992 | 0.996 | 0.998 | 0.999 | 0.999
=2.0 | 0.887 | 0952 | 0.979 | 0990 | 0.995 | 0998 | 0.999 | 0.999
=25 | 0.871 | 0944 | 0.975 | 0988 | 0.995 | 0.997 | 0.998 | 0.999
=3.0 | 0.859 | 0.938 | 0.972 | 0987 | 0.994 | 0.997 | 0.998 | 0.999
=35 | 0.851 | 0934 | 0970 | 0986 | 0.993 | 0.996 | 0.998 | 0.999
=4.0 | 0.845 | 0931 | 0.968 | 0.985 | 0993 | 0.996 | 0.998 | 0.999
=4.5 | 0.842 | 0929 | 0967 | 0984 | 0992 | 0996 | 0.998 | 0.999
=5.0 | 0.839 | 0.928 | 0.966 | 0.984 | 0.992 | 0.996 | 0.998 | 0.999

When (¢ + 1)/2<p < q + 0.75, by comparing the lower bound (3.17) and the upper
bound (3.15), again we show that the best truncated estimator attains the optimal rate. The fol-

lowing table shows how close the lower bound and the upper bound are.

Table 7.2: Comparison of the lower bound and the upper bound

q=0 q=1 q=2 q=3 q=4

p= ratio p= ratio p= ratio p= ratio p= ratio

0.55 | 0.0333 | 1.15 | 0.0456 | 1.75 | 0.0485 | 2.35 | 0.0495 | 2.95 | 0.0499
0.60 | 0.0652 | 1.30 | 0.0836 | 2.00 | 0.0864 | 2.70 | 0.0864 | 3.40 | 0.0858
0.65 | 0.0949 { 145 | 0.1159 | 2.25 | 0.1170 | 3.05 | 0.1153 | 3.85 | 0.1132
0.70 | 0.1218 | 1.60 | 0.1431 | 2.50 | 0.1419 | 3.40 | 0.1383 | 4.30 | 0.1345

, hypercube lower bound
where ratio = '\/
upper bound by qur(y)




-31 -

The above table tells us that there is a large discrepancy at the level of constants between

the upper and lower bounds for the case that (¢ + 1)/2<p < g +0.75.
¢) Bayesian approach

The following discussion will focus on estimating the quadratic functional

0@x)= %jqsz with the constraint x € £ = {x: Ix;1 < j7}.

It is well known that the minimax risk is attained at the worst Bayes risk. The traditional
method of finding a minimax lower bound is using Bayesian method with an intuitive prior.
However, in the current setting, all intuitive Bayesian methods fail to give an attainable (sharp
in rate) lower bound. Thus, finding an attainable rate of estimating a quadratic functional is a
non-trivial job.

By an intuitive prior, we mean that assign the prior uniformly on the hyperrectangle,
which is equivalent to that independently assign the prior uniformly on each coordinate, or
more generally we mean that assign the prior x; ~ =;(6) independently. To see why the

Bayesian method with an intuitive prior can not give an attainable rate, let p,tj(j"’ , ) be the
Bayes risk of estimating 0% from Y ~ N(B, ¢ with a prior m;(8) concentrated on
[~ Jj7?, jP]. Then,

Pr,( 7. 0) < min(j ™, 30* + 46%77), (74)
as the Bayes risk is no larger than the maximum risk of estimators 0 and Y 2

Let 8(y)=E ! sz | y) be the Bayes solution of the problem. By independent
1

assumption of the prior,

8p) =3 JIE(}F1y;).

1

Thus, by (7.4) the Bayes risk is
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EnE, §0) = P3P =% 14 pr (J7. 0)
1 1

<Y % 3ot +40% )+ ¥ jU -,
1

n+l

SO(an+]c4+n2q—2p+lo.2+n-4p+24+l)

=0~ @+ 4 gY

o 42q+ 1)
=o(c “¥~!'), (when(q + 1)2<p <q +0.75)

1

by choosing n = ¢ . Hence, the intuitive Bayes method gives a too small lower bound in

terms of rate of convergence.

8. Proofs

Proof of Lemma 1. Without loss of generality, assume that ¢ = 1. Then the likelihood

ratio of the density under H and H is
Ln =nLn,i' (81)
1

where

L, ; = exp(= L}2) [exp(l, y;) + exp(= I, y)))/2.

Denote ¢, ; =log L, ;. Then

12 lzyiz l4y'4
.=.__’_'_+."_.__L_'_+0 16.
O == =+ 50 = 22+ 0,45

Consequently,

S 2 122 - 1434 - 3)/12
log L, + nll/4 _ 21‘,[()’, oy n 0 2]

a2 12 Vn72 12

+0,0nLh.
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By invoking the central limit theorem for i.i.d. case, we conclude that

log L, + nlY/4

L
—> N(O, 1
Vni2 12 )

under H,. Note that under H,,

log L, — nl,}/4 Zl',[(yiz -1-13H2- 12" - Eyyi2]l + ol

= + O0p(VniH.
ni2 1,2 n/2 p(nly)

Now under H,
nE(ly?=1-12Nn)=00n™)
and
nE (ly* = Eyf1in Y = 0 (n™.
Hence, the Lyapounov’s condition holds for the triangular arrays. By triangular array central
limit theorem, under H |,

log L, — nl,Y4
—%— £5 N, 1).

Consequently, the sum of type I and type II errors is

Vn 12
Pudln > 11+ Py,[Ly € 11=2 O(- —==)(1 + 0 (1).

Proof of Proposition 1. For any subset Sc{1, 2, - - -}, let prior pS be the probability
measure of independently assigning x; = +A4; with probability —;— each, for j € S and assign-
ing probability 1 to the point O for j € S. Then by Jensen’s inequality and (3.5),

max R(B, x)
xeX

> msax{(Eps(x'Bx) +0%uB +¢ - E;s [0 ON? + 26* rB? + 402 Eus(x’Bzx)}(,8.2)
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where trA is the trace of a matrix A Let D4 = Eps(xx’), which is a diagonal matrix. Simple .

calculation shows that
E s(x'Bx) = tr(BDy) = tr(DgDy),
E s(x'B*) = tr(B°D,) 2 tr(DFD,),
trB% = rB'B 2 D}
Thus by (8.2) and the last 3 displays,

max R(B,x)2max E sR(Dg,x)= max R(Dg x).
xel s w el ’

The last equality holds because (3.7) is convex in x?, and consequently attains its maximum at

: 2 _ 2_ a2
eltherxj —Oorxj —A,.

Proof of Proposition 2. Sufficiency follows from the monotone convergence theorem:

Eqg(x) =Y b;(x? + 6%) + ¢ < oo.
1

Suppose that gz (x) with B given by (3.6) converges a.s. for each x € X. Then accord-
ing to the Kolmogrov’s 3-series theorem,

o0

; P {biy"z 2 1} < oo, ; Eb"yiz l(biyiz <1 < oo, (83)

As the distribution of y; is nommal, it is easy to check that E y* < 3(E y,-z)z. Thus by

Cauchy-Schwartz inequality and (8.3),
E biy? 1,251 = 0(E by?). (8.4)

Hence the assertion follows from (8.3) and (8.4).

Proof of Theorem 2. We will prove that the estimator (3.9) with m = ng achieves the

rate given by (3.11); the lower bounds are proved by Theorem 1 & Theorem 3.
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Note that ny increases to infinite as ¢ decreases to 0. By the assumptions, the right hand

side of (3.10) is
O ((CA)XAnm + 0%im)) + 402 TAPAL. (8.5)
1 1
Taking m = ng, by (3.12) we have
o*ing - 1) S A, 1/t =0(A,).

Thus for m = ng, (8.5) becomes
s g
O M) ALy +402 T AJAS (8.6)
1 1

Case I: If limsug nck,?ooz < oo, then by (3.12) and Assumption A i)
C

—

(T M)YAL < @d*n2A2)c*eng = 0 (o).
1

To prove (3.11), we need only to show that XJZAJ? < oo,
1

Note that limsug n(,k,,zoo2 < = implies that there exist constants oy, and D (fixed) such
g —>
that

ng® A\ Al <D, when o <o 8.7

By Assumption A i), it can be shown that as ¢ decreases from G; to 0, ng should increase

from ng, 10 e consecutively. Thus (8.7) implies that

ljzAjz <D j '3 whenj 2 N,

Consequently,

szZ AJZ < oo
=

and
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86)=3 A AP O (D).
1

Hence, the regular rate is the optimal one by Theorem 6.

Case II: If limsug nghi o?=oo, then limsup n'A242 =ec. Thus, by (3.12) and
o—>

n — o
Assumption A ii)
ng ng
2 24,2 24,2

SO ’
—nn)

Y
1

which is bounded. Hence, (8.6) is bounded by its first term. Consequently, the truncated esti-

mator (3.9) with m = ng achieves the rate given by (3.11), and by Theorem 3, the rate of

Ro
(TA;)%A,¢ is the best attainable one.
1

Proof of Theorem 3. Note that {A4,) is a decreasing sequence by the assumption and
[,(Z) = A,. Ther, defined by (2.7) is

n

rn= AL SA.
1

Thus, by Theorem 1,
d S
2 4 2
sup. E,(8(y) = T(x))" 2 (®(- Ts) + 0(1))A,.,,(§?~,~) /4.
The conclusion follows by taking the supreme of d.

Proof of Theorem 4. First, we prove the truncated estimator (3.9) achieves the rate

given by (4.4). For the truncated estimator (3.9), the maximum risk

R ,
xmea;q (qur, x)
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< Sh.x?)? + max 3 A226° + do%x? .
J‘meaxz2 (% X)) xrr;a)r;; ; (20 o°x;%) 8.8)
< C? Anl8,)% + 230 et +4C 021 max A}/3;. (8.9)
1 Sj <m

Take m = ng Note that as 6 —> 0, ng —> «. By (4.5) and Assumption B ii), there exists a

constant G, such that when ¢ < 0y,

82,> S8%,.1 2 ﬁ. (8.10)
By (8.10),
(A /8, )* < O (nA; o).
Consequently, by (8.9) and the fact that lj is non-decreasing, we have
max Riqur, x) = 0 (nghlc’) + 0(02l max AF18;). (8.11)

Case I: If limsup n A%/82 < o, then the sequence {A2/5,} stays bounded, and by (4.5)

n —> oo
noh} o < Vd\ngh? /8, =0(1)
By (8.11),

max R (qyr, x) = 0 (0.
xe X

Hence, the rate O (¢?) is the attainable one.

Case I: If limsup n A8} = =, then o® = 0(n,A2.0%. If the sequence {A;/5,) stays

n —> o

bounded, then (8.11) is of order O (n 07»,,2004). Otherwise, by assumption C ii) and (8.10),

max ljzlﬁj
limsu 157%% " " <limsu S S < oo
c—> nol,?ooz 0—>B \lnGS,,ocz

Thus, we conclude that the truncated estimator g7 (y) achieves the rate nck,%oo“.
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To prove the the rate is the best attainable one, we need to show that no estimator can
estimate Q (x) faster than the rate given by (4.4). For the first case, by Theorem 6, we know
that 0(02) is the optimal rate. To prove the second case, let us inscribe an n-dimensional

inner hypercube. The largest inner hypercube we can inscribe into the weighted /,-body is the

n
hypercube, which is symmetric about the origin, with length 24,, where 4,2 = C/(ZSj), i.e.
1

the n-dimensional inner length [, () = A,. Some simple algebra shows that when o is small,

2C ( Nfig + 18"0+1)<D
cng + 18,,0+102 \[n—OS,,o -

Vg Un (E))Y0? <

for some D > 0. By Theorem 1, we conclude for any estimator T (y),

B E(T0) = Q) 2 9= r (1 + (1),

ng

where r, = A2 ¥ A;/2. Now, it is easy to compute that
1

cA,
L2l ey Loy

]

r

3]
(e2]
(3]
<
Q
3
a

The conclusion follows.

Proof of Theorem 5. We will prove the truncated estimator achieves the rate given by

(4.8) and then use the hypercube approach to prove the lower bound.

For the truncated estimator (3.9), the maximum risk
max R . X
max (qur. x)

£ m
< max (FAx?? + max ¥ AJQ20" + 405D
x € Zp m X € 2,, 1

Letgq = —Lz be the conjugate number of g— Then by Holder’s inequality, we have for any
P —
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f;x,xﬁs(i (A; 87 2P)7)l4 (i 8, lx;1P)?P

< C¥ (T e FReIeDp, 8.12)

Similarly, we have
m m
SAK? < C¥ (3 AFIETD 57 emD)eme, (8.13)
1 1

Hence by (8.12) and (8.13),

max R , X
xe}lp (qUT )

oo m
< c4/p (Z )\Jp/(p—z) 6}-— 2/(p—2))2(p - 2ip + 22 7\12 04
m 1

m p=2
+ 4G2C P » x}?p/(p-Z) 5},—21@—2)) P
1

<0 (A2 5;%m? =P 4 mAZot+ o (T APC-DHODE e ) (814)
1

by Assumption D b) and Assumption B ii). Now, by taking m = ny and using the fact that

(c.f. (4.9))
-4
8,Fr1 <0 (ng+ ¢ ~Pyd, (8.15)
(8.14) is of order
0 (n° X}o ot + o (zl: }\,I.ZP’(P = 2)51.‘2’(}"2))@ - 2)lp). (8.16)

Case I If limsup n®P ~ @) A28, 2P < o, then it is easy to show that

n—> o

_3p-4
xn2p/(p-—2) 6; 2p-2) O(n 2(p —2)) = o(n— 1.5)



- 40 -
Consequently,
T AP §-20 D) ¢ o
1

and (8.16) is of order O (c?).

Case II: If limsup n®P =~ 4V@) }25-2P = o then by Assumption D c)

n —> oo

- @ - 2P
- 2)s-2(p- - - a2,
21: A2/ - Dg-26-2) < 0[1305n3pn Gp 4)/(,)J

=0(ng Ay, 0.

Hence, (8.16) is of order O (n4 k,,zo c%). Thus, the truncated estimator achieves the rate given
by (4.8).

To prove the lower bound result, similar to the proof of Theorem 4, we need only to con-

sider the second case. Note that the n-dimensional inner length [, &)= (C/i 8,-)“” . For the
1
ng defined by (4.9), we have
Vng(in (Z,)0)? < C¥PNd LD.
Thus by Theorem 1, for any estimator T (y)

S E(T0)-0G ))? 2 O(-D N8)r,2

where
Tng= 2 Aj( (Z,))%2 2 avngh, o?
1

and a > 0. Thus, the conclusion follows.
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