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Errors-in-variables regression is the study of the association between covariates 
and responses where covariates are observed with errors. In this paper, we consider 
the estimation of multivariate regression functions for dependent data with errors 
in covariates. Nonparametric deconvolution technique is used to account for errors- 
in-variables. The asymptotic behavior of regression estimators depends on the 
smoothness of the error distributions, which are characterized as either ordinarily 
smooth or super smooth. Asymptotic normality is established for both strongly 
mixing and p-mixing processes, when the error distribution function is either 
ordinarily smooth or super smooth. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

In data analysis, it is customary to explore the association between 
covariates and responses via regression analysis. Let X” denote the 
covariate variable and Y be the response variable. The regression function 
is defined by m(x) = E(Y) X” = x) which is assumed to exist. This paper 
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deals with the regression problem with errors-in-variables: We wish to 
estimate m(x), but direct observations of the covariate X” are not available. 
Instead, due to the measuring mechanism or the nature of the environment, 
the covariate X” is measured with error E: X, = X,’ + sj so that X, instead 
of XjO is observed and one desires to explore the association between X” 
and Y based on the observation (Xj, Y,);= i. This problem arises, for 
example, in medical and epidemiologic studies where risk factors are 
partially observed. See Prentice [ 181 and Whittemore and Keller [30]. 

In the i.i.d. case, the nonparametric errors-in-variables problem was 
studied by Fan and Truong [6] and Fan, Truong, and Wang [7], where 
optimal rates of convergence and asymptotic normality are established. Let 
z( .) be a kernel function whose Fourier transform is given by 

&K(t) = J’l exp(itx) R(x) dx (1.1) 

and let J,(t) be the characteristic function of the error variable E. Set 

@t,(x) = & 1’ x exp( - itx) -$-$ dt, 
cc 

(1.2) 

which is a deconvolution kernel. The motivation of using the deconvolu- 
tion kernel is as follows. The density of the unobservable random variable 
X” can be written as 

&(x) = & f:z exp( - itx) $$f dt. 

Thus the problem of estimating fXO can be reduced to estimating the 
characteristic function +dx(t) of the observed variable X. Using the kernel 
estimator fX(x) = l/(&r,) x; K((x - X,)/h,) to estimate the density fX, it is 
natural to estimate b*(t) by 

f?Lw = j’1 ew(itx)&t) dt = k(t) 4K(thJt 

where q4,( t) = (l/n) C j exp(itXj) is the empirical characteristic function. 
This naturally leads to estimating the density function of X” by 

The last expression suggests that the deconvolution kernel can extract the 
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density of the signal from the noisy observations. This motivates Fan and 
Truong [6] to propose the kernel regression estimate for m(x) 

(1.3) 

where b, is the bandwidth parameter. We remark that the deconvolution 
kernel wb, is used to account for the fact that the covariates are observed 
with error. For more discussions on deconvolution, see Carroll and Hall 
[ 11, Liu and Taylor [ 111, Stefanski and Carroll [25], Zhang [31], 
and Fan [3-51, in the i.i.d. setting and Masry [13-151 for dependent 
observations. 

Our goal in this paper is to establish the asymptotic normality for 
estimators of form (1.3) in the following more general setting. 

l The processes {A’;} and {Y,} are individually and jointly 
dependent. 

l Multivariate regression from past vector data is considered. 

l Estimation of general regression function of form 

m(x; p) = m(x,, . ..) xp; p) = E(lj( Y,) 1 x,0 =x1, . ..) x; = XJ (1.4) 

is studied, where $( .) is an arbitrary measurable function. These functions 
include the usual mean regression and conditional moment functions as 
well as conditional distribution functions. Roussas [23] also uses the 
function II/( .) in the context of regression. 

We note that in this general setting, sharp almost sure convergence rates 
were established in Masry [16]. 

When the error variable E = 0, the errors-in-variables problem reduces to 
the ordinary nonparametric regression where covariates are observable. In 
that case, the deconvolution kernel (1.2) is just an ordinary kernel in which 
case the estimator (1.3) was proposed by Nadaraya [17] and Watson 
[29]. The estimator (1.3) has been thoroughly studied with no errors in 
covariates. See, for example, Mack and Silverman [12] and HHrdle [9] 
and references therein for i.i.d. observations, and Rosenblatt [22], 
Robinson [ 19,201, Collomb and Hardle [2], Roussas [23], Truong [26], 
Truong and Stone [27], and Roussas and Tran [24], among others, for 
dependent observations. 

We now introduce the regression estimator in the more general setting 
mentioned above. Let {X,‘> F= ~Ixl and { Y,}r= ~uI, be jointly stationary 
processes and let { .si) ,“= ~cc be i.i.d. random variables, independent of the 
processes { Xp } ,?: _ ,x, and (Y,}?: --sc,. Denote the probability density 



240 FAN AND MASRY 

and the characteristic function of the error variable E by g(x) and J,(t), 
respectively. Set 

xj=x;+Ej, j=o, fl,.... 

Let f”(x; p) =f”(x,, . . . . xP; p) be the joint probability density function of 
the random variables X,0, . . . . X,“, which is assumed to exist. Then the joint 
probability density function of X,, . . . . X, is given by 

.m P) = s,J% -u; P) 0) du, (1.5) 

where 

h(u) = fi h”(Uj). (1.6) 
j=l 

Let 

x; = (Jr;, 1) . ..) Xi”+& xj= Cxj+ 1 Y ..*9 xj+p). (1.7) 

For simplicity, we use product kernel for the multivariate nonparametric 
regression estimation. Let the kernel K be a real-valued, even, and bounded 
density function on the real line satisfying K(X) = 0( 1x1 -I-‘) for some 
6 > 0 and let JK(t) be its Fourier transform. A basic assumption on the 
error distribution and the kernel function is that for every b > 0 

With p,, detined by (1.2), set 

K(x) = fi &Xj), wb(x)= fi mb(xj) 

j=l j=l 

(1.8) 

so that 

4Ktf) = fi JKCfj)* (1.9) 
j=l 

Let (6,) be a sequence of positive numbers such that b, --) 0 as n + co. 
Given the observations (X,, Yj)3= r, we estimate the regression function 
(1.4) by 

&Ax; P) = k(x; P)/j,“k PI, (1.10) 
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where 

ax; p) = (n-p; l)b:~~i(Y,,j) wbn((x-xj)lbn) (1.11) 

and 

fxx; p) = (n-p:l)bp”~p ~b”((x-xj)lhJ. (1.12) 
?I J--o 

We remark that f,“(x; p) is a deconvolution density estimation off”(x; p). 
In considering the asymptotic normality of ti,(x; p), we define the 

centralizing parameter by 

B (x. p) = ~Rt(x; PI - R(x; P) --(xi PM%; PI -f”(x; P)) 
n 5 

-@,“(x; PI 

(1 13) 
9 . 

where R(x; ~)=m(x; p)f”(x; p), We will see that B,(x; p) is the 
“asymptotic bias” of the estimator riz,(x; p), With &,, p,U, and B, defined 
respectively by (l.ll), (1.12), and (1.13), it is easy to verify that 

&Ax; P) - 4~; P) - B,(x; P) = 
&(x; P) - B,(x; P)(?‘,“(x; P) - @3x; P)) 

“axi P) 

where 

c2nb~ P) = Rz(x; PI -&(x; PI - 4x; PK.h; P) -&(x; PI). 

It will be shown in Proposition 1.1 that B,(x; p) = O( 1) under some mild 
conditions. Therefore, the dominated term in the numerator is &: 

Mx; P)-~(x; P)-B,(x; PI= &(x; p)(l +op(l))/!,o(x; p). (1.14) 

Note that 0, is centralized and has the form of an average of a sequence 
of stationary random variables. Hence, we need first to establish 
asymptotic normality for Q,, and then the asymptotic normality of A, 
follows easily from (1.14). 

The bias of the estimators f,“(x; p) and ff,(x; p) and the asymptotic 
value of B,(x; p) are given by the following proposition. 

PROPOSITION 1.1. (a) For almost all x E RP, we have as n + co 

&xx; PI -f”(x; PI, E&(x; P) + Nx; P), and ux; P) -+ 0, 

where R(x; p) = m(x; p) f”(x; p). 
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(b) If f “(x; p) and R(x; p) are twice differentiable and their second 
partial derivatives are bounded and continuous on RP and the kernel function 
E satisfies J T z u’@:(u) du < 00, then as n --) co 

1. b;’ bias(f,“(x; p)) + $ sRp uG;“(x; p) uTK(u) du; 

2. b;’ bias(&(x; p)) -+ 4 IRP uGk(x; p) uTK(u) du; 

3. b,‘B,,(x; p) --f B(x; p); 

where uT is the transpose of the row vector u, the p x p matrices G” are given 

by 

and 

B(x; P) = jRP u(G(x; p) - 4x; P) +(x; ~1) uTK(u) W(2f "(x; P)). 

Proof: See Fan and Truong [6] and Masry [16]. 
We remark that the above bias expressions do not dependent on the 

error distribution. However, the asymptotic variance and the optimal rates 
of convergence depend strongly on the smoothness of the error distribu- 
tions. Fan [3] shows that such a dependence is an intrinsic part of the 
regression problem, not an artifact produced by the kernel method being 
used. Following Fan [3], we call a distribution 

l super smooth of order j?, if the characteristic function of the error 
distribution &&. ) satisfies 

a0 ltl”Oexp(-a IrIB)< liJ&t)l <a, Itlp’exp(-a ItIP) as t+Go, (1.15) 

where a, a,, a,, B are positive constants and DO, /I1 are constants; 

l ordinarily smooth of order /I, if the characteristic function of the 
error distribution JE( .) satisfies 

do I tl -@d I&WI d d, Itl -B as t-+cO, 

for positive constants d,, d,, /?. 

Note that the above conditions are imposed in the Fourier domain and 
only on the tail of fhe characteristic function. The faster the decay of the 
tail of the characteristic function, the smoother its corresponding density. 
The super smooth distributions include normal and Cauchy distributions 
and their mixtures; the ordinarily smooth distributions include gamma and 
Laplace distributions. 
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It will be seen in the sequel that the technical conditions needed to 
establish the asymptotic normality of &(x; p), as well as the nature of the 
proofs, depend strongly on the type of the error distributions. Section 2 
establishes asymptotic normality when the error distribution is ordinarily 
smooth and Section 3 accomplishes the same for super smooth error 
distributions. Both strongly mixing and p-mixing processes are studied. 
Some technical proofs are given in the Appendix. 

We provide here an overview of the method of proofs and difficulties. 
Put 

2,,j=b,~P(~(Yp+j)-m(x; PI) Wbn((x-Xj)lbn)-Pn9 (1.16) 

where K and Wbn are defined by ( 1.8) and 

P, = ab,P($( yp, - 4% P)) Wb”((X - mlhl)l. 

Then, we have 

(1.17) 

(1.18) 

In order to establish the asymptotic normality of & we employ the large- 
block and small-block method frequently used for dependent observations 
(see (2.6)-(2.16)). We note that in the deconvolution setting, additional 
complexities take place since the original kernel K(x) is replaced by the 
deconvolution kernel Wb,(x). The latter clearly depends on the bandwidth 
parameter b, and its &-norm 11 W,J p blows up as n + cc. The rate of 
growth is needed and is given in Lemmas 2.2 and 3.1. In the smooth case, 
we can determine the precise rate of convergence and the asymptotic 
constant of var(&(x; p)) (Lemma 2.3). As a consequence, the asymptotic 
normality of & takes a classical form (Theorem 2.1): 

Mb y+“y Q,(x; p) -5 N(0, 82(x; p)). 

In the super smooth case, the situation is more complex: One can not 
determine the precise rate of convergence and the asymptotic constant for 
var(&) (not even in the i.i.d. setting). We therefore establish in Lemma 3.2 
sharp upper and lower bounds for c:(n) = var(p,,, j) and utilize these 
bounds to prove in Lemma 3.3 that 

var(Q,,)=igG(l+o(l)). 

These results are then used, along with the large-block and small-block 
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argument, to establish in Theorem 3.1 the asymptotic normality of Q,(x; p) 
in the normalized form 

We finally remark that in the multivariate regression setting of this paper, 
an added complexity in the analysis is due to the fact that two consecutive 
vectors Xi and Xj+ i share all their components except for the end points. 
This is reflected in the proofs of Lemmas 2.3 and 3.3. 

2. ASYMPTOTIC NORMALITY FOR ORDINARILY 
SMOOTH ERROR DISTRIBUTIONS 

2.1. Preliminaries 

Let 9; be the a-algebra of events generated by the random variables 
{X,?, sj, Yj, i <j< k} and let L2(9f) denote the collection of all second- 
order random variables which are @;-measurable. The stationary pro- 
cesses {X,?, sj, Yj} are called strongly mixing (Rosenblatt, [21]) if 

sup IP(AB) - P(A) P(B)1 = a(k) + 0 as k-+oo 
AE.@,,BEF~ 

are said to be uniformly mixing if 

sup IWlA)-P(B)1 =W)+O as k-+co, 
AE.@~,BEF~ 

and are called p-mixing (Kolmogorov and Rozanov, [lo]) if 

UE .i,,:ypY, L2cpr, var”*( u) var”*( V 
=p(k)+O as k-co. 

It is well known that these mixing coefficients satisfy 

u(k) < $(k) G ;#‘*(k), 

and thus the class of p-mixing processes is intermediate between strongly 
and uniformly mixing. 

We remark that since the {cj} are i.i.d. and are independent of the 
processes {A’,:, Yi}, it is possible to define the mixing coefficients in terms 
of the modified o-algebra FF = a{Z,?, Y,, i<j< k}. The results stated in 
this paper continue to hold by utilizing conditioning arguments on the 6;s. 
We opted not to do so for the sake of brevity of the derivations. 
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We begin by imposing some conditions on the kernel function, the error 
distribution, and the mixing coefficients. 

Condition 2.1. J,(t) and i,(t) are twice continuously differentiable 
with bounded derivatives such that 

(i) J,(t) #O, Vte R, 

(ii) t8$,(t) -+ B as t + co for some p 2 1 and B> 0, 

(iii) 6,, SZz Jt(@-’ IJK(t)l dt < co; 1:: (t(‘@ I$K(t)/2 dt< oo, 

(iv) 1:: ItlaP’ I&(t)\ dt< 00; j’z ItlP I&(t)1 dt< co, 

where 6,, is the Kronecker’s delta. 

Condition 2.1 is satisfied, for example, when sj is gamma or symmetric 
gamma distributed and K is a Gaussian or Cauchy kernel. 

Let fxo,x,, Y,. Yp+l (u, VI y,, yP+,) be the conditional density of (X,, X,) 
given YP=yP and YP+,= JJ~+,, where Xj is given by (1.7) and when 
16 l< p, the vector (X,, X,) means (X,, . . . . X,,,). Recall that f( .) is the 
joint density of X, given by (1.5). Let f( x0, x,) be the probability density 
function of (X,, X,) with a similar meaning to that above when 1 < I< p. 
Let 

vx; P)=mw,)-~(x; P))*l&=xl. (2.1) 

We make the following assumptions on the processes involved. 

Condition 2.2. (i) Elll/( Y,)l” < A, for some v > 2, 

(ii) Ifxolyp(u I J%&, 
(iii) f xo,x,Iyp,y,,+,(u~vl ypy ~,+d~4, for all lb 1, 
(iv) Either the processes (XT, sj, Yj} are p-mixing with 

x7=1 p(j)< co, or they are strongly mixing with C,“=, l”[a(l)]‘-*/‘c 00 
for some a > 1-2/v, 

(v) f(x; q) d A4 for all 1 <q < 2p, and f(x,, x,) < A, for all 12 p, 

where Aj (j= 1, . . . . 4) are some positive constants. 

We remark that Conditions 2.2ii, iv, and v are imposed on the 
,Y-variable. By the convolution theorem, they are satisfied when the density 
h”( .) of the error variable E is bounded. With B and /? given in Condi- 
tion 2.1, let 

1 
DC----- 

271 JBl* I +O” ltlZB &(t)l* dt. 
--im (2.2) 

We need the following lemmas. 
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LEMMA 2.1 (Masry, [ 131). Under Condition 2.1 and Conditions 2.2iv 
and v, we have 

lim nbf8+ ‘jp var(f,“(x; p)) = Dpf(x; p) 
n-m 

at points of continuity off (x; p). Zf in addition nbi(*p+ ” -+ co, then by 
Proposition 1.1 a 

43% PI -5 f "k PI as n-rco. 

LEMMA 2.2 (Masry, [ 131). Under Condition 2.1, we have the following 
results: 

(a) There exists a constant c such that 

II ttb,/I 1 Q c/b!; 11% II,a/bfl> n 2<1<co. 

(b) For all points x of continuity of a bounded function g( .), 

where qt,, is the deconvolution kernel given by (1.2) and D is given by (2.2). 

We first note by Proposition 1.1 that pL,, defined by (1.17), is inde- 
pendent of the error distribution and goes to zero for almost all x E RP: 

A = ECb,yP(IC/( Y,, - 4~; P)) JJ(x - &Yb,)l = 41). (2.3) 

With V(x; p) given by (2.1), let 

e*(x; P) = DVx; P)f(x; P). 

LEMMA 2.3. Under Conditions 2.1 and 2.2i-iii, we have at continuity 
points of V(x; p) andf(x; p) that 

var(Z,,,) = b; (*flfl’w(X;p)(l+o(l)), 
n-1 

and 

,C, IW~.,,o~ -%,)I = 4var@n,o))y 

n-l 
var 

( > 
1 z,,j =nb; c2p + “V2(X; p)( 1 + o(I)), 

j=O 

where 2, j is given by (1.16). 
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Proof. We first remark that the third result follows directly from the 
first two results together with the stationarity assumption: 

n-l 

=n var(T,,,)+ 2n c COV(~,.~, z,,;). (2.4) 
/=I 

By conditioning on Y,, and Fubini’s theorem, we have from (1.16) and (2.3) 
that 

var(Z,,,) = b;“E 
( 

[$( Y,) - m(x; p)12Win T 
( >> 

+0(l) 
n 

where g(x, u) = E{ [$( Y,) - m(x; p)12fx,, yP(u 1 Y,)}. It can easily be 
verified that g(x, x) = V(x; p) f(x; p). By Conditions 2.2(i) and (ii), g(x, u) 
is bounded and continuous in u for each fixed x. Applying Lemma 2.2(b) 
we obtain the first part of the result. 

Next, with a sequence of integers c, + cc such that c,,b,P -+ 0, we write 

n-1 
,g lCOV(%,O? %,)I = ( pf’ + f + y j IC~V(.R.O~ -%,)I 

/=I I=p I=<,+1 

-J,+J,+J,. 

For l<l<p-1, (1.16) and (2.3) lead to 

co@,,o, -%,J = K2pE C$( Y,, - mlCICI( Y,,,, - ml Wbn 

+0(l). 

Let II’, II”, u”’ denote respectively an I, a (p - I), and an 1 dimensional 
vector, where u” represents the overlap part of the vector X, and X,. 
Conditioning on ( Y,, Y,, + [) an using Condition 2.2iii and a change of d 
variables, the above covariance is further bounded by 

683/43/2-6 
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~~El[~~Y~)-ml[~(Y,+,)-mll 
” 

x b;+’ 
( 1 ,Jp+/ 

( Wb,(u’, II”) Wb,(u”, .“‘)I du’ du” du’” 
> 

uniformly in 1. The last equality follows from the factorization (1.8). This 
together with Lemma 2.2a leads to 

P--l 

J, = c O(b, 12B+‘)P+‘)=o(var(Z,,)). 
I= 1 

For p <I < c,, we have similarly that 

Icov(%o, -%,,)I GA, II @+,ll:” E I[~(Y,,-mlC~(Y,+,)-mll =WJ,~‘~P), 

uniformly in 1. Therefore, by the choice of c,, we have 

J, = O(c,b,; (28+l)P+P)=o(b,; w+ ‘jp) = o(var(Z,,,)). 

We now deal with J,. We separate the argument into two cases, 
depending on whether the processes are p-mixing or strongly mixing. For 
p-mixing processes, we have 

J, < i p(l- p + 1) var(2,.,) = o(var(&,,)), 
I= cn 

by the summability of the mixing coefficients. For strongly mixing 
processes, we proceed as follows. By Davydov’s Lemma (see Hall and 
Heyde [IS, Corollary A2]), we have 

Icov@,,o, .%,,)I 68[c1(l-ps 1)]‘-2’” (E (.&OlY)2’v. (2.5) 

Conditioning on Y, and using Condition 2.2(ii), we have 

<A2b;P”+P II@‘bnll; El$(Y,)-ml”+o(l). 
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Therefore, by Condition 2.2(i), 

E)2,,1”~Cb,p’“-‘) IIw,,ll:=O(bnP(“-‘+fB”‘), 

249 

where the last equality follows from (1.8) and Lemma 
positive constant. This together with (2.5) entails 

d 
-,! 

ppP(B+ 1~ l/e) ” ” ,=F+, [“Cdl-P+ w 
n 

2.2(a) and C is a 

- 2/v 

for some positive constant C2. Choose c, = [b;P” ~ 2’v)‘a] so that c,,b,P --+ 0 
since a > 1 -2/v. In view of Condition 2.2iv, we have J, = o(b;(*@+ lJp). 
This completes the proof. 1 

LEMMA 2.4 (Volkonskii and Rozanov, [28]). Let V,, . . . . V, be random 
variables measurable with respect to the a-algebras F{i, . . . . F{i respectively 
with Idi,<j,<i,< -.-<jLdn, i,+,-j,>w31 and IVj161 for 
j= 1, . . . . L. Then 

I@, V,)-$, 4 Q 16(L-- l)dw), 

where u(w) is the strongly mixing coefficient. 

2.2. Main Results 

The principal result of this section gives the asymptotic normality of 
the regression estimator (1.10) for both strongly mixing and p-mixing 
processes. 

Condition 2.3. Let {s,} be a sequence of positive integers, s, + co, such 
that s, = o((nb,P)‘j2). For strongly mixing processes, a(k) satisfies 
(nb;P)1’2 OI(S,) -+ 0 as n + a; for p-mixing processes, p(k) satisfies 
(nb;p)“2 p(s,) -+ 0 as n + 00. 

THEOREM 2.1. Under Conditions 2.1-2.3 and nby”+ ‘jp -+ 00 as n + co, 
we have 

(nb )128+ lJp)l” C&(x; p) - m(x; p) - B,(x; p)] -% N(0, t2(x; p)) 

at the continuity point of f”(x; p) and V(x; p), where 7*(x; p)= 
PV(x; p)f(x; p)/(f”(x; p))’ and A V, and D are given respectively by 
(1.5), (2.1), and (2.2). 
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The following corollary follows from Theorem 2.1 and Part b of Proposi- 
tion 1.1 together with the choice of bandwidth. 

COROLLARY 2.1. Under Conditions 2.1-2.3, if the functions m(x; p) and 
f(x; p) have bounded and continuous second partial derivatives on RP, then 

(nb rp+ 1’p)1’2 [r&(x; p) -m(x; p)] 5 N(0, t*(x; p)), 

provided that nbi + c2g f ‘)P + 0 and that J’z u’E(u) du < co. 

Remark 2.1. It can be shown that under the assumption that 
&(*fi+ l)P + oo a sufficient condition for Condition 2.3 is respectively 
M(J) = O(n-(’ ’ “D’/log n) and p(n) = O(n ~ (’ + ‘la’/log n) for strongly mixing 
and p-mixing processes. Also Condition 2.2iv for strongly mixing process is 
equivalent to a(n) = O(n- (*“‘) for some 6 >O. Therefore, for pa 1, the 
assumptions given in Conditions 2.2iv and 2.3 on the strongly mixing con- 
licient are equivalent to Ix(n) = O(n ~ (* +@) for some 6 > 0. For p-mixing 
processes, the assumptions given in Condition 2.2iv and 2.3 on the 
p-mixing coefficient are satisfied when p(n) = O(n -cl + “a)/log n). 

Proof of Theorem 2.1. The idea of the proof of Theorem 2.1 is as 
follows. We first establish the asymptotic normality for 0, and then use 
(1.14) to conclude the desired result. We employ the following big blocks 
and small blocks argument. 

Set 

n-l 
Zn.i=bn Iv+ l)Pl25f, j ;  

st2 = C zn,j. 
i=O 

Then (1.18) leads to 

(nb~~+“P)*12 &” = Jm ’ s 
$Ig n--p+l’ 

(2.6) 

In view of Lemma 2.3, we have 

var(Z,.o) + @*(x; PI; C /cov(z~.O~ zn, j)l + O. (2.7) 
j=l 

Partition the set { 1, 2, . . . . n} into 2k, + 1 subsets with large blocks of size 
r = r,, and small blocks of size s = s,,, where, with [ .] denoting integer part, 
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Define the random variables 

j,r+s,+r- 1 

Vi=. C Z,,,, Odjdk-1, 
i=j(r+sl 

lj+l)O.+s)-1 

5j= 1 Zn.ir O<j<k-1, 
i=j(r+s)+r 

and 

ik = c Z&i. 
i=k(r+s) 

Then 

k-l k-l 

s,= 1 Yf j+ 1 (j+qk5y,+s::+s;. 

j=O j=O 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

We will show that as n + co, 

+(s,)2+o, $,‘)‘+O 
k-l 

E[exp(itSn)] - n E[exp(itqj)] -+ 0 
j=O 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

for every E. (2.13) implies that Si and Sr are asymptotically negligible, 
(2.14) implies that the summands { qj} in SL are asymptotically inde- 
pendent, and (2.15) and (2.16) are the standard Lindeberg-Feller condi- 
tions for asymptotic normality of SL under independence. Expressions 
(2.13))(2.16) entail the asymptotic normality 

so that by (2.6) 

A-s, 5 N(0,e2(x; p)) 
& 

(2.17) 

(nb L2B + ‘)pp2 Q,(x; p) -5 N(0, 82(x; p)). 

This together with (1.14) and Lemma 2.1 prove Theorem 2.1. 
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We now establish (2.13)-(2.16). The proof concentrates on the strongly 
mixing case as it is more involved. We remark on the differences for 
p-mixing processes. 

We first choose the block sizes. Condition 2.3 implies that there exist 
constants q,, -+ co such that for strongly mixing processes 

qnsn = 4(~ky), q,wy” 4%) -+ 0, 

and for p-mixing processes 

4nSn = 4wm”‘h q,(nb,fy2 p(s,) + 0. 

Define the large block size I-,, = [(nb,P)1’2/q,]. Then simple algebra shows 
the properties 

&Jr, -+ 0, r,ln + 0, r&by2 + 0, (2.18) 

and 

n ct(s,) + 0. 
rn 

(2.19) 

(For p-mixing processes, (2.19) is proved via the inequality a(.~,) d p(s,)/4.) 
We now establish (2.13). Note that 

k-l k-1 k-1 

E(St)‘= c var(ti)+ 1 c COV(~~, lj)-F1 + F*. 
j=O i-0 j=O 

if i 

(2.20) 

Using stationarity and (2.7), we obtain that 

x- 1 

var(tj) = s var(Z,,) + 2s C (1 -I/S) COV(~,,~, z,,,) 
/= 1 

=se2(x;p)(l +0(l)). (2.21) 

BY WJO), 

F, = O(ks) = o(n), 

since by (2.8) and (2.18) r,k,/n=s,/(r,+s,) -+O. Now, we consider F2. 
We first note that with mj = j(r + s) + r, 

k-l k-l s-, s-l 

F2= c c c c c~VKLm,+l,r Tv?7,+,*)? 
i=O j=O I,=0 (~~0 

i # j  
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but since i # j, Jmi- mj + 1, - I,( 2 r so that 

n--r--l n-l 
IFzIG2 1 , =. c ICOWnJ, -LJl. 

I /z=/,+r 

By stationarity and (2.7) 

n - 1 

IFA < 2n c Icov(z,,o, ZJ = o(n). 
,=’ 

By (2.20), we have validated the first part of (2.13). For the second part of 
(2.13), using a similar argument together with (2.77, we obtain that 

iE(S::‘)‘<A (n-k(r+s)) var(Z,,,)+2ni1 \cov(Z,.~, Z,.j)( 
,=l 

< +%(x;p)t-0(1)-O. 

For (2.14) we proceed as follows. We note that vu is a function of the 
random variables 

or q. is Pi;-measurable with i, = a(r + S) + 1 and j, = p-k a(r + s) + r - 1. 
Hence, applying Lemma 2.4 with Vi = exp(itqj), we have 

k-l 

- n ECexp(itvji)l 
j=O 

< 16ka(s,+2-p)- 16+,,+2-P), 
II 

which tends to zero by (2.19). 
We now show (2.15). By stationarity and (2.21) with s replaced by r, we 

have 

var(q,) = var(q,) = re2(x; p)( 1 + o(l)). 

This implies that 

~~~‘E(~~)=k,r,~2(x;p)(l+~(l))-~e2(~;P)~e2(x;~), 
/=o n ” n 

since s,/r, + 0. 
It remains to establish (2.16). We first prove (2.16) when I/I(.) is 
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bounded. This would establish the asymptotic normality (2.17) for 
this particular case. The general case of tj possibly unbounded is then 
established by using a truncation argument. 

Assume that I$( .)I Q L. Then by the definition of Z,,j, 

IZ .I n. I d bL2B- ‘y(L + 14% PII) /I Wbnll m + IPHI >? 

and by Lemma 2.2a and the fact that pL, + 0, we have IZ,,jl Q CJbnp’*, 
for some constant C,. This and (2.9) entail max,,jck-l Iqjl/&< 
C,r,/(nb:)“2 which tends to zero by (2.18). Hence, when n is large the set 
{ IVjI 2 0(X; P) E J;i} b ecomes an empty set. Hence, (2.16) follows, and 
consequently the asymptotic normality (2.17) holds for bounded $( .). 

To complete the proof for the general case, we utilize the following 
truncation argument: Put 

where L is a fixed truncation point. Correspondingly let 

m,(x; PI = E(Il/L( Yp) I x0 = XI 

and 

VAX; P) = EC($L( yp, - mAxi PN’I &I = xl, et = DPVAx; p)f(x; P). 

Put 

/G,L = ECb,Y’($,( Y,, - m,(x; P)) w,,((x - X,)/Ul, 

Z~,j=bjlZB+‘)P’2Cb,P(~L(Yp)-mL(X; P)) W,“((X-Xo)/b,)-Cln,~l, 

and 

H-1 n-1 

S," = C zk.j, 3;,"= C (Z,,jwzkj). 

j=O ,j= 0 

Then, by the asymptotic normality for bounded Ic/( .), we have 

(2.22) 

(2.23) 

In order to complete the proof, namely to establish (2.17) for the general 
case, it suffices to show that as first n + 00 and then L -+ 00 we have 

i var( 3;) + 0. (2.24) 
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Indeed, 

IE exp(itS,iJ) - exp( - t*tI(x; p)/2)I 

=jEexp(it(Sf;+zf;)/J;;)-exp(-t20t/2) 

+ exp( - t’0:/2) - exp( - t’0’/2)\ 

d IE exp(itSi/&) - exp( - t’0;/2)1 + E Iexp(its,L/&) - 11 

+ (exp( - t%:/2) - exp( -&P/2)(. 

Letting n + 00, the first term goes to zero by (2.23) for every L >O; the 
second term converges to zero by (2.24) as first n -+ cc and then L + CCJ; 
the third term goes to zero as L -+ cc by the dominated convergence 
theorem. Therefore, it remains to prove (2.24). Note that by (2.22) sf; has 
the same structure as Sk except that the function tiL is replaced by $ - tjL. 
Hence, by Lemma 2.3 (note the different scaling between 2,, j and Z,. j), we 
have 

lim W%)ln = Wlx; P) E[(ti( Y,,) I{ I$( Y,,)l > L j “*CC 

- Cm(x; P) - m,(x; PII )* I x, = xl. 

By the dominated convergence theorem, the right hand side converges 
to 0 as L + co. This establishes (2.24) and completes the proof of 
Theorem 1. m 

3. ASYMPTOTIC NORMALITY FOR SUPER SMOOTH ERROR DISTRIBUTIONS 

In this section, we deal with super smooth error distributions, whose 
characteristic function decays exponentially fast. Recall that &(x; p) given 
by (1.18) is central to our discussion of asymptotic normality. Set 

4h) = var(-L) = Wb;PC+(Yp) - m(x; PII wb,([Ix - JLJlh)) (3.1) 

and 
a2(n) = var(&(x; p)). (3.2) 

Since the asymptotic rates and constants of O;(H) and o*(n) are not 
available even in the i.i.d. case, the technical arguments are more involved 
here than in the ordinary smooth case. We first derive both lower and 
upper bound for c;(n) and then use these bounds to establish 

Cr2(n)=$r;(n)(l +0(l)). 
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These bounds are also useful in validating the Lindeberg-Feller condition 
for asymptotic normality. 

3.1. Preliminaries 

We make the following assumptions on the characteri:tic function J,(t) 
of the error variable E ad on the Fourier transform dK(t) of a kernel 
function K. 

Condition 3.1. (i) J,(t)#O for all tER. Moreover, expression (1.15) 
holds with /?, =bO. 

(ii) JK(t) has a finite support (-d, d). 

(iii) There exist positive constants 6, a2 and 1 such that ITK(t)l < 
a,(d- t)‘, for t E (d- 6, d). 

(iv) JK(t) >a,(d- t)’ for t E (d-6, d), where a3 is a positive 
constant. 

(v) With R,(t) and Te(t) being the real and the imaginary part of 
Js(t), assume that either T,(t) = 0(&t)) or ii;,(t) = o@,(t)), as t + co. 

Condition 3.1 is satisfied, for example, when sj is Gaussian or Cauchy 
cistributed and a smooth kernel K whose Fourier transform is given by 
cjK(t) = (d2 - t’)’ for ItI d d and is equal to zero otherwise. We remark that 
condition i assumes that the error distribution is super smooth. Under such 
an assumption, by Fourier’s inversion, the density i(u) of the error variable 
E is bounded and has bounded derivatives of all orders. This entails that the 
marginal density f(x; p) given by (1.5) is bounded, 

for some M > 0. We also remark that the conditional density fx?, yP(u 1 y,) 
of X, given YP = yP exists and is bounded and continuous in view of the 
smoothness of x(u) and the convolution theorem. Condition ii is a sufficient 
condition for the existence of the deconvolution kernel (1.2) for b > 0. Note 
that JK(d)=O since I,( .) is continuous. Condition iii describes the 
behavior of JK(t) in a neighborhood of t = d. Conditions iv and v are used 
to develop lower bounds. Condition v says that at the tail, the charac- 
teristic function $,( .) is either purely real or purely imaginary. 

The following lemma gives both lower and upper bounds on the norms 
of the deconvolution kernel function (1.2). The proof is given in the 
appendix. 

LEMMA 3.1. Under Conditions 3.li-iii, we have as 6, -+ 0 
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and 

If moreover Condition 3.liv and v hold, then we have 

I @b.(x)l > a,R(x) b!,” l’B+Bo exp(a(d/b,)fi), 

for some a4 > 0 uniformly in x on a bounded interval, where 

{ 

(cos dxl, 

H(x)= jsin dxl, 
if K(t) = o@,(t)) 

if R(t) = OKW 

The following two lemmas establish a lower bound on o:(n) and the 
identity a*(n) = (l/n) ~t(n)( 1 + o( 1)). We impose the following conditions 
on the underlying processes {x, e,,, Yi>. 

Condition 3.2. (i) E I$( Y,)(” < co for some v > 2. 

(ii) The processes (XT, sj, Y,} either are p-mixing with x7:, p(j) < og 
or strongly mixing with CT=, j”[a(j)] l-*” < co for some A > 0. 

LEMMA 3.2. Under Condition 3.1, we have for large n 

ai(n)>,a,b $[(/+l)P+bo.51 exp(2ap(d/b,,)8) 

and 

o;(n) < a6/,ZP[(j+ l)B+BO- 11 
n 

( > 
log; 

2/P 

expPAd/b,,)8)T 
,* 

for some constants a,, a6 > 0. 

Proof Since pL, is bounded (see (2.3)), we have by conditioning on Y, 
and using a change of variables that 
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and by Lemma 3.1 and the factorization (1.8) of W,” 

o;(n) 2 ~~b~~(‘+ “p+BOpo.sl exp(2ap(d/b,)B) 

CWJ-W;P)I~ 

x j,-, 1,” e if2(4fX0,Y,(X-~,uI Y,)du)+O(l). 
’ /I 

By the continuity off,,, r,, we then have 

x E(CWp) - 4~; P)I~&, y,(x I Yp))U + 41)). 

The first conclusion follows. The second conclusion follows immediately 
from the bound on 11 qb,ll o. in Lemma 3.1. 1 

LEMMA 3.3. Under Conditions 3.1 and 3.2, we have 

n-1 

and 

02tn)=i4n)(l +0(l)), 

where a*(n) and c:(n) are given by (3.1) and (3.2). 

Proof: Let 7 ,,., i= Jcov(~,,~, z,j)l and 

G = CexpkWhJB)l. (3.3) 

Then 

y Icov(z,,o, 2,,,)1 =(‘z’+ : + “f’ ) 7”.j-J, +J2+J3. (3.4) 
j= 1 j=l i=p j=c,+ I 

We now deal with each of the above three terms. For 1 <j< p - 1, by 
(1.16), we write 

7,.j=h,2pE(C~(Yp)-m(X; P)IC$‘(Yp+j)--m(xi P)I 

x Wh,(CX - Xollhz) Wb”(CX - XillbJ) + Wl)> 
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since p,, is bounded by (2.3). Put 

(X0)’ = (xy, . . . . /I-;); 6’ = (E,) . ..) E,) 
(X0)” = (XJ, I) . . . . x;,; E” = (E,, 1) . ..) EP) 
(X0)“’ = (x;, ,) . . . . x;, J; E”’ = (& p+ 12 ..‘1 &pi, ) 

and X’ = (X0)’ + E’, X” = (X0)” + E”, and X”’ = (X0)“’ + E”‘. Then, by condi- 
tioning on (X0)“, E”, Y,, and Y,, + j, we have 

L,,=b,~2pE{q2w’) q4( yp, yp+ j) ECq,(X’) q3(X”‘)l (X0)“, E”, yp, Yp+,l} 
+0(l), (3.5) 

where 

and 

By (1.2) and Fubini’s theorem, the inner conditional expectation is 

J5 = E[Iq,(X’) q3W”) I (X0)“, E”, y,, Y,,,l 

xdt’lbm t”‘lb,, I (X0)“, Y,, Yp+ ,I I) &JQ “I?i’ &(c,) dt’ a”, 
I= I /=a+1 
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where d(t’, t”‘) (X0)“, Y,, Y,,+j) is the conditional characteristic function of 
(X0)‘, (X0)“’ given {(X0)“, Y,, YP+i). Therefore /.I,[ < jI$,li ?/(27r)/ , 
Consequently, by (3.5), for 1 <j d p - 1, we have 

for some positive constant C,. The same argument yields 

(3.7) 

Thus, by (3.4) and (3.6), we have 

J, <f $1:: IItvb,lly)=O(b,2P )Irn&y)). 

This together with the upper bound on 1) @‘,,,I] o. in Lemma 3.1 and the 
lower bound on Go in Lemma 3.2 shows that 

Jl -< C3 
44 n bP+w+lh9+Po 

exp( -2a(d/b,)P) = O( l), (3.8) 

where C3 is a positive constant. For J2, (3.7) leads to J2 Q c, C,/bF. Hence, 
by the choice of c, given in (3.3) together with the lower bound on c;(n) 
given by Lemma 3.2, we have 

--&= O(b, 2PC(‘+‘)~ff10+0.s] exp( -q(d/b,)p)) = o(1). (3.9) 
0 

Finally, we consider J,. For p-mixing processes, we have 

J&c@) f p(j-p+ 1)=0(0;(n)). 
j=c,+l 

From this together with (3.4), (3.8), and (3.9), we have proved the first 
conclusion for the. p-mixing processes. For strongly mixing processes, we 
first note that by (1.16) 

II %. II : 
E ~2,,,~‘%2”- bvP El~(Yp)-m(x;p)l’+0(1). 

n 
(3.10) 
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Then employing Davydov’s lemma, we obtain that 

\7n,j1 <S[a(j-p+ 1)]‘~“‘(E~2,,,~“)*‘” 

IWt, 112 
<C,[a(j-p+ 1)]1-2i”-+- 

n 
(3.11) 

for some constant CA. Thus, 

II ~~lh,I12 Oc 
J3<2’+‘C4p C [a(j-p+ l)l’p2” 

j=c, 

~ c 
~ 1 j”[a(j- p+ ,)]I-*/“. 

4 C:bz jZC,! 

Using again the upper bound on 11 @‘b,I/ m and the lower bound of g:(n) 
given by Lemma 3.2, we have 

Combining this with (3.4), (3.8), and (3.9) proves the first part of the 
lemma for strongly mixing processes. The second conclusion follows 
directly from (2.4) and the first one. 1 

LEMMA 3.4. Under Conditions 3.1 and 3.2ii. we have 

2Pl 

Moreover, if b, + 0 such that b, > yd(2ap/log n)‘jB for some y > 1, then 

f,“(x; P) -5 f”(x; PI 

at the continuity points off”(x; p). 

Proof. The same argument as in the proof of Lemma 3.3 leads to 

By using the upper bound on I\ @‘Ib,\l m given in Lemma 3.1, we obtain the 
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first result. For the second result, by the assumption on the bandwidth, we 
have as n + co 

var(f,“(x; p)) + 0, 

and by Proposition 1.1, we have f,“(x; p) -+ f”(x; p) in quadratic-mean. 
Hence, the second conclusion follows. 1 

We remark that a similar conclusion to Lemma 3.4 was proved in Masry 
[ 133. The current result is stronger and broader. 

3.2. Main Results 

The goal of this section is to establish the asymptotic normality for the 
regression estimator (1.10). To this end, we first discuss the asymptotic 
normality for &,, the dominating term in the numerator of (1.14), and then 
use Lemma 3.4 to show the asymptotic normality for Sz(x; p) via (1.14). 
We need the following conditions. 

Cqndition 3.3A. Assume nbp + cc as 12 + cc for some y > 1. Let (sn> 
be a sequence of positive integers defined by s, = [(&~g~)“~]. For strongly 
mixing processes, a(k) satisfies (n6-py)1’2 CL(S,) -+ 0 as II -+ co; for p-mixing 
processes, p(k) satisfies (&I;~~)‘/’ p(s,) + 0 as n + co. 

Condition 3.3B. Assume that nvP2b,PY” -+ co as n -+ co for some y > 1, 
where v is given in Condition 3.2. Let (s,} be a sequence of positive 
integers given by 

s,= [(n”-2bRY”)‘/2’“~‘)]. 

For strongly mixing processes, cl(k) satisfies (nbTPY)lj2 CI(S,,) + 0 as n --* co; 
for p-mixing processes, p(k) satisfies (nb;py)‘/* p(s,) -+ 0 as n + co. 

We remark that Condition 3.3A is weaker than Condition 3.3B, since s, 
given in Condition 3.3A is larger. Note that Condition 3.3A is very similar 
to Condition 2.3 in the ordinarily smooth case. For bounded rj, 
Theorem 3.1 shows that the asymptotic normality holds under this weaker 
condition. Interesting examples of bounded Ic/ include estimating condi- 
tional cdf and estimating mean regression function when responses are 
bounded (e.g., binary response). 

THEOREM 3.1. Under Conditions 3.1 and 3.2, and b, + 0 such that 
b, > yd(2ap/log n)( l/p), we have 

A. If $( .) is bounded and Condition 3.3A holds, then 

J;; Q,(x; p)lodn) -5 WA 1). 

B. If Condition 3.3B holds, then the above asymptotic normality holds. 
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Proo$ We first prove part A; the proof of part B is outlined following 
the proof of part A. 

We first normalize 2,, j in (1.16) as 

n-l 
zn,j = ZJ~o(n ), sn= 1 z,j3 

j=O 

so that 

var(Z,,. j) = 1. (3.12) 

In view of Lemma 3.3, we have 

n-1 
jF, ICOV(Z,.O~~,,~)I -0, WU=~(l+o(l)). (3.13) 

With such a normalization, (1.18) leads to 

Thus, it suffices to show that 

n ~ “2sn 5 N(0, 1). (3.14) 

We now employ the big and small block arguments as in the proof of 
Theorem 2.1. Let y1 be a real number satisfying 1 < y, < y, where y is given 
in Condition 3.3A. Let the small block size s = s,, the big block size r = rn, 
and the number of blocks k = k, be 

s, = [ (nb;‘)“‘]; r, = [(t~bP~~)‘/~]. n 3 
’ 

Then, it is easy to verify as n + cc that 

sn r lP 
- +o; -“(I; 

1 

rn n 
@$j-z logb, +o 

( > 
(3.15) 

and that 

fL(s,)+O. 

n 
(3.16) 

683/43/2-l 
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Define respectively qj, tj, cj, and S”, Si, Sr as in (2.9~(2.12). To prove 
(3.14), we need only to verify that as PI + co, 

~E(S:‘)‘+0, 

k-1 

(3.17) 

E[exp(itS;)] - n E[exp(itqj)] + 0 
j=O 

(3.18) 

f “f’ E(tl,z) + 1 (3.19) 
/=o 

(3.19) 

for every E. 
As in (2.21), using (3.12) and (3.13), we have 

var(tj) = s( 1 + o( 1)). (3.21) 

One can similarly show that with F, and F2 given by (2.20), we have 

F, = 0(/Q,) = o(n), F2 = o(n). 

Thus (l/n) E(S”)2 -PO. Note that by (3.12) and (3.13) 

kE(&y2<i (n-k(r+s))+ y (cov(z,,o, Z,j)l +o. 
/=I 

Hence, (3.17) holds. 
Next, using Lemma 2.4 and (3.16), we have 

k-l 

E[exp(itSn)] - n E[exp(itrlj)] 
j=O 

~16k”z(s,+2-p)-16r.(,~+2-p)~0, 
n 

establishing (3.18). 
Now, using (3.21) with s replaced by r, we obtain 

Etj; = r,( 1 + u( 1)) (3.22) 
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so that by stationarity 

265 

This establishes (3.19). 
Finally, we verify the Lindeberg condition (3.20). Since II/(Y) is bounded, 

we have 

where C1 is a positive constant. By using the upper bound on 11 pbnll a, in 
Lemma 3.1 and the lower bound on a,(n) in Lemma 3.2, we obtain 

lholl~=o(~(l”f+b), 
n 

which tends to zero by (3.15). Hence (3.20) holds for bounded $ since the 
set ( Iv01 2 E &} is asymptotically empty. This completes the proof of the 
first part. 

For part B, we proceed as follows. Define the small block size s, as in 
Condition 3.3B, and let 

rn= [(n~-2b,P”Y)(l12(Y--I))] and k,= n [ 1 r, +s, ’ 

where 1 < y1 < y. Then, it is easy to show that 

sn rn - + 0; - + 0; (3.23) 
rn n 

and that (3.16) holds. The same argument as in part A establishes 
(3.17)-(3.19). Thus, we need only to show (3.20). Since k,r,/n+ 1, it 
suffices to show, by stationarity, that 

(3.24) 

as n -+ co. Let A,, = { IqOl > E ,,&}. Then by Jensen’s inequality, 

($I zn,jlrn)2 <!, ZE,jlrn 
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so that 
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F, d t EZ;.jIA,. 
j=l 

Let p = v/2 and 4 = v/(v - 2) be its conjugate number so that l/p + l/q = 1, 
where v was given in Condition 3.2. By Holder’s inequality and station- 
arity, we obtain 

F3<rr,(E IZn,o12p)1’p (P(A,J)““, 

and by Tchebychev’s inequality, 

F3 Q r,(E IZn,o12P)1’F 

By (3.10), Lemma 3.1, and Lemma 3.2, 

Using this, together with (3.22) we have 

which tends to zero by (3.23). Hence, (3.24) holds and this completes the 
proof. 1 

By using (1.14) together with Lemma 3.4 and Theorem 3.1, we have 

THEOREM 3.2. Zf the assumptions of Theorem 3.1 hold, then for x E RP 
such that f “(x; p) > 0 we have 

& 
rhtn(x; p) -4x; p) - &Ax; PI 

flo(n) AT+ + fo*,t;p))~ 

provided that b, + 0 such that b, > yd(2apllog n)‘lP for some y > 1, where 
c;(n) is given by (3.1). 

We remark that for the ordinarily smooth case, the asymptotic normality 
(see Theorem 2.1 and Corollary 2.1) admits a classical form. However, for 
the super smooth case, the asymptotic normality does not have a classical 
form due to the unavailability of the asymptotic rate and constant of o:(n). 
Note that the explicit upper and lower bound on o:(n) are given in 
Lemma 3.2. These bounds are nearly sharp. 
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Remark 3.1. Under Condition 3.3B, there is a tradeoff between the 
order of the moment v in E I$( Y,)l” < 00 and the rate of decay of the 
mixing coefftcients: the larger v, the weaker the condition on the mixing 
coefficients. For example, if b, > yd(2ap/log n)“li as in Theorem 3.1 and the 
strongly mixing coefficient satisfies a(j) = O(j-‘), then Conditions 3.2 and 
3.3B hold when c > v/(v - 2). 

APPENDIX: PROOF OF LEMMA 3.1 

Let c be a genetic constant and 

Yn = %bff log ;, 
” 

(A.11 

where II is a positive constant. Then, by (1.2), we obtain 

rz, +z2. (A.21 

We first deal with I,. With M large but fixed, condition 3.li leads to 

< cbp I d--yn t pp0 exp(a( t/b )8) dt. n 
Mb, 

(A.3) 

By taking the derivative with respect to t, it is easy to show that the 
integrand in (A.3) is an increasing function of t when t B Mb, and hence 
is bounded by its value at the point t = d- 7”. Therefore, we have 

I, = O(bfl” exp(a(d/b,)8 (1 - y,/d)“)). 

Taylor’s expansion gives 

(1 - y,/d)p = 1 - fly,/d+ O(y:) = 1 - By,/d+ o(bf). 
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This together with (A.l) leads to 

1, = o(bSo+PLodp-’ 
n exp(4d/hJP)). (A.41 

Next, we consider I,. We first note that for r E [d- yn, d] 

(d-t)‘<yyl,; t-Do-wl)<c. 

This together with Condition 3.liii and (1.15) entails that 

(d- t)’ (t/b,)-@” exp(a(z/b,)B) dt 

< cy;bp s 
tb- ’ exp(a(t/b,)B) dt 

d-y, 

&+,~+i(, ) og f ‘exp(a(d/b,j?) . 
” 

By choosing a large value of the constant I, the upper bound of I, 
dominates I,. Hence, by (A.2), we obtain the first conclusion. The second 
conclusion follows from the Parseval’s identity 

and a similar argument. 
Now, we establish the third conclusion. First, we write 

=JJ,+Jz. (A.51 

BY @.4), 

1 J,) < I, = O(bflO+Baada-’ exp(a(d/b,)8)). (A.61 

Next, by symmetry, we have 
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Without loss of generality, we treat the case that ?,(t/b,) = o( I&#,)( ). In 
this case, 

=Jz,l+J,,,. (A.7) 

We remark that &(t/b,) cannot change its sign on the interval [d-y,,, d]; 
otherwise, &t/b,) would have a root, say, t,, which implies that 
J,(t,/b,) = &t,/b,) + iTg(t,/b,) = 0 (since we assume rz(t/b,) = o(&t/b,))) 
and contradicts with the assumption that d,(t) ~0. Also, by Con- 
dition 3.lvi, JK(t) >O on the interval (d- yn, d). For the point 
x= (k+OS)n/d, k=O, +_l, &2, . . . . the third conclusion follows naturally 
since cos(dx) = 0. When x # (k + 0.5)x/d, on the interval t E [d-y,, d], we 
have cos(tx) = cos(dx)( 1 + o( 1)) uniformly in x on a bounded interval. 
Thus, the function cos(tx) cannot change its sign on [d- yn, d]. These 
imply that J2,1 and J2,2 have the same signs, say positive. Thus (A.7) entails 
(J,( > jJ2,2). Using the tail condition (1.15) and Condition 3.liv, we obtain 

IJA > c Icos(dx)(l + o(l))1 ~~p,p Cd- t)‘(t/b,)-Bo exp(a(t/b,JB) dt 
n 

>c lcosdxl bp+(‘+‘)p exp(a(d/b,)B (1 - bfj/d)P). 

The second inequality follows from the fact that the function 
t-8” exp(a(t/b,)8) is an increasing function when t E [d - bfl, d]. Using the 
fact that for small x, 

we have 

J2 > c lcos dxl bfjO+(‘+‘)P exp(a(d/b,)P). 

This together with (A.5) and (A.6) leads to the desired lower bound by 
choosing a large value of 1 so that J2 dominates J,. 
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