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Abstract

For the data based choice of the bandwidth of a kernel density estimator, several

methods have recently been proposed which have a very fast asymptotic rate of con

vergence to the optimal bandwidth. In the particular the relative rate of convergence

is the square root of the sample size, which is known to be the possible. The point

of this paper is to show how semiparametric arguments can be employed to calculate

the best possible constant coefficient, i.e. an analog of the usual Fisher Information, in

this convergence. This establishes an important benchmark as to how well bandwidth

selection methods can ever hope to perform. It is seen that some methods attain the

bound, others do not.
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1 Introduction

Nonparametric curve estimation provides a useful tool for understanding the structure of a

data set. See Silverman (1986), Eubank (1988), Muller (1988), HardIe (1990) and Wahba

(1990) for many examples of this, and good introductions to the general subject area.

The most important practical hurdle, in applications of this methodology, is choice of the

smoothing parameter.

A large amount of recent progress has been made on data based smoothing parameter

selection, see the survey paper by Marron (1988). Because it provides a simple context in

which to study the problem (hence allowing deeper results), much of this progress has come

in the case of kernel density estimation. Hence that setting is discussed here as well.

A useful asymptotic means of assessing performance of a data driven smoothing pa

rameter, i.e. bandwidth, is through the relative rate of convergence to the bandwidth that

minimizes the Mean Integrated Squared Error.

Hall et al. (1990), Jones, Marron and Park (1990) and Chiu (1991) have all proposed

methods for which this rate of convergence is extremely fast. In particular, it goes down as

O(n-1/ 2), where n denotes sample size, which is unusually fast in nonparametric settings.

This rate of convergence has been shown to be the best possible, in an important minimax

sense, by Hall and Marron (1990). But the fact that there are competing selectors motivates

deeper analysis.

A natural step in this direction is to consider not only the exponent in the rate of

convergence, but also the constant coefficient. This type of question is frequently addressed

in semiparametric analysis, which is an extension of the classical Fisher Information ideas.

See Bickel et al. (1990), and van de Vaart (1988) for details. In this paper a straightforward

application of these methods is used to calculate the best possible constant in our setting

of bandwidth selection for kernel density estimation. It turns out that the problem of

bandwidth selection is closely related to the problem of estimating some specific kind of

quadratic functionals, which is studied by Hall and Marron (1987), Bickel and Ritov (1988)
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and Jones and Sheather (1990) in density estimation models, and by Fan (1990) and Donoho

and Nussbaum (1990) in Gaussian white noise models. The knowledge gained there is also

very useful to bandwidth selection.

Chiu (1991) proposes two n-1/ 2 bandwidth selectors, and shows that for both, the

relative error is asymptotically normal. It is a simple calculation to show that his asymptotic

variance is the same as the best possible constant coefficient calculated here. This provides

a sense in which our lower bound is very informative. With more work, the selector of

Hall et al. (1990) can be shown to have the same limiting distribution. However the n-1/ 2

method of Jones, Marron and Park (1990) has a larger constant, and thus is not optimal in

this sense.

Section 2 gives a precise formulation, and discussion, of the main results. Proofs are in

section 3.

2 Main Results

To describe the problem mathematically, assume that Xl, ... ,Xn are LLd. from an unknown

density f. Let K(·) denote a kernel function, hn be a bandwidth. A kernel density estimator

is defined by

A 1 ~ (X-Xi)
fn(x) = nhn~K hn '

whose performance is typically measured by MISE

The optimal bandwidth hn(f) is the one that minimizes the MISE (2.2).

For convenience, denote a class of density having (k + a)-derivatives:

(2.1)

(2.2)

where go(x) is bounded continuous and integrable. Let 11·1/2 denote the usual L 2-norm, and

let

(2.3)

3



be a Hellinger ball in the neighborhood of f.

The following Theorem shows that the relative error of any bandwidth selection procedure

can not be smaller than B(J)n-1/ 2, where

(2.4)

Theorem 1. Let K be a continuous second order kernel with J~oo IxI 6 IK(x)ldx < 00.

Assume that f E :F, and k +a > 4. Then, for any bandwidth selection procedure !tn,

(2.5)

As discussed in the introduction, the bound in (2.5) is the best attainable one, when

k + a ~ 4.25. Note that the bound (2.5) does not depend on the kernel function K, even

though the optimal bandwidth hn(J) does.

The following theorem gives the result on the lower bound of the relative error of MISE.

Theorem 2. Under the assumptions of Theorem 1, for any bandwidth selector !tn,

The last result indicates that for any bandwidth selector, the relative error of MISE can

not be smaller than 2n-1 B2(J). Thus, the quantity B(J) plays an important role to the

relative error of bandwidth selection, measured in either way: the larger B(J) is, ~he harder

the problem will be. In other words, B(J) measures the difficulty of bandwidth selection

problems.
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Note that B(f) is both location and scale invariance: for any (j > 0 and J.l, B(f/-L,t7) =
B(f), where

This is expected, because for example, estimating a density of N(O,I) is as difficult as

estimating a density of N(2,4): plots of two estimates should look the same except the

scales on x-axis and y-axis are marked differently. In this normal case,

B(/) - 3./4864
- 1 - 1300- 5 35•5 -. •

(Put Figure 1 about here.)

Table 1 shows the values of B(f) for the 15 normal mixture densities in Figure 1. See

Marron and Wand (1990) for the parameters and for the discussion of these densities.

Table 1. Constant Factors in the Lower Bounds

Density number B(f) Density number B(f) Density number B(f)

1 1.300 2 1.771 3 4.973

4 2.638 5 1.388 6 1.868

7 1.286 8 3.390 9 4.742

10 2.125 11 19.394 12 9.635

13 25.587 14 9.408 15 3.515

Remark 1. A direct consequence of Theorem 1 is for any open neighborhood V of I

(in L2-topology), we have

(. )2. . . hn - hn(g) 2
Ummf!.¢" sup nEg h ( ) 2: B (f).
n-oo h" geVnF n 9

A similar formula holds for MISE.
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Remark 2. Note that B2(f) plays a role analogous to the classical Fisher information.

Thus, given any bandwidth selector (past or future) hn , its efficiency can be defined by

Remark 3. On the Hellinger ball Hn(f, C), we have

lim sup Ihn(g) - 11 = O.
n-oo gEHn(J,c) hn(f)

Moreover,

and

lim sup 1100

[g"(xWdx -100

(J"(x)]2dxl = o.
n-oo gEHn(J,c) -00 -00

(2.7)

(2.8)

(2.9)

In other words, the Hellinger neighborhood is so small that the important characteristics

of 9 are very close to those of f. These conclusions are proved in Lemma 5 of section 3, by

using statistical ideas in the proof of the mathematical results, which are not easy to prove

by conventional methods.

3 Proofs

3.1 Lemmas

The idea of the proof of Theorem 1 is to relate the problem of estimating hn(f) with that

of estimating 8'21
/

5(f) defined by (3.1), via a series of lemmas. To this end, denote

(3.1)

It will be seen that the optimal bandwidth hn(f) is approximated by

(3.2)
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where

and

1 r~ ( roo )3/5 ( roo ) -11/5
C2 = 20 i-

oo
x

4
K(x)dx 1-00 K

2
(x)dx 1-00 z2K(z)dz .

In the following discussions, we will suppress the dependence of 8j, whenever its argu-

ment is g, a density in the Hellinger neighborhood of f. Recall that f is fixed throughout

our arguments.

Lemma 1. The optimal bandwidth hn(J) satisfies

(3.3)

Proof. The proof follows the same argument as in the section 2 of Hall et al. (1990).

Thus, it is intuitively clear that the problem of estimating hn(J) is equivalent to that

of estimating <l>n(J). The following lemma gives a lower bound for estimating 8-:;1/5(J).

Lemma 2. Let Rn,C,I(J) be the minimax risk for estimating 8-:;1/5(J);

. (" -1/5)2Rn,C,I(J) = l!1f sup Eg hn - 82 (g) .
hn gEHn(f,C)

Then,

C~~ 1~~~fnRn,C,I(J) ~ 8-:;2/5(J)B2(J),

where B(J) was defined by (2.4).

(3.4)

Proof. It is shown in the proof of Theorem 2 (i) of Bickel and Ritov (1988) that 82(J)

is pathwise differentiable along paths

with the derivative function
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Thus, (J:;1/5(J) is also pathwise differentiable along such paths with derivative function

As at the end of the proof of Theorem 2(i) of Bickel and Ritov (1988), the information

bound for fJ":;1/5(J) is

11- ~8;6/5 [f(4)( x) - 82(1)] v111~

= .i.8;12/51°O (1(4)(x) - (2) 2 f( x )dx
25 -00

= .i.8;12/5 [100

[f(4)(x)r f(x)dx - 8~] ,
25 -00

by using the fact that 82 = 1-00 f(4)(x)f(x)dx. The result follows by the standard semi

parametric theory (e.g. Theorem 2.10, van der Vaart (1988».

In order to show that the second term of 4>n(J) is not important to Theorem 1, the

following lemma gives an estimate of 8(J) = 83(1)8;8/5(J).

Lemma 3. There exists an estimator 6n such that

(3.5)

Proof. Note that for 9 E :F, g(4)(x) is bounded by go(x) E L1 nLoo ' By the construction

of Bickel and Ritov (1988) (see Hall and Marron (1990) for a simpler estimator which can

also be used), there exist estimators {h ~ 0 and 93 such that

(3.6)

and

sup E (92 - 82r = 0 (n-4x fr) .
gEHnU,C)

To avoid zero denominator problem, choose

(3.7)
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Then,

(~/5fJ3 _ ~/503 _ n-4/1703) 2

= E 2
(fJ~/5 +n-4/17) 0~6/5

= II + 12 ,

where

(08/50
A OA8/50 -4/170 ) 2

2 3- 2 3- n 3
II = E 1· !!2.

(~/5 +n-4/17) 20~6/5 {182-821> 2 }

and 12 is defined similarly.

Since 12 is integrated over the range IfJ2 - 02 1 ~ ~, we have 82 ~ ~, and

Now, let's consider It. By the fact that 82 ~ 0, we have

I - 0 ( 8/17E (08/50
A

OA8/50 -4/170 ) 2 )
1 - n 2 3 - 2 3 - n 3 1{192-821>82/2} .

By Holder's inequality with p = 5/4 and q = 5,

(
8/17 [ (ri3/5 A ;.s/5 -4/17) 10/4] 4/5OnE t12 03 - t12 03 - n 03

X [ElI92_821>82/2f/5)

o (nS/17n-S/17n-32/S5 )

= 0 (n-32/85)

where the inequality

was used. This completes the proof.

(3.8)

The following lemma shows that the minimax risk lower bound for <Pn(J) is equivalent

to that of n-1/5cI0;1/5, Le. the second term of <Pn(J) is indeed negligible.
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Lemma 4. Let Rn,C,2(J) be the minimax risk for estimating <Pn(J):

Then,

where en,C = o( 1) means that limc.....oo limn .....oo en,c = O.

Proof. Recall that (J = (J3(J~8/S and that <Pn(g) is defined by (3.2). Let 6n be the

estimator defined by Lemma 3 and C3 = C2/Cl. Then by making the change of variable

hn - n-l/scl(hn +n-2/sc36),

Rn,C,2(J) n-2/Sc~ ip.f sup E [hn - (J~l/S + n-2/ sc3(6- (J)r
hn gEHn(j,C)

> n-2/Sc~ ip.f sup [E(hn - (J~1/S)2 - anVE(hn _ (J~1/S)2] ,
hn gEHn(j,c)

where

Thus,

(3.9)

where

• • 1/5
q(hn) = sup E(hn - (J~ )2.

gEHn(j,c)

• • 1/2 /By Lemma 2, for any estimator hn, q(hn) ~ Rn,C,l ~ dn-l 2 for some constant d > 0,

when nand C are large. Since an = o( n-l / 2), the quadratic x 2 - anx is increasing for

x > an /2, and R~~~,l =infhn q(hn ), we arrive at

The conclusion follows from (3.9) and (3.10).

Lemma 5. On the set of Hellinger ball Hn(J, C), we have

Ii Ihn(g) Im sup -- - 1 = O.
n .....oo gEHn(j,C) hn(J)
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Proof. By Lemma 1, we need only to show that (2.9) holds. By a useful statistical

lower bound [e.g., page 18 of Fan (1989)], for any estimator Tn, we have

sup EITn - g(j)(x)12 ;::: 1- Jl- e-
2C

sup Ig(j)(x) - 1(j)(xW. (3.11)
gEHn(J,c) 2 gEHn(J,c)

Since 9 has more than 4 derivatives, there exist estimators [e.g. kernel density estimators

(2.1)] such that g(j)(x) (j =0"",4) can be estimated consistently, Le. such that the right

hand side of (3.11) converges to 0. Thus,

sup Ig(j)(x) - 1(j)(x)1 ~ 0, for j = 0,,,,,4.
gEHn(J,c)

Now, by the dominate convergence theorem,

sup 1100

[g"(x)]2dx -100

[j"(xWdxl
gEHn(J,c) -00 -00

= sup 1100

g(4)g _ 100

1(4)/1
gEHn(J,c) -00 -00

:5 100

I sup Ig(4) - 1(4)1 +100

go sup Ig - II
-00 gEHn(J,c) -00 gEHn(J,c)

-- 0,

where Ig(4)1 :5 go (see the definition of F) was used in the inequality above. This completes

the proof.

3.2 Proof of Theorem 1

Write hn(g) = <Pn(g) + ~n(g), where by Lemma 1,

Now by using Lemma 5,

. f E (hn - hn(g) ) 2
In sup 9
hn gEHn(J,c) hn(g)

> ip.f [ sup Eg (hn - hn(g))
2

/ sup h;(9)]
hn gEHn(J,C) gEHn(J,c)

= ip.f sup Eg (hn - <Pn(g) - ~n(g)r n2/5c120;/5(J)(1 +0(1)).
hn gEHn(J,c)
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By using the same argument as in the proof of Lemma 4, we can show that ~n(g) is indeed

negligible and conclude that

. (hn-hn(9))2 2/5-2 2/5Ipf sup Eg h ( ) ~ n cI 82 (f)Rn,c,2(f)(1 +0(1)).
hn gEHn(J,C) n 9

The conclusion follows directly from Lemmas 4 & 2.

3.3 Proof of Theorem 2

Denote

r =1: K 2(x)dx, and J.L =1: x2K(x)dx.

By using the fact that M'(hn(g)) = 0, we have

M(hn) - M(hn(g)) = ~M"(h)(hn - hn(g))2,

where h lies between hn and hn(g). Note that [see Hall et al. (1990)]

M"(h) = 2rn- I h-3 +3h2J.L282+O(n-1 +h4)

> 5r2/5J.L6/58~/5n-2/5(1 +0(1))

and

M(hn(g)) = ~r4/5J.L2/58~/5n-4/5(1 +0(1))
4

By Lemma 1, (3.13) and (3.14), we have

M"(h)h2(g)
2M(hn&)) ~ 2 + 0(1).

By the last display and (3.12), we arrive at

. f 2E (M(hn) - M(hn(9))) 2
III sup n 9
hn gEHn(J,C) M(hn(g))

[ - 2 ]2(. )4. f 2E M"(h)hn(g) hn - hn(g)= In sup n 9
hn gEHn(J,c) 2M(hn(g)) hn(g)

> ipf sup n2Eg (hn;tn)(g))4(4+0(1))
hn gEHn(J,c) n 9

> ipf sup n2 [Eg (hn;t)(g))2]2(4+0(1)).
hn gEHn(J,c) n 9

The conclusion follows directly from Theorem 1.
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CAPTIONS

Figure 1. Normal mixture densities.
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