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Functional linear regression analysis aims to model regression relations which include a func-

tional predictor. The analog of the regression parameter vector or matrix in conventional mul-

tivariate or multiple-response linear regression models is a regression parameter function in one

or two arguments. If, in addition, one has scalar predictors, as is often the case in applications

to longitudinal studies, the question arises how to incorporate these into a functional regres-

sion model. We study a varying-coefficient approach where the scalar covariates are modeled

as additional arguments of the regression parameter function. This extension of the functional

linear regression model is analogous to the extension of conventional linear regression models

to varying-coefficient models and shares its advantages, such as increased flexibility; however,

the details of this extension are more challenging in the functional case. Our methodology com-

bines smoothing methods with regularization by truncation at a finite number of functional

principal components. A practical version is developed and is shown to perform better than

functional linear regression for longitudinal data. We investigate the asymptotic properties of

varying-coefficient functional linear regression and establish consistency properties.

Keywords: asymptotics; eigenfunctions; functional data analysis; local polynomial smoothing;

longitudinal data; varying-coefficient models

1. Introduction

Functional linear regression analysis is an extension of ordinary regression to the case

where predictors include random functions and responses are scalars or functions. This

methodology has recently attracted increasing interest due to its inherent applicability
in longitudinal data analysis and other areas of modern data analysis. For an excel-

lent introduction, see Ramsay and Silverman (2005). Assuming that predictor process

X possesses a square-integrable trajectory (i.e., X ∈ L2(S), where S ⊂ R), commonly
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considered functional linear regression models include

E(Y |X) = µY +

∫

S

β(s)(X(s)− µX(s)) ds, (1.1)

with a scalar response Y ∈R, and

E(Y (t)|X) = µY (t) +

∫

S

β(s, t)(X(s)− µX(s)) ds, (1.2)

with a functional response Y ∈ L2(T ) and T being a subset of the real line R, where
µX(s) = E(X(s)), s ∈ S and µY (t) = E(Y (t)), t ∈ T (Ramsay and Dalzell (1991)). In
analogy to the classical regression case, estimating equations for the regression function
are based on minimizing the deviation

β∗(s, t) = argmin
β∈L2(S×T )

E

{
∫

T

(

Y (t)− µY (t)−
∫

S

β(s, t)[X(s)− µX(s)] ds

)2

dt

}

,

and analogously for (1.1). To provide a regularized estimator, one approach is to expand
β(·, ·) in terms of the eigenfunctions of the covariance functions of X and Y , and to use an
appropriately chosen finite number of the resulting functional principal component (FPC)
scores of X as predictors; see, for example, Silverman (1996), Ramsay and Silverman
(2002, 2005), Besse and Ramsay (1986), Ramsay and Dalzell (1991), Rice and Silverman
(1991), James et al. (2000), Cuevas et al. (2002), Cardot et al. (2003), Hall and Horowitz
(2007), Cai and Hall (2006), Cardot (2007) and many others.
Advances in modern technology enable us to collect massive amounts of data at fairly

low cost. In such settings, one may observe scalar covariates, in addition to functional
predictor and response trajectories. For example, when predicting a response such as
blood pressure from functional data, one may wish to utilize functional covariates, such
as body mass index, and also additional non-functional covariates Z , such as the age of
a subject. It is often realistic to expect the regression relation to change as an additional
covariate such as age varies. To broaden the applicability of functional linear regression
models, we propose to generalize models (1.1) and (1.2) by allowing the slope function
to depend on some additional scalar covariates Z . Previous work on varying-coefficient
functional regression models, assuming the case of a scalar response and of continuously
observed predictor processes, is due to Cardot and Sarda (2008) and recent investigations
of the varying-coefficient approach include Fan et al. (2007) and Zhang et al. (2008).
For ease of presentation, we consider the case of a one-dimensional covariate Z ∈ Z ⊂R,

extending (1.1) and (1.2) to the varying-coefficient functional linear regression models

E(Y |X,Z) = µY |Z +

∫

S

β(Z, s)(X(s)− µX|Z(s)) ds (1.3)

and

E(Y (t)|X,Z) = µY |Z(t) +

∫

S

β(Z, s, t)(X(s)− µX|Z(s)) ds (1.4)
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for scalar and functional responses, respectively, with corresponding characterizations for
the regression parameter functions

β∗(z, s) = argmin
β(z,·)∈L2(S)

E

{(

Y − µY |Z −
∫

S

β(Z, s)[X(s)− µX|Z(s)] ds

)2
∣

∣

∣
Z = z

}

,

β∗(z, s, t) = argmin
β(z,·,·)∈L2(S×T )

E

{
∫

T

(

Y (t)− µY |Z(t)

−
∫

S

β(Z, s, t)[X(s)− µX|Z(s)] ds

)2

dt
∣

∣

∣
Z = z

}

.

Here, µX|Z(s) and µY |Z(t) denote the conditional mean function of X and Y , given Z .
Intuitively, after observing a sample of n observations, {Xi, Yi, Zi}ni=1, the estimation

of the varying slope functions can be achieved using kernel methods, as follows:

β̃∗(z, s) = argmin
n
∑

i=1

Kb(Zi − z)

[

Yi − µY |Zi
−
∫

S

β(Zi, s)[Xi(s)− µX|Zi
(s)] ds

]2

and

β̃∗(z, s, t) = argmin

n
∑

i=1

Kb(Zi − z)

×
∫

T

[

Yi(t)− µY |Zi
(t)−

∫

S

β(Zi, s, t)[Xi(s)− µX|Zi
(s)] ds

]2

dt

for (1.3) and (1.4), respectively, where Kb(z) =K(z/b)/b for a kernel function K(·) and
a bandwidth b > 0. The necessary regularization of the slope function is conveniently
achieved by truncating the Karhunen–Loève expansion of the covariance function for the
predictor process (and the response process, if applicable). To avoid difficult technical
issues and enable straightforward and rapid implementation, it is expedient to adopt the
two-step estimation scheme proposed and extensively studied by Fan and Zhang (2000).
To this end, we first bin our observations according to the values taken by the additional

covariate Z into a partition of Z. For each bin, we obtain the sample covariance functions
based on the observations within this bin. Assuming that the covariance functions of
the predictor and response processes are continuous in z guarantees that these sample
covariance functions converge to the corresponding true covariance functions evaluated
at the bin centers as bin width goes to zero and sample size increases. This allows
us to estimate the slope function at each bin center consistently, using the technique
studied in Yao et al. (2005b), providing initial raw estimates. Next, local linear smoothing
(Fan and Gijbels (1996)) is applied to improve estimation efficiency, providing our final
estimator of the slope function for any z ∈Z.
The remainder of the paper is organized as follows. In Section 2, we introduce ba-

sic notation and present our estimation scheme. Asymptotic consistency properties are
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reported in Section 3. Finite-sample implementation issues are discussed in Section 4,
results of simulation studies in Section 5 and real data applications in Section 6, with
conclusions in Section 7. Technical proofs and auxiliary results are given in the Appendix.

2. Varying coefficient functional linear regression for
sparse and irregular data

To facilitate the presentation, we focus on the case of a functional response, which remains
largely unexplored. The case with a scalar response can be handled similarly. We also
emphasize the case of sparse and irregularly observed data with errors, due to its relevance
in longitudinal studies. The motivation of the varying-coefficient functional regression
models (1.3) and (1.4) is to borrow strength across subjects, while adequately reflecting
the effects of the additional covariate. We impose the following smoothness conditions:

[A0] The conditional mean and covariance functions of the predictor and response
processes depend on Z and are continuous in Z , that is, µX,z(s) =E(X(s)|Z = z),
µY,z(t) = E(Y (t)|Z = z), GX,z(s1, s2) = cov(X(s1),X(s2)|Z = z), GY,z(t1, t2) =
cov(Y (t1), Y (t2)|Z = z) and CXY,z(s, t) = cov(X(s), Y (t)|Z = z) are continuous
in z and their respective arguments, and have continuous second order partial
derivatives with respect to z.

Note that [A0] implies that the conditional mean and covariance functions of predictor
and response processes do not change radically in a small neighborhood of Z = z. This
facilitates the estimation of β(z, s, t), using the two-step estimation scheme proposed by
Fan and Zhang (2000). While, there, the additional covariate Z is assumed to take values
on a grid, in our case, Z is more generally assumed to be continuously distributed. In
this case, we assume that the additional variable Z has a compact domain Z and its
density fZ(z) is continuous and bounded away from both zero and infinity.

[A1] Z is compact, fZ(z) ∈C0, fZ = infz∈Z fZ(z)> 0 and f̄Z = supz∈Z fZ(z)<∞.

2.1. Representing predictor and response functions via

functional principal components for sparse and irregular

data

Suppose that we have observations on n subjects. For each subject i, conditional on
Zi = zi, the square-integrable predictor trajectory Xi and response trajectory Yi are un-
observable realizations of the smooth random processes (X,Y |Z = zi), with unknown
mean and covariance functions (condition [A0]). The arguments of X(·) and Y (·) are
usually referred to as time. Without loss of generality, their domains S and T are
assumed to be finite and closed intervals. Adopting the general framework of func-
tional data analysis, we assume, for each z, that there exist orthogonal expansions
of the covariance functions GX,z(·, ·) (resp. GY,z(·, ·)) in the L2 sense via the eigen-
functions ψz,m (resp. φz,k), with non-increasing eigenvalues ρz,m (resp. λz,k), that is,
GX,z(s1, s2) =

∑∞
m=1 ρz,mψz,m(s1)ψz,m(s2), GY,z(t1, t2) =

∑∞
k=1 λz,kφz,k(t1)φz,k(t2).
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Instead of observing the full predictor trajectory Xi and response trajectory Yi, typ-
ical longitudinal data consist of noisy observations that are made at sparse and ir-
regularly spaced locations or time points, providing sparse measurements of predic-
tor and response trajectories that are contaminated with additional measurement er-
rors (Staniswalis and Lee (1998), Rice and Wu (2001), Yao et al. (2005a, 2005b)). To
adequately reflect the situation of sparse, irregular and possibly subject-specific time
points underlying these measurements, we assume that a random number Li (resp. Ni)
of measurements for Xi (resp. Yi) is made, at times denoted by Si1, Si2, . . . , SiLi

(resp. Ti1, Ti2, . . . , TiNi
). Independent of any other random variables, the numbers of

points sampled from each trajectory correspond to random variables Li and Ni that are
assumed to be i.i.d. as L and N (which may be correlated), respectively. For 1≤ i≤ n,
1≤ l≤ Li, 1≤ j ≤Ni, let Uil (resp. Vij) be the observation of the random trajectory Xi

(resp. Yi) made at a random time Sil (resp. Tij), contaminated with measurement errors
εil (resp. ǫij). Here, the random measurement errors εil and ǫij are assumed to be i.i.d.,
with mean zero and variances σ2

X and σ2
Y , respectively. They are independent of all other

random variables. The following two assumptions are made.

[A2] For each subject i, Li
i.i.d.∼ L (resp. Ni

i.i.d.∼ N ) for a positive discrete-valued ran-
dom variable with EL<∞ (resp. EN <∞) and P (L> 1)> 0 (resp. P (N > 1)>
0).

[A3] For each subject i, observations on Xi (resp. Yi) are independent of Li (resp. Ni),
that is, {(Sil, Uil: l ∈ Li)} is independent of Li for any Li ⊂ {1,2, . . . , Li}
(resp. {(Tij , Vij): j ∈Ni} is independent of Ni for any Ni ⊂ {1,2, . . . ,Ni}).

It it surprising that under these “longitudinal assumptions”, where the number of ob-
servations per subject is fixed and does not increase with sample size, one can nevertheless
obtain asymptotic consistency results for the regression relation. This phenomenon was
observed in Yao et al. (2005b) and is due to the fact that, according to (2.3), the target
regression function depends only on localized eigenfunctions, localized eigenvalues and
cross-covariances of localized functional principal components. However, even though lo-
calized, these eigenfunctions and moments can be estimated from pooled data and do
not require the fitting of individual trajectories. Even for the case of fitted trajectories,
conditional approaches have been implemented successfully, even allowing reasonable
derivative estimates to be obtained from very sparse data (Liu and Müller (2009)).
Conditional on Zi = z, the FPC scores of Xi and Yi are ζz,im =

∫

[Xi(s) −
µX,z(s)]ψz,m(s) ds and ξz,ik =

∫

[Yi(s)− µY,z(s)]φz,k(s) ds, respectively. For all z, these
FPC scores ζz,im satisfy Eζz,im = 0, corr(ζz,im1 , ζz,im2) = 0 for any m1 6= m2 and
var(ζz,im) = ρz,m; analogous results hold for ξz,ik . With this notation, using the
Karhunen–Loève expansion as in Yao et al. (2005b), conditional on Zi, the available
measurements of the ith predictor and response trajectories can be represented as

Uil =Xi(Sil) + εil
(2.1)

= µX,Zi
(Sil) +

∞
∑

m=1

ζZi,imψZi,m(Sil) + εil, 1≤ l≤ Li,
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Vij = Yi(Tij) + ǫij
(2.2)

= µY,Zi
(Tij) +

∞
∑

k=1

ξZi,ikφZi,k(Tij) + ǫij , 1≤ j ≤Ni.

2.2. Estimation of the slope function

For estimation of the slope function, one standard approach is to expand it in terms
of an orthonormal functional basis and to estimate the coefficients of this expansion to
estimate the slope function in the non-varying model (1.2) (Yao et al. (2005b)). As a
result of the non-increasing property of the eigenvalues of the covariance functions, such
expansions of the slope function are often efficient and require only a few components
for a good approximation. Truncation at a finite number of terms provides the necessary
regularization. Departing from Yao et al. (2005b), we assume here that an additional
covariate Z plays an important role and must be incorporated into the model, motivating
(1.4). To make this model as flexible as possible, the conditional mean and covariance
functions of the predictor and response processes are allowed to change smoothly with
the value of the covariate Z (Assumption [A0]), which facilitates implementation and
analysis of the two-step estimation scheme, as in Fan and Zhang (2000).
Efficient implementation of the two-step estimation scheme begins by binning sub-

jects according to the levels of the additional covariate Zi, i = 1,2, . . . , n. For ease of
presentation, we use bins of equal width, although, in practice, non-equidistant bins can
occasionally be advantageous. Denoting the bin centers by z(p), p= 1,2, . . . , P , and the

bin width by h, the pth bin is [z(p) − h
2 , z

(p) + h
2 ) with h = |Z|

P , where |Z| denotes the

size of the domain of Z , z(1)−h/2≡ inf{z: z ∈ Z} and z(P )+h/2≡ sup{z: z ∈Z} (note
that the last bin is [z(P ) − h/2, z(P ) + h/2]). Let Nz,h = {i: Zi ∈ [z − h

2 , z +
h
2 )} be the

index set of those subjects falling into bin [z − h
2 , z +

h
2 ) and nz,h =#Nz,h the number

of those subjects.

2.2.1. Raw estimates

For each bin [z(p) − h
2 , z

(p) + h
2 ), we use the Yao et al. (2005a) method to obtain our

raw estimates µ̃X,z(p)(·) and µ̃Y,z(p)(·) of the conditional mean trajectories and the raw

slope function estimate β̃(z(p), s, t). The corresponding raw estimates of σ2
X and σ2

Y are
denoted by σ̃2

X,z(p)
and σ̃2

Y,z(p)
for p = 1,2, . . . , P . For each 1 ≤ p ≤ P , the local linear

scatterplot smoother of µ̃X,z(p)(s) is defined through minimizing

∑

i∈N
z(p),h

Ni
∑

j=1

κ1

(

Sij − s

bX,z(p)

)

(Uij − d0 − d1(Sij − s))
2

with respect to d0 and d1, and setting µ̃X,z(p)(s) to be the minimizer d̂0, where κ1(·) is
a kernel function and bX,z(p) is the smoothing bandwidth, the choice of which will be
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discussed in Section 4. We define a similar local linear scatterplot smoother of µ̃Y,z(p)(t).
According to Lemma 2 in the Appendix, raw estimates µ̃X,z(p)(s) and µ̃Y,z(p)(t) are con-

sistent uniformly for z(p), p= 1,2, . . . , P , for appropriate bandwidths bX,z(p) and bY,z(p) .
Extending Yao et al. (2005b), the conditional slope function can be represented as

β(z, s, t) =

∞
∑

k=1

∞
∑

m=1

Eζz,mξz,k
Eζ2z,m

ψz,m(s)φz,k(t) (2.3)

for each z, where ψz,m(·) and φz,k(·) are the eigenfunctions of covariance functions
GX,z(·, ·) and GY,z(·, ·), respectively, and ζz,m and ξz,k are the functional principal com-
ponent scores of X and Y , respectively, conditional on Z = z.
To obtain raw slope estimates β̃(z(p), s, t) for p = 1,2, . . . , P , we first estimate

the conditional covariance functions GX,z(p)(s1, s2), GY,z(p)(t1, t2) and CXY,z(p)(s, t)
at each bin center, based on the observations falling into the bin, using the ap-
proach of Yao et al. (2005b). From “raw” covariances, GX,i,z(p)(Sij , Sik) = (Uij −
µ̃X,z(p)(Sij))(Uik − µ̃X,z(p)(Sik)) for 1 ≤ j, k ≤ Li, i ∈ Nz(p),h and p = 1,2, . . . , P , and

the locally smoothed conditional covariance G̃X,z(p)(s1, s2) is defined as the minimizer

b̂0 of the local linear problem

min
b0,b11,b12

∑

i∈N
z(p),h

∑

1≤j 6=l≤Li

κ2

(

Sij − s1
hX,z(p)

,
Sil − s2
hX,z(p)

)

× [GX,i,z(p)(Sij , Sil)− b0 − b11(Sij − s1)− b12(Sil − s2)]
2,

where κ2(·, ·) is a bivariate kernel function and hX,z(p) a smoothing bandwidth. The
diagonal “raw” covariances GX,i,z(p)(Sij , Sij) are removed from the objective function
of the above minimization problem because EGX,i,z(p)(Sij , Sil)≈ cov(X(Sij),X(Sil)) +
δjlσ

2
X , where δjl = 1 if j = l and 0 otherwise. Analogous considerations apply for

G̃Y,z(p)(Tij , Til). The diagonal “raw” covariances GX,i,z(p)(Sij , Sij) and GY,i,z(p)(Tij , Tij)
can be smoothed with bandwidths bX,z(p),V and bY,z(p),V , respectively, to estimate
VX,z(p)(s) = GX,z(p)(s, s) + σ2

X and VY,z(p)(t) = GY,z(p)(t, t) + σ2
Y , respectively. The re-

sulting estimators are denoted by ṼX,z(p)(s) and ṼY,z(p)(t), respectively, and the differ-

ences (ṼX,z(p)(s)− G̃X,z(p)(s, s)) (and analogously for Y ) can be used to obtain estimates
σ̃2
X,z(p)

for σ2
X and σ̃2

Y,z(p)
for σ2

Y , by integration. Furthermore, “raw” conditional cross-

covariances Ci,z(p)(Sil, Tij) = (Uil − µ̃X,z(p)(Sil))(Vij − µ̃Y,z(p)(Tij)) are used to estimate
CXY,z(p)(s, t), by minimizing

∑

i∈N
z(p),h

∑

1≤l≤Li

∑

1≤j≤Ni

κ2

(

Sij − s

h1,z(p)
,
Tij − t

h2,z(p)

)

× [Ci,z(p)(Sil, Tij)− b0 − b11(Sil − s)− b12(Tij − t)]2

with respect to b0, b11 and b12, and setting C̃XY,z(p)(s, t) to be the minimizer b̂0, with
smoothing bandwidths h1,z(p) and h2,z(p) .
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In (2.3), the slope function may be represented via the eigenvalues and eigenfunctions
of the covariance operators. To obtain the estimates ρ̃z(p),m and ψ̃z(p),m(·) (resp. λ̃z(p),k
and φ̃z(p),k(·)) of eigenvalue–eigenfunction pairs ρz(p),m and ψz(p),m(·) (resp. λz(p),k and
φz(p),k(·)), we use conditional functional principal component analysis (CFPCA) for

G̃X,z(p)(·, ·) (resp. G̃Y,z(p)(·, ·)), by numerically solving the conditional eigenequations

∫

S

G̃X,z(p)(s1, s2)ψ̃z(p),m(s1) ds1 = ρ̃z(p),mψ̃z(p),m(s2), m= 1,2, . . . , (2.4)

∫

T

G̃Y,z(p)(t1, t2)φ̃z(p),k(t1) dt1 = λ̃z(p),kφ̃z(p),k(t2), k = 1,2, . . . . (2.5)

Note that we estimate the conditional mean functions and conditional covariance func-
tions over dense grids of S and T . Numerical integrations like the one on the left-hand
side of (2.4) are done over these dense grids using the trapezoid rule. Note, further, that
integrals over individual trajectories are not needed for the regression focus, in that we
use conditional expectation to estimate principal component scores, as in (4.1).
Due to the fact that

CXY,z(s, t) = cov(X(s), Y (t)|Z = z) =

∞
∑

k=1

∞
∑

m=1

E(ζz,mξz,k)ψz,m(s)φz,k(t),

we then obtain preliminary estimates of σz,mk = E(ζz,mξz,k) at the bin centers z(p),
p= 1,2, . . . , P , by numerical integration,

σ̃z(p),mk =

∫

T

∫

S

ψ̃z(p),m(s)C̃XY,z(p)(s, t)φ̃z(p),k(t) dsdt. (2.6)

With (2.3), (2.4), (2.5) and (2.6), the raw estimates of β(z(p), s, t) are

β̃(z(p), s, t) =
K
∑

k=1

M
∑

m=1

σ̃z(p),mk
ρ̃z(p),m

ψ̃z(p),m(s)φ̃z(p),k(t). (2.7)

Further details on the “global” case can be found in Yao et al. (2005b).

2.2.2. Refining the raw estimates

We establish in the Appendix that the raw estimates µ̃X,z(p)(s), µ̃Y,z(p)(t) and β̃(z
(p), s, t)

are consistent. As has been demonstrated in Fan and Zhang (2000), there are several
reasons to refine such raw estimates. For example, the raw estimates are generally not
smooth and are based on local observations, hence inefficient. Most importantly, appli-
cations require that the function β(z, s, t) is available for any z ∈Z.
To refine the raw estimates, the classical approach is smoothing, for which we adopt

the local polynomial smoother. Defining cp = (1, z(p)−z, . . . , (z(p)−z)r)T , p= 1,2, . . . , P ,
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the local polynomial smoothing weights for estimating the qth derivative of an underlying
function are

ωq,r+1(z
(p), z, b) = q!eTq+1,r+1(C

TWC)−1cpKb(z
(p) − z), p= 1,2, . . . , P,

where C= (c1,c2, . . . ,cP )
T , W = diag(Kb(z

(1) − z),Kb(z
(2) − z), . . . ,Kb(z

(P ) − z)) and
eq+1,r+1 = (0, . . . ,0,1,0, . . . ,0)T is a unit vector of length r+1 with the (q+1)th element
being 1 (see Fan and Gijbels (1996)). Our final estimators are given by

µ̂X,z(s) =

P
∑

p=1

ω0,2(z
(p), z, b)µ̃X,z(p)(s),

µ̂Y,z(t) =
P
∑

p=1

ω0,2(z
(p), z, b)µ̃Y,z(p)(t),

β̂(z, s, t) =

P
∑

p=1

ω0,2(z
(p), z, b)β̃(z(p), s, t).

Due to the assumption that the variance of the measurement error does not depend
on the additional covariate, the final estimators of σ2

X and σ2
Y can be taken as simple

averages,

σ̂2
X =

P
∑

p=1

σ̃2
X,z(p)/P and σ̂2

Y =
P
∑

p=1

σ̃2
Y,z(p)/P. (2.8)

Remark 1. The localization to Z = z, as needed for the proposed varying coefficient
model, coupled with the extreme sparseness assumption [A2], which adequately reflects
longitudinal designs, is not conducive to obtaining explicit results in terms of convergence
rates for the general case. However, by suitably modifying our arguments and coupling
them with the rates of convergence provided on page 2891 of Yao et al. (2005b), we can
obtain rates if desired. These are the rates given there, which depend on complex intrinsic
properties of the underlying processes, provided that the sample size n is everywhere
replaced by nh, the sample size for each bin.

Remark 2. In this work, we focus on sparse and irregularly observed longitudinal data.
For the case where entire processes are observed without noise and are error-free, one
can estimate the localized eigenfunctions at rates of L2-convergence of (nh̃)−1/2 (see
Hall et al. (2006)), where h̃ is the smoothing bandwidth. For the moments of the func-
tional principal components, a smoothing step is not needed. Known results will be
adjusted by replacing n with nh when conditioning on a fixed covariate level Z = z; see
Cai and Hall (2006) and Hall and Horowitz (2007).
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3. Asymptotic properties

We establish some key asymptotic consistency properties for the proposed estimators.
Detailed technical conditions and proofs can be found in the Appendix.
The observed data set is denoted by {Zi, (Sil, Uil)Li

l=1, (Tij, Vij)
Ni

j=1: i= 1,2, . . . , n}. We

assume that it comes from (1.2) and satisfies [A0], [A1], [A2] and [A3].
For ñ∝√

n, define the event

En = {minnz(p),h > ñ}, (3.1)

where nz(p),h is the number of observations in the pth bin and ñ∝√
n means that there

exist c0 and C0 such that 0< c0 ≤ ñ/
√
n≤ C0 <∞. It is shown in Proposition 1 in the

Appendix that P (En)→ 1 as n→∞ for P ∝ n1/8, as specified by condition (xi).
The global consistency of the final mean and slope function estimates follows from the

following theorem.

Theorem 1 (Consistency of time-varying functional regression). Under condi-
tions [A0], [A1], [A2] and [A3] in Section 2 and conditions [A4], [A5] and (i)–(xi) in the
Appendix, on the event En with P (En)→ 1 as n→∞, we have

∫

Z

∫

R

(µ̂W,z(r)− µW,z(r))
2
drdz

P→ 0 for W =X,R= S and W = Y,R= T ,

and

∫

Z

∫

T

∫

S

(β̂(z, s, t)− β(z, s, t))
2
dsdtdz

P→ 0.

To study prediction through time-varying functional regression, consider a new pre-
dictor process X∗ with associated covariate Z∗. The corresponding conditional expected
response process Y ∗ and its prediction Ŷ ∗ are given by

Y ∗(t) = E(Y (t)|X∗, Z∗)
(3.2)

= µY,Z∗(t) +

∫

S

β(Z∗, s, t)(X∗(s)− µX,Z∗(s)) ds,

Ŷ ∗(t) = µ̂Y,Z∗(t) +

∫

S

β̂(Z∗, s, t)(X∗(s)− µ̂X,Z∗(s)) ds. (3.3)

Theorem 2 (Consistency of prediction). For a new predictor process X∗ with
associated covariate Z∗, it holds under the conditions of Theorem 1 that

∫

T (Y
∗(t) −

Ŷ ∗(t))2 dt
P→ 0, where Y ∗(t) and Ŷ ∗(t) are given by (3.2) and (3.3).
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4. Finite-sample implementation

For the finite-sample case, several smoothing parameters need to be chosen. Following
Yao et al. (2005a), the leave-one-curve-out cross-validation method can be used to se-
lect smoothing parameters bX,z(p) , bY,z(p) , bX,z(p),V , bY,z(p),V , hX,z(p) , hY,z(p) , h1,z(p) and
h2,z(p) , individually for each bin. Further required choices concern the bin width h, the
smoothing bandwidth b and the numbersM and K of included expansion terms in (2.7).
The method of cross-validation could also be used for these additional choices, but this
incurs a heavy computational load. A fast alternative is a pseudo-Akaike information
criterion (AIC) (or pseudo-Bayesian information criterion (BIC)).

[1] Choose the number of terms in the truncated double summation representation
β̃(z(p), s, t) for M(n) and K(n), using AIC or BIC, as in Yao et al. (2005b).

[2] For each bin width h, choose the best smoothing bandwidth b∗(h) by minimizing
AIC or BIC.

[3] Choose the bin width h∗ which minimizes AIC or BIC, while, for each h investi-
gated, we use b∗(h) for b.

For [1], we will chooseM and K simultaneously for all bins, minimizing the conditional
penalized pseudo-deviance given by

C(K) =
P
∑

p=1

∑

i∈Np

{

1

σ̃2
Y,z(p)

ǫ̃Ti ǫ̃i +Ni log(2π) +Ni log σ̃
2
Y,z(p)

}

+P ,

where P = 2PK for AIC and P = (logn)PK for BIC, with respect to K . Here, for i ∈Np,

ǫ̃i =Vi−µ̃Y,z(p),i−
∑K
k=1 ξ̃

∗
z(p),k,i

φ̃z(p),k,i with µ̃Y,z(p),i = (µ̃Y,z(p)(Ti1), . . . , µ̃Y,z(p)(TiNi
))T ,

Vi = (Vi1, . . . , ViNi
)T , φ̃z(p),k,i = (φ̃z(p),k(Ti1), . . . , φ̃z(p),k(TiNi

))T and with estimated
principal components

ξ̃∗z(p),k,i = λ̃z(p),kφ̃
T

z(p),k,iΣ̃
−1
Y,z(p),i

(Vi − µ̃Y,z(p),i), (4.1)

where Σ̃Y,z(p),i is an Ni-by-Ni matrix whose (j, k)-element is G̃Y,z(p)(Tij , Tik)+ σ̃
2
Y,z(p)

δjk .

Analogous criteria are used for the predictor process X , selecting K by minimizing
AIC(K) and BIC(K). Marginal versions of these criteria are also available.
In step [2], for each bin width h, we first select the best smoothing bandwidth b∗(h)

based on AIC or BIC and then select the final bin width h∗ by a second application of
AIC or BIC, plugging b∗(h) into this selection as follows. For a given bin width h, define
the P -by-P smoothing matrix S0,2 whose (p1, p2)th element is ω0,2(z

(p1), z(p2), b). The
effective number of parameters of the smoothing matrix is then the trace of ST0,2S0,2 (cf.
Wahba (1990)). This suggests minimization of

AIC(b|h) =
n
∑

i=1

{

1

σ̂2
Y

ǫ̂
T
i ǫ̂i +Ni log(2π) +Ni log σ̂

2
Y

}

+2tr(ST0,2S0,2),
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leading to b∗(h), where

ǫ̂i =Vi − µ̂Y,zi,i −
P
∑

p=1

ω0,2(z
(p), zi, b)

M,K
∑

m,k=1

σ̃z(p),mk
ρ̃z(p),m

ζ̂∗z(p),m,iφ̃z(p),k,i

with µ̂Y,zi,i = (µ̂Y,zi(Ti1), . . . , µ̂Y,zi(TiNi
))T and estimated principal component scores

ζ̂∗z(p),m,i = ρ̃z(p),kψ̃
T

z(p),m,iΣ̃
−1
X,z(p),i

(Ui − µ̂X,zi,i).

The definition of pseudo-BIC scores is analogous.
In step [3], to select the bin width h∗, we minimize

AIC(h, b∗(h)) =
n
∑

i=1

{

1

σ̂2
Y

ǫ̂
T
i ǫ̂i +Ni log(2π) +Ni log σ̂

2
Y

}

+ 2MKP,

or the analogous BIC score, using b∗(h) for each h, as determined in the previous step.

5. Simulation study

We compare global functional linear regression and varying-coefficient functional linear
regression through simulated examples with a functional response. For the case of a
scalar response, the proposed varying-coefficient functional linear regression approach
achieves similar performance improvements (results not reported). For the finite-sample
case, there are several parameters to be selected (see Section 4). In the simulations, we
use pseudo-AIC to select bin width h and pseudo-BIC to select the smoothing bandwidth
b and the number of regularization terms M(n) and K(n).
The domains of predictor and response trajectories are chosen as S = [0,10]

and T = [0,10], respectively. The predictor trajectories X are generated as X(s) =

µX(s) +
∑3
m=1 ζmψm(s) for s ∈ S, with mean predictor trajectory µX(s) = (s+ sin(s)),

the three eigenfunctions are ψ1(s) = −
√

1
5 cos(πs/5), ψ2(s) =

√

1
5 sin(πs/5), ψ3(s) =

−
√

1
5 cos(2πs/5) and their corresponding functional principal components are indepen-

dently distributed as ζ1 ∼ N(0,22), ζ2 ∼ N(0,
√
2
2
), ζ3 ∼ N(0,12). The additional co-

variate Z is uniformly distributed over [0,1]. For z ∈ [0,1], the slope function is linear
in z, β(z, s, t) = (z + 1)(ψ1(s)ψ1(t) + ψ2(s)ψ2(t) + ψ3(s)ψ3(t)) and the conditional re-

sponse trajectory is E(Y (t)|X,Z = z) = µY,z(t) +
∫ 10

0
β(z, s, t)(X(s)− µX(s)) ds, where

µY,z(t) = (1 + z)(t+ sin(t)). We consider the following two cases.

Example 1 (Regular case). The first example focuses on the regular case with dense
measurement design. Observations on the predictor and response trajectories are made
at sj = (j − 1)/3 for j = 1,2, . . . ,31 and tj = (j − 1)/3 for j = 1,2, . . . ,31, respectively.
We assume the measurement errors on both the predictor and response trajectories are
distributed as N(0,12), that is, σ2

X = 1 and σ2
Y = 1.
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Table 1. Simulation results: mean and standard deviation of MISPE for
global and varying-coefficient functional linear regression with a functional
response, for both regular and sparse cases

Functional linear Varying-coefficient functional
regression linear regression

Regular 4.0146 (1.6115) 0.7836 (0.4734)
Sparse and irregular 4.0013 (0.8482) 1.0637 (0.3211)

Example 2 (Sparse and irregular case). In this example, we make a random number
of measurements on each trajectory in the training data set, chosen with equal probabil-
ity from {2,3, . . . ,10}. We note that, for the same subject, the number of measurements
on the predictor and the number of measurements on the response trajectory are inde-
pendent. For any trajectory, given the number of measurements, the measurement times
are uniformly distributed over the corresponding trajectory domain. The measurement
error is distributed as N(0,12) for both the predictor and the response trajectories.

In both examples, the training sample size is 400. An independent test set of size 1000
is generated with the predictor and response trajectories fully observed. We compare
performance using mean integrated squared prediction error (MISPE)

1

1000

1000
∑

j=1

∫

T

[

E(Y ∗
j (t)|X∗

j , Z
∗
j )

−
(

µ̂Y,Z∗
j
(t) +

∫

S

β̂(Z∗
j , s, t)(X

∗
j (s)− µ̂X,Z∗

j
(s)) ds

)]2

dt/|T |,

analogously for the global functional linear regression, where (X∗
j , Y

∗
j , Z

∗
j ) denotes the

data of the jth subject in the independent test set. In Table 1, we report the mean and
standard deviation (in parentheses) of the MISPE of the global and varying-coefficient
functional linear regression over 100 repetitions for each case. This shows that in this
simulation setting, the proposed varying-coefficient functional linear regression approach
reduces MISPE drastically, compared with the global functional linear regression, both
for regular and sparse irregular designs.
To visualize the differences between predicted conditional expected response trajecto-

ries, for a small random sample, in both the regular and sparse and irregular design cases,
we randomly choose four subjects from the test set with median values of the integrated
squared prediction error (ISPE) for the varying-coefficient functional linear regression.
The true and predicted conditional expected response trajectories are plotted in Figure
1, where the left four panels correspond to the regular design case and the right four to
the sparse irregular case. Clearly, the locally varying method is seen to be superior.
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6. Applications

We illustrate the comparison of the proposed varying-coefficient functional linear model
with the global functional linear regression in two applications.

6.1. Egg-laying data

The egg-laying data represent the entire reproductive history of one thousand Mediter-
ranean fruit flies (‘medflies’ for short), where daily fecundity, quantified by the number
of eggs laid per day, was recorded for each fly during its lifetime; see Carey et al. (1998)
for details of this data set and experimental background.
We are interested in predicting future egg-laying patterns over an interval of fixed

length, but with potentially different starting time, based on the daily fecundity infor-
mation during a fixed earlier period. The predictor trajectories were chosen as daily
fecundity between day 8 and day 17. This interval covers the tail of an initial rapid rise
to peak egg-laying and the initial part of the subsequent decline and, generally, the egg-
laying behavior at and near peak egg-laying is included. It is of interest to study in what
form the intensity of peak egg-laying is associated with subsequent egg-laying behavior,
as trade-offs may point to constraints that may play a role in the evolution of longevity.
While the predictor process is chosen with a fixed domain, the response process has

a moving domain, with a fixed length of ten days, but a different starting age for
each subject, which serves as the additional covariate Z . Due to the limited num-
ber of subjects in this study, we use a pre-specified discrete set for the values of Z :

Figure 1. In one random repetition, the true (solid) conditional expected response trajectories
and predicted conditional expected response trajectories via the global functional linear regres-
sion (dot-dashed) and the varying-coefficient functional linear regression (dashed) are plotted
for four randomly selected subjects in the independent test set with median integrated squared
prediction error. The left four panels and the right four correspond to the regular and sparse
irregular cases, respectively.
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Figure 2. The slope functions estimated by the varying-coefficient functional linear regression
at different levels of the additional covariate z for the egg-laying data.

Z = {17,19,21,23,25,27,29,31,33} with a pre-specified bin width h = 2. For subject i

with zi ∈Z, measurements Uij on the predictor trajectory are the daily numbers of eggs
on day j + 7, and measurements Vik on the response trajectory correspond to the daily

number of eggs on day k + zi for j = 1,2, . . . ,10 and k = 1,2, . . . ,10. The numbers of
subjects in these bins are 30, 29, 18, 29, 22, 19, 19, 17 and 36, respectively. For each bin,

we randomly select 15 subjects as the training set and the remaining subjects are used
to evaluate the prediction performance, comparing the performance of the global and the

varying-coefficient functional linear regression. The prediction performance is quantified

by mean squared prediction error (MSPE), defined for each subject i in the test set as

MSPEg(i) =
1

10

10
∑

k=1

(ŷgik − Vik)
2 and MSPEl(i) =

1

10

10
∑

k=1

(ŷlik − Vik)
2,
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Figure 3. The left panel plots the slope function estimated by the global functional linear
regression for the egg-laying data and the right panel corresponds to box plots of the ratios of
MSPE of the varying-coefficient functional linear regression to that of the global functional linear
regression for the subjects in the test data set for different levels of the additional covariate Z.

where ŷgik and ŷlik denote the predicted daily fecundities corresponding to Vik using the
global (resp. the proposed varying-coefficient (local)) functional linear regression.
Through pseudo-AIC, the global functional linear regression selects two and three

principal components for the predictor and response trajectories, respectively, while the
varying-coefficient functional linear regression uses two principal components for both
trajectories. After smoothing, the slope functions estimated by the varying-coefficient
models are plotted in Figure 2 for different values of Z and the estimated slope function
for the global functional linear regression is plotted in the left panel of Figure 3. Box
plots of the ratio MSPEl(i)/MSPEg(i) for subjects in the test data set are shown in the
right panel of Figure 3 for different levels of the covariate Z . There is one outlier above
the maximum value for Z = 18 which is not shown. For most bins, the median ratios
are seen to be smaller than 1, indicating an improvement of our new varying-coefficient
functional linear regression. Denoting the average MSPE (over the independent test data
set) of the global and the varying-coefficient functional linear regression by MSPEg and
MSPEl, respectively, the relative performance gain (MSPEl−MSPEg)/MSPEg is found
to be −0.0810 so that the prediction improvement of the varying-coefficient method is
8.1%.
Besides prediction, it is of interest to study the dependency of the future egg-laying

behavior on peak egg-laying. From the changing slope functions in Figure 2, we find that,
for the segments close to the peak segments, the egg-laying pattern is inverting the peak
pattern, meaning that sharper and higher peaks are associated with sharp downturns,
pointing to a near-future exhaustion effect of peak egg-laying. In contrast, the shape
of egg-laying segments further into the future is predicted by the behavior of the first
derivative over the predictor segment so that slow declines near the end of peak egg-
laying are harbingers of future robust egg-laying. This is in accordance with a model of
exponential decline in egg-laying that has been proposed by Müller et al. (2001).
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Figure 4. Plots of predictor processes: the left panel for the global functional linear regression
and the right panel for different bins according to the additional covariate in the varying-coeffi-
cient functional linear regression.

6.2. BLSA data with scalar response

As a second example, we use a subset of data from the Baltimore Longitudinal Study
of Aging (BLSA), a major longitudinal data set for human aging (Shock et al. (1984),
Pearson et al. (1997)). The data consist of 1590 male volunteers who were scheduled to
be seen twice per year. However, many participants missed scheduled visits or were seen
at other than scheduled times so that the data are sparse and irregular with unequal
numbers of measurements and different measurement times for each subject. For each
subject, current age and systolic blood pressure (SBP) were recorded during each visit.
We quantify how the SBP trajectories of a subject available in a middle age range between
age 48 and age 53 affect the average of the SBP measurements made during the last
five years included in this study, at an older age. The predictor domain is therefore of
length five years and the response is scalar. The additional covariate for each subject
is the beginning age of the last five-year interval included in the study. After excluding
subjects with less than two measurements in the predictor, 214 subjects were included
for whom the additional covariate ranged between 55 and 75. We bin the data according
to the additional covariate, with bin centers at ages 56.0, 59.0, 62.0, 65.0, 68.5 and 73.0
years and the numbers of subjects in each of these bins are 38, 33, 38, 32, 39 and 34.
We randomly selected 25 subjects from each bin for model estimation and used the

remaining subjects to evaluate the prediction performance. In contrast to the egg-laying
data, the predictor measurements in this longitudinal study are sparse and irregular.
Pseudo-BIC selects two principal components for the predictor trajectories for both global
and varying-coefficient functional linear regressions. Using the same criterion for relative
performance gain as in the previous example, the varying-coefficient functional linear re-
gression achieves 11.8% improvement compared to the global functional linear regression.
Estimated slope functions are shown in Figure 5 and predictor trajectories in Figure 4.
The shape changes of the slope functions with changing covariate indicate that the

negative derivative of SBP during the middle-age period is associated with near-future
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Figure 5. The estimated slope function via the global functional linear regression and the new
proposed varying-coefficient functional linear regression (for different levels of Z) are plotted as
the solid lines in the left and right panels, respectively.

SBP. Further into the future, this pattern is reversed and an SBP increase near the right
end of the initial period is becoming predictive.

7. Concluding remarks

Our results indicate that established functional linear regression models can be improved
when an available covariate is incorporated. We implement this idea by extending the
functional linear model to a varying-coefficient version, inspired by the analogous, highly
successful extension of classical regression models. In both application examples, the
increased flexibility that is inherent in this extension] leads to clear gains in prediction
error. In addition, it is often of interest to ascertain the effect of the additional covariate.
This can be done by plotting the regression slopes for each bin defined by the covariate
and observing the dependency of this function or surface on the value of the covariate.
Further extensions that are of interest in many applications concern the case of multi-

variate covariates. If the dimension is low, the smoothing methods and binning methods
that we propose here can be extended to this case. For higher-dimensional covariates or
covariates that are not continuous, one could form a single index to summarize the covari-
ates and thus create a new one-dimensional covariate which then enters the functional
regression model in the same way as the one-dimensional covariate that we consider.
As seen in the data applications, the major applications of the proposed methodology

are expected to come from longitudinal studies with sparse and irregular measurements,
where the presence of additional non-functional covariates is common.

Appendix: Auxiliary results and proofs

We note that further details, such as omitted proofs, can be found in a technical report
that is available at http://www4.stat.ncsu.edu/~wu/WuFanMueller.pdf.

http://www4.stat.ncsu.edu/~wu/WuFanMueller.pdf
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A bivariate kernel function κ2(·, ·) is said to be of order (ν, ℓ) with ν = (ν1, ν2) if it
satisfies

∫

uℓ1vℓ2κ2(u, v) dudv =

{

0, 0≤ ℓ1 + ℓ2 < ℓ, ℓ1 6= ν1, ℓ2 6= ν2,
ν!, ℓ1 = ν1, ℓ2 = ν2,
6= 0, ℓ1 + ℓ2 = ℓ,

(A.1)

and
∫

|uℓ1vℓ2κ2(u, v)|dudv <∞ for any ℓ1 + ℓ2 = ℓ, (A.2)

where ν! = ν1! · ν2!. Similarly, a univariate kernel function κ1(·) is of order (ν, ℓ) for a
univariate ν = ν1 when (A.1) and (A.2) hold for ℓ2 ≡ 0 on the right-hand side while
integrating over the univariate argument u on the left.
We introduce the following technical conditions:

(i) The variable S has compact domain S. Given Z = z, S has conditional density

fS,z(s). Assume, uniformly in z ∈ Z, that ∂ℓ

∂sℓ
fS,z(s) exists and is continuous for

ℓ= 2 on S and, further, infs∈S fS,z(s)> 0, analogously for T .

(ii) Denote the conditional density functions of (S,U) and (T,V ) by gX,z(s, u) and

gY,z(t, v), respectively. Assume that the derivative ∂ℓ

∂sℓ gX,z(s, u) exists for all

arguments (s, u), is uniformly continuous on S ×R and is Lipschitz continuous
in z, for ℓ= 2, analogously for gY,z(t, v).

(iii) Denote the conditional density functions of quadruples (S1, S2, U1, U2) and
(T1, T2, V1, V2) by g2X,z(s1, s2, u1, u2) and g2Y,z(t1, t2, v1, v2), respectively. For
simplicity, the corresponding marginal conditional densities of (S1, S2) and
(T1, T2) are also denoted by g2X,z(s1, s2) and g2Y,z(t1, t2), respectively. Denote
the conditional density of (S,T,U,V ) given Z = z by gXY,z(s, t, u, v) and, sim-
ilarly, its corresponding conditional marginal density of (S,T ) by gXY,z(s, t).

Assume that the derivatives ∂ℓ

∂s
ℓ1
1 ∂s

ℓ2
2

g2X,z(s1, s2, u1, u2) exist for all arguments

(s1, s2, u1, u2), are uniformly continuous on S2 × R
2 and are Lipschitz continu-

ous in z for ℓ1 + ℓ2 = ℓ, 0≤ ℓ1, ℓ2 ≤ ℓ= 2, analogously for g2Y,z(t1, t2, v1, v2) and
gXY,z(s, t, u, v).

(iv) For every p = 1,2, . . . , P , bX,z(p) → 0, nz(p),hb
4
X,z(p)

→ ∞, nz(p),hb
6
X,z(p)

< ∞,

bY,z(p) → 0, nz(p),hb
4
Y,z(p)

→∞ and nz(p),hb
6
Y,z(p)

<∞ as n→∞.

(v) For every p = 1,2, . . . , P , hX,z(p) → 0, nz(p),hh
6
X,z(p)

→ ∞, nz(p),hh
8
X,z(p)

< ∞,

hY,z(p) → 0, nz(p),hh
6
Y,z(p)

→∞ and nz(p),hh
8
Y,z(p)

<∞ as n→∞.

(vi) For every p= 1,2, . . . , P , h1,z(p)/h2,z(p) → 1, h1,z(p) → 0, nz(p),hh
6
1,z(p)

→∞ and

nz(p),hh
8
1,z(p)

<∞ as n→∞.

(vii) For every p = 1,2, . . . , P , bX,z(p),V → 0, nz(p),hb
4
X,z(p),V

→ ∞, nz(p),hb
6
X,z(p),V

<

∞, bY,z(p),V → 0, nz(p),hb
4
Y,z(p),V

→∞ and nz(p),hb
6
Y,z(p),V

<∞ as n→∞.

(viii) Univariate kernel κ1 and bivariate kernel κ2 are compactly supported, absolutely
integrable and of orders (ν, ℓ) = (0,2) and ((0,0),2), respectively.
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(ix) Assume that sup(z,s)∈Z×SE(E(X(s)−µX,Z(s))
4|Z = z))<∞, and analogously

for Y .
(x) The slope function β(z, s, t) is twice differentiable in z, that is, for any (s, t) ∈

S × T , ∂2

∂z2β(z, s, t) exists and is continuous in z.

(xi) The bin width h and smoothing bandwidth b are such that b/h <∞ as n→∞.
The bin width h is chosen such that P ∝ n1/8.

Proposition 1. For En defined in (3.1), under (xi), it holds that P (En)→ 1 as n→∞.

Proof. First, note that P (minnz(p),h > ñ)≥ 1−∑P
p=1P (nz(p),h < ñ). Consider the pth

bin and let πp = P (Z ∈ [z(p) − h
2 , z

(p) − h
2 )). Then nz(p),h is asymptotically distributed

as N(nπp, nπp(1 − πp)) due to the normal approximation to a binomial random vari-

able. Thus, P (nz(p),h > ñ)→ fN(0,1)(ap)/ap with ap =−(ñ− nπp)/
√

nπp(1− πp), where
fN(0,1)(·) is the probability density function of the standard normal distribution. Due to
[A1], πp is bounded between fZ/(fZ + (P − 1)f̄Z) and f̄Z/((P − 1)fZ + f̄Z). It follows

that P (En)→ 1 as n→ ∞ by noting that ñ ∝ √
n, P ∝ n1/8, and fN(0,1)(x)/x decays

exponentially in x. �

We next prove the consistency of the raw estimate of the mean functions of predictor
and response trajectories within each bin. Consider a generic bin [z−h/2, z+h/2), with
bin center z and bandwidth h, and let bX,z and bY,z be smoothing bandwidths used to
estimate µX,z(s) and µY,z(t), hX,z and hY,z for GX,z(s1, s2) and GY,z(t1, t2), respectively,
h1,z and h2,z for CXY,z(s, t), and bX,z,V and bY,z,V for VX,z(s) = GX,z(s, s) + σ2

X and
VY,z(t) =GY,z(t, t) + σ2

Y , respectively.
For a positive integer l≥ 1, let {ψp(t, v), p= 1,2, . . . , l} be a collection of real functions

ψp :R
2 →R satisfying the following conditions:

[C1.1a] The derivative functions ∂ℓ

∂tℓ
ψp(t, v) exist for all arguments (t, v) and are uni-

formly continuous on T ×R.
[C1.2a]

∫ ∫

ψ2
p(t, v)gY,z(t, v) dv dt <∞.

[C2.1a] Uniformly in z ∈ Z, bandwidths bY,z for one-dimensional smoothers are such
that bY,z → 0, nz,hb

ν+1
Y,z →∞ and nz,hb

2ℓ+2
Y,z <∞ as n→∞.

Define µpψ,z = µpψ,z(t) =
dν

dtν

∫

ψp(t, v)gY,z(t, v) dv and

Ψpn,z =Ψpn,z(t) =
1

nz,hb
ν+1
Y,z

∑

i∈Nz,h

1

EN

Ni
∑

j=1

ψp(Tij , Vij)κ1

(

Tij − t

bY,z

)

,

where gY,z(t, v) is the conditional density of (T,V ), given Z = z.

Lemma 1. Under conditions [A0]–[A3] (i), (ii), (viii), [C1.1a], [C1.2a] and [C2.1a], we
have τpn = sup(z,t)∈Z×T |Ψpn,z(t)− µpψ,z(t)|/(h+ (

√
nz,hb

ν+1
Y,z )

−1) = Op(1).
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Proof. Note that |Ψpn,z(t)− µpψ,z(t)| ≤ |Ψpn,z(t)−EΨpn,z(t)|+ |EΨpn,z(t)− µpψ,z(t)|
and E|τpn|=O(1) implies that τpn =Op(1). Standard conditioning techniques lead to

EΨpn,z(t) =
1

bν+1
Y,z

E

(

E

(

ψp(Ti1, Vi1)κ1

(

Ti1 − t

bY,z

)

∣

∣

∣
z − h

2
≤ Zi <

h

2

))

.

For Zi = zi ∈ [z − h/2, z+ h/2), perform a Taylor expansion of order ℓ on the integrand:

E

[

ψp(Ti1, Vi1)κ1

(

Ti1 − t

bY,z

)]

=

∫ ∫

ψp(t1, v1)gY,zi(t1, v1)κ1

(

t1 − t

bY,z

)

dt1 dv1

=

∫ ∫
(

∂ν

∂tν
(ψp(t, v1)gY,zi(t, v1))

)

(t1 − t)ν

ν!
κ1

(

t1 − t

bY,z

)

dt1 dv1

+

∫ ∫
(

∂ℓ

∂tℓ
(ψp(t, v1)gY,zi(t, v1))

) ∣

∣

∣

∣

t=t∗

(t1 − t)ℓ

ℓ!
κ1

(

t1 − t

bY,z

)

dt1 dv1,

where t∗ is between t and t1. Hence, |E[ψp(Ti1, Vi1)κ1(
Ti1−t
bY,z

)]−µpψ,zi(t)b
ν+1
Y,z | ≤ c0

bℓ+1
Y,z

ℓ! ×
∫

|uℓκ1(u)|du due to [C1.2a] and the assumption that the kernel function κ1(·) is of

type (ν, ℓ), where c0 is bounded according to [C1.1a], c0 ≤ sup(zi,t)∈Z×T | ∂ℓ

∂tℓ

∫

ψp(t, v1)×
gY,zi(t, v1) dv1|<∞. Furthermore, using (ii), we may bound

sup
t∈T

|EΨpn,z(t)− µpψ,z(t)|

≤ c0b
ℓ−ν
Y,z /(ℓ!)

∫

|uℓκ1(u)|du (A.3)

+E

{

E

[

sup
t∈T

|µpψ,Zi
(t)− µpψ,z(t)|

∣

∣

∣
z − h

2
≤ Zi <

h

2

]}

≤ c0

(
∫

|uℓκ1(u)|du
)

bℓ−νY,z /(ℓ!) + c1h,

where the constants do not depend on z. To bound E supt∈T |Ψpn,z(t)−EΨpn,z(t)|, we
denote the Fourier transform of κ1(·) by ζ1(t) =

∫

e−iutκ1(u) du, and letting ϕpn,z(u) =
1

nz,h

∑

m∈Nz,h

1
EN

∑Nm

j=1 e
iuTmjψp(Tmj , Ymj), we have

Ψpn,z =
1

nz,hb
ν+1
Y,z

∑

m∈Nz,h

1

EN

Nm
∑

j=1

κ1

(

Tmj − t

bY,z

)

ψp(Tmj , Ymj)

=
1

2πbνY,z

∫

ϕpn,z(u)e
−ituζ1(ubY,z) du



Varying-coefficient functional linear regression 751

and supt∈T |Ψpn,z(t)−EΨpn,z(t)| ≤ 1
2πbν

Y,z

∫

|ϕpn,z(u)−Eϕpn,z(u)| · |ζ1(ubY,z)|du.
Decomposing ϕpn,z(·) into real and imaginary parts,

ϕpn,z,R(u) =
1

nz,h

∑

m∈Nz,h

1

EN

Nm
∑

j=1

cos (uTmj)ψp(Tmj , Ymj),

ϕpn,z,I(u) =
1

nz,h

∑

m∈Nz,h

1

EN

Nm
∑

j=1

sin (uTmj)ψp(Tmj , Ymj),

we obtain E|ϕpn,z(u) − Eϕpn,z(u)| = E|ϕpn,z,R(u) − Eϕpn,z,R(u)| +
E|ϕpn,z,I(u) − Eϕpn,z,I(u)|. Note the inequality E|ϕpn,z,R(u) − Eϕpn,z,R(u)| ≤
√

E|ϕpn,z,R(u)−Eϕpn,z,R(u)|2 and the fact that {[Zi,Ni, (Tij , Yij)Ni

j=1]: i ∈ Nz,h} are
i.i.d. implies that

var(ϕpn,z,R(u))≤
1

nz,h
E{E(ψ2

p(Tm1, Ym1)|z − h/2≤ Zm < z + h/2)},

where m ∈Nz,h, analogously for the imaginary part. As a result, we have

E sup
t∈T

|Ψpn,z(t)−EΨpn,z(t)|

≤
2
√

E{E(ψ2
p(Tm1, Ym1)|z − h/2≤ Zm < z + h/2)}

∫

|ζ1(u)|du
2π

√
nz,hb

ν+1
Y,z

.

Note that E(ψ2
p(Tm1, Ym1)) as a function of Zm is continuous over the compact domain

Z and is consequently bounded. Let c2 = 2supZm∈Z

√

E(ψ2
p(Tm1, Ym1))<∞. Hence, we

have

E sup
t∈T

|Ψpn,z(t)−EΨpn,z(t)| ≤
c2
∫

|ζ1(u)|du
2π

(
√
nz,hb

ν+1
Y,z )

−1
, (A.4)

where the constant c2(
∫

|ζ1(u)|du)/(2π) does not depend on z.
The result follows as condition [A1] implies that nz,h goes to infinity uniformly for

z ∈ Z as n→ ∞ and nz,hb
2ℓ+2
Y,z <∞ implies that bℓ−νY,z = O(1/(

√
nz,hb

ν+1
Y,z )). We next

extend Theorem 1 in Yao et al. (2005a) under some additional conditions. �

[C3] Uniformly in z ∈ Z, bX,z → 0, nz,hb
4
X,z →∞, nz,hb

6
X,z <∞, bY,z → 0, nz,hb

4
Y,z →

∞ and nz,hb
6
Y,z <∞ as n→∞.

Lemma 2. Under conditions [A0]–[A3], ( i), (ii), (viii), (ix) and [C3], we have

sup
(z,s)∈Z×S

|µ̃X,z(s)− µX,z(s)|
h+ (

√
nz,hbX,z)−1

= Op(1) and
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(A.5)

sup
(z,t)∈Z×T

|µ̃Y,z(t)− µY,z(t)|
h+ (

√
nz,hbY,z)−1

= Op(1).

Proof. The proof is similar to the proof of Theorem 1 in Yao et al. (2005a). �

Our next two lemmas concern the consistency for estimating the covariance functions,
based on the observations in the generic bin [z− h/2, z+ h/2). Let {θp(r1, r2, v1, v2), p=
1,2, . . . , l} be a collection of real functions θp :R

4 →R with the following properties:

[C1.1b] the derivatives ∂ℓ

∂r
ℓ1
1 ∂r

ℓ2
2

θp(r1, r2, v1, v2) exist for all arguments (r1, r2, v1, v2)

and are uniformly continuous on R1 ×R2 ×R
2 for ℓ1 + ℓ2 = ℓ, 0≤ ℓ1, ℓ2 ≤ ℓ,

ℓ= 0,1,2;
[C1.2b] the expectation

∫ ∫ ∫ ∫

θ2p(r1, r2, v1, v2)g(r1, r2, v1, v2) dr1 dr2 dv1 dv2 exists
and is finite, uniformly bounded on Z;

[C2.1b] uniformly in z ∈Z, bandwidths hY,z for the two-dimensional smoother satisfy

hY,z → 0, nz,hh
|ν|+2
Y,z →∞, nz,hh

2ℓ+4
Y,z <∞ as n→∞.

Define ̺pθ,z = ̺pθ,z(t1, t2) =
∂|ν|

∂t
ν1
1 ∂t

ν2
2

∫ ∫

θp(t1, t2, v1, v2)g2Y,z(t1, t2, v1, v2) dv1 dv2 and

Θpn,z(t1, t2) =
1

nz,hh
|ν|+2
Y,z

∑

i∈Nz,h

1

EN(EN − 1)

×
∑

1≤j 6=k≤Ni

θp(Tij , Tik, Vij , Vik)κ2

(

Tij − t1
hY,z

,
Tik − t2
hY,z

)

.

Lemma 3. Under conditions [A0]–[A3], (i), (ii), (iii), (viii), [C1.1b] with R1 = T and
R2 = T , [C1.2b] with g(·, ·, ·, ·) = g2Y,z(·, ·, ·, ·) and [C2.1b], we have

ϑpn = sup
(z,t1,t2)∈Z×T ×T

|Θpn,z − ̺pθ,z|
h+ (

√
nz,hh

|ν|+2
Y,z )−1

=Op(1).

Proof. This is analogous to the proof of Lemma 1. �

[C4] Uniformly in z ∈Z, hX,z → 0, nz,hh
6
X,z →∞, nz,hh

8
X,z <∞, hY,z → 0, nz,hh

6
Y,z →

∞ and nz,hh
8
Y,z <∞ as n→∞.

The proof of the next result is omitted.

Lemma 4. Under conditions [A0]–[A3], (i)–(iii), (viii), (ix), [C3] and [C4], we have

sup
(z,s1,s2)∈Z×S2

|G̃X,z(s1, s2)−GX,z(s1, s2)|
(h+ (

√
nz,hh2X,z)

−1)
= Op(1), (A.6)
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sup
(z,t1,t2)∈Z×T 2

|G̃Y,z(t1, t2)−GY,z(t1, t2)|
(h+ (

√
nz,hh2Y,z)

−1)
= Op(1). (A.7)

To estimate variance of the measurement errors, as in Yao et al. (2005a), we first
estimate GX,z(s, s) + σ2

X (resp. GY,z(t, t) + σ2
Y ) using a local linear smoother based

on GX,i,z(Sil, Sil) for l = 1,2, . . . , Li, i ∈ Nz,h (resp. GY,i,z(Tij , Tij) for j = 1,2, . . . ,Ni,
i ∈ Nz,h) with smoothing bandwidth bX,z,V (resp. bY,z,V ) and denote the estimates

by ṼX,z(s) (resp. ṼY,z(t)), removing the two ends of the interval S (resp. T ) to get
more stable estimates of σ2

X (resp. σ2
Y ). Denote the estimates based on the generic

bin [z − h/2, z + h/2) by σ̃2
X,z and σ̃2

Y,z , let |S| denote the length of S and let
S1 = [inf{s: s ∈ S}+ |S|/4, sup{s : s∈ S}− |S|/4]. Then

σ̃2
X,z =

2

|S|

∫

S1

[ṼX(s)− G̃X,z(s, s)] ds,

and analogously for σ̃2
Y,z . Lemmas 2 and 4 imply the convergence of σ̃2

X,z and σ̃2
Y,z, as

stated in Corollary 1.

[C5] Uniformly in z ∈ Z, bX,z,V → 0, nz,hb
4
X,z,V → ∞, nz,hb

6
X,z,V <∞, bY,z,V → 0,

nz,hb
4
Y,z,V →∞ and nz,hb

6
Y,z,V <∞ as n→∞.

Corollary 1. Under condition [C5] and the conditions of Lemmas 2 and 4,

sup
z∈Z

|σ̃2
X,z − σ2

X |/(h+ (
√
nz,hbX,z,V )

−1
+ (

√
nz,hh

2
X,z)

−1
) = Op(1),

and analogously for σ̃2
X,z.

Proposition 2. Under conditions [A0]–[A3] in Section 2 and (i)–(ix), the final estimates
of σ2

X and σ2
Y (2.8) converge in probability to their corresponding true counterparts, that

is,

σ̂2
X

P→ σ2
X , σ̂2

Y
P→ σ2

Y .

Proof. The result follows straightforwardly from Corollary 1. �

While Lemma 3 implies consistency of the estimator of the variance, we also require
an extension regarding estimation of the cross-covariance function. Let {θ̃p(s, t, u, v), p=
1,2, . . . , l} be a collection of real functions θ̃p :R

4 →R.

[C2.1c] For ℓ ≥ |ν| + 2 and any pair of ℓ1 and ℓ2 such that ℓ = ℓ1 + ℓ2, ℓ1 ≥ ν1 + 1
and ℓ2 ≥ ν2 + 1, we have, uniformly in z ∈ Z, bandwidth h1,z and h2,z satisfy

h1,z → 0, h1,z/h2,z → 1, nz,hh
|ν|+2
1,z →∞, nz,hh

2ℓ+4
1,z <∞ as n→∞.
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Define ̺pθ̃,z = ̺pθ̃,z(s, t) =
∂|ν|

∂sν1 ∂tν2

∫ ∫

θ̃p(s, t, u, v)gXY,z(s, t, u, v) dudv and

Θ̃pn,z = Θ̃pn,z(s, t)

=
1

nz,hh
ν1+1
1,z hν2+1

2,z

∑

i∈Nz,h

1

EN

∑

1≤j≤Ni

θ̃p(Sij , Tij , Uij , Vij)κ2

(

Sij − s

h1,z
,
Tij − t

h2,z

)

.

Lemma 5. Under conditions [A0]–[A3], (i), (ii), (iii), (viii), [C1.1b] with R1 = S and
R2 = T , [C1.2b] with g(·, ·, ·, ·) = gXY,z(·, ·, ·, ·) and [C2.1c] (with ℓ1 = ℓ2 = 1 and ν1 =

ν2 = 0), we have ϑ̃pn = sup(z,s,t)∈Z×S×T |Θ̃pn,z(s, t)− ̺pθ̃,z(s, t)|/(h+ (
√
nz,hh

ν1+1
Y,1 hν2+1

Y,2 )−1) =
Op(1).

Proof. The proof is analogous to that of Lemmas 1 and 3. �

[C6] Uniformly in z ∈ Z, bandwidths h1,z and h2,z satisfy h1,z → 0, h1,z/h2,z → 1,
nz,hh

6
1,z →∞, nz,hh

8
1,z <∞ as n→∞.

Lemma 6 (Convergence of the cross-covariance function between X and Y ).
Under conditions [A0]–[A3], (i), (ii), (iii), (viii), (ix), [C3] and [C6],

sup
(z,s,t)∈Z×S×T

|C̃XY,z(s, t)−CXY,z(s, t)|/(h+ (
√
nz,hh1,zh2,z)

−1
) = Op(1).

Proof. The proof is similar to that of Lemma 4. �

Consider the real separable Hilbert space L2
Y (T )≡HY (resp. L2

X(S)≡HX) endowed
with inner product 〈f, g〉HY

=
∫

T f(t)g(t) dt (resp. 〈f, g〉HX
=
∫

S f(s)g(s) ds) and norm

‖f‖HX
=
√

〈f, f〉HX
(resp. ‖f‖HY

=
√

〈f, f〉HY
) (Courant and Hilbert (1953)). Let I ′

Y,z

(resp. I ′
X,z) be the set of indices of the eigenfunctions φz,k(t) (resp. ψz,m(s)) correspond-

ing to eigenvalues λz,k (resp. ρz,m) of multiplicity one. We obtain the consistency of λ̃z,k
(resp. ρ̃z,m) for λz,k (resp. ρz,m), the consistency of φ̃z,k(t) (resp. ψ̃z,m(s)) for φz,k(t)
(resp. ψz,m(s)) in the L2

Y - (resp. L
2
X -) norm ‖ · ‖HX

(resp. ‖ · ‖HY
) when λz,k (resp. ρz,m)

is of multiplicity one, and the uniform consistency of φ̃z,k(t) (resp. ψ̃z,m(s)) for φz,k(t)
(resp. ψz,m(s)) as well.
For f, g, h ∈HY , define the rank one operator f ⊗ g :h→ 〈f, h〉g. Denote the separa-

ble Hilbert space of Hilbert–Schmidt operators on HY by FY ≡ σ2(HY ), endowed with
〈T1, T2〉FY

= tr(T1T
∗
2 ) =

∑

j〈T1uj, T2uj〉HY
and ‖T ‖2FY

= 〈T,T 〉FY
, where T1, T2, T ∈ FY ,

T ∗
2 is the adjoint of T2 and {uj: j ≥ 1} is any complete orthonormal system in HY . The

covariance operator GY,z (resp. G̃Y,z) is generated by the kernel GY,z (resp. G̃Y,z),

that is, GY,z(f) =
∫

T
GY,z(t1, t)f(t1) dt1 (resp. G̃Y,z(f) =

∫

T
G̃Y,z(t1, t)f(t1) dt1). Ob-

viously, GY,z and G̃Y,z are Hilbert–Schmidt operators. As a result of (A.7), we have

supz∈Z ‖G̃Y,z −GY,z‖FY
/(h+ (

√
nz,hh

2
Y,z)

−1) = Op(1).
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Let IY,z,i = {j: λz,j = λz,i} and I ′
Y,z = {i: |IY,z,i|= 1}, where |IY,z,i| denotes the num-

ber of elements in IY,z,i. Define PYz,j =
∑

k∈IY,z,j
φz,k ⊗φz,k and P̃Yz,j =

∑

k∈IY,z,j
φ̃z,k ⊗

φ̃z,k to be the true and estimated orthogonal projection operators from HY to the
subspace spanned by {φz,k: k ∈ IY,z,j}. Set δYz,j = 1

2 min{|λz,l − λz,j |: l /∈ IY,z,j} and

ΛδY
z,j

= {c ∈ C: |c − λz,j | = δYz,j}, where C stands for the complex numbers. Let RY,z

(resp. R̃Y,z) be the resolvent of GY,z (resp. G̃Y,z), that is, RY,z(c) = (GY,z − cI)−1

(resp. R̃Y,z(c) = (G̃Y,z − cI)−1). Let AδY
z,j

= sup{‖RY,z(c)‖FY
: c ∈ΛδY

z,j
} and

αX = (δXz,j(AδXz,j )
2)/((h+ (

√
nz,hh

2
X,z)

−1
)
−1 −AδX

z,j
). (A.8)

Parallel notation is assumed for the Y process.

Proposition 3. Under conditions [A0]–[A3] in Section 2 and conditions (i)–(iii), (viii),
(ix), [C3], [C4] and [C6], it holds that

|ρ̃z,m − ρz,m| = Op(αX), (A.9)

‖ψ̃z,m− ψz,m‖HX
= Op(αX), m ∈ I ′

X,z , (A.10)

sup
s∈S

|ψ̃z,m(s)− ψz,m(s)| = Op(αX), m ∈ I ′
X,z , (A.11)

|λ̃z,k − λz,k| = Op(αY ), (A.12)

‖φ̃z,k − φz,k‖HY
= Op(αY ), k ∈ I ′

Y,z, (A.13)

sup
t∈T

|φ̃z,k(t)− φz,k(t)| = Op(αY ), k ∈ I ′
Y,z, (A.14)

|σ̃z,mk − σz,mk| = Op(max(αX , αY , h+ (
√
nz,hh1,zh2,z)

−1
)), (A.15)

where the norms on HX and HY are defined on page 29, both αX , αY are defined in
(A.8) and converge to zero as n→∞ and the above Op terms are uniform in z ∈ Z.

Proof. The proof is similar to the proof of Theorem 2 in Yao et al. (2005a). The uni-
formity result follows from that of Lemmas 4 and 6. �

Note that

β(z, s, t) =
∞
∑

k=1

∞
∑

m=1

E(ζz,mξz,k)

E(ζ2z,m)
ψz,m(s)φz,k(t). (A.16)

To define the convergence of the right-hand side of (A.16), in the L2 sense, in (s, t) and
uniformly in z, we require that [A4]

∑∞
k=1

∑∞
m=1 σ

2
z,mk/ρ

2
z,m <∞ uniformly for z ∈ Z.
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The proof of the following result is straightforward.

Lemma 7. Under condition [A4], uniformly in z ∈ Z, the right-hand side of (A.16)
converges in the L2 sense.

The next result is stated without proof and requires assumptions [A4] and the following:

M(n)
∑

m=1

δXz,m(AδXz,m)2

(h+ (
√
nz,hh2X,z)

−1)−1 −AδXz,m
→ 0,

[A5]

K(n)
∑

k=1

δYz,k(AδYz,k)
2

(h+ (
√
nz,hh2Y,z)

−1)−1 −AδY
z,k

→ 0 uniformly in z ∈Z,

MK(h+ (
√
nz,hh1,zh2,z)

−1
)→ 0.

Lemma 8. Under conditions of Proposition 3, [A4] and [A5],

lim
n→∞

sup
z∈Z

∫

S

∫

T

[β̃(z, s, t)− β(z, s, t)]2 = 0 in probability. (A.17)

Proof of Theorem 1. We consider only the convergence of β̂(z, s, t). The consistency
of µ̂X,z(s) and µ̂Y,z(t) is analogous. First, note that

∫

T

∫

S

(β̂(z, s, t)− β(z, s, t))
2
dsdt

≤ 2(2b/h+ 1)
P
∑

p=1

ω0,2(z
(p), z, b)

2
∫

T

∫

S

(β̃(z(p), s, t)− β(z(p), s, t))
2
dsdt (A.18)

+ 2

∫

T

∫

S

(

P
∑

p=1

ω0,2(z
(p), z, b)β(z(p), s, t)− β(z, s, t)

)2

dsdt,

where the 2b/h + 1 in the last inequality is due to the fact that the kernel function

K(·) is of bounded support [−1,1]. Let a(k) =
∑P

p=1Kb(z
(p) − z)(z(p) − z)k, b(k) =

∑P
p=1Kb(z

(p)− z)2(z(p)− z)k, µk =
∫

K(u)uk du and νk =
∫

(K(u))2uk du. We then have

a(k) = µk
bk

h
(1 + o(1)) and b(k) = νk

bk−1

h
(1 + o(1))

for small h (large P ∝ 1/h) and small b. Moreover, the usual boundary techniques can
be applied near the two end points. Consequently,we have

P
∑

p=1

ω0,2(z
(p), z, b)

2
= eT1,2(C

TWC)−1(CTWWC)(CTWC)−1e1,2
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= eT1,2

(

a(0) a(1)
a(1) a(2)

)−1(
b(0) b(1)
b(1) b(2)

)(

a(0) a(1)
a(1) a(2)

)−1

e1,2

=

(

µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
µ0µ2 − µ2

1

)(

b

h

)

(1 + o(1)).

Due to the compactness of Z, the above o-term is uniform in z ∈Z. This implies that

∫

Z

P
∑

p=1

ω0,2(z
(p), z, b)

2
dz =

(

µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
µ0µ2 − µ2

1

)(

b

h

)

|Z|(1 + o(1)) (A.19)

for small h and b, where |Z| denotes the Lebesgue measure of Z. Hence, (A.19) and the
consistency of β̃(z, s, t) in the L2 sense in (s, t) and uniformly in z due to (A.17) imply
that

∫

Z

[

P
∑

p=1

ω0,2(z
(p), z, b)

2
∫

T

∫

S

((β̃(z(p), s, t)− β(z(p), s, t)))
2
dsdt

]

dz
P→ 0. (A.20)

For the second part in (A.18), applying a Taylor expansion of β(z(p), s, t) at each z, we
have

P
∑

p=1

ω0,2(z
(p), z, b)β(z(p), s, t)

= eT1,2

(

a(0) a(1)
a(1) a(2)

)−1(
a(0)
a(1)

)

β(z, s, t) + eT1,2

(

a(0) a(1)
a(1) a(2)

)−1(
a(1)
a(2)

)

∂

∂z
β(z, s, t)

+
1

2
eT1,2

(

a(0) a(1)
a(1) a(2)

)−1(
a(2)
a(3)

)

∂2

∂z2
β(z, s, t) + higher order terms

= β(z, s, t) +
1

2
b2
µ2
2 − µ1µ3

µ0µ2 − µ2
1

∂2

∂z2
β(z, s, t) + higher order terms.

Hence,
∑P

p=1 ω0,2(z
(p), z, b)β(z(p), s, t)−β(z, s, t) = 1

2b
2 µ

2
2−µ1µ3

µ0µ2−µ2
1

∂2

∂z2β(z, s, t)(1+o(1)) and

∫

Z

∫

T

∫

S

(

P
∑

p=1

ω0,2(z
(p), z, b)β(z(p), s, t)− β(z, s, t)

)2

dsdtdz

(A.21)

=
1

2
b2
µ2
2 − µ1µ3

µ0µ2 − µ2
1

(
∫

Z

∫

T

∫

S

∂2

∂z2
β(z, s, t) dsdtdz

)

(1 + o(1))→ 0.

Combining (A.20) and (A.21), and further noting condition (xi), completes the proof. �
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Proof of Theorem 2. Note that

Y ∗(t)− Ŷ ∗(t) = µY,Z∗(t)− µ̂Y,Z∗(t) +

∫

S

(β(Z∗, s, t)− β̂(Z∗, s, t))(X∗(s)− µX,Z∗(s)) ds

−
∫

S

β̂(Z∗, s, t)(µX,Z∗(s)− µ̂X,Z∗(s)) ds.

The convergence results in Theorem 1 imply that
∫

T (Y
∗(t)− Ŷ ∗(t))2 dt

P→ 0, as desired. �
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