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University of Georgia† and Carnegie Mellon University‡

We have collected and cleaned two network data sets: Coauthor-
ship and Citation networks for statisticians. The data sets are based
on all research papers published in four of the top journals in statis-
tics from 2003 to the first half of 2012. We analyze the data sets
from many different perspectives, focusing on (a) productivity, pat-
terns and trends, (b) centrality, and (c) community structures, and
present an array of interesting findings.

For (a), we find that over the 10-year period, both the average
number of papers per author and the fraction of self citations have
been decreasing, but the proportion of distant citations has been
increasing. These suggest that the statistics community has become
increasingly more collaborative, competitive, and globalized, driven
by the boom of online resources and Search Engines.

For (b), we identify the most prolific, the most collaborative, and
the most highly cited authors. We also identify a handful of “hot”
papers and suggest “Variable Selection” and several other areas as
the “hot” areas in statistics.

For (c), we have investigated the data sets with 6 different meth-
ods, including D-SCORE (a new procedure we propose here). We
have identified about 15 meaningful communities, including large-size
communities such as “Biostatistics”, “Large-Scale Multiple Testing”,
“Variable Selection” as well as small-size communities such as “Di-
mensional Reduction”, “Objective Bayes”, “Quantile Regression”,
and “Theoretical Machine Learning”. We find that the community
structures for the Coauthorship network and Citation network are
connected and intertwined, but are also different in significant ways.

Our findings shed light on research habits, trends, and topological
patterns of statisticians, and our data sets provide a fertile ground
for future researches on or related to social networks of statisticians.

1. Introduction. It is frequently of interest to identify “hot” areas and
key authors in a scientific community, and to understand the research habits,
trends, and topological patterns of the researchers. A better understanding
of such features is useful in many perspectives, ranging from that of adminis-
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trations and funding agencies on priorities for support, to that of individual
researchers on starting a new research topic or new research collaboration.

To study these features, one possible approach is to use statistical survey:
to hand out questionnaires to people within or associated with a scientific
community. However, such an approach is relatively expensive, and it is
hard to persuade people to collaborate in the survey. Another approach is
to use online resources, say, Mathematical Genealogy. This approach could
be very useful to answer some of the questions, but the information available
in such resources has been focused on some specific aspects (e.g., the focus
of Mathematical Genealogy is student-advisor relationship) and is not very
helpful in understanding the whole picture of the scientific community.

Coauthorship and Citation networks provide a convenient and yet appro-
priate approach to addressing many of these questions. On one hand, with
the boom of online resources (e.g., MathSciNet) and Search Engines (e.g.,
Google Scholar), it is relatively convenient for us to collect the Coauthorship
and Citation network data of a specific scientific community. On the other
hand, these network data provide a wide variety of information (e.g., pro-
ductivity, trends, impacts, and community structures) that can be extracted
to understand many different aspects of the scientific community, and thus
provide a more complete picture of the community.

Recent studies on such networks include but are not limited to the fol-
lowing: Grossman [17] studied the Coauthorship network of mathematicians;
Newman [35, 37] studied the Coauthorship networks of biologists, physicists
and computer scientists (see also Martin et al. [32], which studied networks
of physicists using a much larger data set than that in [35, 37]); Ioannidis
[23] used the Coauthorship network to help assess the scientific impacts.

Unfortunately, as far as we know, the Coauthorship and Citation networks
for statisticians have not yet been studied. We recognize that

• The people who are most interested in social networks for statisticians
are statisticians themselves or people with close ties to them. It is un-
likely for researchers from other disciplines (e.g., physicists) to devote
substantial time and efforts to pay specific attention to networks for
statisticians: it is the statisticians’ task to collect and analyze such
network data about themselves and of interest to themselves.
• For many aspects of the networks, the “ground truth” is unavail-

able. However, as statisticians, we have the advantage of knowing (at
least partially) many aspects (e.g., “hot” areas, community structures,
trends and impacts of statistical researches) of our own community,
and many times, such “partial ground truth” can be very helpful in
analyzing the networks and interpreting the results.
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Since the year of 2012, we have spent substantial efforts and time collect-
ing two new network data sets: Coauthorship network and Citation network
for statisticians. The data sets are based on all published papers from 2003 to
the first half of 2012 in four of the top statistical journals: Annals of Statis-
tics (AoS), Journal of American Statistical Association (JASA), Journal of
Royal Statistical Society (Series B) (JRSS-B), and Biometrika.

The data sets provide a fertile ground for researches on social networks,
especially to us statisticians, as we know the “partial ground truth” for
many aspects of our community. For example, we can use the data sets to
check and build network models, to develop new methods and theory, and to
further understand the research habits, patterns, and topological structures
of the networks of statisticians. Last but not least, we can use the data
sets and the analysis in the paper as a starting point for a more ambitious
project, where we collect network data sets of this kind but cover many more
journals in or related to statistics and span a much longer time period.

1.1. Our findings. In this paper, we analyze the two network data sets,
focusing on the following:

• Productivity, patterns and trends. We identify noticeable publication
patterns of the statisticians, and how they evolve over time.
• Centrality. We identify “hot” areas as well as authors that are most

collaborative or are most highly cited.
• Community detection. With possibly more sophisticated methods and

analysis, we identify meaningful communities of statisticians.

For productivity, patterns and trends, we discuss the overall productivity,
coauthor patterns and trends, and citation patterns and trends. We have
many interesting findings, including but not limited to the following.

• In the 10-year period 2003-2012, the number of papers per author
has been decreasing (Figure 1). Also, the proportion of self-citations
has been decreasing while the proportion of distant citations has been
increasing (Figure 4). These suggest that the statistics community has
become increasingly more collaborative, competitive, and globalized.
• It seems that two authors who have a common coauthor are more

likely to collaborate. However, the Coauthorship network data only
marginally supports this, with a relatively small transitivity coefficient
of .32 (usually, a coefficient in (.3, .6) is regarded as transitive [39]).
• The distribution of either the degrees of the author-paper bipartite

network or the Coauthorship network has a power-law tail (Figures
2-3), a phenomenon frequently found in social networks [4, 36].
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For centrality, we discuss several different centrality measures, and use them
to identify “hot” authors and papers. Specifically,

• We identified Peter Hall, Jianqing Fan, and Raymond Carroll as the
most prolific authors, Peter Hall, Raymond Carroll and Joseph Ibrahim
as the most collaborative authors, Jianqing Fan, Hui Zou, and Peter
Hall as the most highly cited authors. See Table 1.
• We identified 14 “hot” papers using several different measures of cen-

trality. See Table 2.

Among these 14 papers, 10 are on “Variable Selection”, suggesting “Vari-
able Selection” as a “hot” area. Other “hot” areas may include “Covariance
Estimation”, “Empirical Bayes”, and “Large-scale Multiple Testing”.

For community detection, since the Coauthorship network is undirected
and the Citation network is directed, we discuss them separately.

For the Coauthorship network, we discuss two versions of the network,
(A) and (B). In Coauthorship network (A), in order for two authors to have
an edge connecting them, we require that they have at least two collaborated
papers. In Coauthorship network (B), however, we only require that they
have at least one collaborated papers. While Coauthorship network (B) is
defined in a more conventional way, Coauthorship network (A) is much more
convenient to analyze, and presents many meaningful communities we can
not find in Coauthorship network (B).

For each version of the network, we use the very recent Degree Corrected
Block Model (DCBM) [27]. We investigate each network using four differ-
ent community detection methods: Jin’s SCORE [25], Newman’s Spectral
Clustering method (NSC) [38], Bickel and Chen’s Profile Likelihood (BCPL)
method [5, 47], and Armini et al’s Profile Likelihood (APL) method [1].

We find that Coauthorship network (A) is rather fragmented. It can be
split into many disconnected components, many of which are groups with
special characteristics. We present only the eight largest ones. The largest
component is the “High Dimensional Data Analysis (Coauthorship (A))”
(HDDA-Coau-A) community (Figure 6). This component has 236 nodes and
seems to have sub-structures: namely, the “Carroll-Hall” community, the
“North Carolina” community, and the “Fan” group. See Figures 7-8 where
we present the community detection results for this component by four differ-
ent methods (SCORE, APL, NSC, and BCPL). The next two largest compo-
nents can be interpreted as communities of “Theoretical Machine Learning”
(15 nodes) and “Dimension Reduction” (14 nodes) (presented side by side
in Figure 9), respectively. The next 5 components can be, respectively, inter-
preted as communities of “Johns Hopkins”, “Duke”, “Stanford”, “Quantile
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Regression”, and “Experimental Design” and are presented in Table 5. Note
that all except the first component has a size ≤ 15, so there is no need for
further study on sub-structures.

Similarly, for Coauthorship network (B), we restrict our attention to the
giant component (2263 nodes), and apply all four community detection
methods aforementioned. It seems that all these methods agree on that there
are three meaningful communities as follows (arranged by size ascendingly):
“Objective Bayes”, “Biostatistics (Coauthorship (B))” (Biostat-Coau-B),
“High Dimensional Data Analysis (Coauthorship (B))” (HDDA-Coau-B)
(of course, the communities identified by different methods are also different
in important ways; see Section 4.4). The three communities identified by
SCORE are presented in Figures 10, 11, and 12, respectively.

Additionally, we carefully compare the results by different methods, mea-
sure how similar they are to each other, and address on their weakness and
strengths. See Tables 3-4 for comparisons of these results with Coauthor-
ship network (A), and Tables 6-7 for that with Coauthorship network (B).
We also compare the communities identified in both Coauthorship network
(A) and Coauthorship network (B) carefully, to see how they are connected,
intertwined, and how they are different.

We now discuss the Citation network. Citation network is directed, and it
remains largely unknown how to model such networks and how to do com-
munity detection. We extend the DCBM to directed networks, and propose
Directed SCORE (D-SCORE) as a new community detection method.

We have applied D-SCORE to the Citation network and identified three
meaningful communities: “Large-Scale Multiple Testing”, “Biostatistics (Ci-
tation)” (Biostat-Cita), and “Variable Selection”. These communities are
presented in Figures 14, 15, and 16, respectively.

Similarly, we carefully compare these results with those for Coauthorship
network (A) (e.g., Table 8) and Coauthorship network (B) (e.g., Table 9).
We find that the community structures for the Citation network and Coau-
thorship network are connected, intertwined, but also very different: the
study on one sheds additional light over that for the other, and combining
two networks gives more insights over the community structures.

We have also applied Leicht and Newman’s Spectral Clustering (LNSC)
method [30] to the Citation network. However, the results are rather incon-
sistent to those by D-SCORE and are comparably less convincing.

1.2. Data collection and cleaning. We have faced substantial challenges
in data collection and cleaning, and it has taken us more than 6 months to
obtain high-quality data sets and prepare them in a ready-to-use format.
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At first glance, it may be hard to understand why it is challenging to
collect such data: the data seem to be everywhere, very accessible and free.

This is true to some extent. However, when it comes to high-volume high-
quality downloads, the resources become surprisingly limited. For example,
Google Scholar aggressively blocks any one (a person or a machine) who
tries to download the data more than just a little; when you try to down-
load little by little, you will see some portion of the data are made messy
and incomplete intentionally. For other online resources, we face a similar
problem.

We also face other challenges, both in data collection and in data cleaning:
missing paper identifiers, ambiguous author names, and so on and so forth.
In Section 7, we address all the challenges we have faced and how we have
overcome them.

1.3. Experimental design and scientific relevance. We are primarily in-
terested in the networks for statisticians home based in USA. For this rea-
son, we have limited our attention to four journals (AoS, JASA, JRSS-B,
Biometrika), which are regarded by many US-based statisticians the top sta-
tistical journals. We recognize that we may have different results when we
include in our study either journals which are the main venues for statis-
ticians from a different country or region, or journals which are the main
venues for statisticians with a different focus (e.g., Bioinformatics).

We are also primarily interested in the time period when high dimensional
data analysis emerged as a new statistical area. We may have different results
if we extend the study to a much longer time period.

On the other hand, it seems that the data sets we have serve well for solv-
ing our targeted scientific problems: they provide many meaningful results
in many aspects of our targeted community within the targeted time period.
They also serve as a starting point for a more ambitious project in which
we collect data from many more journals in a much longer time period.

1.4. Disclaimers. Our primary goal in the paper is to present the data
sets we collect, and to report what we find with them. We wish to clarify:

• It is not our intention to rank one author or a paper over the oth-
ers. We wish to clarify that “highly cited” is not exactly the same as
“important” or “influential”, and “not highly cited” is not exactly the
same as “unimportant” or “not influential”.
• It is not our intention to rank one area over the other. A “hot” area

is not exactly the same as an “important” area or an area that needs
the most of our time and efforts. It is also not exactly the area that is
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so-much over-studied or exhausted that we should not dive in either.
• It is not our intention to label an author/paper/topic with a certain

community/group/area. A community or a research group may contain
many authors, and can be hard to interpret. For presentation, we need
to assign names to such communities/groups/areas, but the names do
not always accurately reflect all the authors/papers in them.

Also, social networks are about “real people”, and this time, “us”. In order
to obtain meaningful and interpretable results, we have to use real names.
We have not used any data beyond those which are publicly available. The
interest of the paper is on the statistics community as a whole, not on any
individual statisticians.

1.5. Contents. The paper is organized as follows. Section 2 discusses the
productivity, patterns and trends, and Section 3 discusses the centrality. In
Sections 4-5, we discuss community detection for the Coauthorship network
and Citation network, respectively. Section 6 contains a brief summary and
discusses the limitations of the paper and suggests some future directions.
Section 7 addresses the challenges in data collection and cleaning.

2. Productivity, patterns and trends. In this section, we report our
findings, focusing on three interconnected aspects: productivity, coauthor
patterns and trends, citation patterns and trends.

2.1. Productivity. Overall, there are 3248 papers and 3607 authors in
the data set, suggesting an average of 0.90 paper per author. It is of interest
to investigate how the productivity evolves over the years. In Figure 1, we
present the total number of papers published in each year (left panel) and
the average number of papers per author in each year (right panel), i.e.,
the ratio of the total number of papers published that year over the total
number of authors who published at least once that year (it seems the result
is inconsistent to that of an overall mean of .90, but this is due to that
authors in different years largely overlap with each other). It is interesting to
note that over the 10-year period, the number of papers published each year
has been increasing, but the average number of papers per author has been
decreasing (drop about 18% in ten years). Possible explanations include:

• More collaborative. Collaboration between authors has been increasing.
• More competitive. Statistics has become a more competitive area, and

there are more people who enter the area than who leave the area. Also,
it becomes increasingly more difficult to publish in these 4 journals
(which are viewed by many as top journals in statistics).
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Fig 1. Left: total number of papers published each year from 2002 to 2012 (for the year
2012, we have only data for the first half). Right: the ratios between the number of papers
published in each year and the number of authors who has published in the same year.

We also present the distribution of the numbers of papers per author. For
any K-author paper, K ≥ 1, we have two different ways to count each coau-
thor’s contribution to this particular paper, either divided or non-divided.

• Non-divided. We count every coauthor as has published one paper.
• Divided. We count every coauthor as has published 1/K paper.

Both approaches have their virtues and disadvantages. The first way may
cause substantial “inflation” in counting, and the second way may be in-
sufficient, especially since for many papers, there are one or more “leading
authors” who contribute most of the work.

Following the first approach, we have the left panel of Figure 2, where the
x-axis is the number of papers, and the y-axis is the proportion of authors
who have written more than a certain number of papers. Approximately,
the curve looks like a straight line, especially to the right tail. This suggests
that the distribution of the number of papers has a power law tail.

Following the second approach, we present the Lorenz curve [39] of the
number of papers by each author (where for aK-author paper, each author is
counted as having 1/K paper) in the right panel of Figure 2, which suggests
the distribution does not have a power law tail but is still very skewed. The
figure shows that the top 10% most prolific authors contribute 41% of the
papers, and the top 20% most prolific authors contribute 58% of the papers.
Our findings are similar to that in [32] for the physics community.

The Gini coefficient [15] is a well-known measure of dispersion for a dis-
tribution. For our data set, the Gini coefficient for the distribution of the
number of papers by different authors is 0.51, which is much smaller than the
Gini coefficient of 0.70 for that associated with the physics community [32].
This seems to suggest that the published papers are more evenly distributed
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Fig 2. Left: The proportion of authors who have written more than a certain number of
papers (for a better view, both axes are evenly spaced on the logarithmic scale). Right: The
Lorenz curve for the number of papers each author with divided contributions.

among authors in the statistics community than the physics community. An-
other possible explanation is that the data set in [32] is based on all published
papers in physics spanning more than 100 years, while our data set is based
on four journals in statistics for a 10-year period. It is expected that in the
latter, the distribution of the number of papers by different authors (with
divided contributions) is less dispersed. It is interesting to note that the Gini
coefficient of the income inequality for the USA in the year of 2011 is 0.48,
which is slightly smaller than 0.51.

2.2. Coauthor patterns and trends. In the coauthorship network, the de-
gree of a node is also the number of coauthors for the node. The degrees
range from 0 to 65, where Peter Hall (65), Raymond Caroll (55), Joseph
Ibrahim (41), Jianqing Fan (38) and David Dunson (32) are the ones with
the highest degrees (and so they are the most collaborative authors). Also,
154 authors have degree 0, and 913 authors have degree 1. The degree dis-
tribution is shown in Figure 3 (left panel), suggesting a power law tail.

It is of interest to investigate how the number of coauthors changes over
time. In Figure 3 (right panel), we present the average number of coau-
thors in each of the 10 years (for each year, we consider only the authors
who published in these journals). It is seen that overall the average number
of coauthors is steadily increasing. Again, this suggests that the statistics
community has become increasingly more collaborative.

Many social network are transitive (e.g., a friend of a friend is likely to
be a friend) [45]. For the coauthorship network based our data sets, the
transitivity is 0.32, compared to 0.066 for the biology community, 0.15 for
the mathematics community, and 0.43 for the physics community [37]. For
real-world social networks, the usual range of transitivity is between 0.3 and
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Fig 3. Left: The proportion of authors with more than a given number of coauthors (for
a better view, both axes are evenly spaced on the logarithmic scale). Right: The average
number of coauthors for all authors who has published in these journals that year.

0.6 [39], suggesting that the Coauthorship network is moderately transitive.

2.3. Citation patterns and trends. For the 3248 papers (3607 authors) in
our data sets, the average citation per paper is 1.76, which is significantly
lower than the Impact Factor (IF) of these journals. Based on ISI 2010, the
IFs for AoS, JRSS-B, JASA, and Biometrika are 3.84, 3.73, 3.22, and 1.94,
respectively. This is largely due to that we count only the citations between
papers in these 4 journals in a 10-year period. Among these papers, (a) 1693
(52%) are not cited by any other paper in the data set, (b) 1450 (45%) do
not cite any other paper in the data set, and (c) 778 (24%) neither cite nor
are cited by any other papers in the data sets.

The distribution of the in-degree (the number of citations received by each
paper) is highly skewed. The top 10% highly cited papers receive about 60%
of all citation counts, while the top 20% receive about 80% of all citation
counts. The Gini coefficient is 0.77 [15] suggesting that the in-degree is highly
dispersed. The Lorenz curve [39] is shown in Figure 4 (left panel), confirming
that the distribution of the in-degrees is highly skewed.

We also observe some very interesting patterns. First, the authors return a
favor of citation, especially if it is from a coauthor. The proportion of (either
earlier or later) reciprocation among coauthor citations is 79%, while that
among distant citations is 25%.

In Figure 4 (right panel), we show that over the 10-year period, (a) the
proportion of self-citations has been slowly decreasing, (b) the proportion of
citations from a coauthor remains roughly the same, and (c) the proportion
of distant citations (citations that are not from oneself or a coauthor) has
been slowly increasing. The last item is a little unexpected, but it probably
makes sense in that over the years, the publications have become increas-
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Fig 4. Left: The Lorenz curve for the number of citation received by each paper. Right: The
proportions of self-citations (red circles), coauthor citations (green triangles) and distant
citations (blue rectangles) for each two-year block.

ingly more accessible online and communications have become increasingly
easier and more efficient. That the blue curve and the red cross crossover
with each other on the left is probably due to the “boundary effect”: for
papers published in 2003 (say), most the papers they have cited are prob-
ably published earlier than 2002, which are not included in our data sets.
Below, we show that the mean delay of citation is about 3 years. For this
reason, the “boundary effect” is probably negligible in the later half of the
time period. Note that the overall proportions for self-citations, coauthor
citations and distant citations are 27%, 9%, and 64%, respectively.

The data set also confirms a reasonable delay in citations, despite the fact
that most papers appear online (such as personal website, arXiv, department
archives) much earlier than the time when the paper is published. The overall
mean delay (e.g., the average difference between the years of the publication
of a new paper and the papers it cites) is 3.30 years, and the mean delay
for self-citations, coauthor citations, and distant citations, are 2.81, 3.36
and 3.51 years, respectively, suggesting the authors cite their own or their
coauthors’ work more quickly than that of others.

3. Centrality. It is frequently of interest to identify the most “impor-
tant” authors or papers, and one possible approach is to use centrality. There
are many different measures of centrality. In this section, we use the degree
centrality, the closeness centrality, and the betweenness centrality.

The degree centrality is conceptually simple, but the definition varies with
the types of networks. For the author-paper bipartite network, the centrality
of an author is the number of papers he/she publishes. For Coauthorship
network, the centrality of an author is the number of his/her coauthors. For
Citation network of authors, we are primarily interested in the in-degree,
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and the centrality of an author is the number of citers (i.e., authors who
cite his or her papers). For Citation network of papers, the centrality is the
in-degree (i.e., the number of papers which cite this paper).

The closeness centrality is defined as the reciprocal of the total distance
to all others (Sabidussi [41]), Cclo(v) = 1/(Σu∈V dist(v, u)), where V is the
set of all nodes and dist(v, u) is the distance between nodes v and u.

The betweenness centrality measures the extent to which a node is located
“between” other pairs of nodes. The most commonly used definition (e.g.,

Freeman et al. [14]) is Cbet(v) = Σs 6=t6=v∈V
σ(s,t|v)

Σvσ(s,t|v) , where σ(s, t|v) is the
total number of shortest paths between s and t that pass through v.

Table 1 presents the key authors identified by different measures of cen-
trality. The results suggest that different measures of centrality are largely
consistent with each other, which identify Raymond Carroll, Jianqing Fan,
and Peter Hall (alphabetically) as the “top 3” authors.

Table 1
Top 3 authors identified by the degree centrality (Columns 1-3; corresponding networks
are the author-paper bipartite network, Coauthorship network, and Citation network for

authors), the closeness centrality and the betweenness centrality.

# of papers # of coauthors # of citers Closeness Betweenness

Peter Hall Peter Hall Jianqing Fan Raymond Carroll Raymond Carroll
Jianqing Fan Raymond Carroll Hui Zou Peter Hall Peter Hall
Raymond Carroll Joseph Ibrahim Peter Hall Jianqing Fan Jianqing Fan

Table 2 presents the “hot” papers identified by 3 different measures of
centrality. For all these measures, the “hottest” papers seem to be in the area
of variable selection. In particular, the top 3 most cited paper are Zou [48]
(75 citations; adaptive lasso), Meinshansen and Buhlmann [34] (64 citations;
graphical lasso), and Candès and Tao [8] (49 citations; Dantzig Selector).
The three papers are all in a specific sub-area in high dimensional variable
selection, where the theme is to extend the well-known penalization methods
of the lasso [9, 43] in various directions (these fit well with the impression
of many statisticians: in the past 10-20 years, there is a noticeable wave of
research papers devoted to the penalization methods).

These results suggest “Variable Selection” as one of the “hot” areas. Other
“hot” areas may include “Covariance Estimation”, “Empirical Bayes”, and
“Large-Scale Multiple Testing”; see Table 2 for details.

For more information, note that at www.stat.uga.edu/~psji/, we have
listed the 30 most cited papers in the file top-cited.xlsx. These 30 papers
account for 16% of the total number of citation counts. The list furthers
shows that the most highly cited papers are on the regularization methods
(e.g., adaptive lasso, group lasso, etc.).
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On the other hand, we must note that some important and innovative
works in the particular area of variable selection have significantly fewer ci-
tations. This includes but is not limited to the phenomenal paper by Efron
et al. (2004) [10] on least angle regression, which has received a lot of atten-
tion from a broader scientific community (4365 citations on Google Scholar),
but was cited only 11 times by papers in our data set (in comparison, the
adaptive lasso paper [48] has received 75 citations). A similar claim can be
drawn on other areas or topics.

Table 2
Fourteen “hot” papers (alphabetically) identified by degree centrality (Column 2; for

citation networks of papers), closeness centrality, and betweenness centrality. Numbers in
Column 2-4 are the ranks (only shown when the rank is smaller than 5).

Paper (Area) Citations Closeness Betweenness

Bickel & Levina (2008) [6] (Covariance Estimation) 4

Candes & Tao (2007) [8] (Variable Selection) 3

Fan & Li (2004) [11] (Variable Selection) 2

Fan & Lv (2008) [12] (Variable Selection) 1

Fan & Peng (2004) [13] (Variable Selection) 4 1

Huang et al (2006) [20] (Covariance Estimation) 3

Huang et al (2008) [19] (Variable Selection) 5

Hunter & Li (2005) [22] (Variable Selection) 4

Johnstone & Silverman (2005) [26] (Empirical Bayes) 5

Meinshausen & Buhlmann (2006) [34] (Variable Selection) 2

Storey (2003) [42] (Multiple Testing) 3

Zou (2006) [48] (Variable Selection) 1

Zou & Hastie (2005) [49] (Variable Selection) 5

Zou & Li (2008) [50] (Variable Selection) 2

That statisticians have been very much focused on a very specific re-
search topic and a very specific approach is an interesting phenomenon that
deserves more explanation by itself.

The centrality measures we use here are either natural choices or exist-
ing measures. We are merely reporting what the data sets tell us, with no
intention to rank one author or an area over the others; see Section 1.4.

4. Community detection for Coauthorship networks. In this sec-
tion, we discuss community detection for Coauthorship networks. We inves-
tigate two Coauthorship networks, (A) and (B), to be introduced shortly.
We first discuss models and methods in Sections 4.1-4.2, and then apply the
methods to Coauthorship networks (A) and (B) and report the results in
Sections 4.3-4.4. In Section 4.5, we briefly comment on community extrac-
tion (a problem that is closely related but is also very different).

There are many different ways to define the Coauthorship network, and in
this paper, we use the following definition. Let n be the number of authors.
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The Coauthorship network is the undirected network N = (V,E), where
V = {1, 2, . . . , n} is the set of nodes and E is the set of edges. Fixing an
integer t ≥ 1, we assume

(4.1) nodes i and j have an edge⇐⇒ they have coauthored ≥ t papers.

In this paper, we focus our study on the following two networks.

• Coauthorship network (A). In this network, we choose t = 2.
• Coauthorship network (B). In this network, we choose t = 1.

While Coauthorship network (B) is the most natural choice, Coauthorship
network (A) is also of interest: it is not only easier to analyze but also has
some very different structures. Our study on Coauthorship (A) identifies an
array of meaningful communities that are hard to find by using Coauthorship
(B). See Section 4.3 for details.

In principle, networks with t ≥ 3 could also be of interest. However, such
networks are very much fragmented, and provide limited additional insight
to those of t = 1, 2. For reasons of space, we skip discussions along this line.

Community detection is one of the problems that of major interest in
studies on social networks [16, 29]. Consider an undirected and connected
network N = (V,E). We think V as the union of a few (disjoint) subsets
which we call the “communities”:

V = V (1) ∪ V (2) . . . ∪ V (K),

where “∪” stands for the union of sets and has nothing to do with networks
(same below). A community can be thought of as a subset of nodes where
there are more edges ‘within’ than ‘across’ different communities; see for
example [7]. The goal of community detection is for each node i ∈ V , to
decide to which community it belongs.

Note that for simplicity, we assume each pair of communities are disjoint
with each other in this paper. Also, in practice, a given network might
not always be connected. For the purpose of community detection, we can
always first split the network into different disconnected components, and
then apply community detection to each component separately.

4.1. Degree Corrected Block Model for undirected networks. For an undi-
rected network N = (V,E) where V = {1, 2, . . . , n} as before, let A be the
associated adjacency matrix (symmetric since N is undirected):

(4.2) A(i, j) =

{
1, if there is an edge between nodes i and j,
0, otherwise.
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We view the upper triangular ofA as independent (but possibly not-identically
distributed) Bernoulli random variables, and decompose A as the sum of a
‘signal’ component and a ‘noise’ component:

A = E[A] +W, W ≡ (A− E[A]);

E[A] is the matrix satisfying (E[A])(i, j) = P (A(i, j) = 1), 1 ≤ i ≤ j ≤ n.
By default, we think that there is no edge between a node and itself, so

the diagonals of A are all 0s. In light of this, for a symmetric matrix Ω to
be determined, we can further write

(4.3) A = Ω− diag(Ω) + (A− E[A]).

0 5 10 15 20
2.5

3

3.5

4

4.5
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35

40

Fig 5. Scree plots. From left to right: the giant component of Coauthorship network(A),
Coauthorship network(B), Citation network (in the last one, we display singular values
instead of eigenvalues).

Degree Corrected Block Model (DCBM) is a model proposed by Karrer
and Newman [27] for undirected networks, and has become popular recently.
In this model, we have n positive parameters for degree heterogeneities,
θ(1), θ(2), . . . , θ(n), and a K ×K matrix P such that

(4.4) Ω = ΘLΘ, where L =
K∑
k=1

K∑
`=1

P (k, `)1k1
′
`.

Here, Θ is the n×n diagonal matrix with θ(i) being the i-th diagonal entry,
and 1k is the n× 1 indicator vector of k-th community satisfying 1k(i) = 1
if i ∈ V (k) and 1k(i) = 0 otherwise, 1 ≤ k ≤ K. For analysis, we usually
need some mild regularity conditions on P ; see [25] and also sections below.

4.2. Community detection methods for undirected networks. There are
many approaches to community detection for undirected networks, including
but not limited to Jin’s SCORE [25], Newman and Girvan’s Modularity
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David Dunson

Donglin Zeng

Hans−Georg Muller

Hongtu Zhu

Hua Liang

Jianqing Fan

Jing Qin

Joseph G Ibrahim

Peter Hall

Raymond J Carroll

T Tony Cai

Fig 6. The giant component of Coauthorship network (A). It could be interpreted as
the “High Dimensional Data Analysis (Coauthorship (A))” (HDDA-Coau-A) community.
Names are only shown for 11 nodes with a degree of 8 or larger.

approach (NGM) [40], Newman’s Spectral Clustering approach (NSC) [38],
Bickel and Chen’s Profile Likelihood approach (BCPL) [7, 47], and Armini
et al.’s Pseudo Likelihood approach (APL) [1].

In this paper, we only investigate SCORE, NSC, BCPL, and APL, and
do not include NGM for comparisons: on one hand, NSC is closely related
to the NGM and relies on an approximation of the Newman and Girvan’s
modularity for inference; on the other hand, NSC is computationally more
efficient than NGM, especially when the size of the network is large.

NSC is a spectral method, where the key observation that Newman and
Girvan’s modularity matrix can be approximated by the leading eigenvectors
of the matrix [38]. Newman introduced NSC as a general idea for spectral
clustering, and there are several different ways for implementations. Follow-
ing [38], we cluster by using the signs of the first leading eigenvectors when
K = 2, and by using the recursive bisections approach when K = 3.
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Table 3
The Adjusted Random Index (ARI) and Variation of Information (VI) for the vectors of

predicted community labels by four different methods for the giant component of
Coauthorship (A), assuming K = 2. A large ARI/small VI suggests that the two

predicted label vectors are similar to each other.

SCORE NSC BCPL APL
SCORE 1.00/.00 -.04/.95 .09/1.05 .72/.33
NSC 1.00/.00 .21/1.06 -.06/.91
BCPL 1.00/.00 .09/.87
APL 1.00/.00

Table 4
Comparison of community sizes by different methods assuming K = 2 for the giant

component of Coauthorship network (A).

North Carolina Carroll-Hall

SCORE 45 191

NSC 155 81

APL 31 205

SCORE ∩ NSC 45 81

SCORE ∩ APL 31 191

NSC ∩ APL 31 81

SCORE ∩ NSC ∩ APL 31 81

BCPL is a penalization method proposed by Bickel and Chen [7] which
uses greedy search to maximize the profile likelihood and works well for
networks with thousands of nodes. When the network size is large, BCPL
may be computationally slow. In light of this, Amini et al. [1] propose a
different Profile Likelihood approach which aims to improve the speed of
BCPL. By doing so, the price it pays is to ignore some dependence structures
of the data so as to simplify the likelihood and make it more tractable.

SCORE, or Spectral Clustering On Ratios of Eigenvectors, is a recent
spectral method proposed by Jin [25]. Assuming K (number of communities)
as known, SCORE consists of the following simple steps.

• Obtain the K leading (unit-norm) eigenvectors of A, say, ξ̂1, ξ̂2, . . . , ξ̂K .
• Obtain the n × (K − 1) matrix R̂ of entry-wise ratios by R̂(i, k) =
ξ̂k+1(i)/ξ̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1.
• Cluster by applying the classical k-means to R̂, assuming there are
≤ K communities.

At the heart of SCORE is the observation that under DCBM, the degree
heterogeneity parameters θ(i)’s are nearly ancillary, and can be conveniently
removed by taking entry-wise ratios between ξ̂k and ξ̂1, k = 2, . . . ,K. In
detail, let ξ1, ξ2, . . . , ξK be the K leading (unit-norm) eigenvectors of Ω.
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Denote Ξ̂ and Ξ by the two n×K matrices

Ξ̂ = [ξ̂1, ξ̂2, . . . , ξ̂K ], and Ξ = [ξ1, ξ2, . . . , ξK ],

and let R be the non-stochastic counterpart of R̂ given by

R(i, k) = ξk+1(i)/ξ1(i), 1 ≤ k ≤ K − 1, 1 ≤ i ≤ n.

Recall that 1k denotes the indicator vector for community k, 1 ≤ k ≤ K.
Write θ =

∑K
k=1(Θ1k) and let D be the K ×K diagonal matrix such that

D(k, k) = ‖Θ1k‖/‖θ‖, 1 ≤ k ≤ K, where ‖ · ‖ denotes the `2-norm. Let T be
the n ×K matrix given by Ξ = ΘT . We have the following lemma, whose
proof is elementary so we omit it.

Lemma 4.1. Assume that (4.4) holds, that P is symmetric, non-singular,
non-negative and irreducible, and that all K eigenvalues of DPD are dis-
tinct. Consider either the n × (K − 1) matrix R or the n × K matrix T .
The matrix has exactly K distinct rows, according to which all n rows of the
matrix partition into K different groups, where the partition coincides with
the partition of all nodes into K different communities.

As a result, (a) the heterogeneity parameters θ(i) are nearly ancillary and
can be removed by taking entry-wise ratios between the leading eigenvectors
of Ω, (b) under DCBM and some regularity conditions, we expect that A =
Ω− diag(Ω) +W ≈ Ω, and so (up to a ±1 sign for each column of Ξ or R)
Ξ̂ ≈ Ξ, and R̂ ≈ R. Applying k-means to R̂ is then a reasonable approach to
community detection. This is carefully justified in [25]; see details therein.

While this is for undirected networks, the above idea continues to be valid
for directed networks, with some careful adaptions. In Section 5, we extend
SCORE to directed-SCORE (D-SCORE) as an approach to community de-
tection for directed networks, and use it to analyze the Citation network.

In Sections 4.3-4.4, we apply SCORE, NSC, BCPL, and APL to Coau-
thorship network (A) and (B), and report the results.

Remark 1. Note that the vectors of predicted labels by different methods
could be very different. For a pair of the predicted label vectors, we measure
the similarity by the Adjusted Rand Index (ARI) [21] and the Variation of
Information (VI) [33]; a large ARI or a small VI suggests that two predicted
label vectors are similar to each other.

4.3. Coauthorship network (A). Coauthorship network (A) has a total
of 3607 nodes. Partially due to that we choose t = 2 in the definition of
the network (i.e., (4.1)), the network is very much fragmented: it consists of
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Fig 7. Community detection results by SCORE (top) and APL (bottom) for the giant
component of Coauthorship network (A), assuming K = 2. Nodes in black (solid) dots
and white circles represent two different communities.

2985 different components, 2805 (94%) of them are singletons, 105 (3.5%)
of them are pairs, and the average component size is 1.2.

The giant component has 236 nodes, which can be roughly interpreted as
the “High Dimensional Data Analysis (Coauthorship (A))” group (HDDA-
Coau-A). We present this group in Figure 6 where we only show the name
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of an author if the degree is 8 or larger.
Given that the size of the giant component is relatively large, it is of

interest to see if it consists of sub-structures (i.e., communities). In the left
panel of Figure 5, we plot the scree-plot of this group. The elbow point of the
scree-plot maybe at the 3rd, 5th, or 8th largest eigenvalue, suggesting that
there may be 2, 4, or 7 communities. In light of this, for each K with 2 ≤
K ≤ 7, we run SCORE, NSC, BCPL and APL and record the corresponding
vectors of predicted labels. We find that (see Remark 1 in Section 4.2 for
discussions on ARI and VI):

• For K ≥ 3, the results by different methods are largely inconsistent
with each other: the maximum of ARI and the minimum VI across
different pairs of methods are 0.15 and 1.19, respectively.
• For K = 2, we present the ARI and VI for each pair of the methods in

Table 3. The table suggests that: the 4 methods split into two groups
where SCORE and APL are in the same group with an ARI of 0.72,
and NSC and BCPL are in the other group with an ARI of 0.21.

Note that results for methods in each groups are moderately consistent to
each other, but those for methods in different groups are rather inconsistent.
See Table 4 for more comparisons.

The case of K = 2 is worthy of further investigation. In Figures 7-8, we
present the community detection results by each of the four methods. In each
panel, nodes are marked with either black dots or white circles, representing
two different communities. It seems that all four methods agree that there
are two communities as follows.

• “North Carolina” community. This includes a group of researchers
from Duke Univ., Univ. of North Carolina, North Carolina State Univ..
• “Carroll-Hall” community. This includes a group of researchers in non-

parametric and semi-parametric statistics, functional estimation, and
high dimensional data analysis.

It seems that the four methods split into two groups according to clustering
results: SCORE and APL in one, and NSC and BCPL in the other. Methods
in two groups have very different results, especially with the Fan’s group
and Dunson’s group (we think the latter as a branch of the North Carolina
community): SCORE and APL cluster the Fan’s group into the “Carroll-
Hall” community, and NSC and BCPL cluster both the “Fan” group and
the “Dunson” group into the“North Carolina” community. See Figures 7-8.

Why methods in two groups do not agree with each on the Fan’s group? A
possible reason is that Fan’s group has strong ties to both the “North Car-
olina” community and the “Carroll-Hall” community. This may also suggest
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there are 3 communities (instead of 2) in this component. However, as men-
tioned before, when we assume K = 3, the results by all four methods are
rather inconsistent with each other. How to obtain a more convincing expla-
nation is an interesting but challenging problem. We omit further discussions
along this line for reasons of space.

At the same time, for methods in the same group, despite their similarity,
there are also some major differences. In detail,

• SCORE and APL differ on the “Dunson” branch. SCORE includes the
“Dunson” branch in the “North Carolina” group, but APL excludes
it from the group, and clusters them into the “Carroll-Hall” group to
which they are not directly connected. In this regard, it seems that
results by SCORE are more meaningful.
• NSC and BCPL differ on several small branches, including the afore-

mentioned “Dunson” branch and two small branches connecting to the
hub node marked as Jianqing Fan. In comparison, the results by NSC
seem more meaningful.

For the second point, the possible reason is that BCPL uses a random start
as originally proposed [7, 47]. One could use BCPL with a different start,
say, the predicted labels by SCORE. However, this leads to very similar
results to that of using SCORE alone. The results of BCPL highly depend
on the starting label vectors it uses, and how to find the best starting vector
remains an open problem; we leave the discussions to the future.

We now move away from the giant component. The next two largest com-
ponents seem to the “Theoretical Machine Learning” community (15 nodes)
and the “Dimension Reduction” community (14 nodes), presented in Fig-
ure 9. The first community is a small group of researchers (including Peter
Buhlmann, Alexandre Tsybakov, Jon Wellner, Bin Yu) who work on Ma-
chine Learning topics using sophisticated statistical theory. The second com-
munity is a tight research group working on dimension reduction, including
Francesca Chiaromonet, Denis Cook, Bing Li and their collaborators.

A conversation with Qunhua Li [31] helps to illuminate why these com-
munities are meaningful and how they evolve over time. In the first commu-
nity, Marloes H. Maathuis obtained her Ph.D from University of Washington
(jointly supervised by Jon Weller and Piet Groeneboom) in 2006 and then
went on to work in ETH, Switzerland, and she is possibly the “bridge”
connecting the Seattle group and the ETH group (Markus Kalische, Pe-
ter Buhlmann, Markus Kalische, Sara van de Geer). Nocolai Meinshausen
could be one of the “bridge” nodes between ETH and Berkeley: he was a
Ph.D student of Peter Buhlmann and then a post-doctor at Berkeley. In the
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Fig 8. Community detection results by NSC (top) and BCPL (bottom) for the giant com-
ponent of Coauthorship network (A), assuming K = 2. Nodes in black (solid) dots and
white circles represent two different communities.

second community, Ms. Chiaromonet obtained her Ph.D from University
of Minnesota, where Denis Cook served as the supervisor. She then went
on to work in Statistics at Pennsylvania State University, and started to
collaborate with Bing Li there for researches on dimension reduction [31].

In the Coauthorship network (A), further down the list are the “Johns
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Fig 9. The second largest (left) and third largest (right) components of Coauthorship net-
work (A). They can be possibly interpreted as the “Theoretical Machine Learning” and
“Dimension Reduction” communities, respectively.

Hopkins research group” (13 nodes; including faculty at Johns Hopkins
University and their collaborators; similar below), “Duke research group”
(10 nodes; including Mike West, Jonathan Stroud, Carlos Caravlaho, etc.),
“Stanford research group” (9 nodes including David Siegmund, John Storey,
Ryan Tibshirani, and Nancy Zhang, etc.), “Quantile Regression group” (9
nodes; including Xuming He and his collaborators), and “Experimental De-
sign group” (8 nodes). These communities are presented in Table 5.

4.4. Coauthorship network (B). In Coauthorship network (B), there is
an edge between nodes i and j if and only if they have coauthored 1 or
more papers. Compared to Coauthorship network (A), this definition is more
conventional, but it also makes the network harder to analyze.

Coauthorship network (B) has a total of 3607 nodes, where the giant
component consists of 2263 (63% of all nodes). For analysis in this section,
we focus on the giant component. Also, for simplicity, we call the giant
component the Coauthorship network (B) whenever there is no confusion.

We are primarily interested in community detection. Figure 5 (middle
panel) presents the scree plot associated with Coauthorship network (B),
suggesting 3 or more communities. We apply all four methods: SCORE,
NSC, BCPL, and APL assuming K = 3 and below are the findings.

First, in Table 6, we compare all 4 methods pair-wise and tabulate the cor-
responding ARI and VI (see Remark 1). Somewhat surprisingly, the results
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Table 5
Top: the 4-th, 5-th, and 6-th largest components of Coauthorship network (A) which can
be interpreted as the groups of “Johns Hopkins”, “Duke”, and “Stanford”). Bottom: the
7-th and 8-th largest components of Coauthorship network (A) which can be interpreted

as the groups of “Quantile Regression” and “Experimental Design”.

Barry Rowlingson
Brian S Caffo
Chong-Zhi Di
Ciprian M Crainiceanu
David Ruppert
Dobrin Marchev
Galin L Jones
James P Hobert
John P Buonaccorsi
John Staudenmayer
Naresh M Punjabi
Peter J Diggle
Sheng Luo

Carlos M Carvalho
Gary L Rosner
Gerard Letac
Helene Massam
James G Scott
Jonathan R Stroud
Maria De Iorio
Mike West
Nicholas G Polson
Peter Muller

Armin Schwartzman
Benjamin Yakir
David Siegmund
F Gosselin
John D Storey
Jonathan E Taylor
Keith J Worsley
Nancy Ruonan Zhang
Ryan J Tibshirani

Hengjian Cui
Huixia Judy Wang
Jianhua Hu
Jianhui Zhou
Valen E Johnson
Wing K Fung
Xuming He
Yijun Zuo
Zhongyi Zhu

Andrey Pepelyshev
Frank Bretz
Holger Dette
Natalie Neumeyer
Stanislav Volgushev
Stefanie Biedermann
Tim Holland-Letz
Viatcheslav B Melas

of BCPL are inconsistent with those by all other methods. For example, the
maximum ARI between BCPL and each of the other three methods is .00,
and the smallest VI between BCPL and each of the other three methods is
1.29, showing a substantial disagreement. This is possibly due to that BCPL
highly depends on the starting vector it uses, and may not always converge
to a meaningful community partition. This could be improved by starting
the algorithm with the vector of predicted labels by (say) SCORE, but the
resultant partition is usually close to that of SCORE. For this reason, we
omit BCPL for comparison in the analysis below.

At the same time, the results by SCORE, NSC, and APL are reasonably
consistent with each other: the ARI between the vector of predicted labels
by SCORE and that by NSC is 0.55 and the ARI between the vector of
predicted labels by NSC and that by APL is 0.41; see Table 6 for details. In
particular, the three methods agree on that, the three communities each of
them identifies can be interpreted as follows (arranged in sizes ascendingly).

• “Objective Bayes” community. This community includes a small group
of researchers (group sizes are different for different methods, ranging
from 20 to 69) including James Berger and his collaborators. Figure
10 presents the “Objective Bayes” community identified by SCORE,
where the names for a handful of high-degree nodes are presented.
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Table 6
The Ajusted Rand Index (ARI) and Variation of Information (VI) for the vectors of
predicted community labels by four different methods in Coauthorship network (B),

assuming K = 3. A large ARI/small VI suggests that the two predicted label vectors are
similar to each other.

SCORE NSC BCPL APL

SCORE 1.00/.00 .55/.51 .00/1.65 .19/.59
NSC 1.00/.00 .00/1.46 .41/.36
BCPL 1.00/.00 .00/1.21
APL 1.00/.00

• “Biostatistics (Coauthorship (B))” (Biostat-Coau-B) community. The
sizes of this community by three different methods have quite a bit
variability and range from 50 to 388. While it is probably not exactly
right to call this community “Biostatistics”, the community consists
of a number of statisticians and biostatisticians in North Carolina Re-
search Triangle (University of North Carolina (UNC), Duke Univer-
sity (Duke), and North Carolina State University (NCSU)). It also
includes many statisticians and biostatisticians from Harvard Univer-
sity, University of Michigan at Ann Arbor, University of Wisconsin
at Madison. Figure 11 presents the “Biostatistics” community identi-
fied by SCORE, where we similarly show the names of a handful of
high-degree nodes.
• “High Dimensional Data Analysis (Coauthorship (B))” (HDDA-Coau-

B) community. The sizes of this community by three different methods
range from 1811 to 2193. The community include researchers from
a wide variety of research areas in or related to high dimensional
data analysis (e.g., Bioinformatics, Machine Learning, non-parametric
regression, Quantile Regression). Figure 12 presents HDDA-Coau-B
community identified by SCORE, with the names of a handful of high-
degree nodes shown.

While it seems that three methods agree on that there are three commu-
nities as described above, they also present substantial differences. In Table
7, we compare the sizes of the three communities identified by each of the
three methods. There are two points worth noting.

First, while SCORE and NSC are quite similar to each other, there is
a major difference: NSC clusters about 200 authors, mostly biostatisticians
from Harvard University, University of Michigan at Ann Arbor, and Uni-
versity of Wisconsin at Madison, into the HDDA-Coau-B community, but
SCORE clusters them into the Biostat-Coau-B community. It seems that
the results by SCORE are more meaningful.
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Second, APL behaves very differently from either SCORE or NSC. Its
estimate of the “Objective Bayes” community is (almost) a subset of its
counterpart by either SCORE or NSC, and is much smaller in size (sizes are
20, 64, and 69 for that by APL, SCORE, and NSC). A similar claim applies
to the Biostat-Coau-B community identified by each of the methods (sizes
are 50, 388, and 169 for that by APL, SCORE, and NSC). This suggests that
APL may have underestimated these two communities but overestimated the
HDDA-Coau-B community.

It is also interesting to compare these results with those we obtain in Sec-
tion 4.3 for Coauthorship network (A). Below are three noteworthy points.

First, recall that in Figure 9 and Table 5, we have identified a total of
7 different components of Coauthorship network (A). Among these compo-
nents, the Duke component (middle panel on top row in Table 5) splits into
three parts, each belongs to the three of the communities of Coauthorship
network (B) identified by SCORE. The other 6 components fall into the
HDDA-Coau-B community identified by SCORE almost completely.

Second, for the giant component of Coauthorship (A), there is a close
draw on whether we should cluster the Carroll-Hall’s group and Fan’s group
into two communities: SCORE and APL think that two groups belong to one
community, but NSC and BCPL do not agree with this. In Coauthorship
(B), both groups are in the HDDA-Coau-B community. Also, in previous
studies on this giant component, BCPL and APL separate the nodes in
Dunson’s branch from the North Carolina group, and cluster them into the
Carroll-Hall group. In the current study, however, the whole North Carolina
group (including Dunson’s branch) are in the Biostat-Coau-B community.

Third, in Coauthorship (A), Gelfand’s group is included in this 236-node
giant component, where James Berger is not a member. In Coauthorship
network (B), Gelfand’s group now becomes a subset of “Objective Baye”
community where James Berger is a hub node.

4.5. Community extraction. The goals of community detection and com-
munity extraction are related but also subtly different. The former attempts
to assign a class label to each node. The latter, however, attempts to extract
one or more meaningful communities, without assigning labels to nodes out-
side the extracted communities. In principle, methods for community detec-
tions can be adapted to methods for community extraction, and vice versa.

A noteworthy approach to community extraction is the approach by Zhao
et al. [46], which is related to APL [47] in a high level. We have applied this
procedure for community detection with the Coauthorship network (B), and
have extracted three communities with sizes 493, 214, and 1556. The 493-
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Table 7
Comparison of sizes of the three communities identified by each of the three methods in
Coauthorship network (B), assuming K = 3. BCPL is not included for comparisons for

its results are inconsistent with those by the other three methods.

Objective Bayes Biostat-Coau-B HDDA-Coau-B

SCORE 64 388 1811

NSC 69 163 2031

APL 20 50 2193

SCORE ∩ NSC 55 162 1807

SCORE ∩ APL 20 50 1811

NSC ∩ APL 20 50 2032

SCORE ∩ NSC ∩ APL 20 50 1807
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Fig 10. The “Objective Bayes” community in Coauthorship network (B) identified by
SCORE (64 nodes). Only names for 14 nodes with a degree of 9 or larger are shown.

node one can be interpreted as the HDDA-Coau-B community, including
many hub nodes in the HDDA-Coau-B community identified by SCORE.
The other two are unfortunately hard to interpret.

5. Community detection for Citation network. The Citation net-
work is a directed network. As a result, the corresponding discussion is
different in important ways to that in Section 4, and provides additional
insight into the structures of the networks of statisticians. In Section 5.1, we
extend DCBM to directed networks, and in Section 5.2, we discuss methods
for community detection. In Section 5.3, we analyze the Citation network,
and compare the results with those in Section 4.

Denote the Citation network by Ñ = (Ṽ , Ẽ), where Ṽ = {1, 2, . . . , n} is
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Fig 11. The “Biostatistics” community (Biostat-Coau-B) in Coauthorship network (B)
identified by SCORE (388 nodes). Only names for 17 nodes with a degree of 13 or larger
are shown. A “branch” in the figure is usually a research group in an institution or a state.

the set of nodes (i.e., authors), and Ẽ is the set of edges, where for any two
distinct nodes i, j ∈ Ṽ (self-citations are not counted by default),

(5.1) there is a directed edge from i to j ⇐⇒ i has cited j at least once.

To analyze the Citation network, one usually focuses on the weakly con-
nected giant component [3]. This is the giant component of the so-called
weakly connected network associated with the Citation network, where each
i ∈ Ṽ is a node and for any two distinct nodes i, j ∈ Ṽ , there is an (undi-
rected) edge between them if either i has cited j at least once or j has cited
i at least once. Restricting all nodes in Ñ to the weakly connected giant
component gives a (directed) sub-network which we denote by N .

From now on, we restrict our attention to N , and still call it the Citation
network for notational simplicity. Note that

(5.2) The weakly connected network associated with N is connected.

For any citation network N = (V,E), we can define two associated (undi-
rected) networks as follows.
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Fig 12. The “High Dimensional Data Analysis” community (HDDA-Coau-B) in Coau-
thorship network (B) identified by SCORE (1181 nodes). Only names for 22 nodes with
degree of 18 or larger are shown.

• Citer network. In this network, each i ∈ V is a node, and there is
an (undirected) edge between two distinct nodes i and j if and only if
both of them have cited a node k at least once, for some k ∈ (V \{i, j})
(i.e., they have a common citee).
• Citee network. In this network, each i ∈ V is a node, and there is an

(undirected) edge between two distinct node i and j if and only if each
of them has been cited at least once by the same node k /∈ (V \ {i, j})
(i.e., they have a common citer).

We shall use these terminologies for the descriptions of both our models and
methods. For general directed networks, some other terminologies may be
more appropriate. However, for simplicity, we stick to the terminology in
this paper, even though the network is not for citations.
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Writing N = (V,E), we are interested in community detection. Simi-
larly as before, we think the nodes in V splits into K different (disjoint)
communities

V = V (1) ∪ V (2) . . . ∪ V (K).

The goal is to assign a community label for each node i, 1 ≤ i ≤ n.
Remark 2. In (5.1), we may change the right hand side to that of “i has

cited j at least t times” for some t ≥ 2, but the incentive for doing so lies
in the hope that the network automatically splits into many components by
choosing an appropriately small t; this is the case for Coauthorship network
(A). Unfortunately, this does not work well with the Citation network, where
the degree density is much larger than that of Coauthorship network.

5.1. DCBM for directed network. We now extend DCBM to directed
networks. Let A be the adjacency matrix of a directed network N , where

A(i, j) =

{
1, there is a directed edge from i to j,
0, otherwise.

Note that the diagonals of A are all 0’s since we don’t consider self citations.
Similar as in Section 4.1, we view the off-diagonals of A as Bernoulli random
variables and write

A = Ω− diag(Ω) +W, W = (A− E[A]).

Introduce two vectors with all positive entries

(5.3) θ = (θ(1), θ(2), . . . , θ(n))′, δ = (δ(1), δ(2), . . . , δ(n))′,

where θ(i) models the degree heterogeneity parameter for node i as a citer,
and δ(i) models the degree heterogeneity parameter for node i as a citee. Let
Θ and ∆ be two diagonal matrices such that the i-th diagonals of Θ and ∆
are θ(i) and δ(i), respectively, and let P be a K ×K symmetric irreducible,
and non-negative matrix as before. We model

Ω = ΘL∆,(5.4)

where similarly as before, L is the n× n matrix satisfying

L(i, j) =

K∑
k=1

K∑
`=1

P (k, `)1k(i)1`(j), 1 ≤ i, j ≤ n.(5.5)

Compared to DCBM for undirected network (4.3)-(4.4), the main difference
is that we do not require Θ = ∆, so Ω is not necessarily a symmetric matrix.
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5.2. Community detection methods for directed networks. For commu-
nity detection for directed networks, there are relatively few approaches. In
this section, we consider two methods: LNSC and D-SCORE.

LNSC stands for Leicht and Newman’s Spectral Clustering approach pro-
posed in [30], where the authors extended the spectral modularity methods
aforementioned [38] to directed networks, using the so-called generalized
modularity [2]. However, it is pointed out in [28] that LNSC can not prop-
erly distinguish the directions of the edges and can not detect communities
representing directionality patterns among the nodes. See details therein.

D-SCORE is an extension of SCORE discussed in Section 4.2. SCORE was
originally proposed by [25] as a community detection method for undirected
network. Below, we carefully adapt it to directed networks, and call the
resultant method Directed-SCORE (D-SCORE).

In detail, recall that the key observation underlying SCORE is that the de-
gree heterogeneity parameters θ(i) are nearly ancillary, and can be largely
removed by taking entry-wise ratios between the k-th leading eigenvector
ξ̂k and the first leading eigenvector ξ̂1, 2 ≤ k ≤ K. In the current set-
ting, such an observation is still valid, provided that we replace eigenval-
ues/eigenvectors by singular values/singular vectors.

In detail, recall that the rank of the n× n matrices Ω is K. Let

(5.6) Ω = UΛV ′, U, V ∈ Rn,K , Λ ∈ RK,K

be the Singular Value Decomposition (SVD) where the diagonals of Λ are
sorted descendingly so that the SVD is unique. Define two n×K matrix T (l)

and T (r) and two n× (K−1) matrices R(l) and R(r) (where the superscripts
(l) and (r) stand for left and right, respectively) by

(5.7) U = ΘT (l), R(l)(i, k) =
U(i, k + 1)

U(i, 1)
, 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1,

and

(5.8) V = ∆T (r), R(r)(i, k) =
V (i, k + 1)

V (i, 1)
, 1 ≤ i ≤ n, 1 ≤ k ≤ K − 1.

Let (θ, δ) be as in (5.3) and recall that 1k denotes the indicator vector for
community k, 1 ≤ k ≤ K. Write θ =

∑K
k=1(Θ1k) and δ =

∑K
k=1(∆1k). Let

D and F be the K ×K diagonal matrices such that D(k, k) = ‖Θ1k‖/‖θ‖,
F (k, k) = ‖∆1k‖/‖δ‖, 1 ≤ k ≤ K. We have the following lemma, the proof
of which is elementary so is omitted.
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Lemma 5.1. Suppose (5.4)-(5.5) and (5.7)-(5.8) hold where P is non-
negative and non-singular, and both PP ′ and P ′P are irreducible, and that
all singular values of DPF are simple. Let R be any of the four matrices
R(l), R(r), T (l) and T (r). Then R has K district rows, according to which
all n rows of R partition into K different groups. Moreover, the partition
coincides with the partition of n nodes into K different communities.

Note also that by Perron’s theorem [18, Page 500], all entries of the first
column of U and V are strictly positive so bothR(l) andR(r) are well-defined.

Lemma 5.1 is similar to Lemma 4.1 but also provides something quite
useful which we don’t have before: in Lemma 4.1, we have only one matrix
R to help us for inferences, but here we have two matrices R(l) and R(r)

(which are generally unequal) for inferences. Note that for authors whose
in-degrees and out-degrees are both large, it does not make much difference
whether we use both matrices or one of them, but for authors for whom
either the in-degree or the out-degree is low, it is important to use both.

Lemma 5.1 motivates the following procedure, which we call D-SCORE.
Let N1 and N2 be the giant components of the Citer and Citee networks
associated with N , respectively. Suppose the first K leading singular values
of A are all simple (multiplicity is 1) [18], let û1, û2, . . . , ûK be the first K
leading left singular vectors of A, and let v̂1, v̂2, . . . , v̂K be the first K leading
right singular vectors of A. Define two n × (K − 1) matrices R̂(l) and R̂(r)

where for 1 ≤ k ≤ K − 1,

(5.9) R̂(l)(i, k) =

{
sgn(ûk+1(i)/û1(i)) ·min{| ûk+1(i)

û1(i) |, log(n)}, i ∈ N1,

0, i /∈ N1,

and

(5.10) R̂(r)(i, k) =

{
sgn(v̂k+1(i)/v̂1(i)) ·min{| v̂k+1(i)

v̂1(i) |, log(n)}, i ∈ N2,

0, i /∈ N2.

Note that we have thresholded both |ûk+1(i)/û1(i)| and |v̂k+1(i)/v̂1(i)| with
a threshold log(n); this is recommended by Jin [25] and applies to both
SCORE and D-SCORE. We show that, under some mild conditions, û1(i) 6=
0 for all i ∈ N1 and v̂1(i) 6= 0 for all i ∈ N2, so both matrices are well-defined.
In detail, for any S ⊂ {1, 2, . . . , n} and any n× n matrix A, let AS,S be the
sub-matrix of A formed by restricting the rows and columns of A to S. By
definitions of the Citer and Citee networks, both (AA′)N1,N c

1 and (A′A)N2,N c
2

are matrices of 0’s, where for m = 1, 2, N c
m = N \Nm. We assume

(5.11) ‖(AA′)N1,N1‖ > ‖(AA′)N
c
1 ,N c

1 ‖, ‖(A′A)N2,N2‖ > ‖(A′A)N
c
2 ,N c

2 ‖.
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Note that by Random Matrix Theory, (5.11) holds with overwhelming prob-
abilities, assuming DCBM and some mild regularity conditions.

Lemma 5.2. Consider a directed network N = (V,E) where (5.11) holds.
If the multiplicity of the first leading singular value of A is 1, then û1(i) 6= 0
if and only if i ∈ N1 and v̂1(i) 6= 0 if and only if i ∈ N2.

Lemma 5.2 is the direct result of Perron’s theorem [18, Page 500], so we
omit the proof. In a way, R̂(l) and R̂(r) can be viewed as the stochastic
counterparts of R(l) and R(r), respectively. They display similar but non-
identical patterns, and each of them contains valuable information for the
community structures that can be combined for clustering.
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Fig 13. Left: each point represents a row of the matrix R̂(l) associated with the statistical
Citation network (K = 3; x-axis: first column, y-axis: second column). Only rows with
indices in N1 are shown. Blue pluses, green bars, and red dots represent 3 different com-
munities identified by SCORE, which can be interpreted as “Large-Scale Multiple testing”,
“Biostatistics (Citation)”, and “Variable Selection”, Right: similar but with (R̂(l),N1) re-
placed by (R̂(r),N2).

We now introduce D-SCORE. Given a directed networkN = (V,E) where
(5.2) holds and the number of communities K. As before, let N1 and N2 be
the giant components of the Citer network and Citee network, respectively.
Obtain two n× (K − 1) matrices R̂(l) and R̂(r) as in (5.9)-(5.10). Note that
all nodes split into four disjoint subsets:

N = (N1 ∩N2) ∪ (N1 \ N2) ∪ (N2 \ N1) ∪ (N \ (N1 ∪N2)).

D-SCORE clusters nodes in each subset separately.

1. (N1∩N2). We first restrict the rows of R̂(l) and R̂(r) to the set N1∩N2

and obtain two matrices R̃(l) and R̃(r). We cluster all nodes in N1∩N2



34 P. JI AND J. JIN

by applying the k-means to the matrix [R̃(l), R̃(r)] assuming there are
≤ K communities.

2. (N1\N2). Note that according to the communities we identified above,
the rows of R̃(l) partition into ≤ K groups. For each group, we call the
mean of the row vectors the community center. For a node i in N1\N2,
if the i-th row of R̂(l) is closest to the center of the k-th community
for some 1 ≤ k ≤ K, then we assign it to this community.

3. (N2 \ N1). We cluster in a similar fashion to that in the last step, but
we use (R̃(r), R̂(r)) instead of (R̃(l), R̂(l)).

4. (N \ (N1 ∪N2)). We say there is a weak-edge between i and j if there
is an edge between i and j in the weakly connected citation network.
By 1-2, all nodes in N1∪N2 partition into ≤ K communities. For each
node in N \ (N1 ∪N2), we assign it to the community to which it has
the largest number of weak-edges.

For 4, our assumption is that |N \ (N1 ∪ N2)| is small, so we don’t have to
have a sophisticated clustering method. For the statistical citation network
data set we study in this paper, this is true with |N \ (N1 ∪N2)| = 14.

In Figure 13, we illustrate how D-SCORE works by using the statistical
citation network data set with K = 3 (left: rows of R̂(l); right: rows of R̂(r)).
Two panels show similar clustering patterns, confirming the main message
of Lemma 5.1. D-SCORE combines the information in both R̂(l) and R̂(r)

for clustering, and suggests that there are three communities in the network,
which can be interpreted as “Large-Scale Multiple Testing”, “Biostatistics
(Citation)”, and “Variable Selection”. See details in Section 5.3.

5.3. Citation network. The original Citation network Ñ = (Ṽ , Ẽ) con-
sists of 3607 nodes (i.e., authors). The associated weakly connected network
has 927 components. The giant component has 2654 authors, accounting
74% of all nodes. All other components have no more than 5 nodes.

We now restrict our attention to the sub-network N = (V,E) of Ñ ,
where V consists of all nodes in the weakly connected giant component.
As before, let N1 and N2 be the giant components of the Citer and Citee
networks associated withN , respectively. We have |N1| = 2126, |N2| = 1790,
|N1 ∩N2| = 1276, and |N \ (N1 ∪N2))| = 14.

We are primarily interested in community detection. In Figure 5 (right
panel), we present the scree plot of A. Note that since A is non-symmetric,
we use the singular values instead of the eigenvalues in the plot. The plot
suggests that there are K = 3 communities in N .

We have applied D-SCORE and LNSC to N . The results by SCORE are
reported with details below in this section. We find that the results of LNSC



COAUTHORSHIP AND CITATION NETWORKS 35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Aad van der Vaart

Abba M Krieger

Bradley Efron

Christian P Robert

Christopher Genovese

D R Cox

Daniel Yekutieli

David L Donoho
David Siegmund

Donald B Rubin
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Jiashun Jin
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Larry Wasserman
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Sanat K Sarkar

Subhashis Ghosal

Yoav Benjamini

Zhiyi Chi

Fig 14. The “Large-Scale Multiple Testing” community identified by D-SCORE (K = 3)
in the Citation network (359 nodes). Only 26 nodes with 24 or more citers are shown here.

are rather inconsistent with those of SCORE, so we only discuss them briefly
in the end of this section (Section 5.3.3).

We now present the results by D-SCORE. The method identifies there
communities which can be interpreted as follows.

• “Large-Scale Multiple Testing” (Multiple Tests) community (359 nodes).
This consists of researchers in multiple testing and control of False Dis-
covery Rate. It includes the Tel-Aviv group (e.g., Felix Abramovich,
Yoav Benjamini, Daniel Yekutieli), Stanford group (e.g., David Donoho,
Bradley Efron, Iain Johnstone, Joseph Romano, David Siegmund),
Carnegie Mellon group (e.g., Christopher Genovese, Jiashun Jin, Is-
bella Verdini, Larry Wasserman), etc.
• “Biostatistics (Citation)” (Biostat-Cita) community (1010 nodes). This

includes most authors from the “Biostatistics (Coauthorship (B))”
community identified by SCORE in Section 4.4 (388 nodes). The high-



36 P. JI AND J. JIN

Adrian E Raftery

Alan E Gelfand

Alan H Welsh

Amy H Herring

Andrew O Finley Anthony OHagan

Athanasios Kottas

Brian S Caffo

Ciprian M Crainiceanu

David Ruppert

Douglas W Nychka

Gareth Roberts

Gary L Rosner

Hao Purdue Zhang

Huiyan Sang

Jeffrey S Morris

Jonathan Tawn

Joseph G Ibrahim

Laurens de Haan

Marc G Genton

Mark F J Steel

Martin Schlather

Michael L Stein

Michael Sherman

Ming−Hui Chen

Mohammad Hosseini−Nasab

Montserrat Fuentes

N Reid

Naisyin Wang

Omiros Papaspiliopoulos

Paul Fearnhead

R Todd Ogden

Raymond J Carroll

Robin Henderson

Simon N Wood

Steven N MacEachern

Sudipto Banerjee

Theo Gasser
Tilmann Gneiting

Ulrich Stadtmuller

Yi Li

Yongtao Guan

Fig 15. The “Biostatistics (Citation)” community identified by D-SCORE (K = 3) in the
Citation network (1010 nodes). Only 42 nodes with 24 or more citers are shown here.

degree nodes include (sorted descendingly by the number of citers)
Raymond Carroll, Gareth Roberts, Joseph Ibrahim, Naisyin Wang,
Adrian Raftery, Omiros Papaspiliopoulos, David Ruppert, Alan Gelfand,
Tilmann Gneiting, Jeffrey Morris, Michael Stein, Ciprian Crainiceanu,
Marc Genton, Hao Zhang, Fernando Quintana, Nicolas Chopin, Alan
Welsh, Anthony OHagan, Fadoua Balabdaoui, Sudipto Banerjee, Nancy
Reid, Paul Fearnhead, Steven MacEachern, Douglas Nychka, Gary
Rosner.
• “Variable Selection” (Var. Selection) community (1285 nodes). This in-

cludes the high-degree nodes such as (sorted descendingly by the num-
ber of citers) Jianqing Fan, Hui Zou, Peter Hall, Nicolai Meinshausen,
Peter Buhlmann, Ming Yuan, Yi Lin, Runze Li, Peter Bickel, Trevor
Hastie, Hans-Georg Muller, Emmanuel Candes, Cun-Hui Zhang, Heng
Peng, Jian Huang, Tony Cai, Terence Tao, Jianhua Huang, Alexandre
Tsybakov, Jonathan Taylor, Xihong Lin, Jane-Ling Wang, Dan Yu
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Lin, Fang Yao, Jinchi Lv.

The three communities are presented in Figures 14-16, respectively.
It is interesting to compare these results with those of Coauthorship net-

work. In Sections 5.3.1 and 5.3.2, we compare the results presented above
with those of Coauthorship networks (A) and (B), respectively.

Alexandre B Tsybakov

Cun−Hui Zhang

Dan Yu Lin

Elizaveta Levina

Emmanuel J Candes

Hans−Georg Muller

Hansheng Wang

Hao Helen Zhang

Heng Peng

Hui Zou

Ji Zhu

Jian Huang
Jianhua Z HuangJianqing Fan

Jinchi Lv

Joel L Horowitz

L J Wei

Lixing Zhu

Michael R Kosorok

Ming Yuan

Mohsen Pourahmadi

Nicolai Meinshausen

Peter Buhlmann

Peter HallPeter J Bickel

Qiwei Yao

R Dennis Cook

Robert J Tibshirani

Runze LiTerence TaoTrevor J Hastie
Xuming He

Yi Lin

Fig 16. The “Variable Selection” community identified by D-SCORE (K = 3) in the
Citation network (1285 nodes). Only 40 nodes with 54 or more citers are shown here.

5.3.1. Comparison with Coauthorship network (A). In Section 4.3, we
present 8 different components of Coauthorship network (A). In Table 8, we
reinvestigate all these components in order to understand their relationship
with the 3 communities identified by D-SCORE in the Citation network.

Among these 8 components, the first one is the giant component, con-
sisting of 236 nodes. All except 3 of these nodes fall in the 3 communities
identified by D-SCORE in the Citation network, with 60 nodes in “Biostatis-
tics (Citation)” including (sorted descendingly by the number of citers; same
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Table 8
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the
Citation network (rows; “other” stands for nodes outside the weakly connected giant

component) and the 8 largest components of Coauthorship network (A) as presented in
Figures 6 and 9 and Tables 5 (columns).

Mach. Dim. John Quant. Exp.
giant Learn. Reduc. Hopkins Duke Stanford Reg. Design

Biostatistics 60 1 12 1 3

Var. Selection 166 15 14 1 7 2 8 2

Multiple Tests 7 2 2 7 1 3

Other 3

236 18 14 13 10 9 9 8

below) Raymond Carroll, Joseph Ibrahim, Naisyin Wang, Alan Gelfand, Jef-
frey Morris, Marc Genton, Sudipto Banerjee, Hongtu Zhu, Jeng-Min Chiou,
Ju-Hyun Park, Ulrich Stadtmuller, Ming-Hui Chen, Yi Li, Nilanjan Chat-
terjee, Andrew Finley, 166 nodes in “Variable Selection” including Jianqing
Fan, Hui Zou, Peter Hall, Ming Yuan, Yi Lin, Runze Li, Trevor Hastie, Hans-
Georg Muller, Emmanuel Candes, Cun-Hui Zhang, Heng Peng, Jian Huang,
Tony Cai, Jianhua Huang, Xihong Lin, and 7 nodes in “Large-Scale Multiple
Testing” including David Donoho, Jiashun Jin, Mark Low, Wenguang Sun,
Ery Arias-Castro, Michael Akritas, Jessie Jeng.

This is consistent with our previous claim that this 236-node giant compo-
nent contains a “Carroll-Hall” community and a “North Carolina” commu-
nity: The “Carroll-Hall” community has strong ties to the area of variable
selection, and the “North Carolina” community has strong ties to Biostatis-
tics. Raymond Carroll has close ties to both of these two communities, and it
is not surprising that SCORE assigns him to the “Carroll-Hall” community
in Section 4.3 in Coauthorship network (A) but D-SCORE assigns him to
the “Biostatisticis (Citation)” community in the Citation network.

For the remaining 7 components of Coauthorship network (A), “Theo-
retical Machine Learning”, “Dimension Reduction”, “Duke”, “Quantile Re-
gression” are (almost) subsets of “Variable Selection”, “Stanford” (includ-
ing John Storey, Johathan Taylor, Ryan Tibshirani) is (almost) a subset of
“Large-Scale Multiple Testing”, and “Johns Hopkins” is (almost) a subset of
“Biostatistics (Citation)”. The “Experimental Design” group has no strong
preferences over all these three areas, so the nodes spread almost evenly to
these three communities.

5.3.2. Comparison with Coauthorship network (B). We compare the com-
munity detection results by D-SCORE for the Citation network with those
by SCORE for Coauthorship network (B) in Section 4.4. Note that for the
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former, we have been focused on the weakly connected giant component of
the Citation network (2654 nodes), and for the latter, we have been focused
on the giant component of the Coauthorship network (B) (2263 nodes). The
comparison of two sets of results is tabulated in Table 9.

Viewing the table vertically, we observe that Citation network provides
additional insight into the Coauthorship network (B), and reveals structures
we have not found previously. Below are the details.

First, the “Objective Bayes” community in Coauthorship network (B)
contains two main parts. The first part consists of 55% of the nodes, and
most of them are seen to be the researchers who have close ties to James
Berger, including (sorted descendingly by the number of citers; same be-
low) Alan Gelfand, Fernando Quintana, Steven MacEachern, Gary Rosner,
Rui Paulo, Herbert Lee, Robert Gramacy, Athanasios Kottas, Pilar Iglesias,
Daniel Walsh, Dongchu Sun. The second part consists of 25% of the nodes,
and are assigned to the “Variable Selection” community in the Citation net-
work by D-SCORE, including Carlos Carvalho, Feng Liang, Maria De Iorio,
German Molina, Merlise Clyde, Luis Pericchi, Maria Barbieri, Nicholas Pol-
son, Bala Rajaratnam, Edward George. For the second part, the result seems
reasonable, as many nodes in the second part (e.g., Carlos Carvalho, Edward
George, Feng Liang, Merlise Clyde) have an interest in model selection.

Second, the “Biostatistics (Coauthorship (B))” community in Coauthor-
ship network (B) also has two main parts. The first part has 156 nodes (40%
of the total, including high-degree nodes such as Joseph Ibrahim, Sudipto
Banerjee, Hongtu Zhu, Ju-Hyun Park, Ming-Hui Chen, Yi Li, Montserrat
Fuentes, Natesh Pillai, Andrew Finley, Amy Herring, Martin Schlather, Stu-
art Lipsitz, Jonathan Tawn, Siddhartha Chib, Alexander Tsodikov. The sec-
ond part consists of 153 nodes (40% of the total). The high-degree nodes
include Yi Lin, Dan Yu Lin, Ji Zhu, Helen Zhang, L J Wei, Wei Biao Wu,
Donglin Zeng, Zhiliang Ying, David Dunson, Steve Marron, Anastasios Tsi-
atis, Wenbin Lu, Zhezhen Jin, Xiaotong Shen, Heping Zhang, Lu Tian, Jian-
wen Cai, Wing Hung Wong. The results are quite reasonable: many nodes
in the second part (e.g., Dan Yu Lin, David Dunson, Helen Zhang, Steve
Marron, Ji Zhu, Xiaotong Shen, Yi Lin) either have works in or have strong
ties to the area of variable selection.

Last, the “High Dimensional Data Analysis” community in Coauthorship
network (B) has three parts. The first part has 459 nodes (25%), includ-
ing high-degree nodes such as Raymond Carroll, Gareth Roberts, Naisyin
Wang, Adrian Raftery, Omiros Papaspiliopoulos, David Ruppert, Tilmann
Gneiting, Jeffrey Morris, Michael Stein, Ciprian Crainiceanu, Marc Genton,
Nicolas Chopin, Alan Welsh, Anthony OHagan, Fadoua Balabdaoui, N Reid.
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The second part has 840 nodes (46%), including high-degree nodes such as
Jianqing Fan, Hui Zou, Peter Hall, Nicolai Meinshausen, Peter Buhlmann,
Ming Yuan, Runze Li, Peter Bickel, Trevor Hastie, Hans-Georg Muller, Em-
manuel Candes, Cun-Hui Zhang, Heng Peng, Jian Huang, Tony Cai, Terence
Tao, Jianhua Huang, Alexandre Tsybakov, Jonathan Taylor, Xihong Lin.
The third part has 221 nodes (26%), including high-degree nodes such as
Iain Johnstone, Larry Wasserman, Bradley Efron, John Storey, Christopher
Genovese, David Donoho, Yoav Benjamini, David Siegmund, Peter Muller,
Jiashun Jin, Felix Abramovich, David Cox, Daniel Yekutieli.

Respectively, the three parts are labeled as subsets of the “Biostatistics
(Citation)”, “Variable Selection”, and “Large-Scale Multiple Testing” com-
munities in the Citation network. This seems convincing: (a) most of the
nodes in the first part are Biostatisticians or have a strong interest in Bio-
statistics (e.g., Ciprian Crainiceanu, Naisyin Wang, Raymond Carroll), (b)
most of the nodes in the second part are leaders in variable selection, and
(c) most nodes in the third part are leaders in Large-Scale Multiple Testing
and in the topic of control of FDR.

Viewing the table horizontally gives similar claims but also reveals some
additional insight. For example, “Large-Scale Multiple Testing” contains
three main parts. One part consists of 221 nodes and is a subset of the
“High Dimensional Data Analysis” community in Coauthorship network
(B). The second consists of 115 nodes and falls outside the giant component
of Coauthorship network (B). A significant fraction of nodes in this part are
from Germany and have close ties to Helmut Finner, a leading researcher
in Multiple Testing. Another significant part (17 nodes) are researchers in
Bioinformatics (e.g., Terry Speed) who do not publish many papers in these
four journals for the time period.

Table 9
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the
Citation network (rows; “other” stands for nodes outside the weakly connected giant
component) and the communities identified by SCORE in Coauthorship network (B)

(columns; “other” stands for nodes outside the giant component).

Obj. Bayes Biostat-Coau-B HDDA-Coau-B other

Biostat-Cita 35 156 459 360 1010

Var. Selection 16 153 840 276 1285

Multiple Tests 6 17 221 115 359

other 7 62 291 360

64 388 1811 751 3014

5.3.3. Comparison of D-SCORE and LNSC. We have also applied LNSC
to the Citation network, with K = 3. The communities are very different
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from those identified by D-SCORE, and maybe interpreted as follows.

• “Semi-parametric and non-parametric” (434 nodes). We find this com-
munity hard to interpret, but it could be the community of researchers
on semi-parametric and non-parametric models, functional estimation,
etc.. The hub nodes include (sorted descendingly by the number of
citers; same below) Peter Hall, Raymond Carroll, Hans-Georg Muller,
Xihong Lin, Fang Yao, Naisyin Wang, Marina Vannucci, David Rup-
pert, Gerda Claeskens, Wolfgang Hardle, Jeffrey Morris, Enno Mam-
men, Ciprian Crainiceanu, James Robins, Anastasios Tsiatis, Cather-
ine Sugar, Zhezhen Jin, Alan Welsh, Sunil Rao, Philip Brown.
• “High Dimensional Data Analysis” (HDDA-Cita-LNSC) (614 nodes).

The second one can be interpreted as the “High Dimensional Data
Analysis” community, where the high-degree nodes include (sorted de-
scendingly by the number of citers) Jianqing Fan, Hui Zou, Nicolai
Meinshausen, Peter Buhlmann, Ming Yuan, Yi Lin, Iain Johnstone,
Runze Li, Peter Bickel, Trevor Hastie, Larry Wasserman, Emmanuel
Candes, Cun-Hui Zhang, Heng Peng, Bradley Efron, John Storey, Jian
Huang, Tony Cai, Christopher Genovese, Terence Tao.
• “Biostatistics” (Biostat-Cita-LNSC) (1605 nodes). The community is

hard to interpret, but could be the Biostatistics community. The high-
degree nodes include Xuming He, Gareth Roberts, Joseph Ibrahim,
Adrian Raftery, Peter Muller, Omiros Papaspiliopoulos, Alan Gelfand,
L J Wei, Tilmann Gneiting, James Berger, Michael Stein, Zhiliang
Ying, David Dunson, Nils Lid Hjort, Marc Genton, David Cox, Hao
Zhang, Fernando Quintana, Nicolas Chopin, Zhiyi Chi.

These results are rather inconsistent to those obtained by D-SCORE: the
ARI and VI between two the vectors of predicted community labels by LNSC
and SCORE are 0.07 and 1.68, respectively. Moreover, it seems that

• LNSC merges part of the nodes in the “Variable Selection” (1285
nodes) and “Large-Scale Multiple Testing” (359 nodes) communities
identified by D-SCORE into a new HDDA-Cita-LNSC community, but
with a much smaller size (614 nodes).
• The Biostat-Cita-LNSC community (1605 nodes) is much larger than

the Biostat-Cita community identified by D-SCORE (1010 nodes).

Our observations here somehow agree with [28] that LNSC can not prop-
erly distinguish the directions of the edges and can not detect communities
representing directionality patterns among the nodes.
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6. Discussions. We have collected, cleaned, and analyzed two network
data sets: the Coauthorship network and Citation network for statisticians.
We investigate several different aspects of these networks: productivity, pat-
terns and trends, centrality, community structures, with an array of differ-
ent tools, ranging from Exploratory Data Analysis (EDA) [44] tools such
as Lorenz curve to rather sophisticated methods for community detection.
Some of these tools are relatively recent (e.g., SCORE, NSC, BCPL, APL,
LNSC), and some are even new (e.g., we propose D-SCORE as a new method
for community detection). We have also presented an array of interesting
results. For example, we find the statistics community has become increas-
ingly more collaborative, competitive, and globalized, and identify about 15
meaningful communities such as “Biostatistics”, “Dimension Reduction”,
“Large-Scale Multiple Testing”, “Objective Bayes”, “Quantile Regression”,
“Theoretical Machine Learning”, and “Variable Selection”.

The paper also has several limitations that need further explorations.
First of all, constrained by time and resources, the two data sets we collect
are limited to the papers published in four “core” statistical journals: AoS,
JASA, JRSS-B, and Biometrika in the 10 year period from 2003 to 2012.
We recognize that many statisticians not only publish in so-called “core”
statistical journals but also publish in a wide variety of journals of other sci-
entific disciplines, including but not limited to Nature, Science, PNAS, IEEE
journals, journals in computer science, cosmology and astronomy, economics
and finance, probability, and social sciences. We also recognize that many
statisticians (even very good ones, such as David Donoho, Steven Fienberg)
do not publish often in these journals in this specific time period. For these
reasons, some of the results presented in this paper may be biased and they
need to be interpreted with caution.

Still, the two data sets and the results we presented here serve well for
our purpose of understanding many aspects of the networks of statisticians
who have USA as their home base; see Section 1.3. They also serve as a
good starting point for a much more ambitious project on social networks
for statisticians with a more “complete” data set for statistical publications.

Second, for reasons of space, we have primarily focused on data analysis
in this paper, and the discussions on models, theory, and methods have been
kept as brief as we can. On the other hand, the data sets provide a fertile
ground for modeling and development of methods and theory, and there are
an array of interesting problems worthy of exploration in the near future.
For example, what could be a better model for either of the two data sets,
what could be a better measure for centrality, and what could be a better
method for community detection. In particular, we propose D-SCORE as a
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new community detection method for directed network, but we only present
the idea underlying the methods, without careful analysis. We address the
latter in a forthcoming paper [24]. Also, sometimes, the community detec-
tion results by different methods (e.g., SCORE, D-SCORE, NSC, BCPL,
APL, LNSC) are inconsistent with each other. When this happens, it is
hard to have a conclusive comparison or interpretation. In light of this, it is
of great interest to set up a theoretical framework and use it to investigate
the weaknesses and strengths of these methods.

Last but not the least, there are many other problems we have not ad-
dressed here: link prediction, relationship between citations and recognitions
(e.g., receiving an important award, elected to National Academy of Sci-
ence), relationship and differences between “important work”, “influential
work”, and “popular work”. It is of interest to explore these in the future.

7. Appendix. In this section, we describe how the data were collected
and preprocessed, and how we have overcome the challenges we have faced.

We focus on all papers published in AoS, JASA, JRSS-B, and Biometrika
from 2003 to the first half of 2012. For each paper in this range, we have
extracted the Digital Object Identifier (DOI), title, information for the au-
thors, abstract, keywords, journal name, volume, issue, and page numbers,
and the DOIs of the papers in the same range that have cited this paper.
The raw data set consists all such entries of (about) 3500 papers and 4000
authors.

Among these papers, we are only interested in those for original research,
so we have removed items such as the book reviews, erratum, comments
or rejoinders, etc. Usually, these items contain signal words such as “Book
Review”, “Corrections” etc. in the title. Removing such items leaves us with
a total of 3248 papers (about 3950 authors) in the range of interest.

Our data collection process has three main steps. In the first step, we
identify all papers in the range of interest. In the second step, we figure out
all citations between the papers of interest (note that the information for
citation relationship between any two authors is not directly available). In
the third step, we identify all the authors for each paper.

In the first step, recall that the goal is to identify every paper in our range
of interest, and for each of them, to collect information for the title, author,
DOI, keywords, abstract, journal name, etc. In this step, we face two main
challenges.

First, all popular online resources have strict limits for high-quality high-
volume downloads; we have explained this in Section 1.2 with details. Even-
tually, we manage to overcome the challenge by downloading the desired
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data and information from Web of Science and MathSciNet little by little,
each time in the maximum amour that is allowed. Overall, it has taken us a
few months to download and combine the data from two different sources.

Second, it is hard to find a good identifier for the papers. While the titles
of the papers could serve as unique identifiers, they are difficult to format and
compare. Also, while many online resources have their own paper identifiers,
they are either unavailable or unusable for our purpose. Eventually, we decide
to use the DOI as the identifier. The DOI has been used as a unique identifier
for papers by most publishers for statistical papers since 2000.

Using DOI as the identifier, with substantial time and efforts, we have
successfully identified all paper in the range of interest with Web of Science
and MathSicNet. One more difficulty we face here is that Web of Science
does not have the DOIs of (about) 200 papers and MathSciNet does not
have the DOIs of (about) 100 papers, and we have to combine these two
online sources to locate the DOI for each paper in our range of interest.

We now discuss the second step. The goal is to figure out the citation
relationship between any two papers in the range of interest. MathSciNet
does not allow automated downloads for such information, but, fortunately,
such information is retrievable from Web of Science, if we parse the XML
pages in R at a small amount each time. One issue we encounter in this step
is that (as mentioned above) Web of Science misses the DOIs of about 200
papers, and we have to deal with these papers with extra efforts.

Consider the last step. The goal is to uniquely identify all authors for each
paper in the range of interest. This is the most time consuming step, and we
have faced many challenges. First, for many papers published in Biometrika,
we do not have the first name and middle initial for each author, and this
causes problems. For instance, “L. Wang” can be any one of “Lan Wang”,
“Li Wang”, “Lianming Wang”, etc. Second, the name of an author is not
listed consistently in different occasions. For example, “Lixing Zhu” may be
also listed as “Li Xing Zhu”, “L. X. Zhu”, and “Li-Xing Zhu”. Last but not
the least, different authors may have the same name: at least three authors
(from Univ. of California at Riverside, Univ. of Michigan at Ann Arbor and
Iowa State Univ., respectively) have the same name of “Jun Li”.

Note that every service has its own internal identification system, but,
unfortunately, none of them is willing to reveal the system to the end users.
Also, people have been trying hard to create a universal author identification
system, in a similar spirit to that of using DOI as an universal identifier for
each paper. Among these are ResearcherID introduced by Thomson Reuters
in 2008 and Open Researcher and Contributor ID (ORCID) introduced in
2012. However, the use of such systems is still very limited.
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Eventually, we have to solve the problem on our own. First, roughly say-
ing, we have written a program which mostly uses the author names (e.g.,
first, middle, and last names; abbreviations) to correctly identify all ex-
cept 200 (approximately) authors, about whom we may have problems in
identification. We then manually identify each of these 200 authors using ad-
ditional information (e.g., affiliations, email addresses, information on their
websites). After all such cleaning, the number of authors is reduced from
about 3950 to 3607.

For reproducibility purpose, we have prepared the data files and a demo
for readers who are interested in exploring the data sets. All these can be
found at www.stat.uga.edu/~psji/ once the paper is accepted for publi-
cation. In particular, the data files include the following.

• 4Journals.bib: the raw bibtex data for about 3500 items including
papers, book reviews, corrections, etc
• 4Journals_cleaned.bib: the cleaned bibtex data for 3248 papers af-

ter removing the book reviews, paper corrections and clustering the
author names
• author-cluster.txt: the final clustering rules for the author names
• author-cluster-man.txt: the manually defined clustering rules for

the author names
• author_list.txt: the list of the 3607 valid authors after disambigua-

tion
• author-paper-adjacency.txt: the 3607x3248 bipartite adjacency ma-

trix
• coauthor-adjacency.txt: the 3607x3607 coauthor adjacency matrix
• citation-adjacency.txt: the 3607x3607 adjacency matrix for the

Citation network of authors
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