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Summary. Large-scale multiple testing with correlated test statistics arises frequently in many sci-

entific research. Incorporating correlation information in approximating false discovery proportion

has attracted increasing attention in recent years. When the covariance matrix of test statistics

is known, Fan, Han & Gu (2012) provided an accurate approximation of False Discovery Propor-

tion (FDP) under arbitrary dependence structure and some sparsity assumption. However, the

covariance matrix is often unknown in many applications and such dependence information has to

be estimated before approximating FDP. The estimation accuracy can greatly affect FDP approx-

imation. In the current paper, we aim to theoretically study the impact of unknown dependence

on the testing procedure and establish a general framework such that FDP can be well approx-

imated. The impacts of unknown dependence on approximating FDP are in the following two

major aspects: through estimating eigenvalues/eigenvectors and through estimating marginal vari-

ances. To address the challenges in these two aspects, we firstly develop general requirements

on estimates of eigenvalues and eigenvectors for a good approximation of FDP. We then give con-

ditions on the structures of covariance matrices that satisfy such requirements. Such dependence

structures include banded/sparse covariance matrices and (conditional) sparse precision matrices.

Within this framework, we also consider a special example to illustrate our method where data are

sampled from an approximate factor model, which encompasses most practical situations. We

provide a good approximation of FDP via exploiting this specific dependence structure. The results

are further generalized to the situation where the multivariate normality assumption is relaxed. Our

results are demonstrated by simulation studies and some real data applications.

Keywords: Large-scale multiple testing, dependent test statistics, false discovery propor-

tion, unknown covariance matrix, approximate factor model

1. Introduction

The correlation effect of dependent test statistics in large-scale multiple testing has attracted

considerable attention in recent years. In microarray experiments, thousands of gene expressions

are usually correlated when cells are treated. Applying standard Benjamini & Hochberg (1995,

B-H) or Storey (2002)’s procedures for independent test statistics can lead to inaccurate false
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discovery control. Statisticians have now reached the conclusion that it is important and nec-

essary to incorporate the dependence information in the multiple testing procedure. See Efron

(2007, 2010), Leek & Storey (2008), Schwartzman & Lin (2011) and Fan, Han & Gu (2012).

Consideration of multiple testing procedure for dependent test statistics dates back to early

2000’s. Benjamini & Yekutieli (2001) proved that the false discovery rate can be controlled by

the B-H procedure when the test statistics satisfy positive regression dependence on subsets

(PRDS). Extension to a generalized stepwise procedure under PRDS has been proved by Sarkar

(2002). Later Storey, et al. (2004) also showed that Storey’s procedure can control FDR under

weak dependence. Sun & Cai (2009) developed a procedure where parameters underlying test

statistics follow a hidden Markov model. Insightful results of validation for standard multiple

testing procedures under more general dependence structures have been shown in Clarke & Hall

(2009). However, even if these procedures are valid under these special dependence structures,

they still suffer from efficiency loss without considering the actual dependence information. In

other words, there are universal upper bounds for a given class of covariance matrices.

A challenging question is how to incorporate the correlation effect in the testing procedure.

Efron (2007, 2010) in his seminal work obtained repeated test statistics based on the bootstrap

sample from the original raw data, took out the first eigenvector of the covariance matrix of the

test statistics such that the correlation effect could be explained by a dispersion variate A, and

estimated A from the data to construct an estimate for realized FDP. Friguet, Kloareg & Causeur

(2009) and Desai & Storey (2012) assumed that the data come directly from a strict factor model

with independent idiosyncratic errors, and used the EM algorithms to estimate the number of

factors, the factor loadings and the realized factors in the model and obtained an estimator

for FDP by subtracting out realized common factors. The drawbacks of the aforementioned

procedures are, however, restricted model assumptions and the lack of formal justification.

Fan, Han & Gu (2012) considered a general set-up for approximating FDP. They assumed

that the test statistics are from a multivariate normal distribution with a known but arbitrary

covariance matrix. Their idea is to apply spectral decomposition to the covariance matrix of

test statistics and to use principal factors to account for dependency. This method is called

Principal Factor Approximation (PFA). Under some sparsity assumption, the authors provided

an accurate approximation of false discovery proportion (FDP) based on the eigenvalues and

eigenvectors of the known covariance matrix.

A major restriction of the setup in Fan, Han & Gu (2012) is that the covariance matrix of

test statistics is known. Although the authors provided an interesting application with known

covariance matrix, in many other cases, this matrix is usually unknown. For example, in mi-

croarray experiments, scientists are interested in testing if genes are differently expressed under

different experimental conditions (e.g. treatments, or groups of patients). The dependence of

test statistics is unknown in such applications. The problem of unknown dependence has at

least two fundamental differences from the setting with known dependence: (a) Impact through

estimating marginal variances. When the population marginal variances of the observable ran-

dom variables are unknown, they have to be estimated first for standardization. In such a case,
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the popular choice of the test statistics will have t distribution with dependence rather than

the multivariate normal distribution considered in Fan, Han & Gu (2012); (b) Impact through

estimating eigenvalues/eigenvectors. Even if the population marginal variances of the observable

random variables are known, estimation of eigenvalues/eigenvector can still significantly affect

the FDP approximation. In various situations, FDP approximation can have inferior perfor-

mance even if a researcher chooses the “best” estimator for the unknown matrix. Therefore,

more theoretical and methodological modifications are needed before directly applying PFA to

unknown dependence setting.

The current paper aims to theoretically study the impact of unknown dependence on the

testing procedure and establish a general framework for FDP approximation. For the indepen-

dence case, this quantity depends asymptotically only on the number of true nulls. For general

case, as to be elucidated in Section 2.2 [around equation (6)], it is far more complicated, de-

pending on the whole set of the unknown true nulls. Therefore, consistently estimating FDP

is a hopeless task unless the signals are sparse. Under some sparsity assumption, FDP can be

conservatively estimated by taking the null proportion to be one. But this will cause other

technical problems. Instead, we will focus on a statistical quantity FDPA (see equation (6)) and

estimate it directly. FDPA can be viewed as an asymptotic upper bound of FDP, and corre-

spondingly the expectation of FDPA is the asymptotic upper bound of the conventional FDR.

For the challenges from the unknown dependence, since the impact of aspect (b) is even more

important than that of aspect (a), we will first develop requirements for estimated eigenvalues

and eigenvectors. Surprisingly, for a good estimate of this upper bound, we do not need these

estimates of eigenvalues and eigenvectors to be consistent themselves. This finding relaxes the

consistency restriction of covariance matrix estimation under operator norm. Our framework

of FDP approximation encompasses both weak dependence and strong dependence, including

banded matrices, (conditional) sparse matrices, (conditional) sparse precision matrices, etc.

As a specific example, we will consider the covariance matrices with an approximate fac-

tor structure. This factor model encompasses a majority of statistical applications and is a

generalization to the model in Friguet, Kloareg & Causeur (2009) and Desai & Storey (2012).

After applying Principal Orthogonal complEment Thresholding (POET) estimators (Fan, Liao

& Mincheva, 2013) to estimate the unknown covariance matrix, we can then assess FDP. This

combination of POET to estimate the covariance matrix and PFA to approximate FDP should

be applicable to most practical situations and is the method that we recommend for practice.

We will also examine the impact of unknown marginal variances and generalize our results

to the situation when the test statistics have t distribution with dependence, which is beyond

the multivariate normal assumption. This dependent t distribution is not the conventional

multivariate t distribution. We will show that our proposed method is still applicable to this

more general situation. The performance of our procedure is further evaluated by simulation

studies and real data analysis.

The organization of the rest of the paper is as follows: Section 2 provides background infor-

mation of large scale multiple testing under dependency and Principal Factor Approximation
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(PFA), Section 3 includes the theoretical study on FDP approximations, Section 4 contains sim-

ulation studies, and Section 5 illustrates the methodology via an application to a microarray data

set. Throughout this paper, we use λmin(A) and λmax(A) to denote the minimum and maximum

eigenvalues of a symmetric matrix A. We also denote the Frobenius norm ‖A‖F = tr1/2(ATA),

the operator norm ‖A‖ = λ
1/2
max(ATA), and the induced norms ‖A‖1 = max1≤j≤p

∑p
i=1 |aij | and

‖A‖∞ = max1≤i≤p
∑p

j=1 |aij |.
The proposed method POET-PFA can be easily implemented by the R package “pfa” (version

1.1) on https://cran.r-project.org. The simulation codes and the data set can be found in the

supplementary materials.

2. Approximation of FDP

Suppose that the observed data {Xi}ni=1 are p-dimensional independent random vectors with

Xi ∼ Np(µ,Σ). The mean vector µ = (µ1, · · · , µp)T is a high dimensional sparse vector,

but we do not know which ones are the nonvanishing signals. Let p0 = #{j : µj = 0} and

p1 = #{j : µj 6= 0} so that p0 + p1 = p. We wish to test which coordinates of µ are signals

based on the realizations {xi}ni=1.

Consider the test statistics Z =
√
nX in which X is the sample mean of {Xi}ni=1. Then,

Z ∼ Np(
√
nµ,Σ). Standardizing the test statistics Z, we assume for simplicity that Σ is a

correlation matrix. Let µ? = (µ?1, · · · , µ?p)T =
√
nµ. Then, multiple testing H0j : µj = 0

vs H1j : µj 6= 0 is equivalent to test H0j : µ?j = 0 vs H1j : µ?j 6= 0 based on the test statistics

Z = (Z1, · · · , Zp)T . The P-value for the jth hypothesis is 2Φ(−|Zj |), where Φ(·) is the cumulative

distribution function of the standard normal distribution. We use a threshold value t to reject

the hypotheses which have p-values smaller than t. Define R(t) = #{Pj : Pj ≤ t} as the number

of discoveries and V (t) = #{true null : Pj ≤ t} the number of false discoveries V (t), where Pj

is the p-value for testing the jth hypothesis. Our interest focuses on approximating the false

discovery proportion FDP(t) = V (t)/R(t), here and hereafter the convention 0/0 = 0 is always

used. Note that R(t) is observable, and FDP(t) is a realized but unobservable random variable.

In comparison with FDR(t) = E[FDP(t)], an average of FDP for hypothetical replications of

experiments, FDP concerns about the number of false discoveries given the experiment.

The normality assumption is idealization. In the current paper, we will show both theoret-

ically and numerically that even if the normality assumption is violated, our results are still

applicable for a more general setting.

2.1. Impact of dependence on the false discoveries

The number of false discoveries V (t) is an important quantity in multiple testing. It is a realized

but unobservable value for a given experiment. To gain the insight on how the dependence of

test statistics impacts on the number of false discoveries, let us first illustrate this by a simple

example: The test statistic depend on a common unobservable factor W in the following model

Zi = µ?i + biW + (1− b2i )1/2εi ∼ N(µ?i , 1), (1)



FDP under Unknown Dependence 5

where W and {εi}ni=1 are independent, having the standard normal distribution. Let zα be the

α-quantile of the standard normal distribution and N = {i : µ?i = 0} is the true null set. Then,

V (t) =
∑
i∈N

I(|Zi| > −zt/2) =
∑
i∈N

[
I
(
εi > ai(−zt/2 − biW )

)
+ I
(
εi < ai(zt/2 − biW )

)]
,

where ai = (1 − b2i )−1/2. By using the law of large numbers, conditioning on W , under some

mild conditions, we have

p−10 V (t) = p−10

∑
i∈N

[Φ(ai(zt/2 + biW )) + Φ(ai(zt/2 − biW ))] + op(1). (2)

The dependence of V (t) on the realization W is evidenced in (2). For example, if bi = ρ,

p−10 V (t) =

[
Φ

(
zt/2 + ρW√

1− ρ2

)
+ Φ

(
zt/2 − ρW√

1− ρ2

)]
+ op(1). (3)

When ρ = 0, p−10 V (t) ≈ t as expected. To quantify the dependence on the realization of W , let

p0 = 1000 and t = 0.01 and ρ = 0.8 so that

p−10 V (t) ≈ [Φ((−2.236 + 0.8W )/0.6) + Φ((−2.236− 0.8W )/0.6)].

When W = −3,−2,−1, 0, the values of p−10 V (t) are approximately 0.608, 0.145, 0.008 and

0, respectively, which depends heavily on the realization of W . This is in contrast with the

independence case in which p−10 V (t) is always approximately 0.01.

Despite the dependence of V (t) on the realized random variable W , the common factor can be

inferred from the observed test statistics. For example, ignoring sparse µ?i in (1), we can estimate

W via the simple least-squares: Minimizing
∑p

i=1(Zi − biW )2 with respect to W . Substituting

the estimate into (3) and replacing p0 by p, or more generally substituting the estimate into (2)

and replace N by the entire set, we obtain an estimate of V (t) under dependence. A robust

implementation is to use L1-regression which finds W to minimize
∑p

i=1 |Zi − biW | or to use

penalized least-squares such as
∑p

i=1(Zi− µi− biW )2 + λ
∑p

i=1 |µi| to explore the sparsity of µ.

This is the basic idea behind Fan, Han & Gu (2012).

2.2. Principal Factor Approximation

The Principal Factor Approximation, introduced by Fan, Han & Gu (2012), is a generalization

of the idea in Section 2.1. Let λ1, · · · , λp be the eigenvalues of correlation matrix Σ in non-

increasing order, and γ1, · · · ,γp be their corresponding eigenvectors. For a given integer k,

decompose Σ as

Σ = BBT + A,

where B = (
√
λ1γ1, · · · ,

√
λkγk) are unnormalized first k principal components and A =∑p

i=k+1 λiγiγ
T
i . Correspondingly, decompose the test statistics Z ∼ N(µ?,Σ) stochastically

as

Z = µ? + BW + K, (4)
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where W ∼ Nk(0, Ik) are k common factors and K ∼ N(0,A) are the errors, independent of

W. Define the oracle FDP(t) as

FDPoracle(t) =
∑

i∈{true nulls}

[Φ(ai(zt/2 + ηi)) + Φ(ai(zt/2 − ηi))]/R(t) (5)

where ai = (1−‖bi‖2)−1/2, ηi = bTi W and bTi is the ith row of B. This is clearly a generalization

of (2). Then, an examination of the proof of Fan, Han & Gu (2012) yields the following result:

Proposition 1. If (C0): p−1
√
λ2k+1 + · · ·+ λ2p = O(p−δ) for some δ > 0, then on the event

{p−1R(t) > cp−θ} for some c > 0 and θ ≥ 0, we have |FDPoracle(t)− FDP(t)| = Op(p
−(δ/2−θ)).

The above proposition was established in the proof of Theorem 1 of Fan, Han & Gu (2012)

under (C0) and the assumption that θ = 0. Here we allow θ > 0 and R(t) can stochastically grow

slower than p. Suppose we choose k′ > k. Then by (C0) it is easy to see that the associated

convergence rate is no slower than p−(δ/2−θ). This explains that with more common factors

in model (4), |FDPoracle(t) − FDP(t)| converges to zero faster as p → ∞. This result will be

useful for the discussion about determining number of factors in section 3.1. Condition (C0) in

Proposition 1 implies that if ‖Σ‖ = o(p1/2), we can take k = 0. In other words, ‖Σ‖ = o(p1/2)

can be regarded as the condition for weak dependence of multiple testing problem. For the

mean-square convergence of V (t), see Azriel and Schwartzman (2015).

Since we do not know which coordinates of µ vanish, FDPoracle(t) can be approximated by

FDPA(t) =

p∑
i=1

[Φ(ai(zt/2 + ηi)) + Φ(ai(zt/2 − ηi))]/R(t). (6)

This provides a useful upper bound for estimating FDP(t). For the independence case, in which

ai = 1 and ‖bi‖ = 0, FDPoracle(t) = p0t/R(t). It can be consistently estimated by estimating

one parameter p0. For dependence case, however, we need to know the whole set of “true null”

and this is an impossible task. Therefore the upper bound becomes an estimable statistical

quantity that is frequently used in practice.

The principal factor approximation (PFA) method of Fan, Han & Gu (2012) is to define

F̂DPA(t) =

p∑
i=1

[Φ(ai(zt/2 + η̃i)) + Φ(ai(zt/2 − η̃i))]/R(t), (7)

where η̃i = bTi Ŵ for an estimator Ŵ of W. Then, under mild conditions, Fan, Han & Gu

(2012) shows
∣∣F̂DPA(t)− FDPA(t)

∣∣ = Op(‖Ŵ −W‖).
For the estimation of W, since µ? is sparse, one can consider the following penalized least-

squares estimator based on model (4). Namely, Ŵ is obtained by minimizing

p∑
i=1

(zi − µ?i − bTi W)2 +

p∑
i=1

pλ(|µ?i |) (8)

with respect to µ? and W, where pλ can be the L1 or SCAD penalty function. When pλ(|µ?i |) =

λ|µ?i |, the optimization problem in (8) is equivalent to

min
W

p∑
i=1

ψ(zi − bTi W) (9)
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where ψ(·) is the Huber loss function (Fan, Tang & Shi, 2012). In Fan, Han & Gu (2012), they

also considered an alternative loss function for (9), the least absolute deviation loss:

min
W

p∑
i=1

|zi − bTi W|. (10)

Fan, Tang & Shi (2012) studies (8) rigourously. They show that the penalized estimator of W

is consistent and that its asymptotic distributions are Gaussian.

2.3. PFA with Unknown Covariance
The F̂DPA(t) in (7) is based on eigenvalues {λi}ki=1 and eigenvectors {γi}ki=1 of the true covari-

ance matrix Σ. When Σ is unknown, we need an estimate Σ̂. Let λ̂1, · · · , λ̂p be eigenvalues of

Σ̂ in a non-increasing order and γ̂1, · · · , γ̂p ∈ Rp be their corresponding eigenvectors. One can

obtain an approximation of FDP by substituting unknown eigenvalues and eigenvectors in (7)

by their corresponding estimates. Two questions arise naturally:

(1) What are the requirements for the estimates of {λi}ki=1 and {γi}ki=1 such that
∣∣F̂DPA(t)−

FDPA(t)
∣∣ = op(1)?

(2) Under what dependence structures of Σ, can such estimates of {λi}ki=1 and {γi}ki=1 be

constructed?

The current paper will address these two questions.

3. Main Result

We first present the results for a generic estimator Σ̂, and then consider a special example in this

general framework, approximate factor model, to illustrate the impact of unknown dependence

on the testing procedure.

3.1. Required Accuracy
Suppose that (C0) is satisfied for Σ. Let Σ̂ be an estimator of Σ, and correspondingly we have

{λ̂i}ki=1 and {γ̂i}ki=1 to estimate {λi}ki=1 and {γi}ki=1. Analogously, we define B̂ and b̂i. Note

that we only need to estimate the first k eigenvalues and eigenvectors but not all of them.

The realized common factors W can be estimated robustly by using (8) and (9) with bi

replaced by b̂i. To simplify the technical arguments, we simply use the least-squares estimate

Ŵ = (B̂
T
B̂)−1B̂

T
Z, (11)

which ignores the µ? in (4) and replaces B by B̂. Define

F̂DPU (t) =

p∑
i=1

[Φ(âi(zt/2 + η̂i)) + Φ(âi(zt/2 − η̂i))]/R(t) (12)

where âi = (1− ‖b̂i‖2)−1/2 and η̂i = b̂
T

i Ŵ. Then we have the following result.
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Theorem 1. On the event E that

(C1) R(t)−1 = O(p−(1−θ)) for some θ ≥ 0,

(C2) maxi≤k ‖γ̂i − γi‖ = O(p−κ) for κ > 0,

(C3)
∑k

i=1 |λ̂i − λi| = O(p1−ν) for ν > 0,

(C4) âi ≤ τ1 and ai ≤ τ2 ∀i = 1, · · · , p for some finite constants τ1 and τ2,

we have

|F̂DPU (t)− FDPA(t)| = Op

(
pθ
(
p−ν + kp−κ + ‖µ?‖p−1/2

))
.

Note that FDP(t) = V (t)/R(t) in which R(t) is observable and known. Approximating FDP(t)

amounts to approximating V (t), which does not rely on Condition (C1). In high-dimensional

application, t can be chosen to slowly decrease with p, as in Donoho & Jin (2004, 2006). Our

result on the approximation of V (t) continues to hold for t that depends on p, i.e. tp. If Condition

(C1) holds for tp, then Theorem 1 follows for tp.

Using
∑k

i=1 λi ≤ tr(Σ) = p, we have
∑k

i=1 |λ̂i − λi| ≤ pmaxi≤k |λ̂i/λi − 1|. Thus, Condition

(C3) holds with high probability when maxi≤k |λ̂i/λi − 1| = Op(p
−ν). The latter is particularly

relevant when eigenvalues are spiked. The third term in the convergence result comes really from

the least-squares estimate. If a more sophisticated method such as (8) or (9) is used, the bias

will be smaller (Fan, Tang & Shi, 2012). We do not plan to pursue along this line to facilitate

the presentation.

In Theorem 1, we assume that the number of factors k is known. When k has to be estimated,

we will apply the eigenvalue ratio (ER) estimator in Ahn & Horenstein (2013). The ER estimator

is defined as k̂ER = argmax1≤k≤kmax
(λ̃k/λ̃k+1), where λ̃i is the ith largest eigenvalue of the

sample covariance matrix and kmax is the maximum possible number of factors. Under mild

regularity conditions, this estimator has been shown consistent. Similar idea has also been

adopted by Lam & Yao (2012). Therefore, to simplify the presentation, we will use a known k

for the theoretical development in the current paper, but for the numerical studies in Section

4 and 5 we will apply the ER estimator for estimating k. An over estimate of k does not do

as much harm to approximating FDP, as long as the unobserved factors are estimated with

reasonable accuracy. This is due to the fact that Condition (C0) is also satisfied for a larger

k and will be verified via simulation. On the other hand, an underestimate of k can result in

the approximated FDP with inferior performance, due to missing important factors to capture

dependency.

3.2. Impact of estimating marginal variances

In the previous sections, we assume that Σ is a correlation matrix. In practice, the marginal

variances {σ2j } are unknown and need to be estimated. These estimates are used to normal-

ize the testing problem. Suppose {σ̂2j }
p
j=1 are the diagonal elements of Σ̂, an estimate of

Σ. Conditioning on {σ̂j}pj=1, assume D̂
−1√

nX ∼ N(
√
nD̂
−1

µ, Σ̃), Σ̃ = D̂
−1

ΣD̂
−1

, where
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D̂ = diag{σ̂1, · · · , σ̂p}. When Σ̂ is the sample covariance matrix, it is well-known that Σ̂ and X

are independent and the aforementioned assumption holds. Then Σ̃ is approximately the same

as the correlation matrix as long as {σ̂j}pj=1 converges uniformly to {σj}pj=1. Thanks to the

Gaussian tails, this indeed holds for the sequence of the marginal sample covariances (Bickel &

Levina, 2008a). Our simulations show the small impact of estimating the marginal variances.

The unconditional distribution of D̂
−1√

nX is not a multivariate normal. To address this is-

sue, let X(j) = n−1
∑n

i=1Xij and σ̂2j = (n−1)−1
∑n

i=1(Xij−X(j))
2 and consider the standardized

test statistics Tj =
√
nX(j)/σ̂j . Then, for the true nulls, each Tj follows the tn−1-distribution,

and (Tj , Tl) have a bivariate t distribution. See Siddiqui(1967). However, {Tj}pj=1 do not follow

the multivariate t distribution introduced in Kotz & Nadarajah (2004), because {σ̂j}pj=1 are also

dependent of each other through Σ. Therefore, in the following presentation, we will call the

joint distribution of {Tj}pj=1 a dependent t distribution rather than a multivariate t distribu-

tion to avoid any confusion. Let Fn−1() denote the cumulative distribution function of a tn−1

random variable, and let qt/2 denote the t/2 quantile of Fn−1. The p-values are calculated as

Pj = 2Fn−1(−|Tj |). We use threshold t and reject the jth hypothesis if Pj ≤ t.
Similar to the definition of F̂DPU (t) in section 3.1, we use the least squares estimate

ŴG = (B̂
T
B̂)−1B̂

T
T,

where T = (T1, · · · , Tp)T . Define F̂DPU,G(t) =
∑p

i=1[Φ(âi(zt/2+ η̂i,G))+Φ(âi(zt/2− η̂i,G))]/R(t),

where η̂i,G = b̂
T

i ŴG. In the above, B̂, b̂i and âi are calculated based on the estimated correlation

matrix of X, and the subscript “G” represents general covariance matrix Σ.

Theorem 2. Based on the test statistics {Tj}pj=1, suppose that the correlation matrix of X

satisfies condition (C0). Then, on the event E in Theorem 1 , we have

|FDPoracle(t)− FDP(t)| = Op

(
pθ
(
p−δ/2 + n−1/2

))
.

where FDPoracle(t) is defined in (5) and

|F̂DPU,G(t)− FDPA(t)| = Op

(
pθ
(
p−ν + kp−κ + ‖µ?‖p−1/2 + n−1/2

))
,

where FDPA(t) is defined in (6) corresponding to the correlation matrix of X.

The first result in Theorem 2 is similar to Proposition 1, except a term from the effect of the

sample size n. This result suggests that under some mild conditions, we can still apply PFA

method even if the effect of the marginal variance is considered. Note that in the second result

of Theorem 2, {λ̂i} and {γ̂i} correspond to the estimated correlation matrix of X, and {λi}
and {γi} correspond to the population correlation matrix of X. This result is very similar to

that established in Theorem 1. Therefore, to simplify the discussion and highlight the impact

of estimator Σ̂ on the testing procedure, we will assume in the following sections 3.3–3.5 that

the diagonal elements of Σ are known and equal to 1. The simulation studies in section 4 are

still based on the setup that Σ has general and unknown diagonal elements.

Direct derivation of density function for the bivariate t random variables is complicated

and not useful for our proof. The proof of Theorem 2 is based on a Bayesian interpretation of
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bivariate t distributions. The method is general and can be of independent interest for extending

results under normality to dependent t distributions.

3.3. Results in Eigenvectors and Eigenvalues
In Theorem 1, the convergence rate of F̂DPU (t) critically depends on the estimated eigenvalues

and eigenvectors. In the current section, we will study under what situations that conditions

(C2) and (C3) can be satisfied.

Lemma 1. For any matrix Σ̂, we have

|λ̂i − λi| ≤ ‖Σ̂−Σ‖ and ‖γ̂i − γi‖ ≤
√

2‖Σ̂−Σ‖
min(|λ̂i−1 − λi|, |λi − λ̂i+1|)

.

The first result is referred to Weyl’s Theorem (Horn & Johnson, 1990) and the second result is

called the sin θ Theorem (Davis & Kahan, 1970). They have been applied in sparse covariance

matrix estimation (El Karoui, 2008; Ma, 2013). By Lemma 1, the consistency of eigenvectors

and eigenvalues is directly associated with the operator norm consistency. Several papers have

shown that under various conditions on Σ, Σ̂ can be constructed such that ‖Σ̂−Σ‖ → 0, which

will be discussed in more details after the following Theorem 3.

Theorem 3. If λi − λi+1 ≥ dp for a sequence dp > 0 for i = 1, · · · , k, then on the event

E ∩ {‖Σ̂−Σ‖ = O(dpp
−τ )} for some τ > 0, for sufficiently large p, we have

|F̂DPU (t)− FDPA(t)| = Op

(
pθ
(
kp−τdp/p+ (k + 1)p−τ + ‖µ?‖p−1/2

))
.

Note that the first k eigenvalues should be distinguished with a certain amount of gap dp. The

theorem is so written that it is applicable to both spike or non-spike case. For the non-spike

case, typically dp = d > 0. In this case, the covariance is estimated consistently and the first

term in Theorem 3 now becomes Op
(
kp−τ−1

)
. For the spiked case such as the k-factor model

(4), the first k eigenvalues are of order p and the (k+ 1)th eigenvalue is of order 1 (Fan, Liao &

Mincheva, 2013). Therefore, dp � p. In this case, the covariance matrix can not be consistently

estimated, and the first term is of order O(kp−τ ). See section 3.4 for additional details.

Depending on the structures of Σ and different choices of Σ̂, we will have different require-

ments such that the event {‖Σ̂−Σ‖ = O(dpp
−τ )} occurs with high probability. It is impossible

for us to list all the references in the area of large covariance matrix estimation, but we will

focus on several representative classes of Σ structures and present relevant results.

1. Banded Matrix: In Bickel & Levina (2008a), the authors considered a class of banded

matrices with decaying rate α. After banding the sample covariance matrix, they con-

structed an estimator Σ̂1, which has operator norm convergence rate as ‖Σ̂1 − Σ‖ =

Op

((
log p/n

)α/(2α+2)
)

.

2. Sparse Matrix: In Bickel & Levina (2008b), a class of sparse covariance matrices is con-

sidered with sparsity parameters c0(p) and q where 0 ≤ q ≤ 1. With thresholding technique,

they constructed an estimator Σ̂2 which satisfies ‖Σ̂2 −Σ‖ = Op

(
c0(p)

(
log p/n

)(1−q)/2)
.

In the special case when q = 0 and c0(p) is bounded, this convergence rate is (log p/n)1/2.
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3. Sparse Precision Matrix: In Cai, Liu & Luo (2011), they considered a class of sparse

precision matrices Ω = Σ−1 with sparsity parameters s0(p) and q. By a constrained l1

minimization approach (CLIME), they constructed an estimator Ω̂3 such that ‖Ω̂3−Ω‖ =

Op

(
s0(p)

(
log p/n

)(1−q)/2)
. Furthermore, for Σ̂3 = (Ω̂3)

−1, under some mild conditions, it

is easy to show that ‖Σ̂3 −Σ‖ = Op

(
s0(p)

(
log p/n

)(1−q)/2)
.

It is worth mentioning that the convergence rate of ‖Σ̂−Σ‖ leading to some requirement of the

sample size n. For example, in the special case of sparse matrix when ‖Σ̂−Σ‖ = Op((log p/n)1/2),

if it also satisfies the condition in Theorem 3 that ‖Σ̂−Σ‖ = Op(p
−τ ), then the sample size n

has to be greater than p2τ log p. This requirement of n is of major importance in practice.

3.4. Approximate Factor Model
We will study the multiple testing problem where the test statistics have some strong dependence

structure as a special example of Theorem 3. Assume the dependence of high-dimensional

variable vector of interest can be captured by a few latent factors. This factor structure model

has long history in financial econometrics (Engle & Watson 1981, Bai 2003). It has also received

considerable attention in genomic research (Friguet, Kloareg & Causer 2009, Desai & Storey

2012). Major restrictions in these models are that the idiosyncratic errors are independent. A

more practicable extension is the approximate factor model (Chamberlain & Rothschild 1983,

Fan, Liao & Mincheva, 2011, 2013).

The approximate factor model takes the form

Xi = µ + Bfi + ui, i = 1, · · · , n (13)

for each observation, where µ is a p-dimensional unknown sparse vector, B = (b1, · · · ,bp)T is

the factor loading matrix, fi is a vector of common factors to the ith observations, independent

of the noise ui ∼ Np(0,Σu) where Σu is sparse. The unobserved common factors fi drive the

dependence of the measurements (e.g. gene expressions) within the ith sample. Under model

(13), the covariance matrix of Xi is given by Σ = Bcov(f)BT +Σu. We can also assume without

loss of generality the identifiability condition: cov(f) = IK and the columns of B are orthogonal.

See Fan, Liao & Mincheva (2013).

For the random errors u, let σu,ij be the (i, j)th element of covariance matrix Σu of u. Then

we impose a sparsity condition on Σu:

mp = max
i≤p

∑
j≤p
|σu,ij |q, mp = o(p), for some q ∈ [0, 1). (14)

Under (13), the test statistics X? =
√
nX follow the approximate factor model

X? = µ? + Bf? + u? ∼ N(µ?,Σ), (15)

where µ? =
√
nµ, f? =

√
nf̄ and u? =

√
nū with f̄ and ū being the corresponding mean vector.

Fan, Liao & Mincheva (2013) developed a method called POET to estimate the unknown

Σ based on samples {Xi}ni=1 in (13). The basic idea is to take advantage of the factor model
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structure and the sparsity of the covariance matrix of idiosyncratic noises. Their idea combined

with PFA in Fan, Han & Gu (2012) yields the following POET-PFA method.

(a) Compute sample covariance matrix Σ̂ and decompose Σ̂ =
∑p

i=1 λ̃iγ̃iγ̃
T
i , where {λ̃i}

and {γ̃i} are the eigenvalues and eigenvectors of Σ̂. Apply a thresholding method to∑p
i=k+1 λ̃iγ̃iγ̃

T
i to obtain Σ̂

T
u (e.g. the adaptive thresholding method in Supplementary

Materials). Set Σ̂POET =
∑k

i=1 λ̃iγ̃iγ̃
T
i + Σ̂

T
u .

(b) Apply singular value decomposition to Σ̂POET. Obtain its eigenvalues λ̂1, · · · , λ̂K in non-

increasing order and the associated eigenvectors γ̂1, · · · , γ̂K .

(c) Construct B̂ = (λ̂
1/2
1 γ̂1, · · · , λ̂

1/2
K γ̂K) and compute the least-squares f̂

?
= (B̂

T
B̂)−1B̂

T√
nX,

which is the least-squares estimate from (15) with µ? ignored.

(d) With b̂
T

i denoting the ith row of B̂, compute

F̂DPPOET(t) =

p∑
i=1

[Φ(âi(zt/2 + b̂
T

i f̂
?
)) + Φ(âi(zt/2 − b̂

T

i f̂
?
))]/R(t) (16)

for some threshold value t, where âi = (1− ‖b̂i‖2)−1/2.

The convergence rate of F̂DPPOET(t) is as follows. Note that under Assumptions 1-4 in

Supplementary Materials, Lemma 2 there holds with high probability. Let us call this event E∗.
Let E1 be the event that condition C1 and C4 are satisfied.

Theorem 4. For POET-PFA method, we have∣∣∣F̂DPPOET(t)− FDPA(t)
∣∣∣ = Op

(
pθ(k(ωp +mpω

1−q
p p−1) + ‖µ?‖p−1/2

))
,

on the event E1 ∩ E∗, where ωp = p−1/2 +
√

log p/n.

Theorem 4 can be considered as a corollary of Theorems 1 and 3. However, since POET-

PFA is the method that we recommend, we would like to state it as a theorem to emphasize

its importance. It is worth noting that here |FDPoracle(t)− FDP(t)| = Op(p
θm

1/2
p p−1/2) by the

examination of the proof of Proposition 2 in Fan, Han & Gu (2012).

3.5. Dependence-Adjusted Procedure
The p-value of each test is determined completely by individual Zi, which ignores the correlation

structure. This method can be inefficient, as Fan, Han & Gu (2012) pointed out. This section

shows how to use dependent structure to improve the power of the test and how to provide an

alternative ranking of statistical significance from ranking of {|Zi|}pi=1 under dependence.

Under model (4), ai(Zi − bTi W) ∼ N(aiµi, 1). Since ai > 1, this increases the strength

of signals and provides an alternative ranking of the significance of each hypothesis. Indeed,

the P-value based on this adjusted test statistic is now 2Φ(−|ai(Zi − bTi W)|) and the null

hypothesis Hi0 is rejected when it is no larger than t. In other words, the critical region is

|ai(Zi − bTi W)| ≤ |zt/2|. When the covariance matrix Σ is unknown, we calculate the p-values

as Pi = 2Φ(−|âi(Zi − b̂
T

i Ŵ|), where âi, b̂i and Ŵ have been defined in (11) and (12). The
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theoretical investigation of this procedure is beyond the scope of the current paper. We will

show in simulation studies that this dependence-adjusted procedure is still more powerful than

the fixed threshold procedure.

4. Simulation Studies

In the simulation studies, we consider the dimensionality p = 1000, the sample size n =

50, 100, 200, the number of false nulls p1 = 50, the threshold value t = 0.01 and the number

of simulation round 500, unless stated otherwise. The data are generated from xi ∼ Np(µ,Σ)

except in the following model 3. The signal strength µi = 1 for i = 1, · · · , 50 and 0 otherwise.

To investigate the effect of signal strength, we also consider nonzero µi as 0.8 and 1.2. To save

space, these results are shown in the supplementary materials. We estimate the unknown num-

ber of factors k for POET-PFA by the data-driven eigenvalue ratio method described in Section

3.1 with kmax = b0.2nc. To demonstrate the wide applicability of POET-PFA compared with

other methods, we consider 8 different model settings for dependence structures in Table 1 as

well as Tables 3 & 4 in the supplementary materials:

Model 1: Strict Factor Model. Consider a 3-factor model

xi = µ + Bfi + ui, fi ∼ N3(0, I3) indep. of ui ∼ Np(0,Σu),

Each entry of the factor loading matrix Bij is an independent realization from the uniform

distribution U(−1, 1). In addition, Σu = Ip.

Model 2: Approximate Factor Model. The model set up is the same as Model 1, except

that we construct Σu as follows. First apply the method in Fan, et al. (2013) to create a

covariance matrix Σ1, which was calibrated to the returns of S&P500 constituent stocks. We

omit the details. Then we construct a symmetric banded matrix Σ2. For the (i, j)th element, if

i 6= j and |i− j| ≤ 25, set the element as 0.4 and zero otherwise. Next we construct a symmetric

matrix Σ3 as the nearest positive definite matrix of Σ1+Σ2 by the algorithm of Higham (1988).

Finally the covariance matrix Σu is set as 0.5Σ3.

Model 3: Non-Normal Model. Consider a 5-factor model xi = µ+ Bfi + ui. B is generated

similarly to Model 1, but each element of fi and each element of ui are independent realizations

from
√

2/3t6 where t6 is a t distribution with degrees of freedom as 6. Model 3 is constructed

to show the performance of POET-PFA even when the normality assumption for the data-

generating process is violated.

Model 4: Cluster Model. We first generate a p−dimensional vector Λ, where the first 4

elements are independent realizations from the uniform distribution U(160, 190), the next 10

elements are independently from U(8, 12) and the rest are independently from U(0.1, 0.3). Next

we generate a p× p matrix Q in which each element is an independent realization from N(0, 1).

Let Γ be the matrix, consisting of eigenvectors of QΛQT . Finally, let Σ = ΓΛΓT . Model 4 is

designed against the eigengap condition in Theorem 3 and also test the robustness of determining

number of factors.
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Model 5: Long Memory Autocovariance Model. Consider Σ where each element is

defined as Σij = 0.5 ∗ [||i − j| + 1|2H − 2|i − j|2H + ||i − j| − 1|2H ], 1 ≤ i, j ≤ p with H = 0.9.

Model 5 is from Bickel & Levina (2008a) and has also been recently considered by Huang &

Fryzlewicz (2015) for strong long memory dependence.

Model 6: Normal Perturbation Model. Consider a symmetric matrix Q with diagonal

elements as 1 and each off-diagonal element as independent realization from N(0.5, 0.1). Let Σ

be the nearest positive definite matrix of Q based on the algorithm in Higham (1988). Model 6

is constructed lacking an apparent factor model pattern.

Model 7: Sparse Precision Matrix Model I. Consider the precision matrix Ω = diag(A1,A2),

where A2 = 4Ip/2×p/2, A1 = B+εIp/2×p/2. B is a symmetric matrix where each element bij takes

value 0.5 with probability 0.1 and takes value 0 with probability 0.9. ε = max(−λmin(B), 0)+0.01

to ensure that A1 is positive definite. Finally, let Σ = (Ω)−1. Construction of A1 is from Roth-

man, et al (2008) for a sparse precision matrix structure.

Model 8: Sparse Precision Matrix Model II. Consider the precision matrix Ω = diag(A1,A2)

similarly to Model 7 except that each bij takes value uniformly in [0.3, 0.8] with probability 0.2

and takes value 0 with probability 0.8. Finally, let Σ = (Ω)−1. The sparsity structure in Model

8 is from Cai & Liu (2011) but we consider this sparsity structure for the precision matrix. The

final Σ is quite different from Model 7.

Comparison with other methods for estimating FDP.

We compare our POET-PFA method with the methods in Efron (2007) and Friguet, Kloareg

& Causeur (2009). The latter assumes a strict factor model and uses the expectation-maximization

(EM) algorithm to estimate the factor loadings B and the common factors {fi}ni=1. Correspond-

ingly, they constructed an estimator for FDP(t) based on their factor model and multiple testing

(FAMT) method. To see how well the EM-algorithm estimates factor loadings B̂, we include

FAMT-PFA, which replaces B̂ in step 4 of our POET-PFA method with that computed by

the EM algorithm, for comparison. In the above simulations, we used the R package “FAMT”

from Friguet, Kloareg & Causuer (2009) to obtain the EM based estimators B̂ and {̂f}ni=1. We

further consider other methods for estimating the unknown Σ rather than POET and compare

the performance of corresponding F̂DP. Exploration in this direction could be endless, and we

only consider three representative types of shrinkage estimators here: Huang & Fryzlewicz(2015)

(HF), Schafer & Strimmer (2005) (SS) and Ledoit & Wolf (2003) (LW). Note that although these

three methods do not involve estimating the number of factors k for the covariance matrix step,

they still need to estimate k for the PFA step. Therefore, we apply the eigenvalue ratio method

to their methods for a fair comparison with our POET-PFA. The results in HF-PFA are based

on 50 simulation rounds by its cross-validation based algorithm “NOVELIST”. Other results

are still based on 500 simulation rounds.

In Table 1, we calculate the empirical mean absolute error (the absolute difference between

the true FDP and F̂DP) for the seven methods. We recall that the FDP is a quantity measured

in percent and therefore the measurement unit for the mean absolute error reported in Table 1

is percent. Generally, when the sample size increases, the mean absolute error of POET-PFA
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Table 1. Empirical mean absolute error between true FDP(t) and F̂DP(t). The nonzero

µi = 1. The results are in percent.

POET-PFA Efron FAMT FAMT-PFA HF-PFA SS-PFA LW-PFA

Model 1

n = 50 4.39 19.72 11.48 5.90 5.40 6.95 5.94

n = 100 3.66 19.53 10.26 4.91 4.83 4.90 4.56

n = 200 3.34 19.58 11.86 5.33 3.60 3.85 3.71

Model 2

n = 50 5.09 17.49 10.15 5.56 5.69 7.49 6.93

n = 100 3.93 17.80 11.42 5.61 5.53 5.28 5.14

n = 200 3.81 18.37 10.49 5.17 5.11 4.24 4.20

Model 3

n = 50 5.61 15.05 12.23 6.67 6.29 7.57 6.50

n = 100 4.24 14.37 12.69 6.29 5.22 5.87 5.35

n = 200 3.84 14.63 12.27 5.54 4.55 4.77 4.60

Model 4

n = 50 4.62 19.49 11.40 6.62 5.50 7.26 7.10

n = 100 4.07 19.01 11.25 6.75 5.41 4.97 5.09

n = 200 3.48 18.71 10.14 6.05 3.80 3.94 3.98

Model 5

n = 50 5.44 10.46 10.09 5.18 6.95 7.38 5.66

n = 100 5.65 10.57 10.64 5.33 6.81 6.46 5.86

n = 200 5.29 10.64 10.76 4.65 7.03 5.78 5.47

Model 6

n = 50 4.60 10.12 9.84 4.83 4.73 6.08 4.60

n = 100 4.03 9.44 8.59 3.89 3.67 4.82 4.03

n = 200 4.13 9.36 10.20 4.40 4.83 4.45 4.13

Model 7

n = 50 4.50 10.18 5.88 4.68 4.98 6.24 4.63

n = 100 4.30 10.33 6.19 4.77 4.66 5.29 4.43

n = 200 4.13 9.99 6.17 4.58 5.21 4.66 4.21

Model 8

n = 50 4.53 11.66 6.35 4.77 5.76 6.72 5.02

n = 100 4.25 11.13 6.30 4.81 5.16 5.26 4.41

n = 200 4.02 10.62 6.01 4.42 6.07 4.59 4.14

tends to be smaller. The results in Model 6 seems to be a violation of this statement. How-

ever, considering that FDPA(t) tends to be an upper bound of FDP, the results here are still

reasonable. Overall, our POET-PFA method performs the best compared with other six meth-

ods, in terms of producing smaller mean absolute error. In Model 5, FAMT-PFA outperforms

POET-PFA, however, further investigation shows that the average of F̂DP by FAMT-PFA is an

underestimate of the true FDR, while our POET-PFA provides an overestimate, which is better
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for practical FDR control. Results for signal strength as 0.8 and 1.2 are shown in Tables 3 & 4

in the supplementary materials, and are consistent with the findings in Table 1 here.

Figure 1 further demonstrates the performance of our POET-PFA method involving least

squares estimation compared with Efron’s method, FAMT, and FAMT-PFA under Models 1

& 2. The sample size n = 50. Our POET-PFA method approximates the true FDP(t) well.

Efron’s method captures the general trend of FDP(t) when the true values are relatively small

and deviates away from the true values in the opposite direction when FDP(t) becomes large.

FAMT-PFA performs much better than FAMT, but still could not capture the true value when

FDP(t) is large. Comparison under Models 3-8 are shown in the supplementary materials.
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Fig. 1. Comparison of realized values of False Discovery Proportion with F̂DP(t). Top panel corresponds

to Model 1 and bottom panel corresponds to Model 2. n = 50.

Dependence adjusted testing procedure. We compare the dependence-adjusted pro-

cedure described in section 3.5 with the fixed threshold procedure, that is, compare the |Zi|
with a universal threshold without using the correlation information. Define the false nega-

tive rate FNR = E[T/(p − R)] where T is the number of falsely accepted null hypotheses.

With the same FDR level, a procedure with smaller false negative rate is more powerful. Since

the advantage of dependence-adjusted procedure can be better demonstrated by an apparent

factor-model structure, the following Table 2 only considers Models 1 & 2. In Table 2, we fix

threshold value t = 0.001 and reject the hypotheses when the dependence-adjusted p-values

is smaller than 0.001. Then we find the corresponding threshold value for the fixed threshold

procedure such that the FDR in the two testing procedures are approximately the same. To

highlight the advantage of dependence-adjusted procedure, we reset Σu as 0.1Σ3. The FNR for

the dependence-adjusted procedure is smaller than that of the fixed threshold procedure, which
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Table 2. Comparison of Dependence-Adjusted Procedure with Fixed Thresh-

old Procedure under approximate factor model and strict factor model. The

nonzero µi are simulated from U(0.1, 0.5) and p1 = 200.

Fixed Threshold Procedure Dependence-Adjusted Procedure

FDR FNR Threshold FDR FNR Threshold

Model 1

n = 50 3.21% 14.54% 0.0026 3.24% 1.96% 0.001

n = 100 2.48% 9.53% 0.0048 2.46% 0.54% 0.001

n = 200 2.85% 4.65% 0.0074 2.89% 0.08% 0.001

Model 2

n = 50 2.64% 15.03% 0.0028 2.66% 2.40% 0.001

n = 100 1.86% 10.56% 0.0034 1.85% 0.70% 0.001

n = 200 1.86% 5.65% 0.0044 1.86% 0.09% 0.001

suggests that dependence-adjusted procedure is more powerful. In Fan, Han & Gu (2012), they

have shown numerically that if the covariance is known, the advantage of dependence-adjusted

procedure is even more substantial. Note that in Table 2, p1 = 200 compared with p = 1000,

implying that the better performance of the dependence-adjusted procedure is not limited to

sparse situation. This is expected since subtracting common factors out make the problem have

a higher signal to noise ratio.

Additional simulation results regarding comparison with known covariance matrix case can

be found in Supplementary Materials. The basic findings are that under apparent factor model

structure the estimation errors of covariance matrix have limited impact (see Figures 1 & 2

there) and methods [the least-absolute deviation (11), the least-squares estimate (12), SCAD

(8)] for extracting unobservable realized latent factors are all effective.

5. Data Analysis

In a well-known breast cancer study (Hedenfalk et al., 2001, Efron, 2007), scientists compared

gene expression levels in 15 patients. These observed gene expression levels have one of the

two different genetic mutations, BRCA1 and BRCA2, known to increase the lifetime risk of

hereditary breast cancer. The study included 7 women with BRCA1 and 8 women with BRCA2.

Let X1, · · · ,Xn, n = 7 denote the microarray of expression levels on the p = 3226 genes for the

first group, and Y1, · · · ,Ym, m = 8 for that of the second group, so each Xi and Yi are p-

dimensional column vectors. Understanding the groups of genes that are expressed significantly

differently in breast cancers can help scientists identify cases of hereditary breast cancer on the

basis of gene-expression profiles.

Assume the gene expressions of the two groups on each microarray are from two multivariate

normal distributions with (potentially) different mean vector but the same covariance matrix,

namely, Xi ∼ Np(µ
X ,Σ) for i = 1, · · · , n and Yi ∼ Np(µ

Y ,Σ) for i = 1, · · · ,m. Then identify-

ing differentially expressed genes is essentially a multiple hypothesis test on H0j : µXj = µYj vs

H1j : µXj 6= µYj , j = 1, · · · , p. Consider the test statistics Z =
√
nm/(n+m)(X−Y) where X
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and Y are the sample averages. Then we have Z ∼ Np(µ,Σ) with µ =
√
nm/(n+m)(µX−µY ),

and the above two-sample comparison problem is equivalent to simultaneously testing H0j : µj =

0 vs H1j : µj 6= 0, j = 1, · · · , p based on Z and the unknown covariance matrix Σ. It is also

reasonable to assume that a large proportion of the genes are not differentially expressed, so

that µ is sparse.

Factor model structure has gained increasing popularity among biologists in the past decade,

since it has been widely acknowledged that gene activities are usually driven by a small number

of latent variables. See, for example, Friguet, Kloareg & Causeur (2009) and Desai & Storey

(2012) for more details. We therefore apply the POET-PFA procedure (see Section 3.4) to the

dataset to obtain F̂DPPOET(t) for a given threshold value t. We apply the eigenvalue ratio

method as in Section 3.1 to estimate the unknown number of factors. The estimated k is 1

based on the sample data. Due to the small sample size, this estimate could deviate away

from the true value. Therefore, we also report the results for k = 2, 3, 4, 5. The results of our

analysis are depicted in Figure 2. As can be seen, both F̂DPPOET(t) and V̂ (t) increase with

larger R(t), and F̂DPPOET(t) is fairly close to zero when R(t) is below 200, suggesting that the

rejected hypotheses in this range have high accuracy to be the true discoveries. Secondly, even

when as many as 1000 hypotheses, corresponding to almost 1/3 of the total number, have been

rejected, the estimated FDPs are around 25%. Finally it is worth noting that although our

procedure seems robust under different choices of number of factors, the estimated FDP tends

to be relatively small with larger number of factors. We also apply the dependence-adjusted

procedure to the data. The relationship of F̂DP and number of total rejections are summarized in

Figure 5 in the supplementary materials. Compared with Figure 2, the F̂DP tends to be smaller

with the same amount of total rejections. The same phenomenon also happens to the estimated

number of false rejections. This is consistent with the fact that the factor-adjusted test is more

powerful. We conclude our analysis by presenting the list of 40 most significantly differentially

expressed genes in Table 4 and Table 5 of Supplementary Materials with POET-PFA method

and the dependence-adjusted procedure respectively. Table 5 provides an alternative ranking

of statistically significantly expressed genes for biologists, which have a lower false discovery

proportion than the conventional method presented in Table 4.

6. Appendix

Proof of Theorem 1: First of all, note that by (11), we have

B̂Ŵ = B̂(B̂
T
B̂)−1B̂

T
Z = (

k∑
i=1

γ̂iγ̂
T
i )Z. (17)

Similarly, let B = (
√
λ1γ1, · · · ,

√
λkγk) and W̃ = (BTB)−1BTZ. Then,

BW̃ = (

k∑
i=1

γiγ
T
i )Z. (18)
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Fig. 2. The approximated false discovery proportion and the approximated number of false discoveries

as functions of the number of total discoveries for p = 3226 genes, where the estimated number of

factors is 1 compared with other choices k = 2, 3, 4, 5.

Denote by FDP1(t) the estimator in equation (7) with using the infeasible estimator W̃. Then,

F̂DPU (t)− FDPA(t) = [F̂DPU (t)− FDP1(t)] + [FDP1(t)− FDPA(t)].

We will bound these two terms separately.

Let us deal with the first term. Define

∆1 =

p∑
i=1

[
Φ(âi(zt/2 + b̂

T

i Ŵ))− Φ(ai(zt/2 + bTi W̃))
]

∆2 =

p∑
i=1

[
Φ(âi(zt/2 − b̂

T

i Ŵ))− Φ(ai(zt/2 − bTi W̃))
]
.

Then, we have

F̂DPU (t)− FDP1(t) = (∆1 + ∆2)/R(t). (19)

We now deal with the term ∆1 =
∑p

i=1 ∆1i, in which

∆1i = Φ(âi(zt/2 + b̂
T

i Ŵ))− Φ(âi(zt/2 + bTi W̃))

+Φ(âi(zt/2 + bTi W̃))− Φ(ai(zt/2 + bTi W̃))

≡ ∆11i + ∆12i.

∆2 can be dealt with analogously and hence omitted. For ∆12i, by the mean-value theorem,

there exists a∗i ∈ (ai, âi) such that ∆12i = φ(a∗i (zt/2 +bTi W̃))(âi−ai)(zt/2 +bTi W̃). Since ai > 1

and âi > 1, we have a∗i > 1 and hence φ(a∗i (zt/2 + bTi W̃))|zt/2 + bTi W̃| is bounded. In other

words, |
∑p

i=1 ∆12i| ≤ C
∑p

i=1 |âi − ai|, for a generic constant C. Using the definition of âi and

ai, we have

|âi − ai| = |(1− ‖b̂i‖2)−1/2 − (1− ‖bi‖2)−1/2|.
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Using the mean-value theorem again, together with the assumption (C4), we have

|(1− ‖b̂i‖2)−1/2 − (1− ‖bi‖2)−1/2| ≤ C(‖b̂i‖2 − ‖bi‖2).

Let γh = (γ1h, · · · , γph)T and γ̂h = (γ̂1h, · · · , γ̂ph)T . Then

p∑
i=1

∣∣∣‖b̂i‖2 − ‖bi‖2∣∣∣ =

p∑
i=1

∣∣∣ k∑
h=1

(λ̂h − λh)γ̂2ih +

k∑
h=1

λh(γ̂2ih − γ2ih)
∣∣∣

≤
k∑

h=1

|λ̂h − λh|+
k∑

h=1

λh

p∑
i=1

|γ̂2ih − γ2ih|,

where we used
∑p

i=1 γ̂
2
ih = 1. The second term of the last expression can be bounded as

p∑
i=1

|γ̂2ih − γ2ih| ≤
( p∑
i=1

|γ̂ih − γih|2
p∑
i=1

|γ̂ih + γih|2
)1/2

≤ ‖γ̂h − γh‖
{

2

p∑
i=1

(γ̂2ih + γ2ih)
}1/2

= 2‖γ̂h − γh‖.

Combining all the results that we have obtained, we have concluded that

|
p∑
i=1

∆12i| ≤ C
( k∑
h=1

|λ̂h − λh|+ λh‖γ̂h − γh‖
)
. (20)

Therefore, by using
∑k

h=1 λh < p and Assumptions (C2) and (C3), on the event E , we conclude

that |
∑p

i=1412i| = O(p1−min(ν,κ)).

We now deal with the term ∆11i. By the mean-value theorem, there exists ξi between b̂
T

i Ŵ

and bTi W̃ such that ∆11i = φ(âi(zt/2 + ξi))âi(b̂
T

i Ŵ − bTi W̃). By (C4), âi is bounded and so

is φ(âi(zt/2 + ξi))âi. Let 1 be a p-dimensional vector with each element being 1. Then, by (17)

and (18), we have

p∑
i=1

|b̂
T

i Ŵ−bTi W̃| ≤ 1T |B̂Ŵ−BW̃| = 1T
∣∣∣ k∑
h=1

[γ̂hγ̂
T
h −γhγ

T
h ]Z
∣∣∣ ≤ √p∥∥∥ k∑

h=1

[γ̂hγ̂
T
h −γhγ

T
h ]
∥∥∥‖Z‖
(21)

where |a| = (|a1|, · · · , |ap|)T for any vector a and the last inequality is obtained by the Cauchy-

Schwartz inequality.

We now deal with the two factors in (21). The first factor is easily bounded by

k∑
h=1

‖γ̂h(γ̂h − γh)T + (γ̂h − γh)γTh ‖ ≤ 2

k∑
h=1

‖γ̂h − γh‖.

Let {εi}pi=1 be a sequence of i.i.d. N(0, 1) random variables. Then, stochastically, we have

E‖Z‖2 ≤ 2‖µ?‖2 + 2

p∑
i=1

λiEε
2
i .

Therefore, ‖Z‖ = Op(‖µ?‖+ p1/2).
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Substituting these two terms into (21), we have

p∑
i=1

|b̂
T

i Ŵ − bTi W̃| = Op

(
kp1/2−κ(‖µ?‖+ p1/2)

)
.

Therefore, we can conclude that

|
p∑
i=1

∆11i| = Op

(
kp1/2−κ(‖µ?‖+ p1/2)

)
. (22)

Combination of the results in (20) and (22) leads to

∆1 = Op(p
1−min(ν,κ)) +Op(kp

1−κ) +Op(k‖µ?‖p1/2−κ).

In FDP1(t), the least-squares estimator is

W̃ = (BTB)−1BTµ? + W + (BTB)−1BTK = W + (BTB)−1BTµ? (23)

in which we utilize the orthogonality between B and var(K). With a similar argument as above,

we can show that ∣∣FDP1(t)− FDPA(t)
∣∣ = O

(∣∣1TB(W̃−W)
∣∣/R(t)

)
,

and we have∣∣∣(1, · · · , 1)B(W̃−W)
∣∣∣ =

∣∣∣1T (

k∑
h=1

γhγ
T
h )µ?

∣∣∣ ≤ p1/2‖µ?‖‖ k∑
h=1

γhγ
T
h ‖ = p1/2‖µ?‖.

The proof is now complete.

Proof of Theorem 2: The proof is relegated to the supplementary material due to the

space limit.

Proof of Theorem 3: By the triangular inequality,

|λi − λ̂i+1| ≥
∣∣|λi − λi+1| − |λi+1 − λ̂i+1|

∣∣
By Weyl’s Theorem in Lemma 1, |λi+1− λ̂i+1| ≤ ‖Σ̂−Σ‖. Therefore, on the event {‖Σ̂−Σ‖ =

O(dpp
−τ )}

|λi − λ̂i+1| ≥ dp − ‖Σ̂−Σ‖ ≥ dp/2

for sufficiently large p. Similarly, we have |λ̂i−1 − λi| ≥ dp/2. By the sin θ Theorem in Lemma

1, ‖γi − γ̂i‖ = O(p−τ ). Hence, Condition (C2) holds with κ = τ . Using Weyl’s Theorem again,

we have
k∑
i=1

|λi+1 − λ̂i+1| ≤ k‖Σ̂−Σ‖ = O(kdpp
−τ ).

Hence, (C3) holds with p−δ = kp−τdp/p. The result now follows from Theorem 1.

Proof of Theorem 4. Let B̃ = (λ̃
1/2
1 γ̃1, · · · , λ̃

1/2
k γ̃k). Note that

‖Σ̂POET −Σ‖ ≤ ‖B̃B̃
T
−BBT ‖+ ‖Σ̂

T
u −Σu‖. (24)
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The bound for the second term is given by Lemma 1 of Supplementary Materials. We now

consider the first term in (24). By the triangular inequality, it follows that

‖B̃B̃
T
−BBT ‖ ≤ ‖B(HTH− Ik)B

T ‖+ ‖BHT (B̃−BHT )T ‖+ ‖(B̃−BHT )HBT ‖

+‖(B̃−BHT )(B̃−BHT )T ‖

≤ ‖HTH− Ik‖‖B‖2 + 2‖B‖‖H‖‖B̃−BHT ‖+ ‖(B̃−BHT )‖2. (25)

Recall {b̃j}kj=1 are columns of B. Without loss of generality, assume {‖b̃j‖} are in non-

increasing order. Since BTB is diagonal, BBT has nonvanishing eigenvalues {‖b̃j‖2}Kj=1 and

‖B‖ = ‖b̃1‖. Furthermore, by Weyl’s Theorem in Lemma 1,
∣∣∣λi−‖b̃i‖2∣∣∣ ≤ ‖Σ−BBT ‖ = ‖Σu‖.

Since the operator norm is bounded by the L1-norm, we have

‖Σu‖ ≤ max
i≤p

p∑
j=1

|σu,ij |q|σu,iiσu,jj |(1−q)/2 ≤ mp. (26)

Hence, ‖b̃i‖2 ≤ λ1 +mp = O(p).

We are now bounding each term in (25). Since the operator norm is bounded by the Frobenius

norm, by Lemma 2 of Supplementary Materials, the first term in (25) is bounded by Op(pωp),

the second term in (25) is of order Op(ωp
√
p) and the third term in (25) is Op(ω

2
p). Combination

of these results leads to ‖B̃B̃
T
−BB‖ = Op(pωp). Substituting this into (24), we have

‖Σ̂POET −Σ‖ = Op(pωp +mpω
1−q
p ).

By Weyl’s Theorem in Lemma 1, the conclusion for |λ̂i − λi| follows.

Assumption 1 of Supplementary Materials and Weyl’s theorem imply that λi = cip + o(p)

for i = 1, · · · , k and ci’s are distinct. By the triangular inequality, |λi − λ̂i+1| ≥
∣∣|λi − λi+1| −

|λi+1 − λ̂i+1|
∣∣. By Weyl’s Theorem, |λi+1 − λ̂i+1| = op(p). Therefore, for sufficiently large n,

|λi − λ̂i+1| ≥ c̃ip for some constant c̃i > 0 with probability tending to 1. By sin θ Theorem,

‖γ̂i − γi‖ = Op(ωp +mpω
1−q
p p−1). With direct application of Theorems 1 & 3, we have∣∣∣F̂DPPOET(t)− FDPA(t)

∣∣∣ = Op

(
pθ
(
k(ωp +mpω

1−q
p p−1) + ‖µ?‖p−1/2

))
.

The proof is now complete.
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7. Related Existing Method and Lemmas

Adaptive Thresholding Method. This method is a modification of the adaptive thresholding

method in Cai & Liu (2011) and has been introduced in Fan, Liao & Mincheva (2013). In the

approximate factor model, define X̃ = (X1 − X, · · · ,Xn − X), F̂
T

= (̂f1, · · · , f̂n), where the

columns of F̂/
√
n are the eigenvectors corresponding to the k largest eigenvalues of X̃

T
X̃. Let

B̃ = (λ̃
1/2
1 γ̃1, · · · , λ̃

1/2
k γ̃k). Compute ûl = (Xl −X)− B̃f̂l,

σ̂ij =
1

n

n∑
l=1

ûilûjl, and θ̂ 2
ij =

1

n

n∑
l=1

(ûilûjl − σ̂ij)2.

For the threshold τi,j = Cθ̂ijωp with a large enough C, the adaptive thresholding estimation for

Σu is given by Σ̂
T
u = (sij(σ̂ij))p×p, where sij(·) is a general thresholding function (Antoniadis

and Fan, 2001) satisfying sij(z) = 0 when |z| ≤ τij and |sij(z)− z| ≤ τij . Well-known threshold-

ing functions include hard-thresholding estimator sij(z) = zI(|z| ≥ τij) and soft-thresholding

estimator sij(z) = sgn(z)(|z| − τij)+.
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The following Assumptions 1-4 are from Fan, Liao & Mincheva (2013). The results were

established for the mixing sequence but it is applicable to the i.i.d. data.

Assumption 1. ‖p−1BTB−Ω‖ = o(1) for some k× k symmetric positive definite matrix Ω

such that Ω has k distinct eigenvalues and that λmin(Ω) and λmax(Ω) are bounded away from

both zero and infinity.

Assumption 2. (i) {ul, fl}l≥1 is strictly stationary. In addition, Euil = Euilfjl = 0 for all

i ≤ p, j ≤ k and l ≤ n.

(ii) There exist positive constants c1 and c2 such that λmin(Σu) > c1, ‖Σu‖1 < c2, and

mini,j var(uilujl) > c1.

(iii) There exist positive constants r1, r2, b1, and b2 such that for any s > 0, i ≤ p and j ≤ k,

P (|uil| > s) ≤ exp(−(s/b1)
r1), P (|fjl| > s) ≤ exp(−(s/b2)

r2).

We introduce the strong mixing conditions to conduct asymptotic analysis of the least square

estimates. Let F0
−∞ and F∞n denote the σ-algebras generated by {(fs,us) : −∞ ≤ s ≤ 0} and

{(fs,us) : n ≤ s ≤ ∞} respectively. In addition, define the mixing coefficient

α(n) = sup
A∈F0

−∞,B∈F∞n
|P (A)P (B)− P (AB)|.

Note that for the independence sequence, α(n) = 0.

Assumption 3. There exists r3 > 0 such that 3r−11 + 1.5r−12 + r−13 > 1, and C > 0 satisfying

α(n) ≤ exp(−Cnr3) for all n.

Assumption 4. Regularity conditions: There exists M > 0 such that for all i ≤ p, t ≤ n

and s ≤ n,

(i) ‖bj‖max < M ,

(ii) E[p−1/2(u′sut −Eu′sut)]
4 < M ,

(iii) E‖p−1/2
∑p

i=1 biuit‖4 < M .

Lemma 2. (Fan, Liao & Mincheva, 2013, Theorem 1)

Let γ−1 = 3γ−11 + 1.5γ−12 +γ−13 + 1. Suppose log p = o(nγ/6) and n = o(p2). Under Assumptions

1-4,

‖Σ̂
T
u −Σu‖ = Op(ω

1−q
p mp).

Define V = diag(λ̂1, · · · , λ̂k). F̂
T

= (̂f1, · · · , f̂n), and H = 1
nV−1F̂

T
FBTB, where F̂ has been

defined in Adaptive Thresholding Method.

Lemma 3. (Fan, Liao & Mincheva, 2013, Lemma C.10 and C.12) With the same

conditions in Lemma 1,

‖H‖ = Op(1)

‖HTH− Ik‖F = Op(
1√
n

+
1
√
p

)

‖B̃−BHT ‖2F = Op(ω
2
pp).
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Lemma 4 (Fujikoshi & Mukaihata (1993)). let Fn(·) and fn(·) be respectively the cu-

mulative probability function and probability density function of Student’s t distribution with n

degrees of freedom. Let Φ(·) and φ(·) be respectively the cdf and pdf of the standard normal

distribution. Let xn(u) be the solution of the equation Fn(x) = Φ(u) for x in terms of u and

ln(u) = n1/2(exp(u2/n)− 1)1/2

ln(u) = n1/2[exp(u2/(n− 1/2))− 1]1/2.

Then for all u > 0 and n > 1/2

ln(u) ≤ xn(u) ≤ ln(u).

8. Proofs

Proof of Proposition 1: In Proposition 2 of Fan, Han & Gu (2012), we can show that with

probability 1

Var(p−10 V (t)|W1, · · · ,Wk) = O(p−δ).

This implies that∣∣∣ 1

p0
V (t)− 1

p0

∑
i∈{true nulls}

P (Pi ≤ t|W1, · · · ,Wk)
∣∣∣ = Op(p

−δ/2).

By (C1), the desired conclusion follows.

Lemma 5. Let qt = F−1n (t) and zt = Φ−1(t) (0 < t < 1), then |qt − zt| < Ct/n where Ct is a

constant with respect to n.

Proof of Lemma 4: Note that qt = −q1−t and zt = −z1−t. We only need to prove the

inequality holds when 0.5 < t < 1. Let u = zt. Since qt > u > 0, we only need to show

ln(u)− u ≤ Ct/n in light of Lemma 3. By Taylor expansion, we have

exp(u2/(n− 1/2))− 1 = u2/(n− 1/2) + h,

where h = u4 exp(x?)/[2(n − 1/2)2] and 0 ≤ x? ≤ u2/n. It is easy to see that h ≤ Cu/n
2 for

some constant Cu, independent of n. Therefore,

ln(u)− u =
√
n
√
u2/(n− 1/2) + h− u

≤
√
n
√
u2/(n− 1/2) + Cu/n2 − u.

The last can easily be shown to be bounded by C ′u/n for some positive constant C ′u. The

conclusion thus follows.

Proof of Theorem 2: To prove the first result in Theorem 2, by condition (C1), it is

sufficient to show that∣∣∣p−10 V (t)− p−10

∑
i∈{true nulls}

[
Φ(ai(zt/2 + ηi)) + Φ(ai(zt/2 − ηi))

]∣∣∣ = Op(p
−δ/2) +Op(n

−1/2).
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To prove this, it suffices to show∣∣∣p−10

∑
i∈{true nulls}

I(Pi ≤ t|W)− p−10

∑
i∈{true nulls}

P (Pi ≤ t|W)
∣∣∣ = Op(p

−δ/2) +Op(n
−1/2), (27)

and that∣∣∣p−10

∑
i∈{true nulls}

P (Pi ≤ t|W)−p−10

∑
i∈{true nulls}

[Φ(ai(zt/2+bTi W))+Φ(ai(zt/2−bTi W))]
∣∣∣ = O(n−1).

(28)

To prove (27), it is sufficient to show that

Var
(
p−10

∑
i∈{true nulls}

I(Pi ≤ t|W)
)

= O(p−δ) +O(n−1). (29)

The left hand side of (29) is

p−20

∑
i∈{true nulls}

Var(I(Pi ≤ t|W)) + p−20

∑
i,j∈{true nulls},i 6=j

Cov(I(Pi ≤ t|W), I(Pj ≤ t|W)).

Since Var(I(Pi ≤ t|W) ≤ 1/4, the first term above is O(p−1). For the second term, we have

Cov(I(Pi ≤ t|W), I(Pj ≤ t|W))

= P (|Ti| ≤ −qt/2, |Tj | ≤ −qt/2|W)− P (|Ti| ≤ −qt/2|W)P (|Tj | < −qt/2|W) (30)

Let V1/2 be a p × p diagonal matrix with diagonal elements {√vi}pi=1. From the defini-

tion of the {Ti} statistics, they have the following representation (it also admits a Bayesian

interpretation of t-distribution):

(T1, · · · , Tp)T
∣∣{Vi = vi}pi=1 ∼ Np(Vµ,V1/2ΣV1/2),

Vi ∼ InverseGamma(
n− 1

2
,
n− 1

2
) i = 1, · · · , p.

In the above, the marginal distribution of Vi ∼ 1/
√
χ2
n−1/(n− 1) is an inverse Gamma with

degrees of freedom ((n−1)/2, (n−1)/2). When n→∞, E(Vi)→ 1 and Var(Vi)→ 0. Therefore,

Ti converges to the limiting random variable Zi. However, the joint distribution of (V1, · · · , Vp),
which depends on Σ, is very complicated because of the dependency among these random

variables. Fortunately, thanks to the dominated convergence theorem, in the following proof, we

do not need the explicit expression for this joint distribution. Since we only need to calculate the

joint probability of bivariate case under the null hypothesis, the representation is even simpler.

For each pair (i, j) ∈ {true nulls}, relating to equation (4) in the paper, we have

Ti|Vi = vi, Vj = vj =
√
viZi =

√
vi(b

T
i W +Ki)

Tj |Vi = vi, Vj = vj =
√
vjZj =

√
vj(b

T
j W +Kj)

Vi and Vj ∼ InverseGamma(
n− 1

2
,
n− 1

2
)

(Vi, Vj) ∼ f(vi, vj).
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Let c1,i = ai(−qt/2/
√
vi−bTi W), c2,i = ai(qt/2/

√
vi−bTi W), c1,j = aj(−qt/2/

√
vj −bTj W), and

c2,j = aj(qt/2/
√
vj − bTj W). Then in the first term of (30), we can write

P (qt/2 ≤ Ti ≤ −qt/2, qt/2 ≤ Tj ≤ −qt/2|W) (31)

=

∫ ∞
0

∫ ∞
0

P (c2,i/ai ≤ Ki ≤ c1,i/ai, c2,j/aj ≤ Kj ≤ c1,j/aj |W, vi, vj)f(vi, vj)dvidvj .

Following the similar argument in the proof of Proposition 2 in Fan, Han & Gu (2012), the

integrand function is the joint cdf of bivariate normal random variables and can be expressed as

P (c2,i/ai ≤ Ki ≤ c1,i/ai, c2,j/aj ≤ Kj ≤ c1,j/aj |W, vi, vj) (32)

=

∫ ∞
−∞

[
Φ(

(ρkij)
1/2z + c1,i

(1− ρkij)1/2
)− Φ(

(ρkij)
1/2 + c2,i

(1− ρkij)1/2
)
][

Φ(
(ρkij)

1/2z + c1,j

(1− ρkij)1/2
)− Φ(

(ρkij)
1/2z + c2,j

(1− ρkij)1/2
)
]
φ(z)dz,

where ρkij is the correlation of Ki and Kj , and without loss of generality, we assume ρkij > 0

here. For negative ρkij , we can obtain similar results. Let covkij denote the covariance of Ki and

Kj , and let bkij = (1− ‖bi‖2)1/2(1− ‖bj‖2)1/2, then similar to Fan, Han & Gu (2012), for each

Φ(·), we apply Taylor expansion with respect to (covkij)
1/2, (32) can be written as[

Φ(c1,i)−Φ(c2,i)
][

Φ(c1,j)−Φ(c2,j)
]
+
(
φ(c1,i)−φ(c2,i)

)(
φ(c1,j)−φ(c2,j)

)
(bkij)

−1covkij+O(|covkij |3/2).
(33)

In (33), for each Φ(·), we apply the second order Taylor expansion with respect to (vi − 1) and

(vj − 1) since the inverse gamma random variable will concentrate around 1 as n increases. For

example,

Φ(c1,i) = Φ
(
ai(−qt/2 − bTi W)

)
+

1

2
φ
(
ai(−qt/2 − bTi W)

)
aiqt/2(vi − 1) +Hi(c

∗)(c∗)2 (34)

for some c∗ ∈ (0, vi−1) if vi > 1 and c∗ ∈ (vi−1, 0) if vi < 1, where Hi(·) is the second derivative

of Φ(c1,i) with respect to (vi−1). By the fact that exp(−x) ≤ k!/xk for any nonnegative integer

number k, it is easy to show that Hi(·) is uniformly bounded on the set of vi with measure

1. For Φ(c2,i), Φ(c1,j) and Φ(c2,j), we have similar results. Apply the Mean Value theorem to

φ(c1,i), φ(c2,i), φ(c1,j) and φ(c2,j), we can also obtain similar results.

In (30), we can show that

P (|Tl| ≤ −qt/2|W) =

∫ ∞
0

[Φ(c1,l)− Φ(c2,l)]f(vl)dvl (35)

for the index l = i, j. Next we will evaluate the covariance between I(Pi ≤ t|W) and I(Pj ≤
t|W). Since Vi follows the InverseGamma((n− 1)/2, (n− 1)/2), we have

EVi =
n− 1

n− 3
, Var(Vi) =

2(n− 1)2

(n− 3)2(n− 5)
, E(Vi − 1)4 = O(n−1).

By Cauchy-Schwartz inequality, it is not difficult to show that E|(Vi − 1)(Vj − 1)| = O(n−1),

E[|Vi − 1|(Vj − 1)2] = O(n−1) and E(Vi − 1)2(Vj − 1)2 = O(n−1). Combining (31), (32), (33)

with the above expressions for Φ(·) and φ(·), we have

P (|Ti| ≤ −qt/2, |Tj | ≤ −qt/2|W)− P (|Ti| ≤ −qt/2|W)P (|Tj | ≤ −qt/2|W)

= O(n−1) +
{[
φ(ai(−qt/2 − bTi W))− φ(ai(qt/2 − bTi W)

][
φ(aj(−qt/2 − bTj W))

−φ(aj(qt/2 − bTj W))
]
aiaj +O(n−1/2)

}
covkij +O(|covkij |3/2). (36)
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Note that the coefficient before covkij in (36) is uniformly bounded. Therefore, in (30),

Cov(I(Pi ≤ t|W), I(Pj ≤ t|W)) = O(|covkij |) +O(|covkij |3/2) +O(n−1).

By the Cauchy-Schwartz inequality and condition (C0), we have

p−2
∑
i,j

|covkij | ≤ p−1[
∑
i,j

(covkij)
2]1/2 = p−1[

p∑
j=k+1

λ2j ]
1/2 = O(p−δ).

Also we have |covkij |3/2 < |covkij |. Therefore, we can conclude that

Var
(
p−10

∑
i∈{true nulls}

I(Pi ≤ t|W)
)

= O(p−δ) +O(n−1).

This establishes (27).

We now prove (28). Similar to the discussion for (34) and (35), we can show that

P (Pi ≤ t|W) = Φ(ai(qt/2 + bTi W)) + Φ(ai(qt/2 − bTi W)) +O(n−1).

From Lemma 4 in Supplementary Materials, we know zt/2 = qt/2 + ∆, where 0 < ∆ ≤ Ct/n and

Ct is a constant, independent of n. By the mean value theorem,

Φ(ai(qt/2 + ηi)) = Φ(ai(zt/2 + ηi))−∆aiφ(x?i1)

Φ(ai(qt/2 − ηi)) = Φ(ai(zt/2 − ηi))−∆aiφ(x?i2)

where ai(zt/2 + ηi) − ∆ai < x?i1 < ai(zt/2 + ηi) and ai(zt/2 − ηi) − ∆ai < x?i2 < ai(zt/2 − ηi).
Thus, (28) can be expressed as∣∣∣p−10 ∆

∑
i∈{true null}

ai[φ(x?i1) + φ(x?i2)]
∣∣∣ = O(n−1), (37)

as ai[φ(x?i1) + φ(x?i2)] is uniformly bounded for every i. This completes the proof of the first

result.

For the second result, define an infeasible estimator

W̃2 = (BTB)−1BTT.

Denote FDP2(t) as the estimator in equation (7) with using the infeasible estimator W̃2. Then

F̂DPU,G(t)−FDPA(t) = [F̂DPU,G(t)−FDP2(t)] + [FDP2(t)−FDP1(t)] + [FDP1(t)−FDPA(t)],

where FDP1(t) is defined in the proof of Theorem 1.

Similar to the proof of Theorem 1, we can show that

∣∣F̂DPU,G(t)−FDP2(t)
∣∣ ≤ (R(t))−1

{
C1

k∑
h=1

[
|λ̂h−λh|+λh‖γ̂h−γh‖

]
+C2p

1/2
k∑

h=1

‖γ̂h−γh‖‖T‖
}

for some positive constants C1 and C2.

As shown in the proof for the first result of Theorem 2, T = VZ where V = diag{
√
Vi} and

Vi ∼ InverseGamma(
n− 1

2
,
n− 1

2
) i = 1, · · · , p,
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Table 3. Empirical mean absolute error between true FDP(t) and

F̂DPA(t) for known covariance and F̂DPPOET (t) for unknown covari-

ance. Results are in percent.

Sample Size LAD LS SCAD

Model 1, Known Covariance n = 50 2.78 2.69 3.56

n = 100 2.73 2.61 3.93

n = 200 2.63 2.46 4.87

Model 1, Unknown Covariance n = 50 4.26 4.06 4.54

n = 100 3.73 3.63 4.80

n = 200 3.26 3.10 5.12

Model 2, Known Covariance n = 50 3.22 3.37 3.14

n = 100 3.53 3.41 3.46

n = 200 3.99 3.89 4.78

Model 2, Unknown Covariance n = 50 4.63 4.56 4.73

n = 100 4.38 4.31 4.36

n = 200 4.50 4.35 6.17

independent of Zi. Using this representation, we have

E‖T‖2 =

p∑
i=1

EViZ
2
i =

n− 1

n− 3
(‖µ?‖2 + p).

This implies that

‖T‖ = Op(‖µ?‖+ p1/2).

Similarly, we can also show that

|FDP2(t)− FDP1(t)| ≤ (R(t))−1C3p
1/2
∥∥ k∑
h=1

γhγ
T
h

∥∥‖T− Z‖.

Stochastically, we have

E‖T− Z‖2 ≤
p∑
i=1

E(
√
Vi − 1)2Z2

i = E(
√
Vi − 1)2(‖µ?‖2 + p).

Using E(
√
Vi − 1)2 = O(n−1), it follows that

‖T− Z‖ = Op{n−1/2(‖µ?‖+ p1/2)}.

For |FDP1(t) − FDPA(t)|, we have shown the result in the proof of Theorem 1. Combining

all the results above, the proof is now complete.

9. Additional Simulation and Data Results

9.1. Comparison with the benchmark with known covariance.
We first compare the realized FDP(t) values with F̂DPA(t) given in (7) and F̂DPPOET(t) to

evaluate the performance of our POET-PFA procedure. Note that F̂DPA(t) is constructed



32 J. Fan and X. Han

based on a known covariance matrix Σ and is used as a benchmark for F̂DPPOET(t). We

apply three different estimators for the realized but unknown factors: least absolute deviation

estimator (LAD) (10), least squares estimator (LS) (11) and smoothly clipped absolute deviation

estimator (SCAD) (8). Fan, Han & Gu (2012) has theoretically and numerically shown that

F̂DPA(t) performs well. The performance of LAD and SCAD under unknown dependence can

be better illustrated through an apparent factor model structure. Therefore, we only present

the results corresponding to Models 1 & 2. For other models considered in section 3.1, LAD

and SCAD might not be very effective. We have the simulation results for n = 50, 100, 200, but

due to the space limit, we will only present the results for n = 50. Figures 1 and 2 correspond

to strict factor model and approximate factor model respectively. They show clearly that both

F̂DPA(t) and F̂DPPOET(t) approximate FDP(t) very well. In addition, they demonstrate that

F̂DPPOET(t) performs comparably with but slightly inferior to F̂DPA(t). This shows that the

price paid to estimate the unknown covariance matrix is limited. Table 1 provides additional

evidence to support the statement, in which we compute the mean absolute error between the

approximated FDP and the true FDP.
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Fig. 3. Comparison of realized values of False Discovery Proportion with F̂DPA(t) and F̂DPPOET(t) for

Model 1.

9.2. Comparison with other methods

We further compare POET-PFA with other methods under different signal strength. The de-

tailed results are shown in Tables 2 & 3. Overall, POET-PFA is still the best in terms of

producing smaller mean absolute error. It is worth mentioning that HF-PFA is very competitive
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Fig. 4. Comparison of realized values of False Discovery Proportion with F̂DPA(t) and F̂DPPOET(t) for

Model 2.

and outperforms under several model settings with certain sample size.

Figures 3 & 4 illustrate the performance of POET-PFA with least squares estimator compared

with Efron, FAMT and FAMT-PFA under Models 3-8. Although the dependence structures vary

across the model settings, our POET-PFA still captures the trend of the true FDP.

9.3. Data Analysis
In Figure 5, we summarize the relationship of approximated FDP and number of total rejections.

Compared with Figure 2 of the main paper, the approximated FDP tends to be smaller with

the same amount of total rejections. The 40 most significantly differentially expressed genes are

listed in Tables 4 & 5 for the fixed threshold method and the dependence adjusted method.
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Table 4. Empirical mean absolute error between true FDP(t) and F̂DP(t). The nonzero

µi = 0.8. The results are in percent.

POET-PFA Efron FAMT FAMT-PFA HF-PFA SS-PFA LW-PFA

Model 1

n = 50 4.56 19.92 10.87 6.20 5.24 5.93 5.17

n = 100 3.88 19.82 11.56 5.89 6.80 4.90 4.56

n = 200 3.89 19.54 11.99 5.82 4.83 4.48 4.29

Model 2

n = 50 5.00 18.94 11.33 6.54 5.47 6.45 5.89

n = 100 4.04 17.66 10.13 5.05 4.61 5.22 5.04

n = 200 4.01 17.58 10.39 4.98 4.59 4.56 4.50

Model 3

n = 50 7.55 16.82 15.67 9.43 5.64 7.27 6.47

n = 100 4.36 14.34 12.15 6.46 3.98 4.86 4.48

n = 200 3.84 14.26 13.04 6.09 4.76 4.66 4.49

Model 4

n = 50 5.19 19.03 11.81 7.00 5.53 7.84 7.60

n = 100 4.02 19.39 10.06 6.09 6.16 4.94 4.98

n = 200 3.63 19.80 10.02 6.14 4.34 4.17 4.32

Model 5

n = 50 5.46 10.28 10.22 5.54 5.67 7.02 5.73

n = 100 5.58 11.28 10.86 5.46 6.56 6.32 5.92

n = 200 5.15 10.52 10.53 4.87 7.13 5.56 5.39

Model 6

n = 50 5.33 10.89 10.19 5.60 5.54 6.56 5.33

n = 100 4.24 9.76 9.55 4.37 5.08 4.94 4.24

n = 200 4.14 9.47 9.49 4.13 3.83 4.50 4.14

Model 7

n = 50 4.46 10.61 6.02 4.73 5.01 6.02 4.51

n = 100 4.11 10.17 6.39 4.50 5.44 5.07 4.21

n = 200 4.11 10.43 6.69 4.71 6.12 4.78 4.21

Model 8

n = 50 4.25 10.77 5.51 4.47 5.16 5.97 4.43

n = 100 4.44 11.85 6.81 4.92 4.49 5.96 4.82

n = 200 4.12 11.44 6.55 4.81 3.70 4.73 4.28
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Table 5. Empirical mean absolute error between true FDP(t) and F̂DP(t). The nonzero

µi = 1.2. The results are in percent.

POET-PFA Efron FAMT FAMT-PFA HF-PFA SS-PFA LW-PFA

Model 1

n = 50 4.49 19.12 11.25 5.59 4.78 6.82 6.00

n = 100 3.68 19.56 10.23 4.83 4.95 4.88 4.54

n = 200 3.50 19.22 9.95 4.51 2.91 3.99 3.85

Model 2

n = 50 4.81 18.41 11.15 5.59 4.99 7.09 6.54

n = 100 4.31 18.57 11.03 5.85 5.08 5.24 5.15

n = 200 3.75 18.27 11.01 5.49 4.55 4.29 4.24

Model 3

n = 50 5.13 14.31 12.85 6.81 5.61 8.14 6.75

n = 100 4.25 14.22 12.12 5.88 5.56 6.00 5.59

n = 200 3.28 14.17 11.78 5.46 4.90 4.21 4.07

Model 4

n = 50 4.81 19.90 11.11 6.29 5.48 7.66 8.07

n = 100 3.79 19.03 11.18 6.73 4.54 4.81 4.92

n = 200 3.54 19.02 10.51 6.24 4.97 4.20 4.26

Model 5

n = 50 5.83 10.98 11.15 5.81 6.19 7.40 5.90

n = 100 5.55 10.78 10.91 5.24 5.96 6.40 5.63

n = 200 5.53 10.39 11.42 5.00 6.07 5.98 5.64

Model 6

n = 50 4.39 9.65 9.28 4.67 4.38 5.81 4.39

n = 100 4.10 9.41 9.24 4.25 5.84 4.86 4.10

n = 200 4.33 9.95 10.11 4.35 4.16 4.85 4.34

Model 7

n = 50 4.39 10.45 6.32 4.90 4.97 6.60 4.74

n = 100 4.24 10.02 6.35 4.74 4.40 5.46 4.47

n = 200 4.22 10.00 6.57 4.76 4.46 4.75 4.28

Model 8

n = 50 4.44 12.01 5.97 4.62 4.36 6.58 4.84

n = 100 4.24 11.67 6.20 4.68 4.52 5.32 4.47

n = 200 4.25 10.91 7.05 5.00 5.30 4.82 4.40
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Fig. 5. Comparison of realized values of False Discovery Proportion with F̂DPPOET(t) involving least-

squares estimation, Efron (2007) estimator, FAMT, and FAMT-PFA. From top to bottom, the panels

correspond to Models 3-6. n = 50. Nonzero µi = 1.
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Fig. 6. Comparison of realized values of False Discovery Proportion with F̂DPPOET(t) involving least-

squares estimation, Efron (2007) estimator, FAMT, and FAMT-PFA. From top to bottom, the panels

correspond to Models 7 & 8. n = 50. Nonzero µi = 1.
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Fig. 7. The approximated false discovery proportion and the approximated number of false discoveries

as functions of the number of total discoveries for p = 3226 genes, where the estimated k is 1 compared

with other choices k = 2, 3, 4, 5, using dependence-adjusted procedure.
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Table 6. 40 most significantly differentially expressed genes that can discriminate breast

cancers with BRCA1 mutations from those with BRCA2 mutations. The approximated

FDP is approximately 0.02% under approximate factor model with 1 factor, providing

strong evidence for our selection.

Clone ID UniGene Title

26184 phosphofructokinase, platelet

810057 cold shock domain protein A

46182 CTP synthase

813280 adenylosuccinate lyase

950682 phosphofructokinase, platelet

840702 SELENOPHOSPHATE SYNTHETASE ; Human selenium donor protein

784830 D123 gene product

841617 Human mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2

563444 forkhead box F1

711680 zinc finger protein, subfamily 1A, 1 (Ikaros)

949932 nuclease sensitive element binding protein 1

75009 EphB4

566887 chromobox homolog 3 (Drosophila HP1 gamma)

841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1)

809981 glutathione peroxidase 4 (phospholipid hydroperoxidase)

236055 DKFZP564M2423 protein

293977 ESTs, Weakly similar to putative [C.elegans]

295831 ESTs, Highly similar to CGI-26 protein [H.sapiens]

236129 Homo sapiens mRNA; cDNA DKFZp434B1935

247818 ESTs

814270 polymyositis/scleroderma autoantigen 1 (75kD)

130895 ESTs

548957 general transcription factor II, i, pseudogene 1

212198 tumor protein p53-binding protein, 2

293104 phytanoyl-CoA hydroxylase (Refsum disease)

82991 phosphodiesterase I/nucleotide pyrophosphatase 1

32790 mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)

291057 cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)

344109 proliferating cell nuclear antigen

366647 butyrate response factor 1 (EGF-response factor 1)

366824 cyclin-dependent kinase 4

471918 intercellular adhesion molecule 2

136769 TATA box binding protein (TBP)

23014 mitogen-activated protein kinase 1

26184 phosphofructokinase, platelet

29054 ARP1 (actin-related protein 1, yeast) homolog A (centractin alpha)

36775 hydroxyacyl-Coenzyme A dehydrogenase

42888 interleukin enhancer binding factor 2, 45kD

45840 splicing factor, arginine/serine-rich 4

51209 protein phosphatase 1, catalytic subunit, beta isoform
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Table 7. 40 most significantly differentially expressed genes that can discriminate breast cancers with

BRCA1 mutations from those with BRCA2 mutations under dependence-adjusted procedure. The ap-

proximated FDP is approximately 0.0032% under approximate factor model with 1 factor, providing strong

evidence for our selection.

Clone ID UniGene Title

26184 phosphofructokinase, platelet

752631 fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)

810057 cold shock domain protein A

813280 adenylosuccinate lyase

714106 plasminogen activator, urokinase

950682 phosphofructokinase, platelet

784830 D123 gene product

841617 Human mRNA for ornithine decarboxylase antizyme, ORF 1 and ORF 2

711680 zinc finger protein, subfamily 1A, 1 (Ikaros)

784360 echinoderm microtubule-associated protein-like

949932 nuclease sensitive element binding protein 1

75009 EphB4

784224 fibroblast growth factor receptor 4

566887 chromobox homolog 3 (Drosophila HP1 gamma)

841641 cyclin D1 (PRAD1: parathyroid adenomatosis 1)

205049 ESTs, Weakly similar to heat shock protein 27 [H.sapiens]

768561 small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-j

809981 glutathione peroxidase 4 (phospholipid hydroperoxidase)

236055 DKFZP564M2423 protein

293977 ESTs, Weakly similar to putative [C.elegans]

295831 ESTs, Highly similar to CGI-26 protein [H.sapiens]

236129 Homo sapiens mRNA; cDNA DKFZp434B1935 (from clone DKFZp434B1935)

247818 ESTs

243360 ESTs, Moderately similar to cytoplasmic dynein intermediate chain 1 [H.sapiens]

814270 polymyositis/scleroderma autoantigen 1 (75kD)

140635 ESTs

548957 general transcription factor II, i, pseudogene 1

212198 tumor protein p53-binding protein, 2

293104 phytanoyl-CoA hydroxylase (Refsum disease)

82991 phosphodiesterase I/nucleotide pyrophosphatase 1 (homologous to mouse Ly-41 antigen

32790 mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)

291057 cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)

366647 butyrate response factor 1 (EGF-response factor 1)

366824 cyclin-dependent kinase 4

361692 sarcoma amplified sequence

26184 phosphofructokinase, platelet

29054 ARP1 (actin-related protein 1, yeast) homolog A (centractin alpha)

36775 hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzy

42888 interleukin enhancer binding factor 2, 45kD

51209 protein phosphatase 1, catalytic subunit, beta isoform
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