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ABSTRACT

DNA microarray analysis has emerged as a leading technology to enhance our understanding of gene
regulation and function in cellular mechanism controls on a genomic scale. This technology has advanced
to unravel the genetic machinery of biological rhythms by collecting massive gene-expression data in a
time course. Here, we present a statistical model for clustering periodic patterns of gene expression in
terms of different transcriptional profiles. The model incorporates biologically meaningful Fourier series
approximations of gene periodic expression into a mixture-model-based likelihood function, thus
producing results that are likely to be closer to biological relevance, as compared to those from existing
models. Also because the structures of the time-dependent means and covariance matrix are modeled, the
new approach displays increased statistical power and precision of parameter estimation. The approach
was used to reanalyze a real example with 800 periodically expressed transcriptional genes in yeast,
leading to the identification of 13 distinct patterns of gene-expression cycles. The model proposed can be
useful for characterizing the complex biological effects of gene expression and generate testable

hypotheses about the workings of developmental systems in a more precise quantitative way.

LMOST all of life’s phenomena populating the
earth can be described in terms of periodic
rhythms that result from the planet’s rotation and orbit
around the sun (GOLDBETER 2002). Cell division
(MrtcHisoN 2003), circadian rhythms (CROSTHWAITE
2004; Proro et al. 2005), morphogenesis of periodic
structures such as somites in vertebrates (DALE et al.
2003), and the complex life cycles of some micro-
organisms (LAKIN-THOMAS and Bropy 2004; RoOVERY
et al. 2005) are all excellent representatives of biological
rhythms. From a mechanistic perspective, rhythmic
behavior arises in genetic and metabolic networks as a
result of nonlinearities associated with various modes of
cellular regulation.

The complexity and inherent periodicity of rhythmic
processes can be well described by mathematical mod-
els. For example, mathematical models of increasing
complexity for the genetic regulatory network produc-
ing circadian rhythms in the fly Drosophila predict the
occurrence of sustained circadian oscillations of the
limit cycle type (LELOUP et al. 1999). When incorporat-
ing the effect of light, the models account for phase
shifting of the rhythm by light pulses and for entrain-
ment by light—dark cycles. The models also provide an
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explanation for the long-term suppression of circadian
rhythms by a single pulse of light. Stochastic simulations
were developed to test the robustness of circadian
oscillations with respect to molecular noise (GONZE
et al. 2002, 2003).

The recent development of gene-expression technol-
ogies has offered biologists a unique opportunity to
more closely study the mechanisms that control a
particular biological rhythm. PANDA et al. (2002) em-
ployed high-density oligonucleotide arrays to trace gene
expression in mouse tissue samples taken every 4 hr
during two complete circadian cycles. They also identi-
fied clusters of circadian-regulated genes among >7000
genes with a cosine wave-fitting algorithm (HARMER
et al. 2000). About 650 cycling transcripts were detected
to be under circadian regulation specific to either the
suprachiasmatic nuclei or the liver. These studies
allowed the authors to understand how the major
oscillator in the suprachiasmatic nuclei and the liver
regulates behavioral and physiological rhythms in the
whole organism.

To associate the profile of gene expression with a
physiological function of interest, it is crucial to cluster
the types of gene expression on the basis of their
periodic patterns. Statistical modeling and algorithms
play a central role in cataloging dynamic gene-expres-
sion profiles. While various computational models
have been developed for gene clustering based on
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static microarray data (EI1SEN et al. 1998; GHOSH and
CHINNAIYAN 2002; McLACHLAN et al. 2002; RAMONI et al.
2002; FaN and ReN 2006), considerable attention has
been paid to methodological derivations for detecting
temporal patterns of gene expression in a time course
based on functional principal component analysis or
mixture model analysis (HOLTER et al. 2001; QIAN et al.
2001; BARJOSEPH et al. 2003; Luan and L1 2003; PARK
et al. 2003; WAKEFIELD et al. 2003; ERNST et al. 2005;
STOREY et al. 2005; MA et al. 2006; NG et al. 2006; INOUE
et al. 2007). In particular, LUAN and L1 (2004) proposed
a statistical model for characterizing different types of
periodic rhythms of gene expression. These methods
show some unique utilization to identify genes with
varying expression profiles over time, providing new
tools to elucidate a comprehensive picture of the life
process.

A common feature of these clustering methods is that
they model time-dependent gene-expression profiles
using nonparametric approaches, such as cubic splines.
Although nonparametric approaches are statistically
flexible and computationally fast, they often do not
provide rigorous biological interpretations of results
even if the gene-expression data analyzed contain some
biologically meaningful patterns. This article was moti-
vated by the fundamental idea that key features of many
biological processes can be described by parsimonious
mathematical equations. For example, FRank (1926)
used the Fourier series to approximate periodic and
quasi-periodic biological phenomena. ATTINGER et al.
(1966) provided a detailed mathematical formulation
of this approximation for a biological rhythmic system
through both theoretical and experimental approa-
ches. Fourier series approximation as an analytical tool
(PriESTLEY 1981) has been widely applied to study the
mechanisms and patterns of biological rhythmicity,
including the cyclic organization of preterm and term
neonates during the neonatal period (BEGUM et al.
2006) and pharmacodynamics (MAGER and ABERNETHY
2007).

Fourier approximation has also been used to model
periodic gene expression, leading to the detection of
periodic signals in various organisms including yeast
and human cells (SPELLMAN et al. 1998; WICHERT et al.
2004; KiM et al. 2006). GLYNN et al. (2006) proposed a
Lomb-Scargle periodogram approach based on the
fast Fourier transform to model unevenly spaced
gene-expression time series and then characterize
periodic patterns of gene expression by using a multi-
ple-hypothesis testing procedure with a controlled false
discovery rate. Our statistical model presented in this
article integrates the Fourier series approximation into
a mixture-model framework to mathematically cluster
microarray genes on the basis of their distinct patterns
of periodic expression. The advantage of this mixture-
based model includes its solid statistical foundation of
testing the number of gene clusters. Furthermore,

through the implementation of the Fourier series
approximation, it is possible to test several biologically
meaningful characteristics such as sharp peaks in the
ordinary periodograms calculated from the Fourier
transform of the time series (DURBIN 1967). We use a
published example for cell cycle-regulated genes in
Saccharomyces cerevisiae (SPELLMAN et al. 1998) to validate
the new model. The statistical behavior of the model is
examined through simulation studies.

METHODS

Mixture model: Finite mixture models (McLACHLAN
and PeeL 2000) have been widely used to model the
distributions of a variety of random phenomena. Mul-
tivariate normality is generally assumed for multivariate
data of a continuous nature. This multivariate normal
mixture model is employed to detect different patterns
in gene-expression profiles.

Assume that n genes are measured at multiple time
points. Our model is able to consider unevenly spaced
time intervals and different measurement schedules
for each gene. Let y,= (y:(t1),...,%(tir;)) be the T;-
dimensional gene-expression data for gene i Suppose
there are | components in the mixture model. This
means that any one of the genes (7) is assumed to arise
from one (and only one) of the J possible periodic
patterns of expression, the distribution of whose ex-
pression data is expressed as the fcomponent mixture
probability density function; i.e.,

J
yi ~ filyiou, ) =Y ofilyiug X, (1)
J=1

where ® = (wy,...,w;) is the mixture proportions that
are nonnegative and sum to unity; u; = (u;,..., uy)
contains the component- (or pattern-) specific mean
vector for gene 7 and 3., contains residual variances and
covariances among the 7; time points for gene ¢ that are
common for all gene-expression patterns. The proba-
bility density function of the jth gene-expression pattern
or cluster, f;(y;;u;,2;), is assumed to be multivariate
normal with mean vector u; = (u;(41), .. ., u;(t;1,)) and
common covariance matrix ;.

From the above analysis, different gene-expression
patterns can be detected by estimating the number of
mixture components, the time-dependent means of
each component, and the covariance matrix. By com-
paring the differences of the mean vector among
different components, it is possible to test how response
curves differ among different components and, further,
to address fundamentally important biological issues
regarding the interplay between gene expression and
biological rhythms.

Modeling the mean curve: If the genes studied are
periodically regulated, their time-dependent expres-
sion can be accurately approximated by a Fourier series
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approximation (SPELLMAN et al. 1998). Fourier series
approximations can assess periodicity, so we can identify
the genes whose RNA levels varied periodically within
the cell cycle and, further, find the associated ampli-
tudes and phases of these cycles by estimating the
mathematical parameters in the Fourier series approx-
imation. A general form of the Fourier signal is given as

- e 5 e () + S in(23)
(2)

where qy is the average value of sg(?) and the other a;
and b, coefficients are the amplitude coefficients that
determine the times at which the gene achieves peak
and trough expression levels, respectively, and 7 is the
period of the signal of gene expression.

In practice, the Fourier series of Equation 2 can be
approximated by the first K + 1 term. By analyzing the
error of the Fourier series approximation, expressed as
the difference between the signal and the (K + 1)-term
series,

) = an+ Y (wcos(PF )+ 3 (nin (33 ).

k=K+1 k=K+1

it is found that, when a third-order approximation is
used (i.e., K= 3), the unused terms (k= 4, ..., %) from
the series together are only ~3% of the signal. Thus, the
time-dependent expression value of a gene can be
adequately modeled by a Fourier series approximation
of the first three orders. Let 0"1 denote the vector
containing Fourier parameters of various orders for the
genes with pattern j, which is specified as

(aoj, mj, brj, T ) for the first order,
@uj = (aoj, aj, bij, agj, by, Tj) for the second order,
(aoj, arj, byj, agj, boj, asj, bsj, T ;)  for the third order.

(3)

The mean expression value of gene ¢when its pattern is j
at time point ¢; can be approximated by these Fourier
series parameters; i.e.,

Uii(lir) = sk (O3 tir).

Modeling the covariance structure: A number of
approaches can be used to model the covariance
structure of serial measurements. A commonly used
approach for structuring the covariance is the first-order
autoregressive [AR(1)] model (DAVIDIAN and GILTINAN
1995; VERBEKE and MOLENBERGHS 2000). One advantage
of using the AR(1) model is that it provides a general
expression for calculating the determinant and inverse of
the matrix for any number of time points measured. But
it assumes variance stationarity and correlation stationar-

ity; i.e., the residual variance at different time points is the
same, expressed as ¢°, and the correlation between two
different time points for gene i, ¢;;, and t,,, decreases
exponentially in p with time lag, expressed as corr(y; (¢, ),
Yilti,)) = plim 1=l

To remove the heteroscedastic problem of the re-
sidual variance, which violates a basic assumption of the
simple AR(1) model, two approaches can be used. The
first approach is to model the residual variance by a
parametric function of time, as proposed by PLETCHER
and GEYER (1999). But this approach needs to imple-
ment additional parameters for characterizing the time-
dependent change of the variance. The second approach
is to embed CARROLL and RUPPERT’s (1984) transform-
both-sides (TBS) model into the growth-incorporated
finite mixture model (Wu et al. 2004), which does not
need any more parameters. Both empirical analyses with
real examples and computer simulations suggest that the
TBS-based model can increase the precision of parame-
ter estimation and computational efficiency. Further-
more, the TBS model preserves original biological means
of the curve parameters although statistical analyses are
based on transformed data. In this study, we used the
TBS-based AR(1) model, with the structuring parameters
arrayed in ©,,.

Computational algorithm: The EM algorithm and
Nelder-Mead simplex algorithm were used to estimate
the unknown parameters = ({0;,0,, }5:1,6)1,). The
observed data y = (y;,...,y,) are regarded as being
incomplete. Let z;; be a missing variable, defined as 1 if
y; arises from the jth component of the mixture model
(i=1,....,mj=1,...,]), and write z; = (zz,..., z;)) .
The variables zj,..., z, are independent and obey a
multinomial distribution consisting of one category
among [ possibilities with probabilities (o1,..., ).
Then, we have

'

(21,25, ...,21) id Mult; (1, ), withw = (01, 09,...,0/).
The complete data log-likelihood is

n_J
log Le(Q]y) = > zjlogle;fi(y; uy, %))

=1 j=1

In the E step, z; is replaced by the posterior probability
(Py) of the ith gene that belongs to the jth pattern. This
is equal to the conditional expectation (E[z; | y;) of
the complete data log-likelihood log L.({2), given the
observed datay, and is computed as

Py = Elzy)]
=Prz; =1|y]

_ ;i (y; i, %i) . (4)
Sy oy fi(yis vy, )
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In the M step, we intend to choose the value of €
that maximizes E[log L.(€2) |y]. For the derivation pro-
cess of the estimates of the unknown parameters in the
M step, see the APPENDIX. The E and M steps are iterated
repeatedly until the parameter estimates converge to
finally obtain the maximum-likelihood estimates (MLEs)
of the unknown parameters.

Model selection: Testing for the number of compo-
nents in a mixture is an important but very difficult
problem that has not been completely resolved. One of
the leading selection methods is the Akaike information
criterion (AIC) (AKAIKE 1974). This is designed to be
an approximately unbiased estimator of the expected
Kullback-Leibler information of a fitted model. The
minimum AIC produces a selected model that is close
to the best possible choice. Within the context of the
mixture model, the number of components, &, is chosen
to minimize

AIC(k) = —2In L(Q, k|y) + 2N (k),

where N(k) is the number of independent parameters
within Q. By the same token, the Bayesian information
criterion (BIC) (ScHwarz 1978) is also available, ex-
pressed as

BIC(k) = —21n L.(Q,k |y) + N(k)In(n).

The selected model is the one with the smallest BIC.
There is no clear consensus on which criterion is best
to use, although the empirical work of FRALEY and
RAFTERY (1998) seems to favor the BIC. Since informa-
tion criteria penalize models with additional parame-
ters, the AIC and BIC model order selection criteria are
based on parsimony. Note that since the BIC imposes a
greater penalty for additional parameters than does the
AIC, the BIC always provides a model with a number of
parameters not greater than that chosen by the AIC.

Hypothesis testing: The significance of overall differ-
ences in transcriptional expression profile among differ-
ent groups of microarray genes is tested by formulating
the following hypotheses:

Hy: @uj5®u, forj=1,...,J
H;: atleast one of the equalities above does not hold.

(5)

The log-likelihood ratio (LR) test statistic is then
calculated by

LR = -2 L(@]y) ~In L@ |y),  (6)

where the tilde and circumflex stand for the MLEs of
the unknown parameters under the null and alternative
hypotheses, respectively. The critical threshold for claim-
ing distinguishable expression patterns can be deter-
mined on the basis of simulation studies. The null
hypothesis means that no different patterns of periodic
expression exist among the genes studied, whereas the

alternative hypothesis states that at least two different
patterns can be identified. Under the null hypothesis,
time-dependent expression data for n genes are simulated
by assuming that the data follow a multivariate normal
distribution with mean vector u and covariance matrix 3.
According to Equation 3, individual elements in u are
approximated by the Fourier series function of a particular
order. A set of parameters that describes the shape of the
Fourier series function can be taken from their estimates
obtained from real data analyses. Similarly, the structure of
3 ismodeled by AR(1) with the two underlying parameters
(p and ¢?) taken from the estimates.

The functional clustering model described in the
main text is then used to analyze the expression data
simulated under the condition of no distinct groups,
provide the estimates of the curve parameters and
covariance-structuring parameters under the null and
alternative hypotheses, and calculate the LR test statis-
tic. This procedure is repeated 1000 times, leading to
1000 LR values. The empirical distribution of the LR test
statistic over 1000 replicates is then examined. The 95th
percentile of the empirical distribution is then regarded
as the critical threshold for claiming the existence of
distinct patterns of periodic gene expression.

RESULTS

A worked example: SPELLMAN et al. (1998) reported
the results of 800 periodically expressed transcriptio-
nal genes in the genome of yeast (S. cerevisiae). DNA
microarrays were used to analyze mRNA levels for six
yeast strains in cell cultures that have been synchronized
by three independent methods, a-factor arrest, elutria-
tion, and arrest of a ¢dcl5 temperature-sensitive mutant.
Each method produces populations of yeast cells
synchronized in terms of their phase in the cell cycle.

As described by SPELLMAN et al. (1998), RNA was
extracted from each of the samples and from a control
sample (unsynchronized cells). cDNAs were labeled
with Cyb fluor (red) for synchronized samples and Cy3
fluor (green) for the controls. Mixed labeled control
and experimental cDNAs were hybridized to individual
microarrays containing all 6178 yeast genes. The aver-
age fluorescence intensity for each fluor within each
array spot was recorded. The data of gene expression
were measured by normalized fluorescence ratio
logo(Cyb/(Cy3) at different time points. All the micro-
array data reported in SPELLMAN ef al. (1998) are given
at http:// cellcycle-www.stanford.edu.

To validate the usefulness of the model proposed in
this article, we analyze time-dependent gene-expression
data derived from the c¢dcl5 experiment. The data
contain 800 genes, 632 of which have complete data
during all 24 time points. The remaining 168 genes
contain missing values at some time points. All the 800
genes are analyzed simultaneously.
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values of model fitting by a Fourier series function of order
1-3 for 800 genes collected from the yeast genome.

When the Fourier series approximation is used to
cluster the periodic patterns of gene expression, two
issues should be determined in the following sequence.
First, what is the best order for Fourier series function
that explains the time-dependent data? Second, what
is the optimal number of components for the mixture
model that each correspond to a different expression
pattern? Model selection criteria, AIC and BIC, were
used to determine the best Fourier series order and best
number of mixture components for Spellman et al’s
data. The two criteria provide similar results (Figure 1),
although our analysis is mostly based on BIC. It seems
that a higher order of Fourier series can better fit time-
dependent data than a lower order, reflecting the
complexity of dynamic changes of gene expression. A
lower order of Fourier series tends to detect a smaller
number of gene-expression patterns than a higher
order. For example, the first order detects 13 compo-
nents, whereas the second and third orders detect 18
and >20 components, respectively. This makes sense
because a higher order of Fourier series function has
more power to discern subtle differences in gene-
expression profiles. When closely looking at the BIC
curves (Figure 1), the first order displays a dramatic
decrease when the number of clusters is 68, whereas a
dramatic decrease for the second and the third order
occurs at 12-14 and 18-20 clusters, respectively.

To illustrate different periodic patterns of gene-
expression profiles concordant with cell cycles, we used
the first-order Fourier series to detect 13 patterns whose
profiles (Figure 2) were drawn with the Fourier param-

5 - - -

Gene Expression
o
T

-5 L L - L

Time

Ficure 2.—Thirteen periodic patterns of gene-expression
profiles approximated by a first-order Fourier series function
for 800 genes collected from the yeast genome.

eters estimated from the proposed model (Table 1).
These 13 patterns differ dramatically in the overall shape
of curves as defined by parameter sets (do;, dij, 1;1]-, YA})
On the basis of these estimates, a number of hypothesis
tests can be made about the developmental patterns of
gene expression. Table 1 also provides the estimates of
the proportions of mixture components. The 13 patterns
occur at different frequencies among the observed
genes.

Computer simulation: We performed Monte Carlo
simulation studies to investigate statistical properties
of the functional clustering model proposed. A total
of 1000 genes were simulated whose time-dependent
expression was measured at 24 equally spaced time
points. All the genes were sorted into three distinct
patterns with varying proportions. The simulated gene-
expression profiles follow an arbitrary form of periodic
function. As has been mathematically clear, a periodic

TABLE 1

MLE:s of the Fourier parameters for 13 different periodic
patterns of gene expression among 800 genes collected from
the yeast genome based on the first-order approximation

Pattern a’\{)] Cilj bA]] 7; (I)/

1 —0.2888 —0.9178 0.7847 10.47000 0.0151
2 —0.0951 1.3955 0.0150 11.05000 0.0158
3 —0.4384 0.0008 1.1269  9.96970 0.0371
4 0.0604 0.2396 —1.2738 10.8740  0.0142
5 —0.0382 0.0430 0.2508  2.0737  0.2309
6 —0.0339 0.6301 —0.1558 10.8620  0.0632
7 —0.1277 —0.1248 0.3128  9.6315  0.2011
8 0.1403 —0.3256 —0.5849 10.6880  0.0656
9 —0.0177 —0.5249 0.0052 10.5780  0.0667
10 —0.2104 —0.5480 0.0000  2.0006  0.0099
11 0.4395 —3.1983 —1.8160 8.2165 0.0013
12 —-0.0124 —-0.1115 —0.1275 2.1848  0.1397
13 0.0359 —0.0277 —0.2932 2.0852  0.1394

The AR(1) parameters used to model the covariance struc-
ture are estimated as p= 0.6084 and &* = 0.3643 when 13
gene-expression patterns are fitted to the data.
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function can be approximated by a Fourier series
function. The Fourier parameters used for our simula-
tion were assigned by values that are within their spaces
according to SPELLMAN ef al’s (1998) data. The time-
dependent covariance matrix of gene expression was
structured by the AR(1) model. Different residual
variances were used in the simulation to examine the
effect of residual errors on parameter estimation.

The optimal number of components for the simu-
lated data was determined by calculating AIC and BIC
values. As shown in Figure 3, the model can correctly
estimate the number of components. On the basis of
results from 1000 simulation replicates, the model can
provide reasonably accurate and precise estimates of all
Fourier parameters (Tables 2 and 3). The precision of
parameter estimation depends on the proportion of a
gene-expression pattern being better for a more fre-
quent than for a less frequent pattern. As expected,
increasing residual variance will reduce the estimation
precision of parameters (Table 2 vs. Table 3). To show
the robustness of the model, an additional simulation
study based on a second-order Fourier series approxi-
mation was performed. The results suggest that all
parameters can be reasonably estimated even if the
number of parameters being estimated is increased
(Tables 4 and 5).

NG et al. (2006) proposed a random-effect mixture
model for clustering gene-expression profiles through
the incorporation of covariate information. When
the covariate is time, Ng et al’s model functions
as ours does. However, these two models are different
in three aspects. First, our model allows gene expres-
sion measured at unevenly spaced time intervals and
gene-specific differences in measurement schedule,

# of component

although these issues can be incorporated into Ng
et al.’s model through extensive modifications. Second,
we derived a closed form for the estimation of all the
Fourier parameters for each gene cluster within the EM
framework, whereas Ng et al. estimated the period of
the expression cycle for the mean Fourier curve of all
genes by using the least-squares estimation approach.
Third, our model is able and flexible enough to con-
sider Fourier series approximation of any arbitrary
order. We conducted an additional simulation exper-
iment to compare the results from our and Ng et al.’s
models. The data from 1000 time-dependent gene
expressions were simulated by assuming that these
follow a multivariate normal distribution with gene
cluster-specific mean vectors each fitted by a group of
Fourier parameters and covariance matrix structured
by the AR(1) model. Both our and Ng et al.’s models
can correctly estimate the number of gene clusters, i.e.,
three in this simulated example (Table 6). While our
model is able to provide reasonably accurate estimates
of the Fourier parameters, Ng et al.’s model was quite
biased for many parameter estimates. This comparative
analysis suggests that our model will perform better
than Ng et al’s model when gene-expression profiles
follow Fourier series approximations.

DISCUSSION

The use of microarray gene-expression technologies to
understand developmental questions has received con-
siderable attention in recent years (PANDA et al. 2002).
Statistical approaches for analyzing time-dependent gene
expression data have been proposed (HOLTER et al. 2001;
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TABLE 2

MLE:s of the first-order Fourier parameters for three periodic patterns of gene expression among 1000
simulated genes with a given set of values (ay, a;, by, T) under the residual variance of ¢*> = 0.3

Pattern
1 2 3
Proportion
o/® 0.5850,/0.5851 (0.0002) 0.1000/0.1001 (0.0002) 0.3150,/0.3148 (0.0005)

Mean vector

ao/ o 0.3000,/0.30571 (0.0218)

a /a 1.0000/1.0041 (0.0081)

b]/l;l 0.2000/0.1910 (0.0118)

I/f 6.0000/6.0034 (0.0043)
Covariance

p/p

a2 /62

0.0300/0.0511 (0.0378)
1.0000/1.0007 (0.0081)
0.0200/0.0084 (0.0141)

10.0000/10.0150 (0.0188)

0.6000/0.5888 (0.0044)
0.3000/0.3013 (0.0036)

0.0600/0.0696 (0.0171)
0.9000/0.9061 (0.0121)
0.0100/0.0160 (0.0150)

16.0000/15.9730 (0.0392)

827

The averages of parameter estimates are calculated from 100 simulations and the mean square errors of the

estimates are given in parentheses.

QIAN et al. 2001; BAR-JosEPH et al. 2003; LuaN and
L12003; PARK et al. 2003; WAKREFIELD ¢f al. 2003; ERNST
et al. 2005; STOREY et al. 2005; MA et al. 2006; NG et al.
2006; INOUE et al. 2007), but most of them are limited
in both biological and statistical aspects. First, these
approaches mostly based on a clustering analysis were
not implemented with biological principles of gene
expression that are related to a life process. For this
reason, the results obtained from these approaches
may not be biologically relevant and, thus, may be less
useful for deciphering the developmental machinery
of gene expression. The model proposed in this article
integrates mathematical aspects of periodic gene
expression into the analytical framework, thereby
allowing for the interplay between gene expression
and development.

Second, many existing approaches to clustering
genes of a similar expression pattern on the basis of a

similarity measure have not considered the autocorre-
lation of time series data and, therefore, fail to remove
systematical measurement errors. Although some au-
thors implemented time-dependent correlations into
their models (e.g., LuaN and L1 2003; NG et al. 2006),
biological meanings of gene expression were not well
considered. In the model proposed, the statistical
principle of functional data analysis has been embed-
ded into the model by structuring the time-dependent
covariance matrix. This, on the one hand, de-noises
repeated measurement errors and increases the effec-
tiveness of the model and, on the other hand, enhances
the model’s power due to a reduced number of
parameters being estimated. As an illustration, we used
a simple AR(1) model to approximate the covariance
structure. Other models, such as a structured antede-
pendence model (ZIMMERMAN and NUNEZ-ANTON
2001), can also be incorporated (see JAFFREZIC et al.

TABLE 3

MLEs of the first-order Fourier parameters for three periodic patterns of gene expression among 1000
simulated genes with a given set of values (ay, a1, b, T') under the residual variance of ¢* = 2.0

Pattern
1 2 3
Proportion
®/d 0.5850,/0.5839 (0.0070) 0.1000/0.1007 (0.0093) 0.3150/0.3154 (0.0112)

Mean vector

ao/ o 0.3000/0.2983 (0.0385)

a /a 1.0000,/1.0016 (0.0148)

by /by 0.2000,/0.2022 (0.0290)

T/T 6.0000,/5.9997 (0.0088)
Covariance

p/p

a2 /62

0.0300/0.0480 (0.0606)
1.0000,/0.9956 (0.0631)
0.0200/0.0296 (0.0435)

10.0000,/10.0030 (0.0575)

0.6000/0.5993 (0.0041)
2.0000/1.9945 (0.0250)

0.0600/0.0535 (0.0519)
0.9000,/0.9035 (0.0383)
0.0100/0.0157 (0.0199)

16.0000/15.9930 (0.1212)

The averages of parameter estimates are calculated from 100 simulations and the mean square errors of the
estimates are given in parentheses.
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TABLE 4

MLEs of the second-order Fourier parameters for three periodic patterns of gene expression among 1000
simulated genes with a given set of values (ay, a1, by, T) under the residual variance of ¢* = 0.3

Pattern
1 2 3
Proportion
/o 0.5850,/0.5850 (0.0004) 0.1000/0.1000 (0.0003) 0.3150/0.3150 (0.0003)

Mean vector

ao/ o 0.3000,/0.2972 (0.0166)
a,/ a 1.0000/1.0002 (0.0056)
bl/l;l 0.2000,/0.1998 (0.0103)
as/ s 0.2000,/0.2000 (0.0030)
lzz/liz 0.0400,/0.0398 (0.0051)
T/T 6.0000,/6.0002 (0.0030)
Covariance
p/p
a?/62

0.0300/0.0340 (0.0291)
1.0000,/1.0018 (0.0169)
0.0200/0.0211 (0.0214)
0.2000/0.1997 (0.0112)
0.0100/0.0121 (0.0103)
10.0000,/10.0010 (0.0164)

0.6000/0.5998 (0.0044)
0.3000,/0.2995 (0.0039)

0.0600/0.0592 (0.0212)
0.9000/0.8994 (0.0109)
0.0100/0.0150 (0.0147)
0.4000/0.3985 (0.0081)
0.0400/0.0441 (0.0155)
16.0000,/15.9880 (0.0397)

The averages of parameter estimates are calculated from 100 simulations and the mean square errors of the

estimates are given in parentheses.

2003; ZHAO et al. 2005), allowing the choice of an
optimal model for structuring the covariance matrix.
Finally, the mixture model-based approach allows for
the estimation of the frequencies of various patterns of
gene expression and the calculation of the posterior
probability of each gene that belongs to a particular
pattern.

The mixture-based approach incorporated by Fourier
series approximation is a promising technique for
detecting periodic gene-expression patterns. A major
advantage of this approach lies in its remarkable
flexibility to ask and address fundamental biological
questions at the interplay between gene-expression and
developmental patterns. Several important hypotheses

can be made from this approach, including those about
the differences of gene expression in Fourier curve
shapes, curve features, and duration of gene expression
based on individual Fourier parameters that describe
biological characteristics of periodic cycles. For example,
the peak-to-trough ratio, a,,/ b, reflects the amplitude of
expression profile and can be tested for its differences
among the gene groups detected. If the mean curve is
modeled with the Fourier series of order one, i.e.,

() =ao+ 2mi + bysi amt
u = ajCcos T 1811 T s

the hypothesis can be expressed as

TABLE 5

MLEs of the second-order Fourier parameters for three periodic patterns of gene expression among 1000
simulated genes with a given set of values (aq, @1, by, T) under the residual variance of o* = 2.6

Pattern
1 2 3
Proportion
/o 0.5850,/0.5836 (0.0088) 0.1000/0.1010 (0.0088) 0.3150/0.3154 (0.0109)

Mean vector

ao do 0.3000,/0.3028 (0.0452)
a | dy 1.0000/1.0042 (0.0174)
by /by 0.2000,/0.2004 (0.0302)
) ds 0.2000,/0.2008 (0.0079)
by /by 0.0400,/0.0409 (0.0163)
T/T 6.0000,/6.0006 (0.0092)
Covariance
p/p
0?/62

0.0300/0.0627 (0.0874)
1.0000,/0.9910 (0.0753)
0.0200/0.0388 (0.0569)
0.2000/0.1987 (0.0425)
0.0100/0.0231 (0.0325)
10.0000,/9.9890 (0.0522)

0.6000/0.5994 (0.0040)
2.6000/2.5935 (0.0323)

0.0600/0.0619 (0.0638)
0.9000/0.9014 (0.0416)
0.0100/0.0232 (0.0367)
0.4000,/0.3979 (0.0256)
0.0400,/0.0478 (0.0416)
16.0000,/15.9770 (0.1049)

The averages of parameter estimates are calculated from 100 simulations and the mean square errors of the
estimates are given in parentheses.
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TABLE 6

Comparisons between the results from our and NG et al.’s
(2006) models for clustering time series gene-expression
profiles that are approximated by the first-order
Fourier series

Cluster Model Proportion  ay a b T

1 True 0.585 0.300 1.000 0.200 6.000
Ours 0.584 0.298 1.002 0.202 5.999
Ng 0.421 1.012 —0.273 —0.591 14.770

2 True 0.100 0.030  1.000  0.020 10.000
Ours 0.101 0.048 0.996 0.030 10.003
Ng 0.262 0.078  0.857 —0.120 14.770

3 True 0.315 0.060 0.900 0.010 16.000
Ours 0.315 0.0564 0.904 0.016 15.993
Ng 0.316 0.041 0.548 0.018 14.770

Ho: ajl/bjl Ed]/bl forj: 1,...,]
Hj: atleast one of the equalities above does not hold.

The slope of the gene expression profile may change
with time, which suggests the occurrence of gene
expression X time interaction effects during a time
course. The differentiation of u(#) with respect to time ¢
represents a slope of gene expression. If the slopes at a
particular time point ¢* are different between the curves
of different gene groups, this means that significant
gene expression X time interaction occurs between this
time point and next. The test for gene expression X
time interaction can be formulated with the hypotheses

Ho: — wi(t) = — u(t') ws. Hi: o ui(t")

d #
— u(t
dt u(®),

The effect of gene expression X time interaction can be
examined during a given time course.

The new approach was used to analyze a real data set
for periodic gene expression. The results from this
approach suggest that it would be useful for the
identification of gene clusters in terms of their periodic
expression patterns. Through simulation studies, this
approach has proved to provide reasonable accuracy and
precision of parameter estimation and can be directly
used to analyze a real data set of periodic gene expres-
sion. This approach can be modified or extended in the
following areas. First, the clustering and estimation of
different gene-expression profiles depends on the pre-
cise estimation of covariance functions. FAN et al. (2007b)
proposed a semiparametric approach for modeling the
covariance structure, which has been shown to be
particularly powerful for functional data collected at
irregular and subjectspecific time points. The incorpo-
ration of Fan et al’s approach into our functional
clustering model is expected to improve its power for

gene clustering. Second, when repeated measurement
includes a high number of time points, the structuring of
the covariance matrix may be quickly problematic. A
handful of statistical models for dimension reduction
proposed by J. Fan and his group (FAN et al. 2007a; FaN
and Lv 2008) can be incorporated into our model, in a
hope to increase the tractability of high-dimensional
data. With these and other modifications, the approach
for gene clustering presented in this article could be
useful for addressing some developmentrelevant ques-
tions in genetic control of complex biological processes.
The computer code for the approach proposed in this
article is available at statgen.ufl.edu.
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APPENDIX

In what follows, we derive the log-likelihood equations for estimating the unknown vector = ({w;,0,, }jl.zl ,0,).
The log-likelihood of parameters £ constructed on the basis of the mixture model is expressed as

log L(Q]y) =

Zlog Z Wifii(¥: O, @) |,

and the posterior probability with which the ith gene belongs to the jth pattern is defined by Equation 4. Since

0, =1- Z]];ll o;, we have

yZ7 ®u7 ® )

—f[y:0.4,0,)

Olog L(Q2y) fi(
R e Z

"< | P
:;7

Z' 1(°]f(yl’®147 ®)

Pz/

E 1‘”]
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By setting it equal to zero, we have

L XL
’ 2o Py

J1
- ij]. (A1)

By plugging in &; into the right side of Equation Al, we have
& = Z?:l Pij/ZZ;l Pi]
i = T, M
1+ Zf:l( i1 P/ 201 Py)
l]/Zz— PJ
1+ Z i:l L;/ Ei:l PU
_ i1 l;/Zz— Py
I+ Zi:l Zj:l z’;’/ Ei:l P
_ 2.1 Py
- n n -1
i Py + i Z{:l P
_ iz1 Py
== —
S (P + Y5 Py)
nop.
_ =1"79 . (AQ)

n

Assuming that the model is implemented by a first-order Fourier series approximation, unknown Fourier
= (cj, 7 ), where ¢; = (ag @, by;). We have

parameters are specified as @,, =
O0log L(Q]y) [810gL(Q|y) ] |:(9u[]:|

acj 8u,] 80]'
Note that
dlog L(Qy) _ o= oy(0fiy; O, 0.)/0uy)
8u,] i=1 Z{':l @/'ﬁ’(yi;®u77®v)
i (.l)]f] YZ’G)“‘] 0] ) ( —ll")’271
i) =i
7Y 0pfy (750, )
_ZPU Y —wp) 2 L
—1
Let

1 cos (2;‘” ) sin (2“”’1 )
o ) sin( T lio )
J J

1 cos (—%m" ) sin (—27””" )
7; 7 7,x3

N

~

1 COS(

and then we have

= (7 )c; anda— = I(7;).
¢

To solve c;, we conduct the differentiation as
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Olog L(Q se
M Zp,, — )3 R(T) 0,
which leads to
Z Ui ZP w2 E(T
We further have
D Pieii(T))'; ! ZPM (T
i=1

If P;F(T,)'S ' F(T

;) is invertable, we have

¢; = (doj, dyj, 1;1]')

n n -1
> PyiE ()| | Y (T E T R(T) (A3)
i—1 =1
Note that f;(y; ©,,, 0,) can be written as
£1(5,0,,.0,) : 1
ii\Yir Dy Yy) = 9 CXpP | — ' p— .
7 @m) (@) 2[R P | T 207y, —wy) R (y, — uy)
If we write %, = o2 R;, where
1 p p? . pj”‘f;
p 1 p N
I{i = . . : 3
ptiT171 ptﬂ‘lf? pt['[‘773 . 1 TXT,
we have
9;i(y;: 9., 0,) 1 (yi - u,~)'Rl-_] (yi —uy)
’ 80'2] = ﬁ ﬁj(y;:; Qu/a 0,) ’ 2 ’ T
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8logL Q ly) z":Z]: 5ﬁ7(yi;®u,», 0,)
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By solving it for ¢*, we have
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For the AR(1) model, we have

1 —p 0 0
—p 1+p* —p 0
1 0 —p 1+p> —p O 0
Rl =
i 1—p? )
0 0 0 0 ... —p 1+p> —p
0 0 0 0 0 ... . —p 1/
and
[R|;=(1-pH)""
Let

m;=y; —u; and p“zj(ti'f) = 3i(tir) — w(tir).
Then, we have
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By solving the above log-likelihood equation, the MLE of p can be obtained as

n [ 2N\ i 1 - Ti-1 ¢ 7,-1 ]
i=1 Ejl':l Py _(1/(1 — )ik ll’-;‘j TPl ij(th) -2 W (L) (Lir + 1)_
UQ(P -1) 1 Z{:l Pjj

1 E]]':I P _(1/(1 - Pg))ﬂz{jR;Ing + PZTT!QI M?j(%) - Z-rT’;ll Mi/(tiT)M@'j(tiT + 1)_
N n(T; — 1)o?

ey
I

(A5)

The conditional expectation estimated with Equation 4 in the E step is used to solve the unknown parameters with log-
likelihood Equations A2-Ab in the M step. But since it is impossible to derive a closed form for 7}, we implement the
simplex algorithm to estimate this parameter in the M step. The E and M steps are repeated until the estimates are stable.



