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STATISTICAL ERROR∗
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We propose a computational framework named iterative local
adaptive majorize-minimization (I-LAMM) to simultaneously control
algorithmic complexity and statistical error when fitting high dimen-
sional models. I-LAMM is a two-stage algorithmic implementation of
the local linear approximation to a family of folded concave penal-
ized quasi-likelihood. The first stage solves a convex program with a
crude precision tolerance to obtain a coarse initial estimator, which
is further refined in the second stage by iteratively solving a sequence
of convex programs with smaller precision tolerances. Theoretically,
we establish a phase transition: the first stage has a sublinear itera-
tion complexity, while the second stage achieves an improved linear
rate of convergence. Though this framework is completely algorith-
mic, it provides solutions with optimal statistical performances and
controlled algorithmic complexity for a large family of nonconvex
optimization problems. The iteration effects on statistical errors are
clearly demonstrated via a contraction property. Our theory relies
on a localized version of the sparse/restricted eigenvalue condition,
which allows us to analyze a large family of loss and penalty func-
tions and provide optimality guarantees under very weak assumptions
(For example, I-LAMM requires much weaker minimal signal strength
than other procedures). Thorough numerical results are provided to
support the obtained theory.

1. Introduction. Modern data acquisitions routinely measure massive
amounts of variables, which can be much larger than the sample size, making
statistical inference an ill-posed problem. For inferential tractability and in-
terpretability, one common approach is to exploit the penalized M-estimator

β̂ = argmin
β∈Rd

{
L(β) +Rλ(β)

}
,(1.1)
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2 FAN ET AL.

where L(·) is a smooth loss function, Rλ(·) is a sparsity-inducing penalty
with a regularization parameter λ. Our framework encompasses the square
loss, logistic loss, Gaussian graphical model negative log-likelihood loss, Hu-
ber loss, and the family of folded concave penalties [9]. Finding optimal sta-
tistical procedures with controlled computational complexity characterizes
the efforts of high-dimensional statistical learning in the last two decades.
This paper makes an important leap toward this grand challenge by propos-
ing a general algorithmic strategy for solving (1.1) even when Rλ(β) is
nonconvex.

A popular choice of Rλ(β) is the Lasso penalty [25], a convex penalty.
Though a large literature exists on understanding the theory of penalized
M-estimators with convex penalties [8, 4, 26, 22], it has been well known
[9, 33] that the convex penalties introduce non-negligible estimation bi-
ases. In addition, the algorithmic issues for finding global minimizer are
rarely addressed. To eliminate the estimation bias, a family of folded-concave
penalties was introduced by [9], which includes the smooth clipped absolute
deviation (SCAD) [9], minimax concave penalty (MCP) [29], and capped
`1-penalty [32]. Compared to their convex counterparts, these nonconvex
penalties eliminate the estimation bias and attain more refined statistical
rates of convergence. However, it is more challenging to analyze the theoret-
ical properties of the resulting estimators due to nonconvexity of the penalty
functions. Existing work on nonconvex penalized M-estimators treats the
statistical properties and practical algorithms separately. On one hand, sta-
tistical properties are established for the hypothetical global optimum (or
some local minimum), which is usually unobtainable by any practical algo-
rithm in polynomial time. For example, [9] showed that there exists a local
solution that possesses an oracle property; [15] and [11] showed that the
oracle estimator is a local minimizer with high probability. Later on, [16]
and [30] proved that the global optimum achieves the oracle property under
certain conditions. Nevertheless, none of these paper specifies an algorithm
to find the desired solution. More recently, [20, 22, 1] develop a projected
gradient algorithm with desired statistical guarantees. However, they need
to modify the estimating procedures to include an additional `1-ball con-
straint, ‖β‖1 ≤ R, which depends on the unknown true parameter. On the
other hand, practitioners have developed numerous heuristic algorithms for
nonconvex optimization problems, but without theoretical guarantees. One
such example is the coordinate optimization strategy studied in [6] and [13].

So there is a gap between theory and practice: What is actually computed
is not the same as what has been proved. To bridge this gap, we propose
an iterative local adaptive majorize-minimization (I-LAMM) algorithm for
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fitting high dimensional statistical models. Unlike most existing methods,
which are mainly motivated from a statistical perspective and ignore the
computational consideration, I-LAMM is both algorithmic and statistical: it
computes an estimator within polynomial time and achieves optimal statis-
tical accuracy for this estimator. In particular, I-LAMM obtains estimators
with the strongest statistical guarantees for a wide family of loss functions
under the weakest possible assumptions. Moreover, the statistical properties
are established for the estimators computed exactly by our algorithm, which
is designed to control the cost of computing resources. Compared to existing
works [20, 22, 1], our method does not impose any constraint that depends
on the unknown true parameter.

Inspired by the local linear approximation to the folded concave penalty
[34], we use I-LAMM to solve a sequence of convex programs up to a prefixed
optimization precision

(1.2) min
β∈Rd

{
L
(
β
)

+R
(
λ(`−1) � β

)}
, for ` = 1, . . . , T,

where λ(`−1) =
(
λw
(
|β̃(`−1)

1 |
)
, . . . , λw

(
|β̃(`−1)
d |

))T
, β̃(`) is an approximate so-

lution to the `th optimization problem in (1.2), w(·) is a weighting func-
tion, R(·) is a decomposable convex penalty function, and ‘�’ denotes the
Hadamard product. In this paper, we mainly consider R(β) = ‖β‖1, though
our theory is general. The weighting function corresponds to the derivative
of the folded concave penalty in [9], [34] and [11].

In particular, the I-LAMM algorithm obtains a crude initial estimator β̃(1)

and further solves the optimization problem (1.2) for `≥2 with established
algorithmic and statistical properties. This provides theoretical insights on
how fast the algorithm converges and how much computation is needed,
as well as the desired statistical properties of the obtained estimator. The
whole procedure consists of T convex programs, each only needs to be solved
approximately to control the computational cost. Under mild conditions, we
show that only log(λ

√
n) steps are needed to obtain the optimal statistical

rate of convergence. Even though I-LAMM solves approximately a sequence
of convex programs, the solution enjoys the same optimal statistical property
of the unobtainable global optimum for the folded-concave penalized regres-
sion. The adaptive stopping rule for solving each convex program in (1.2)
allows us to control both computational costs and statistical errors. Figure
1 provides a geometric illustration of the I-LAMM procedure. It contains a
contraction stage and a tightening stage as described below.

∗ Contraction Stage: In this stage (` = 1), we approximately solve a con-
vex optimization problem (1.2), starting from any initial value β̃(0), and
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Fig 1. Geometric illustration of the contraction property. The contraction stage produces
an initial estimator, starting from any initial value β̃(0) that falls in the contraction region
which secures the tightening stage to enjoy optimal statistical and computational rates of
convergence. The tightening stage adaptively refines the contraction estimator till it enters
the optimal region, which is stated in (1.3). Here λ is a regularization parameter, s the
number of nonzero coefficients in β∗ and n the sample size.

terminate the algorithm as long as the approximate solution enters a de-
sired contraction region which will be characterized in Section 2.3. The
obtained estimator is called the contraction estimator, which is very crude
and only serves as initialization.
∗ Tightening Stage: This stage involves multiple tightening steps (` ≥ 2).

Specifically, we iteratively tighten the contraction estimator by solving
a sequence of convex programs. Each step contracts its initial estimator
towards the true parameter until it reaches the optimal region of con-
vergence. At that region, further iteration does not improve statistical
performance. See Figure 1. More precisely, we will show the following
contraction property

(1.3)
∥∥β̃(`) − β∗

∥∥
2
.
√
s

n
+ δ ·

∥∥β̃(`−1) − β∗
∥∥

2
for ` ≥ 2,

where β∗ is the true regression coefficient, δ ∈ (0, 1) a prefixed contrac-
tion parameter and

√
s/n the order of statistical error. Tightening helps

improve the accuracy only when ‖β̃(`−1)−β∗‖2 dominates the statistical
error. The iteration effect is clearly demonstrated. Since β̃(`) is only used
to create an adaptive weight for β̃(`+1), we can control the iteration com-
plexity by solving each subproblem in (1.2) approximately. What differs
from the contraction stage is that the initial estimators in the tightening
stage are already in the contraction region, making the optimization algo-
rithm enjoy geometric rate of convergence. This allows us to rapidly solve
(1.2) with small optimization error.
∗ (Phase Transition in Algorithmic Convergence) In the contraction stage (`=

1), the optimization problem is not strongly convex and therefore our
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algorithm has only a sublinear convergence rate. Once the solution enters
the contraction region, we will show that the feasible solutions are sparse
and the objective function is essentially ’low’-dimensional and becomes
(restricted) strongly convex and smooth in that region. Therefore, our
algorithm has a linear convergence rate for `>1. Indeed, this holds even
for ` = 1, which admits a sublinear rate until it enters into the contraction
region and enjoys a linear rate of convergence after that. See Figure 2. But
this estimator (for ` = 1) is the estimator that corresponds to LASSO
penalty, not folded concave penalty that we are looking for.
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tightening stage : � = 3

tightening stage : � = 2

tightening stage : � = 4

Computational Rate for Constant Correlation Design

iteration count

Fig 2. Computational rate of convergence in each stage for the simulation experiment spec-
ified in case 2 in Example 6.1. The x-axis is the iteration count k within the `th subproblem.
The phase transition from sublinear rate to liner rate of algorithmic convergence is clearly
seen once the iterations enter the contraction region. Here β̂(`) is the global minimizer
of the `th optimization problem in (1.2) and β(`,k) is its kth iteration (see Figure 3). For
` = 1, the initial estimation sequence has sublinear rate and once the solution sequence en-
ters the contraction region, it becomes linear convergent. For ` ≥ 2, the algorithm achieves
linear rate, since all estimators β(`,k−1) are in the contraction region.

This paper makes four major contributions. First, I-LAMM offers an algo-
rithmic approach to obtain the optimal estimator with controlled computing
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resources. Second, compared to the existing literature, our method requires
weaker conditions due to a novel localized analysis of sparse learning prob-
lems. Specifically, our method does not need the extra ball constraint as
in [20] and [28], which is an artifact of their proofs. Third, our compu-
tational framework takes the approximate optimization error into analysis
and provides theoretical guarantees for the estimator that is computed by
the algorithm. Fourth, our method provides new theoretical insights about
the adaptive lasso and folded-concave penalized regression. In particular,
we bridge these two methodologies together using a unified framework. See
Section 3.2 for more details.

The rest of this paper proceeds as follows. In Section 2, we introduce
I-LAMM and its implementation. Section 3 is contributed to new insights
into existing methods for high dimensional regression. In Section 4, we intro-
duce both the localized sparse eigenvalue and localized restricted eigenvalue
conditions. Statistical property and computational complexity are then pre-
sented. In Section 5, we outline the key proof strategies. Numerical sim-
ulations are provided to evaluate the proposed method in Section 6. We
conclude by discussions in Section 7. All the proofs are postponed to the
online supplement.

Notation: For u = (u1, u2, . . . , ud)
T ∈ Rd, we define the `q-norm of u by

‖u‖q = (
∑d

j=1 |uj |q)1/q, where q ∈ [1,∞). Let ‖u‖min = min{uj : 1 ≤
j ≤ d}. For a set S, let |S| denote its cardinality. We define the `0-pseudo
norm of u as ‖u‖0 = |supp(u)|, where supp(u) = {j : uj 6= 0}. For an
index set I ⊆ {1, . . . , d}, uI ∈ Rd is defined to be the vector whose i-th
entry is equal to ui if i∈I and zero otherwise. Let A = [ai,j ] ∈ Rd×d. For
q ≥ 1, we define ‖A‖q as the matrix operator q-norm of A. For index sets
I,J ⊆ {1, . . . , d}, we define AI,J ∈Rd×d to be the matrix whose (i, j)-th
entry is equal to ai,j if i∈I and j ∈J , and zero otherwise. We use sign(x)
to denote the sign of x: sign(x) = x/|x| if x 6= 0 and sign(x) = 0 otherwise.
For two functionals f(n, d, s) and g(n, d, s), we denote f(n, d, s) & g(n, d, s)
if f(n, d, s) ≥ Cg(n, d, s) for a constant C; f(n, d, s) . g(n, d, s) otherwise.

2. Methodology. In this paper, we assume that the loss function L(·) ∈
FL, a family of general convex loss functions specified in Appendix A.

2.1. Local Adaptive Majorize-Minimization. Recall that the estimators
are obtained by solving a sequence of convex programs in (1.2). We require
the function w(·) used therein to be taken from the tightening function class
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T , defined as

T =
{

w(·) ∈M : w(t1)≤w(t2) for all t1≥ t2 ≥ 0,(2.1)

0≤w(t)≤1 if t≥0,w(t)=0 if t ≤ 0
}
.

To fix ideas, we take Rλ(β) in (1.1) to be
∑d

j=1 pλ(|βj |), where pλ(·) is a
folded concave penalty [9] such as the SCAD or MCP. As discussed in [9],
the penalized likelihood function in (1.1) is folded concave with respect to
β, making it difficult to be maximized. We propose to use the adaptive local
linear approximation (adaptive LLA) to the penalty function [34, 12] and
approximately solve

argmin
β

{
L(β) +

d∑

j=1

p′λ(|β̃(`−1)
j |)|βj |

}
, for 1 ≤ ` ≤ T,(2.2)

where β̃
(`−1)
j is the jth component of β̃(`−1) and β̃(0) can be an arbitrary bad

initial value: β̃(0) = 0, for example. If we assume that w(·) ≡ λ−1p′λ(·) ∈
T , such as the SCAD or MCP, then the adaptive LLA algorithm can be
regarded as a special case of our general formulation (1.2). Note that the
LLA algorithm with `q-penalty (q < 1) is not covered by our algorithm since
its derivative is unbounded at the origin and thus λ−1p′λ(·) 6∈ T . The latter
creates a zero-absorbing state: once a component is shrunk to zero, it will
remain zero throughout the remaining iterations, as noted in [10]. Of course,
we can truncate the loss derivative of the loss function to resolve this issue.

We now propose a local adaptive majorize-minimization (LAMM) prin-
cipal, which will be repeatedly called to practically solve the optimization
problem (2.2). We first review the majorize-minimization (MM) algorithm.
To minimize a general function f(β), at a given point β(k), MM majorizes
it by g(β|β(k)), which satisfies

g(β|β(k)) ≥ f(β) and g(β(k)|β(k)) = f(β(k))

and then compute β(k+1) = argminβ

{
g(β|β(k))

}
[17, 14]. The objective

value of such an algorithm is non-increasing in each step, since

f(β(k+1))
major.

≤ g(β(k+1) |β(k))
min.

≤ g(β(k) |β(k))
init.
= f(β(k)).(2.3)

An inspection of the above arguments shows that the majorization require-
ment is not necessary. It requires only the local property:

(2.4) f(β(k+1)) ≤ g(β(k+1)|β(k)) and g(β(k)|β(k)) = f(β(k))
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for the inequalities in (2.3) to hold.
Inspired by the above observation, we locally majorize (2.2) at the `th

step. It is similar to the iteration steps used in the (proximal) gradient
method [5, 23]. Instead of computing and storing a large Hessian matrix
as in [34], we majorize L(β) in (2.2) at β̃(`−1) by an isotropic quadratic
function

L(β̃(`−1)) +
〈
∇L(β̃(`−1)),β − β̃(`−1)

〉
+
φ

2
‖β − β̃(`−1)‖22,

where ∇ is used to denote derivative. By Taylor’s expansion, it suffices to
take φ that is no smaller than the largest eigenvalue of ∇2L

(
β̃(`−1)

)
. More

importantly, the isotropic form also allows a simple analytic solution to the
subsequent majorized optimization problem:

argmin
β∈Rd

{
L(β̃(`−1)) +

〈
∇L(β̃(`−1)),β − β̃(`−1)

〉
(2.5)

+
φ

2
‖β − β̃(`−1)‖22 +

d∑

j=1

p′λ
(
|β̃(`−1)
j |

)
|βj |
}
.

With λ(`−1) =
(
p′λ(|β̃(`−1)

1 |), . . . , p′λ(|β̃(`−1)
d |)

)T
, it is easy to show that (2.5)

is minimized at

β(`,1) = Tλ(`−1),φ(β̃(`−1)) ≡ S
(
β̃(`−1) − φ−1∇L(β̃(`−1)), φ−1λ(`−1)

)
,

where S(x,λ) is the soft-thresholding operator, defined by S(x,λ) ≡
(
sign(xj)·

max{|xj | − λj , 0}
)
. The simplicity of this updating rule is due to the fact

that (2.5) is an unconstrained optimization problem. This is not the case in
[20] and [28].

However, finding the value of φ≥‖∇2L(β̃(`−1))‖2 is not an easy task in
computation. To avoid storing and computing the largest eigenvalue of a big
matrix, we now state the LAMM algorithm, thanks to the local requirement
(2.4). The basic idea of LAMM is to start from a very small isotropic pa-
rameter φ0 and then successfully inflate φ by a factor γu>1 (say, 2). If the
solution satisfies (2.4), we stop this part of the algorithm, which will make
the target value non-increasing. Since after the kth iteration, φ = γk−1

u φ0,
there always exists a k such that it is no larger than ‖∇2L(β̃(`−1))‖2. In this
manner, the LAMM algorithm will find a smallest iteration to make (2.4)
hold.

Specifically, our proposed LAMM algorithm to solve (2.5) at β̃(`−1) begins
with φ=φ0, say 10−6, iteratively increases φ by a factor of γu>1 inside the
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Algorithm 1 The LAMM algorithm in the kth iteration of the `th tight-
ening subproblem.

1: Algorithm: {β(`,k), φ(`,k)} ← LAMM(λ(`−1),β(`,k−1), φ0, φ
(`,k−1))

2: Input: λ(`−1),β(`,k−1), φ0, φ
(`,k−1)

3: Initialize: φ(`,k) ← max{φ0, γ
−1
u φ(`,k−1)}

4: Repeat
5: β(`,k) ← Tλ(`−1),φ(`,k)(β(`,k−1))

6: If F (β(`,k),λ(`−1)) > Ψλ(`−1),φ(`,k)(β(`,k);β(`,k−1)) then φ(`,k) ← γuφ
(`,k)

7: Until F (β(`,k),λ(`−1)) ≤ Ψλ(`−1),φ(`,k)(β(`,k);β(`,k−1))

8: Return {β(`,k), φ(`,k)}

`th step of optimization, and computes

β(`,1) = Tλ(`−1),φ(`,k)(β
(`,0)), with φ(`,k) = γk−1

u φ0, β(`,0) = β̃(`−1),

until the local property (2.4) holds. In our context, LAMM stops when

Ψλ(`−1),φ(`,k)(β
(`,1),β(`,0))≥F (β(`,1),λ(`−1)),

where F (β,λ(`−1)) ≡ L(β) +
∑d

j=1 λ
(`−1)
j |βj | and

Ψλ(`−1),φ(`,k)(β,β
(`,0)) ≡ L(β(`,0)) +

〈
∇L(β(`,0)),β − β(`,0)

〉

+
φ(`,k)

2
‖β − β(`,0)‖22 +

d∑

j=1

λ
(`−1)
j |βj |.

Inspired by [23], to accelerate LAMM within the next majorizing step, we
keep track of the sequence {φ(`,k)}`,k and set φ(`,k) = max{φ0, γ

−1
u φ(`,k−1)},

with the convention that φ`,0 = φ̃`−1 and φ̃0 = φ0, in which φ̃`−1 is the

isotropic parameter corresponding to the solution β̃(`−1). This is summarized
in Algorithm 1 with a generic initial value.

The LAMM algorithm solves only one local majorization step. It corre-
sponds to moving one horizontal step in Figure 3. To solve (2.2), we need to
use LAMM iteratively, which we shall call the iterative LAMM (I-LAMM)
algorithm, and compute a sequence of solutions β(`,k) using the initial value
β(`,k−1). Figure 3 depicts the schematics of our algorithm: the `th row cor-
responds to solving the `th subproblem in (2.2) approximately, beginning
by computing the adaptive weight λ(`−1). The number of iterations needed
within each row will be discussed in the sequel.

2.2. Stopping Criterion. I-LAMM recognizes that the exact solutions to
(2.2) can never be achieved in practice with algorithmic complexity control.
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Instead, in the `th optimization subproblem, we compute the approximate
solution, β̃(`), up to an optimization error ε, the choice of which will be dis-
cussed in next subsection. To calculate this approximate solution, starting
from the initial value β(`,0) = β̃(`−1), the algorithm constructs a solution se-
quence {β(`,k)}k=1,2,··· using the introduced LAMM algorithm. See Figure 3.

We then introduce a stopping criterion for the I-LAMM algorithm. From
optimization theory (Section 5.5 in [5]), we know that any exact solution β̂(`)

to the `th subproblem in (2.2) satisfies the first order optimality condition:

∇L(β̂(`)) + λ(`−1) � ξ = 0, for some ξ ∈ ∂‖β̂(`)‖1 ∈ [−1, 1]d,(2.6)

where ∂ is used to indicate the subgradient operator. The set of subgradients
of a function f : Rd → R at a point x0, denoted as ∂f(x0), is defined as
the collection of vectors, ξ, such that f(x)− f(x0) ≥ ξT(x− x0), for any x.
Thus, a natural measure for suboptimality of β can be defined as

ωλ(`−1)(β) = min
ξ∈∂‖β‖1

{
‖∇L(β) + λ� ξ‖∞

}
.

For a prefixed optimization error ε, we stop the algorithm within the `th
subproblem when ωλ(`−1)(β(`,k)) ≤ ε. We call β̃(`) ≡ β(`,k) an ε-optimal
solution. More details can be found in Algorithm 2.

Algorithm 2 I-LAMM algorithm for each subproblem in (2.2).

1: Algorithm:{β̃(`)} ← I-LAMM(λ(`−1),β(`,0))
2: Input: φ0 > 0
3: for k = 0, 1, · · · until ωλ(`−1)(β(`,k)) ≤ ε do
4: {β(`,k), φ(`,k)} ← LAMM(λ(`−1),β(`,k−1), φ0)
5: end for
6: Output: β̃(`) = β(`,k)

�(0) : �(1,1)

�(1) :

�(1,k1) = ��(1),

�(2,0)= ��(1)

�(1,0)=0

...

. . .

. . .

...

�(2,1) �(2,k2) = ��(2),

k1 � ��2
c ;

�(T,0)= ��(T�1) �(T,1) . . . �(T,kT ) = ��(T ), kT � log(��1
t ).

k2 � log(��1
t );

LAMM LAMM LAMM

LAMM LAMM LAMM

LAMMLAMMLAMM

...

�(T�1) :

Fig 3. Paradigm illustration of I-LAMM. k`, 1 ≤ ` ≤ T , is the iteration index for the
`th optimization in (2.2). εc and εt are the precision parameters for the contraction and
tightening stage respectively and will be described in Section 2.3 in detail.
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Remark 2.1. The I-LAMM algorithm is an early-stop variant of the ISTA
algorithm to handle general loss functions and nonconvex penalties [2]. The
LAMM principal serves as a novel perspective for the proximal gradient
method.

2.3. Tightening After Contraction. From the computational perspective,
optimization in (2.2) can be categorized into two stages: contraction (` =
1) and tightening (2 ≤ ` ≤ T ). In the contraction stage, we start from an
arbitrary initial value, which can be quite remote from the underlying true
parameter. We take ε as εc � λ, reflecting the precision needed to bring
the initial solution to a contracting neighborhood of the global minimum.
For instance, in linear model with sub-Gaussian errors, εc can be taken
in the order of

√
log d/n. This stage aims to find a good initial estimator

β̃(1) for the subsequent optimization subproblems in the tightening stage.
Recall that s = ‖β∗‖0 is the sparsity level. We will show in section 4.3 that
with a properly chosen λ, the approximate solution β̃(1), produced by the
early stopped I-LAMM algorithm, falls in the region of such good initials
estimators {

β : ‖β − β∗‖2 ≤ Cλ
√
s and β is sparse

}
.

We call this region the contraction region.
However, the estimator β̃(1) suffers from a suboptimal statistical rate of

convergence which is inferior to the refined one obtained by nonconvex reg-
ularization. A second stage to tighten this coarse contraction estimator into
the optimal region of convergence is needed. This is achieved by the subse-
quent optimization (` ≥ 2) and referred to as a tightening stage. Because the
initial estimators are already good and sparse at each iteration of the tight-
ening stage, the I-LAMM algorithm at this stage enjoys geometric rate of
convergence, due to the sparse strong convexity. Therefore, the optimization
error ε=εt can be much smaller to simultaneously ensure statistical accuracy
and control computational complexity. To achieve the oracle rate

√
s/n: εt

must be no larger than the order of
√

1/n. A graphical illustration of the full
algorithm is presented in Figure 3. Theoretical justifications are provided in
Section 4. From this perspective, we shall also call the psuedo-algorithm
in (1.2) or (2.2), combined with LAMM, the tightening after contraction
(TAC) algorithm.

3. New Insights into Existing Methods.

3.1. Connection to One-step Local Linear Approximation. In the low di-
mensional regime, [34] shows that the one-step LLA algorithm produces
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an oracle estimator if the maximum likelihood estimator (MLE) is used for
initialization. They thus claim that the multi-step LLA is unnecessary. How-
ever, this is not the case in high dimensions, under which an unbiased initial
estimator, such as the MLE, is not available. In this paper, we show that
starting from a possibly arbitrary bad initial value (such as 0), the contrac-
tion stage can produce a sparse coarse estimator. Each tightening step then
refines the estimator from previous step to the optimal region of convergence
by

(3.1)
∥∥β̃(`) − β∗

∥∥
2
.
√
s

n
+ δ ·

∥∥β̃(`−1) − β∗
∥∥

2
, for 2 ≤ ` ≤ T,

where δ ∈ (0, 1) is a prefixed contraction parameter. Unlike the one-step
method in [12], the role of iteration is clearly evidenced in (3.1).

An important aspect of our algorithm (2.2) is that we use the solvable
approximate solutions, β̃(`)’s, rather than the exact ones, β̂(`)’s. In order to
practically implement (2.2) for a general convex loss function, [34] propose
to locally approximate L(β) by a quadratic function:

L
(
β̂(0)

)
+
〈
∇L(β̂(0)),β−β̂(0)

〉
+

1

2

(
β−β̂(0)

)T∇2L(β̂(0))
(
β−β̂(0)

)
,(3.2)

where β̂(0) is a ‘good’ initial estimator of β∗ and ∇2L(β̂(0)) is the Hessian
evaluated at β̂(0). However, in high dimensions, evaluating the d×d Hessian
is not only computationally intensive but also requires a large storage cost.
In addition, the optimization problem (2.2) can not be solved analytically
with approximation (3.2). We resolve these issues by proposing the isotropic
quadratic approximation, see Section 2.

3.2. New Insight into Folded-concave Regularization and Adaptive Lasso.
The adaptive local linear approximation (2.2) provides new insight into
folded-concave regularization and adaptive Lasso. To correct the Lasso’s
estimation bias, folded-concave regularization [9] and its one-step implemen-
tation, adaptive Lasso [33, 34, 12], have drawn much research interest due
to their attractive statistical properties. For a general loss function L(β),
the adaptive Lasso solves

β̂adapt = argmin
β

{
L(β) + λ

d∑

j=1

w(βinit,j)|βj |
}
,

where βinit,j is an initial estimator of βj . We see that the adaptive lasso is a
special case of (2.2) with `=2. Two important open questions for adaptive
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Lasso are to obtain a good enough initial estimator in high dimensions and
to select a suitable tuning parameter λ which achieves the optimal statistical
performance. Our solution to the first question is to use the approximate
solution to Lasso with controlled computational complexity, which corre-
sponds to ` = 1 in (2.2). For the choice of λ, [7] suggested sequential tuning:
in the first stage, they use cross validation to select the initial tuning pa-
rameter, denoted here by λ̂init,cv and the corresponding estimator β̂init; in
the second stage, they again adopt cross validation to select the adaptive
tuning parameter λ in the adaptive Lasso. Despite the popularity of such
tuning procedure, there are no theoretical guarantees to support it. As will
be shown later in Theorem 4.2 and Corollary 4.3, our framework produces
optimal solution by only tuning λ(0) = λ1 in the contraction stage, indicat-
ing that sequential tuning may not be necessary for the adaptive Lasso if
w(·) is chosen from the tightening function class T .

It is worth noting that a classical weight w(βj) ≡ 1/|βj | for the adaptive
Lasso does not belong to the tightening function class T . As pointed out
by [10], zero is an absorbing state of the adaptive Lasso with this choice of
weight function. Hence, when the Lasso estimator in the first stage misses
any true positives, it will be missed forever in later stages as well. In con-
trast, the proposed tightening function class T overcomes such shortcomings
by restricting the weight function w(·) to be bounded. This phenomenon is
further elaborated via our numerical experiments in Section 6. The mean
square error for the adaptive Lasso can be even worse than the Lasso esti-
mator because the adaptive Lasso may miss true positives in the strongly
correlated design case.

Our framework also reveals interesting connections between the adaptive
Lasso and folded-concave regularization. Specifically, consider the following
folded-concave penalized regression

min
β∈Rd

{
L(β) +Rλ(|β|)

}
, where Rλ(|β|) is a folded concave penalty.(3.3)

We assume that Rλ(·) is elementwisely decomposable, that is Rλ(|β|) =∑d
k=1 pλ(|βk|). Under this assumption, using the concave duality, we can

rewrite Rλ(|β|) as

Rλ(|β|) = inf
v

{
|β|Tv −R?λ(v)

}
,(3.4)

where R?λ(·) is the dual of Rλ(·). By the duality theory, we know that the
minimum of (3.4) is achieved at v̂ = ∇Rλ(|µ|)|µ=β. We can employ (3.4)
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to reformulate (3.3) as

(β̂, v̂) = argmin
β,v

{
L(β) + vT|β| − R?λ(v)

}
.

The optimization above can then be solved by exploiting the alternating
minimization scheme. In particular, we repeatedly apply the following two
steps:

(1) Optimize over β with v fixed: β̂(`) = argminβ

{
L(β) + (v̂(`−1))T|β|

}
.

(2) Optimize over v with β fixed. We can obtain closed form solution:
v(`) = ∇Rλ(|µ|)|

µ=β̂(`) .

This is a special case of (1.2) if we take w(β) = λ−1∇Rλ(|µ|)|µ=β and let
` grow until convergence. Therefore, with a properly chosen weight function
w(·), our proposed algorithm bridges the adaptive Lasso and folded-concave
penalized regression together under different choices of `. In Corollary 4.3,
we will prove that, when ` is in the order of log(λ

√
n), then the proposed

estimator enjoys the optimal statistical rate ‖β̂(`) − β∗‖2 ∝
√
s/n, under

mild conditions.

4. Theoretical Results. We establish the optimal statistical rate of
convergence and the computational complexity of the proposed algorithm.
To establish these results in a general framework, we first introduce the lo-
calized versions of the sparse eigenvalue and restricted eigenvalue conditions.

4.1. Localized Eigenvalues and Assumptions. The sparse eigenvalue con-
dition [30] is commonly used in the analysis of sparse learning problems.
However, it is only valid for the least square loss. For a general loss func-
tion, the Hessian matrix depends on the parameter β and can become nearly
singular in certain regions. For example, the Hessian matrix of the logistic
loss is

∇2L(β) =
1

n

n∑

i=1

xix
T
i ·

1

1 + exp (−xT
i β)

· 1

1 + exp (xT
i β)

,

which tends to zero as ‖β‖2 →∞, no matter what the data are. One of our
key theoretical observations is that: what we really need are the localized
conditions around the true parameters β∗, which we now introduce.

4.1.1. Localized Sparse Eigenvalue.
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Definition 4.1 (Localized Sparse Eigenvalue, LSE). The localized sparse
eigenvalues are defined as

ρ+(m, r) = sup
u,β

{
uT
J∇2L(β)uJ : ‖uJ‖22 = 1, |J | ≤ m, ‖β − β∗‖2 ≤ r

}
;

ρ−(m, r) = inf
u,β

{
uT
J∇2L(β)uJ : ‖uJ‖22 = 1, |J | ≤ m, ‖β − β∗‖2 ≤ r

}
.

Both ρ+(m, r) and ρ−(m, r) depend on the Hessian matrix ∇2L(β), the
true coefficient β∗, the sparsity level m, and an extra locality parameter r.
They reduce to the commonly-used sparse eigenvalues when ∇2L(β) does
not change with β as in the quadratic loss. The following assumption spec-
ifies the LSE condition in detail. Recall that s=‖β∗‖0.

Assumption 4.1. We say the LSE condition holds if there exist an integer
s̃ ≥ cs for some constant c, r and a constant C such that

0 < ρ∗ ≤ ρ−(2s+ 2s̃, r) < ρ+(2s+ 2s̃, r) ≤ ρ∗ < +∞ and

ρ+(s̃, r)
/
ρ−(2s+ 2s̃, r) ≤ 1 + Cs̃/s.

Assumption 4.1 is standard for linear regression problems and is com-
monly referred to as the sparse eigenvalue condition when r = ∞. Such
conditions have been employed by [4, 24, 22, 20, 28]. The newly proposd
LSE condition, to the best of our knowledge, is the weakest one in the liter-
ature.

4.1.2. Localized Restricted Eigenvalue. In this section, we introduce the
localized version of the restricted eigenvalue condition [4]. This is an alter-
native condition to Assumption 4.1 that allows us to handle general Hessian
matrices that depend on β, under which the theoretical properties can be
carried out parallelly.

Definition 4.2 (Localized Restricted Eigenvalue, LRE). The localized re-
stricted eigenvalue is defined as

κ+(m, γ, r) = sup
u,β

{
uT∇2L(β)u : (u,β) ∈ C(m, γ, r)

}
;

κ−(m, γ, r) = inf
u,β

{
uT∇2L(β)u : (u,β) ∈ C(m, γ, r)

}
,

where C(m, γ, r)≡
{
u,β : S ⊆ J, |J | ≤ m, ‖uJc‖1 ≤ γ‖uJ‖1, ‖β − β∗‖2 ≤ r

}

is a local `1 cone.
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Similarly, the localized restricted eigenvalue reduces to the restricted
eigenvalue when ∇2L(β) does not depend on β. We say the localized re-
stricted eigenvalue condition holds if there exists m, γ, r such that 0 <
κ−(m, γ, r) ≤ κ+(m, γ, r) < ∞. In Appendix B, we give a geometric ex-
planation of the local `1 cone, C(m, γ, r), and the coresponding localized
analysis.

4.2. Statistical Theory. In this section, we provide theoretical analysis of
the proposed estimator under the LSE condition. For completeness, in Ap-
pendix B, we also establish similar results under localized restricted eigen-
value condition. We begin with the contraction stage. Recall that the initial
value β̃(0) is taken as 0 for simplicity. We need the following assumption on
the tightening function.

Assumption 4.2. Assume that w(·)∈T and w(u)≥1/2 for u=18ρ−1
∗ δ−1λ.

Here T is the tightening function class defined in (2.1).

Our first result characterizes the statistical convergence rate of the esti-
mator in the contraction stage. The key ideas of the proofs are outlined in
Section 5. Other technical lemmas and details can be found in the online
supplement.

Proposition 4.1 (Statistical Rate in the Contraction Stage). Suppose that
Assumption 4.1 holds. If λ, ε and r satisfy

4(‖∇L(β∗)‖∞ + ε) ≤ λ ≤ rρ∗/
(
18
√
s
)
,(4.1)

then any εc-optimal solution β̃(1) satisfies

∥∥β̃(1) − β∗
∥∥

2
≤ 18ρ−1

∗ λ
√
s . λ

√
s.

The result above is a deterministic statement. Its proof is omitted as
it directly follows from Lemma 5.1 with ` = 1 and E1 there to be S, the
support of the true parameter β∗. The proof of Lemma 5.1 can be found in
Appendix B. In Proposition 4.1, the approximation error εc, can be taken to
be the order of λ�

√
log d/n in the sub-Gaussian noise case. The contraction

stage ensures that the `2 estimation error is proportional to λ
√
s, which is

identical to the optimal rate of convergence for the Lasso estimator [4, 31].
Our result can be regarded as a generalization of the usual Lasso analysis to
more general losses which satisfy the localized sparse eigenvalue condition.
We are ready to present the main theorem, which demonstrates the effects
of optimization error, shrinkage bias and tightening steps on the statistical
rate.
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Theorem 4.2 (Optimal Statistical Rate). Suppose Assumptions 4.1 and 4.2
hold. If 4(‖∇L(β∗)‖∞+ (εt ∨ εc)) ≤ λ . r/

√
s, then any εt-optimal solution

β̃(`), `≥2, satisfies the following δ-contraction property

‖β̃(`) − β∗‖2≤C
(
‖∇L(β∗)S‖2 + εt

√
s+ λ‖w(|β∗S | − u)‖2

)
+ δ‖β̃(`−1) − β∗‖2,

where C is a constant and u = 18ρ−1
∗ δ−1λ. Consequently, there exists a

constant C ′ such that

∥∥β̃(`)−β∗
∥∥

2
≤C ′

(
‖∇L(β∗)S‖2︸ ︷︷ ︸

oracle rate

+

opt err︷ ︸︸ ︷
εt
√
s+λ‖w(|β∗S |−u)‖2︸ ︷︷ ︸

coefficient effect

)
+

tightening effect︷ ︸︸ ︷
2C ′δ`−1λ

√
s .

The effect of the tightening stage can be clearly seen from the theorem
above: each tightening step induces a δ-contraction property, which reduces
the influence of the estimation error from the previous step by a δ-fraction.
Therefore, in order to achieve the oracle rate

√
s/n, we shall carefully choose

the optimization error such that εt.‖∇L(β∗)‖2/
√
s and make the tighten-

ing iterations ` large enough. As a corollary, we give the explicit statistical
rate under the quadratic loss L(β) = (2n)−1‖y−Xβ‖22. In this case, we take
λ �

√
n−1log d so that the scaling condition (4.1) holds with high proba-

bility. We use sub-Gaussian(0, σ2) to denote a sub-Gaussian distribution
random variable with mean 0 and variance proxy σ2.

Corollary 4.3. Let yi=xT
i β
∗+εi, 1≤ i≤n, be independently and identically

distributed sub-Gaussian random variables with εi ∼ sub-Gaussian(0, σ2).
The columns of X are normalized such that maxj ‖X∗j‖2 ≤

√
n. Assume

there exists an γ > 0 such that ‖β∗S‖min ≥ u + γλ and w(γλ) = 0. Under

Assumptions 4.1 and 4.2, if λ �
√
n−1log d, εt ≤

√
1/n and T & log log d,

then with probability at least 1−2d−η1−2 exp{−η2s}, β̃(T ) must satisfy

‖β̃(T ) − β∗‖2 .
√
s/n,

where η1 and η2 are positive constants.

Corollary 4.3 indicates that I-LAMM can achieve the oracle statistical rate√
s/n as if the support for the true coefficients were known in advance. To

achieve such rate, we require εc.
√

log d/n and εt.
√

1/n. In other words,
we need only a more accurate estimator in the tightening stage rather than
in both stages. This will help us to relax the computational burden, which
will be discussed in detail in Theorem 4.7. Our last result concerns the
oracle property of the obtained estimator β̃(`) for ` large enough, with the



18 FAN ET AL.

proof postponed to Appendix B in the online supplement. We first define
the oracle estimator β̂◦ as

β̂◦ = argmin
supp(β)=S

L(β).

Theorem 4.4 (Strong Oracle Property). Suppose Assumptions 4.1 and 4.2
hold. Assume ‖β∗S‖min ≥ u+γλ and w(γλ) = 0 for some constant γ. Let

4(‖∇L(β̂◦)‖∞+εc ∨ εt)≤λ . r/
√
s and εt ≤ λ/

√
s. If ‖β̂◦−β∗‖max≤ηn.λ,

then for ` large enough such that ` & log
{

(1+εc/λ)
√
s}, we have

β̃(`) = β̂◦.

The theorem above is again a deterministic result. Large probability
bound can be obtained by bounding the probability of the event

{
4(‖∇L(β̂◦)‖∞+

(εc∨εt)) ≤ λ
}

. The assumption that ‖β̂◦−β∗‖max . λ is very mild, because
the oracle estimator only depends on the intrinsic dimension s rather than d.
For instance, under linear model with sub-Gaussian errors, it can be shown
that ‖β̂◦ − β‖max ≤

√
log s/n with high probability.

Theorem 4.4 implies that the oracle estimator β̂◦ is a fixed point of the I-
LAMM algorithm, namely, once the initial estimator is β̂◦, the next iteration
produces the same estimator. This is in the same spirit as that proved in
[12].

4.3. Computational Theory. In this section, we analyze the computa-
tional rate for all of our approximate solutions. We start with the following
assumption.

Assumption 4.3. ∇L(β) is locally ρc-Lipschitz continuous, i.e.

(4.2) ‖∇L(β1)−∇L(β2)‖2 ≤ ρc‖β1 − β2‖2, for β1,β2 ∈ B2(R/2,β∗),

where ρc is the Lipschitz constant and R.‖β∗‖2+λ
√
s.

We then give the explicit iteration complexity of the contraction stage in
the following proposition. Recall the definition of φ0 and γu in Algorithm
2.1, and ρ∗ in Assumption 4.1.

Proposition 4.5 (Sublinear Rate in the Contraction Stage). Assume that As-
sumption 4.1 and 4.3 hold. Let 4(‖∇L(β∗)‖∞+εc) ≤ λ . r/

√
s. To achieve

an approximate local solution β̃(1) such that ωλ(0)(β̃(1)) ≤ εc in the con-
traction stage, we need no more than ((1 + γu)Rρc/εc)

2 LAMM iterations,
where ρc is a constant defined in (4.2).
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The sublinear rate is due to the lack of strong convexity of the loss func-
tion in the contraction stage, because we allow starting with arbitrary bad
initial value, say 0. Once it enters the contracting region (aka, the tighten-
ing stage), the problem becomes sparse strongly convex (see Proposition B.3
in Appendix B), which endows the algorithm a linear rate of convergence.
This is empirically demonstrated in Figure 2. Our next proposition gives a
formal statement on the geometric convergence rate for each subproblem in
the tightening stage.

Proposition 4.6 (Geometric Rate in the Tightening Stage). Suppose that
the same conditions for Theorem 4.2 hold. To obtain an approximate solution
β̃(`) satisfying ωλ(`−1)

(
β̃(`)

)
≤ ε in each step of the `-th tightening stage

(` ≥ 2), we need at most C ′ log(C ′′λ
√
s/ε) LAMM iterations, where C ′ and

C ′′ are two positive constants.

Proposition 4.6 suggests that we only need to conduct a logarithmic num-
ber of LAMM iterations in each tightening step. Simply combining the com-
putational rate in both the contraction and the tightening stages, we manage
to obtain the global computational complexity.

Theorem 4.7. Assume that λ
√
s=o(1). Suppose that the same conditions

for Theorem 4.2 hold. To achieve an approximate solution β̃(`) such that
ωλ(0)(β̃(1))≤ εc . λ and ωλ(k−1)(β̃(k))≤ εt .

√
1/n for 2≤ k ≤ T , the total

number of LAMM iterations we need is at most

C ′
1

ε2
c

+ C ′′(T − 1) log
( 1

εt

)
,

where C ′ and C ′′ are two positive constants, and T � log
(
λ
√
n
)
.

Remark 4.8. We complete this section with a remark on the sublinear rate
in the contraction stage. Without further structures, the sublinear rate in the
first stage is the best possible one for the proposed optimization procedure
when λ is held fixed. Linear rate can be achieved when we start from a
sufficiently good initial value. Another strategy is to use the path-following
algorithm which is developed in [28], where they gradually reduce the size
of λ to ensure the solution sequence to be sparse.

5. Proof Strategy for Main Results. In this section, we present the
proof strategies for the main statistical and computational theorems, with
technical lemmas and other details left in the supplementary material.

5.1. Proof Strategy for Statistical Recovery Result in Section 4.2. Propo-
sition 4.1 indicates that the contraction estimator suffers from a suboptimal
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rate of convergence λ
√
s. The tightening stage helps refine the statistical rate

adaptively. To suppress the noise in the `th subproblem, it is necessary to

control minj
{
|β̃(`−1)
j | : j∈Sc

}
in high dimensions. For this, we construct an

entropy set E` of S in each tightening subproblem to bound the magnitude

of
∥∥λ(`−1)
Ec`

∥∥
min

. The entropy set at the `th step is defined as

E` = S ∪
{
j : λ

(`−1)
j < λw(u), u = 18δ−1ρ−1

∗ λ ∝ λ
}
.(5.1)

Under mild conditions, we will show that |E`| ≤ 2s and ‖λ(`)
Ec`
‖min ≥ λw(u) ≥

λ/2, which is more precisely stated in the following lemma.

Lemma 5.1. Suppose that Assumption 4.1 and 4.2 hold. If 4(‖∇L(β∗)‖∞+
εt ∨ εc) ≤ λ . r/

√
s, we must have |E`|≤2s, and the ε-optimal solution β̃(`)

satisfies
∥∥β̃(`) − β∗

∥∥
2
≤ 12ρ−1

∗
(∥∥λ(`−1)

S

∥∥
2

+
∥∥∇L(β∗)E`

∥∥
2

+ ε
√
|E`|
)

≤ 18ρ−1
∗ λ
√
s . λ

√
s.

Lemma 5.1 bounds
∥∥β̃(`) − β∗

∥∥
2

in terms of
∥∥λ(`−1)

S

∥∥
2
, which is further

upper bounded by the order of λ
√
s. The rate λ

√
s coincides with the con-

vergence rate of the contraction estimator. Later, we will exploit this re-
sult in our localized analysis to secure that all the approximate solutions{
β̃(`)

}
`=1,...,T

fall in a local `2-ball centered at β∗ with radius r & λ
√
s.

The next lemma further bounds
∥∥λ(`−1)

S

∥∥
2

using functionals of β̃(`−1),
which connects the adaptive regularization parameter to the estimator from
previous steps.

Lemma 5.2. Assume w∈T . Let λ
(`−1)
j =λw

(
|β̃(`−1)
j |

)
for β̃(`−1), then for

any norm ‖ · ‖∗, we have

∥∥λ(`−1)
S

∥∥
∗ ≤ λ

∥∥w(|β∗S | − u)
∥∥
∗ + λu−1

∥∥β∗S − β̃(`−1)
S

∥∥
∗,

where w(|β∗S | − u)≡
(
w(|β∗j | − u)

)
j∈S .

Lemma 5.2 bounds the tightening weight λ(`−1) in the `th subproblem
by two terms. The first term describes the coefficient effects: when the co-
efficients are large enough (in absolute value) such that ‖β∗‖min ≥ u + γλ
and w(γλ)=0, it becomes 0. The second term concerns the estimation error
of the estimator from previous step. Combing the above two lemmas, we
prove that β̃(`) benefits from the tightening stage and possesses a refined
statistical rate of convergence. The proof of Corollary 4.3 is left in Appendix
B in the online supplement.
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Proof of Theorem 4.2. Applying Lemma 5.1, we obtain the size of
the entropy set E` (see definition in (5.1) ) is bounded by 2s and

∥∥β̃(`)−β∗
∥∥

2
≤C1

(∥∥λ(`−1)
S

∥∥
2
+
∥∥∇L(β∗)E`

∥∥
2
+εt

√
|E`|
)
.λ
√
s,(5.2)

where C1 = 12ρ−1
∗ . Using Lemma 5.2 yields that

∥∥λ(`−1)
S

∥∥
2
≤ λ

∥∥w(|β∗S | − u)
∥∥

2
+ λu−1

∥∥(β̃(`−1) − β∗)S
∥∥

2
.

Plugging the inequality above into (5.2) obtains us that

∥∥β̃(`) − β∗
∥∥

2
≤C1

(∥∥∇L(β∗)E`
∥∥

2
+εt

√
|E`|︸ ︷︷ ︸

I

+λ
∥∥w(|β∗S |−u)

∥∥
2

)
(5.3)

+C1λu
−1
∥∥(β̃(`−1)−β∗)S

∥∥
2
.

We now simplify the inequality above by providing an upper bound for term
I. Decomposing the support set E` into S and E`\S and applying the triangle
inequality along with the Hölder inequality, we have

I ≤ ‖∇L(β∗)S‖2 + εt
√
s+

(
‖∇L(β∗)‖∞ + εt

)√
E`/S.(5.4)

Following the proof of Lemma 5.1 in Appendix B,
√
|E` \ S| can be bounded

by

∥∥β̃(`−1)
E`\S

∥∥
2

/
u ≤

∥∥β̃(`−1) − β∗
∥∥

2

/
u, where u= 18ρ∗−1δ−1λ ∝ λ.

Therefore, (5.4) can be simplified to

I ≤
∥∥∇L(β∗)S

∥∥
2

+ εt
√
s+

λ

4u

∥∥β̃(`−1) − β∗
∥∥

2
,

which, combining with (5.3), yields the contraction property with δ. Conse-
quently, we obtain

∥∥β̃(`)−β∗
∥∥

2
≤ C

(∥∥∇L(β∗)E`
∥∥

2
+εt
√
s+λ

∥∥wS(|β∗S | − u)
∥∥

2

)
+δ`−1

∥∥β̃(1) − β∗
∥∥

2
,

≤ C
(∥∥∇L(β∗)E`

∥∥
2

+ εt
√
s+ λ

∥∥wS(|β∗S | − u)
∥∥

2

)
+ Cδ`−1λ

√
s,

where C = C1/(1−δ) and the last inequality follows from Proposition 4.1.
The proof is completed.
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5.2. Proof Strategy for Computational Result in Section 4.3. In this sec-
tion, we present the sketch for the proofs of the results in Section 4.3. We
start with the contraction stage. The next lemma shows that the contrac-
tion stage enjoys a sublinear rate of convergence. The proof can be found in
Appendix C.

Lemma 5.3. Recall that F (β,λ) = L(β) +
∑d

j=1 λj |βj |. We have

F
(
β(1,k),λ(0)

)
− F

(
β̂(1),λ(0)

)
≤ φc

2k

∥∥β(1,0) − β̂(1)
∥∥2

2
.

The result above suggests that the optimization error decreases to zero
at the rate of 1/k, while Proposition 4.1 indicates that the best statistical
rate for the contraction stage is only in the order of λ

√
s. Therefore, one

can early stop the LAMM iterations in the contraction stage as soon as it
enters the contraction region

{
β : ‖β−β∗‖2 . Cλ

√
s,β is sparse

}
. It is this

lemma that helps characterize the iteration complexity in terms of the total
number of LAMM updates needed in the contraction stage, see Proposition
4.5.

To utilize the localized sparse eigenvalue condition in the tightening stage,
we need the following proposition which characterizes the sparsity of all the
approximate solutions produced by the contraction stage.

Lemma 5.4. Assume that Assumption 4.1 holds. If 4(‖∇L(β∗)‖∞+εc)≤
λ. r/

√
s, then β̃(1) in the contraction stage is s + s̃ sparse. In particular,

we have
∥∥(β̃(1))Sc

∥∥
0
≤ s̃.

Together with Proposition 4.1, it ensures that the contraction estimator
β̃(1) falls in the contraction region

{
β : ‖β−β∗‖2 ≤ Cλ

√
s and β is sparse

}
.

This makes the localized sparse eigenvalue condition useful and thus makes
the geometric rate of convergence possible.

Lemma 5.5 (Geometric Rate in the Tightening Stage). Under the same con-
ditions for Theorem 4.2, for any ` ≥ 2, {β(`,k)} converges geometrically,

F
(
β(`,k),λ(`−1)

)
−F

(
β̂(`),λ(`−1)

)

≤
(

1− 1

4γuκ

)k{
F (β(`,0),λ(`−1))−F (β̂(`),λ(`−1))

}
.

The above result suggests that each subproblem in the tightening stage en-
joys a geometric rate of convergence, which is the fastest possible rate among
all first-order optimization methods under the blackbox model. Lemma 5.5
can be used to obtain the computational complexity analysis of each single
step of the tightening stage, i.e., Proposition 4.6.
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6. Numerical Examples. In this section, we evaluate the statistical
performance of the proposed framework through several numerical experi-
ments. We consider the following three examples.

Example 6.1 (Linear Regression). In the first example, continuous responses
were generated according to the model

yi = xT
i β
∗ + εi, where β∗ = (5, 3, 0, 0,−2, 0, . . . , 0︸ ︷︷ ︸

d−5

)T,(6.1)

and n = 100. Moreover, in model (6.1), {xi}i∈[n] are generated from N(0,Σ)
distribution with covariance matrix Σ, which is independent of εi ∼ N(0, 1).
We take Σ as a correlation matrix Σ = (ρij) as follows.

• Case 1: independent correlation design with (ρij) = diag(1, · · · , 1);
• Case 2: constant correlation design with ρij = 0.75 if i 6= j; ρij = 1,

otherwise;
• Case 3: autoregressive correlation design with ρij = 0.95|i−j|.

Example 6.2 (Logistic Regression). In the second example, independent
observations with binary responses are generated according to the model

P(yi = 1|xi) =
exp{xT

i β
∗}

1 + exp{xT
i β
∗} i = 1, . . . , n,

where β∗ and {xi}i∈[n] are generated in the same manner as in the case 1
of Example 6.1.

Example 6.3 (Varying Dimensions and Sample Sizes). In this example, we
continue Example 6.1 with varying dimensions and sample sizes. Specifically,
we consider linear regression under autoregressive correlation design with
ρij = 0.90|i−j| with d varying from 1000 to 3500 and n varying from 100 to
500.

In the first two cases, we fix the sample size n at 100 and consider d =
1000. We investigate the sparsity recovery and estimation properties of the
I-LAMM (or TAC) estimator via numerical simulations. We compared the
I-LAMM estimator with the following methods: the oracle estimator which
assumes the availability of the active set S; the refitted Lasso (Refit) which
uses a post least square refit on the selected set from Lasso; the adaptive
Lasso (ALasso) estimator with weight function w(βj) = 1/|βj | proposed
by [33]; the smoothly clipped absolute deviation (SCAD) estimator [9] with
a = 3.7; and the minimax concave penalty (MCP) estimator with a = 3 [29].
For I-LAMM, we used the 3-fold cross-validation to select the constant c ∈
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Table 1
The median of MSE, TP, FP, Time in seconds under the Case 1, Case 2 and Case 3 for

linear regression in Example 6.1 and logistic regression in Example 6.2.

MSE TP FP Time MSE TP FP Time

Linear\Case 1 Linear\Case 2
I-LAMM 0.0285 3.00 0.00 0.17 0.0659 3.00 0.00 0.19
Lasso 0.3114 3.00 17.00 0.02 1.3709 3.00 16.00 0.04
Refit 0.5585 3.00 17.00 0.02 2.1573 3.00 16.00 0.04
ALasso 0.4616 3.00 15.00 0.06 1.6077 3.00 13.00 0.08
SCAD 0.0397 3.00 0.00 0.21 0.0695 3.00 0.00 0.23
MCP 0.0344 3.00 0.00 0.17 0.0706 3.00 0.00 0.22
Oralcle 0.0258 3.00 0.00 - 0.0565 3.00 0.00 -

Linear\Case 3 Logistic
I-LAMM 0.2819 3.00 3.00 0.22 8.94 3.00 0.00 0.20
Lasso 5.8061 2.00 20.00 0.03 26.92 3.00 20.00 0.03
Refit 2.6354 2.00 20.00 0.03 26.85 3.00 20.00 0.03
ALasso 4.4242 2.00 12.00 0.06 8.28 3.00 7.00 0.05
SCAD 14.8680 2.00 5.00 0.25 9.48 3.00 12.00 0.21
MCP 14.9381 1.00 1.00 0.18 11.84 3.00 3.00 0.22
Oralcle 0.1661 3.00 0.00 - 3.32 3.00 0.00 -

0.5×{1, 2, . . . , 20} in the tuning parameter λ=c
√

log d/n in the contraction
stage, with regularization parameters updated automatically at later steps.
We further took γu = 2, εc =

√
log d/n and εt =

√
1/n. For Lasso, we used

the I-LAMM algorithm; for ALasso, sequential tuning in [7] was used: we
employed 3-fold cross validation in each step with I-LAMM algorithm used;
and the SCAD and MCP estimators were computed using the R package
ncvreg and 3-fold cross-validation was used for tuning parameter selection.

For each simulation setting, we generated 100 simulated datasets and ap-
plied different estimators to each dataset. We report different statistics for
each estimator in Table 1. To measure the sparsity recovery performance,
we calculated the median of the number of zero coefficients incorrectly esti-
mated to be nonzero (i.e. false positive, denoted as FP), the median of the
number of nonzero coefficients correctly estimated to be nonzero (i.e. true
positive, denoted by TP). To measure the estimation accuracy, we calculated
the median of mean squared error (MSE). To evaluate the computational
efficiency, we gave the median of time (in seconds) used to produce the final
estimator for different methods. Note that the computational time provided
here is merely for a reference. They depend on optimization errors and im-
plementation.

We have several important observations. First, it is not surprising that
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Fig 4. The median of MSE with varying dimensions and sample sizes in Example 6.3.

Lasso tends to overfit. Other procedures improve the performance of Lasso
by reducing the estimation bias and the false positive rate. The best overall
performance is achieved by the I-LAMM estimator with small MSE and
FP in all cases. The MCP and SCAD estimators also have overall good
performance in the logistic regression model, case 1 and case 2 of the linear
regression model. However, all of MCP, SCAD and ALasso breaks down by
missing true positives in case 3, where the design matrix exhibits a strong
correlation between features, while I-LAMM remains the best followed by
the Lasso estimator. This suggests the superiority of I-LAMM over other
nonconvex penalized regression methods under strongly correlated designs.
The MSE of the I-LAMM estimator keeps flat when the dimension d varies,
which justifies the oracle rate

√
s/n. SCAD and MCP have competitive

performance when the dimension is relatively small, but they quickly break
down when the dimension gets larger. This is possibly due to the numerical
instability for directly solving nonconvex systems. This phenomenon is also
observed in [28]. When the sample size is increasing, the performances of
I-LAMM, SCAD and MCP are almost identical to each other while other
convex methods suffer from slightly worse performance.

In addition, to demonstrate the phase transition phenomenon, in Figure
2, we plot the log estimation error verses the number of iterations for each
tightening step for case 2 in Example 6.1. Indeed, the contraction stage
suffers a sublinear rate of convergence before getting into the contracting
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region and enjoys a geometric rate afterwards, while the tightening stage
has a geometric rate of convergence. These are in line with our asymptotic
theory.

7. Conclusions and Discussions. We propose a computational frame-
work, I-LAMM (or TAC), for simultaneous control of algorithmic complex-
ity and statistical error when fitting high dimensional models. Even though
I-LAMM only solves a sequence of convex programs approximately, the solu-
tion enjoys the same optimal statistical property of the unobtainable global
optimum for the folded-concave penalized regression. Our theoretical treat-
ment relies on a novel localized analysis which avoids the parameter bound
contraint, such as ‖β‖1 ≤ R, used in all other recent works. Statistically, a
δ-contraction property is established: each convex program contracts the pre-
vious estimator by a δ-fraction until the optimal statistical error is reached.
Computationally, a phase transition in algorithmic convergence is estab-
lished. The contraction stage enjoys only a sublinear rate of convergence
while the tightening stage converges geometrically fast.

Recently, [22] proposed the restricted eigenvalue condition for unified M-
estimators. [18] leveraged this condition, which is more related to our local-
ized conditions. However, there are two major differences. First, their local
parameter r is fixed at a constant independent of n, d, s, while we allow it to
go to 0 as long as r &

√
s log d/n. Second, their high dimensional regression

problem relies on the `1 ball constraint ‖β‖1 ≤ R, while our newly developed
localized analysis, together with the localized conditions, removes such type
of constraint. In [21], the authors only consider the solutions in a local cone,
which makes their analysis much simpler than ours. In this paper, we pro-
vide a stronger result: with high probability, all local solutions must fall in a
local sparse (or `1) cone and thus makes the localized eigenvalue conditions
applicable.

More recently, [27] proposed a two-step approach named calibrated CCCP
which achieve strong oracle properties when using the Lasso estimator as ini-
tialization. Our work differs from theirs in two aspects. First, their work aims
at analyzing the least square loss while our analysis handles much broader
families of loss functions. Second, their procedure attains an oracle rate but
requires the minimum signal strength to be in the order of s

√
log d/n. Such

a requirement is suboptimal. In contrast, our results requires only
√

log d/n.
This weakened assumption on minimum signal strength also distinguishes I-
LAMM from other convex procedures, such as least squares refit after model
selection [3]. In [27], the authors also proposed a high dimensional BIC crite-
rion for variable selection and finding the oracle estimator along the solution
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path. We believe such a criterion can also be applied to our framework under
general conditions. In further studies, [20], [19] and [28] study the theoret-
ical properties of nonconvex penalized M-estimators. Specifically, [20] and
[19] provide conditions under which all the local optima obtained by an `1-
ball constrained optimization enjoys desired statistical rates. [28] propose
a path-following strategy to obtain optimal computational and statistical
rates of convergence, which also relies an extra ball constraint.

Our work differs from the aforementioned literature at least in three as-
pects:

(1) Our theory exploits new notion of localized analysis, which is not avail-
able in [20], [19] and [28]. Such analysis allows us to eliminate the extra
ball constraints in previous work, which introduce more tuning effort
and are intuitively redundant given the penalty function.

(2) Our statistical results tolerate explicit computational precisions and
are valid for all obtained approximate solutions, while the analysis in
[20] only targets on the exact local solutions. Moreover, our compu-
tational result does not rely on the path-following type strategy as in
[28] and is valid for any algorithm with desired statistical properties
as basic building blocks within each of the tightening steps.

(3) We provide a refined oracle statistical rate
√
s/n for the obtained ap-

proximation solution, while [20] and [28] do not provide such a result.
[20] provide a statistical rate which is also achievable using the convex
Lasso penalty. [28] only prove the oracle rate for exact local solutions.

Our work can be applied to many different topics: low rank matrix com-
pletion problems, high dimensional graphical models, quantile regression
and many others. We conjecture that in all of the aforementioned topics,
I-LAMM can give faster rate by approximately solving a sequence of con-
vex programs, with controlled computing resources. It is also interesting
to see how our algorithm works in large-scale distributed systems. Is there
any fundamental tradeoffs between statistical efficiency, communication and
time complexity? We leave these as future research projects.

Supplementary Material. The supplementary material contains proofs
for Corollary 4.3, Theorem 4.4, Proposition 4.5, Proposition 4.6 and Theo-
rem 4.7 in Section 4. It collects proofs of the lemmas presented in Section
5. An application to robust linear regression is given in Appendix D. Other
technical lemmas are collected in Appendices E and F.
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Supplementary Material to
“I-LAMM: Simultaneous Control of

Algorithmic Complexity and Statistical Error”

BY Jianqing Fan Han Liu Qiang Sun Tong Zhang
The supplementary material contains proofs for Corollary 4.3, Theorem

4.4, Proposition 4.5, Proposition 4.6 and Theorem 4.7 in Section 4. It collects
the proofs of the key lemmas presented in Section 5. An application to
robust linear regression is given in Appendix D. Other technical lemmas are
collected in Appendices E and F.

APPENDIX A: GENERAL CONVEX LOSS FUNCTIONS

We request the convex loss L to have continuous first order derivative. In
addition, we request it to be locally twice differentiable almost everywhere.
Specifically, we consider the following family of loss functions

FL=
{
L : L is convex,∇L is continuous and differentiable in B2(r,β∗)

}
,

where β is any vector in Rd and r & λ
√
s. This family includes many inter-

esting loss functions. Some examples are given as below:

• Logistic Loss: Let {(xi, yi)}i∈[n] be n observed data points of (X, y),
where X is a d-dimensional covariate and yi ∈ {−1,+1}. The logistic loss
is given in the form

L(β) = n−1
n∑

i=1

{
log
(
1 + exp(−yixT

i β)
)}
,

where n is the sample size.
• Huber Loss: In the robust linear regression, the Huber loss takes the

form

L(β) = n−1
n∑

i=1

{
`α(yi − xT

i β)
}
,

where `α(x) = 2α−1|x| − α−2 when |x| > α−1 and `α(x) = x2 otherwise.
• Gaussian Graphical Model Loss: Let Θ = Σ−1 be the precision ma-

trix and Σ̂ be the sample covariance matrix. The negative log-likelihood
loss of Gaussian graphical model is

L(Θ) = tr(Σ̂Θ)− log det(Θ).
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We note that the Huber loss is convex and has continuous first-order deriva-
tive. In addition, its second derivative exists in a neighborhood of β∗. There-
fore it belongs to the family of loss functions defined above. Other loss func-
tions include the least square loss and locally twice differentiable convex
composite likelihood loss.

We remark here that, the loss functions analyzed in our paper can be
nonconvex. If L(β) is nonconvex, we can decompose it as L(β) = L̃(β) +
H(β) such that L̃(β) is the convex part and H(β) is the concave part. We
then write the objective function as F(β) = L̃(β)+R̃λ(β) such that R̃(β) =
H(β) +R(β) and treat R̃(β) as our new regularizer. If the corresponding
weight function w̃(·) satisfies Assumption 4.1, our theory shall go through
without any problems. A similar technique is exploited in [28].

APPENDIX B: PROOFS OF STATISTICAL THEORY

B.1. Statistical Theory under LSE Condition. In this section, we
collect the proofs for Corollary 4.3 and Theorem 4.4. We give proofs for the
key technical lemmas in Section 5.1, which are used to prove theorem 4.2.
Other technical lemmas are postponed to later sections. We then establish
parallel results under the localized restricted eigenvalue condition.

B.1.1. Proofs of Main Results. In this section, we first prove Corollary
4.3 and then give the proof of Theorem 4.4.

Proof of Corollary 4.3. We start by bounding P(‖∇L(β∗)‖∞≥λ/8),
where∇L(β∗)=n−1XT(y−Xβ∗). For λ≥c

√
log d/n, using the union bound,

we obtain

P
(
‖∇L(β∗)‖∞ ≥ λ/8

)
≤ P

(
n−1‖XT(y −Xβ∗)‖∞ ≥ 8−1c

√
log d/n

)

≤
d∑

j=1

P
(

1/n|XT
j ε| ≥ 8−1c

√
log d/n

)
.(B.1)

Let vj = XT
j ε. Since εi is sub-Gaussian(0, σ2) for i = 1, . . . , n, we obtain

E
(

exp{t0vj}+ exp{−t0vj}
)
≤ 2 exp

{
n−2‖X∗j‖2σ2t20/2

}
,

which implies P(|vj | ≥ t) exp{t0t} ≤ 2 exp
{
n−2‖X∗j‖2σ2t20/2

}
. Taking t0 =

t(n−2‖X∗j‖22σ2)−1 yields that

P(|vj | ≥ t) ≤ 2 exp

{
− t2

2σ2‖X∗j‖22/n2

}
.
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Further taking t = λ/8 in the bound above and plugging it into (B.1) results

P
(
‖∇L(β∗)‖∞≥λ/8

)
≤2d exp

{
− (c/8)2 log d

2σ2 maxj{‖X∗j‖22/n}

}
≤2d−c

2/(128σ2).

Define the event J1 =
{
‖∇L(β∗)‖∞ ≤ λ/8

}
. Then with probability at least

1− 2d−η1 where η1 = c2
/

(128σ2), we have ‖∇2L(β∗)‖∞ ≤ λ/8.
It remains to show the oracle rate holds. Applying Theorem 4.2, we have

‖β̃(`)−β∗‖2≤C
(
‖∇L(β∗)S‖2+εt

√
s︸ ︷︷ ︸

I

+λ‖w(|β∗S |−u)‖2︸ ︷︷ ︸
II

)
+Cδ`−1λ

√
s︸ ︷︷ ︸

III

.(B.2)

For I, εt
√
s ≤

√
s/n since εt ≤

√
1/n. Because ‖β∗‖min ≥ u+ γλ, we have

w(|β∗S | − u) ≤ w(‖β∗S‖min1S − u) ≤ (w(γλ), . . . ,w(γλ))T = 0.

This implies II=0. For III, because ` ≥ blog λ
√
n(log 1/δ)−1c+2 & log λ

√
n,

we obtain

III = Cδ`−1λ
√
s ≤ Cδ(log 1/δ)−1log λ

√
nλ
√
s = C

√
s/n.

Plugging the bounds of I, II and III back into (B.2), we have

‖β̃(`) − β∗‖2 ≤ C‖∇L(β∗)S‖2 + C
√
s/n.

It remains to bound ‖∇L(β∗)S‖2. For the quadratic loss,

∇L(β∗)S = n−1XT
∗S(y −Xβ∗) = n−1XT

∗Sε.

Taking v = ε, A = n−1X∗SXT
∗S and t = EεTAε in the Hanson-Wright in-

equality (Lemma F.3) yields that

P
(
|εTAε−EεTAε|>EεTAε

)
≤2 exp

[
−Ch min

{
EεTAε

σ2‖A‖2
,
(EεTAε)2

σ4‖A‖2F

}]

≤2 exp

[
−Ch min

{
sσ2

σ2λmax(A)
,

s2σ4

sσ4λ2
max(A)

}]
,(B.3)

where Ch is a universal constant that does not depend on n, d, s; and EεTAε =
sσ2 using the expectation of a quadratic form. Note that the non-zero sin-
gular values of XT

∗SX∗S and X∗SXT
∗S are the same and ρ−(s, r) is bounded

above by ρ∗, we have

‖A‖2 =

∥∥∥∥
1

n
X∗SXT

∗S

∥∥∥∥
2

=

∥∥∥∥
1

n
XT
∗SX∗S

∥∥∥∥
2

= ρ+(s, r) ≤ ρ∗,
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which, together with (B.3), results that

P
(
|εTAε−EεTAε|>EεTAε

)
≤2 exp{−C ′hs},

where C ′h = Ch min{1/ρ∗, 1/(ρ∗)2}.
Define PS to be the projection matrix into the column space of X∗S .

Since PSX∗S = X∗S , we obtain that εTAε = (PSε)
TA(PSε). Thus we

have EεTAε ≤ λmax(A)‖PSε‖22. Further define the event set J2 =
{
|εTAε−

EεTAε| ≤ EεTAε
}

. Then with probability at least P(J2) ≥ 1−2 exp{−C ′hs},

‖∇L(β∗)S‖2 =

√
1

n
εTAε ≤

√
2

n
EεTAε ≤

√
2

n
ρ∗E

[
‖PSε‖22

]

=
√

2ρ∗σ
√
s/n ≤

√
2ρ∗σ

√
s/n.

Define J = J1 ∩ J2. Then, in the event J , we have

‖β̃(`) − β∗‖2 ≤ C
(√

2ρ∗σ + 1
)√

s/n ∝
√
s/n,

where P(J ) ≥ 1 − P(J1) − P(J2). In other words, the above bound holds
with probability at least 1− 2d−η1 − 2 exp{−η2s}, in which η1 = c2/(128σ2)
and η2 = C ′h.

We then give the proof for the oracle property under the LSE condition.
Similar result holds under the LRE condition.

Proof of Theorem 4.4. Let us define S(`) =
{
j : |β̃(`) − β∗j | > u

}
,

where u is defined in Assumption 4.2. We have S(0) = {(i, j) : |β∗j | ≥ u} = S.
We need several lemmas. Our first lemma bounds the discrepancy between
β̃(`) and β̂◦. The proof is similar to that of Lemma B.7.

Lemma B.1. Suppose Assumption 4.1 and 4.2 hold. Let C = 12/ρ∗. If
4(‖∇L(β̂◦)‖∞ + εc ∨ εt) ≤ λ . r/

√
s, we must have |E`|≤2s, and for ` ≥ 2,

the ε-optimal solution β̃(`) must satisfy

‖β̃(`) − β̂◦‖2 ≤ C
(
‖λ(`−1)
E` ‖2 + εt

√
|E`|
)
.

Our second lemma connects λ(`−1) to β̃(`−1). The proof follows a similar
argument used in the proof of Lemma 5.2 and thus is omitted.

Lemma B.2. We have

∥∥λ(`−1)
E`

∥∥
2
≤ λ

∥∥w(|β∗S |−u)
∥∥

2
+λ
∣∣{j∈S : |β̃(`−1)

j −β∗j |≥u
}∣∣1/2+λ

√∣∣E` \ S
∣∣.
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Combining the two above lemmas together and using the definition of
S(`), we obtain

∥∥β̃(`)−β̂◦
∥∥

2
≤C

{
λ
∥∥w(|β∗S |−u)

∥∥
2︸ ︷︷ ︸

I

+λ
√∣∣S(`−1) ∩ S

∣∣+λ
√∣∣E` \ S

∣∣
︸ ︷︷ ︸

II

+ε
√
|E`|
}
.

Since ‖βS‖min ≥ u+ αλ and w(αλ) = 0, we have I = λ‖w(|β∗S | − u)‖2 = 0.

For any j ∈ E` \ S, we must have λ
(`−1)
j < λw(u), and thus

∣∣β̃(`−1)
j

∣∣ =∣∣β̃(`−1)
j − β∗ij

∣∣ ≥ u since β∗j = 0 for j ∈ Sc. This implies E` \ S ∈ S(`−1) \ S,

or equivalently II ≤ λ
√
|S(`−1) \ S|. Therefore, for ` ≥ 2, we have

∥∥β̃(`)−β̂◦
∥∥

2
≤C

{
λ
√∣∣S(`−1) ∩ S

∣∣+λ
√∣∣S(`−1) \ S

∣∣+ εt
√
|E`|
}

(B.4)

≤C
{
λ
√

2
∣∣S(`−1)

∣∣+ εt
√
|E`|
}

On the other hand, since ‖β̂◦ − β∗‖max ≤ ηn ≤ δ−1ρ−1
∗ λ, j ∈ S(`) implies

that

|β̃(`)
j −β̂◦j |≥|β̃

(`)
j −β∗j |−|β̂◦j−β∗j |≥u−δ−1ρ−1

∗ λ≥12
√

2δ−1ρ−1
∗ λ.

We then bound
√
|S(`)| in terms of ‖β̃(`) − β̂◦‖2:

√
|S(`)| ≤

∥∥β̃(`) − β̂◦
∥∥

2

u− ηn
≤ δ
√∣∣S(`−1)

∣∣+ δ
εt
√
s

λ
.

Doing induction on ` and using the fact that S(0) = S, we obtain

√
|S(`)| ≤ δ`√s+ δ`

εc
√
s

λ
+

δ

1− δ
εt
√
s

λ

Thus, for ` large enough such that ` & log
{

(1 + εc/λ)
√
s
}

and εt small
enough such that εt . λ/

√
s, we must have the right hand side of the above

inequality is small than 1, which implies that

S(`) = ∅ and thus β̃(`) = β̂◦.

Therefore, the estimator enjoys the strong oracle property.
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B.2. Key Lemmas. In this section, we collect proofs for Lemma 5.1
and Lemma 5.2. We start with a proposition that connects the LSE condi-
tion to the localized versions of the sparse strong convexity/sparse strong
smoothness (SSC/SSM) in [1], which will be frequently used in our theoret-
ical analysis. Let

DL(β1,β2)≡L(β1)−L(β2)−
〈
∇L(β2),β1−β2

〉
,

and Ds
L(β1,β2)≡DL(β1,β2)+DL(β2,β1).

Proposition B.3. For any β1,β2 ∈ B2(r,β∗) ≡ {β : ‖β − β∗‖2 ≤ r} such
that ‖β1 − β2‖0 ≤ m, we have

1

2
ρ−(m, r)‖β1 − β2‖22 ≤ DL(β1,β2) ≤ 1

2
ρ+(m, r)‖β1 − β2‖22,

ρ−(m, r)‖β1 − β2‖22 ≤ Ds
L(β1,β2) ≤ ρ+(m, r)‖β1 − β2‖22.

Proof of Proposition B.3. We prove the second inequality. By the
mean value theorem, there exists a γ ∈ [0, 1] such that β̃ = γβ1+(1−γ)β2 ∈
B2(r,β∗), ‖β̃‖0 ≤ m and

〈
∇L(β1)−∇L(β2),β1 − β2

〉
= (β1 − β2)T

{
∇2L(β̃)

}
(β1 − β2).

By the definition of the localized sparse eigenvalue, we obtain the desired
result. The other inequality can be proved similarly.

We then present the proof for Lemma 5.1 below.

Proof of Lemma 5.1. If we assume that, for all ` ≥ 1, the following
two inequalities hold

|E`| = k ≤ 2s, where E` is defined in (5.1), and(B.5)

‖λ(`−1)
Ec`
‖min ≥ λ/2 ≥ ‖∇L(β∗)‖∞ + ε.(B.6)

Applying Lemma E.2 in the online supplement, we obtain the desired bound:

‖β̃(`) − β∗‖2 ≤
12

ρ∗

(
‖λ(`−1)

S ‖2 + ‖∇L(β∗)E`‖2 + ε
√
|E`|
)
<

18

ρ∗
λ
√
s ≤ r.

Therefore, it remains to show (B.5) and (B.6) hold for all ` ≥ 1. We prove
these by induction. For ` = 1, λ ≥ λw(u) and thus E1 = S, which implies
(B.5) and (B.6). Assume these two statements hold at `− 1. Since j∈E`\S
implies j 6∈ S and λw

(
|β̃(`−1)
j |

)
= λ

(`)
j < λw(u) by definition, and since
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w(x) is non-increasing, we obtain that |β̃`−1
j | ≥ u. Therefore by induction

hypothesis, we have

√
|E` \ S| ≤

‖β̃(`−1)
E`\S ‖
u

≤ ‖β̃
(`−1) − β∗‖2

u
≤ 18λ

ρ∗u

√
s ≤ √s,

where the last inequality uses the definition of u in (5.1). The inequality
above implies that |E`| ≤ 2s. For such E`, we have ‖λEc` ‖min ≥ λw(u) ≥
λ/2 ≥ ‖∇L(β∗)‖∞+ ε, which completes the induction step. This completes
the proof.

Proof of Lemma 5.2. If |β∗j −β̃j | ≥ u, then w
(
|β̃j |
)
≤ 1 ≤ u−1|β̃j−β∗j |;

otherwise, w
(
|β̃j |
)
≤ w

(
|β∗j | − u

)
. Therefore,the following inequality always

hold

w
(
|β̃j |
)
≤ w

(
|β∗j | − u

)
+ u−1|β∗j − β̃|.

Applying the triangle inequality completes the proof.

B.3. Statistical Theory under LRE Condition. In this section,
we present the main theorem and its proof, with some technical lemmas
postponed to later sections. We formally introduce the LRE condition below.

Assumption B.1. There exist k ≤ 2s, γ and r & λ
√
s such that 0 < κ∗ ≤

κ−(k, γ, r) ≤ κ+(k, γ, r) ≤ κ∗ <∞.

B.3.1. Proofs of Main Theorems. We begin with a proposition, which
establishes the relationship between localized restricted eigenvalue and the
localized version of the restricted strong convexity/smoothness. The proof
is similar to that of Proposition B.3, and thus is omitted.

Proposition B.4. For any β1,β2 ∈ C(k, γ, r) ∩B2(r/2,β∗), we have

1

2
κ−(k, γ, r)‖β1 − β2‖22 ≤ DL(β1,β2) ≤ 1

2
κ+(k, γ, r)‖β1 − β2‖22, and

κ−(k, γ, r)‖β1 − β2‖22 ≤ Ds
L(β1,β2) ≤ κ+(k, γ, r)‖β1 − β2‖22.

Next, we bound the `2 error using the regularization parameter. The proof
is similar to that of Lemma 5.1 and depends on Lemma B.7, where we
introduce the localized analysis such that the localized restricted eigenvalue
condition can be applied.
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Lemma B.5. Suppose that Assumption 4.2 holds with u = 18λ/κ∗, and
Assumption B.1 holds with a k≤2s, γ=5. If λ, ε and r satisfy

4(‖∇L(β∗)‖∞ + ε) ≤ λ ≤ rκ∗/(2
√
s),

then |E`| ≤ 2s and any ε-optimal solution β̃(`) (` ≥ 1) must satisfy

‖β̃(`) − β∗‖2≤κ−1
∗
(
‖λ(`−1)

S ‖2+‖∇L(β∗)E`‖2+ε
√
|E`|
)
. λ
√
s.

Recall Lemma 5.2, which bounds the regularization parameter using the
functional of the estimator from previous step. Combining these two lemmas
together, we obtain the following main theorem.

Theorem B.6 (Optimal Statistical Rate under Localized Restricted Eigenvalue
Condition). Suppose the same conditions of Lemma B.5 hold, but with ε
replaced by εc ∨ εt. Then, for ` ≥ 2 and some constant C, any εt-optimal
solution must satisfy

∥∥β̃(`) − β∗
∥∥

2
. ‖∇L(β∗)S‖2︸ ︷︷ ︸

oracel rate

+

opt err︷ ︸︸ ︷
εt
√
s +λ‖wS(|β∗S | − u)‖2︸ ︷︷ ︸

coefficient effect

+

tightening effect︷ ︸︸ ︷
δ`−1λ

√
s .

Proof of Theorem B.6. Under the conditions of the theorem, Lemma
B.5 directly implies |E`| ≤ 2s and

‖λ(`−1)
Ec`
‖min ≥ ‖∇L(β∗)‖∞ + ε, for all ` ≥ 1,

where ε=εc ∨ εt. Using Lemma B.7 then obtains us that

‖β̃(`) − β∗‖2 ≤ κ−1
∗
(
‖λ(`−1)

S ‖2 + ‖∇L(β∗)E`‖2 + ε
√
|E`|
)
.(B.7)

To bound the first term in the inequality above, we apply Lemma 5.2 and
obtain

‖β̃(`)−β∗‖2≤
1

κ∗

(
‖∇L(β∗)E`‖2 + εt

√
|E`|︸ ︷︷ ︸

I

+λ‖wS(|β∗S | − u)‖2
)

(B.8)

+
λ

uκ∗
‖β̃(`−1)−β∗‖2.

Following a similar argument in the proof of Theorem 4.2, the term I can
be bounded by

‖∇L(β∗)S‖2 + εt
√
s+

λ

4u

∥∥β̃(`−1) − β∗
∥∥

2
,
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local cone

contraction rate

�� = ���

������
�
s

r

Fig 5. The localized analysis under localized restricted eigenvalue condition: an interme-
diate solution, β̃?, is constructed such that ‖β̃? − β∗‖2 = r if ‖β̃ − β∗‖2 > r, β̃? = β̃,
else. Employing the localized eigenvalue condition, this intermediate solution converges at
the rate of λ

√
s in the contraction stage and

√
s/n in the tightening stage. Under mild

conditions, the approximate solution β̃ = β̃? and thus has same convergence rate as the
intermediate solution. The shaded area is a local `1-cone where the restricted eigenvalue
condition holds.

which, combining with (B.8), yields that

‖β̃(`)−β∗‖2.‖∇L(β∗)S‖2+εt
√
s+λ‖wS(|β∗S | − u)‖2

+δ
∥∥β̃(`−1)−β∗

∥∥
2
,

where δ = 2λ/(uκ∗) ≤ 1/2. The proof is completed by applying the above
inequality recursively.

B.3.2. Localized Analysis. In this section, we carry out the localized anal-
ysis. A geometric explanation of the localized analysis is given in Figure 5.
The following lemma shows that the approximate solution always falls in
the neighborhood of β∗ by a novel localized analysis and thus the localized
restricted eigenvalue condition can be exploited. Recall the definitions of
DL(·, ·), Ds

L(·, ·) and C(k, γ, r) in Section B.2.

Lemma B.7. Suppose Assumption B.1 holds. Take E such that S ∩ Ec =
∅ , |E| ≤ k ≤ 2s. Further assume that ‖λEc‖min ≥ ‖∇L(β∗)‖∞ + ε and
2κ−1
∗ λ
√
s ≤ r. Then any ε-optimal solution β̃ must satisfy

‖β̃ − β∗‖2 ≤ κ−1
∗
(
‖λS‖2 + ‖∇L(β∗)E‖2 + ε

√
|E|
)
. λ
√
s.
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Proof of Lemma B.7. Let β̃? = β∗ + t(β̃ − β∗), where t = 1, if ‖β̃ −
β∗‖2 ≤ r; t ∈ (0, 1) such that ‖β̃∗ − β∗‖2 = r, otherwise. By the definition
of β̃∗, we know that ‖β̃∗ − β∗‖2 ≤ r. Using the `1-cone lemma, we know
that the approximate solution falls in the `1-cone, i.e.

‖(β̃ − β∗)E‖1 ≤ 5‖(β̃ − β∗)Ec‖1,(B.9)

From the construction of β̃∗, we know β̃∗ − β∗ = t(β̃ − β∗). Thus, we have

‖(β̃∗ − β∗)E‖1 ≤ 5‖(β̃∗ − β∗)Ec‖1.

Combining the inequality above with the assumption |E| ≤ k results that β̃∗

falls in the local `1-cone, i.e. β̃∗ ∈ C(k, c0, r). Then Proposition B.4 implies
the localized restricted strong convexity, i.e.

κ−(k, 5, r)‖β̃∗ − β∗‖22 ≤ Ds
L(β̃∗,β∗).(B.10)

To bound the right hand side of the above inequality, we use Lemma F.2 in
Appendix F:

Ds
L(β̃∗,β◦) ≤ tDs

L(β̃,β∗) = t〈∇L(β̃)−∇L(β∗), β̃ − β∗〉.(B.11)

It suffices to bound the right hand side of (B.11). Plugging (B.11) back into
(B.10) and adding 〈λ� ξ, β̃ − β∗〉 to both sides, we obtain

κ−(k, 5, r)‖β̃∗−β∗‖2+t 〈∇L(β∗), β̃−β∗〉︸ ︷︷ ︸
I

+t 〈λ� ξ, β̃−β∗〉︸ ︷︷ ︸
II

(B.12)

≤ t 〈∇L(β̃)+λ� ξ, β̃−β∗〉︸ ︷︷ ︸
III

.

It remains to bound terms I, II and III respectively. For I, separating the
support of ∇L(β∗) and β̃−β∗ to E and Ec and using the Hölder inequality,
we obtain

I=
〈(
∇L(β∗)

)
E ,
(
β̃ − β∗)E

〉
+
〈(
∇L(β∗)

)
Ec , (β̃ − β

∗)Ec
〉

≥−
∥∥(∇L(β∗)

)
E
∥∥

2

∥∥(β̃ − β∗)E
∥∥

2
−
∥∥(∇L(β∗)

)
Ec
∥∥
∞
∥∥(β̃ − β∗)Ec

∥∥
1
.(B.13)

For II, separating the support of λ� ξ and β̃−β∗ to S, E \S and Ec results

II =〈(λ� ξ)S , (β̃−β∗)S〉+〈(λ� ξ)E\S , (β̃−β∗)E\S〉
+ 〈(λ� ξ)Ec , (β̃ − β∗)Ec〉.
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To bound the last term in the above equality, note that Ec ∩S = ∅ and thus

〈(λ� ξ)Ec , (β̃ − β∗)Ec〉 = 〈λEc , |β̃Ec |〉 = 〈λEc , |(β̃ − β∗)Ec |〉,

which yields that

II = 〈(λ� ξ)S , (β̃ − β∗)S〉+ 〈(λ� ξ)E\S , (β̃ − β∗)E\S〉
+ 〈λEc , |(β̃ − β∗)Ec |〉

≥ −‖λS‖2‖(β̃ − β∗)S‖2 + 〈λEc , |(β̃ − β∗)Ec |〉
≥ −‖λS‖2‖(β̃ − β∗)S‖2 + ‖λEc‖min‖(β̃ − β∗)Ec‖1,(B.14)

where the first inequality is due to the fact that 〈(λ�ξ)E\S , (β̃−β∗)E\S〉 = 0
and we use Hölder inequality in the last inequality. For III, we first write
u = ∇L(β̃) + λ� ξ. Using similar arguments, we obtain

〈∇L(β̃) + λ� ξ, β̃ − β∗〉 = 〈uE , (β̃ − β∗)E〉+ 〈uEc , (β̃ − β∗)Ec〉
≤ ‖uE‖2‖(β̃ − β∗)E‖2 + ‖uEc‖∞‖(β̃ − β∗)Ec‖1.(B.15)

Plugging (B.13), (B.14), (B.15) into (B.12) and taking inf over ξ ∈ ∂‖β̃‖1,
we obtain

κ−(k, 5, r)‖β̃∗−β∗‖2+t(‖λEc‖min−‖∇L(β∗)‖∞)‖(β̃−β∗)Ec‖1
−t(‖∇L(β∗)‖2+‖λE‖2)‖(β̃−β∗)E‖2

≤ t inf
ξ∈∂‖β̃‖1

‖uE‖2‖(β̃ − β∗)E‖2 + t inf
ξ∈∂‖β̃‖1

‖uEc‖∞‖(β̃ − β∗)Ec‖1

≤ ε
√
|E| × t‖(β̃ − β∗)E‖2 + ε× t‖(β̃ − β∗)Ec‖1,

where we use the fact inf
ξ∈∂‖β̃‖1 ‖uE‖2 ≤ inf

ξ∈∂‖β̃‖1
√
|E|‖uE‖∞ ≤ ε

√
|E| in

the last inequality. After some algebra, we obtain

κ−(k, 5, r)‖β̃∗ − β∗‖22 + t(‖λEc‖min − (‖∇L(β∗)‖∞ + ε))‖(β̃ − β∗)Ec‖1
≤ (‖λS‖2 + ‖∇L(β∗)E‖2 + ε

√
|E|)× t‖(β̃ − β∗)E‖2.

Using the assumption that ‖λEc‖min ≥ ‖∇L(β∗)‖∞+ε, the inequality above
can be simplified to

κ−(k, 5, r)‖β̃∗ − β∗‖22 ≤ (‖λS‖2 + ‖∇L(β∗)E‖2 + ε
√
|E|)︸ ︷︷ ︸

(i)

(B.16)

× t‖(β̃ − β∗)E‖2︸ ︷︷ ︸
(ii)

.



12 FAN ET AL.

For (i), using the fact that ‖λS‖2 ≤ ‖λS‖∞
√
|S| ≤ λ√s, we have

(i) ≤ λ
√
|S|+ (‖∇L(β∗)E‖∞ + ε)

√
|E| ≤ λ√s+

1

4
λ
√
k,

where, in the first inequality, we have used

‖∇L(β∗)E‖2 + ε
√
|E| ≤ (‖∇L(β∗)E‖∞ + ε)

√
|E| ≤ 1

4
λ
√
|E|.

For (ii), we have t‖(β̃ − β∗)E‖2 = ‖(β̃∗ − β∗)E‖2. Plugging the bounds for
(i) and (ii) into (B.16) and using the assumption 2κ−1

∗ λ
√
s ≤ r, we obtain

‖β̃∗ − β∗‖2 ≤
1 +
√

2/2

κ∗
λ
√
s < r,

which is a contraction with the construction of β̃∗. This indicates that β̃∗ =
β̃. Therefore, the desired bound hold for β̃.

APPENDIX C: COMPUTATIONAL THEORY

In this section, we collect proofs for Proposition 4.5, Proposition 4.6 and
Theorem 4.7. We then give the proofs for Lemma 5.3, Lemma 5.4 and Lemma
5.5. The proofs of technical lemmas are postponed to later sections. We
denote the quadratic coefficient φ by φc in the contraction stage, and by φt
in the tightening stage.

C.1. Proofs of Main Results. We start with the contraction stage
and give the proof of Proposition 4.5, followed by that of Proposition 4.6.

Proof of Proposition 4.5. We omit the super script ` in β(`,k), 1 in
β̂(1), and 0 in λ(0) for simplicity. Applying Lemma E.5 results that

ωλ

(
β(k+1)

)
≤
(
φc + ρc

)∥∥β(k+1) − β(k)
∥∥

2
.(C.1)

On the other hand, taking β = β(k) in Lemma E.4, we obtain

F
(
β(k),λ(0)

)
− F

(
β(k+1),λ(0)

)
≥ φc

2

∥∥β(k+1) − β(k)
∥∥2

2
.

Plugging the inequality back into (C.1), we obtain a bound for the subopti-
mality measure

ωλ(β(k+1)) ≤
(
φc + ρc

){ 2

φc

[
F
(
β(k),λ

)
− F

(
β(k+1),λ

)]}1/2
.(C.2)
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Since {F (β(k),λ(0))}∞k=0 is a monotone decreasing sequence, we have

F (β̂(1),λ) ≤ . . . ≤ F (β(k),λ) ≤ . . . ≤ F (β(0),λ).(C.3)

Plugging (C.3) back into (C.2) and using Lemma 5.3, we obtain

ωλ(β(k+1))≤(φc+ρc)
{ 2

φc
[F (β(k),λ)−F (β̂,λ)]

}1/2
≤ φc+ρc√

k
‖β̂‖2,(C.4)

where we have the used the fact that β̃(0) =0. To further simplify the above
bound, we observe that φc≤γuρc. Using triangle inequality, we have

ωλ

(
β(k+1)

)
≤ (1+γu)ρc√

k

∥∥β̂
∥∥

2
≤ (1+γu)ρc√

k

(
‖β∗‖2+‖β̂−β∗‖2

)
.

Taking `=1 and ε=0 in Lemma 5.1, we have ‖β̂−β∗‖2 ≤ 18λ
√
s. Plugging

this back into (C.4) yields that

ωλ(β(k+1)) ≤ (1 + γu)ρc√
k

{
‖β∗‖2 + 18λ

√
s
}
≤ (1 + γu)Rρc

2
√
k

,

where R = 2(‖β∗‖2 + 18λ
√
s) . ‖β∗‖2 + λ

√
s. Therefore, in the contraction

stage, to ensure that ωλ(0)(β(k+1)) ≤ ε, it suffices to make k satisfies that

(1 + γu)Rρc

2
√
k

≤ εc, which implies k ≥
((1 + γu)Rρc

εc

)2
.

Proof of Proposition 4.6. Write εt as ε and assume ` ≥ 2. Apply
Lemma E.8 in the supplement, we obtain

ωλ(`−1)(β(`,k+1)) ≤
(
ρ+(2s+ 2s̃, r) + φt

)
‖β(`,k+1) − β(`,k)‖2,

which, combining with Lemma E.9, yields

ωλ(`−1)(β(`,k+1)) ≤ (φt + ρ+)

√
2

φt
(F (β(`,k),λ(`−1))− F (β(`,k+1),λ(`−1)))

≤ (1 + κ)
√

2γuρ+(F (β(`,k),λ(`−1))− F (β(`,k+1),λ(`−1))),

where we use ρ− ≤ φt ≤ γuφt in the last inequality. Since the sequence
{F (β(`,k);λ(`−1))}∞k=0 decrease monotonically, we obtain

ωλ(`−1)(β(`,k+1))≤(1+κ)

√
2γuρ+(F (β(`,k),λ(`−1))−F (β̂(`),λ(`−1)))

≤(1+κ)

√
2γuρ+

(
1− 1

4γuκ

)k
(F (β(`,k),λ(`−1))−F (β̂(`),λ(`−1)))

≤(1 + κ)

√
Cγuρ+

(
1− 1

4γuκ

)k
λ2s,
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where the second inequality is due to Lemma 5.5, and the last one due to
Lemma E.14. Here C is some positive constant. Therefore, for ` ≥ 2, to
ensure that β(`,k+1) satisfies ωλ(`−1)(β(`,k+1)) ≤ ε, it suffices to choose k
such that

(1 + κ)

√
Cγuρ+

(
1− 1

4γuκ

)k
λ2s ≤ ε.

Equivalently, we obtain

k ≥ C ′ log
(
C ′′

λ
√
s

ε

)
,

where C ′ = 2/ log(4γuκ/{4γuκ− 1)}, C ′′ = 2(1 + κ)
√
Cγuρ+.

C.2. Key Lemmas. In this section, we give the proofs of the key lem-
mas in Section 5.2. We start with the proof of Lemma 5.3, followed by the
proofs of Lemma 5.4 and Lemma 5.5.

Proof of Lemma 5.3. For simplicity, we omit the super-script ` in (`, k)
and denote β(`,k), λ(0) as β(k) and λ respectively. Taking β = β̂ in Lemma
E.4 and simplifying the inequality, we have

F (β̂,λ)− F (β(j),λ) ≥ φc
2

{
‖β(j) − β(j−1)‖22 − 2〈β − β(j−1),β(j) − β(j−1)〉

}

=
φc
2

{
‖β̂ − β(j)‖22 − ‖β̂ − β(j−1)‖22

}
.(C.5)

Multiplying both sides of (C.5) by 2/φc and summing over j results

2

φc

k∑

j=1

{
F (β̂,λ)−F (β(j),λ)

}
≥

k∑

j=1

{
‖β(j)−β̂‖22−‖β(j−1)−β̂‖22

}
,

or equivalently

2

φc

{
kF (β̂,λ)−

k∑

j=1

F (β(j),λ)

}
≥ ‖β(k) − β̂‖22 − ‖β(0) − β̂‖22.(C.6)

On the other hand, taking β = β(k−1) in Lemma E.4 and replacing k with
j yields

F (β(j−1),λ)− F (β(j),λ) ≥ φc
2
‖β(j) − β(j−1)‖22.
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Multiplying both sides of the inequality above by j − 1 and summing over
j, we obtain

2

φc

k∑

j=1

{
(j−1)F (β(j−1),λ)−jF (β(j),λ)+F (β(j),λ)

}

≥
k∑

j=1

(j−1)‖β(j)−β(j−1)‖22,

or equivalently,

2

φc

{
− kF (β(k),λ) +

k∑

j=1

F (β(j),λ)
}
≥

k∑

j=1

(j − 1)‖β(j) − β(j−1)‖22.(C.7)

Adding (C.6) and (C.7) together and canceling the term 2/φc
∑k

j=1 F (β(j),λ),
we obtain that

2k

φc

{
F (β̂,λ)−F (β(k),λ)

}
≥‖β(k)−β̂‖22+

k∑

j=1

(j−1)‖β(j)−β(j−1)‖22−‖β(0)−β̂‖22,

which, multiply both sides by −1, yields that

2k

φc

{
F (β(k),λ)− F (β̂,λ)

}
≤ ‖β(0) − β̂‖22.

Therefore, the proof is completed.

Proof of Lemma 5.4. For simplicity, we omit the super-script in β̃(1).
Define the active set Sn as

{
j : |∇L(β̃)j |=λ

}
. Then we must have {j : β̃j 6=

0} ⊆ Sn. It suffices to show |Sn| ≤ s+ s̃. To achieve this goal, we decompose
Sn into two parts and bound the size of them separately. Specifically, let

Sn ⊆ S ∪
{
j /∈ Sc : |(∇L(β̃)−∇L(β∗))j |≥λ/2}︸ ︷︷ ︸

S1
n

∪{j /∈ Sc : |∇L(β∗)j |>λ/2
}

︸ ︷︷ ︸
S2
n

.

For S2
n, the assumption that ‖∇L(β∗)‖∞ + ε ≤ λ/4, implies S2

n = ∅ and
thus |S2

n| = 0. For S1
n, consider S′ with maximum size s′ = |S′| ≤ s̃ such

that S′ ⊆ S1
n. Then there exists a d-dimensional sign vector u satisfying

‖u‖∞ = 1 and ‖u‖0 = s′, such that

λs′/2 ≤ uT
(
∇L(β̃)−∇L(β∗)

)
.
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Then, by the Mean Value theorem, there exist some γ ∈ [0, 1] such that

∇L(β̃)−∇L(β∗) = ∇L2
(
γβ̃ + (1− γ)β∗

)
(β̃ − β∗) ≡ H(β̃ − β∗).

Here H = ∇L2
(
γβ̃+(1−γ)β∗

)
. Writing uTH(β̃−β∗) as

〈
H1/2u,H1/2(β̃−

β∗)
〉

and applying the Cauchy-Schwartz inequality, we have

λs′/2 ≤
〈
H1/2u,H1/2(β̃ − β∗)

〉
≤ ‖H1/2u‖2︸ ︷︷ ︸

I

‖H1/2(β̃ − β∗)‖2︸ ︷︷ ︸
II

.(C.8)

Now we bound terms I and II respectively. Since β̃,β∗ ∈ B2(r,β∗), any con-
vex combination of β̃,β∗ also falls in B2(r,β∗).The localized sparse eigen-
value condition be used on H.For I, it follows from Definition 4.1 that

‖H1/2u‖2 ≤
√
ρ+(s′, r)‖u‖2 ≤

√
ρ+(s′, r){‖u‖1‖u‖∞}1/2 ≤

√
ρ+(s′, r)

√
s′.

For II, write C = ρ
−1/2
∗ . It follows from Lemma E.6 in the supplement that

the following inequality holds

‖H1/2(β̃ − β∗)‖22 =
〈
∇L(β̃)−∇L(β∗), β̃ − β∗

〉
≤ Cλ2s.

Thus by plugging the bounds for I and II back into (C.8), we obtain

λs′/2 ≤
√
ρ+(s′, r)

√
s′ × Cλ√s.

Multiplying both sides of the above inequality by (λ/2)1/2 and taking squares
results

s′ ≤ 4Cρ+(s′, r)s ≤ 4Cρ+(s̃, r)s < s̃.(C.9)

where the last inequality is due to the assumption. Because s′= |S′| achieves
the maximum possible value such that s′ ≤ s̃ for any subset S′ of S1

n and
(C.9) shows that s′ < s̃, we must have S′ = S1

n, and thus

|S1
n| = s′ ≤ b4Cρ+(s̃, r)sc < s̃.

This proves the desired result.

Proof of Lemma 5.5. For notational simplicity, we omit the tightening
step index ` in β(`,k),λ(`), Ec` ; and write β(`,k),λ(`), Ec` as β(k),λ and Ec`
respectively. Define β(α) = αβ̂+(1−α)β(k−1). Since F (β(k),λ) is majorized
at Ψ(β(k),β(k−1)), we have

F (β(k),λ)≤min
β(α)

{
L(β(k−1))+〈∇L,β−β(k−1)〉+φt

2
‖β−β(k−1)‖22+‖λ� β‖1

}

≤min
β(α)

{
F (β,λ) +

φt
2
‖β − β(k−1)‖22

}
,
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where we restrict β on the line segment αβ̂ + (1 − α)β(k−1) in the first
inequality and the last inequality follows from the convexity of L(β). Let
β̂(`) be a solution to argminβ∈Rd

{
L(β)+‖λ(`−1)�β‖1

}
. Using the convexity

of F (β,λ), we obtain that

F (β(k),λ)≤min
β(α)

{
F (β,λ) +

φt
2
‖β − β(k−1)‖22

}

≤min
α

{
αF (β̂,λ) + (1− α)F (β(k−1),λ) +

α2φt
2
‖β(k−1) − β̂‖22

}

≤min
α

{
F (β(k−1),λ)−α

[
F (β(k−1),λ)−F (β̂,λ)

]
+
α2φt

2
‖β(k−1)−β̂‖22

}
.

Next, we bound the last term in the inequality above. Applying Lemma E.14
in the supplementary material, we obtain

‖(β(k−1))Ec‖0 ≤ s̃, ‖β(k−1) − β∗‖2 ≤ C ′λ
√
s ≤ r, ‖β̂ − β∗‖2 ≤ r, and ‖β̂E‖0 ≤ s̃.

Recall ξ̂ is some subgradient of ‖β̂‖1. Using the convexity of L(·) and the
`1-norm, F (β(k−1),λ)−F (β̂,λ) can be bounded in the following way

F (β(k−1),λ)−F (β̂,λ)≥
〈
∇L(β̂)+λ� ξ̂,β(k−1)−β̂

〉
+DL

(
β(k−1), β̂

)

≥ ρ−
2
‖β(k−1)−β̂‖22,

where the last inequality is due to the first order optimality condition and
Proposition B.3. Thus we conclude that

F (β(k),λ)≤min
{
F (β(k−1),λ)−α

[
F (β(k−1),λ)−F (β̂,λ)

]

+
α2φt
ρ−

[
F (β(k−1),λ)−F (β̂,λ)

]}

≤ F (β(k−1),λ)− ρ−
4φt

[
F (β(k−1),λ)− F (β̂,λ)

]
.

which, combining with the fact φt ≤ γuρ+, yields

F
(
β(k),λ

)
− F

(
β̂,λ

)
≤
(

1− 1

4γuκ

)k{
F (β̃(0),λ)− F (β̂,λ)

}
,

in which κ = ρ+/ρ−.
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APPENDIX D: AN APPLICATION TO ROBUST LINEAR
REGRESSION

In this section, we give an application of Theorem 4.2 to robust linear
regression. The Huber loss, defined in Section A, is used to robustify the
heavy tailed error. We allow the cutoff parameter α to scale with (n, d, s)
for bias-robustness tradeoff. Let yi = x>i β+ εi, 1 ≤ i ≤ n, be independently
and identically distributed random variables, with mean µ = x>i β and finite
second moment M . Then, the following corollary suggests that, under only
finite second moments, the sparse Huber estimator with an adaptive α can
perform as good as the sparse ordinary least square estimator as if sub-
Gaussian errors were assumed.

Corollary D.1. Suppose the same conditions in Theorem 4.2 hold. Assume
the columns of X are normalized such that maxj ‖X∗j‖2 ≤

√
n. Assume

there exists an α > 0 such that ‖β∗S‖min ≥ u + γλ and w(γλ) = 0. If α ∝
λ ∝

√
n−1log d, εt≤

√
1/n and T & log log d, then with probability at least

1−2d−η1−2 exp(−η2s), β̃
(T ) must satisfy

‖β̃(T ) − β∗‖2 .
√
s/n,

where η1 and η2 are positive constants.

Proof of Corollary D.1. The proof follows from that of Corollary
4.3 by bounding ‖∇L(β∗)S‖∞ and the probability of the event

{
‖∇L(β∗)‖∞ &

λ
}

. The derivative ∇L(β∗) can be written as

∇L(β∗) =
1

n

n∑

i=1

∇`α(εi)xi =
1

n
XTεα,

where εα = (ε1,α, . . . , εn,α)T . Therefore, it suffices to show that εα has sub-
Gaussian tail. Let ψ(αx) = 2−1α∇`α(x). Then ψ(x) satisfies that

− log(1− x+ x2) ≤ ψ(x) ≤ log(1 + x+ x2),

which yields that

E
[

exp{ψ(αε)}
]
≤ 1 + α2M and E

[
exp{−ψ(αε)}

]
≤ 1 + α2M.

Using Markov inequality, we obtain,

P
(
ψ(αε) ≥Mt2

)
≤ E

[
exp{ψ(αε)}

]

exp(Mt2)
≤ (1 + α2M) exp{−Mt2},



LOCAL ADAPTIVE MAJORIZE-MINIMIZATION 19

or equivalently

P
(
∇`α(ε) ≥ 2Mt2/α

)
≤ E

[
exp{ψ(αε)}

]

exp(Mt2)
≤ (1 + α2M) exp{−Mt2}.

Taking α = t/2, we obtain

P
(
∇`α(ε) ≥Mt

)
≤ E

[
exp{ψ(tε/2)}

]

exp(Mt2)
≤ (1 +Mt2/4) exp{−Mt2}

≤ exp
{
−Mt2/2

}
,

where the last inequality follows from the fact that 1+Mt2/4 ≤ exp{Mt2/2}.
The rest of the proof follows from that of Corollary 4.3.

APPENDIX E: TECHNICAL LEMMAS

E.1. Statistical Theory. We collect the technical lemmas that are
used to prove Theorem 4.2. We start by defining the following localized
sparse relative covariance.

Definition E.1 (Localized Sparse Relative Covariance). The localized sparse
relative covariance with parameter r is defined as

π(i, j;β∗, r)= sup
v,u,‖β−β∗‖2≤r

{
vT
I ∇2L(β)uJ/‖uJ‖2

vT
I ∇2L(β)vI/‖vI‖2

: I ∩ J=∅, |I|≤ i, |J |≤j
}
.

This is different from restricted correlation defined in [4]. We measure the
relative covariance between set I and set J with respect to that of set I. In
the sequel, we omit the arguments β∗, r in π(i, j;β∗, r) for simplicity. Our
next result bounds the localized sparse relative covariance in terms of sparse
eigenvalues.

Lemma E.1. It holds that

π(i, j;β∗, r) ≤ 1

2

√
ρ+(j, r)

ρ−(i+ j, r)
− 1.

Then we are ready to bound the estimation error by functionals of the
regularization parameter under localized sparse eigenvalue condition, which
is proved in the following lemma.

Lemma E.2. Take E such that S ⊆ E and |E| = k ≤ 2s. Let J be the index
set of the largest m coefficients (in absolute value) in Ec. Assume Assumption
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4.1 holds, ‖∇L(β∗)‖∞ + ε ≤ λ/4, ‖λEc‖min ≥ λ/2 and rρ−(k+m, r) >
2(1+5

√
k/m)(

√
k/s/4+1)λ

√
s. Then any ε-optimal solution β̃ must satisfy

‖β̃ − β∗‖2 ≤
2
(
1 + 5

√
k/m

)

ρ−(k +m, r)
(‖λS‖2 + ‖∇L(β∗)E‖2 +

√
kε) . λ

√
s.

We now present the proofs for the two lemmas above by starting with
proof of Lemma E.1.

Proof of Lemma E.1. For simplicity, we omit the arguments β∗, r in
π(i, j;β∗, r), ρ+(i, , r), and ρ−(i, r). Let I = E ∪ J and L = I ∪ J . For
any α ∈ R, let w = vI + αuJ . Without loss of generality, we assume that
‖uJ‖2 = 1, ‖vI‖2 = 1 and β ∈ B2(r,β∗). Using the definition of π(i, j) and
w, we have

ρ−(i+ j)‖w‖22 ≤ vT
I ∇2L(β)vI︸ ︷︷ ︸

c1

+2αvI∇2L(β)uJ︸ ︷︷ ︸
b

+α2 uJ∇2L(β)uJ︸ ︷︷ ︸
c2

,

which simplifies to

(c2 − ρ−(i+ j))α2 + 2bα+ (c1 − ρ−(i+ j)) ≥ 0.(E.1)

Since the left hand side of (E.1) is positive semidefinite for all α, we must
have

(c2 − ρ−(i+ j))(c1 − ρ−(i+ j)) ≥ b2.

Multiplying by 4/c2
1 on both sides of the inequality above, we obtain

4b2

c2
1

≤ 4c−1
1 (1− ρ−(i+ j)/c1)(c2 − ρ−(i+ j))

≤ 4c−1
1 ρ−(i+ j)(1− ρ−(i+ j)/c1)× c2 − ρ−(i+ j)

ρ−(i+ j)

≤ c2 − ρ−(i+ j)

ρ−(i+ j)
≤ ρ+(j)

ρ−(i+ j)
− 1,

where ,in the last second inequality, we use 4c−1
1 ρ−(i+j)(1−ρ−(i+j)/c1) ≤

1; and the last inequality is due to c2 = uJ∇2L(β)uJ ≤ ρ+(j). This yields

vT
I ∇2L(β)uJ/‖uJ‖2
vT
I ∇L(β)vI/‖vI‖2

≤ |v
T
I ∇2L(β)uJ |

vT
I ∇L(β)vI

≤ 1

2

√
ρ+(j)

ρ−(i+ j)
− 1.

The proof is completed by taking sup of the left hand side with respect to
β,u,v.
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Proof of Lemma E.2. For simplicity, we write ∇2L(β) as ∇2L, when-
ever we have β ∈ B2(r,β∗) ≡ {β : ‖β − β∗‖2 ≤ r}. Since we do not know
whether β̃ belongs to B2

r (β∗) in advance. we need to construct an interme-
diate estimator β̃∗ such that ‖β̃∗−β∗‖2 ≤ r. Let β̃? = β∗+ t(β̃−β∗) where
t = 1 if ‖β̃ − β∗‖ ≤ r; t ∈ (0, 1) such that ‖β̃∗ − β∗‖2 = r otherwise. Using
the Cauchy Schwartz inequality, we obtain

‖(β̃ − β∗)Ic‖2 ≤ (‖(β̃ − β∗)Ic‖1︸ ︷︷ ︸
I

‖(β̃ − β∗)Ic‖∞︸ ︷︷ ︸
II

)1/2.(E.2)

We bound I and II respectively . For I, since Ic ⊆ Ec, we apply Lemma F.1
and obtain

‖(β̃ − β∗)Ic‖1 ≤ ‖(β̃ − β∗)Ec‖1 ≤ 5‖(β̃ − β∗)E‖1.(E.3)

For II, note that I = E ∪ J and using the definition of J , we obtain

‖(β̃ − β∗)Ic‖∞ ≤ ‖(β̃ − β∗)Ec‖1/m ≤
5

m
‖(β̃ − β∗)E‖1.(E.4)

Plugging (E.3) and (E.4) into (E.2) results

‖(β̃ − β∗)Ic‖2 ≤ 5

√
1

m
‖(β̃ − β∗)E‖1 ≤ 5

√
k

m
‖(β̃ − β∗)I‖2.

Using triangle inequality along with the result above yields

‖β̃ − β∗‖2 ≤ ‖(β̃ − β∗)I‖2 + ‖(β̃ − β∗)Ic‖2 ≤ (1 + c0

√
k/m)‖(β̃ − β∗)I‖2.

Since β̃∗ − β∗ = t(β̃ − β∗), we have

‖β̃∗ − β∗‖2 = t‖β̃ − β∗‖2 ≤ (1 + 5
√
k/m)‖(β̃∗ − β∗)I‖2.(E.5)

Thus to bound ‖β̃∗ − β∗‖2, it suffices to bound ‖(β̃∗ − β∗)I‖2.

Bounding ‖(β̃∗ − β∗)I‖2 by Ds
L(β̃,β∗):

For notational simplicity, we write u = β̃∗ −β∗ sometimes. Let u =
(u1, u2, . . . , up)

T . Without loss of generality, we assume the first k elements
of β∗ contains the true support S. When j > k, uj is arranged such that
|uk+1| ≥ |uk+2| · · · ≥ |up|. Let J0 = E = {1, . . . , k}, and Ji = {k+(i−1)m+
1, . . . , k+im}, for i= 1, 2, . . . , with the size of last block smaller or equal
than m. In this manner, we have J1 = J and I = J0 ∪ J1. Moreover, we



22 FAN ET AL.

have ‖uJi‖2 ≤ ‖uJi‖∞
√
m ≤ ‖uJi−1‖1/

√
m when i > 1, which implies that∑

i>1 ‖uJi‖2 ≤ ‖uEc‖1/
√
m. Now if

1− 2π(|I|,m)m−1/2 ‖uEc‖1
‖uI‖2

≥ 0,(E.6)

separating the support of u into I, Ic and using uT
Ic∇2L(β)uIc≥0, we obtain

uT∇2L(β)u ≥ uT
I ∇2L(β)uI + 2

∑

i>1

uT
I ∇2L(β)uJi

≥ uT
I ∇2L(β)uI

(
1−2π(|I|,m)

∑

i>1

‖uJi‖2
‖uI‖2

)

≥ ρ−(|I|)
(

1−2π(|I|,m)

√
1

m

‖uEc‖1
‖uI‖2

)
‖uI‖22,

where we use the definition of π(|I|,m) and ρ−(|I|) in the last two inequali-
ties. Notice that ‖(β̃−β∗)E‖1 ≤

√
k‖(β̃−β∗)E‖2 and applying Lemma F.1,

we obtain

‖(β̃∗−β∗)Ec‖1 = t‖(β̃−β∗)Ec‖1≤5× t‖(β̃−β∗)E‖1≤5
√
k × ‖(β̃∗−β∗)E‖2.

Further note that E ⊆ I, we obtain

1− 2π(k +m,m)

√
1

m

‖(β̃∗ − β∗)Ec‖1
‖(β̃∗ − β∗)I‖2

≥ 1− 10π(k +m,m)×
√
k

m
.

Using π(k + m,m) ≤ 2−1
(
ρ+(m)

/
ρ−(k + 2m) − 1

)1/2
and Assumption 4.1

with c = 100 results

1− 2π(k +m,m)m−1 ‖(β̃∗ − β∗)Ec‖1
‖(β̃∗ − β∗)I‖2

≥ 1− 5

√
k

m

√
ρ+(m)

ρ−(k + 2m)
− 1 ≥ 1/2

Therefore for any β ∈ B2(r,β∗), we have that (β̃∗ − β∗)T
[
∇2L(β)

]
(β̃∗ −

β∗) ≥ 1/2ρ−(k+m)‖(β̃∗−β∗)I‖22. By the Mean Value theorem, there exists
a γ ∈ [0, 1] such that

〈
∇L(β̃∗)−∇L(β∗), β̃∗−β∗

〉
=(β̃∗−β∗)T

[
∇2L(γβ∗+(1−γ)β̃∗)

]
(β̃∗−β∗)

≥2−1ρ−(k +m)‖(β̃∗ − β∗)I‖22.

We further bound the left hand side Ds
L(β̃∗,β∗) in the following.
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Bounding Ds
L(β̃∗,β∗):

Define u = ∇L(β̃) + λ� ξ, where ξ ∈ ∂‖β̃‖1. Then by Lemma F.2 and the
definition of Ds

L(β̃,β∗), we obtain

Ds
L(β̃∗,β∗) ≤ tDs

L(β̃,β∗) = t〈∇L(β̃)−∇L(β∗), β̃ − β∗〉(E.7)

Adding and subtracting the term t〈λ� ξ, β̃ − β∗〉, we have

t〈∇L(β̃)−∇L(β∗), β̃ − β∗〉 = t〈∇L(β̃) + λ� ξ, β̃ − β∗〉
− t〈∇L(β∗), β̃ − β∗〉 − t〈λ� ξ, β̃ − β∗〉.

Using a similar argument in the proof of Lemma B.7, we obtain

Ds
L(β̃∗,β∗) ≤

(
‖λS‖2 + ‖∇L(β∗)E‖2 + ε

√
|E|
)
‖(β̃∗ − β∗)I‖2.

Bounding ‖β̃∗ − β∗‖2 and ‖β̃ − β∗‖2:
Combing the upper and lower bound for Ds

L(β̃∗,β∗), we have

‖(β̃∗ − β∗)I‖2 ≤
2

ρ−(k +m, r)

(
‖λS‖2 + ‖∇L(β∗)E‖2 + ε

√
|E|
)
.

Plugging the above bound into (E.5) yields

‖β̃∗ − β∗‖2 ≤
2
(
1 + 5

√
k/m

)

ρ−(k +m, r)
(‖λS‖2 + ‖∇L(β∗)E‖2 +

√
kε) < r.

If t 6= 1, by the construction of β̃∗, we must have ‖β̃∗ − β∗‖2 = r, which
contradicts our the above inequality. Thus tmust be 1, which implies β̃∗ = β̃.
This completes the proof.

E.2. Computational Theory. In this section, we prove technical lem-
mas used in Appendix C.

E.2.1. Contraction Stage. We start with a lemma that characterizes the
locality of the solution sequence. It also provides the lower and upper bounds
of φc, which will be exploited in our final localized iteration complexity
analysis.

Lemma E.3. Under Assumption 4.3 and the same conditions of Theorem
4.2, we have

‖β(1,k) − β∗‖2 ≤ R/2 and φ0 ≤ φc ≤ γuρc.
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The next two lemmas are critical for the analysis of computational com-
plexity in the contraction stage.

Lemma E.4. Recall that F (β,λ) = L(β) + ‖λ� β‖1. We have

F (β;λ(0))−F (β(1,k);λ(0))≥2−1φc‖β(1,k)−β(1,k−1)‖22
−φc〈β−β(1,k−1),β(1,k)−β(1,k−1)〉.

Our next lemma describes the relationship between suboptimality mea-
sure ωλ(β(1,k)) and ‖β(1,k) − β(1,k−1)‖, which is critical to establish the
iteration complexity of the contraction stage.

Lemma E.5. ωλ(β(1,k)) ≤ (φc + ρc)‖β(1,k) − β(1,k−1)‖2.

Proof of Lemma E.3. We first prove the second statement. If we as-
sume for ∀ k ≥ 1, it holds that

‖β(k−1) − β∗‖2 ≤ R/2.(E.8)

Then for any β such that ‖β − β∗‖2 ≤ R/2, we have ‖β(k−1) − β‖2 ≤
‖β(k−1)−β∗‖2 + ‖β∗−β‖2 ≤ R, by triangle inequality. Let v = β−β(k−1).
Using taylor expansion, we have

∇L(β) = ∇L(β(k−1)) + 〈∇L(β(k−1)),v〉

+

∫ 1

0
〈∇L(β(k−1) + tv)−∇L(β(k−1)),v〉dt.

Applying Cauchy-Schwartz inequality and using Assumption 4.3, we obtain

∇L(β) ≤ ∇L(β(k−1))+〈∇L(β(k−1)),v〉+
∫ 1

0
ρct‖v‖22dt

≤ ∇L(β(k−1)) +
〈
∇L(β(k−1)),β − β(k−1)

〉
+
ρc
2
‖β − β(k−1)‖22.

The iterative LAMM algorithm implies that φ0 ≤ φc ≤ (1+γu)ρc. Otherwise,
if φc > (1 + γu)ρc > ρc, then φ′c ≡ φc/γu = γ−1

u (1 + γu)ρc is the quadratic
parameter in the previous LAMM iteration. Let Ψ′(β;β(1,k−1)) t be the cor-
responding local quadratic approximation. Then for any β ∈ B2(R/2,β∗),
it holds that

Ψ′(β;β(1,k−1))=L(β(1,k−1))+〈∇L(β(1,k−1)),β − β(1,k−1)〉

+
φ′c
2
‖β−β(1,k−1)‖+‖λ(0)�β‖1 ≥ F (β,λ(0)).
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However by the stopping rule of the I-LAMM algorithm, we must have
Ψ′(β;β(1,k−1)) < F (β,λ(0)). This contradiction shows that φc ≤ (1 + γu)ρc,
and φ0 < φc can be ensured by taking φ0 small enough.

Therefore, it remains to show (E.8) holds by induction. For k = 1, it
obviously holds. Now suppose that ‖β(k−1) − β∗‖2 ≤ R/2. Taking β = β̂ in
Lemma E.4, we obtain

0 ≥ F (β̂,λ)− F (β(j−1),λ) ≥ φc
2

{
‖β̂ − β(j−1)‖22 − ‖β̂ − β(0)‖22

}
,

which implies

‖β(j) − β̂‖2 ≤ ‖β(j−1) − β̂‖2.(E.9)

Taking j = 1, . . . , k, repeating (E.9) yields that

‖β(k) − β̂‖2 ≤ ‖β(k−1) − β̂‖2 ≤ . . . ≤ ‖β(0) − β̂‖2 ≤ ‖β(0) − β̂‖2.

Therefore, applying Lemma 5.1, we obtain

‖β(k) − β∗‖2≤‖β(0) − β∗‖2 + 2‖β̂ − β∗‖2≤‖β(0) − β∗‖2 + 18ρ∗λ
√
s≤R/2.

This completes the induction step and thus finishes the proof.

We now give the proofs of Lemma E.4 and E.5.

Proof of Lemma E.4. We omit the subscript in Ψλ(`−1),φc
(β,β(`,k)),

the super-script ` in (`, k) and denote β(`,k) as β(k), where `=1. Lemma E.3
makes us able to use the localized Lipschitz condition. First, we have

F (β,λ(0))− F (β(k),λ(0)) ≥ F (β,λ(0))−Ψ(β(k),β(k−1)).(E.10)

The convexity of both L(β) and ‖λ� β‖1 implies

L(β) ≥ L(β(k−1)) +
〈
∇L(β(k−1)),β − β(k−1)

〉
;(E.11)

‖λ(0) � β‖1 ≥ ‖λ(0) � β(k)‖1 +
〈
λ(0) � ξ(k),β − β(k)

〉
.(E.12)

Adding (E.11) and (E.12) together, we obtain

F (β,λ(0))≥L(β(k−1))+
〈
∇L(β(k−1)),β−β(k−1)

〉
(E.13)

+‖λ(0)�β(k)‖1+〈λ(0)�ξ(k),β−β(k)〉.
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On the other side, Ψ(β(k),β(k−1)) can be written as

L(β(k−1))+
〈
∇L(β(k−1)),β(k)−β(k−1)

〉
(E.14)

+
φc
2
‖β(k)−β(k−1)‖22+‖λ(0)�β(k)‖1.

Plugging (E.13) and (E.14) back into (E.10), we obtain

F (β,λ(0))−F (β(k),λ(0))=−φc
2
‖β(k)−β(k−1)‖22(E.15)

+〈∇L(β(k−1))+λ(0) � ξ(k),β−β(k)〉.

By the first order optimality condition, there exists some ξ(k) such that

∇L(β(k−1)) + φc(β
(k) − β(k−1)) + λ(0) � ξ(k) = 0.

Plugging the equality above to (E.15), we complete the proof.

Lemma E.5 bounds the suboptimality measure ωλ(β(1,k)) by ‖β(1,k)−β(1,k−1)‖2,
which is critical to establish the iteration complexity of the contraction stage.

Proof of Lemma E.5. We omit the super script 1 in β(1,k) for simplic-
ity. Since β(k) is the exact solution to the kth iteration at ` = 1, the first
order optimality condition holds: there exists a ξ(k) ∈ ∂‖β(k)‖1 such that

∇L(β(k−1)) + φc(β
(k) − β(k−1)) + λ� ξ(k) = 0.

Then for any u such that ‖u‖1 = 1, we have

〈∇L(β(k))+λ� ξ(k),u〉=
〈
∇L(β(k)),u〉−〈∇L(β(k−1))+φc(β

(k)−β(k−1)),u
〉

=
〈
∇L(β(k))−∇L(β(k−1)),u

〉
−
〈
φc(β

(k)−β(k−1)),u〉
≤‖∇L(β(k))−∇L(β(k−1))‖∞+φc‖β(k)−β(k−1)‖∞
≤(φc+ρc)‖β(k)−β(k−1)‖2,

where the last inequality is due the the localized Lipchitz continuity, since
‖β(k) − β∗‖2 ≤ R/2, ∀ k ≥ 1 by Lemma E.3 in the supplement. The proof
is completed by taking sup over ‖u‖1 ≤ 1 in the inequality above.

We then prove a technical lemma that is critical for the proof of Lemma
5.4.
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Lemma E.6 (Basic Inequality). Suppose the same conditions of Theorem
4.2 hold. Let C = 225/(2ρ∗) and β̃(1) be the ε-optimal solution. Then we
have the following basic inequality

〈
∇L(β̃(1))−∇L(β∗), β̃(1) − β∗

〉
≤ Cλ2s.

Proof. We omit the superscript in β̃(1), and write β̃(1) as β̃ for simplic-
ity. Proposition 4.1 implies that

‖β̃ − β∗‖22 ≤
12

ρ∗

(
‖λ(0)

S ‖2 + ‖∇L(β∗)S‖2 + ε
√
|S|
)
≤ 15λ

√
s/ρ∗.(E.16)

On the other side, applying Lemma F.1 yields that

‖β̃ − β∗‖1 ≤ ‖(β̃ − β∗)Ec1‖1 + ‖(β̃ − β∗)E1‖1 ≤ 6‖(β̃ − β∗)E1‖1,

where E1 can be taken as S. This, combined with (E.16), results

‖(β̃ − β)S‖1 ≤
√
s‖β̃ − β‖2 ≤ 15λs/ρ∗.(E.17)

Therefore, we obtain ‖β̃ − β∗‖1 ≤ 6‖(β̃ − β∗)S‖1 ≤ 90λs/ρ∗. Because β̃ is
a ε-optimal solution, we have

〈
∇L(β̃)−∇L(β∗), β̃−β∗

〉
≤‖∇L(β̃)+λ� ξ̃−λ� ξ̃−∇L(β∗)‖∞‖β̃−β∗‖1
≤
(
1 + 1/4

)
λ‖β̃ − β‖1 ≤ 225λs2/(2ρ∗).

Therefore, the proof is completed.

E.2.2. Tightening Stage. We collect technical lemmas that are needed
to prove Lemma 5.5 and Proposition 4.6 in this section. We start by giving
a lemma that ensures the sparsity along the approximate solution sequence
{β(`,k)}∞k=0 for the tightening stage (` ≥ 2). We first need several technical
lemmas. We remind the reader that the quadratic isotropic parameter in the
tightening stage is denoted by φt.

Lemma E.7. Suppose the same conditions in Theorem 4.2 hold. Assume

β(k+1),β(k) ∈ B2(r,β∗) such that max{‖β(k+1)
Sc ‖0, ‖β(k)

Sc ‖0} ≤ s̃. For the
LAMM algorithm, we have

ρ−(2s+ 2s̃, r) ≤ φt ≤ γuρ+(2s+ 2s̃, r).

Proof. The proof follows a similar argument as that of Lemma E.3 and
thus is omitted here for simplicity.
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The next two lemmas connects the suboptimality measure ωλ(β(`,k)) to `2
parameter bound and the objective functions. They are similar to the ones
proved in the contraction stage but with different constants and we omit the
proofs here.

Lemma E.8. If β(k−1),β(k) ∈ B2(r/2,β∗), ‖(β(`,k))Sc‖0 ≤ s̃ and ‖(β(`,k−1))Sc‖0 ≤
s̃, then for any ` ≥ 2 and k ≥ 1, we have

ωλ(β(`,k)) ≤ (1 + γu)ρ+(2s+ 2s̃, r)‖β(`,k) − β(`,k−1)‖2.

Lemma E.9. We have

F(β(`,k),λ(`−1))− F (β(`,k−1),λ(`−1)) ≤ −φt
2
‖β(`,k) − β(`,k−1)‖2.

Next we give a lemma that characterizes the parameter estimation and
objective function bound for sparse approximate solutions.

Lemma E.10. Assume Assumption 4.1 holds. Let ‖λEc‖min ≥ λ/2, S ⊂ E
and |E| ≤ 2s. If ‖(β − β∗)Sc‖0 ≤ s̃, ωλ(β) ≤ ε and β ∈ B2(r,β∗), then we
must have

‖β − β∗‖2 ≤ 3ρ−1
∗ λ
√
s/2,

F (β,λ)− Fλ(β∗,λ) ≤ 15ερ−1
∗ λs.

Proof of Lemma E.10. For simplicity, we omit arguments k, r in ρ−(k, r)
and ρ+(k, r) when k and r are clear from the context. Since the sparse lo-
calized condition implies the localized sparse strong convexity, the following
inequality follows from Proposition B.3:

〈
∇L(β)−∇L(β∗),β − β∗

〉
≥ ρ−‖β − β∗‖22.

Following a similar argument in the proof of Lemma B.7, we have

‖β − β∗‖2 ≤
3λ
√
s

2ρ∗
.(E.18)

Next, we prove the desired bound for F (β,λ)−F (β∗,λ). Using the con-
vexity of F (·,λ), we obtain

F (β∗,λ) ≥ F (β,λ) +
〈
∇L(β) + λ� ξ,β∗ − β

〉
,

which yields that

F (β,λ)− F (β∗,λ) ≤ −
〈
∇L(β) + λ� ξ,β∗ − β

〉
≤ ε‖β∗ − β‖1.(E.19)
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On the other hand, we know from Lemma F.1 that the approximate solution
β falls in the `1 cone:

‖(β − β∗)Ec‖1 ≤ 5‖(β − β∗)E‖1,

which, together with (E.18), implies

‖β − β∗‖1 ≤ 6‖(β − β∗)E‖1 ≤ 6
√

2s‖(β − β∗)E‖2 ≤ 15ρ−1
∗ λs.(E.20)

Plugging (E.20) into (E.19) completes the proof.

Lemma E.11 (Basic Inequality II). Assume Assumption 4.1 holds. Take E
such that S ⊆ E and |E| ≤ 2s. Let λ≥4(‖∇L(β∗)‖∞+ε) and ‖λEc‖min≥λ/2.
If ‖βEc‖0 ≤ s̃, β ∈ B2(r,β∗) and F (β,λ)− F (β∗,λ) ≤ Cλ2s, then

ρ−(s+ s̃, r)

2
‖β − β∗‖22 +

λ

4
‖(β − β∗)Ec‖1 ≤

5λ

4
‖(β − β∗)E‖1 + Cλ2s.

Proof. Since ‖βSc‖0 ≤ s̃ and ‖β∗Sc‖0 = 0, we have ‖(β − β∗)Sc‖0 ≤ s̃.
Proposition B.3 implies the localized sparse strong convexity:

L(β∗) +
〈
∇L(β∗),β − β∗

〉
+
ρ−
2
‖β − β∗‖22 ≤ L(β).(E.21)

Recall that F (β) = L(β) + ‖λ � β‖1. We have F (β) − F (β∗) ≤ Cλ2s, or
equivalently,

L(β)− L(β∗) + (‖λ� β‖1 − ‖λ� β∗‖1) ≤ Cλ2s.(E.22)

Plugging (E.21) into the left-hand side of (E.22), we immediately obtain

ρ−
2
‖β−β∗‖22≤Cλ2s−

〈
∇L(β∗),β−β∗

〉
︸ ︷︷ ︸

I

+(‖λ� β∗‖1−‖λ� β‖1)︸ ︷︷ ︸
II

.

Following a similar argument in the proof of Lemma B.7 in the appendix,
we have

I ≤ ‖(β − β∗)Ec‖1‖∇L(β∗)‖∞ + ‖(β − β∗)E‖1‖∇L(β∗)‖∞,
II ≤ λ‖(β − β∗)E‖1 − λ/2‖(β − β∗)Ec‖1.

Therefore, we have

ρ−
2
‖β − β∗‖22 + (λ/2− ‖∇L(β∗)‖∞)‖(β − β∗)Ec‖1
≤ (λ+ ‖∇L(β∗)‖∞)‖(β − β∗)E‖1 + Cλ2s.

The proof is finished by noticing that ‖∇L(β∗)‖∞ ≤ λ/4.
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Lemma E.12. Assume Assumption 4.1 holds. Take E such that S ⊆ E and
|E| ≤ 2s. Let ‖∇L(β∗)‖∞ + ε ≤ λ/4 and ‖λEc‖min ≥ λ/2. If β ∈ B2(r,β∗)
satisfies ‖βSc‖0 ≤ s̃ and F (β,λ)− F (β∗,λ) ≤ Cλ2s, then we must have

‖β − β∗‖2 ≤ C ′λ
√
s,

〈
∇L(β)−∇L(β∗),β − β∗

〉
≤ C ′2ρ+(2s+ s̃, r)λ2s,

where C ′ = max{2
√
C/ρ−(2s+s̃, r), 5

√
2/ρ−(2s+s̃, r)}.

Proof. We omit the arguments in ρ−(k, r) and ρ+(k, r) when they are
clear form the context. Directly applying Lemma E.11, it follows that

ρ−
2
‖β − β∗‖22 ≤

5λ

4
‖(β − β∗)E‖1 + Cλ2s.

To further bound the right-hand side of the inequality above, we discuss two
cases regarding the magnitude of ‖(β − β∗)E‖1 with respect to λs:

• If 5λ‖(β − β∗)E‖1/4 ≤ Cλ2s, we have

ρ−
2
‖β − β∗‖22 ≤ 2Cλ2s, and thus ‖β − β∗‖2 ≤ 2

√
C

ρ−
λ
√
s.(E.23)

• If 5λ‖(β − β∗)E‖1/4 > Cλ2s, we have

ρ−
2
‖β − β∗‖22 ≤ 5λ‖(β − β∗)E‖1/2 ≤ 5λ

√
2s‖β − β∗‖2/2,

which further yields

‖β − β∗‖2 ≤
5
√

2

ρ−
λ
√
s.(E.24)

Combining (E.23) and (E.24), we obtain

‖β − β∗‖22 ≤ max

{
2

√
C

ρ−
,
5
√

2

ρ−

}
λ
√
s = C ′λ

√
s,

where C ′ = max{2
√
C/ρ−, 5

√
2/ρ−}. Using Proposition B.3, we obtain

Ds
L(β,β∗) =

〈
L(β)− L(β∗),β − β∗

〉
≤ ρ+‖β − β∗‖22 ≤ C ′2ρ+λ

2s.

This completes the proof.
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Lemma E.13. Assume Assumption 4.1 holds. Take E such that S ⊆ E
with |E| ≤ 2s. Let Let ‖∇L(β∗)‖∞ + ε ≤ λ/4 and ‖λEc‖min ≥ λ/2. Let
β ∈ B2(r,β∗) satisfy ‖βEc‖0 ≤ s̃ and F (β,λ) − F (β∗,λ) ≤ Cλ2s. Let
C0 = 80γuρ

∗/ρ∗max
{√

2Cρ∗, 5
}

+ 64(ρ∗/ρ∗)2 max
{

4Cρ∗, 50
}

. If s̃ ≥ C0s,
then the one-step LAMM algorithm produces a (2s + s̃)-sparse solution:
‖(Tλ,φt(β))Ec‖0 ≤ s̃.

Proof. For simplicity, we write β̄ = β − φt
−1∇L(β). To show that

‖
(
S(β̄, φt

−1λ)
)
Ec‖0 ≤ s̃, it suffices to prove that, for any j ∈ Ec, the total

number of βj ’s such that β̄j>λj/φt is no more than s̃. We first write β̄ as

β̄ = β − 1

φt
∇L(β) = β − 1

φt
∇L(β∗) +

1

φt
∇L(β∗)− 1

φt
∇L(β).

Define Sn = {j ∈ Ec : (β − φt−1∇L(β))j = λj/φt}, and notice that {j :
(Tλ,φt(β))j 6= 0} ⊆ Sn, thus it suffices to show |Sn| ≤ s̃. We further define
S1
n, S2

n and S3
n as:

S1
n ≡

{
j ∈ Ec : |βj | ≥

1

4
· λj
φt

}
,(E.25)

S2
n ≡

{
j ∈ Ec : |∇L(β∗)j/φt| >

1

2
· λj
φt

}
,(E.26)

S3
n ≡

{
j ∈ Ec :

∣∣∣
(∇L(β)−∇L(β∗)

φt

)
j

∣∣∣ > 1

4
· λj
φt

}
.(E.27)

We immediately have Sn ⊆ S1
n ∪ S2

n ∪ S3
n. It suffices to prove that |S1

n| +
|S2
n| + |S3

n| ≤ s̃. The assumption that ‖∇L(β∗)‖∞+ε≤λ/4 implies S2
n = ∅

and thus |S2
n| = 0. In what follows, we bound |S1

n| and |S3
n|, respectively.

Bound for |S1
n|:

For ∀j ∈ Ec, we have β◦j = 0. Using Markov inequality, we obtain

|S1
n| =

∣∣∣
{
j ∈ Ec : |βj | ≥

1

4
· λj
φt

}∣∣∣ ≤
∑

j∈Ec

4φt
λj
|βj − β∗j |.

Because ‖λEc‖min ≥ λ/2, we have

|S1
n| ≤

∑

j∈Ec

8φt
λ
|βj − β◦j | ≤

8φt
λ
‖(β − β∗)Ec‖1.

It remains to bound ‖(β − β∗)Ec‖1. A similar argument in Lemma E.11
implies

1

4
‖(β − β∗)Ec‖1 ≤

5λ

4
‖(β − β∗)E‖1 + Cλ2s.
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Therefore, β − β∗ falls in the approximate `1 cone:

‖(β − β∗)Ec‖1 ≤ 5λ‖(β − β∗)E‖1 + 4Cλs ≤ 5
√

2C ′λs+ 4Cλs,

where C ′ = max{2
√
C/ρ−, 5

√
2/ρ−} and the last inequality is due to Lemma

E.12. Let C ′′ = max{10
√

2C/ρ−, 50/ρ−}+ 4C, then we have

|S1
n| ≤ 8φtC

′′s ≤ 8C ′′γuρ+s,

where we use the fact φt ≤ γuρ+ in the last inequality.

Bound for |S3
n|:

Consider an arbitrary subset S′ ⊆ S3
n with size s′ = |S′| ≤ s̃. Let us further

consider a d-dimensional sign vector u such that ‖u‖∞ = 1 and ‖u‖0 = s′.
There exists some u such that

1

8
λs′ ≤

∑

j∈Ec

1

4
λj |uj | ≤ uT

{
∇L(β)−∇L(β∗)

}
.

By the Mean Value theorem, there exists some γ ∈ [0, 1] such that ∇L(β)−
∇L(β∗) =

[
∇2L

(
γβ+(1−γ)β∗

)]
(β−β∗). Let H ≡

[
∇2L(γβ+(1−γ)β∗)

]
.

Writing uT (∇L(β) − ∇L(β∗)) as 〈H1/2u,H1/2(β − β∗)〉 and applying the
Hölder inequality, we obtain

λs′/8≤‖H1/2u‖2‖H1/2(β−β∗)‖2≤
√
ρ+(s′, r)s′ ‖H1/2(β−β∗)‖2︸ ︷︷ ︸

I

.(E.28)

To bound term I, we apply Lemma E.12 and obtain that

I = ‖H1/2(β − β∗)‖2 ≤ C ′
√
ρ+(2s+ s̃, r)λ

√
s,

where C ′ = max{2
√
C/ρ−, 5

√
2/ρ−}. Plugging the above inequality into

(E.28), we obtain

λs′/8 ≤
√
ρ+(s′, r)

√
s′ × C ′

√
ρ+(2s+ 2̃, r)λ

√
s.

Taking squares of both sides yields

s′ ≤ 64ρ+(s′, r)C ′2ρ+(2s+ s̃, r)s ≤ 64ρ+(s̃, r)C ′2ρ+(2s+ s̃, r)s < s̃

where the last inequality is due to the assumption. Since s′ = |S′| achieves
the maximum possible value such that s′ ≤ s̃ for any subset S′ of S3

n and
the above inequality shows that s′ < s̃, we must have

S′ =
{
j : |(∇L(β)−∇L(β∗))j | ≥ λj/4

}
.
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Finally, combining bounds for |S1
n|, |S2

n| and |S3
n|, we obtain

‖(Tλ,φt(β))Ec‖0 ≤ 8C ′′γuρ+s+ 64ρ+(s̃, r)C ′2ρ+(2s+ s̃, r)s ≤ s̃.

Lemma E.14. Assume the same conditions in Theorem 4.7 hold. The so-
lution sequence {β(`,k)}∞k=0 always satisfies that

F (β(`,k),λ(`−1))− F (β∗,λ(`−1)) ≤ Cλ2s,

‖(β(`,k))Ec` ‖0 ≤ s̃, and ‖β(`,k) − β∗‖2 ≤ C ′λ
√
s.

for ` ≥ 2, k ≥ 0, where C = 15/(4ρ∗) and C ′ = 5
√

2/ρ∗.

Proof. We omit the argument λ in F (β,λ), for notation simplicity. We
prove the theorem by mathematical induction on (`, k).

Base case: For the `th tightening step, the stopping criterion implies that
ωλ(`−2)(β(`,0)) ≤ εt. On the other hand, the suboptimality condition for the
1st iteration in the `th step can be written as

ωλ(`−1)(β(`,0)) = min
ξ∈∂‖β(`,0)‖1

{
‖∇L(β(`,0)) + λ(`−1) � ξ‖∞

}

which, together with the triangle inequality, yields

ωλ(`−1)(β(`,0))≤min
ξ

{
‖∇L(β(`,0))+λ(`−2)�ξ‖∞+‖(λ(`−1)−λ(`−2))�ξ‖∞︸ ︷︷ ︸

I

}
.

For the second term I in the right hand side, we have

‖(λ(`−1) − λ(`−2))� ξ‖∞ ≤ ‖λ(`−1) − λ(`−2)‖∞ ≤ λ/8.

Using the fact that ε ≤ λ/8, we obtain

ωλ(`−1)(β(`,0)) ≤ min
ξ

{
‖∇L(β(`,0))+λ(`−2) � ξ‖∞+λ/8

}
≤ λ/4,

Thus the initialization satisfies that

‖(β(`,0))Ec` ‖0 ≤ s̃, ωλ(`−1)(β(`,0)) ≤ λ/4, and φt ≤ γuρ+(2s+ 2s̃, r).

Therefore, using Lemma E.10, we obtain

F (β(`,0))− F (β∗) ≤ Cλ2s, where C = 15/(4ρ∗).
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Therefore, directly applying Lemma E.12 results

‖β(`,0) − β∗‖2 ≤ C ′λ
√
s,

where C ′ = 5
√

2ρ∗.

Induction step: Suppose that, at the (k−1)-th iteration of the LAMM
method in the `-th step, we have

‖(β(`,k−1))Ec` ‖0 ≤ s̃, φ ≤ γuρ+, and F (β(`,k−1))− F (β∗) ≤ Cλ2s.

Then according to Lemma E.13, we have that the solution to the LAMM
method at the kth iteration is (2s + s̃)-sparse: β(`,k) = Tλ(`−1),φt

(β(`,k−1))

satisfies ‖(β(`,k))Ec` ‖0 ≤ s̃. Thus Lemma E.9 implies

F (β(`,k)) ≤ F (β(`,k−1))− φt
2
‖β(`,k) − β(`,k−1)‖.

which implies that

F (β(`,k))− F (β∗) ≤ F (β(`,k−1))− F (β∗)− φt
2
‖β(`,k) − β(`,k−1)‖22 ≤ Cλ2s.

Therefore we have the induction holds at the kth iteration:

‖(β(`,k))Ec` ‖0 ≤ s̃, φt ≤ γuρ+(2s+ 2s̃), and F (β(`,k))− F (β∗) ≤ Cλ2s.

Using Lemma E.12, for C ′ defined as before, we obtain

‖β(`,k) − β∗‖2 ≤ C ′λ
√
s.

We complete induction on k. For `, the proof is similar.

APPENDIX F: PRELIMINARY LEMMAS

In this section, we collect several preliminary lemmas.

Lemma F.1 (`1 Cone Property For Approximate Solution). Let E such that
S ⊆ E . If ‖∇L(β∗)‖∞ + ε ≤ ‖λE‖min, we must have

‖(β̃ − β∗)Ec‖1 ≤
‖λ‖∞ + ‖∇L(β∗)‖∞ + ε

‖λE‖min − (‖∇L(β∗)‖∞ + ε)
‖(β̃ − β∗)E‖1.
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Proof of Lemma F.1. For any ξ ∈ ∂‖β̃‖1, let u = ∇L(β̃) + λ� ξ. By
the Mean Value theory, there exists a γ ∈ [0, 1], such that∇L(β̃)−∇L(β∗) =[
∇2L

(
γβ∗ + (1 − γ)β̃

)](
β̃ − β∗

)
. Write H = ∇2L

(
γβ∗ + (1 − γ)β̃

)
. Then

we have

〈
∇L(β̃)+λ� ξ, β̃−β∗

〉
=
〈
∇L(β∗)+H(β̃ − β∗), β̃−β∗

〉
(F.1)

≤‖u‖∞‖β̃−β‖1.

Using the fact (β̃ − β∗)TH(β̃ − β∗) ≥ 0, we have

0 ≤ ‖u‖∞‖β̃ − β∗‖1 −
〈
∇L(β∗), β̃ − β∗

〉
︸ ︷︷ ︸

I

−
〈
λ� ξ, β̃ − β∗

〉
︸ ︷︷ ︸

II

.

Using a similar argument in the proof of Lemma B.7, we have I ≥ −‖∇L(β∗)‖∞‖β̃−
β‖1, and

II =
〈
λ� ξ, β̃ − β∗

〉
=
〈
(λ� ξ)Ec , (β̃ − β∗)Ec

〉
+
〈
(λ� ξ)E , (β̃ − β∗)E

〉

≥ ‖λEc‖min‖(β̃ − β∗)Ec‖1 − ‖λE‖∞‖(β̃ − β∗)E‖1.

Plugging the above bounds into (F.1) and taking inf with respect to ξ ∈
∂‖β̃‖1 yields

0 ≤ −(‖λEc‖min − (‖∇L(β∗)‖∞ + ωλ(β̃)))‖(β̃ − β∗)Ec‖1
+ (‖λEc‖min + ‖∇L(β∗)‖∞ + ωλ(β̃))‖(β̃ − β∗)E‖1,

or equivalently

‖(β̃ − β∗)Ec‖1 ≤
λ+ ‖∇L(β∗)‖∞ + ωλ(β̃)

‖λEc‖min − (‖∇L(β∗)‖∞ + ωλ(β̃))
‖(β̃ − β∗)E‖1

Using the stopping criterion, i.e. ωλ(β̃) ≤ ε, we have that

‖(β̃ − β∗)Ec‖1 ≤
λ+ ‖∇L(β∗)‖∞ + ε

‖λEc‖min − (‖∇L(β∗)‖∞ + ε)
‖(β̃ − β∗)E‖1

Therefore we proved the desired result.

Lemma F.2. Let DL(β1,β2) = L(β1) − L(β2) −
〈
L(β2),β1 − β2

〉
and

Ds
L(β1,β2) = DL(β1,β2) + DL(β2,β1). For β(t) = β∗ + t(β − β∗) with

t ∈ (0, 1], we have that

Ds
L(β(t),β∗) ≤ tDs

L(β,β∗).
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Proof of Lemma F.2. Let Q(t) = DL(β(t),β∗) = L(β(t)) − L(β∗) −〈
∇L(β∗),β(t) − β∗

〉
. Since the derivative of L(β(t)) with respect to t is

〈∇L(β(t)),β − β∗〉, it follows that

Q′(t) =
〈
∇L(β(t))−∇L(β∗),β − β∗

〉
.

Therefore, the symmetric Bregman divergence Ds
L(β(t)−β∗) can be written

as

Ds
L(β̃(t)− β∗) =

〈
∇L(β̃(t))−∇L(β∗), t(β − β∗)

〉
= tQ′(t) for 0 < t ≤ 1.

Plugging t = 1 in the equation above, we have Q′(1) = Ds
L(β,β∗) as a

special case. If we assume that Q(t) is convex, then Q′(t) is non-decreasing
and thus

Ds
L(β(t),β∗) = tQ′(t) ≤ tQ′(1) = tDs

L(β,β∗).

It remains to show the convexity ofQ(t) with respect to t; or equivalently, the
convexity of L

(
β(t)

)
and 〈∇L(β∗),β∗ − β(t)〉, respectively. First, we have

the fact that β(t) is linear in t, that is, β(α1t1 +α2t2) = α1β(t1) +α2β(t2),
for t1, t2 ∈ [0, 1] and α1, α2 ≥ 0 such that α1 + α2 = 1. Then the convexity
of L(β(t)) follows from this linearity property of β(t) and the convexity of
the Huber loss. For the second term, the convexity directly follows from the
bi-linearity of the inner product function. This finishes the proof.

The following lemma is taken from [2] and describes a general concentra-
tion for quadratic forms in sub-Gaussian random variables.

Lemma F.3. (Hanson-Wright Inequality, [2]).
Let v = (v1, . . . , vd) ∈ Rd be a random vector with independent components
vi such that vi ∼ sub-Gaussian(0, σ2). Let A be an n× n matrix. Then, for
every t ≥ 0,

P
(
|vTAv − EvTAv| > t

)
≤ 2 exp

(
− Ch min

{ t2

σ4‖A‖2F
,

t

σ2‖A‖2

})
,

where Ch is a universal constant, not depending on A,v and n.
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