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A semilinear in-slide model is introduced to remove the intensity
effect in the scanning process. It is demonstrated that the intensity
effect can be estimated accurately and removed effectively. This
normalization step is vital for Affymetrix arrays to reveal relevant
biological results when comparing gene expression in multiple
arrays. The normalized expression ratios are analyzed further by a
modified two-sample t test along with a sieved permutation
scheme for computing P values. The improved specificity and
sensitivity are demonstrated by using a study on the impact of
macrophage migration inhibitory factor (MIF) reduction in neuro-
blastoma cells. With semilinear in-slide model analysis, expression
of 166 genes was altered with a P value no greater than 0.001.
Among those genes, 44 were altered >2-fold. MIF-regulated genes
associated with tumor development including IL-8 and C-met,
which are overexpressed in many tumors, were down-regulated in
MIF-reduced cells. On the other hand, some tumor-suppressor
genes such as EPHB6, visinin-like protein 1 (VSNL-1), and BLU were
up-regulated in MIF-reduced cells. In addition, we demonstrated
that down-regulation of MIF expression could result in a reduction
in cell proliferation and tumor growth in vitro and in vivo. Our data
not only demonstrate that targeting MIF expression is a promising
therapeutic strategy in human neuroblastoma therapy but also
indicate the MIF target genes for additional study.

MIF � normalization � signficance analysis � SLIM

A ffymetrix GeneChip arrays (1, 2) have been widely used for
monitoring mRNA expression in many areas of biomedical

research. The high-density oligonucleotide array technology allows
researchers to monitor tens of thousands of genes in a single
hybridization experiment as they are expressed differently in tissues
and cells. The expression profile of an mRNA molecule of a gene
is obtained by the combined intensity information from probes in
a probe set, which consists of 11–20 probe pairs of oligonucleotides
of 25 bp in length, interrogating a different part of the sequence of
a gene. Several techniques have been proposed for extracting
expression profiles from the information at probe level. These
techniques include the detection signals that are prominently
featured in Affymetrix Micorarray Suite 5.0 (MAS 5.0) software, the
model-based expression index (3), and the robust multichip average
(4, 5). A comprehensive review and comparisons of various expres-
sion measures are given in refs. 6 and 7.

To account for the overall brightness of scanned images and
other experimental variations such as differences in sample prep-
aration and array production, normalization is needed for direct
array-to-array comparisons. Several methods (7–10) have been
proposed for normalizing data at probe level, and their impacts on
the analysis of gene expressions have been examined. However,
most researchers use detection signals from MAS 5.0 as starting
points of their investigation. Yet, as reported below, the techniques
for probe-level normalization are not effective at the detection-
signal level. Indubitably, there are strong demands for normaliza-
tion methods based on the output of detection signals. Indeed, we

are not aware of any methods for normalization of Affymetrix
arrays at the detection-signal level.

Proper normalization is critical for revealing relevant biological
results. Although the detection algorithm for MAS 5.0 was designed
carefully, systematic biases such as the intensity effect still exist, and
they should be removed before making multiple-array comparisons.
One aim of this article is to develop a normalization and analysis
system based on sound statistical principles. The observed detection
signals are decomposed into three components: the treatment
effect, intensity effect, and random noise. With very mild statistical
assumptions, the intensity effect can be estimated accurately and
removed effectively as long as there are replications in treatment
arrays. The normalized log ratios are then analyzed by a modified
two-sample t test. The P values are estimated by a permutation
technique that aims at reducing biases of the estimates and effective
use of data. The resulting comprehensive system will be called the
semilinear in-slide model (SLIM) system.

The sensitivity and specificity of the SLIM system are demon-
strated by our application to microarray analysis of neuroblastoma
cells with macrophage migration inhibitory factor (MIF) being
reduced. Three treatment and three control arrays were analyzed
by the SLIM. Among �200 genes that are identified significantly
differently expressed, 12 important ones are selected for additional
biological confirmation by using real-time quantitative RT-PCR,
Western blot analysis, and ELISA. All of them were biologically
confirmed. On the other hand, without normalization, two impor-
tant genes were missed, giving a missed-discovery rate of 17%. By
using the MAS 5.0 system, the missed-discovery rate was 29% (see
Discussion for additional details).

Neuroblastoma is a malignant tumor of neural crest origin that
may arise anywhere along the sympathetic ganglia or within the
adrenal medulla. Neuroblastoma is the most frequent solid ex-
tracranial neoplasia in children and is responsible for �15% of all
pediatric cancer deaths (11). Spontaneous regressions and differ-
entiation are common in infants and in early-stage tumors, whereas
neuroblastoma is extremely aggressive in older children with late-
stage tumors (12). MIF has begun to be recognized recently as a
protumorigenic factor (13) in addition to its effects on proinflam-
matory and immune responses. Although a growing body of data
have been gathered on the expression of MIF in several tumors, the
exact mechanism of its function is unknown. Our previous results
revealed that MIF was highly expressed in neuroblastoma and MIF
could stimulate oncogene N-myc expression and up-regulate the
expression of angiogenic factors (14). Furthermore, MIF is able to
regulate the expression of genes that are related to tumor cell
proliferation, migration, and antiapoptosis (15). These results sug-
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gested that MIF may play an important role in the development of
neuroblastoma.

The biological aim of this study was to investigate whether MIF
would be a target for limiting neuroblastoma development, that is,
whether reduction of MIF expression could control tumor prolif-
eration and tumorigenicity in neuroblastoma. A decrease in MIF
expression in neuroblastoma cells was observed after transfection
with MIF antisense expression vector. We demonstrated that
down-regulation of MIF expression could result in a reduction in
cell proliferation and tumor growth in vitro and in vivo. To better
understand the MIF molecular mechanism in neuroblastoma, we
used Affymetrix GeneChip to identify genes in MIF-reduced
neuroblastoma cells. As reported below, gene-expression profiling
analyzed by SLIM, validated at mRNA and protein levels for
selected gene products, provides a comprehensive view of molec-
ular changes in MIF-reduced tumor cells and reveals possible
underlying molecular unidentified pathogenesis.

Materials and Methods
Cells. Human neuroblastoma cell line SK-N-DZ was obtained from
the American Type Culture Collection. Cells were maintained in
DMEM supplemented with 10% FBS (GIBCO�BRL-Life Tech-
nologies, Grand Island, NY) and 1% penicillin-streptomycin in a
humidified incubator (95% air�5% CO2) at 37°C.

Construction of Expression Vectors and Transfection of Neuroblas-
toma Cells. An MIF antisense expression plasmid was constructed
by cloning human MIF cDNA that corresponds to nucleotides
98–445 (GenBank accession no. NM�002415) with HindIII and
XhoI adaptors in 3�–5� orientation into pCMV-containing expres-
sion vector pSecTag2�Hygro (Invitrogen). The pSec�antisense
MIF expression vector or pSec vector alone was transfected into
neuroblastoma cell line SK-N-DZ with Lipofectamine 2000 (In-
vitrogen), and stable clones were selected by resistance to hygro-
mycin (300 �g�ml; Geneticin-Life Technologies, Gaithersburg,
MD) and expanded into cell lines. Three clones (3, 5, and 24)
transfected with MIF antisense-expressing vectors were analyzed
for MIF expression by Western blot. All three clones showed low
levels of MIF expression (Fig. 1A). The cells transfected with vector
alone were used as a control.

RNA Isolation and Application. Total RNA was prepared from cell
culture with TRIzol reagent (Invitrogen) according to manufac-
turer directions. Probe synthesis and hybridization of Affymetrix
GeneChip HG-U133A 2.0 microarrays (Affymetrix, Santa Clara,
CA) were performed by following manufacturer instructions.
Gene-expression data (CHP file of MAS 5.0 software) were normal-
ized to a global target intensity of 500.

Preprocessing of Detection Signals. The detection signals of 22,283
probe sets were extracted from the Affymetrix MAS 5.0 software,
which resulted in three expression profiles, respectively, from the
control and treatment groups (three cell lines 3, 5, and 24). The
repeatability, assessed by the coefficient of variation, is low for
genes with small detection signals. Thus, only genes with all
detection signals �50 were considered, which filtered 37.3% of
genes, with 13,980 genes remaining for additional investigation. The
percentage is actually smaller than those called ‘‘absent’’ by the
Affymetrix MAS 5.0 software (somewhat �50%). The remaining
genes had much smaller coefficients of variations (better repeat-
ability). The repeatability in the control group is somewhat better
but is in the same bulk.

SLIM Normalization. Let xgi and ygi be the log-detection signal of the
gth probe set in the ith control and treatment array, respectively.
Denote by x�g the average of the log-detection signals over the
control arrays for the g probe set. Similar to that in ref. 16, we first
computed the log intensities and log ratios, respectively, as follows:

Agi � �ygi � x�g��2 and Mgi � ygi � x� g, [1]

for i � 1, . . . , n and g � 1, . . . , G. In our particular application, n �
3 and G � 13,980. Fig. 1A depicts the log ratios versus log intensities
for a treatment array, along with the lowess fit for the conditional
mean and conditional SD curves (17, 18) for the array.

The SLIM in ref. 15 and two-way semilinear model in refs. 19 and
20 were extended to remove the intensity effect. Let �g be the
treatment effect on gene g and fi(�) represent the array-dependent
intensity effect. The model

Mgi � �g � fi�Agi� � �gi, g � 1, . . . , G; i � 1, . . . , n

[2]

was used to assess the intensity effect fi(Agi) and treatment effect �g
on genes. Once the intensity effect is estimated, the normalized log
ratios are given by

mgi � Mgi � f̂i�Agi�, [3]

for an estimated intensity effect f̂i(�).
The parameters in SLIM can be estimated by the profile least-

squares method. Let Mi, �, and fi denote, respectively, the vector of
length G for the log ratios, treatment effect, and intensity effect. For
the given estimated treatment effect �̂, the intensity effect is
estimated by smoothing {Mgi � �̂g} on the intensities {Agi} sepa-
rately for each array, resulting in

f̂i � Si�Mi � �̂�, [4]

for a smoothing operator Si (see, e.g., ref. 21), whereas for given
estimated intensity effect functions f̂i,

�̂ � n�1 �
i�1

n

�Mi � f̂i�. [5]

Solving Eqs. 3 and 4 yields the explicit solution

�̂ � �IG � S� ��1 �
i�1

n

�IG � Si�Mi, [6]

and f̂i in Eq. 3, where IG is the G � G identity matrix and S� �
n�1¥i�1

n Si. Inverting the matrix in the order of tens of thousands is
not practically feasible, and the solution can be computed by the
G-Seidel or back-fitting algorithm (21, 22), which iteratively com-
putes Eqs. 3 and 4.

Fig. 1. Normalization of detection signals based on MAS 5.0. (A) Clone 3. Log
ratios were plotted against log intensities for a treatment array along with the
lowess fit for the conditional mean function (middle curves) and the condi-
tional SD function. (B) The conditional mean and SD functions for all three
treatment arrays are depicted for comparison. The bottom three curves are
the mean curves, and the top three curves are their associated SD curves.
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A Theoretical Analysis of SLIM. For the normalization purpose, the
number of nuisance parameters {�g} is large, consisting of 1�n
of the total sample size nG. Can the functions fj be estimated
accurately? In a different context and somewhat different model,
it was demonstrated (20, 22) that the rate of convergence for
estimating fi is G�2�5. Because G is large, the intensity functions
can be estimated accurately.

To appreciate the estimability of the intensity effect in Eq. 1,
consider the case that n � 2. Let zg � Mg1 � Mg2. Then,

zg � f1�Ag1� � f2�Ag2� � �*g, g � 1, . . . , G , [7]

where �*g � �g1 � �g2 is the new random noise. Eq. 6 is an additive
model (21), and its components f1 and f2 can be estimated as though
one of them were known (23–26). The cost for estimating param-
eters {�g} reflects in the increase of the variability of the noise {�*g}.
High correlation between the intensities of arrays {Ag1} and {Ag2},
however, reduces the accuracy of the estimated intensity effect.

To gain an idea of the degree of accuracy in the estimation of
the intensity effect, we simulated 10 data sets from the model in
Eq. 1, with true parameters and functions taken from those
estimated from our data. The new random noises in Eq. 1 were
generated from the normal distribution with a mean of 0 and SD
of 0.12. The mean absolute deviation error for the estimation of
the intensity effect is �0.0134 	 0.0003, which is negligible for
our application. See ref. 22 for more intensive simulation studies.

Analysis of Treatment Effect. After obtaining the normalized ratio
mgi, significant genes were obtained by testing the following
hypothesis separately:

H0:�g � 0 vs. H1:�g � 0. [8]

As to be demonstrated, it is reasonable to assume that the errors
in Eq. 1 are homoscedastic across arrays, because the intensity
Agi does not vary much across arrays. Indeed, we adapted the
weighted t statistic in ref. 15 to the current problem and did not
find significantly different results.

Let sx
2 and sy

2 represent the sample variance of {xgj} and {ygj},
which are of sample sizes n1 and n2, respectively. Regarding the
log intensities {xgj} and {ygj} as two random samples from two
populations with the same variance, a test statistic (15, 27) for
Eq. 7 is

tg � m� g��SEg � s0�, [9]

where m� g is the average of the normalized log ratios in Eq. 2, and
SEg � �̂g
1�n1 � 1�n2 with

�̂g
2 � �n1 � n2 � 2��1��n1 � 1�sx,g

2 � �n2 � 1�sy,g
2 . [10]

The constant s0 is used here to guard against the zero denom-
inator in Eq. 8. Note that m� g is the difference between averages
of treatment and control arrays with the intensity effect re-
moved.

The constant s0 plays two important roles in identifying
significant genes. First, it reduces the false-discovery rate (FDR)
(28, 29) by an appropriate choice of s0. Because tens of thousands
of genes are involved, there is a high chance that some of the SDs
�̂g will be extremely small, which leads to a large test statistic and
a possible falsely discovered gene. Second, a gene needs to satisfy
a minimum fold-change requirement to be identified as a
statistically significant gene. For example, if a gene is considered
significant when  tg � 3 , then the fold change  m� g � 3s0. Thus,
with the tuning constant s0, the P values and the fold changes are
both taken into consideration in one single statistic. In our
implementation, s0 � 0.07 was used.

Results
MIF Expression in Cells Transfected with MIF Antisense Expression
Vector. MIF expression in control (vector alone) and MIF
antisense expression vector-transfected cells (clones 3, 5, and 24)
was detected by Western blot analysis. The result showed that the
amount of MIF was substantially reduced in three clones with
MIF antisense vector-transfected cells compared to control cells
(empty vector transfection; Fig. 2A). The protein expression
levels of �-actin (used as internal control to confirm equivalent
protein loading) in control and MIF antisense vector-transfected
cells were nearly identical.

Tumor Growth in Nude Mice. The effect of suppressing MIF
expression on tumor growth was further investigated in athymic
nude mice. Six-week-old BALB�c nude mice were injected s.c.
with 2 � 106 SN-K-DZ cells transfected with vector alone (n �
10, control group) or MIF-reduced cells (i.e., clones 3, 5, and 24;
n � 10 for each clone). The mice were monitored for tumor
growth after 20 days of inoculation for 10 days. Tumor growth
in two groups was monitored everyday by two-dimensional
measurements of individual tumors from each mouse. Mice in
the treatment group showed an obvious reduction in tumor
growth compared to control mice (Fig. 2B).

Estimated Intensity Effect. Fig. 3A depicts the estimated intensity
effects for three treatment arrays that are contrasted with the
average of the control arrays. The intensity effect tends to be
smaller in the middle than at tails. When the algorithm con-
verges, the residuals {�̂gi} can be obtained. To examine the
degree of heteroscedasticity for the significant analysis of the
treatment effect, the squared partial residuals {�̂gi

2 } were
smoothed against the log intensity {Agi} for each treatment
array, which results in three SD curves (Fig. 3B).

Fig. 2. Effect of MIF suppression in vitro and in animal model. (A) Expression
of MIF in control and MIF-suppressed neuroblastoma cells assessed by Western
blot. (Upper) MIF has successfully been reduced compared with control.
(Lower) Confirmation of the equivalent protein loading by using the house-
keeping gene ‘‘�-actin’’ as internal control. (B) The average tumor growth
curves for the MIF-reduced and control groups. The black curve indicates the
control group (n � 10), and the three colored curves indicate the MIF-reduced
group (total sample size, n � 30).
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P Value and FDRs. The P value was computed by using the
permutation test (30, 31). To reduce possible biases in the
permutation, only genes with P values, computed under the t
distribution with degree of freedom m � n � 2, of �5% were
considered. This criterion filtered some genes that are likely
significant and left us with 13,897 genes. This step reduces the
biases in the permutation test. There are 10 possible permuta-
tions among three treatment and three control arrays, resulting
in 138,970 test statistics. By using these statistics as an estimate
of the null distribution of tg, the P values were obtained. We
called such a technique the sieved permutation. The basic
assumption in the approach is that the null distribution of tg is the
same for all insignificantly differently expressed genes, and
filtering those that might be significant reduces the bias of the
estimated null distribution. Another possible method for reduc-
ing the bias in permutation is the balanced permutation (15, 27),
in which half of the treatment arrays swap with half of the control
arrays in each permutation. In contrast with the balanced
permutation, the sieved permutation uses effectively more sam-
ple (permuting all permutations on the sieved genes) and can be
applicable to the case in which the number of treatment or
control arrays is odd. The technique can be combined with the
balanced permutation method to reduce further the biases in the

permutation test when the numbers of treatment and control
arrays are even and large.

Genes with P values no greater than 	 � 0.001 were selected
as statistically significant genes. The FDR among the selected
genes was estimated by p̂ � (G	)�N, where N is the number of
genes ‘‘discovered,’’ having P values no greater than 	, and G	
is the expected number of falsely discovered genes. For example,
at 	 � 0.001, 166 genes were discovered, and false discovery of
0.001 � 13,980 � 13.98 genes is expected, giving an FDR of
8.4%. This simple method is somewhat more conservative but is
almost equivalent to the Benjamini–Hochberg method (28) for
controlling FDR at the data-dependent level p̂. In other words,
if the Benjamini–Hochberg method is used with the FDR
controlled at p̂, the same set of genes will be selected frequently.
Our method provides an intuitive understanding to the Ben-
jamini–Hochberg method and also gives statistical justification
(28, 32) for our method.

To appreciate this connection, recall that to control FDR at
level p, the Benjamini–Hochberg selects

k � max� i :p �i� 
 ip�G [11]

genes with the k smallest P values, where p(1) 
 p(2) 
 … 
 p(G)
are the order statistic of the P values. Now, if we take p � p̂ �
G	�N, we would select

k � max� i :p �i� 
 i	�N � N [12]

genes with the smallest P values. If p(n�1) � 	(n � 1)�N, then k �
N; namely, we have selected the same set of genes as the
Benjamini–Hochberg method with FDR controlled at p̂. This
simple connection can also provide deeper understanding to the
probabilistic properties of the Benjamini–Hochberg method. For
example,

N � �
i�S0

I�pi 
 	� � �
i�S0

I�pi 
 	�, [13]

where S0 � {g : �g � 0} is the set of genes that do not express
differently under treatment. The probabilistic aspect N can be
understood easily. Assume ideally that there are G1 very differ-
ently expressed genes. Under very mild conditions, N � G	 �
G1, where G1 is the number of significantly differently expressed
genes. Hence, p̂ � G	�(G	 � G1). Hence, the smaller the 	, the
lower the FDR.

Table 1 summarizes the results by using the SLIM, the quantile
normalization in refs. 5 and 7, and no normalization.

Gene-Expression Profiling in MIF-Reduced Cells. Of a total of
�22,283 probe sets, we discovered 166 genes showing signifi-
cantly (P 
 0.001) changed expression in MIF-reduced cells
compared to control cells, 44 of which were altered �2-fold. The
genes that were found to be up- or down-regulated are shown in
Table 2.

Fig. 3. Effect of normalization of detection signals from MAS5.0 and
summary of treatment effects on gene expressions. (A) Estimated intensity
effects for three treatment arrays. They were removed from the log ratios
for significant analysis. (B) Estimated SD curves for the residuals in the
model in Eq. 1. They were used to judge whether weighted t statistics are
needed. (C) Summary of fold changes {�g} caused by the treatment. A
reduced range is used to get a better view of the histogram. (D) The average
log intensities for the treatment and control arrays along with genes
(magenta) being selected at a level of 	 � 0.001.

Table 1. Number of genes that are up- or down-regulated after MIF being inhibited

Methods

	 � 5% 	 � 1% 	 � 0.5% 	 � 0.1% 	 � 0.05%

Up Down FDR, % Up Down FDR, % Up Down FDR, % Up Down FDR, % Up Down FDR, %

SLIM 1452 1754 21.8 540 483 13.6 321 263 12.0 101 65 8.4 59 43 6.9
Q-norm 1037 1046 33.6 339 318 21.3 212 176 18.0 73 54 11.0 42 38 8.7
No-norm 944 1149 33.4 303 345 21.6 190 199 18.0 62 60 11.5 43 39 8.5
CommGene† 718 894 217 265 135 145 46 26 29 55
CommGene‡ 914 1017 290 300 182 170 62 51 38 37
CommGene§ 732 1006 219 298 137 170 45 50 29 37

Number of common genes (CommGene) selected by the following combinations: SLIM normalization and the quantile normalization (Q-norm) (†), quantile
normalization and no normalization (No-norm) (‡), and SLIM normalization and no normalization (§).
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Validation of a Subset of Differentially Expressed Genes. To examine
the reliability of the microarray data and identify molecules
important in the pathogenesis of MIF, 12 sequences (six up-
regulated and six down-regulated) were chosen from the lists of
up- or down-regulated genes for additional validation. These 12
genes were chosen on the basis of their association with tumor
growth, angiogenesis, and metastasis. Each gene or its protein
products were validated by real-time quantitative RT-PCR,
Western blot, or ELISA. All validation results for these 12 genes
on changes in gene expression or protein products are consistent
with Affymetrix microarray data. The most interesting genes
confirmed were c-met, visinin-like protein 1 (VSNL-1), EPHB6,
BLU, and interleukin 8 (IL-8).

Discussion
Comparison with Other Methods. The effectiveness of SLIM was
compared with no normalization and the quantile normalization
(although it was proposed for normalization at probe level). The
distributions for the differences between the log ratios after and
before normalizations are summarized in Fig. 4. It is clear that
the quantile normalization does not much alter the log ratios of
detection signals; they are approximately the same as those
without normalization. From Table 1, the quantile normalization
and no normalization result in higher FDRs. They also discov-
ered some different genes from those with normalization. For
example, among 12 confirmed ones, two important genes (BLU
and RAS) were accorded statistical significance if the SLIM
normalization was used, but not under the quantile normaliza-
tion or no normalization, which provides additional evidence to
support the SLIM-normalization method.

The pairwise comparisons were also conducted by using the
Affymetrix MAS 5.0 software. A total of nine possible pairwise
comparisons were conducted. Among 12 confirmed ones, three
important genes (VSNL-1, BLU, and C-met) were called ‘‘NC,’’
indicating no change consistently across all nine comparisons.

Among 9 � 12 � 108 comparisons, 29 were falsely called ‘‘NC,’’
which gives a missed-discovery rate of 27%. The lesson is very
clear: even with the most advanced Affymetrix microarrays to
date, normalization is required, and replications are needed for
the discovery of slightly and moderately differently expressed
genes. Replications are needed for both treatment and control
arrays to reduce sampling variability.

Biological Implications. C-met was identified as an activated
oncogene (33, 34). A large number of studies reveal that C-met
is frequently expressed in carcinomas, in other types of human
solid tumors, and in their metastases. Overexpression of C-met
is often associated with poor prognosis (35). Our unpublished
data showed that MIF expression significantly correlated with
C-met protein expression in human neuroblastoma specimens
(r � 0.635; P � 0.002; n � 32), which suggests that C-met and
MIF may be closely related. In the present study, C-met was
decreased in MIF-reduced cells, which strongly indicates that

Fig. 4. Histograms for the differences between the log ratios after and
before the SLIM normalization (A), the quantile normalization for the treat-
ment group (B), and the quantile normalization for the pooled sample (C). The
pooled sample consists of both treatment and control arrays. Reduced ranges
are used to get a better view of the histograms.

Table 2. Affymetrix analysis of genes regulated by antisense MIF transfection

Affymetrix
ID no.

GenBank
accession no. Description Fold change P value†

205943�at‡ NM�005651 Tryptophan 2,3-dioxygenase (TDO2) �3.15 	 0.16 0.0000
202859�at‡ NM�000584 IL-8 �13.22 	 0.40 0.0000
202023�at NM�004428 Ephrin-A1 (EFNA1) �2.66 	 0.15 0.0000
213624�at AA873600 Acid sphingomyelinase-like phosphodiesterase �2.38 	 0.14 0.0000
202644�at‡ NM�006290 Tumor necrosis factor, 	-induced protein 3 (TNFAIP3) �3.48 	 0.18 0.0000
211343�at‡ M33653 Type IV collagen (COL4A2) 4.27 	 0.28 0.0000
203797�at‡ AF039555 VSNL1 1.58 	 0.08 0.0007
204718�at‡ NM�004445 EphB6 2.64 	 0.22 0.0022
207196�at NM�006058 Nef-associated factor 1 (NAF1) �2.79 	 0.23 0.0036
205205�at‡ NM�006509 Reticuloendotheliosis viral oncogene homolog B �1.91 	 0.16 0.0043
215223�at W46388 Mitochondrial superoxide dismutase 2 �4.8 	 0.40 0.0094
205067�at NM�000576 IL-1 �3.92 	 0.35 0.0108
201438�at‡ NM�004369 Collagen type VI, 3 (COL6A3) 2.37 	 0.23 0.0160
207096�at NM�006512 Serum amyloid A4 (SAA4) �1.86 	 0.17 0.0209
208378�at‡ NM�004464 Fibroblast growth factor 5 (FGF5) �1.46 	 0.11 0.0259
203381�at N33009 Apolipoprotein E 3.12 	 0.37 0.0532
213136�at AI828880 Protein tyrosine phosphatase, type 2 �2.39 	 0.28 0.0532
213807�at‡ BE870509 C-met protooncogene (hepatocyte growth factor receptor) �1.58 	 0.14 0.0338
213416�at BG532690 Integrin 4 (antigen CD49D) 2.62 	 0.31 0.0669
216663�at‡ AC002481 BLU 1.79 	 0.20 0.0799
208820�at AL037339 Protein tyrosine kinase 2 (PTK2) �1.54 	 0.14 0.0835
200636�at NM�002840 Protein tyrosine phosphatase, receptor type F (PTPRF) �1.43 	 0.14 0.0741
205534�at NM�002589 BH-protocadherin (brain-heart) (PCDH7) 2.49 	 0.29 0.0446
203582�at‡ NM�004578 RAS oncogene family (RAB4) �1.36 	 0.12 0.1710

†Multiplied by 100.
‡The gene has been confirmed by real-time RT-PCR, ELISA, or Western blot.
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MIF may have a function in the up-regulation of C-met
expression.

VSNL-1 is expressed in the central nervous system, where it
plays a crucial role in regulating cAMP levels, cell signaling, and
differentiation. High-level VSNL-1 expression has been found in
less aggressive and high-grade squamous cell carcinoma (36).
These results indicate that VSNL-1 plays an important role in
regulating tumor cell invasiveness and that its loss could help to
enhance the advanced malignant phenotype.

EPHB6 is a favorable neuroblastoma gene. EPHB6 is down-
regulated in the most aggressive neuroblastoma cell lines, and a
prognostic indicator in neuroblastoma and other tumors such as
melanoma and breast cancer (37–40). High-level expression of
EPHB6 predicts favorable neuroblastoma outcome, and the
expression of this gene inhibits growth of unfavorable neuro-
blastoma cells (38). However, it is not clear how EPHB6 is
regulated. It was very interesting to find that EPHB6 was
increased in MIF-reduced neuroblastoma cells. This result sug-
gests a valuable line of advance for additional study of the
relationship between MIF and EPHB6.

BLU is abundantly expressed in normal lung tissue. However,
its expression is markedly reduced in a subset of lung tumor cell
lines (41). BLU is also inactivated in neuroblastoma. Methylation
of the BLU promoter region (inactivation of BLU) in neuro-
blastoma was inversely correlated with tumor stage (41). These
data suggest that BLU is one of the candidate tumor-suppressor
genes.

IL-8 is a multifunctional CXC chemokine. It was identified as
an angiogenesis-regulating molecule that induced angiogenesis
(42, 43). The expression of IL-8 has been found in various human
cancers (44). Recent studies have demonstrated that IL-8 reg-

ulates tumor cell growth and metastasis in many tumors such as
melanoma and carcinoma of the breast, stomach, pancreas, and
liver. Our previous results indicate that serum IL-8 from patients
with hepatocellular carcinoma significantly correlates with tu-
mor size, tumor stage, and venous invasion, which suggests that
IL-8 may be involved directly or indirectly in the progression of
hepatocellular carcinoma (45). We also demonstrated that MIF
was able to stimulate neuroblastoma cells to express IL-8 (45).
The present results revealed that IL-8 gene expression was
markedly decreased in MIF-reduced cells (�13-fold), and this
was confirmed further by the ELISA technique, which showed
that IL-8 protein produced by MIF-reduced cells was 10 times
less than that of control.

In summary, we have demonstrated that the use of antisense
transfection when coupled with microarray and SLIM analysis
provides a very useful system for defining the role of specific
genes that are dysregulated in cancer. With this system, we are
able to show that reduction of MIF results in tumor growth
inhibition, and this suppression may be achieved by inhibiting
angiogenic-related genes such as IL-8, oncogenes (C-met), and
protein kinase. On the other hand, increasing the expression of
tumor-suppressor genes (BLU, VSNL-1) and neuroblastoma
favorite gene (EPHB6) may also contribute to tumor reduction.
Therefore, these genes could potentially be key players in the
development of neuroblastoma. Our data not only demonstrate
that targeting MIF expression is a promising therapeutic strategy
in human neuroblastoma therapy but also indicate the MIF
target genes for additional study.
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