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ABSTRACT

We study the estimation of the additive components in additive regression models, based on
the weighted sample average of regression surface, for stationary a-mixing processes. Explicit
expression of this method makes possible a fast computation and allows an asymptotic analysis.
The estimation procedure is especially useful for additive modeling. In this paper, it is shown
that the average surface estimator shares the same optimality as the ideal estimator and has
the same ability of estimating the additive component as the ideal case where other components

are known. Formulas for the asymptotic bias and normality of the estimator are established.

Keywords: Additive models; a-mixing; Asymptotic bias; Asymptotic normality; Kernel

estimates; Partially local linear estimate.



1. Introduction

Let {V;, X ;}22 be jointly stationary processes with X ; taking values in R¢, where the

1=—00

dimension d > 1. Assume EYj| < oo and define the multivariate regression function:
m(zy, ..., 2q) = FY | X1 =21, ..., Xa=24), (1.1)

where (Y, X') has the same distribution as (Y;, X ;). The regression function m(-) plays an
important role in data analysis, for example, the [-step prediction (Y; = X,4;) of time series.
Additive regression model is a useful statistical tool for high-dimensional data analysis. In this

paper, we focus on the following additive model:
m(ry, ..., xq) = F (Y ‘X(l) =z, X = £2) =p+ filz1) + falz2), (1.2)

where X (1 = (X7, ..., X,a)T7 X =(X,4q, ..., XH_q)T with r+¢ = d, and p is a constant.
Note that X7 denotes the transpose of X . In the above additive model, we assume that
the variables X (1) and X (?) are continuous and take values in R and R, respectively. For
identifiability, we assume without loss of generality that F {fl (i(l))} =F {fz (K(z))} =0.
This general setup was considered by Fan, Hirdle and Mammen (1997; henceforth FHM) in
an independent and identically distributed (i.i.d.) setting. The need for nonlinear time series
modeling and forecasting (see Tong (1990)) motivates us to consider the above model for

dependent data.

The above setup is wide enough to include many useful statistical models. Some of these

are as follows:

a) First, consider
Xe=fXmas ooy, Xemi)) +9(Xmns oo, Xemig) v, 02114 (1.3)

where f and ¢ are Lebesgue measurable functions, and {v;} are a sequence of i.i.d. random
variables (r.v.s) with mean zero and a finite second moment. It is easy to show that the

conditional mean and variance are respectively given by
E(Xt | )(,5_17 ey Xt—io) = f(Xt_17 ey Xt—i1)7 (14)

and

Var(X; | Xeo1, oovy Xieiy) = gz(Xt_l7 ooy Xiiy) Var(yy), (1.5)
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where i = max(iy,i2). The classes defined by (1.3) include many of more familiar nonlinear
parametric models commonly encountered in econometrics (see, e.g., Tjgstheim and Auestad
(1994), hereafter referred to as TA): the threshold model and its various modifications; the
autoregressive conditional heteroscedastic (ARCH) model as defined in Tong (1990); the expo-
nential autoregressive model introduced by Engle (1982); and the multivariate adaptive splines
(MARS) models (see, e.g., Lewis and Stevens (1991)). The nonparametric kernel-type estima-
tion of the conditional mean (see (1.4)) and the conditional variance (see (1.5)) was studied
in detail by TA (1994) using the projection method. The appeal of imposing the additive
structure on f or g is to avoid so-called “curse of dimensionality”. In particular, the following

additive model is included in our setting via taking Y; = X; and X = (X;—y, ..., Xi—y)):
Xe=p+ (X)) + -+ i, (X)) + 9(Kmas o, Xomiy) v

The model is a useful extension of the classical autoregressive model. Our approach will enable
one to construct an explicit estimator of f;(-) which possesses certain optimality criterion,
and hence to predict the future value of the series. The general setup also includes partial

autoregressive models such as
Xe=p+ fi(Xem) + o+ fiy (X)) + 80 Xymiy 1+ 4 Biy Xomiy i, T 9(Xmrs ooy Xomiy)

The models have flexibility of modeling some of components nonparametrically (reducing possible

modeling bias) and other components linearly (reducing effective number of parameters).

b) Secondly, model (1.2) includes the additive model in the nonparametric regression with

independent data:
q
m(wy, ...,xq):u—l—ij(acj). (1.6)
7=1

A thorough discussion of this model can be found in Baju, Hastie and Tibshirani (1989) and
Hastie and Tibshirani (1990) for the i.i.d. setting. The additive components f; can be estimated
with the one-dimensional nonparametric rate, see, e.g., Stone (1985, 1994) for details. In most
papers, for estimation of the additive components, algorithms have been proposed, based on the
iterative backfitting procedures. Their asymptotic properties are not well understood due to
the implicit definition of the estimator. Also, computation can be slow in the high-dimensional
case. To avoid the drawbacks of the iterative procedures, in Auestad and Tjgstheim (1990), TA
(1994), Linton and Nielsen (1995), and FHM (1997), a direct method has been proposed which

is based on “average regression surface”. The procedure was referred as “projection method” in
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Auestad and Tjgstheim (1990) and TA (1994) and as “marginal integration method” by Linton
and Nielsen (1995) and Linton (1997). As pointed out by FHM (1997), the direct method has
some advantages: This method does not use iterations. Fast computation can be implemented.
Furthermore, the explicit definition allows detailed asymptotic analysis. Efficient estimation of
additive components was studied in Linton (1997) and FHM (1997) by using two independent
approaches. Masry and Tjgstheim (1997) extended the applicability of average surface idea to
additive nonlinear ARX time series. A useful modification of the average surface idea is given

in Hargartener (1996).

c¢) Finally, model (1.2) covers additive partially linear models:

m(acl,...,xq+r):u+2fj(xj)+ggﬁ* (1.7)

1=1

and partial interaction model:

d
m(w1, ..., wa) = pF fraen, w2) + Y filay). (1.8)

i=3

Further discussions on models (1.7) and (1.8) can be found in FHM (1997) for the i.i.d. setup.

The aim of this paper is to estimate the low dimensional additive component f; in (1.2).
Analogously, f; can be estimated in the same fashion. The basic idea for estimating f; is to
first estimate directly the high-dimensional regression surface m(zy, ..., x4) and then average
the regression surface over variables X (?) to stabilize the variance. The regression surface is
estimated by using local polynomial fitting, which has been studied extensively for example
Tsybakov (1986), Fan (1993), Ruppert and Wand (1994), Fan and Gijbels (1996), Masry (1996)
and Masry and Fan (1997). It has advantages over the Nadaraya-Watson regression estimator.
In particular, it reduces bias of the Nadaraya-Watson estimator and copes well with the edge
effect. For more details, see, e.g., Fan (1993) and Fan and Gijbels (1996) for the i.i.d. case,
and Masry and Fan (1997) for the dependent situations.

The paper is organized as follows. In the next section, we introduce our estimation
procedure. In Section 3 the main results of the paper, asymptotic bias and normality, are also
formulated in the same section; their proofs are deferred to Section 5, based on some lemmas,
which are proved in the Appendix. An application to additive model is discussed in Section
4. Finally, in Section 5 the assumptions used throughout the paper are gathered together for

easy reference, followed by some brief comments.
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2. Average of Regression Surface

First of all, let us introduce some notation. Denote by
X1 Xy, X1 ¥ W
X(‘l): : 7 X(‘z): : 7 X, = : = ! 7
J : j : : @)
Xy Xa,; Xa,; X
and m(z) = FE(Y | X =z). Let W : R? = R be a known weight function with £ {W (X (2))} =
1. Observe that, under model (1.2),

E{m (2 X)W (XD)}=p+ fiw) +E{L (XP)w (x)]
= po+ filza) = filz), (2.1)

where
po=p+FE {fz (X(z))W(X(z))}- (2.2)

Thus, fi can be constructed, within a constant shift, via averaging the regression surface with
respect to variables X (3). This in turn suggests a direct estimation procedure: Estimate the
regression function m first and then average out the estimated regression surface with respect
to the variables X (). The constant factor is not related to the final estimator, since f1(), in
practice, is centered to have mean zero for identifiability purpose. This kind of averaging idea
was studied by TA (1994) under time series models, and by Linton and Nielsen (1995) for the
i.i.d. setting, and was further extended by FHM (1997). The purpose of introducing a weight

function here is to optimize the estimation procedure.

Consider the local linear approximation of f; at a fixed point z 4,

filur) ~a(zy) +QT(£1)(21 —z1),

where u ¢ lies in a neighborhood of z . Also, the local constant approximation of f, at a fixed
point x5 is applied:

fz(ﬁz)*c(iz) for Uy T2,

Thus, we can approximate m locally by a linear term in a neighborhood of (x4, x4),

m(uy, ua) &y +8" (w1 —z1) (2.3)

for some v and 3, depending on 2z and z ;. The reason for introducing the local constant

approximation for the “nuisance function” f; is to reduce the number of local parameters so
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that it is easier to implement for practical purpose. Higher order approximation can also be
employed for the function f; at the expenses of introducing more local parameters and the

theoretical results continue to hold.

Let K and L be the kernel functions and let hy and hy be the bandwidths. Given the

observations {Y;, X ;}7 ;, consider the multivariate weighted least squares

i Yimy-pT (X —zl)r Ko (X0 —2y) Loy (X1 = 2,) (2.4)

=1

where
1 U

Kp, (u) = h—;K (}:—1) and Lp,(u) = @L (}:—2) . (2.5)
Minimizing (2.4) with respect to v and 3 gives the estimates of v and 3, respectively. Let
~(z) and E(g) be the solution to (2.4). Thus, our partially local linear estimator of m is
m(z ) =75(z). By computing the weighted sample average of m, the following average regression
surface estimator is proposed in FHM (1997):

Fren =13 a (e xP)w (x0), 26

n “
=1

fen=Fren -7 ad =3 Fr(x0) (2.7
=1

This is a functional of m(x ), and it turns out to possess good properties. Note that when the
local constant fit is employed (i.e. 3 = 0) in (2.3), the resulting estimate 7 is the multivariate

kernel regression estimator, which was discussed in TA (1994). For details, see the relations

(5) and (6) in TA (1994).

Let X, x(r41) = X(z1) be the matrix with the ith row (1, (X(»l) - gl)T) and W*, =

2 nxn

W*(z) be the diagonal weight matrix with the " diagonal element W*(z) = K; (X, — z),

where
Kp(z) = Kpy(21)Ln, (2 2),

to the least-squares problem (2.4). Then,

(%) = (YTWx) X TWY (2.8)
where ¥ = (Y1, ..., ¥,,)¥, and the simple algebra shows that 7 (z) can be expressed as
Ailz) =) Kn(Xi-2)Yi (2.9)
=1
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Knlt —2) = Kn(ts —21sts—22) = T ST (a) (t ! )K;(z—g). (2.10)

It follows from the least-squares theory that, for all a,

im(gi ~z)=1, and im(gi —o) (X —2y) =0, (2.11)
=1 =1

3. Main Results

Before we state our main result, we introduce the mixing coefficient. Let F° be the
o-algebra of events generated by {Y;, X ;; @« < j < b}. The stationary processes {Y;, X ;}22

1=—00

are called strongly mixing (@-mixing), if

sup |P(AB) — P(A)P(B)|=a(k) | 0,

as k — oo, and a(k) is called the strong mixing coefficient.

Among various mixing conditions used in literature, a-mixing is reasonably weak, and
has many practical applications. Many stochastic processes and time series are known to be
a-mixing. Gorodetskii (1977) and Withers (1981) had obtained various conditions for linear
process to be a-mixing. Under certain weak assumptions autoregressive and more generally
bilinear time series models are strongly mixing with mixing coefficients decaying exponentially
fast. Auestad and Tjgstheim (1990) provided illuminating discussions on the role of a-mixing
(including geometric ergodicity) for model identification in nonlinear time series analysis. Under
some mild conditions, Masry and Tjgstheim (1995) showed that the ARCH process is stationary

a-mixing.

For easy reference, we introduce the following notation. Let p(z 1, 2 3) be the joint density of

(i(l), X(z)), and py(z 1) and py(24) be the marginal densities of X () and X (?), respectively.

Let
w1 = [

All limits will be taken as n — oo; this will not be mentioned explicitly in the body of the

K

K)fde — and (k) = [uu"Kiu)du,

paper. Then, under Assumptions (1)-(9) stated in Section 5, we have the following theorem
which generalizes one of the main results in FHM (1997) to the dependent case.
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Theorem 1  Under Assumptions (1)-(9), if the bandwidths are chosen such that h; — 0,

hy — 0 in such a way that

nhi*tt=0(1),  Ah/h? -0, and  nhlh%/logn — oo, (3.1)
then,
~ 1
) [Fotea) = o) = SR eais ()] 5 NOL el 62
where
o) = [[K|P puler) B [T(X) 0*(X) | XV =z, (3.3)
with
p2(z2) Wiz2)
F@h $2) B P(&h £2) 7 (3'4)
and
o*(z)=Var(V | X =z) (3.5)

Remark 1. If we consider weight function W (:) that minimizes v(z ), the optimal weight

function is

w(x®) = 3.6
(— ) (2, XO)p, (X @) (3.6)
where
C:P1(£1)2E{0_2(l)|i(1):£1}-
The optimal minimal variance is
minv(ey) = P2 Tpm2x ) x 0 = o ] (3.7)
wo T pi(z) B ’

and miny, v(z ) = ||K||?6?/p1(z4) if 0%(z1) = o%. For details, see, e.g., (3.4)-(3.6) in FHM
(1997). The optimal weight function (3.6) depends on unknown functions and a method on
how to choose the optimal weight function based on the data was discussed in FHM (1997)
in greater detail. In the ideal situation where f;(z3) is known, one can estimate fi(z1),
by directly regressing Y — f, (K(z)) on X and such an ideal estimator is optimal in an
asymptotic minimax sense (see Fan (1993)). Surprisingly, the average surface estimator (2.6)
has the same asymptotic bias and variance as the ideal estimator when o%(z) is a constant,

even though the former does not rely on the knowledge of f;. For details, see Remarks 5-8 in

FHM (1997).



4. An Application to Additive Model

We now consider the following additive model as (1.6):
m(ﬂ):E(Y|Q:2):N+91(U1)+---+9q(uq)7 (4.1)
where ¢1(+), ..., g4(+) are univariate functions satisfying the identifiability condition

E{gi(U,')}:O, i:L...,q,

p is an unknown parameter, and U = (Uy, ..., U,)T is a continuous random vector having a
joint density p. Our goal is to estimate each additive component gr using the average surface

method. As in (2.1), let g5, k=1, ..., ¢, be the average of regression function:

g;(uk) =LK {m (Qk) Wr (Q_k)} = gk(uk) + Uk, (4.2)

where jg = p+ E [z#kgj(Uj)Wk (U- )} UF = Uy, ..., Us_1, gy Ut ..., U)T, Uk =
(Ui, .oy Up—1, Ugga, -+, Uy)T having the density p=* and W : 97! — R is the weight
function such that F {Wj (U %)} = 1. For the given observations {Y;, U}, the average

surface estimator gy is defined as in (2.6) but now using the bandwidths h; = hyy and hy = hoy,
Gr (k) Z i, ( U, (4.3)

where Q;“ = WUy U1y ugy Upgr gy -y Ug )T, k() is the partially local linear esti-
mator, defined as in (2.9), and Q]_k = Uy ooy Ut gy Ugr gy oo, Ug )T

Theorem 2  Suppose that the conditions of Theorem 1 hold for each component k. Then

we have the following the joint asymptotic normality:

Vil [ (m) = g7 () = § b7 (mn) ez ()]

: L N(0, ¥, (4.4)
Vihig [G5(ug) = g5 (ug) — 5 h3,gq (ug) 2 ()]
where ¥ = ||K|[?diag {0} (u1), ..., 02(uq)} with
o2 —k —k\21172 —k

Remark 2. If the ideal weight function in (3.6) applies to each additive component, the

weight function Wy should become

(4.6)



and the ideal variance is |K|[*/ [E{c72(U) ‘Uk = ug } pr(uy)], which is [|K|20?/pr(ug) if

o(u) = o2

5.

Conditions and Proofs

Before we embark on the proofs of theorems, let us list the assumptions used throughout

the paper.

Assumptions:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Suppose that the functions W and f; are bounded on the support ) of W. The weight
function W(z3) is uniformly continuous.
The kernel functions K and L are symmetric and have bounded supports. Furthermore,
L is an order [; kernel.
/1 has a bounded second derivative in a neighborhood of z 1 and fy(x ) has a bounded lih
order derivative. Furthermore, for uy in a neighborhood of z1 and uy € D, the density
p(uq, uy) has bounded partial derivatives up to order two with respect to u; and up to
order [; with respect to uq, and it also satisfies

inf p(ug, z2) >0,

w1€EN(z1)
z2€D

where N(z 1) is a neighborhood of z .
Suppose that o?(u) and b(u) = E(|Y — m(u)|**?| X = u) are continuous at the point
uy =21, and

B (bO)IPO)+ [ X =y ) < o0

is bounded for all z; for some & > 0.
Suppose that the joint conditional density fx, x,)[(v;,v;) of (X1, X;) given (Y7, Y})

satisfies, for all 7 > 1 and all values of arguments involved,

fxox )y @, vy, g2)| S M < oo

for some positive constant M.

The processes {Y;, X ;} are strongly mixing with > >~ i“[a(i)]f? < oo for some a >
5/(2+9), where 6 is given in Assumption (4).

Assume that there is a sequence of positive integers satisfying v,, - oo and v,, = o (\/TM)

such that (n/h})"?a(v,) — 0.



(8) The conditional distribution of G(y|u) of Y given X = u is continuous at the point
Uy =2q.

(9) nh}h2?/log>n — oo and hilogn/hd — 0.

Remark 3. Consider the popular choice for the bandwidth A} = dn=? (d >0, 0< 6" < 1),
one can show that a sufficient condition for Assumption (7) is a(n) = O (n™?) with p >
(1+6%)/(1 —6*). In particular, if 8* = 1/5, then p > 3/2. Also, a sufficient condition for
Assumption (6) is a(n) = O (n_pl) with p’ > 24 2/6. Therefore, if 6% = 1/5, and § = 2,
then a sufficient condition for Assumptions (6) and (7) is a(n) = O (n_p“) with p” > 3. For
details, see Masry and Fan (1997).

Note that by the dominated convergence theorem, it can be easily shown from Assumption

(8) that for any J > 0, the functions
my(u)=EYI(|Y]|<J)|X =u) and  oj(u) =Var (YI(Y[|<J)|X =u)

are continuous at the point uq = z 1. Also, for each L > 0, &%(u) = Var (YI(|Y| > J) ‘X

u)

is continuous at the point u, = 2 1.

Proof of Theorem 1:

L1

Let W, =W (XEZ)) and X' = (X(z)). Then, by (2.1) and Assumptions (1) and (6),
and applying the central limit theorem_flor stationary a-mixing sequences (see, for example,

Theorem 18.5.3 in Ibragimov and Linnik (1971, p.346)), we have

%ngﬁmzﬁ@nﬂ%QWﬁ. (5.1)
Thus,
~ A . . _1/2
Frlen) = i@ = =3 [ (X7) = m (X)] Wi+ 0, (n712). (52)

=1
Let & = Y = B(Y; | X3) = ¥i = m(X.) and s;(2) = m(X ;) = m(z) = file)” (X —21).
Then, it follows from (2.9)-(2.11) that
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where £ = (£;),x1 and 5(z) = (sj(z ))nux1. Let H =diag {1, A7, ..., h{'} bea (r+1) x (r+1)
diagonal matrix and a,, = (nhj hd/log n)_l/z. Then, owing to the uniform weak convergence
of the kernel density estimator (c.f., Theorem 1 in Masry (1996)) and by Assumptions (2)-(6),

we have

Sit) = pH s =23 Wit (e ) (e )

converges to S(z) = p(z) ((1) " ?K)) in probability uniformly in z, and
2

7=1 hy hy
1 1 r
= Wy xW_ g, x Mg, Oplan
e (st ) (e ) oo
( plz) hy ptO ()T py(K) )
= +Op(cn)7
hy pa (K) pt9) (z) p(z) p2(K)

uniformly in z, where ¢, = h% + hl21 +a, and p(?) denotes the vector of partial derivatives

of p with respect to 2 1. Now note that

plz) hy pO ()7 pa (K)\ 7
h pz (K) pt0 (z) p(z) p2(K)
se) 0 N 0 PO (@) i (K)
= + + O, (h3).
0 ple) pa(K) L)\ (1) p1O) (2 ) 0
Therefore,
nef Sy z)H ™ =p~H(z) (17 hy p 0 (2)” Hz(K)) +Op(cn). (5.4)

Likewise, using the same argument as above, and by Assumptions (2)-(6), one has

1 1 1 .

Eﬂ(iﬁ”—gl L1>_£1)W@>§@>
LS e 1

ZEZW]‘ (z) sj(z) (§§1>_£1) = 0,(cn) (55)
j:l hl

uniformly in 2. Substitute (5.4) and (5.5) into (5.3) to obtain

- 1 1 .
e Sy (z) (X(ll)—l‘l Xif)—xl)w (z) s(z)



n

+p7 () p V(@) o (K) {iZW;m si(e) (X3 2 } +0,(cl)

i=1

_ % B2t {7 (@) ()} + p~ (@) Bulz ) + 0, (h2) + 0, (c2), (5.6)

Also, note that
i e) = ST e) [T+ (@) - S5@) 857 )] -

Then, S:~'(z) converges to S~'(z) in probability uniformly in z. It then follows that
Sc7Hz) =S~ (2)(1+0,(1)), where o,(1) is uniform in z, and n Sy (z) H~' = H S~ (z)(1+
0,(1)). Therefore,

nel S;Nx)(@)H™ =p~Hz)el (1+0,(1)). (5.7)

Substituting (5.7) into (5.3), one obtains

gt (yo'l, gl )@ e (et e T 69
where .
Tn(g):%zwf@)%

Substituting (5.6) and (5.8) into (5.3), after some algebra, we obtain
. 1 . _
mfz) —mz) = bt {1 )ue(K)} +p7 @) {Tulz) + Bal@)} + 0p(h1) + Op(c). (5.9)

Thus, by (5.2), (5.9) and the strong law of large numbers (see, for example, Cai and Roussas
(1992)), we have

ff(&)—ff(gl)—% hitr {f{'(z 1)p2 (K)} = Ty (z 1)+ B (z 1)+0p(h)+0, (ci + n‘l/z) , (5.10)

where with A(z) = W(xq)/p(z),
Te) =Y T A, and  Bile) =Y Bale) Az, (5.11)
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A simple algebra leads to
* 1 g - 1 ;
Titen) =5 X (X)) -] T (@)
]:
] e , , 3
o Z;Khl (15'1) - il) (T, (27) =T (27)} e, = Gulzy) + Gilzy), (5.12)
]:
where T" is defined in (3.4) and
_ 1y () _ i
Da(zr, 22) = EZ;LhQ (1,' &2) Alz*). (5.13)
Substituting (5.12) into (5.10), one has

Frlw) = frlen) = 5 o (e )a()

=Gz +G(xy)+Bi(zq) + op(hf) +0, (cfl + n_l/z) ) (5.14)

In order to complete the proof, we need the following two lemmas but their proofs are relegated

to the Appendix since they are quite involved. To this end, let

) e (X)W (x )
= T(ad)e, = @ |
p (&17 X]‘ )

(5.15)

and
G=Cle) =K, (X =2y, (5.16)

Then, by (5.12) and stationarity,

n

Gn(zy) = %Z Cjs and n Var(G,(z 1)) = Var((y) + 2 Z (1 — %) Cov(¢y, ¢j)-

i=2

Lemma 1 Under the assumptions of Theorem 1, we have,

nhi Var(G,(xz1)) — v(z1), and hy Z ‘COV(Ch C])‘ — 0,

J=2

where v(z ) is defined in (3.3).

Lemma 2 Under the assumptions of Theorem 1, we have,

Grlen) =op ((hDT2), and  Bile1) = op ((nh]) 72
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It follows from (5.14), Lemma 2 and the conditions on the bandwidths (see (3.1) and
Assumption (9)) that

Fiten) = fen) = 5 B (e ()} = Galer) + o, (b)), (5.17)

We remark that the third term in the left hand side of (5.17) can be viewed as the “asymptotic

bias” of ]/”\1*@1), and the “asymptotic variance” of ]/”\1*@1) is v(z 1) defined in (3.3).

We now turn to show (3.2). This is equivalent to demonstrating the asymptotic normality
of Gy(xzq) in (5.17). In discussing the convergence in (3.2), we use the familiar technique of
“big block — small block” procedure. More precisely, partition the set {1, ..., n} into 2k, +1
subsets with large block of size u, and small block of size v,, where k =k, = |n/(u, + v,)].
Now we first consider the choices of the block sizes. Assumption (7) implies that there is a

sequence of positive constants =, — oo such that

Yn Vp = 0 (\/nh’{) , and Yo (/)% a(vy) = 0. (5.18)

Define the large block size u, by u, = [(nh?)"/?/~,] and the small block size v,. Then, it

can easily be shown from (5.18) that, as n — oo,

Vp Jtn — 0, Up/n — 0, U, (nh’{)_l/2 — 0, and (n/un) a(v,) = 0. (5.19)

Ignore the dependence on z 1, and for j =1, ..., ky, set 7 = (j — 1)(u, + v,), and
r;f—l—un 7“;4_1 n
Z Cis n; = Z Cis and Ehp1 = Z Gi-
i=ri41 i=rf tu,+1 =iy,
Write
k k
z1) =Y &+ > 0+ kgt =G+ Gup + Gns. (5.20)
: —
It will be shown that, as n — oo,
hT
— {B[Ga2) + E[Ga 3]} =0, (5.21a)
n
BT k
hi
— 5.21b
; z:: ) = v(z1), (5.21b)
k
Elexp(itGn )] = [] Elexp(ité;)]| — 0, (5.21¢)
7=1



and

5 (|5j| > ”@hi) ")] =0 (5.21d)
1

r k
1
— E
w2
J=1
for every ¢ > 0. (5.21a) implies that G, » and G, 3 are asymptotically negligible in probability;
(5.21c) shows that the summands {&;} in G, ; are asymptotically independent; and (5.21b)

and (5.21d) are the standard Lindeberg-Feller conditions for asymptotic normality of G, for
the independent setup.

Let us first establish (5.21a). Observe that

k
E(Gp)? = ZV&I’(?]]‘) +2 Z Cov(n;, nj) = 1 + 1. (5.22)

j=1 1<i<j<k

It follows from stationarity and Lemma 1 that

Iy =k, Var(n) = k,, Var i:C] = kyn v b [v(2 1) + 0o(1)]. (5.23)

J=1
Next consider the second term [ in the right hand side of (5.22). Since 75 —r] > u, for all

7 > 1, we therefore have

|12| S 2 Z Z Z ‘COV(Cri+un+j17 CTj-l-un-l-jg)‘ S 2 Z Z ‘COV(Cj17 C]Q)‘
1<i<j<k j1=1 j2=1 J1=1 jo=j14uy,
By stationarity and Lemma 1, one obtains
o] <20 Y [Cov(ér, ¢)| =0 (nhi"). (5.24)
J=un,+1
Hence by (5.22)-(5.24), we have
hT
LE[Gr2)? = O (kn va n™) +0(1) = o(1). (5.25)
n
It follows from stationarity, (5.19) and Lemma 1 that
n—ky,(u,+vy)
Var (G 3) = Var Y G =0 = knlun +va))hT7) =0 (nh7). (5.26)

7=1
Combining (5.22), (5.25) and (5.26), we establish (5.21a). As for (5.21b), by stationarity, (5.19)

and Lemma 1, it is easily seen that

k u
h hiky kpun by -
Y B =B = = Var | G| = vl
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In order to establish (5.21c), we make use of Lemma 1.1 in Volkonskii and Rozanov (1959)
(see also Ibragimov and Linnik (1971, p.338)) to obtain

kTL

Elexp(itGy, 1)] — H Elexp(it&;)]

i=1

<16 (n/“n) a(”n)

tending to zero by (5.19).

Finally, we will establish (5.21d). To this end, we now employ a truncation technique as
follows. Let by(y) = yI(Jy| < J), where J is a fixed positive number, and Cr{,j = Cij@l) =
[bs(Y;) —my(X ;)] Kp, (X;l) — £1) [(z7), then, Gp(z1) = Gl (z 1) + é,{(gl), where

n

Glle)=n""> "¢l and Gl =n""> [ -G
j=1

i=1

By using the same arguments as those employed in the proof of Lemma 1, one has, as n — oo,
vna(21) = whiVar (G) = vsen) = IK|Pp @) B {302 @) [ X =21}

The boundedness of K and T' implies that [¢;/ | < B/h] for some B > 0. This in turn
implies that /nh] maxi<;<s, |€]J| < B qi//nh] — 0, by (5.19). Therefore, the set

{‘f]‘]‘ > eyv/vg(zy) n/h’{} is an empty set when n is large sufficiently. Hence, it follows
that (5.21d) holds true for f]‘] Consequently, we have established the following asymptotic

normality:
Vinhy Gz 1) 5 N0, vs(z1)) (5.27)

as n — oco. Observe that, for any ¢t € R,

FEexp (zt\/TM Gn) —exp (—v(z1)t*/2)

< |Eexp (it Wbt (G + é;{)) —exp (—v;(z1)t2/2)
+ | exp (—vs(z1)t?/2) —exp (—v(z1)t?/2)

< |Eexp (it\/nT; G,{) —exp (—vs(z1)12/2) | + E|exp (it\/nT; é;{) - 1‘
+ | exp (—vs(z1)E2/2) — exp (—o(z )E2/2) |-

16



As n — oo, the first term goes to 0 by (5.27) for each J > 0 and the third term also goes to 0
as J — oo by the dominated convergence theorem. In order to complete the proof, it suffices
to show that the second term goes to 0 as n — oo and then J — oco. To this end, using the

fact that |e!® — 1| < 2|z| for all # € R and the Cauchy-Schwartz’s inequality, we have

exp (zt\/TM é,{) — 1‘ < 24/ nh? Var(GY).

Note that é,{ has the same structure as (7,, except that Y; is replaced by Y;I(|Y;| > J). Then,

E

using the same arguments as those used in the proof of Lemma 1, we obtain, as n — oo,
nhi Var(@) = [|K]Ppi @) B {01 @) | X1 = 2.}

It can be easily shown that the right hand side goes to 0 as J — oo. This completes the proof

of the theorem. m
Proof of Theorem 2:

By (5.17), the direct estimator of each component g7 (u;) has the following stochastic

representation

A~k * 1 - —

97 () = g7 (u3) = To + 5 b 97 () w2 () + 0, (b ) ™12 (5.28)
where

IR ; o _ Wi e (U
i = 5;1%“ Uij—u)Ti(U%e;,  and  T;(UY) = i
In order to show (4.4), it suffices to show from (5.28) that
vTLhu Tl,n
: ~ N(0, B), (5.29)

1/ nhlq T(Ln
It suffices to show from Theorem 1 that the asymptotic covariance between 7; ,, and 7;,, should

be zero for ¢ # [. In other words, we will show that

vV n2 hli hll COV(T,'JL7 Tl,n) — 0. (530)

To this effect, by stationarity, we have,

1 .
COV(T,'JL7 Tl,n) = 5 FE [I(hu' (U, — u,) Krhu (Ul — ul) F,(Q’)FI(QI) 62]

n

1

+o > B [Kn, (Ui, = i) Kn,, (U, —u) Ti(UETHUY, ) &5, 25,
g
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It is easily seen by Theorem 1 in Sun (1984) that
F=0(n"). (5.33)

Employing the same arguments as those used in the proof of (A.5), and by stationarity, we

have

1 & . . :
2| < > {‘E [Kny (Uin = wi) Ky, (U — w) Ti(UDT(U ) €1 2]

}:O(n_l).

This, in conjunction with (5.31) and (5.32), concludes that (5.30) holds true. Therefore, this

+ B [Kny, (Uij = wi) Kny (Ui —w) TiU5HT1(U ) €1 ¢4]

completes the proof of the theorem. g

APPENDIX

Proof of Lemma 1 It is easily seen by stationarity that

n Var (Gp(z1)) = Var((y) + 2 Z (1 — %) Cov(C1, ¢j) = J1 + Ja. (A1)

i=2

For Jy, since E((;) = 0, we have
hiJi =h] E(Clz) = /[(2(21)02@1 +hiuy, Qz)rz(ih wo)p(ey +hiwy, we)dudus.
By Theorem 1 in Sun (1984) and Assumptions (2)-(4), we then have
B = IKIP [ ot wal® (e w) bl ) dus
= |1 2p1 (2 ) B o200 | XM = 2] = (). (4.2)

It remains to show that k] J; — 0. To this end, choose a sequence of positive integers satisfying

=0 (hl_ép/a(z—i_é)), where « is given in Assumption (6). Then

T =o0(hy") and h, s Z aQ(SW(j) — 0. (A.3)

We decompose the sum into three terms due to the possible overlap between X | and X ;,

n d—l Tn ke)
Z|COV(C1,Cj)|:Z + Z + Z = Jo1 + Jog + Jas, (A.4)
=2 J=2 Jj=d J=mpt+l
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For Jy1, there is an overlap between the components of X ; and X ; but not in Jyy or Jy3. Let

us consider Jyy first. By Assumptions (1)-(5), and the Cauchy-Schwartz’s inequality, we have

[Cov(Gr )l = 1B ¢,)]
<M/—I (%) (21, us) \—A( )\Fxl,vz)\
TBOP) 4 ma) + ) BV )] e
<const. [ W s Wwa) [EO) + 1 fa(w) + falea) [EW] + | (20|
2 i)l B+ ) + A )2 (ws) + falea) + 2 faleo)]
X p2(u2)p2(v2) dus dvy < oo. (A.5)
Hence,

by |Jaa| < const. Y AT = O (znhf) = o(1) (A.6)

by the choice of m,,. Next, work with Js;. To this end, let # be the number of the common
elements in (X 51), igl)). Employing the exactly same arguments as those used in the proof
of (6.10) in Masry and Tjgstheim (1997) and (A.5), one can show that

R |Ja1| < const. Y A{TT = O(hy) = o(1). (A7)

For Jy3, we apply Davydov’s inequality (see, e.g., Hall and Heyde (1980), Corollary A.2) to

obtain,
|Cov(Cr, ¢j)] < 8aT (j — 1) (B¢ [*H7) 7 .

It is easily seen that

BTG [ = Z/ K () PF0b(2 s + haawy, w2)[D(@y, wa) P40 play + howy, wy)duydus

= KN pre ) B (bOINE) | X 0 =2,) < oo
as n — oo. Therefore,
E|¢ > < const. hl_(l—l_é)r.
Thus,
2(148)r

|Cov(¢1, ()] < const. a? (] — 1)h, F . (A.8)

Thus,
_br
Wy | Jas| < const. by T Y T (j) = 0, (A.9)
2>
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as n — oo by (A.3). Thus, by (A.4), (A.6), (A.7) and (A.9), we have
hy > |Cov(Gr, ¢5)| = 0.
7=2

Consequently,

(A.10)

Combining the above expression with (A.1) and (A.2) completes the proof of the lemma. J

Proof of Lemma 2 By (5.12) and (5.13),

Galen) = 23 Ko (X =) {5 () - T (29)) &5

1~ (1) I* (47
K (X5 ) () T ) 5y
EGn1($1)+G2,2(£1)7
where T, is defined in (5.13) and
Fi(e) = B{Tae)} = [ L) Alwr, o+ hau)palu) du.
g

Clearly, as n — oo,
I7(z) = D(z).

Let 7j = 7 (21) = Kn, (X;l) - £1) {7 (2?) =T'(2?)} . Then,

nhi Var(Gy, (z1)) = hi Var(r) + 2 h] Z (1 — —) Cov(ry, 7j) = F5 + Fy.

n
=2

A simple algebra gives

F=ni B[R (X = 20) {15 (") =T (")} o*(X )]

- /szn (T2 (21, u) — T (21, w2}
X plz1+hiuq, 22)02@1 + hiuy, wq)dug duy
= o(1)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

by (A.13). Similar to (A.4), we decompose the sum into three terms due to the possible overlap

between X ; and X ;,

n

Z |Cov(ry, 75)| =

i=2

IIMI

Z Z = Iy + Fyg + Fys,

J=matl

20

(A.16)



For Fjyy, there is an overlap between the components of X | and X ; but not in Fj, or Fjs.

For Fjy;, by the Cauchy-Schwartz’s inequality and (A.15), we have
hi Fy1 = o(1). (A.17)
Following the same lines as those employed in the proof of (A.6) and (A.10), we have
hi Fie = o(1), and hy Fys = o(1).
This, in conjunction with (A.14)-(A.17), implies that
nhy Var (G (z1)) = o(1). (A.18)

Next we show that G}, 5(z 1) is negligible. To this end, let F;, denote the empirical distribution
of {ng)}n , and let I be the distribution of X (3). By (5.13) and (A.12), we obtain
7=1

Lp(z) —T(z) = / L, (uw —29) Az, w)d{Fy(u) — F(u)}. (A.19)
Ra
Let L be the Fourier transform of L. Substitute

L(u) = (2m)~ /% eI

into (A.19) to obtain

In(z) -1 (2) = 2m) z(A)e’lw/hzdﬁ/ Lq6_"5'2/}”14@1,@)d{Fn(@)—F(ﬁ)}

iad Ra Ilg
= / L(A) 22" [y(zq, A)d A, (A.20)
g
where
1 .
sz 1, A) = (27) /% a7 ¢ Al ) AU () = Flu)

Substituting (A.20) into G}, y(z 1) of (A.11), we have

Gz,z(ll):/%q Liv(zq, A) Lia(z 1, A) L(A) d A, (A.21)

where



I11(z 1, A) can be analyzed by following the same lines as those employed in the proof of Lemma
1 to obtain

sup E{|17 (21, M|} =0 ((nh}) ™). (4.22)
AeRd

By (6.61) in Masry and Tjgstheim (1997),

sup 7 {|I}(e 1, N[} =0 ((nh3)7"). (A.23)
AeRd

By the Cauchy-Schwartz inequality, (A.21)-(A.23) and Assumptions (2) and (9),

BIGy (el < sup [E{[13 @ A} B[t 0] [ [E|a
Aeded Ra
-0 ((n2 hY hgqu/z) =0 ((nh;)—l/z). (A.24)

This completes the proof of the first part of lemma. Finally, as in FHM (1997), by calculation
of the first two moments in the manner of the proofs of Lemma 1 and the first part of this

lemma, one can show that
Bi(z1) = o, () 7/?).

This concludes the lemma. ®
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