
Submitted to Econometric Theory, November, 1997Average Regression Surface for Dependent DataZONGWU CAI JIANQING FANDepartment of Mathematics Department of StatisticsSouthwest Missouri State University University of North CarolinaSpring�eld, MO 65804 Chapel Hill, NC 27599-3260November 10, 1997ABSTRACTWe study the estimation of the additive components in additive regression models, based onthe weighted sample average of regression surface, for stationary �-mixing processes. Explicitexpression of this method makes possible a fast computation and allows an asymptotic analysis.The estimation procedure is especially useful for additive modeling. In this paper, it is shownthat the average surface estimator shares the same optimality as the ideal estimator and hasthe same ability of estimating the additive component as the ideal case where other componentsare known. Formulas for the asymptotic bias and normality of the estimator are established.Keywords: Additive models; �-mixing; Asymptotic bias; Asymptotic normality; Kernelestimates; Partially local linear estimate.



1. IntroductionLet fYi; X ig1i=�1 be jointly stationary processes with X i taking values in <d, where thedimension d � 1. Assume EjY1j <1 and de�ne the multivariate regression function:m(x1; : : : ; xd) = E (Y jX1 = x1; : : : ; Xd = xd) ; (1:1)where (Y; X ) has the same distribution as (Yi; X i). The regression function m(�) plays animportant role in data analysis, for example, the l-step prediction (Yi = Xi+l) of time series.Additive regression model is a useful statistical tool for high-dimensional data analysis. In thispaper, we focus on the following additive model:m(x1; : : : ; xd) = E �Y ���X (1) = x 1; X (2) = x 2� = �+ f1(x 1) + f2(x 2); (1:2)where X (1) = (X1; : : : ; Xr)T , X (2) = (Xr+1; : : : ; Xr+q)T with r+ q = d, and � is a constant.Note that X T denotes the transpose of X . In the above additive model, we assume thatthe variables X (1) and X (2) are continuous and take values in <r and <q, respectively. Foridenti�ability, we assume without loss of generality that E �f1 �X (1)�	 = E �f2 �X (2)�	 = 0.This general setup was considered by Fan, H�ardle and Mammen (1997; henceforth FHM) inan independent and identically distributed (i.i.d.) setting. The need for nonlinear time seriesmodeling and forecasting (see Tong (1990)) motivates us to consider the above model fordependent data.The above setup is wide enough to include many useful statistical models. Some of theseare as follows:a) First, considerXt = f(Xt�1; : : : ; Xt�i1) + g(Xt�1; : : : ; Xt�i2) �t; t � 1; (1:3)where f and g are Lebesgue measurable functions, and f�ig are a sequence of i.i.d. randomvariables (r.v.s) with mean zero and a �nite second moment. It is easy to show that theconditional mean and variance are respectively given byE(Xt jXt�1; : : : ; Xt�i0 ) = f(Xt�1; : : : ; Xt�i1); (1:4)and Var(Xt jXt�1; : : : ; Xt�i0) = g2(Xt�1; : : : ; Xt�i2) Var(�1); (1:5)1



where i0 = max(i1; i2). The classes de�ned by (1.3) include many of more familiar nonlinearparametric models commonly encountered in econometrics (see, e.g., Tj�stheim and Auestad(1994), hereafter referred to as TA): the threshold model and its various modi�cations; theautoregressive conditional heteroscedastic (ARCH) model as de�ned in Tong (1990); the expo-nential autoregressive model introduced by Engle (1982); and the multivariate adaptive splines(MARS) models (see, e.g., Lewis and Stevens (1991)). The nonparametric kernel-type estima-tion of the conditional mean (see (1.4)) and the conditional variance (see (1.5)) was studiedin detail by TA (1994) using the projection method. The appeal of imposing the additivestructure on f or g is to avoid so-called \curse of dimensionality". In particular, the followingadditive model is included in our setting via taking Yt = Xt and X t = (Xt�1; : : : ; Xt�i1):Xt = �+ f1(Xt�1) + � � � + fi1(Xt�i1 ) + g(Xt�1; : : : ; Xt�i2 ) �t:The model is a useful extension of the classical autoregressive model. Our approach will enableone to construct an explicit estimator of fj(�) which possesses certain optimality criterion,and hence to predict the future value of the series. The general setup also includes partialautoregressive models such asXt = �+ f1(Xt�1) + � � �+ fi1(Xt�i1 ) + �1Xt�i1�1 + � � �+ �i2 Xt�i1�i2 + g(Xt�1; : : : ; Xt�i3) �t:The models have 
exibility of modeling some of components nonparametrically (reducing possiblemodeling bias) and other components linearly (reducing e�ective number of parameters).b) Secondly, model (1.2) includes the additive model in the nonparametric regression withindependent data: m(x1; : : : ; xq) = �+ qXj=1 fj(xj): (1:6)A thorough discussion of this model can be found in Baju, Hastie and Tibshirani (1989) andHastie and Tibshirani (1990) for the i.i.d. setting. The additive components fj can be estimatedwith the one-dimensional nonparametric rate, see, e.g., Stone (1985, 1994) for details. In mostpapers, for estimation of the additive components, algorithms have been proposed, based on theiterative back�tting procedures. Their asymptotic properties are not well understood due tothe implicit de�nition of the estimator. Also, computation can be slow in the high-dimensionalcase. To avoid the drawbacks of the iterative procedures, in Auestad and Tj�stheim (1990), TA(1994), Linton and Nielsen (1995), and FHM (1997), a direct method has been proposed whichis based on \average regression surface". The procedure was referred as \projection method" in2



Auestad and Tj�stheim (1990) and TA (1994) and as \marginal integration method" by Lintonand Nielsen (1995) and Linton (1997). As pointed out by FHM (1997), the direct method hassome advantages: This method does not use iterations. Fast computation can be implemented.Furthermore, the explicit de�nition allows detailed asymptotic analysis. E�cient estimation ofadditive components was studied in Linton (1997) and FHM (1997) by using two independentapproaches. Masry and Tj�stheim (1997) extended the applicability of average surface idea toadditive nonlinear ARX time series. A useful modi�cation of the average surface idea is givenin Hargartener (1996).c) Finally, model (1.2) covers additive partially linear models:m(x1; : : : ; xq+r) = � + qXj=1 fj(xj) + x T3 � � (1:7)and partial interaction model:m(x1; : : : ; xd) = � + f12(x1; x2) + dXj=3 fj(xj): (1:8)Further discussions on models (1.7) and (1.8) can be found in FHM (1997) for the i.i.d. setup.The aim of this paper is to estimate the low dimensional additive component f1 in (1.2).Analogously, f2 can be estimated in the same fashion. The basic idea for estimating f1 is to�rst estimate directly the high-dimensional regression surface m(x1; : : : ; xd) and then averagethe regression surface over variables X (2) to stabilize the variance. The regression surface isestimated by using local polynomial �tting, which has been studied extensively for exampleTsybakov (1986), Fan (1993), Ruppert and Wand (1994), Fan and Gijbels (1996), Masry (1996)and Masry and Fan (1997). It has advantages over the Nadaraya-Watson regression estimator.In particular, it reduces bias of the Nadaraya-Watson estimator and copes well with the edgee�ect. For more details, see, e.g., Fan (1993) and Fan and Gijbels (1996) for the i.i.d. case,and Masry and Fan (1997) for the dependent situations.The paper is organized as follows. In the next section, we introduce our estimationprocedure. In Section 3 the main results of the paper, asymptotic bias and normality, are alsoformulated in the same section; their proofs are deferred to Section 5, based on some lemmas,which are proved in the Appendix. An application to additive model is discussed in Section4. Finally, in Section 5 the assumptions used throughout the paper are gathered together foreasy reference, followed by some brief comments.3



2. Average of Regression SurfaceFirst of all, let us introduce some notation. Denote byX (1)j = 0B@X1;j...Xr;j 1CA ; X (2)j = 0B@Xr+1;j...Xd;j 1CA ; X j = 0B@X1;j...Xd;j1CA = 0@X (1)jX (2)j 1A ;andm(x ) = E(Y jX = x ). LetW : <q ! < be a known weight function withE �W �X (2)�	 =1. Observe that, under model (1.2),E nm�x 1; X (2)�W �X (2)�o = � + f1(x 1) +E nf2 �X (2)�W �X (2)�o= �0 + f1(x 1) � f�1 (x 1); (2:1)where �0 = � + E nf2 �X (2)�W �X (2)�o : (2:2)Thus, f1 can be constructed, within a constant shift, via averaging the regression surface withrespect to variables X (2). This in turn suggests a direct estimation procedure: Estimate theregression function m �rst and then average out the estimated regression surface with respectto the variables X (2). The constant factor is not related to the �nal estimator, since f1(�), inpractice, is centered to have mean zero for identi�ability purpose. This kind of averaging ideawas studied by TA (1994) under time series models, and by Linton and Nielsen (1995) for thei.i.d. setting, and was further extended by FHM (1997). The purpose of introducing a weightfunction here is to optimize the estimation procedure.Consider the local linear approximation of f1 at a �xed point x 1,f1(u 1) � a(x 1) + bT (x 1)(u 1 � x 1);where u 1 lies in a neighborhood of x 1. Also, the local constant approximation of f2 at a �xedpoint x 2 is applied: f2(u 2) � c(x 2) for u 2 � x 2:Thus, we can approximate m locally by a linear term in a neighborhood of (x 1; x 2),m(u 1; u 2) � 
 + � T (u 1 � x 1) (2:3)for some 
 and � , depending on x 1 and x 2. The reason for introducing the local constantapproximation for the \nuisance function" f2 is to reduce the number of local parameters so4



that it is easier to implement for practical purpose. Higher order approximation can also beemployed for the function f2 at the expenses of introducing more local parameters and thetheoretical results continue to hold.Let K and L be the kernel functions and let h1 and h2 be the bandwidths. Given theobservations fYi; X igni=1, consider the multivariate weighted least squaresnXi=1 hYi � 
 � � T �X (1)i � x 1�i2Kh1 �X (1)i � x 1�Lh2 �X (2)i � x 2� ; (2:4)where Kh1(u ) = 1hr1K � uh1� and Lh2(u ) = 1hq2L� uh2� : (2:5)Minimizing (2.4) with respect to 
 and � gives the estimates of 
 and � , respectively. Letb
(x ) and b� (x ) be the solution to (2.4). Thus, our partially local linear estimator of m isbm(x ) = b
(x ). By computing the weighted sample average of bm, the following average regressionsurface estimator is proposed in FHM (1997):bf�1 (x 1) = 1n nXi=1 bm�x 1; X (2)i �W �X (2)i � ; (2:6)bf1(x 1) = bf�1 (x 1) � f �1 ; and f �1 = 1n nXi=1 bf�1 �X (1)i � : (2:7)This is a functional of bm(x ), and it turns out to possess good properties. Note that when thelocal constant �t is employed (i.e. � = 0) in (2.3), the resulting estimate b
 is the multivariatekernel regression estimator, which was discussed in TA (1994). For details, see the relations(5) and (6) in TA (1994).Let Xn�(r+1) = X(x 1) be the matrix with the ith row �1; (X (1)i � x 1)T� and W �n�n =W �(x ) be the diagonal weight matrix with the ith diagonal element W �i (x ) = K�h(X i � x ),where K�h(x ) = Kh1(x 1)Lh2(x 2);to the least-squares problem (2.4). Then,� b
b� � = �XTW �X��1XTW �Y ; (2:8)where Y = (Y1; : : : ; Yn)T , and the simple algebra shows that bm(x ) can be expressed asbm(x ) = nXi=1Kn(X i � x )Yi; (2:9)5



where with Sn(x ) = XT (x 1)W �(x )X(x 1) and eT1 = (1; 0; : : : ; 0),Kn(t � x ) = Kn(t 1 � x 1; t 2 � x 2) = eT1 S�1n (x ) � 1t 1 � x 1�K�h(t � x ): (2:10)It follows from the least-squares theory that, for all x ,nXi=1Kn(X i � x ) = 1; and nXi=1Kn(X i � x )�X (1)i � x 1� = 0: (2:11)3. Main ResultsBefore we state our main result, we introduce the mixing coe�cient. Let F ba be the�-algebra of events generated by fYi ; X j; a � j � bg. The stationary processes fYj ; X jg1i=�1are called strongly mixing (�-mixing), ifsupA2F0�1B2F1k jP (AB) � P (A)P (B)j = �(k) # 0;as k !1, and �(k) is called the strong mixing coe�cient.Among various mixing conditions used in literature, �-mixing is reasonably weak, andhas many practical applications. Many stochastic processes and time series are known to be�-mixing. Gorodetskii (1977) and Withers (1981) had obtained various conditions for linearprocess to be �-mixing. Under certain weak assumptions autoregressive and more generallybilinear time series models are strongly mixing with mixing coe�cients decaying exponentiallyfast. Auestad and Tj�stheim (1990) provided illuminating discussions on the role of �-mixing(including geometric ergodicity) for model identi�cation in nonlinear time series analysis. Undersome mild conditions, Masry and Tj�stheim (1995) showed that the ARCH process is stationary�-mixing.For easy reference, we introduce the following notation. Let p(x 1; x 2) be the joint density of�X (1); X (2)�, and p1(x 1) and p2(x 2) be the marginal densities of X (1) and X (2), respectively.Let jjKjjl = Z jK(u )jldu and �2(K) = Z uu TK(u )du :All limits will be taken as n ! 1; this will not be mentioned explicitly in the body of thepaper. Then, under Assumptions (1)-(9) stated in Section 5, we have the following theoremwhich generalizes one of the main results in FHM (1997) to the dependent case.6



Theorem 1 Under Assumptions (1)-(9), if the bandwidths are chosen such that h1 ! 0,h2 ! 0 in such a way thatnhr+41 = O(1); hl12 =h21 ! 0; and nhr1 hq2= log n!1; (3:1)then, (nhr1)1=2 � bf�1 (x 1) � f�1 (x 1) � 12 h21 tr ff 001 (x 1)�2(K)g� d�! N(0; v(x 1)); (3:2)where v(x 1) = jjKjj2 p1(x 1)E h�2(X )�2(X ) ��X (1) = x 1i (3:3)with �(x 1; x 2) = p2(x 2)W (x 2)p(x 1; x 2) ; (3:4)and �2(x ) = Var(Y ��X = x ): (3:5)Remark 1. If we consider weight function W (�) that minimizes v(x 1), the optimal weightfunction is W �X (2)� = c�1 p �x 1; X (2)� p1(x 1)�2 �x 1; X (2)� p2 �X (2)� ; (3:6)where c = p1(x 1)2Ef��2(X ) jX (1) = x 1g:The optimal minimal variance isminW v(x 1) = jjKjj2p1(x 1) hEf��2(X ) jX (1) = x 1gi�1 ; (3:7)and minW v(x 1) = jjKjj2�2=p1(x 1) if �2(x 1) = �2. For details, see, e.g., (3.4)-(3.6) in FHM(1997). The optimal weight function (3.6) depends on unknown functions and a method onhow to choose the optimal weight function based on the data was discussed in FHM (1997)in greater detail. In the ideal situation where f2(x 2) is known, one can estimate f1(x 1),by directly regressing Y � f2 �X (2)� on X (1) and such an ideal estimator is optimal in anasymptotic minimax sense (see Fan (1993)). Surprisingly, the average surface estimator (2.6)has the same asymptotic bias and variance as the ideal estimator when �2(x ) is a constant,even though the former does not rely on the knowledge of f2. For details, see Remarks 5-8 inFHM (1997). 7



4. An Application to Additive ModelWe now consider the following additive model as (1.6):m(u ) = E (Y jU = u ) = � + g1(u1) + : : :+ gq(uq); (4:1)where g1(�); : : : ; gq(�) are univariate functions satisfying the identi�ability conditionE fgi(Ui)g = 0; i = 1; : : : ; q;� is an unknown parameter, and U = (U1; : : : ; Uq)T is a continuous random vector having ajoint density p. Our goal is to estimate each additive component gk using the average surfacemethod. As in (2.1), let g�k , k = 1; : : : ; q, be the average of regression function:g�k(uk) � E �m �U k�Wk �U �k�	 = gk(uk) + �k; (4:2)where �k = �+E hPj 6=k gj(Uj)Wk �U�k�i, U k = (U1; : : : ; Uk�1; uk; Uk+1; : : : ; Uq)T , U �k =(U1; : : : ; Uk�1; Uk+1; : : : ; Uq)T having the density p�k and Wk : <q�1 ! < is the weightfunction such that E �Wk �U �k�	 = 1. For the given observations fYi; U igni=1, the averagesurface estimator bg�k is de�ned as in (2.6) but now using the bandwidths h1 = h1k and h2 = h2k,bg�k(uk) = 1n nXj=1 bmk �U kj �Wk �U �kj � ; (4:3)where U kj = (U1;j : : : ; Uk�1;j ; uk; Uk+1;j ; : : : ; Uq;j)T , bmk(�) is the partially local linear esti-mator, de�ned as in (2.9), and U �kj = (U1;j ; : : : ; Uk�1;j ; Uk+1;j; : : : ; Uq;j)T .Theorem 2 Suppose that the conditions of Theorem 1 hold for each component k. Thenwe have the following the joint asymptotic normality:0B@pnh11 �bg�1(u1) � g�1(u1) � 12 h211g001 (u1)�2(K)�...pnh1q �bg�q (uq) � g�q (uq) � 12 h21qg00q (uq)�2(K)�1CA d�! N(0; �); (4:4)where � = jjKjj2diag��21(u1); : : : ; �2q(uq)	 with�2k(uk) = pk(uk)E ��2(U )p�k(U �k)2W 2k (U �k)p2(U ) ���Uk = uk� : (4:5)Remark 2. If the ideal weight function in (3.6) applies to each additive component, theweight function Wk should becomeWk(U �k) = p(U k)pk(uk)�2(U k)p�k(U �k) �Z p(U k)pk(uk)dU �k�2(U k) ��1 ; (4:6)8



and the ideal variance is kKk2= �E ���2(U ) ��Uk = uk	 pk(uk)�, which is jjKjj2�2=pk(uk) if�2(u ) = �2.5. Conditions and ProofsBefore we embark on the proofs of theorems, let us list the assumptions used throughoutthe paper.Assumptions:(1) Suppose that the functions W and f2 are bounded on the support D of W . The weightfunction W (x 2) is uniformly continuous.(2) The kernel functions K and L are symmetric and have bounded supports. Furthermore,L is an order l1 kernel.(3) f1 has a bounded second derivative in a neighborhood of x 1 and f2(x 2) has a bounded lth1order derivative. Furthermore, for u 1 in a neighborhood of x 1 and u 2 2 D, the densityp(u 1; u 2) has bounded partial derivatives up to order two with respect to u 1 and up toorder l1 with respect to u 2, and it also satis�esinfu 12N(x 1)x 22D p(u 1; x 2) > 0;where N(x 1) is a neighborhood of x 1.(4) Suppose that �2(u ) and b(u ) = E �jY �m(u )j2+� jX = u � are continuous at the pointu 1 = x 1, and E �b(X )j�(X )j2+� ��X (1) = x 1� <1is bounded for all x 1 for some � > 0.(5) Suppose that the joint conditional density f(X 1;X j) j (Y1; Yj) of (X 1; X j) given (Y1; Yj)satis�es, for all j > 1 and all values of arguments involved,���f(X 1;X j) j (Y1; Yj)(u ; v j y1; y2)��� �M <1for some positive constant M .(6) The processes fYi ; X ig are strongly mixing with P1i=1 ia[�(i)] �2+� < 1 for some a >�=(2 + �), where � is given in Assumption (4).(7) Assume that there is a sequence of positive integers satisfying vn !1 and vn = o �pnhr1�such that (n=hr1)1=2�(vn)! 0. 9



(8) The conditional distribution of G(y ju ) of Y given X = u is continuous at the pointu 1 = x 1.(9) nhr1 h2q2 = log2 n ! 1 and h41 log n=hq2 ! 0.Remark 3. Consider the popular choice for the bandwidth hr1 = dn��� (d > 0; 0 < �� < 1),one can show that a su�cient condition for Assumption (7) is �(n) = O (n��) with � >(1 + ��)=(1 � ��). In particular, if �� = 1=5, then � > 3=2. Also, a su�cient condition forAssumption (6) is �(n) = O�n��0� with �0 > 2 + 2=�. Therefore, if �� = 1=5, and � = 2,then a su�cient condition for Assumptions (6) and (7) is �(n) = O �n��00� with �00 > 3. Fordetails, see Masry and Fan (1997).Note that by the dominated convergence theorem, it can be easily shown from Assumption(8) that for any J > 0, the functionsmJ(u ) = E �Y I(jY j � J) ��X = u � and �2J(u ) = Var �Y I(jY j � J) ��X = u �are continuous at the point u 1 = x 1. Also, for each L > 0, e�2J(u ) = Var �Y I(jY j > J) ��X = u �is continuous at the point u 1 = x 1.Proof of Theorem 1:Let Wi = W �X (2)i � and X i = � x 1X (2)i �. Then, by (2.1) and Assumptions (1) and (6),and applying the central limit theorem for stationary �-mixing sequences (see, for example,Theorem 18.5.3 in Ibragimov and Linnik (1971, p.346)), we have1n nXi=1m �X i�Wi = f�1 (x 1) + Op �n�1=2� : (5:1)Thus, bf�1 (x 1) � f�1 (x 1) = 1n nXi=1 � bm �X i� �m �X i��Wi +Op �n�1=2� : (5:2)Let "i = Yi � E(Yi jX i) = Yi �m(X i) and sj(x ) = m(X j) �m(x ) � f 01(x 1)T �X (1)j � x 1�.Then, it follows from (2.9)-(2.11) thatbm(x ) �m(x ) = nXj=1Kn (X j � x ) ["j + sj(x )]= eT1 S�1n (x ) � 1 : : : 1X (1)1 � x 1 : : : X (1)n � x 1�W �(x ) "+ eT1 S�1n (x ) � 1 : : : 1X (1)1 � x 1 : : : X (1)n � x 1�W �(x ) s(x ); (5:3)10



where " = ("j)n�1 and s(x ) = (sj(x ))n�1. Let H = diag�1; h�11 ; : : : ; h�11 	 be a (r+1)�(r+1)diagonal matrix and an = (nhr1 hq2= log n)�1=2. Then, owing to the uniform weak convergenceof the kernel density estimator (c.f., Theorem 1 in Masry (1996)) and by Assumptions (2)-(6),we have S�n(x ) � 1nH Sn(x )H = 1n nXj=1W �j (x )� 1X (1)j �x 1h1 �� 1X (1)j �x 1h1 �Tconverges to S(x ) = p(x )� 1 00 �2(K)� in probability uniformly in x , and1nH Sn(x )H = 1n nXj=1W �j (x )� 1X (1)j �x 1h1 �� 1X (1)j �x 1h1 �T= E(W �1 (x )� 1X (1)1 �x 1h1 �� 1X (1)1 �x 1h1 �T)+ Op(an)= 0@ p(x ) h1 p(1;0)(x )T �2(K)h1 �2(K) p(1;0)(x ) p(x )�2(K) 1A+ Op(cn);uniformly in x , where cn = h21 + hl12 + an and p(1;0) denotes the vector of partial derivativesof p with respect to x 1. Now note that0@ p(x ) h1 p(1;0)(x )T �2(K)h1 �2(K) p(1;0)(x ) p(x )�2(K) 1A�1= 0@ p(x ) 00 p(x )�2(K)1A�1 + h1p(x ) 0@ 0 p(1;0)(x )T �2(K)�2(K) p(1;0)(x ) 0 1A + Op(h21):Therefore, n eT1 S�1n (x )H�1 = p�1(x ) �1; h1 p(1;0)(x )T �2(K)� + Op(cn): (5:4)Likewise, using the same argument as above, and by Assumptions (2)-(6), one has1nH � 1 : : : 1X (1)1 � x 1 : : : X (1)n � x 1�W �(x ) s(x )= 1n nXj=1W �j (x ) sj(x ) � 1X (1)j �x 1h1 � = Op(cn) (5:5)uniformly in x . Substitute (5.4) and (5.5) into (5.3) to obtaineT1 S�1n (x ) � 1 : : : 1X (1)1 � x 1 : : : X (1)n � x 1�W �(x ) s(x )11



= p�1(x ) 8<: 1n nXj=1W �j (x ) sj(x )9=;+ p�1(x ) p(1;0)(x )T �2(K) 8<: 1n nXj=1W �j (x ) sj(x ) �X (1)j � x 1�9=;+ Op(c2n)= 12 h21 tr ff 001 (x 1)�2(K)g + p�1(x )Bn(x ) + op(h21) + Op(c2n); (5:6)whereBn(x ) = 1n nXj=1W �j (x ) hf2 �X (2)j �� f2(x 2)i n1 + p(1;0)(x )T �2(K) �X (1)j � x 1�o :Also, note that S�n�1(x ) = S�1(x ) hI + (S(x )� S�n(x ))S�n�1(x )i :Then, S�n�1(x ) converges to S�1(x ) in probability uniformly in x . It then follows thatS�n�1(x ) = S�1(x )(1+op(1)), where op(1) is uniform in x , and nS�1n (x )H�1 = H S�1(x )(1+op(1)). Therefore, n eT1 S�1n (x )(x )H�1 = p�1(x ) eT1 (1 + op(1)): (5:7)Substituting (5.7) into (5.3), one obtainseT1 S�1n (x ) � 1 : : : 1X (1)1 � x 1 : : : X (1)n � x 1�W �(x ) " = (1 + op(1)) p�1(x )Tn(x ); (5:8)where Tn(x ) = 1n nXj=1W �j (x ) "j :Substituting (5.6) and (5.8) into (5.3), after some algebra, we obtainbm(x )�m(x ) = 12 h21 tr ff 001 (x 1)�2(K)g + p�1(x ) fTn(x ) + Bn(x )g + op(h21) + Op(c2n): (5:9)Thus, by (5.2), (5.9) and the strong law of large numbers (see, for example, Cai and Roussas(1992)), we havebf�1 (x 1)�f�1 (x 1)�12 h21 tr ff 001 (x 1)�2(K)g = T �n (x 1)+B�n(x 1)+op(h21)+Op �c2n + n�1=2� ; (5:10)where with A(x ) = W (x 2)=p(x ),T �n (x 1) = 1n nXi=1 Tn(x i)A(x i); and B�n(x 1) = 1n nXi=1 Bn(x i)A(x i): (5:11)12



A simple algebra leads toT �n(x 1) = 1n nXj=1Kh1 �X (1)j � x 1� � �x j� "j+ 1n nXj=1Kh1 �X (1)j � x 1� ��n �x j� � � �x j�	 "j � Gn(x 1) +G�n(x 1); (5:12)where � is de�ned in (3.4) and�n(x 1; x 2) = 1n nXi=1 Lh2 �X (2)i � x 2� A(x i): (5:13)Substituting (5.12) into (5.10), one hasbf�1 (x 1) � f�1 (x 1) � 12 h21 tr ff 001 (x 1)�2(K)g= Gn(x 1) +G�n(x 1) + B�n(x 1) + op(h21) + Op �c2n + n�1=2� : (5:14)In order to complete the proof, we need the following two lemmas but their proofs are relegatedto the Appendix since they are quite involved. To this end, let"�j = �(x j) "j = fYj �m(X j)g p2 �X (2)j �W �X (2)j �p�x 1; X (2)j � ; (5:15)and �j = �j(x 1) = Kh1 �X (1)j � x 1� "�j ; (5:16)Then, by (5.12) and stationarity,Gn(x 1) = 1n nXj=1 �j; and nVar(Gn(x 1)) = Var(�1) + 2 nXj=2�1� jn�Cov(�1; �j):Lemma 1 Under the assumptions of Theorem 1, we have,nhr1Var(Gn(x 1)) ! v(x 1); and hr1 nXj=2 ��Cov(�1; �j)�� ! 0;where v(x 1) is de�ned in (3.3).Lemma 2 Under the assumptions of Theorem 1, we have,G�n(x 1) = op �(nhr1)�1=2� ; and B�n(x 1) = op �(nhr1)�1=2� :13



It follows from (5.14), Lemma 2 and the conditions on the bandwidths (see (3.1) andAssumption (9)) thatbf�1 (x 1) � f�1 (x 1) � 12 h21 tr ff 001 (x 1)�2(K)g = Gn(x 1) + op �(nhr1)�1=2� : (5:17)We remark that the third term in the left hand side of (5.17) can be viewed as the \asymptoticbias" of bf�1 (x 1), and the \asymptotic variance" of bf�1 (x 1) is v(x 1) de�ned in (3.3).We now turn to show (3.2). This is equivalent to demonstrating the asymptotic normalityof Gn(x 1) in (5.17). In discussing the convergence in (3.2), we use the familiar technique of\big block { small block" procedure. More precisely, partition the set f1; : : : ; ng into 2 kn + 1subsets with large block of size un and small block of size vn, where k = kn = bn=(un + vn)c.Now we �rst consider the choices of the block sizes. Assumption (7) implies that there is asequence of positive constants 
n !1 such that
n vn = o�pnhr1� ; and 
n(n=hr1)1=2 �(vn)! 0: (5:18)De�ne the large block size un by un = b(nhr1)1=2=
nc and the small block size vn. Then, itcan easily be shown from (5.18) that, as n!1,vn=un ! 0; un=n! 0; un (nhr1)�1=2 ! 0; and (n=un)�(vn)! 0: (5:19)Ignore the dependence on x 1, and for j = 1; : : : ; kn, set r�j = (j � 1)(un + vn), and�j = r�j+unXi=r�j+1 �i; �j = r�j+1Xi=r�j+un+1 �i; and �k+1 = nXi=r�k+1+1 �i:Write nGn(x 1) = kXj=1 �j + kXj=1 �j + �k+1 = Gn;1 +Gn;2 +Gn;3: (5:20)It will be shown that, as n!1,hr1n �E[Gn;2]2 +E[Gn;3]2	! 0; (5:21a)hr1n kXj=1E(�2j )! v(x 1); (5:21b)�����E[exp(itGn;1)] � kYj=1E[exp(it�j)]�����! 0; (5:21c)14



and hr1n kXj=1E "�2j I j�jj > "sv(x 1)nhr1 !#! 0 (5:21d)for every " > 0. (5.21a) implies that Gn;2 and Gn;3 are asymptotically negligible in probability;(5.21c) shows that the summands f�jg in Gn;1 are asymptotically independent; and (5.21b)and (5.21d) are the standard Lindeberg-Feller conditions for asymptotic normality of Gn;1 forthe independent setup.Let us �rst establish (5.21a). Observe thatE(Gn;2)2 = kXj=1Var(�j) + 2 X1�i<j�kCov(�i; �j) � I1 + I2: (5:22)It follows from stationarity and Lemma 1 thatI1 = kn Var(�1) = kn Var0@ vnXj=1 �j1A = kn vn h�r1 [v(x 1) + o(1)]: (5:23)Next consider the second term I2 in the right hand side of (5.22). Since r�j � r�i � un for allj > i, we therefore havejI2j � 2 X1�i<j�k vnXj1=1 vnXj2=1 ��Cov(�ri+un+j1 ; �rj+un+j2)�� � 2 n�unXj1=1 nXj2=j1+un ��Cov(�j1 ; �j2)��:By stationarity and Lemma 1, one obtainsjI2j � 2n nXj=un+1 ��Cov(�1; �j)�� = o �n h�r1 � : (5:24)Hence by (5.22)-(5.24), we havehr1n E[Gn;2]2 = O �kn vn n�1� + o(1) = o(1): (5:25)It follows from stationarity, (5.19) and Lemma 1 thatVar(Gn;3) = Var0@n�kn(un+vn)Xj=1 �j1A = O �(n � kn(un + vn))h�r1 � = o �nh�r1 � : (5:26)Combining (5.22), (5.25) and (5.26), we establish (5.21a). As for (5.21b), by stationarity, (5.19)and Lemma 1, it is easily seen thathr1n knXj=1E(�2j ) = hr1 knn E(�21) = kn unn � hr1unVar0@ unXj=1 �j1A! v(x 1):15



In order to establish (5.21c), we make use of Lemma 1.1 in Volkonskii and Rozanov (1959)(see also Ibragimov and Linnik (1971, p.338)) to obtain�����E[exp(itGn;1)] � knYj=1E[exp(it�j)]����� � 16 (n=un)�(vn)tending to zero by (5.19).Finally, we will establish (5.21d). To this end, we now employ a truncation technique asfollows. Let bJ(y) = yI(jyj � J), where J is a �xed positive number, and �Jn;j = �Jn;j(x 1) =[bJ(Yj)�mJ (X j)]Kh1 �X (1)j � x 1� �(x j), then, Gn(x 1) = GJn(x 1) + eGJn(x 1), whereGJn(x 1) = n�1 nXj=1 �Jn;j; and eGJn(x 1) = n�1 nXj=1 ��j � �Jn;j� :By using the same arguments as those employed in the proof of Lemma 1, one has, as n!1,vn;J(x 1) = nhr1Var �GJn�! vJ(x 1) = jjKjj2p1(x 1)E n�2J(X 1)�2(x 1) ��X (1)1 = x 1o :The boundedness of K and � implies that j�Jn;jj � B=hr1 for some B > 0. This in turnimplies that pnhr1 max1�j�kn j�Jj j � B q1=pnhr1 ! 0, by (5.19). Therefore, the setn���Jj �� > "pvJ(x 1) n=hr1o is an empty set when n is large su�ciently. Hence, it followsthat (5.21d) holds true for �Jj . Consequently, we have established the following asymptoticnormality: pnhr1 GJn(x 1) d�! N(0; vJ(x 1)) (5:27)as n!1. Observe that, for any t 2 <1,�����E exp�itpnhr1 Gn� � exp ��v(x 1)t2=2� ������ �����E exp�itpnhr1 (GJn + eGJn)� � exp ��vJ(x 1)t2=2� �����+ ����� exp ��vJ(x 1)t2=2� � exp ��v(x 1)t2=2� ������ �����E exp�itpnhr1 GJn�� exp ��vJ(x 1)t2=2� �����+ E���exp�itpnhr1 eGJn� � 1���+ ����� exp ��vJ(x 1)t2=2� � exp ��v(x 1)t2=2� �����:16



As n!1, the �rst term goes to 0 by (5.27) for each J > 0 and the third term also goes to 0as J !1 by the dominated convergence theorem. In order to complete the proof, it su�cesto show that the second term goes to 0 as n! 1 and then J !1. To this end, using thefact that jeix � 1j � 2jxj for all x 2 < and the Cauchy-Schwartz's inequality, we haveE���exp�itpnhr1 eGJn� � 1��� � 2qnhr1 Var( eGJn):Note that eGJn has the same structure as Gn except that Yj is replaced by YjI(jYj j > J). Then,using the same arguments as those used in the proof of Lemma 1, we obtain, as n!1,nhr1 Var( eGJn)! jjKjj2p1(x 1)E ne�2J(X 1)�2(x 1) ���X (1)1 = x 1o :It can be easily shown that the right hand side goes to 0 as J !1. This completes the proofof the theorem.Proof of Theorem 2:By (5.17), the direct estimator of each component bg�i (ui) has the following stochasticrepresentation bg�i (ui) � g�i (ui) = Ti;n + 12 h21i g00i (ui)�2(K) + op �(nh1i)�1=2� ; (5:28)where Ti;n = 1n nXj=1Kh1i (Ui;j � ui) �i(U ij) "j ; and �i(U i) = Wi(U �i) p�i (U �i)p(U i) :In order to show (4.4), it su�ces to show from (5.28) that0B@pnh11 T1;n...pnh1q Tq;n1CA ! N(0; �); (5:29)It su�ces to show from Theorem 1 that the asymptotic covariance between Ti;n and Tl;n shouldbe zero for i 6= l. In other words, we will show thatpn2 h1i h1l Cov(Ti;n; Tl;n)! 0: (5:30)To this e�ect, by stationarity, we have,Cov(Ti;n; Tl;n) = 1n E �Kh1i (Ui � ui)Kh1l (Ul � ul) �i(U i)�l(U l) "2�+ 1n2 nXj1 6=j2E �Kh1i (Ui;j1 � ui)Kh1l (Ul;j2 � ul) �i(U ij1)�l(U lj2) "j1 "j2�� F1 + F2: (5:31)17



It is easily seen by Theorem 1 in Sun (1984) thatF1 = O �n�1� : (5:33)Employing the same arguments as those used in the proof of (A.5), and by stationarity, wehave jF2j � 1n nXj=2(���E �Kh1i (Ui;1 � ui) Kh1l (Ul;j � ul) �i(U i1)�l(U lj) "1 "j�+ E �Kh1i (Ui;j � ui)Kh1l (Ul;1 � ul) �i(U ij)�l(U l1) "1 "j� ���) = O �n�1� :This, in conjunction with (5.31) and (5.32), concludes that (5.30) holds true. Therefore, thiscompletes the proof of the theorem.APPENDIXProof of Lemma 1 It is easily seen by stationarity thatnVar (Gn(x 1)) = Var(�1) + 2 nXj=2�1 � jn�Cov(�1; �j) � J1 + J2: (A:1)For J1, since E(�j) = 0, we havehr1 J1 = hr1E(�21) = Z K2(u 1)�2(x 1 + h1u 1; u 2)�2(x 1; u 2) p(x 1 + h1u 1; u 2)du 1du 2:By Theorem 1 in Sun (1984) and Assumptions (2)-(4), we then havehr1 J1 ! jjKjj2 Z �2(x 1; u 2)�2(x 1; u 2) p(x 1; u 2) du 2= jjKjj2p1(x 1)E h�2(X )�2(X ) jX (1) = x 1i = v(x 1): (A:2)It remains to show that hr1 J2 ! 0. To this end, choose a sequence of positive integers satisfying�n = O �h�� p=a(2+�)1 �, where a is given in Assumption (6). Then�n = o �h�r1 � and h� �r2+�1 Xj��n� �2+� (j)! 0: (A:3)We decompose the sum into three terms due to the possible overlap between X 1 and X j,nXj=2 jCov(�1; �j)j = d�1Xj=2 + �nXj=d + nXj=�n+1 � J21 + J22 + J23; (A:4)18



For J21, there is an overlap between the components of X 1 and X j but not in J22 or J23. Letus consider J22 �rst. By Assumptions (1)-(5), and the Cauchy-Schwartz's inequality, we havejCov(�1; �j)j = jE(�1 �j)j�M Z 1hr1K �u 1 � x 1h1 ����(x 1; u 2)�� 1hr1K �v 1 � x 1h1 ����(x 1; v 2)��� �E(Y 21 ) + jm(u ) +m(v )jEjY1j + jm(u )m(v )j�du 1du 2dv 1dv 2� const. Z ��W (u 2)W (v 2)��hE(Y 21 ) + jf2(u 2) + f2(v 2)j[EjY1j+ jf1(x 1)j]+ 2jf1(x 1)jEjY1j + f21 (x 1) + jf1(x 1)jjf2(u 2) + f2(v 2)j + jf2(u 2)f2(v 2)ji� p2(u 2)p2(v 2) du 2 dv 2 <1: (A:5)Hence, hr1 jJ22j � const. �nXj=dhr1 = O (�nhr1) = o(1) (A:6)by the choice of �n. Next, work with J21. To this end, let ~r be the number of the commonelements in �X (1)1 ; X (1)j �. Employing the exactly same arguments as those used in the proofof (6.10) in Masry and Tj�stheim (1997) and (A.5), one can show thathr1 jJ21j � const. d�1Xj=2hr�~r1 = O(h1) = o(1): (A:7)For J23, we apply Davydov's inequality (see, e.g., Hall and Heyde (1980), Corollary A.2) toobtain, jCov(�1; �j)j � 8� �2+� (j � 1) �Ej�1j2+�� 22+� :It is easily seen thath(1+�)r1 Ej�1j2+� =Xu 3 Z jK(u 1)j2+�b(x 1 + h1u 1; u 2)j�(x 1; u 2)j2+� p(x 1 + h1u 1; u 2)du 1du 2! jjKjj2+� p1(x 1)E �b(X )j�(X )j2+� jX (1) = x 1� <1as n!1. Therefore, Ej�1j2+� � const. h�(1+�)r1 :Thus, jCov(�1; �j)j � const. � �2+� (j � 1)h� 2(1+�)r2+�1 : (A:8)Thus, hr1 jJ23j � const. h� �r2+�1 Xj��n� �2+� (j)! 0; (A:9)19



as n!1 by (A.3). Thus, by (A.4), (A.6), (A.7) and (A.9), we havehr1 nXj=2 jCov(�1; �j)j ! 0:Consequently, hr1 jJ2j ! 0: (A:10)Combining the above expression with (A.1) and (A.2) completes the proof of the lemma.Proof of Lemma 2 By (5.12) and (5.13),G�n(x 1) = 1n nXj=1Kh1 �X (1)j � x 1� ���n �x j� � � �x j�	 "j+ 1n nXj=1Kh1 �X (1)j � x 1� ��n �x j� � ��n �x j�	 "j� G�n;1(x 1) +G�n;2(x 1); (A:11)where �n is de�ned in (5.13) and��n(x ) = E f�n(x )g = Z<q L(u )A(x 1; x 2 + h2 u )p2(u ) d u : (A:12)Clearly, as n!1, ��n(x ) ! �(x ): (A:13)Let �j = �n;j(x 1) = Kh1 �X (1)j � x 1� ���n �x j� � � �x j�	 "j . Then,nhr1Var(G�n;1(x 1)) = hr1Var(�1) + 2hr1 nXj=2�1 � jn�Cov(�1; �j) � F3 + F4: (A:14)A simple algebra givesF3 = hr1E hK2h1 �X (1)1 � x 1� ���n �x 1� � � �x 1�	2 �2(X 1)i= Z K2(u 1) f��n (x 1; u 2) � � (x 1; u 2)g2� p(x 1 + h1u 1; u 2)�2(x 1 + h1u 1; u 2) du 1 du 2= o(1) (A:15)by (A.13). Similar to (A.4), we decompose the sum into three terms due to the possible overlapbetween X 1 and X j ,nXj=2 jCov(�1; �j)j = d�1Xj=2 + �nXj=d + nXj=�n+1 � F41 + F42 + F43; (A:16)20



For F41, there is an overlap between the components of X 1 and X j but not in F42 or F43.For F41, by the Cauchy-Schwartz's inequality and (A.15), we havehr1 F41 = o(1): (A:17)Following the same lines as those employed in the proof of (A.6) and (A.10), we havehr1 F42 = o(1); and hr1F43 = o(1):This, in conjunction with (A.14)-(A.17), implies thatnhr1Var(G�n;1(x 1)) = o(1): (A:18)Next we show that G�n;2(x 1) is negligible. To this end, let Fn denote the empirical distributionof nX (2)j onj=1, and let F be the distribution of X (2). By (5.13) and (A.12), we obtain�n(x ) � ��n(x ) = Z<q Lh2(u � x 2)A(x 1; u ) dfFn(u )� F (u )g: (A:19)Let eL be the Fourier transform of L. SubstituteL(u ) = (2�)�q Z<q e�i ��u eL(�) d�into (A.19) to obtain�n(x ) � ��n(x ) = (2�)�q Z<q eL(�) ei ��x 2=h2 d � Z<q 1hq2 e�i ��u =h2 A(x 1; u ) dfFn(u )� F (u )g= Z<q eL(�) ei ��x 2=h2 I12(x 1; �) d � ; (A:20)where I12(x 1; �) = (2�)�q Z<q 1hq2 ei ��u =h2 A(x 1; u ) dfFn(u ) � F (u )g:Substituting (A.20) into G�n;2(x 1) of (A.11), we haveG�n;2(x 1) = Z<q I11(x 1; �) I12(x 1; �) eL(�) d � ; (A:21)where I11(x 1; �) = 1n nXj=1 ei ��X (2)j =h2 Kh1(X (1)j � x 1) "j:21



I11(x 1; �) can be analyzed by following the same lines as those employed in the proof of Lemma1 to obtain sup�2<q E ���I211(x 1; �)��	 = O �(nhr1)�1� : (A:22)By (6.61) in Masry and Tj�stheim (1997),sup�2<q E ���I212(x 1; �)��	 = O �(nh2q2 )�1� : (A:23)By the Cauchy-Schwartz inequality, (A.21)-(A.23) and Assumptions (2) and (9),E jG�n;2(x 1)j � sup�2<q �E ���I211(x 1; �)��	 E ���I212(x 1; �)��	�1=2 Z<q ���eL(�)��� d�= O �(n2 hr1 h2q2 )�1=2� = o�(nhr1)�1=2� : (A:24)This completes the proof of the �rst part of lemma. Finally, as in FHM (1997), by calculationof the �rst two moments in the manner of the proofs of Lemma 1 and the �rst part of thislemma, one can show that B�n(x 1) = op �(nhr1)�1=2� :This concludes the lemma. REFERENCESAuestad, B. and Tj�stheim, D.(1990). Identi�cation of nonlinear time series: First ordercharacterization and order determination. Biometrika 77, 669{687.Baju, A., Hastie, T.J. and Tibshirani, R.J.(1989). Linear smoothers and additive models (withdiscussion). Ann. Statist. 17, 453{510.Cai, Z. and Roussas, G.G.(1992). Uniform strong estimation under �-mixing, with rates.Statist. Probab. Lett. 15, 47{55.Engle, R.F.(1982). Autoregressive conditional heteroscedasticity with estimates of the varianceof U.K. in
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