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Abstract

Many popular curve estimators based on smoothing have diffi-
culties caused by boundary effects. These effects are visually very
disturbing in practice, and can play a dominant role in theoretical
analysis. Local linear estimators are known to give very good visual
performance at boundaries and to have an asymptotic rate of con-
vergence which is as good as interior points. We show that these
estimators are also optimal in the much deeper sense of best possible
constant coefficient, using minimax lower bound results. This shows
local linear estimators must be at least as efficient as the much more
complicated “optimal boundary kernels”. Parallel results for both
regression and density estimation are presented. The results are ex-
tended to estimation of derivatives, since this is vital to applications
in plug-in bandwidth selection.

1 Introduction

Nonparametric curve estimation methods make no assumptions on the shape
of the curves of interest and hence allow flexible modeling of the data. If the
support of the true curve has important boundaries then most such methods



give estimates that are severely biased in regions near the end points. This
boundary problem affects global performance visually and also in terms of
a slower rate of convergence in the usual asymptotic analysis. It has been
recognized as a serious problem and many works are devoted to reduce its
effect. Gasser & Miiller (1979), Gasser, Miller, & Mammitzsch (1985), Gra-
novsky & Miiller (1991), Miiller (1991a), and Miller (1991b) discuss using
boundary kernels to correct this problem for the conventional kernel esti-
mators. Rice (1984) suggests a linear combination of two kernel estimators
with different bandwidths to reduce the bias. Schuster’s (1985) mirror im-
age estimator in density estimation “folds back” the probability mass that
extends beyond the support. The estimator introduced in Hall & Wehrly
(1991) is essentially a more sophisticate regression version of Schuster’s ap-
proach. Djojosugito & Speckman (1992) approach boundary bias reduction
based on a finite-dimensional projection in Hilbert space. Boundary effects
for smoothing splines are discussed in Rice & Rosenblatt (1981). Eubank
& Speckman (1991) also provide some boundary correction methods. Fan
& Gijbels (1992) point out that the local linear regression smoother adapts
to boundary estimation automatically. Moreover, unlike most other meth-
ods, the local linear regression smoother does not require knowledge of the
location of the endpoints.

The main purpose of this article is to show that a local linear regression
estimator is asymptotically efficient even in the deep sense of constant coef-
ficient for estimating regression functions at endpoints in a minimax sense.
A similar result for the density estimation setting is also presented. This
result settles the important question of how local linear estimators compare
with “optimal boundary kernels”, by showing the former must be at least as
efficient. We feel this gives local linear estimators an important advantage,
because they are also (i) easier to interpret ( ii ) much easier to implement
( 1ii) appear far faster to compute ( to factors of 100, see Fan & Marron
(1992). )

We review some regression smoothers and the boundary adaptive prop-
erty of the local linear estimator in section 2. Then the minimax efficiency of
the local linear regression smoother is discussed in section 3. Modification of
the method for the purpose of density estimation and boundary performance
of the resulting estimator are investigated in section 4. Analogous boundary
efficiency of that estimator follows immediately. Then, in section 5, we cal-
culate the relative efficiency of the local linear estimator with the Gaussian
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kernel , and also of Rice’s boundary adjusted estimator. In sections 6 and 7,
we extend the results to higher order local polynomial fitting for estimating
function derivatives.

Nonparametric minimax problems are interesting and challenging. Re-
cent advancements in this area can be found in, for example, Nussbaum
(1985), Donoho and Liu (1991), Fan and Hall (1992), Donoho and Johnstone
(1992), Brown and Low (1993), Efroimovich (1993), Fan (1993), and refer-
ences therein. Most articles focus either on the minimax risk of estimating a
whole function or on that of estimating a function at interior points. How-
ever, the minimax problem at a boundary point has not been studied and the
methods used here are different from that at an interior point. In particular,
we handle the “effective optimal kernel” through a representation in terms
of Legendre polynomials.

2 Some Regression Smoothers

Suppose (X1,Y1), .., (X, Ys) is a random sample from a population (X,Y)
with density function f(z,y). Our goal is to estimate the regression function
m(z) = E(Y|X = z). There are a number of estimators proposed for this
purpose in the literature. Two of the simplest, but most widely studied
are the Nadaraya-Watson and Gasser-Miiller kernel estimators, see Chu and
Marron (1991) for references and discussion.

Recently many nice properties of the local linear regression estimator
have been presented, see Stone (1977) and Fan (1992). To understand this
estimator, let @ and b minimize the following weighted sum of squares

; 1)

n
1=

(Y —a—b(Xi — 2))* K (ﬁ-'—m) .

1
The local linear regression estimator, defined to be @, can be written as
n n
miL(z) =y wiYi/ Y wi,
i=1 i=1

with

wi = [Snz — (X — 2)Sni] K (X‘ - ”) X

h



where

Sni=y_ (X; —2)'K

1=1

Xj—:l') _
( —%),1=1,2

Let fx(-) be the marginal density of X. In applications, there are often
boundaries present in the support of fx; e.g. fx is supported in [0,1]. In
that case most regression estimators need to be modified. Otherwise they are
seriously biased in the boundary regions even to the extent of a slower rate
of convergence. Fan and Gijbels (1992) show that the local linear smoother
does not share this shortcoming; it retains the same rate of convergence at
the boundaries as in the interior. Denote the conditional variance of ¥ on X
by 0%(z) = Var(Y|X = z). The behavior of the estimator m;, at the left
endpoints £ = ch,c > 0 is restated in the following theorem. Some conditions
are needed:

(A1) fx(-),m"(-), and o(-) are bounded on [0, 1] and right continuous at

the point zero.

(A2) lilxrllsup | K (u)u®| < oo.

uj—+00
Theorem 1 (Fan and Gijbels, 1992) Suppose conditions (A1) and (A2) hold.
Then the conditional mean squared error of the estimator mpr at the bound-
ary point = ch is given by
Bk(c) o2(0+)

1 " 2314 —
{z[m (O-Hax (A" A+ ==

ba+ e,

where
_ % (82,6 — U31,C)2 K(u)du
2 ) =

2
82,e80,c — S1,¢ (32,c30,c - sg,c)

with ;. = [Su'K(u)du,l=0,1,2,3.

83, — 81,8
ag(c) = 213 gy ()

’

Thus this estimator maintains the same asymptotic mean squared error
rate everywhere, including the boundaries. Fan (1992) also shows that it
attains the minimum risk within a certain class of estimators at interior
points. An interesting question is whether it achieves some optimal risk even
at the boundaries. For the left boundary at z = 0, this turns out to give
a whole family of different minimax problems indexed by ¢ € [0,1] in the
representation ¢ = ch. The most important of these, and also the simplest
to analyze, is £ = 0, so only that case is considered here.
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3 Linear Regression Smoothers

Kernel estimators and mpz(z), and most other estimators are weighted av-
erages of the responses. Such estimators are called linear smoothers in the
literature.

Definition 1 A linear smoother has the form

ﬁL(m) =Z u/i(le veey Xn)Yt

i=1

This class of smoothers also includes the popular smoothing spline and
the orthogonal series estimators. The linear smoother 7 () has conditional
risk

R(m(z), () = E [(@L(z) — m(2)) [ X1, .0 Xa

= {f: Wim(X;) — m(a:)r + 30 WEH(X,)

i=1 =1

> ) . @)
1+ .';1 m2(X;)/ o X;)

The above inequality is validated by the following lemma from Fan (1992).

Lemma 1 Let a = (ay,...,a,) and w = (wy,...,wy,)" be n-dimensional real
vectors. Then,

. i b?
min |(w'a - 8)%+ ) cw?| = —5—, (3)
v i=1 1+ ¥ a}/c
1=1
and the minimizer is w; = —z2—a;/c;.
1+Za'3/c.'

i=1

Apparently the risk and hence the minimized risk depends on the regres-
sion function. Furthermore for even a nonsense estimator there always exists
one regression function that makes it the most favorable. Thus we restrict
to some class of regression functions and compare estimators by their worst



risk over the class. A class of joint densities which reflects the idea of “m is
twice right differentiable at £ = 0" is

Cy = {f(-, ) 1 Im(y) = m(0) = m'(0)y]| < g—yz, f and o satisfy condition (Al) } .

Define the minimax risk of linear smoothers for the class C; as

Ror(n,C2) =_ inf sup E ([(0) ~ m(0))" X, ..., Xn).

m linearfeC,

Then the best linear smoother for the left end point is the one that achieves
this minimax risk. Proof for the following theorem is given in the appendix.

Theorem 2 Assume that o(-) is bounded away from co. Then

VCa?(0)
n fx(0)

and the best linear smoother is given by mp(0) with kernel (1 — u)ljo1j(u)

48002(0) \ /5
and h = (e l) .

4/5
Fos(n,C) =315 ( ) a+am, (@)

Remark 3.1. If the kernel function is symmetric about zero then there
are on average only half as many observations as at the interior used in
estimating m(0). In order for the bias to be comparable, the weights of the
responses are doubled. Hence the variances at the boundary are about four
times larger. This reflects in the best possible risks; the constant multiplier
in (4) is exactly four times of that for (4.3) in Fan (1992).

Remark 3.2. A similar argument leads to a best linear smoother for
estimating m(1) which is M. (1) with kernel (1 + u)lj_;q(u) and A =

(Sem)*”.

4 Local Linear Fit for Density Estimation
Nonparametric smoothing techniques are widely used in estimation of den-

sity functions. Boundary effects occur in this application as well. We apply
the technique of local linear fitting to density estimation, by regressing on bin
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counts, with the intention of matching its excellent performance in regres-
sion. Suppose Xj, ..., X, is a random sample from a population with density
function f which is supported in [0, 1]. Let {¢1,...,t,} be a set of bin centers
in [0,1], that can be thought of as fixed design points. Then the count of
observations nearby each bin center provides information about the density
there. More precisely, take ¢t; = (5 — %)b, j=1,...,9, where b > 0 is the

bin width. Define the bin count around t; as c; =Zn: It —b72,t,4+872(Xi:), for
i=1

7 =1,...,9. The law of large numbers states that n=1b~1¢; is approximately

bt :j"f,,b//: f(u)du = f(t;). Thus it is reasonable to estimate f(z) by a local

linear fit to the bin counts:

g PR
min ) (n'lb'lcj —a-b(t; - :z:))2 K (t’ - z) :

i=1

This results in the estimator

fu(z) =n"17" Zg: wjc;j/ i wj,

i=1 i=1

with

v = [5: - (4 - S (SF),

where

g t,—zx 1
s,=21<(’ )(t,-—a:),l=1,2.
=1 h

Convenient assumptions for asymptotic analysis are:
(A3) KV is bounded and absolutely integrable with finite second
moment on its support, for [ = 0,1, 2.
(A4) f and its first two derivatives are bounded.
Under conditions (A3) and (A4), for z = ch,c > 0, we can show

MSE (Fu) = {5 (0)ax(e) + 7008 | 1 +000), 0)

as n — oco,nh — 00, and b = o(h). It may be worthwhile to mention that
when z is an interior point the mean squared error of this estimator is asymp-
totically the same as that of the ordinary kernel density estimator with kernel

K.



Next we discuss some optimal properties of this estimator at the left end-
point 0, analogous result for the right edge 1 follows easily from a symmetric
augmentation of the method. Note that fi(z) is a weighted average of the
bin counts which are linear functions of the data. Hence the estimator has
the form fi(z) = i Z ¥(X;, z). The conventional kernel density estimator

is of the same form Estlmators of this type are called linear and may be
expressed as

fol@) = [w(t,2)dbu(e),

where F, is the empirical distribution function of the sample. A direct ana-
log of the “smooth class” C; in section 3 is the class of density functions
supported in [0, 1]

Cumz={f:|fl £ M,|f(e) - f(0) - f(0)z] < —x b

where C' and M are some fixed positive constants. This class of functions
is also considered in Donoho and Liu (1991). Denote the minimax mean
squared error over linear estimators of f(0) for this class as

Rou(n, Cua) =inf sup B (fy(0) - £(0)".

f€CM,2

The estimator ﬁb(x) has mean squared error

E(u0) - £0))" = ([ (6, 007(0)dt - £(0)) + ~Var (4(%,,0)

> ( / HLOFWd - £0)) + - [ W (1,050

For any fi,f2 € Cm2

swp B (50~ 10)" 2 H{[[ 805~ 2 - (a0 - 0] + 2 [ s+ .

f€CM,2

Minimizing this over all ¢ yields

. 2oy 5 L(£1(0) - £2(0))?
inf P E (£4(0) f(0)) 2 41+ 3 leBE (6)

The above minimization follows from



Lemma 2 Suppose £ > 0 and n are functions on R, and b is a constant

then . 52
e (=) s e

and the minimum is attained when 1 = —2—1.
14f 8

Theorem 3 With the definitions of Cy2 and Ro 1(n,Cum,2) given in the above,

()

Ror(n,Crz) =3-1571/° 1+ 0(1)),

and the best linear estimator is the local linear fit estimator with kernel weight
1
function (1 — u)ljpy)(u) and h = (4221:;) /5'

Proof of this theorem is given in the appendix.

5 Relative Efficiency

Now that the best possible risk for linear estimators is known, it can be used
as a base line for measuring performances of such estimators. We will discuss
this for the regression setup since the conclusions for density estimation are
the same as those for uniform design regression setting. Define the efficiency
of a linear estimator T(0) of m(0) as

5/4

Eff (F(0)) = lim R°'f(”’c2) -
"\ sup E (T(O) - m(O))

meCs
The power 5/4 puts efficiency on the traditional and interpretable “sample
size scale” since both numerator and denominator have asymptotic rate of
convergence n~4/5.

In the previous sections we have shown that the local linear estimator
is 100% efficient with the kernel weight function Ko = (1 — u)Ijoq)(u). The
Gaussian density function is often used in kernel smoothing methods since
it make the estimators visually more pleasant; i.e. smooth and without

9



undesired angles. The local linear estimator with Gaussian kernel is easily
shown to have efficiency

5/4
3.15-1/5
i (&)2/5 (M)“/S ~ 0.9802
4 \ -2 (r-2)2

at edge points. Hence there is very small lost of efficiency while gaining the
visual benefit by using the Gaussian kernel in local linear fitting.

Another important boundary corrected estimator whose efficiency con-
sidered here is Rice’s (1984) modification. This method linearly combines
two conventional kernel estimators with different bandwidths to achieve the
same bias order, i.e. h?, as in the interior. It is a Nadaraya-Watson kernel
estimator itself and as noted in the paper Fan (1992) its efficiency is 0 when
the design points are non-uniform. The reason is that its bias contains an
extra term involving m’(0) which can be arbitrarily large. Hence consider the
case of uniform design. For Rice’s estimator, it is not known which kernel
function combined with what bandwidth ratio, i.e. the ratio of the two band-
widths in the combination, will give the best performance. Here the relative
efficiencies the well known Epanechnikov kernel and the popular Gaussian
kernel are considered. The best bandwidth ratio for the Gaussian kernel at
z = 0 is shown by straightforward calculation to be 1 which results in the
effective kernel

1(u) = 2(2 - u¥)e(u),

and this estimator has efficiency

5/4
1&-1/5
31577 1 < o0.9783.
5 11 4/5
2 (%)

Using the Epanechnikov kernel, the best bandwidth ratio can be shown to
be 1 + 1/5/2 with efficiency

5/4
3.15"1/5

5 (18 8v/10+24 2)“/5
4 \ 125(2+/10)°

10

~ 0.9517.




From these numbers we can conclude that the Rice modification is also an
excellent method of boundary adjustment for regression with uniform design
or density estimation.

6 Derivative Estimation

There are situations where estimating derivatives of curves is the interest.
An important case is for pilot estimators in plug-in methods of bandwidth
selection. Extending the method of local linear fitting to higher polynomial
fitting provides a solution to this problem. Fan, Gasser, Gijbels, Brockmann,
and Engels (1992) study its properties and show that the local polynomial fit
is minimax efficient among all linear estimators for estimating derivatives at
an interior point. We demonstrate minimax efficiency at boundaries in this
section. The formulation will be in the regression setting and similar results
for density derivatives are obtained with little extra effort.

The local polynomial derivative estimator may be motivated as follows.
Suppose the curve under investigation is smooth up to (p + 1)-th derivative.
Then via Taylor’s polynomial approximation

P m(J)( )

(z ==Y, (7)

within a neighborhood of z. This suggests a local polynomial regression

Z(Y  by(X; x')zK(X‘h_x). (8)

1=1 j=1

Let Zj(x), j = 0,1,...,p be the solution of the least squares problem. Then
from (7) it is appropriate to estimate m(*)(z) by 7, (z) = v!b,(z). It is shown
in Fan et al (1993) that

=y W (B2 v (9)

i=1

where :
Wnr(t) = eTS7(1, ht, ..., RPP)T K (2) (10)
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with
e, = (0,...,0,1,0,...,0)7,

i X ;.
)=y K ( x) (Xi—2),7=0,1,...,2p, and S, = (Sn,i+j-2)-
=1
Here W is the weight function for estimating the »** derivative of the re-
gression function generated from the local polynomial fitting. Expression
(9) reveals that B,(z) is very much like a kernel estimator except that the
“kernel” W depends on the sample. However,

Sni = ESni(1+ 0p(1)) = nh*! fi(z)s;(1 + 0p(1)),

where s; = [t/ K(t)dt for an interior point . Hence with § = (si+;)o<; j<p
and from (10), -7

1
Wnt) 8 —————eI $™! e t?)T .
2O S S (L PTE()
Therefore, by (9),
b(z) nh"+1fx nhvtl fy(z) ; K < )Yi’ (11)
where »
K} (t) = el ST (18, ., )T K(t) =) SYYK(t), (12)
1=0
with $—1 = ( JI)OSJSP,OSIS . The equivalent kernel K; . satisfies the higher

/t"K;,pH(t)dt =08,4, for0<v,q¢<p. (13)

When z is a boundary point the equivalent kernel differs from K only in
the matrix S. Suppose z = ch, ¢ > 0, then S,; = ES,;j(1 + o,(1)) =
nhi*1 fx(0)s; (1 + 0,(1)), where s;. = [*u/K(u)du. Then the boundary
equivalent kernel is

K} (t) = eI 571 (1,8, .., )T K(2), (14)

12



“where Sc = (Si+j-2.)1<ij<ps1- Lhe conditional MSE at the boundary point
z=ch,forn = co,h = 0,nh — o0, is
Xi, ...,Xn}

{2

2 e p+1 /= m( +1)(0) p+l-v ’ 0.2(0) / »2
2 {( K K,,‘c(t)dt) (—( o + g L KA
(15)
Here & means asymptotically equivalent in probability sense. The proof is
referred to Fan, Gasser, Gijbels, Brockmann, and Engels (1992). The con-
ventional kernel method uses kernels for derivative estimation which are very
hard to interpret. This problem becomes even worse at boundary regions.
Comparatively, the local polynomial fitting naturally provides interpretable
and effective estimators, e.g. in the sense of rate of convergence, and requires
no additional complicated boundary modifications.

Remark 6.1. The local polynomial fitting technique is applicable to
estimating derivatives of a density function. Notation is the same as in
section 4, simply replace the {Y;}1<i<cn and {Xi}i<icn by {n"'cihicicy
and {t:}1<icy, respectively. And, e. g. at the boundaries, the resulting
estimator has mean squared error asymptotically equal to the quantity in

(15) with m(?+1)(0) replaced by f(**+1)(0) and }1;(% replaced by f(0).

7 Minimax Efficiency of Derivative Estima-
tors

Now some minimax theory for general derivative estimation at endpoints is
developed. We shall focus on optimizing over the class of linear estimators
is developed. We discuss this for the right endpoint z = 0. Suppose fx and
o are continuous at 0, with fx(0) > 0 and ¢(0) < oo, let

2. mb)0) |z
m(z)— ;) Tz < C(p+ 1)!} .

(16)

|P+1

Cot1 = {m : m has support [0, c0),

13



Define
Ror(v)=_inf sup FE { (Ty - m(")(O))2

T.,lineamEC,,+1

X, ...,Xn}

as the linear minimax risk for estimating m(*)(0). A quantity closely related
to the Ro r(v) is the modulus of continuity

wWpt1,(€) = sup {|m{(0) = m§(0)] : mo, m1 € Cpan, llms — mol| = ¢},
(17)
see Donoho and Liu (1991) and Fan (1992a). Let

r_2(p+1-—1/) s__21/+1
T 2p4+3 77T 2943

e (35 i ?) ((;p—+uy++1§!)i!) | (2(17 v 2))’ (((;:2: +1 )3')0')2

x (;‘;—Z%) (18)

Theorem 4 The modulus of continuity is given by

- (p+v+2)! 2C(p+1)!
Wpt1(€) = (V!(p—u+1)!(2u+ 1)) ( (2p + 2)! )

and

((21/ +1)(2p+3

) r/2
20+ v +2) ) (1 +o(1)).

Theorem 5 The linear minimaz risk for estimating the v** derivative of the
regression function at its right endpoint is

Ro,L (v) = 8,,5(1 + 0p(1)).

Theorem 6 Letm,(0) be the estimator resulting from a local polynomial fit
of order p with the kernel function Ko(u) = (1 — u)ljo1j(u). Then it is the
best linear estimator for m()(0) in the sense that

RoL(v)
sup E { (m,(0) — m(”)(O))2| X1, ...,X,,}

meCp41

5 1.

14



Moreover, its equivalent kernel is

p+1

K:;t-H(t) =Z /\jtjl[o,l](t),

j=0
where

(= +i+Dip+v+2)!
;= = " T yJ] = 0,1,..., 1.
I - -+ DG +r+ 1)’ Pt

Remark 7.1. Suppose the condition [m| < M for some positive constant
is added to the definition of the class Cp41 in (16). Then it can be shown
that the analogous linear minimax MSE for estimating the v** derivative of
a density function f € Cp4;1 at boundaries is asymptotically

(2p+3) ( (p+v+2)! )2 ( rM ) <(p+ 1)!0)2’

2v+1/ \(p—v+1)W! 2(p+ v +2)n (2p+3))
Furthermore, the estimator constructed from a local polynomial fit of order
p with kernel Ko = (1 — u)Ijpyj(u) has mean squared error asymptotically
equal to the linear minimax MSE.

Remark 7.2. Although in section 5 we noticed that the Rice (1984)
modification is highly efficient in estimating the functions, we don’t know
whether a similar implementation for derivative estimation will retain this
property or not. But, at least we can say that it requires a lot of effort to
do so and it has to be done for each v separately. One merit of the local
polynomial fit is that the derivative estimators are produced easily from its
one-time—for-all-v least squares fitting.

APPENDIX.

I. Proof of Theorem 2. Since Xi,..., X, are i.i.d.,

i mi(X;)/ o} (X;) = nEm?(X;)/o*(X1) + O, (\/nE'm“(Xl)/a“(Xl)) .

From this and (2) we have

_ m?(0)
( ( ) mL( )) 1+nEm2(X1)/U2(X1)+OP (\/nEm4(X1)/0'4(X1))
(19)
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1/5
Take mo(y) = l’f [1 - %ﬂ + 2—%;?] I (—‘/gl) , where b, = <48:f2,:)(0!) .

Note that mo € C; and b, maximizes (21) below. Now,

b3 272

= %‘/ [1 et 3\/52 + 2022]2 I[O,l] (\/52) Mdz

2(b,2)
= B [ (1~ 3182 +207]" o (V=) de 1+ 05(1)
_ b fx(0) .
- 120\/50_2(0) (L4 0,(1)). (20)
From (19), (20), and the fact that Em?*(X;)/0*(X1) = O(83),

R (mo(0), mi(0)) /16

- nb?
L+ 2520 (14 0,(1))

. 4/s
=3.15"1/5 (-\%—%‘—(((%)) (14 0,(1)).

Hence

2 4/5
Ro(n, Ca) > 31575 (%) (1 -+ 0y(1)) (22)

On the other hand, let iy be the local linear smoother with kernel Ko(u) =
(1 = u)Jpo,1)(u),

= ht o 2, 1 a*(0) a1
R(m(0), mo(0) < ek (0)C + 25 Bia(0) s + 0 (K + )

— -1/5 \/5‘72(0) e
=3-15 / (W) (1+0p(1)).

52(0)B 0 1/5
The last equality holds with A = (;ﬁ?};ﬁ%g}%@) . Therefore,
_ Co?(0)\ "
Foa(n,C2) <sup Rm(0)mo(0) <315 (Y22 W 40,1,
C2 nfx(0) (
23)
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The result follows from (22) and (23).
I1. Proof of lemma 2.

(Jon-0)"+ [ min i, -7 [ 7).

But under the constraint [y =1{,

(/%) (/"—:c) > (/¢-g-€)2=tz,

where equality holds when 3 = —-‘—;—? Hence,

I%

(Jen=0)"+ [ v 2mpn ((t— b2+ ft:é) -- +";ﬂ€£,

where the minimum is attained by t = ————.

(/%)
ITI1. Proof of theorem 3.
Let fi(z) = go(x) + gn(z) — cn, f2(2) = go(z) — ga(x) + cn,where

o) = [~ L4 (04 - )] oy,

2 (1 3/Cz Cz?
gn(:c)=-2—(-2-—— 2b, + b2 )IIO,%](z)a

n

: 1/5
with bn = (480 CM) / yCp = fgn = ——\7—2:30, a,nd

n

b2 b2 M?b M?b
In In <é§<min| —m M- —=2]).
max(4,32+cn)_5_mm(2\/b_,M \/5)

Then fi, f2 € Ca,m and from (6) we have

: 3 21 4g.4(0)°
inf sup E(f,(0)-f(0)) 22—
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- gn(0)2
1+ 55/ 92
bi/16

= ————(1+0(1))
= (
1+M 120/C

()"

(1+0(1))

=3.1571/5 (14 0(1)). (24)

But suppose fy, is the local linear fit with kernel Ko(u) = (1 — u)Ij,1)(u).
Then by (5)

inf sup E(f4(0)~(0))" < sup E(Fiu(0)= £(0))"

¥ feCuma f€CMa
4
h 2

W 2, 1 g (4 L)

4/5 .
=3.1571/5 (—\{—iﬂ) (14 0(1)). (25)
e e MBi(0) \M° .
The last equality is valid with h = (m) . Combining (24) and (25)

finishes the proof of the theorem.

IV. Proof of theorems 4 - 6.

Denote K%, to be the equivalent kernel of 7, (0) = v16,(0), given by
(14), with K(u) = Ko(u) = (1 — u)ljo,1)(u).We prove theorems 4 - 6 based
on the norm |K 3’;,‘4,1" and the (p +-1)** moment of K °p+1 The calculation

of these quantities and the function K27 +1 is very technically involved and
appears in subsection V. First we construct an upper bound for the linear
minimax risk R r(v),

sup E { (’rﬁ,,(O) - m(")(O))2

meCpy41

X, ...,X,.}

[ erasgaoa) e+ [ s oas e

<(@+1 n/x(0)

= AP 4 fohm (Bt

18



Take h = (_(ww_)l/(zm) .

= TrrsEmyn -1/(2p+3) which minimizes the above quantity,
en

22 2{ @0 - o)

SAJA(2p+3)(2v + 1) [2(p + 1 — 2)] 77 (1 4+ 0p(1))

wr ((7%’)"') | (;%%) ([ o+ ratoa) |

From (33) and (35) the above expression equals

(o) (55) (o) ()
P+r+ e+ 12\ 20+v+2(+rv+ 12 '
(u!(2p +Np-v+ 1)!) ((21/ +1)(2p + 3)v!2(p — u)!2>

=0,,, (26)

Xl,...,Xn}

K| (140,(1)).

as defined in (18). Hence
RoL(v) £0,,(1 + 0p(1)).
To establish a lower bound for R r(v), if f € Cpy1,take
my(z) = 6 f(/6), mo(z) = —mu(z),

2 51-03 .
where 6 = (W) . Obviously mg, m; € Cp41, and

llma — mo|” = 48%7+3|| f||* = €.

Therefore the modulus of continuity defined in (17) satisfies

l—v

0 (7)) e

41 FI1P
C 1/(P+1)
a = ———— N
((P+ 1)!|/\p+1|)

19

wo,(€) = [m{(0) — m{(0)] =2

Now, let



and " (az) .
_ ) KFa(ez) ,if0<z<1.
f(z) = { o , otherwise.

2
K%
A1 = ”——’-:i”-,f‘”’(ﬂ) = @i\,

- [ €2 /2

(%)
—zuv( (p+v+1)Pp+v+2) )(C(p+1)!2u!(p—u>!(p+u+z>)’
B p—v+ )+ 1))\ (p+ D2+ 2)(p+ v+ 1)

(el e (o=l ) (o)

_€,< (p+v+2)! )(20(p+1)!) ((2u+1)(2p+3)>’/2
T \wlp=v+D)I2v+1)) \ (2p+2)! 2(p+v +2) '

Applying Theorem 6 of Fan (1993), we have

Then

and (27) becomes

opt
I(“’ o+1

C 3
ensl®) 2 200 (G
<A

(o)

_ ( C )23 ( a?(0) )r rTstylZA2
- ! o 2r°
e+ \nfx(0)) »zs |koet,
Equations (34) and (35) give

Raut) 2 7o (2 1)!)2’ (m) (e i)!zz)!)%

Ror(v) 2 r's’ [V!/\,, (

-opt
K ipt1

C
(p+ 1)”/\p+1l)

x( (p+v+1)P(p+v+2) )’((2u+1)(2p+3)u!2(p—u)!2)'
vB(p—-v)?22v+1)(p-v+1) 20p+v+2)(p+v+1)2

= or,u

20



given in (18).

In summary, ( i ) since the upper and lower bounds are the same, we
prove theorem 4 and 5, ( ii ) the maximum risk of m,(0) is given in (26)
and the first part of theorem 6 follows immediately, the second part has been
shown in (34). Thus we complete the proof.

V. Calculation of the function I&,,p_H , its norm and (p+1)* moment:

The famous Legendre polynomials are defined as

dn
P, (z) = K((l +z)(1-2))",-1<z<1,n=0,12,..
The linear transformation y = (z + 1)/2 yields a orthogonal system with
respect to the Lebesgue measure on [0,1]. Write

Qult) = o (Y1 = y))" =3 quit? n =0, 1,2, .
y prd
Then
d?n
Q1% = /01 Qi(y)dy = /01 y"(1 - y)"dyzn (y(1—y))" dy
n!? n!?
—/ (1= y)"(2n)tdy = (2n )(2n+1)!=2n+1' (28)
Explicitly,
__dn_n n - .1'n_rl n _J(n+J)'J
Qn(l')—dyn;(])( y)y_jz.__;(J)( 1) ]'
So,

. M
qnj = ( ;L ) (—1)J (n ;J)’n = Oa 1) P+ 11] = 07 L..,n

Let KP',, denote the equivalent kernel of 72, (0) = v15,(0), given by (14),
with K (u) = Ko(u) = (1 — u)ljpqj(u). Since K%\, is a polynomial of order

(p+ 1), we can write
pt1

KJ5(z) =3 aiQi(@).

=0

21



The coefficients a; can be determined by the moment properties in (13). Let
B = flzPH K, (z)dz. Then

1 0 f0L i<y
@@l = [ Qua) KR (z)dz = { Mg L tv<i<p
0 V!Qp+1,u + qp+l,p+1:3 ? if 1= p + 1.
(29)
Therefore, from (28) and (29),

Lrza@ =3 6. B 0w + B 4 Brisngg o

1=0 .' ( + 1)'2

4

(2: + 1 (2p + 3
S B S g+ 230y Sttty
i=0 j=0

P Ld 2141 2 1
= (Z qi,u( Zi; )qi.J) z +((I_)+_—-i-l)3|l'(‘1p+l u+qp+;'!p+ B)Qp+1(z)- (30)

2z+1) (=1t & )2+ D) + )
Z v BT Tyn (i— )i —j)!

i=jVv i=jVy

(Note: (2t +1)={(t+j+1D)(E+v+1)-(E—-5)(-v)}/G+v+1))

_ (—1)itv Z": ((i+u+1)!(j+i+1)!_ (¢ 4 )7 +9)!
IRG+r+1) i

(L (G V) + )26 VY) + 1§ + (5 V v))!
vl (G Ve) =G Vr) =)t
o v+ DG +p+ 1!

TIEEGErED =) ey

Also, since Qi(1) = & (y(1 — y)) | (—1)ii! and K%, (1) = 0 (see (14))
p+1 pt+1 . -
K75 (1) X_jaQ( ) =2 ai(-1) =0.

22

G- 0)i—7)! G—v—1li—j—1)

)



This is the same as

zp: (22;*; I)V!q;’ u(_l)ii; (2P + )

&~ ’ Tt 1)|2(” o410 + Gpt1,5018) (= 1)+ (p+ 1) = 0.
32

The first term is (32)
; (2zz;{; 1) !( ; )( 1) (z+V) Gy (y!lz)v g: (—1)'(2:—1/')/!)(!21'.*. 1)

(Note: (20 +1)=(i+v+1)—(:—v).)

_ Y [Z (CDGtr e ¢ CDGEE | (D) * v+ 1)

vl =y (2 - V)! i=v41 (Z -V - 1)! - I/!(p - l/)!

Thus equation (32) yields

_ e+ v +2)ip + 1)1
B = G+ =r 1) (33)
Combining this with equations (30) and (31) we have

: p+1 )
K2 (@) =3 A,
7=0
where

(™ p+i+Dip+v+2)!
: =0,1,.., 1. 34
=)o~ + IG +v 4D = O bt (Y
Since the polynomials {Q;} are orthogonal,

j =

t 2 2
K| —Z 2l Z Y et ((piﬁfli (dpt10 + Gpa1,5418)°
P20+ 1)@+ v)? 2p+3
L R R Vs + g
From (33), (Note: (20 +1)={(¢ +v+ 12— (i —v)*}/(2v +1).)

_ 1 2 fE+rv+ )P ()P (20)2(2v + 1)
T 22 +1) 2 { J }+

o (1 —wv)i2 (t—v-—1)2 v12
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(p+v+1)~2
(2p +3)vB2(p —v)'?
_ 2p+rv+2)(p+v+1)~
T Qu+1)(2p + 32 (p — )2

+

(35)
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