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Summary. Discrepancy is a kind of important measure used in experimental
design. Recently, a so-called discrete discrepancy has been applied to evaluate
the uniformity of factorial designs. In this paper, we review some recent advances
on application of the discrete discrepancy to several common experimental designs
and summarize some important results.
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1 Introduction

Discrepancy has been employed to many fields of statistics, in particular, to ex-
perimental design. Based on discrepancy, Wang & Fang (1981) and Fang & Wang
(1994) proposed a kind of novel experimental design, called uniform design, which
favors a design with the smallest discrepancy value. In view of geometry, a uniform
design spreads its experimental points uniformly over the experimental domain.
Uniformity is an important concept related to uniform designs. Several important
and popular measures of uniformity are discrepancies, such as the star discrepancy
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and the L,-star discrepancy, etc, in the Quasi-Monte Carlo methods. The star
discrepancy, introduced by Weyl (1916), measures the difference between the em-
pirical distribution F,(z) of the set of design points, P = {z1,.. ., z,} in the unit
hypercube C™ = [0, 1™, and the uniform distribution F.(z) on C™, and has been
used in goodness-of-fit test named as the Kolmogorov-Smirov statistic. However,
the star discrepancy is not easy to compute. The L,-star discrepancy, viewed as
an extension of the star discrepancy, has been widely used in Quasi-Monte Carlo
methods. The set P is associated with an n x m matrix, Xp = (zx:). It is well
known that the L,-star discrepancy is invariant to the permutation of rows and
columns of Xp, but it is not invariant if the hypercube C"™ is rotated by mapping
Zki to 1 — ;. When n is small, the star discrepancy is not sensitive enough while
the L,-star discrepancy ignores differences between Fo(z) and F.(x) in any low
dimensional manifold. Unreasonable results of the La-star discrepancy may be
easy found through many sets of points. Therefore, by using reproducing kernels
in Hilbert space, Hickernell (1998a), Hickernell (1998b) proposed several modified
versions of the L,-star discrepancy, such as the centered L,-discrepancy and the
wrap-around L,-discrepancy. These discrepancies can overcome the weakness of
the L,-star discrepancy mentioned above. In particular, when p = 2, analytical
expressions of the centered Lz-discrepancy (CD, for short) and the wrap-around
Lo-discrepancy (WD, for short) have also been obtained by Hickernell (1998a),
Hickernell (1998b). The statistical justification for the CD/WD serving as a mea-
sure of uniformity for fractional factorial designs with two- or three-level has been
interpreted by Fang & Mukerjee (2000), Fang, Lin, Winker & Zhang (2000), Ma
& Fang (2001), Fang (2002), Fang & Ma (2002), Fang, Ma & Mukerjee (2002),
Fang, Lin & Qin (2003), Ma, Fang & Lin (2003), Qin (2003), Fang & Qin (2004),
Chatterjee, Fang & Qin (2004a) and Chatterjee, Fang & Qin (2004b).

Note that the above discrepancies are defined in a unite hypercube domain and
used for measuring the uniformity of points corresponding to continuous variables.
However, for factorial designs the number of possible levels for each factor may
be restricted to a finite number. For example, a factor may have only two values
(low and high) or three values (low, medium and high). In these situations it
is reasonable to represent the experimental domain X as a discrete set, e.g.,
X={0,1,...,q1 =1} x---x {0,1,...,gm — 1} for mixed levels. Liu & Hickernell
(2002b) provided some justification for directly using the discrepancy defined on
a discrete domain instead of on a continuous domain as a measure of uniformity of
such design points. By using a reproducing kernel in Hilbert space, the so-called
discrete discrepancy (DD, for short) was directly defined on such a discrete domain
by Hickernell & Liu (2002), Liu & Hickernell (2002a), Liu (2002) and Fang, Lin
& Liu (2003). Comparing with other discrepancies mentioned above, the DD
not only enormously reduces the computational cost, particularly in constructing
uniform designs, but also has itself statistical properties.

The main purpose of this paper is to review some recent developments on the
application of the discrete discrepancy to experimental design.
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2 Discrete discrepancy

We begin with a brief review of the discrete discrepancy. Let X be a measurable
subset of R™. A kernel function K(x,w) is any real-valued function defined on
X x X, and is symmetrical in its arguments and non-negative definite, i.e.,

K(z,w) = K(w,x), forany z,w € X and (1)
Z ala,]K(a:i,zj) >0, for a; ER, ' € X, i=1,...,n. (2)
1,7=1

Let F. denote the uniform distribution function on X, P = {z1,...,2,} C X be
a set of design points and F), denote the empirical distribution of P, where
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Here z = (21,...,2m) < @ = (21,...,Zm) means that z; < z; for all j, 14 is the
indicator function of A. For a given kernel function K(x,w), the discrepancy of

P’ is defined as

NP K) = K(z,w)d[F.(x) = F(z)]d[F\.(w) — Fn(w)]}7
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From the above definition, it is clear that the discrepancy measures how far
apart the empirical distribution F), is from the population distribution F.. Con-
sequently, for a fixed number of points, n, a design with low discrepancy is
preferred. Several kernel functions were proposed and discussed by Hickernell
(1998a,b; 2000).

Let d denote a factorial design with n runs and m factors, where the ith factor
has ¢; levels. The experimental domain X = {0,1,...,q1 =1} x---x{0,1,...,gm—
1} is formed by all possible []", ¢; level-combinations of the m factors, F, is the
discrete uniform distribution on X. For notational convenience in this paper we
define for given a > 0,p > 1,

ap if vj = w;y,

o ifa,#uw, 07w €{0L. 0 -1} (3)

K(xj,w;) = {
and

K(a:,w) = ﬁ [?(I]‘,w]'), (4)

j=1
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for any € = (x1,...,2m) and w = (w1,...,wn) € X. Then K(x,w) is a kernel
function. In particular, it satisfies conditions (1) and (2). The corresponding dis-
crete discrepancy, denoted by D(d; a, p), can be used for measuring the uniformity
of design points over the domain X (Hickernell & Liu (2002); Liu & Hickernell
(2002a)).

Consider the set, denoted by D(n;q1 - - - ¢ ), of asymmetrical factorials with n
runs and m factors, where the ith factor has g; levels, g; is any positive integer (>
2) and the n level-combinations are not necessarily distinct. If some ¢;'s are equal,
we denote it by D(n;¢i' ---¢i), where Y_7_, s; = m. U-type designs play a key
role in construction of uniform designs. A design d is called U-type if levels of each
factor appear equally often (Fang, Lin, Winker & Zhang (2000)). Following Idll;_,,
Lin & Liu (2003) and Qin & Fang (2004) the squared DD-value, (D(d;a,b))?,
can be calculated as follows:

( (dab) H P+qz’1 ((L[)) nz Z Z p TR

i=1 k=11l=k+1

where 03 is the coincidence number between the ith and jth rows of d.

A lower bound of D(d;a,b) over U-type designs in D(n;q1 - qm) is given in
the following theorem. A necessary and sufficient condition for a design reaching
this lower bound is obtained also.

Theorem 1. Let d € D(n;q1 ---qm) be a U-type design. Then
(D(ds a, p))* > L"(d; a, p), (¢

[
g

where

)

WAt = - [] €Fe=be 0 | (o DL (o= Do ="

o =" (n/g—1)/(n—1) and 7y is the integer part ()f o. The lower bound of
LA(d;a, p) can be achieved if and only if for any run d* of d, among the (n — 1)
values of o1 (I # k), there are (n—1)(y+1—0) with the value v and (n—1)(c =)
with the value v + 1.

One lower bound of D(d;a,p) for symmetrical design d € D(n;¢™) can be
obtained from Theorem 1. Recently, Qin & Li (2003) obtained the following lower
bound of D(d;a,p) for a design d € D(n;¢™), which is sharper than the lower
bound obtained from Theorem 1.

Theorem 2. Let d € D(n;q™). Then
(D(d;a,p))* = L (d; a, p),

Cy . _ﬂ m _ _anq
Ldan =55 () DR (1- 2222 )

where

v=1

R v.q is the residual of n (mod q*).
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Note that Theorems 1 and 2 hold for a wide range of DD measures in which
the kernel satisfies (4), no matter what the values of a and p (a > 0,p > 1)
are. The lower bound L”(d; a, p) or L%(d;a, p) can be used as a benchmark for
searching uniform designs. A design d € D(n;q1 ---qm) is called a uniform de-
sign under D(d; a, p) if its DD value D(d; a, p) achieves the minimum value over
D(n;q1 -+ - ¢m). Based on Theorem 1 or 2, a design d € D(n;q1 - - - ¢m) or D(n; q™)
in which the squared DD-value equals the lower bound L*(d;a, p) or LC(d; a, p)
is obvious a uniform design. In this paper, the uniformity criterion favors designs
with the smallest discrete discrepancy.

3 Statistical inference for uniform designs measured by
DD

3.1 Robustness of uniform designs measured by DD

At the initial stage of an experiment, it is often the case that a practitioner does
not have enough information about models concerning the response and factors.
Therefore, it is important to use a factorial design that is robust against the un-
derlying model specifications. Since the uniform design spreads the design points
evenly in the design space, it usually has robust performance with different mod-
elling methods. Wiens (1991) gave two optimality properties of uniform designs.
Hickernell (1999) and Yue & Hickernell (1999) proved that the uniform design
is optimal and robust for approximate linear regression methods. Moreover, Xie
& Fang (2000) proved that the uniform design is admissible and minimax under
a certain sense in nonparametric regression model. Recently, Hickernell & Liu
(2002) reported that although it is rare for a single design to be both maximally
efficient and robust, uniform designs may limit the effects of aliasing to yield
reasonable efficiency and robustness together.

3.2 Connections between DD and GMA/MMA

Minimum aberration (Fries & Hunter (1980); Franklin (1984)) and generalized
minimum aberration (GMA, for short) (Tang & Deng (1999); Ma & Fang (2001);
Xu & Wu (2001)) have become the popular and standard criteria for optimal fac-
tor assignment. Recently, Xu (2003) proposed the minimum moment aberration
(MMA, for short) criterion to evaluate optimal factor assignment. Relationship
between uniformity and aberration, which may raise the hope of improving the
connection between uniform design theory and factorial design theory, has re-
ceived a great deal of attention. The work of Fang & Mukerjee (2000) was a
first attempt towards providing an analytic link between uniformity measured by
CD and the word-length pattern of regular 2°~% factorials. Fang & Ma (2002) .
and Fang, Ma & Mukerjee (2002) gave extensions of previous works for three-
and higher-level factorials, respectively. For the discrete discrepancy, Qin & Fang
(2004) obtained similar conclusions as follows.
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Theorem 3. Let d € D(n;q1---gum). Then

m

(D(d; a, p))? = H M Z H (_p__l_)J Gy ),

i (J1seeim €S i=1 ptai—1

1=

where C3, ;. (d)’s are the MacWilliams transforms of the distance distribution
of d, § = {(G1seJm) 05 S LIS i< m, (s, jin) #(0,...,0)).

Corollary 1. Let d € D(n; ¢™). Then

(Ddsa, b)) = (te=Le e)"s (-2 ) 4,

q S\p +qg-—1

where AT"(d) = EJ] fotim=s Citogn (D), (AT (d),. . ., AT (d)) 15 called the gen-

eralized word-length pattern by Xu & Wy (2001).

From Theorem 3 noting that the coefficient of Ci g ld) in (D(d; a,p))? de-
creases exponentially with (j1,...,7.,), we anticipate that factorials which keep
AT 5, (d) small for small values of J1+ -+ g, that is those having less
aberration, should behave well in terms of uniformity in the sense of keeping
(D(d;a,p))* small. This shows that uniform designs under the DD and GMA
designs are strongly related to each other, and provides a justification for the
criterion of GMA by consideration of uniformity measured by the DD. Theorem
3 also shows us that the uniformity criterion does not completely agree with
the GMA criterion. However, Qin & Fang (2004) indicated that for asymmetri-
cal factorials, a special kind of uniform design has MMA, and uniform designs,
MMA designs and GMA designs are equivalent in a special class of symmetrical
factorials.

Recently, Hickernell & Liu (2002) defined a projection discrepancy patiern and
proposed a minimum projection uniformity (MPU, for short) criterion in terms
of this pattern, which considers the uniformity of low-dimensional projections of
a design. Based on a specific kernel K(x,w) raised for asymmetrical factorial
designs, the t-dimensional projection discrepancy D, (d; K) of a design d = (d,;)
is defined as

(D(i)(d;[{))zz niz Z Z H(_l+(1£5d’[d")’ (())

lul=t2,j=11€u

where u« is any subset of the set {1....,m}, |u| denotes the cardinality of .,
dzw denotes the Kronecker delta function, ie., 8., = 1 il 2 = w and Orw = 0
otherwise. The vector

PD(d; K) = (Day(d; K), ..., Dy (d; K))

is called the projection discrepancy pattern, and the MPU criterion is to sequen-
tially minimize D,y (d; K) for t = 1,...,m. Based on (6), Hickernell & Liu (2002)
showed that
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Theorem 4. Let d € D(n;q - qp,), then (D) (d; K))* = AF“(d), i.e. the MPU
is equivalent to the GMA defined by Xu & Wu (2001). For the case of 2-level
designs, the MPU is equivalent lo the minimum Gy-aberration of Tang & Deng
(1999).

And their results show that the MPU criterion may be further generalized to
cover designs that are not fractional factorials by using the discrepancy. It is also
shown that minimum aberration designs and minimum discrepancy designs are
equivalent in a certain limit,.

3.3 Connection between DD and orthogonality

We know that strength is a good measure of orthogonality for factorial designs. Liu
(2002) studied the connection between uniformity and strength. Taking a = 1478
and ap = 1+ 3, where 8 > 0 and —-1/(¢g—1) <7< 1in (3), Liu (2002) obtained
the following relation between discrepancies of an orthogonal array (Hedayat,
Sloane & Stufken (1999)) on its low-dimensional projections and its strength.

Theorem 5. Let d = (dy;) € D(n;q™), then
(i) Dey(dsa, p) =0 if and only if d is an OA(n,m, q, t), where

(Diy(dsa, p))? = — [M] + ﬁ z Z Hrl_ddil’l‘jl.

2
q n |lul=ti,j=11l€u
(it) D(d;a,p) =0 if and only if d is an OA(n,m, q, m) (here n must be a multiple
of ¢ ).

Liu (2002) also showed that symmetrical saturated orthogonal arrays are the most
uniform one among all the saturated factorial designs with the same parameters.

Recently, some new criteria, such as the B-criterion (Fang, Lu & Winker
(2003)) and O-criterion (Fang, Ma & Mukerjee (2002)), have been utilized to
measure and evaluate the orthogonality of factorial designs. These criteria can

be viewed as extensions of the concept of strength in orthogonal array. For any
(Ly---ly)

t columns of d € D(n; q™), say ¢y, let Mg, -..a, be the number of runs in
which (er, ..., c1,) takes the level-combination (a1 ap), let
n\ 2
s _ Liele)
Bn@= 3 (wti - 1)

[ S N7

where the summation is taken over all possible level-combinations, and define

Bd)= Bh».md)/(’t"),

1<l <<l <m

the B-criterion is to minimize Bi(d)fort=1,....m sequentially. For symmetrical
designs, Qin & Chen (2004) showed that B-criterion is equivalent to GMA. Qin
& Li (2003) indicated that B-criterion and O-criterion are mutually equivalent,
and gave the following connection between DD and B-criterion.
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Theorem 6. Let d € D(n;q™). Then

(D(d:a,p))* = 2" 5~ (’”) (0~ 1)" Bu(d).

n2

3.4 Connection between DD and CD/WD

As mentioned in Section 1, usefulness of uniformity measured by the CD/WD in
two- or three-level factorials has been discussed. The definitions and computa-
tion formulas for the CD and WD can refer to Hickernell (1998a) and Hickernell
(1998b). For d € D(n;q™), its CD and WD are denoted by C'D(d) and W D(d)
respectively. Recently, Qin & Fang (2004) gave the following result, which connect
the DD with the CD and WD.

Theorem 7. For any design d € D(n;q™), we have the following equations:
(i) when g =2, p=5/4 anda =1,

(D(d;a,p))” = (CD(d))” + 2(35/32)™ ~ (13/12)™ — (9/8)™;
(ii) when g = 2, p = 6/5 and a = 5/4,
(D(d; a,p))* = (WD(d))* + (4/3)™ = (11/8)™;
(iii) when q = 3, p = 27/23 and a = 23/18,
(D(d;a,p))” = (WD(d))* + (4/3)™ — (73/54)™.

It is well known that there is yet an open problem whether uniformity measured by
the CD/WD may be utilized as a criterion for assessing factorials with high levels.
However, the DD can be used to compare symmetrical and asymmetrical factorials
with high levels. Hence, the DD can be regarded as a kind of generalization of
the CD and WD. We strongly recommend to use the discrete discrepancy as a
measure of uniformity for comparing fractional factorials in most cases.

3.5 Connection between DD and balance

Block design is an important kind of experimental design. Its basic ideas come
from agricultural and biological experiments. But now the applications of these
ideas are found in many areas of sciences and engineering. The most widely-used
one is the balanced incomplete block (BIB, for short) design in which every pair
of treatments occurs altogether in exact the same number of blocks. Another
important one is the resolvable incomplete block (RIB, for short) design. For a
thorough discussion of block designs, please refer to Dey (1986).

As we know the definitions in block designs reflect some “balance” among
the treatments, the blocks, or the parallel classes. This kind of balance is easy
to be accepted intuitively. While in existed works on block designs the criterion
of balance is introduced from the estimation point of view. In fact the balance
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criterion can be regarded as a kind of uniformity. Recently, Liu & Chan (2004)
and Liu & Fang (2004) studied the uniformity of block designs and obtained some
satisfactory results. Liu & Chan (2004) used the DD measure to prove theoret-
ically that BIB designs are the most uniform ones among all binary incomplete
block designs. This is an important characteristic of BIB designs in terms of uni-
formity. While Liu & Fang (2004) obtained a sufficient and necessary condition
under which a certain kind of RIB design is the most uniform one in the sense
of the DD measure, and showed that this uniform design is connected. They also
proposed a construction method for such designs via a kind of U-type designs.
This method sets up an important bridge between this kind of RIB designs and
U-type designs. All these results confirm our judgement that the “balance” crite-
rion can be regarded as a kind of uniformity. Note that these results are obtained
in the sense of the DD measure, but they also holds for any of the modified
La-discrepancies proposed by Hickernell (1998a) and Hickernell (1998b).

4 Application of the DD in supersaturated designs

In the context of factorial designs, there has been recent interest in the study
of the supersaturated design (SSD, for short). Whenever the run size of a design
is insufficient for estimating all the main effects represented by the columns of
the design matrix, the design is called supersaturated. In industrial statistics
and other scientific experiments, especially in their preliminary stages, very often
there are a large number of factors to be studied and the run size is limited
because of cost. However, in many situations only a few factors are believed to
have significant effects. Under this assumption of effect sparsity (Box & Meyer
(1986)), SSDs can be used effectively, allowing the simultaneous identification of
the active factors.

4.1 Connection between DD and E(s?) in 2-level SSDs

Most studies on SSDs have focused on the 2-level case. Booth & Cox (1962), in
the first systematic construction of SSDs, proposed the E(s?) criterion, which is
a measure of non-orthogonality under the assumption that only two out of the m
factors are active. After Booth & Cox (1962), there was not much work on the
subject of SSDs until Lin (1993). Other recent work focusing on constructions of
E(sz)-optimal SSDs includes, e.g. Liu & Zhang (2000), Butler, Mead, Eskridge
& Gilmour (2001), Liu & Dean (2004) and the references therein.

Recently, Liu & Hickernell (2002a) showed that the E(s?) criterion shares
the same optimal designs with the DD criterion. They constructed a DD, i.e.
taking a = 1 + 76 and ap = 1+ 3 (8 > 0,—1 < 7 < 1) in (3), and showed
that for 2-level factorial designs both E(s?) and the DD can be expressed in
terms of the Hamming distances (or the coincidence numbers) between any two
runs of the design. These expressions in terms of Hamming distances lead to a
lower bound on £(s?) and the lower bound of (5) on DD for 2-level SSDs. It is
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interesting to note that if a design d can attain one of these lower bounds, then
it attains both of them. In other words, an E(s?)-optimal design is also uniform
(minimal discrepancy) for the DD. They further showed that in what cases these
lower bounds can be achieved, even though the DD is not equivalent to the [£(s%)
criterion.

Theorem 8. Let d be a 2-level design with n runs and m factors, where each
column has the same number of £1 elements. Suppose that 73 > —1, and that
m=c(n—1)+e fore=—1,0 or 1. Also, suppose that either a) n is a multiple
of 4 and there exists an n x n Hadamard matriz, or b) c is even and there exists
a 2n x 2n Hadamard matriz. Then the lower bounds of E(s*) and DD can be
attained.

Moreover, the DD is a more general, and thus more flexible criterion than
E(s?). For example, E(s?) ignores possible interactions of more than one factor.
However, the DD includes interactions of all possible orders, and their importance
may be increased or decreased by changing the value of 3.

4.2 Connection between DD and E(f,,,) in mixed-level SSDs

Two-level SSDs can be used for screening the factors in simple linear models.
When the relationship between a set of factors and a response is nonlinear, or ap-
proximated by a polynomial response surface model, designs with multi-level and
mixed-level are often required, e.g., to exploring nonlinear effects of the factors.
Recently, FFang, Lin & Liu (2003) proposed a new criterion, called the E(f..,,,)
criterion, for comparing SSDs. For a design d € D(n;q1 -- - gm), the criterion is
defined as minimizing

E(fvon) = Z fN()[?/( )

1<i<j<m

where

qi J 2
G _ N

Flow =303 (n2 - 2
qiq;

u=1v=1

nffﬁ) is the number of (u, v)-pairs in the ith and jth columns. Here, the subscript

NOD stands for non-orthogonality of the design. Fang, Lin & Liu (2003) obtained
a lower bound for E(f,,,) which can serve as a benchmark of design optimality.
They also studied the connection between DD and E(f,,,,,). Fang, Ge, Liu &
Qin (2004a) provided the following lower bound and the sufficient and necessary
condition to achieve it for E(f,,,, ), which includes the bound and condition of
Fang, Lin & Liu (2003) as a special case.

Theorem 9. Let d € D(n; ¢1 qm) be a U-type design, then

E(fvon) 2 % [(7+ 1 -0)(o-7) +(;2] + C(n,q1,- .-, qm), (7)
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. 1 2 2
where C(n,q1,...,qm) = 22 — D (Zlnzl =+ ZlSi;éjSm q':—q]_), o, v and
the sufficient and necessary condition for the lower bound to be achieved are the

same as those of Theorem I.

Thus we conclude that

Theorem 10. Let d € D(n;q1---qm) be a U-lype design, then d is a uniform
design with its squared DD-value achieving the lower bound on the right hand
side of (5) if and only if d is E(fy,,)-optimal with its E(f,,,,) achieving the
lower bound on the right hand side of (7).

Theorem 10 leads to a strong relation between E(fy,,,,) optimality and uni-
formity measured by the DD of any SSD. The uniformity of E(sz)— and ave x*-
optimal (Yamada & Lin (1999)) SSDs can be obtained directly based on this
theorem, as special cases of SSDs with equal-level factors.

4.3 Constructions of uniform SSDs measured by DD

To find uniform designs is an NP hard problem. There are several methods to
construct uniform designs in literature, such as the good lattice method (Fang &
Wang (1994)), Latin square method (Fang, Shiu & Pan (1999)) and optimization
searching method (Fang, Ma & Winker (2002)). In these methods, computer
algorithms play an important role to obtain uniform designs.

Recently, some combinatorial methods are introduced to construct uniform
U-type designs in terms of DD as well as E(f,,,). Note that in most cases,
uniform U-type designs are supersaturated. So this kind of U-type designs are
also called the uniform SSDs. Many infinite classes for the existence of uniform
designs with the same Hamming distances between any distinct rows are also
obtained simultaneously. These combinatorial approaches can be summarized as
follows:

I. Constructing symmetrical uniform SSDs from

a. Resolvable balanced incomplete block designs, see Fang, Ge & Liu (2002b),
Fang, Ge, Liu & Qin (2003);

b. Room squares, see Fang, Ge & Liu (2002a);

c. Resolvable packings and coverings, see Fang, Ge & Liu (2004) and Fang, Lu,
Tang & Yin (2004);

d. Super-simple resolvable t-designs, see Fang, Ge, Liu & Qin (2004b).

II. Constructing asymmetrical uniform SSDs from

a. Resolvable group divisible designs, see Fang, Ge, Liu & Qin (2004a);

b. Latin squares, see Fang, Ge, Liu & Qin (2004a);

c. Resolvable partially pairwise balanced designs, see Fang, Tang & Yin (2004);
d. Other uniformly resolvable designs, see Fang, Ge, Liu & Qin (2004a).

In addition, Fang, Lin & Liu (2003) proposed a method by fractionalizing satu-
rated orthogonal arrays for constructing asymmetrical uniform SSDs. The prop-
erties of the resulting uniform SSDs were also investigated in those papers.
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5 Concluding remarks

Uniform experimental design has been widely used in many fields in the last
two decades. Discrepancy is a measurement of the uniformity and is a criterion
in experimental design. In this paper, we review the recent developments on the
discrete discrepancy and summarize some important results. The uniformity of the
common experimental designs, such as factorial design, orthogonal design, block
design and supersaturated design, are also discussed in this paper. All these results
show that orthogonality (non-orthogonality) and balance are strongly related to
uniformity, and the discrete discrepancy plays an important role in evaluating
such experimental designs.
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