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Abstract

An e�ective bandwidth selection method for local linear regression is proposed in Fan and Gijbels [1995, J. Roy.
Statist. Soc. Ser. B, 57, 371–394]. The method is based on the idea of the pre-asymptotic substitution and has been tested
extensively. This paper investigates the rate of convergence of this method. In particular, we show that the relative rate
of convergence is of order n−2=7 if the locally cubic �tting is used in the pilot stage, and the rate of convergence is n−2=5

when the local polynomial of degree 5 is used in the pilot �tting. The study also reveals a marked di�erence between
the bandwidth selection for nonparametric regression and that for density estimation: The plug-in approach for the latter
case can admit the root-n rate of convergence while for the former case the best rate is of order n−2=5. c© 1999 Elsevier
Science B.V. All rights reserved
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1. Introduction

Local polynomial regression is a curve estimation method by �tting locally weighted polynomial regression.
Recent work on local polynomial regression includes Fan (1993), Hastie and Loader (1993), Ruppert and
Wand (1994), and the monographs by Wand and Jones (1995), Simono� (1996), Fan and Gijbels (1996)
and the references therein. One critical step for using local regression methods is the choice of the smoothing
parameter h, or “bandwidth”, which controls the degree of smoothing. Di�erent values of the bandwidth result
in di�erent estimated curves. One possible method for selecting an appropriate bandwidth is to plot out several
estimated curves with di�erent bandwidths and choose one estimate subjectively. This subjective method has
two serious drawbacks: It is hard to process the data beyond the domain of our visualization and the method

∗ Corresponding author.
1 On leave from the University of North Carolina at Chapel Hill and supported by the NSF grant DMS9504414 and the NSA grant

96-1-0015.

0167-7152/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(98)00271 -5



310 J. Fan, L.-S. Huang / Statistics & Probability Letters 43 (1999) 309–316

cannot be automated. Thus, it is desirable to provide a data-driven bandwidth that suits practical needs and
has a good convergence rate.
The problem of bandwidth selection has stimulated much research especially in kernel density estimation.

The approaches include cross-validation and “plug-in” methods; see the review paper by Jones et al. (1996). In
particular, Hall et al. (1991) propose a n−1=2-consistent bandwidth selector for kernel density estimator where
n is the sample size. Based on a similar idea, Chiu (1991a,b) constructs n−1=2-rate bandwidth selectors for the
kernel-type estimators of density and regression functions. Ruppert et al. (1995) give a bandwidth selection
method for local linear regression based on the “plug-in” idea. Hart and Yi (1996) focus on a non-random
design model and study a cross-validation type bandwidth selector with rate n−3=10, while Schucany (1995)
study local bandwidth selection for Priestly-Chao kernel estimators (Priestly and Chao, 1972) with possible
extension to local linear regression. Opsomer (1995) proposes a “plug-in” bandwidth selection method for
bivariate additive models with local linear �tting. Fan and Gijbels (1995) study the bandwidth selection
problem for local polynomial �tting and propose an idea of pre-asymptotic assessment of the bias and variance
expressions. This approach saves the e�ort of estimating unknown terms related to the design density in the
asymptotic expansion of the optimal bandwidth. While this idea has been empirically demonstrated to be
powerful, no formal theory has yet been established.
The aim of this paper is to investigate the rate of convergence for the pre-asymptotic substitution method

in local linear regression. We �rst expand in Theorem 1 the asymptotic bias and variance into the second
order. This expansion is a necessary technical device for establishing rate of convergence of the implicitly
de�ned pre-asymptotic substitution bandwidth selector, and enables us to understand why the best relative rate
of convergence for the plug-in bandwidth selector is at most of order n−2=5. This marks a salient contrast with
the bandwidth selection problem in the density estimation setting, where it is shown that the root-n bandwidth
selector can be constructed via a plug-in method (Hall et al., 1991). Our study shows that the pre-asymptotic
substitution method has convergence rate n−2=7 if the local polynomial of degree 3 is used in the pilot �tting
and has rate at least n−2=5 if the local polynomial of degree 5 is used in the pilot �tting. One technical
challenge here is that the bandwidth selector is de�ned implicitly.
The paper is organized as follows. Section 2 sets up some necessary notation on the local polynomial

�tting. The asymptotic expansion of the optimal bandwidth for local linear regression is given in Section 3. In
Section 4 we study the rate of convergence for the pre-asymptotic substitution method. The technical proofs
are collected in Section 5.

2. Local polynomial �tting

Let (Xi; Yi); i = 1; : : : ; n; denote independent data generated from a random design model:

Y = m(X ) + �(X )�; E(�) = 0; var(�) = 1; (2.1)

where m(·) is an unknown regression function, � is an error variable, and X is independent of �. The
location-scale model (2.1) is postulated for the ease of comprehension. It is not critical to our development.
Let K(·) be a kernel function, usually a symmetric probability density function, and h be the bandwidth.
Then, a local polynomial �t of order p at a point x is to �nd the solution of �(x)= (�0(x); : : : ; �p(x))T to the
following weighted least-squares problem:

min
�

n∑
i=1


Yi −

p∑
j=0

�j(Xi − x) j


2

K
(
Xi − x
h

)
: (2.2)

The dependence of � on x is suppressed for simplicity. It is easy to see that (2.2) can be written as

min
�
(Y − X�)TW (Y − X�);
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where

X =



1 (X1 − x) · · · (X1 − x)p
...

...
. . .

...
1 (Xn − x) · · · (Xn − x)p


 ; W = diag

(
K
(
Xi − x
h

))
n×n

(2.3)

and Y = (Y1; : : : ; Yn)T. Hence the solution �̂ = (�̂0; : : : ; �̂p)
T to Eq. (2.2) can be expressed as

�̂ = (XTWX)−1XTWY : (2.4)

Note that �̂� estimates the parameter ��(x) = m
(�)(x)=�!. When p = 1, the case of local linear regression,

the solution �̂0(x), denoted by m̂l(x), is the local linear regression estimator for m(x), and can be expressed
explicitly as

m̂l(x) =
∑n

i=1{Sn; 2 − (Xi − x)Sn; 1}K((Xi − x)=h)Yi∑n
i=1{Sn; 2 − (Xi − x)Sn; 1}K((Xi − x)=h)

;

where Sn; j =
∑n

i=1(Xi − x) jK((Xi − x)=h); j = 0; 1; : : : . Again, the dependence of Sn; j on x is suppressed.

3. Asymptotic expansion

Consider �tting local linear regression on an interval [a; b]. A criterion that measures the discrepancy
between the estimated curve m̂l(x) and the true regression function is the conditional weighted mean integrated
square error (MISE) given by

M (h) = E
{∫

(m̂l(x)− m(x))2w(x) dx|X1; : : : ; Xn
}
; (3.1)

where w(·) is a nonnegative weight function with support [a; b]. De�ne the optimal bandwidth hOPT to be the
minimizer of the M (h). The �rst-order expansion of hOPT is well known; see for example Fan and Gijbels
(1995), and Ruppert et al. (1995) with w(x) = f(x), where f(·) is the marginal density of the independent
variable X . The goal of this section is to derive the second order expansion, which will serve as a technical
device for studying the pre-asymptotic bandwidth selector de�ned implicitly.
We require the following technical assumptions.

(A1) The regression function m(·) admits a continuous fourth derivative on [a; b].
(A2) The design density f(·) has a second continuous derivative and is bounded away from 0 on [a; b].
(A3) The bandwidth h lies in an interval (�1n−t1 ; �2n−t2 ) such that (
1n−1=5; 
2n−1=5)⊂(�1n−t1 ; �2n−t2 ); for

some positive constants �1, �2, 
1, 
2, t1 and t2.
(A4) The kernel function K(·) is a bounded symmetric probability density de�ned on a compact interval.

Further, K(·) has a bounded second derivative almost everywhere.
(A5) The variance function �2(·) has a bounded second derivative on [a; b].

Theorem 1. Under Conditions (A1)–(A5), the asymptotic bias and variance of m̂l(x), x ∈ [a; b], are

E(m̂l(x)|X1; : : : ; Xn)− m(x) = h2�2�2(x) + h4{(�22 − �4)�2(x)(f′2(x)=f2(x)

−f′′(x)=(2f(x))) + �4(x)�4}+ o(h4) + OP(n−1=2h3=2) (3.2)
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and

var(m̂l(x)|X1; : : : ; Xn) = n−1h−1�2(x)�0=f(x) + n−1h{(2�0�2 + �2)�2(x)f′2(x)=f3(x)

−�0�2�2(x)f′′(x)=f2(x) + �2g′′(x)=(2f2(x))

−2�2f′(x)g′(x)=f3(x)}+ o(n−1h) + OP(n−3=2h−3=2); (3.3)

where g(x) = f(x)�2(x), �j =
∫
u jK(u) du, and �j =

∫
u jK2(u) du; j = 0; 1; : : :

The proof of this theorem is given in Section 5. Expressions (3.2) and (3.3) hold uniformly for h in the in-
terval speci�ed by Condition (A3) if the OP terms are replaced by OP(n−1=2h3=2 log n) and OP(n−3=2h−3=2 log n)
respectively, since Sn; j converges uniformly in h with an in
ation factor of log n in the Op-term (see (5.2)).
Writing �2 =

∫
�22(x)w(x) dx, we show in Theorem 2 that the optimal bandwidth

hOPT = a1n−1=5 + OP(n−3=5) (3.4)

with

a1 =
(
�0

∫
�2(x)f−1(x)w(x) dx=4�22�2

)1=5
:

We have attempted to expand hOPT further into hOPT = a1n−1=5 + a2n−3=5 +OP(n−4=5) so that the relative rate
between hOPT and its �rst two leading terms in the asymptotic expansion is of order o(n−1=2). However, the
results are contrary to our expectation. As shown in Huang (1995), unlike the coe�cient a1 in the leading
term, the coe�cient a2 involves already stochastic components and hence (3.4) is the best expansion we can
have. The main reason for this is due to the intrinsic di�culty of approximating elements in the design matrix
(XTWX). A typical component Sn; j in the design matrix admits approximation (5.2), whose stochastic error
is of size (nh)−1=2. These stochastic error terms enter into the coe�cient a2.
The above remarks reveal that in the nonparametric regression setting, it is not possible to construct a

root-n consistent bandwidth selector using the conventional plug-in idea as in Hall et al. (1991). This marks
a major di�erence between the density estimation and the nonparametric regression.

Theorem 2. Under Conditions (A1)–(A5), the optimal bandwidth admits the following expansion:
(hOPT − hO)

hOPT
= OP(n−2=5);

where hO = a1n−1=5.

4. Pre-asymptotic substitution bandwidth selector

In this section, we study the asymptotic performance of the pre-asymptotic substitution bandwidth selector.
The homoscedastic model ((2.1) with �2(x) = �) is adopted here for simplicity.
The basic idea stems from Fan and Gijbels (1995). Instead of using the asymptotic bias and variance, their

procedure involves assessing the bias and variance via

bias(m̂l(x)|X1; : : : ; Xn) = eT0 (X Tl WXl)−1X Tl W (m − Xl(�0; �1)T);

var(m̂l(x)|X1; : : : ; Xn) = �2eT0 (X Tl WXl)−1(X Tl W 2Xl)(X Tl WXl)
−1e0; (4.1)

where Xl is the design matrix for �tting a local linear regression at point x (i.e. a speci�c case of (2.3) with
p=1), m=(m(X1); : : : ; m(Xn))T and e0=(1; 0)T. Here, as before, �j=m( j)(x)=j!. Note that the unknown terms
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in (4.1) are (m− Xl(�0; �1)T) and the variance parameter �2. Estimated MSE for m̂l(x) can then be obtained
by assessing only (m − Xl(�0; �1)T) and �2. Estimation of the conditional variance �2 is studied by Rice
(1984), Hall et al. (1990), and Ruppert et al. (1995), among others, where one can easily construct estimators
of the parametric rate. Hence, the estimation of variance is not an objective of this study. To approximate
(m − Xl(�0; �1)T), a Taylor expansion around the point x is used to obtain

m − Xl(�0; �1)T ≈



�2(X1 − x)2 + �3(X1 − x)3

...
�2(Xn − x)2 + �3(Xn − x)3


 : (4.2)

From (4.1) and (4.2), we need only estimate �2, �2(x), and �3(x). Following the development of the local
polynomial �tting, we use a local polynomial approximation of degree p with a pilot bandwidth g to estimate
�2; �2(x), and �3(x). Note that the di�erence of this approach from the “plug-in” method is that we substitute
estimates into pre-asymptotic expressions (4.1) and (4.2) instead of their asymptotic counterparts. As a result,
we do not need to estimate the unknown terms involving the design density although it is present in the
asymptotic expansion.
With the above pre-asymptotic substitution, we obtain an estimate of [MSE(x; h) from (4.1) and (4.2).

Consider the estimated mean integrated squared error (MISE)

[MISE(h) ≡ M̂ (h) =
∫
[MSE(x; h)w(x) dx; (4.3)

where w is a non-negative weight function on [a; b] with three bounded derivatives. A data-driven bandwidth
selector ĥOPT is the one that minimizes M̂ (h).
For the simplicity of implementation, Fan and Gijbels (1995) consider a pilot �tting of the local cubic

polynomial with a pilot bandwidth g selected by the residual squares criterion. For theoretical consideration,
we take a non data-driven optimal pilot bandwidth g, which is of size n−1=7. The convergence rate of this
pre-asymptotic substitution method is depicted in part (1) of Theorem 3. Clearly, the pilot degree p = 3
does not explore fully the smoothness condition of the regression function m(·). The rate of convergence
can be improved upon if one uses the pilot �tting of order p = 5. The result is summarized in part (2) of
Theorem 3.

Theorem 3. Suppose �̂2 is a root-n consistent estimator of �2. Assume that h=h(n)→ 0; nh+log(h)→ ∞,
as n → ∞, and the weight function satis�es w(i)(a) = w(i)(b) = 0, for i = 0; 1; 2; 3. Under
conditions (A1) – (A4),
1. if p= 3 and g= d1n−1=7 in the pilot estimation for a positive constant d1, then

(ĥOPT − hOPT)
hOPT

= OP(n−2=7); (4.4)

2. if p= 5 and g ∈ (d2n−3=25; d3n−1=10) in the pilot estimation for some positive constants d2 and d3, then
(ĥOPT − hOPT)

hOPT
= OP(n−2=5): (4.5)

The proof is given in Section 5.

5. Proofs

This section outlines the key idea of the proof. Details can be found in Huang (1995).



314 J. Fan, L.-S. Huang / Statistics & Probability Letters 43 (1999) 309–316

Proof of Theorem 1. We begin by estimating the conditional bias. The expectation of the local linear regression
estimator is

E{m̂l(x)|X1; : : : ; Xn}= eT0 (X Tl WXl)−1X Tl Wm:
A Taylor’s expansion of m(·) gives

m =



m(x) + m′(x)(X1 − x) + · · ·+ m(4)(x)(X1 − x)4=4! + o{(X1 − x)4}

...
m(x) + m′(x)(Xn − x) + · · ·+ m(4)(x)(Xn − x)4=4! + o{(Xn − x)4}


 ;

and hence

bias(m̂l(x)|X1; : : : ; Xn) = eT0
(
Sn;0 Sn;1
Sn;1 Sn;2

)−1(
�2Sn;2 + �3Sn;3 + �4Sn;4
�2Sn;3 + �3Sn;4 + �4Sn;5

)
+ r(x; X1; : : : ; Xn); (5.1)

where r(·) denotes the remainder terms. Using a similar argument as in the proof of Theorem 1 of Fan et al.
(1996), one can show that

Sn; j = nh j+1(s∗j +OP(an)); (5.2)

where s∗j = f(x)�j + hf
′(x)�j+1 + h2f′′(x)�j+2=2 + o(h2) and an = (nh)−1=2. It follows from (5.1) and (5.2)

that

bias(m̂l(x)|X1; : : : ; Xn) = eT0
((

s∗0 s∗1
s∗1 s∗2

)
+OP(an)

)−1
h2

(
�2s∗2 + h�3s

∗
3 + h

2�4s∗4 + OP(an)
�2s∗3 + h�3s

∗
4 + h

2�5s∗5 + OP(an)

)
:

It is easy to see that(
s∗0 s∗1
s∗1 s∗2

)
=f(x)

(
1 0
0 �2

)
+ hf′(x)

(
0 �2
�2 0

)
+ h2f′′(x)

(
�2=2 0
0 �4=2

)
+ o(h2):

Using the fact that for square matrices A; B, and C with A being invertible,

{A+ hB+ h2C + o(h2)}−1 = A−1 − hA−1BA−1 − h2A−1CA−1 + h2A−1BA−1BA−1 + o(h2);
the bias expression in Theorem 1 is obtained with some matrix algebra.
For the variance term of the locally linear �t, we have

var{m̂l(x)|X1; : : : ; Xn}= eT0 (X Tl WXl)−1(X Tl W�(x)WXl)(X Tl WXl)−1e0;
where �(x) = diag{�2(X1); : : : ; �2(Xn)}. A typical element of the matrix (X Tl W�(x)WXl) is of form

Rn; j =
n∑
i=1

(Xi − x) j�2(Xi)K2
(
Xi − x
h

)
:

By the approximation

Rn; j = nh j+1(r∗j +OP(an));

where r∗j = g(x)�j + hg
′(x)�j+1 + h2g′′(x)�j+2=2 + o(h2), it follows that

var{m̂l(x)|X1; : : : ; Xn}

=
1
nh
eT0

((
s∗0 s∗1
s∗1 s∗2

)
+OP(an)

)−1((
r∗0 r∗1
r∗1 r∗2

)
+OP(an)

)((
s∗0 s∗1
s∗1 s∗2

)
+OP(an)

)−1
e0:

The asymptotic variance follows by some matrix computations.



J. Fan, L.-S. Huang / Statistics & Probability Letters 43 (1999) 309–316 315

Proof of Theorem 2. For simplicity, denote the asymptotic bias and variance in Theorem 1 as

bias(m̂l(x)|X1; : : : ; Xn) = h2b0(x) + OP(h4 + n−1=2h3=2);
var(m̂l(x)|X1; : : : ; Xn) = n−1h−1v0(x) + OP(n−1h+ n−3=2h−3=2);

hence the conditional mean integrated square error is given by

M (h) = h4
∫
b20(x)w(x) dx + n

−1h−1
∫
v0(x)w(x) dx +OP(bn);

where bn = h6 + n−1=2h7=2 + n−1h + n−3=2h−3=2. The above expression holds uniformly (except in
ating a
log n factor as remarked after Theorem 1) in h ∈ (�1n−t1 ; �2n−t2 ), the range speci�ed in Condition (A3). The
last statement implies that hOPT is of order n−1=5. Using the same arguments as in the case of obtaining the
expression for M (h), we have

M ′(h) = 4h3
∫
b20(x)w(x) dx − n−1h−2

∫
v0(x)w(x) dx +OP(bn=h)

and

M ′′(h) = 12h2
∫
b20(x)w(x) dx + 2n

−1h−3
∫
v0(x)w(x) dx +OP(h4 + n−1=2h3=2 + n−3=2h−7=2):

Since hOPT minimizes M (h), M ′(hOPT) = 0, and by a Taylor’s expansion,

M ′(hOPT) =M ′(hO) + (hO − hOPT)M ′′(h̃) = 0;

where h̃ lies between hO and hOPT and hence h̃ = O(n−1=5). It is easy to check that M ′(hO) = OP(n−1) and
M ′′(h̃) = cn−2=5(1 + o(1)) for some constant c¿ 0. Thus

(hOPT − hO) =M ′(hO)=M ′′(h̃) = OP(n−3=5):

The theorem follows.

Proof of Theorem 3. Let ĥOPT denote the optimal bandwidth that minimizes M̂ (h) and ĥO = ĥO(�̂2; �̂) be
de�ned similarly to hO with the terms �2(x) and �2 substituted by their corresponding estimates. We �rst show
that ĥOPT can be approximated well by ĥO. For the given pilot bandwidth g; �̂2(x) and �̂3(x) are uniformly
(in x ∈ [a; b]) consistent estimators of their counterparts and hence are stochastically bounded. Using the
arguments that lead to Theorem 2, it can be veri�ed that

(ĥOPT − ĥO)
ĥOPT

= Op(n−2=5):

Combining this with Theorem 2, we have

(ĥOPT − hOPT)
hOPT

=
(ĥO − hO)
hOPT

+ op(n−2=5): (5.3)

By inspecting the di�erences between ĥO − hO, the convergence rate is dictated by that of �̂2 − �2. It follows
from Theorem 4:1 of Huang and Fan (1995) that when g is of order n−1=7 and p= 3,

�̂2 − �2 = OP(n−2=7);
and for p= 5 and g ∈ (d2n−3=25; d3n−1=10),

�̂2 − �2 = OP(n−2=5):
The conclusion follows from the above two observations and (5.3).
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