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Abstract

We provide a new insight of the difficulty of nonparametric estimation of a whole
function. A new method is invented for finding a minimax lower bound of globally
estimating a function. The idea is to adjust automatically the direction to the nearly
hardest 1-dimensional subproblem at each location, and to use locally the difficulty of
1-dimensional subproblem. In a variety of contexts, our method can give not only at-
tainable global rates, but also constant factors. Comparing with the existing techniques,
our method has the advantages of being easily implemented and understood, and can
give constant factors as well.

We illustrate the lower bound by using examples of nonparametric density estima-
tion as well as nonparametric regression. Concise proofs of the lower rates are given.
Applying our lower bound to deconvolution setting, we obtain the best attainable global
rates of convergence. With the existing techniques, it would be extremely difficult to

solve such a problem.
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1 Introduction

Nonparametric techniques provide a very useful tool for investigating the structure of
some interesting functions. A useful mathematical formulation is to think of estimating
some function T o f(z) (e.g., density function, regression function) based on a random
sample X1, ..., Xy, from a density f with a priori f € F, under some global loss functions.
The global loss functions are typically those induced by L,-norm:

b 1/p
L(d,Tof) = [/ IT o f(2) - d(z)Po(e)dz| (1.1)
where w(z) is a weight function, and d(z) is a decision function to estimate T o f(z).
How can one measure the difficulty of estimating the function T o f under the weighted

L, loss? Our approach to the question is that

1. specify a subproblem — given a set of densities Fy C F, estimating T o f(z) with a

priori f € Fo; the geometry of Fy is typically hypercubical (Fan (1989b)).

2. use the difficulty of the subproblem as a lower bound of the difficulty of the full

nonparametric problem.

In the second step, we first formulate problems of estimating a functional T o f(z) at each
location zo, then adjust automatically the direction at the location z¢ to the nearly most
difficult direction of estimating the functional T o f(zo), and finally add the difficulties of
1-dimensional subproblems at all locations together, according to their weights, to find a
lower bound. A feature of our approach is to use geometric ideas, which can be easily
understood and implemented.

Our approach is related to the illuminating ideas of Donoho and Liu (1987a, 1988)
and other approaches (Farrell (1972), Ibragimov et al. (1987), Khas’minskii (1979), Stone
(1980), etc.) for estimating a statistical functional (instead of estimating a whole function).
In the context of estimating a linear functional, Donoho and Liu (1987a) shows that the

difficulty of the hardest 1-dimensional subproblem is hard enough to capture the difficulty




of a full nonparametric problem. However, the hardest one-dimensional subproblem is
not difficult enough to capture the difficulty of estimating a whole function (e.g., the whole
density function). To bridge the gaps, we use a growing number of dimensional subproblem,
adjusting directions accordingly, to capture the difficulty of estimating a whole function.

Comparing with the existing methods of Stone (1982) (discriminant analysis based
method), Kha’sminskii (1978) (Shannon information based method), Birgé (1987) (As-
saud’s Lemma based method), our approach is simpler in the second step above. In a sense,
the existing approaches attempt to count (see (2.9) of Stone (1982)) how many densities
that we can not distinguish at the same time, while our method adopts locally the idea of
the 1-dimensional subproblem. Thus, our argument is simpler than the existing ones and
is expected to extend to find minimax risks within a few percents (Donoho and Liu (1988),
Donoho et al. (1987)). Compare also Efroimovich and Pinsker (1982), Nussbaum (1985),
where the exact minimax risk is found for the ellipsoid constraints under L, loss.

The paper specially focuses on finding global rates of convergence, and on introducing
the new methodology. As a byproduct, we will give constant factors in lower bounds as
well. However, the our primary goal of the paper is not to make much effort to get as sharp
constants in lower bounds as we can via our cubical approach. The reason is that doing so
might obscure the main idea of the study. Thus, it would be no surprise that one can sharp
our constant factors via the cubical approach. Indeed, we believe that the hypercubical
approach can be used to find minimax risks within a few percents of error, by a modified
version of the cubical approach together with the ideas of Donoho and Liu (1988), Donoho
et al. (1987). In contrast, with the existing approaches, it would be very difficult to sharp
the constant factor.

We demonstrate within a few lines that our method can give the best attainable lower
rates in a variety of contexts. Examples are estimating density functions, estimating de-
creasing failure rates, estimating regression functions, estimating of conditional quantile

functions, etc. See Keifer (1981) for other combinations of problems. Thus, we provide a



short and simple proof of these deep results, which can be understood at the level of second
year graduates.

The cubical method is especially useful for establishing attainable global lower rates of
deconvolution problem (indirect observations). We use this to solve the open problem of
the optimal global rates for deconviution. In this context, the cubical method provides the
precise description of the difficulty, depending on the tail of characteristic functions of error
distributions (Fan (1988a)), of deconvolution.

The paper is organized as follows. Section 2 introduces the cubical lower bound. Sec-
tion 3 illustrates the method by using examples of nonparametric density estimation and
nonparametric regression. Section 4 applies the lower bound to find a global rates of con-

vergence for deconvolution models. Some technical arguments are stated in section 5.

2 Cubical lower bound of global rates

In this section, we give a lower bound for estimating a function T o f(z). We discuss
the problem for the 1-dimensional case. The higher dimensional results follow naturally.
Let [a, b] be an interval on the line, and z,; = a + j(b— a)/mn, j = 1, ...,m,. Denote

0., = (01, ..., 0,), and
To,, (1) = folt) + az* 3 6;H (ma(t = 2,.)), (2.1
=1

where fo(t) is a density function, H(-) is a bounded function whose integral on the line is
0, and m, and a, are sequences tending to infinity. By suitable choices of my, a,, fo, and

H, the function fgm will be a density function. Denote a class of densities by
Fn={fg, : Om,is asequence of 0’s and 1’s} (2.2)
and denote

0_7'0 = (01, ceey 0j_1,0,0j+1, ...,Om"), 0]'1 = (01, sesy 0j_1,1,0j+1, ---70m,.)- (23)




Suppose that a, and m, are chosen so that

2
119mn 0, €{0, 1}mn (fo;, f9;,) < ¢/, (24)

for some constant ¢, where x%(f,g9) = [(f — g)?/fdz. Then, we have the following lower

bound of estimating T o f(z).

Theorem 1. Suppose that T o f(z) satisfies

T o fg,,(z) =T o fg, (2)] 2 |Tnrr (Mn(z = 2n,5)); (2.5)

for some function T,f, depending on n and H. Let w(z) be a non-negative, continuous
function on [a, b]. If the condition (2.4) is satisfied, then for any estimate Tn(x) based on

n i.i.d. observations from the unknown density f, we have

b,
inf sup E’f/ |Tn(z) = T o f(z)|Pw(z)dz
Ta(z) f€Fn

> 12;+\1/ﬁ/ w(cc)dz'/ | Tnr(z — a)|Pdz(1 + o(1)). (26)

Let’s give a proof here to illustrate the simple and basic idea inside.

Proof. Assign the prior 6y, ..., 0, to be i.i.d. with
P(8; =0)= P(8; =1)=1/2, forj = 1,...,mn

Denote Eyg(6.,) by the expectation of g(@,,) with respect to the prior distribution of
01, ..., Om,. By Fubini’s Theorem,

inf sup E; / "1 Fu(2) = T o f(@)Pu(z)da

Tn(x) fE€EFn
> inf EgEfe/ (To(z) = T o f(2)Pw(z)de
Tz
b
> / inf EgEj,|Ta(z) - T o f(z)Pu(z)dz. (2.7)
n(f



Let an;(z) = |Tof0jo(x) —Tofoj1 (z)|/2, where 8;,, 8;, are given by (2.3). Then, it follows

that

inf EgEp,|Ta(z) — T o f(z)|?
Tn(z)

_ p
> lggl";xtf Eo { B, E,|Ta(z) = T o f(z)P} . (2.8)

Denote Pj;o and Fp,1 by the probability measures generated by the density functions f9jo

and f0j1 , respectively. Then, the last quantity (2.8) is no smaller than

B3 Eodly(e)g inf [PuollTu(®) =T o fy, (=) 2 ans(2)}
+Poyi{|T(2) = T fg,, ()] 2 ans(@))]

> <ma.x a? (x)/?Eg inf [Pg o{IT (z) —Tofg (z)] > anj(z)}
1558 Tn(z)

+Py1{|Tu(2) ~ T o fo,,(2)] < anj(2)}] (2.9)

The terms in the square blanket can be viewed as the sum of type I and type II errors of a

testing procedure for the testing problem:
Hy:f= fejo — H,: f= f9j1' (2.10)

Since the x?-distance for the pair of densities is no large than ¢/n, it follows that (see e.g.

Lemma 1.3, Fan (1989), page 14)

Po,o{|Tn(2) = To S, (2)] > ans(@)} + Poyu{lTa() = T o fo, (2)] < ans(x))
> 1-V1-e—c. (2.11)

Consequently, by (2.5), (2.7), (2.9), (2.11), we have

b .
inf sup Ef/ |Tn(z) — T o fijo(z)|Pw(z)dz
Tn(-‘b‘) f€Fn

1— m
> / 1<J< a(z)w(z)dz
1-vV1I—e—< m" Tnj+1
N /z | Tatt(min(3 = 20,))Pr(2)da. (2.12)

njy




Now, we need to calculate the summation in the last expression is no smaller than the
quantity indicated in the Theorem 1. By the uniform continuity of w(z), it follows that for

any given ¢, there exists an ng such that when n > no,

inf w(z) > (1 = e)w(zn ;).

z€[Tn,;) Tn j+1

Consequently, when n > ng, the summation in (2.12) is no smaller than
Mmn b
(1-¢)/my, Z’U)(:L‘n'j)/ |Twm(z — a)Pdz
=1 @
mn b
= (1-)/(b= @) Y. 0(en;)Enstr = 2ny) [ |Toi(e — )Pz, (2.13)
J=1 @

The conclusion follows by letting n — oo and then letting ¢ — 0.

Specially, when T'o f = f®)(z), the k** derivative of the unknown density function, the

condition (2.5) (fo and H are chosen to have the k'* derivative) satisfies with
| Tor(z)| = |mf/an HE) (). (2.14)

We have the following lower bounded for estimating f(¥)(z).

Corollary 1. Under the assumption of (2.4),

b
inf sup Ef | |Tu(z) — fP(2)Pu(z)dz
Tn(x) f€FA a

1-V1—-e—< f* b
> V- F &) zr — a)IP
2 (- a) /a w(a:)dz/a |H"™ (z — a)|Pdz

(mF Jan)P(1 + o(1)). (2.15)

One may wonder whether condition (2.4) is easy to check or not. The following Lemma

gives an easy sufficient condition for (2.4).

Lemma 1. If H has bounded support on [0, b — a], then

1
Dm,a?

b
max _ x*(fa,. fo;,) < [1H@-atd, (@216

max
1<j<mn @,, €{0,1}mn



where

b= g o) - g W@ e

Remark 2.1. Geometrically speaking, if we take {H (mn(t — 2n;)) : j = 1,...,mn}
(H has the support [0,b — a]) as a part of the orthogonal basis, then our class of densities
Fn corresponds the vertices of an m,-dimensional hypercube centered at the point 6, the
Fourier-Bessel coefficients of the density fo,in R*. The condition (2.4) essentially says that
any two vertices of the hypercube can not be tested consistently. Thus, the x2-distance in
(2.4) can be replaced by Hellinger distance, and Theorem 1 holds by replacing (1— m)
by (1 —+/1— e=2) (see (1.3.9) of Fan (1989a), page 46-47, 475-477 of Le Cam (1985)). We
state Theorem in terms of x2-distance because the condition 2.4 is easier to verify (see

Lemma 1).

Remark 2.2. Comparing with the approach of Donoho and Liu (1987a), we use
the difficulty of 1-dimensional subproblems locally (see (2.7)) as the difficulty of the full
nonparametric problem. The idea of our approach adjusts automatically (see (2.8) and
(2.9)) the direction of a 1-dimensional subproblem at each location to the direction of the
nearly hardest 1-dimensional subproblem at that location, and then add the difficulty up
according to the weight of each location (see (2.12)). The notion here is also different from
Donoho and Liu (1987b), Bickel and Ritov (1988) and cubical method of Fan (1989b), where
only two highly composite sets of densities are tested. Our idea here is to test a variety of

simple hypotheses.

Remark 2.3. Discrimant analysis based methods (Stone (1982)), Shannon information
based methods (Khas’minskii (1978)), and Assouad’s Lemma (Lemma 9, P524, LeCam
(1985)) based methods (Birgé (1987)) essentially count how many densities totally we can

not distinguish at the same time. Thus, the analysis would be more complicated than ours.




Our method does not try to count the number of densities that we can not distinguish, but

adjust directions of pairs of densities accordingly.

Remark 2.4. Choose a, = m™*®, and the functions H, fo(t) so that they have
bounded m+1 derivatives. The class of F, defined by (2.1) will be a subset of the smoothness

constraints:
Fmep = {1 1f™(z) = f™(y)| < Blz - y°}, (2.17)

for some 0 < a < 1. Thus, (2.6) is also a minimax lower bound for F, o B-

Remark 2.5. It is not hard to get a lower bound of the minimax risk
1/p
inf sup E (/ [Tn(z) = T o f(z)|Pw(z)dz ) (2.18)
Tn(l' fe-rn
(Direct use our method would fail). By normalizing of w(z), without loss of generality,

assume that the total weight of w(z) on [a, b} is 1. Thus using the fact that

b 1/p b
( / ITn(z)—TOf(w)l”w(z)dx) > [(1(e) = T o f(&)lwla)dz,

for p > 1, we can easily get a lower bound of (2.18).

Remark 2.6. We attempt only to sharp the lower bound in terms of rates of conver-
gence. However, taking any function H and fo would give us a constant factor in the lower
bound as well. Nevertheless, our method can provide a nonasymptotic lower bound, if we
bound (2.12) from below by using the minimum of w(z). To find a sharper constant factor,
we adopt the same idea by using the difficulty of the whole 1-dimensional (0 < 6; < 1)

subproblem instead of only a 2-point (8 = 0,1) subproblem locally.



3 Applications to Nonparametric regression and density es-

timation

In this section, we apply our lower bounds to the setting of nonparametric regression
and density estimation. For the simplicity of notation, we use 1-dimensional version of our

Theorem 1 again.

3.1 Density Estimation

Suppose that we have n i.i.d. observations Xj,...,X, based on an unknown density
function f, with a smoothness priori F,, o p defined by (2.17).
Let a, = m**%, and choose the density function fo(z) and the function H(z) supported
on [0,b— a] such that 7, C Fy, o 5. With m,, = (n/d)2(T+l<’WT and Lemma 1, the condition
(2.4) is satisfied with

d b
c= ——mmM8M88—— H(z — a)|%dz,
mmagxgbfo(x)/a H( )

by Lemma 1. Thus, by Corollary 1, the minimax lower bound is as follows.

Theorem 2. For estimating the kth derivative of the unknown density, we have

inf sup E; /b ITa(z) — fO(2)]Pw(z)dz

Tn(z)fe}-n

1—+/1—e—c< rb b pmta—k) _ p(m+a—k)

—_— d / H®) (2 — q)|Pdzd2mtar+i p~ 2mtartl
2 Hp_a) /;w(:v) T A | (z — a)|Pdz n

Thus, we give an short and easily understood proof of global lower rates. A byproduct
of our proof is that we could give a constant factor of the lower bound. To find a sharper
lower bound in constant factor, we may want to maximize the last term over d > 0, and
the function H subject to fgm" € Fm,a,B-

Specially, for estimating density function, we have

LI
inf sup Ef/ |Tn(z) — f(x)|%dz
Tn(f) fe}-m,a,B 0

10




(1 —+/1 - e"C) 2(m+a) ) 2(m+a)

1
> /IH(z)|2d:c SUp ———————2d ¥+ | p” 2AmFHT (3.1)
0 d>0 8
and

1 A
inf  sup FEy | |Tn(x)— f(z)ldz
Tn(I) fe}-m,a,B 0

1 —_ — e~ ¢ m+a mta
> / |H(:I:)|d:l: sup (_.1_.____].'_.e_)d2(m++a)+l n- 2(m++a)+1 , (3.2)
0 d>0 4
where ¢ = d i H*(z)dz/mino<z<1 fo(z).

Remark 3.1. Taking fo(x) to be a strictly decreasing function as Kiefer (1981) (e.g.
fo(z) = L(1 + z)~E~1,z > 0), and H(z) to have a small first derivative, then the class of
F, is a subclass of decreasing densities. Thus, the rates above are also the lower rates for

estimating a decreasing densities as well as decreasing failure rates (Kiefer (1981)).

3.2 Nonparametric Regression

A useful mathematical model of nonparametric regression is to think of estimating a

conditional mean

Tosa) = [ vitewan [ iz, (33

using the random sample (X1,Y1),...,(Xn,Ys) ii.d. from the density f(z,y). To find a

lower bound, we use a simple normal submodel:

£(29) = Zo=exp(=(y - m())*/20")x ) (3.4

where fx is the marginal density of covariate X.

Define

Mn 2
f0,,,(2:9) = = exp (— [y - mo(z) = oz 30 H(rmn(a - xn,m] ) fx(@). @5
Then, the condition (2.5) is satisfied with
(T o fg, () = T fg,, ()] = |H(ma(z = 20.))|/an

11



For this model, it is more informative to compute directly the sum of type I and type II

errors instead of computing the x2-distance defined by (2.4).

Lemma 2. Suppose that the function H(-) is bounded and squared integrable. Then

for testing procedure T, of the testing problem (2.10), we have

 Join [ngo(:rn >0)+ Py, (Tn < 0)] > 28(=cn)(1 + o(1)), (3.6)

provided n/(mnal) < d, where 8;, and 8;, are defined by (2.3)

= (20)7!y/d max fx(z) /_;oo H2(y)dy. (3.7)

Thus, by Corollary 1 and Lemma 2, we have for regression estimator T},(z) of estimating

the kth derivative of the regression function m(*¥(z),

ml:)fseu}r),,Ef/ |Ta(z) = mP)(2)[Pw(z)dz
2 f%?’—)) | w(2)ds / [H®(z - a)Pda(myfan)’(1 +0(1),  (38)

where F,, is defined by (2.2) with f0m (3.5). Specially, with a, = m™*+, F,_ is a subset

of the constraint

FmoB = {f(2,9) : [m™(2) - m™)(y)| < Blz - y|°}, (3.9)

provided H(™)(z) < B and H(™t1)(z) < B. Consequently, with m, = (n/d)}/(2m+2a+1),
mta—k
the condition of Lemma 1 is satisfied, and the optimal rate of estimating m(k)(z) is n_m

with the constant factor (see (3.8)) specified by

®(—cy)

b b m+ta—k
By — Gty
#0—a) s w(a:)d:c/a |H'\®(z — a)|Pdzd 7m+2a+T1, (3.10)

Thus, our cubical method can not only give an attainable lower rate, but also can give a
constant factor in the lower bound. Perhaps, the constant factors are the first one we know

of.

12




Theorem 3. The minimaz lower bound of estimating a regression function m(z) is

b,
inf sup Ef | |Tn(z)— m(z)|Pw(z)dz

Tn(z) f€Fn
O(—cy)w [b —p(mta)
> z—ﬁ(b___l)'/ |H(z — a)[Pdz(d/n)Tmtars | (3.11)

where w = [*w(z)dz, and cy is defined by (3.7).

Remark 3.2. For the normal submodel, the conditional quantile functions of Y given
X = z is a constant multiplying m(z). Thus, the lower bounds above is also applicable to

the conditional quantile functions.

Remark 3.3. Constructing mo(z), and H(z) similar to Remark 3.1, the lower rates
above is applicable to estimate the conditional mean and conditional quantile functions

under additional monotonic constraints.

4 Optimal global rates for deconvolution

In this section, we use our cubical lower bound to find attainable global rates for
deconvolution problems. An advantage of our method is that the underlying structure of

the problem can be easily seen.

4.1 Introduction

The deconvolution problem arises when direct observation is not possible. The basic
model is as follows. We want to estimate the unknown density of a random variable X, but
the only data available are observations Y7, ..., Y,,, which are contaminated with independent

additive error ¢, from the model

Y=X+e. (4.1)
In density function terms, we have realizations Y, ... , Y, from the density
fr(0) = [ fxly - 2)dE(), (42)

13



and we want to estimate the density fx of the random variable X, where F. is the cumulative
distribution function of the random error ¢.

In practice, it may be more interesting to understand how to estimate a whole density
function and how well an estimator behaves. A kernel type of estimate is typically used to
estimate the unknown density. The global rates of the kernel density estimator have been
derived for some special cases (e.g., the error distribution is normal, Cauchy) (Fan (1989a),
Zhang (1989)). The question arises whether these rates are the best attainable ones. Based
on a Farrell-Stone type of argument, Fan (1989a) and Zhang (1989) prove that the best
attainable rate is achieved by a kernel density estimate for supersmooth errors (see Fan
(1988a) for a definition), the rates of which are extremely slow ( O((logn)~*), for some k
depending on the smoothness of the unknown density and the error distribution). Thus, it
is impractical to deconvolve an unknown density with supersmooth errors (Fan (1988a)).
A more practical question is how well we can deconvolve a whole density when the error

distribution is not too smooth: the tail of characteristic function of ¢ satisfies
do < [$e(t)t”] < dy (ast — o), (4.3)

which is called an ordinary smooth distribution of order 8 (Fan (1988a)). The examples
of distributions satisfying (4.3) are double exponential distributions, gamma distributions,
symmetric gamma distributions. However, the approaches of Fan (1989a) and Zhang (1989)

fail to answer the above question.

4.2 Lower bounds for Deconvolution

Suppose that we have 7 i.i.d. observations from the model (4.2) with fx satisfying the
nonparametric constraint Fp, o g defined by (2.17). Take fo(z) = C,(1+ z?)~" (r > 0.5),
and a (k + 1)-time bounded differentiable function H(z) (to be specified in the proof of

Theorem 4), a, = m™*+*. By Remark 2.4, F,, C Fm,a,B- By corollary 1, if

2
1$3$mn 0, €01 1)7n (fo,, * Fe: fo;, * Fe) < ¢/m, (4.4)

14




then (2.15) holds with f = fx. It will prove by Lemma 3 (Section 5) that under the
assumptions of Theorem 4, when m, = nl/2(m+a+6)+1] the condition (4.4) is satisfied for
some H(z) (see the proof of Theorem 4 for detail). By Corollary 1, we have the following
lower bound.

Theorem 4. Suppose that the tail of the characteristic function ¢, of the random

variable ¢ satisfies

[P+ ¢9(1)] < dj,5 = 0,1,2, (ast — o), (4.5)

where d; is a nonnegative constant, and ¢£") is the j** derivative of ¢.. Then no estimator
can estimate T o f(z) = f)((k)(a:), under the constraint that fx € Fm o B defined by (2.17),
faster than the rate O(n~(m+a—k)/(2m+2a+26+1)) in the sense that for any 0 < p < oo,

inf  sup Ey, / |Tn(z) — f( (z)]Pw(z)d=

1; x)fxef}taB

m+a—k
> D / w(z)dzn™ 2("'+°+5)+1 (4.6)

where D, is a positive constant.

Remark 4.1. Combining with upper bound results (Fan (1989¢c)), we have demonstrate
that the global rates in Theorem 4 are the best attainable ones for the ordinary smooth
error distributions under Ly-norm (1 < p < o). Specifically, for estimating f)((k)(a:) under

the constraint F,, o B, we have the following rates of convergence (I=m+a):

error distributions | € ~ Gamma(;3) € ~ symmetric Gamma(/3)

B #2j+1, (jinteger) | B =25 + 1, (j integer)
I—k I—k ___1—k
optimal global rates | O(n™ 20+A)1) O(n~ THAT ) O(n™ T+A¥T)

Thus, the optimal global rates for estimating fX)(:z:) is O(n~ 2l+5) when error is double

exponential.

15



Remark 4.2. For deconvolving with a supersmooth distribution (e.g. normal, Cauchy),
the difficulty of estimating a whole density function is captured by a 1-dimensional sub-
problem (Fan (1989a)). In contrast, for deconvolving with an ordinary smooth error distri-
bution, a 1-dimensional subproblem is not difficult enough to capture the difficulty of the
full nonparametric problem of estimating the whole density. Our arguments indicate that
the difficulty is captured at a growing number m,,-dimensional subproblem. Moreover, our
results indicate that the difficulty of deconvolution depends on both smoothness constraints

and the smoothness of error distributions.

5 Proofs

Proof of Lemma 1. As H vanishes outside [0, b — a], it follows that

L[
- on;  Jo(t) + H(mn(t - Tnj))/an

< @in  ®-Cla) [ e B ma(t — 25t

Zn,; SU<Tn,j+

X'(fg;,:6;,)

Tn,j

where €' = maxo<¢<p—a [H(t)|. The conclusion follows.

Proof of Lemma 2. Denote
Hj(z) = mo(z) + 3 0;H(ma(e = 203)) + jH(ma(z = 2n)) (j = 0,1).
i#3
Then, the log-likelihood ratio test statistics is

n

T = - Z(Y = Ho(X:))(Ho(X:) — Hi(X:))/0® = 3 (Ho(X:) = Hi(X))?/(20%).  (5.1)
1

1
The sum of type I and type II errors of the best testing procedure for the test problem
(2.10) is

where Py, and Py, are the probability measures generated under the hypotheses Hg and

H,, respectively. Note that under the hypothesis Hy, given Xy, ...,X,, the conditional

16




distribution of 02Tn is

N (— Zn:(Ho(Xi) - Hi(X:))?/2,0° Zn:(Ho(Xi) - Hl(Xi))2) :

1 1

Similarly, under the hypothesis Hi, given X1, ..., X, the conditional distribution of o?T, is

N (i(ﬂo(xi) (X)) /2.0 S (Ho(X:) - Hl(xi)f) .
1

1

Thus, by (5.1),

Py, {Tn > 0| X1, ooy Xn} + P, {Tr < 01 X1,..., X0},

= 29 (-(za)-l \J i(ﬂo(x,») - Hl(X,-))2) , (5.3)
1

where ®(-) is the standard normal distribution function. Note that the expected value of

the above quantity is

EY Ho(X)~ By(X)P = 2 [ H¥(ma(e = 2n,))fx(a)ds
1 n Y=o

+00
= e [T ) (s + ylmn)dy

mna’n o

+oo
< nf(mead)max fx(o) [ Hudy,  (54)
and the variance of the above random quantity is

var(} (Ho(X:) - Hi(X:)?) = nvar(H*(ma(X1 = X))/ e7)

n
4

IA

max fx(2) [ H)dy

- 0, (5.5)

mya

where fx is the marginal density of the random variable X;. Consequently, combining the
last three displays (5.3), (5.4), and (5.5), by Lebesque’s dominated convergence theorem,

we have

max [P {Tn > 0} + Pu (T < 0}] > 28(-ca)(1 + o(1)).

The conclusion follows.
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Proof of Theorem 4. We only prove the case that m + a > 1; the other case follow
the same idea expect more detailed technical arguments are required. We first construct
the class of densities 7, defined by (2.2). Take a real function H(-) satisfying the following

conditions:

1. H(z) £ 0, having all order bounded derivatives,

2. [** H(z)dz =0,

3. H(z) = O(z7*),as z — o0,

4. ¢y(t) =0, when |t| € [1, 2], where ¢ is the Fourier transform of H.

It is easy to argue (Fan (1988a)) that such a function does exist.
Let I =m+aand fo(t) = Cr(1+2%)77(1.5 > r > 0.5) be a density function. Then, it is
easy to see that with a, = mﬁl, the class of densities defined by (2.1) is a subset of Fm,o,Bs

when n is large enough. Thus, by Corollary 1,

b,
inf  sup Efx/ |Tn(z) — f)((k)(x)|”w(z)dz > com (=F)p (5.6)
Tn(x) fXE]:m,a,B a

for some constant ¢o > 0. To complete the proof, we need only to check that the condition
(4.4) is satisfied when m,, = ¢;n=1/(#+20+1) for some ¢; > 0, which will be proved in Lemma
3. The basic ideas of proving Lemma 3 are that the y?-distances for pairs of densities in

(4.4) are equivalent to Lz-distances, and then use Parseval’s identity to conclude the result.

Lemma 3. Under the assumptions of Theorem 4,

2 — —(21+26+1)
165%m0 6, €(0, 1} (foj, * £z fg;, + Fo) = O(m, ) (5:7)

Proof. By changing variables,
X2(f0jo * F5’f0j1 * Fe)
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[>%°) oo 2
= m;(2l+1) /+ [ ¥ H(z — y)dF.(y/my) [gn(z/my + 240 )d2, (5.8)

-0 — 00
where gn(z) = [fo(z) +m! iz O H(myu(z - Tn;))]*x Fe,and Il =m+ a.
Note that the minimum value of fo(z) on any bounded intervals is positive, and the

function H is bounded. Hence, it follows that when n is large

151]‘%fm,. li?sfl gn(z/mp + 20j) > c2 > 0. (5.9)

Let I; be the integration of (5.8) over z € [—1,1], and I, be the integration of (5.8) over

|z| > 1. Then, by Parseval’s identity and (5.9), we have

o [T +00 2
L £ ¢ / [/ H(z — y)dF.(y/my)| dz

+o0
it [ 18n (0P igumat)

2
2! /1 |B52(t) || e (mnt)|2dlt, (5.10)

as |¢g(t)| is symmetric, having a bounded support. By the assumption (4.5), we conclude

that
Il = O(m;w)

Now, let’s evaluate I; the Lemma follows if we show that I = O(m;;%"). Denote

2 m,
¢n(t) = d [¢H(td)ze( t)]

It follows by the Fourier inversion and the integration by parts that

400
51; /_ " exp(—ite)bn (t)0c(mt)it

1

= T 2na? /KMQ exp(—itz)$n(t)d?, (5.11)

+00
| A - ndRyim)

because ¢ (t) vanishes when |t| & [1,2]. By the assumption (4.5) and (5.11), we have that

when n is large enough,

+o0
mg / H(.’E - y)dFe(y/mn) S 63/2721
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for some constant ¢3 > 0. Thus (see (5.8)),

1
I, < (c m;ﬁ 2/ . dz. 5.12
22 (6 ) lo>1 24gn(T/mn + 24,5) (5-12)

As the sequence of z,, ; is bounded, by the property 3 of the function H(-), there exists an

M such that when |z| > M,

fo(z) + m;l ZG;H(mn(m —2n)) > Cr(1+ 2D — C4m;l+1(mnx)_4,
t#]

for some ¢4 > 0. When |z| < M

fo@) +my! 3 0:H (mn(2 — 200)) 2 Co(142%) ™7 = m"*1C,
i#]

where C is an upper bound of the function H. Thus, when n is large enough,

fo(@) + m7' Y "0 H(mn(z — 2,4)) 2 fo(z)/2.
1#]

Hence,

(@212 [ C1L+ (o~ y)) ARG H gla).

Note that g(z) > min{cs, csz~2"}, for some cs,cg > 0, as when z is large, the convolution

above is of order =27

, and when z is bounded, g(z) is bounded away from 0. By (5.12), it
follows that

O(mz?),

dz
I < 2 m_ﬂ 2/ =
2 S Ueomal) | o T ¥ 7g)

as 4 — 2r > 1. The conclusion follows.
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