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Abstract
Estimation of genewise variance arises from two important applications in microarray data analysis:
selecting significantly differentially expressed genes and validation tests for normalization of
microarray data. We approach the problem by introducing a two-way nonparametric model, which
is an extension of the famous Neyman-Scott model and is applicable beyond microarray data. The
problem itself poses interesting challenges because the number of nuisance parameters is proportional
to the sample size and it is not obvious how the variance function can be estimated when
measurements are correlated. In such a high-dimensional nonparametric problem, we proposed two
novel nonparametric estimators for genewise variance function and semiparametric estimators for
measurement correlation, via solving a system of nonlinear equations. Their asymptotic normality
is established. The finite sample property is demonstrated by simulation studies. The estimators also
improve the power of the tests for detecting statistically differentially expressed genes. The
methodology is illustrated by the data from MicroArray Quality Control (MAQC) project.
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1. Introduction
Microarray experiments are one of widely used technologies nowadays, allowing scientists to
monitor thousands of gene expressions simultaneously. One of the important scientific
endeavors of microarray data analysis is to detect statistically differentially expressed genes
for downstream analysis (Cui, Hwang, and Qiu, 2005; Fan, Tam, Vande Woude and Ren,
2004; Fan and Ren, 2006; Storey and Tibshirani, 2003; Tusher, Tibshirani, and Chu, 2001).
Standard t-test and F-test are frequently employed. However, due to the cost of the experiment,
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it is common to see a large number of genes with a small number of replications. Even in
customized arrays where only several hundreds of genes expressions are measured, the number
of replications is usually limited. As a result, we are facing a high dimensional statistical
problem with a large number of parameters and a small sample size.

Genewise variance estimation arises at the heart of microarray data analysis. To select
differentially expressed genes among thousands of genes, the t-test is frequently employed
with a stringent control of type I errors. The degree of freedom is usually small due to limited
replications. The power of the test can be significantly improved if the genewise variance can
be estimated accurately. In such a case, the t-test becomes basically a z-test. A simple genewise
variance estimator is the sample variance of replicated data, which is not reliable due to a
relatively small number of replicated genes. They have direct impact on the sensitivity and
specificity of t-test (Cui et al., 2005). Therefore, novel methods for estimating the genewise
variances are needed for improving the power of the standard t-test.

Another important application of genewise variance estimation arises from testing whether
systematic biases have been properly removed after applying some normalization method, or
selecting the most appropriate normalization technique for a given array. Fan and Niu
(2007) developed such validation tests (see Section 4), which require the estimation of
genewise variance. The methods of variance estimation, like pooled variance estimator, and
REML estimator (Smyth, Michaud, and Scott, 2005), are not accurate enough due to the small
number of replications.

Due to the importance of genewise variance in microarray data analysis, conscientious efforts
have been made to accurately estimate it. Various methods have been proposed under different
models and assumptions. It has been widely observed that genewise variance is to a great extent
related to the intensity level. Kamb and Ramaswami (2001) proposed a crude regression
estimation of variance from microarray control data. Tong and Wang (2007) discussed a family
of shrinkage estimators to improve the accuracy.

Let Rgi and Ggi respectively be the intensities of red (Cy3) and green (Cy5) channels for the
ith replication of the gth gene on a two-color microarray data. The log-ratios and log-intensities
are computed respectively as

where I is the number of replications for each gene and N is the number of genes with
replications. For the purpose of estimating genewise variance, we assume that there is no
systematic biases or the systematic biases have been removed by a certain normalization
method. This assumption is always made for selecting significantly differentially expressed
genes or validation test under the null hypothesis. Thus we have

with αg denoting the log-ratio of gene expressions in the treatment and control samples. Here,
(εg1, ···, εgI)T follows a multivariate normal distribution with εgi ~ N (0, 1) and Corr(εgi, εgj) =
ρ when i ≠ j. It is also assumed that observations from different genes are independent. Such
a model was used in Smyth et al. (2005).
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In the papers by Wang, Ma, and Carroll (2008) and Carroll and Wang (2008), nonparametric
measurement-error models have been introduced to aggregate the information of estimating
the genewise variance:

(1)

The model is intended for the analysis of the Affymetrix array (one-color array) data in which
αg represents the expected intensity level, and Ygi is the ith replicate of observed expression
level of gene g. When it is applied to the two-color microarray data as in our setting, in which
αg is the relative expression profiles between the treatment and control, several drawbacks
emerge: (a) The model is difficult to interpret as the genewide variance is a function of the log-
ratio of expression profiles. (b) Errors-in-variable methods have a very slow rate of
convergence for the nonparametric problem and the observed intensity information Xgi is not
used. (c) They are usually hard to be implemented robustly and depend sensitively on the
distribution of σ(αg)εgi and the i.i.d assumption on the noise. (d) In many microarray
applications, αg = 0 for most g and hence σ(αg) are the same for most genes, which is unrealistic.
Therefore, our model (2) below is complementary to that of Wang et al. (2008) and Carroll
and Wang (2008), with focus on the applications to two-color microarray data.

To overcome these drawbacks in the applications to microarray data and to utilize the observed
intensity information, we assume that σgi = σ(Xgi) for a smooth function σ(·). This leads to the
following two-way nonparametric model

(2)

for estimating genewise variance. This model is clearly an extension of the Neyman-Scott
problem (Neyman and Scott, 1948), in which the genewise variance is a constant. The Neyman-
Scott problem has many applications in astronomy. Note that the number of nuisance
parameters {αg} is proportional to the sample size. This imposes an important challenge to the
nonparametric problem. It is not even clear whether the function σ(·) can be consistently
estimated.

To estimate the genewise variance in their microarray data analysis, Fan et al. (2004) assumed
a model similar to (2). But in the absence of other available techniques, they had to impose
that the treatment effect {αg} is also a smooth function of the intensity level so that they can
apply nonparametric methods to estimate genewise variance (Ruppert et al., 1997). However,
this assumption is not valid in most microarray applications, and the estimator of genewise
variance incurs big biases unless {αg} is sparse, a situation that Fan et al. (2004) hoped. Fan
and Niu (2007) approached this problem in another simple way. When the noise in the
replications is small, i.e., Xgi ≈ X̄g, where X̄g is the sample mean for the g-th gene. Therefore,

they simply smoothed the pair {(X̄g, r ̄g)}, where . This also leads
to a biased estimator, which is denoted as ξ ̂2(x). One asks naturally whether the function σ(·)
is estimable and how it can be estimated in the general two-way nonparametric model.

We propose a novel nonparametric approach to estimate the genewise variance. We first study
a benchmark case when there is no correlation between replications, i.e., ρ = 0. This corresponds
to the case with independent replications across arrays (Fan et al., 2005; Huang et al., 2005).
It is also applicable to those dealt by the Neyman-Scott problem. By noticing E{(Ygi − Ȳg)2|
Xgi} is a linear combination of σ2(Xgi), we obtain a system of linear equations. Hence, σ2(·)
can be estimated via nonparametric regression of a proper linear combination of {(Ygi − Ȳg)2,
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i = 1, ···, I} on {Xgi}. The asymptotic normality of the estimator is established. In the case that
the replication correlation does not vanish, the system of equations becomes nonlinear and can
not be analytically solved. However, we are able to derive the correlation corrected estimator,
based on the estimator without genewise correlation. The genewise variance function and the
correlation coefficient of repeated measurements are simultaneously estimated by iteratively
solving a nonlinear equation. The asymptotic normality of such estimators is established.

Model (2) can be applied to the microarrays in which within-array replications are not available.
In that case, we can aggregate all the microarrays together and view them as a super array with
replications (Fan et al., 2005;Huang et al., 2005). In other words, i in (2) indexes arrays and
ρ can be taken as 0, namely (2) is the across-array replication with ρ = 0.

The structure of this paper is as follows. In Section 2 we discuss the estimation schemes of the
genewise variance and establish the asymptotic properties of the estimators. Simulation studies
are given in Section 3 to verify the performance of our methods in the finite sample.
Applications to the data from MicroArray Quality Control (MAQC) project are showed in
Section 4 to illustrate the proposed methodology. In Section 5, we give a short summary.
Technical proofs are relegated to the Appendix.

2. Nonparametric Estimators of Genewise Variance
2.1. Estimation without correlation

We first consider the specific case where there is no correlation among the replications Yg1,
···, YgI of the same gene g under model (2). This is usually applicable to the across-array
replication and stimulates our procedure for the more general case with the replication
correlation. In the former case, we have

We will discuss in §2.4 the case that I = 2. For I > 2, we have I different equations with I
unknowns σ2(Xg1), σ2(Xg2), ···, σ2(XgI) for a given gene g. Solving these I equations, we can

express the unknowns in terms of , estimable quantities. Let

Then, it can easily be shown that , where B is the coefficient matrix:

with I being the I × I identity matrix and E the I × I matrix with all elements 1. Define

Then, we have
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(3)

Note that the left hand side of (3) depends only on Xgi, not other variables. By the the double
expectation formula, it follows that the variance function σ2(·) can be expressed as the
univariate regression:

(4)

Using the synthetic data {(Xgi, Zgi), g = 1, ···, N} for each given i, we can apply the local linear
regression technique (Fan and Gijbels, 1996) to obtain a nonparametric estimator  of
σ2(·). Explicitly, for a given kernel K and bandwidth h,

(5)

with

where Kh(u) = h−1 K(u/h) and , whose dependence on i is
suppressed. Thus we have I estimators  for the same genewise variance function
σ(·). Each of these I estimators  is a consistent estimator of σ2(x). To optimally aggregate

those I estimators, we need the asymptotic properties of .

Denote

Assume that Xgi are i.i.d. with marginal density fX(·) and εgi are i.i.d. random variables from
the standard normal distribution. In the following result, we assume that I is fixed, but N
diverges.

Theorem 1—Under the regularity conditions in the Appendix, for a fixed point x, we have

provided that h → 0 and N h → ∞, where e = (1, 1, ···, 1)T and
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with ,

Note that V2 is one order of magnitude smaller than V1. Hence, the estimators
 are asymptotically independently distributed as N(σ2(x) + b(x), V1). Their

dependence is only in the second order. The best linear combination of I estimators is

(6)

with the asymptotic distribution

(7)

See also the aggregated estimator (16) with ρ = 0, which has the same asymptotic property as
the estimator (8). See Remark 1 below for additional discussion.

Theorem 1 gives the asymptotic normality of the proposed nonparametric estimators under the

presence of a large number of nuisance parameters . With the newly proposed technique,
we do not have to impose any assumptions on αg such as sparsity or smoothness. This kind of
local linear estimator can be applied to most two-color microarray data, for instance,
customized arrays and Agilent arrays.

2.2. Variance estimation with correlated replications
2.2.1. Aggregated Estimator—We now consider the case with correlated with-array
replications. There is a lot of evidence that correlation among within-array replicated genes
exists (Smyth et al., 2005; Fan and Niu, 2007). Suppose that within-array replications have a
common correlation corr(Ygi, Ygj|X) = ρ when i ≠ j. Observations across different genes or
arrays are independent. Then, the conditional variance of (Ygi − Ȳg) can be expressed as

(8)
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This is a complex system of nonlinear equations and the analytic form can not be found.
Innovative ideas are needed.

Using the same notation as that in the previous section, it can be calculated that

Taking the expectation with respect to Xgj for all j ≠ i, we obtain

(9)

where σ1 = E[σ(X)].

Here, we can directly apply the local linear approach to all aggregated data , due
to the same regression function (9). Let  be the local linear estimator of η2(·), based on the
aggregated data. Then,

(10)

with

where . There are two solutions to (9)

(11)

Notice that given the sample X and Y, σ ̂A(x, ρ)(1),(2) are continuous in both x and ρ. For ρ < 0,
σ ̂A(x, ρ)(1) should be used since the standard deviation should be nonnegative. Since σ ̂A(x,
ρ)(1) > σ ̂A(x, ρ)(2) for every x and ρ, by the continuity of the solution in ρ, we can only use the
same solution when ρ changes continuously. Then, σ ̂A(x, ρ)(1) should always be used regardless
of ρ. From now on, we drop the superscript and denote:

(12)
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This is called the aggregated estimator. Note that in (12), ρ, σ1 and σ(·) are all unknown.

2.2.2. Estimation of Correlation—To estimate ρ, we assume that there are J independent
arrays (J ≥ 2). In other words, we observed data from (2) independently J times. In this case,
the residual maximum likelihood (REML) estimator introduced by Smyth et al. (2005) is as
follows:

(13)

where  with  and  is the

between-arrays variance and  is the within-array variance:

As discussed in Smyth et al. (2005), the estimator ρ̂0 of ρ is consistent when var(Ygij|X) = σg
is the same for all i = 1, ···, I and j = 1, ···, J. However, this assumption is not valid under the
model (2) and a correction is needed. We propose the following estimator:

(14)

The consistency of ρ̂ is given by the following theorem.

Theorem 2: Under the regularity condition in the Appendix, the estimator ρ̂ of ρ is -
consistent:

With a consistent estimator of ρ, σ1, σ2 and σA(·) can be solved by the following iterative
algorithm:

Step 1. Se  as an initial estimate of 

Step 2. With σ ̂A(·), compute

(15)

Step 3. With σ ̂1, σ ̂2, and ρ̂, compute σ ̂A(·) using (12).

Step 4. Repeat Steps 2 and 3 until convergence.
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This provides simultaneously the estimators σ ̂1, σ ̂2, ρ̂, and σ ̂A(·). From our numerical
experience, this algorithm converges quickly after a few iterations. When the algorithm
converges, the estimator  is given by

(16)

Note that the presence of multiple arrays is only used to estimate the correlation ρ for the
replications. It is not needed for estimating the genewise variance function. In the case of the
presence of J arrays, we can take the average of the J estimates from each array.

2.2.3. Asymptotic properties—Following a similar idea as the case without correlation,
we can derive the asymptotic property of .

Theorem 3: Under the regularity conditions in the Appendix, for a fixed point x, we have:

provided that h → 0 and Nh → ∞, with  and

where

with coefficients C2, ···, C4, D0, ···, D4 defined in the Appendix.

The asymptotic normality of  can be derived from that of . More specifically,

 with . The derivative of ϕ(·) with respect to z is

. Then, by the delta method, we have

Remark 1: An alternative approach when correlation exists is to apply the same correlation

correction idea to  for every replication i, resulting in the estimator . In this
case, it can be proved that the best linear combination of the estimator is
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(17)

This estimator has the same asymptotic performance as the aggregated estimator. However,
we prefer the aggregated estimator due to the following reasons: The equation (16) only needs
to be solved once by using the algorithm in §2.2.2, all data are treated symmetrically, and

 can be estimated more stably.

2.2.4. Two replications—The aforementioned methods apply to the case when there are
more than two replications. For the case I = 2, the equations for var[(Ygi − Ȳg)|X] collapse into
one. In this case, it can be shown using the same arguments before that

(18)

where σ2 = E[σ2(Xgi)]. In this case, the left hand side is always equal to var[(Yg1 − Yg2)/2|Xgi
= x].

Let η ̂2(x) be the local linear estimator of the function on the right hand side by smoothing

 on  and . Then, the genewise variance is a solution to the
following equation

(19)

. The algorithm in §2.2.2 can be applied directly.

3. Simulations and comparisons
In this section, we conduct simulations to evaluate the finite sample performance of different
variance estimators ξ ̂2(x), η ̂2(x) and . First, the bias problem of the naive non-parametric
variance estimator ξ ̂2(x) is demonstrated. It is shown that this bias issue can be eliminated by
our newly proposed methods. Then, we consider the estimators η ̂2(x) and  under different
configurations of the within-array replication correlation.

3.1. Simulation design
In all the simulation examples, we set the number of genes N = 2000, each gene having I = 3
within-array replications, and J = 4 independent arrays. For the purpose of investigating the
genewise variance estimation, the data are generated from model (2). The details of simulation
scheme are summarized as follows:

αg: The expression levels of the first 250 genes are generated from the standard double
exponential distribution. The rest are 0’s. These expression levels are the same over 4
arrays in each simulation, but may vary over simulations.

X: The intensity is generated from a mixture distribution: with probability 0.7 from the
distribution .0004(x − 6)3I(6 < x < 16) and 0.3 from the uniform distribution over [6, 16].

ε: εgi is generated from the standard normal distribution.
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σ2(·): The genewise variance function is taken as

The parameters are taken from Fan et al. (2005). The kernel function is selected as

. In addition, we fix the bandwidth h = 1 for all the numerical analysis.

For every setting, we repeat the whole simulation process for T times and evaluate the estimates
of σ2(·) over K = 101 grid points  on the interval [6, 16]. For the k-th grid point, we define

and . Let f(·) be the density function of intensity X. Let

and

be the integrated squared bias (Bias2), the integrated variance (VAR), and the integrated mean
squared error (MISE) of the estimate σ ̂2(·), respectively. For the t-th simulation experiment,
we define

be the integrated squared error for the t-th simulation.

3.2. The bias of naive nonparametric estimator
A naive approach is to regard αg in (2) as a smooth function of Xgi, namely, αg = α(Xgi). The
function α(·) can be estimated by a local linear regression estimator, resulting in an estimated

function α̂(·). The squared residuals  is then further smoothed on  to obtain an
estimate ξ ̂2(x) of the variance function σ2(·), where rgi = Ŷgi − α̂(Xgi) (Ruppert et al., 1997).
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To provide a comprehensive view of the performances of the naive and the new estimators,
we first compare the performances of ξ ̂2(x) and η ̂2(x) under the smoothness assumption of the
gene effect αg. Data from the naive nonparametric regression model is also generated with

This allows us to understand the loss of efficiency when αg is continuous in Xgi. This usually
does not occur for microarray data, but can appear in other applications. Note that α(·) is zero
in most of the region and thus is reasonably sparse. Here, the number of simulations is taken
to be T = 100. The data is generated with the assumption that ρ = 0, in which case the variance
estimators η ̂2(x) and  have the same performance (See also Table 2 below). Thus, we only
report the performance of η ̂2(x).

In Table 1, we report the mean integrated squared bias (Bias2), the mean integrated variance
(VAR), and the mean integrated squared error (MISE) of ξ ̂2(x) and η ̂ 2(x) with and without the
smoothness assumption on the gene effect αg. From the left panel of Table 1, we can see that
when the smoothness assumption is valid, the estimator ξ ̂2(x) outperforms η ̂2(x). The reason is
that the mean function α(Xgi) depends on the replication and is not a constant. Therefore, model
(2) fails and η ̂2(x) is biased. One should compare the results with those on the second row of
the right panel where the model is right for η ̂2(x). In this case, η ̂2(x) performs much better. Its
variance is about 3/2 as large as the variance in the case that mean is generated from a smooth
function α(Xgi). This is expected. In the latter case, to eliminate αg, the degree of freedom
reduces from I = 3 to 2, whereas in the former case, α(Xgi) can be estimated without losing the
degree of freedom, namely the number of replications is still 3. The ratio 3/2 is reflected in
Table 1. However, when the smoothness assumption does not hold, there is serious bias in the
estimator ξ ̂2(x), even though that αg is still reasonably sparse. The bias is an order of magnitude
larger than those in the other situations.

To see how variance estimators behave, we plot typical estimators ξ ̂2(x) and η ̂2(x) with median
ISE value among 100 simulations in Figure 1. The solid line is the true variance function while
the dotted and dashed lines represent ξ ̂2(x) and η ̂2(x) respectively. On the left panel of Figure
1, we can see that estimator ξ ̂2(x) outperforms the estimator η ̂2(x) when the smoothness
assumption is valid. The region where the biases occur has already been explained above.
However, ξ ̂2(x) will generate substantial bias when the nonparametric regression model does
not hold, and at the same time, our nonparametric estimator η ̂2(x) corrects the bias very well.

3.3. Performance of new estimators
In this example, we consider the setting in §3.1 that the smoothness assumption of the gene
effect αg is not valid. For comparison purpose only, we add an oracle estimator  in which
we assume that σ1, σ2 and ρ are all known. We now evaluate the performance of the estimators
η ̂2(x), , and  when the correlation between within-array replications varies. To be
more specific, seven different correlation settings are considered: ρ = −0.4, −0.2, 0, 0.2, 0.4,
0.6, 0.8, with ρ = 0 representing across-array replications. In this case, we increase the number
of simulations to T = 1000. Again, we report Bias2, VAR and MISE of the three estimators for
each correlation setting in Table 2. When ρ = 0, all the three estimators give the same bias and
variance. This is consistent with our theory. We can see clearly from the table that, when ρ ≠
0, the estimator  produces much smaller biases than η ̂2(x). In fact, when |ρ| as small as
0.2, the bias of η ̂2(x) already dominates the variance.
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It is worth noticing that the performance of  and  are almost always the same, which
indicates that our algorithm for estimating ρ, σ1 and σ2 is very accurate. To see this more clearly,
the squared bias, variance, and MSE of the estimator ρ, σ1 and σ2 in  under the seven
correlation settings are reported in Table 3. Here the true value of σ1 and σ2 is 0.4217 and
0.1857. For example, when ρ = 0.8, the bias of ρ̂ is less than 0.002 for , which is acceptable
because the convergence threshold in the algorithm is set to be 0.001.

In Figure 2, we render the estimates η ̂2(x) and  with the median ISE under four different
correlation settings: ρ = −0.4, ρ = 0, ρ = 0.6 and ρ = 0.8. We omit the other correlation schemes
since they all have similar performance. The solid lines represent the true variance function.
The dotted lines and dashed lines are for η ̂2(x) and  respectively. For the case ρ = 0, the
two estimators are indistinguishable. When ρ < 0, η ̂2(x) overestimates the genewise variance
function, whereas when ρ > 0, it underestimates the genewise variance function.

4. Application to human total RNA samples using Agilent arrays
Our real data example comes from Microarray Quality Control (MAQC) project (Patterson et
al., 2006). The main purpose of the original paper is on comparison of reproducibility,
sensitivity and specificity of microarray measurements across different platforms (i.e., one-
color and two-color) and testing sites. The MAQC project use two RNA samples, Stratagene
Universal Human Reference total RNA and Ambion Human Brain Reference total RNA. The
two RNA samples have been assayed on three kinds of arrays: Agilent, CapitalBio and
TeleChem. The data were collected at five sites. Our study focuses only on the Agilent arrays.
At each site, 10 two-color Agilent microarrays are assayed with 5 of them dye swapped,
totalling 30 microarrays.

4.1. Validation Test
In the first application, we revisit the validation test as considered in Fan and Niu (2007). For
the purpose of the validation tests, we use gProcessedSignal and rProcessedSignal values from
Agilent Feature Extraction software as input. We follow the preprocessing scheme described
in Patterson et al. (2006) and get 22144 genes from a total of 41675 non-control genes. Among
those, 19 genes with each having 10 replications are used for validation tests. Under the null
hypothesis of no experimental biases, a reasonable model is

(20)

We use the notation G to denote the number of genes that have I replications. For our data,
G = 19 and I = 10. Note that G can be different from N, the total number of different genes.
The validation test statistics in Fan and Niu (2007) include weighted statistics

and unweighted test statistics
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where  and . Under the null hypothesis, the test
statistic T1 is χ2 distributed with degree of freedom (I − 1)G and T2, T3 and T4 are all
asymptotically normally distributed. As a result, the corresponding p-values can be easily
computed.

Here, we apply the same statistics T1, T2, T3 and T4 but we replace the pooled sample variance
estimator by the aggregated local linear estimator

where f̂ is the estimated density function of Xgi. The difference between the new variance
estimator and the simple pooled variance estimator is that we consider the genewise variance
as a nonparametric function of the intensity level. The latter estimator may drag small variances
of certain arrays to much higher levels by averaging, resulting in a larger estimated genewise
variance and smaller test statistics or bigger p-values.

In the analysis here, we first consider all thirty arrays. The estimated correlation among
replicated genes is ρ̂ = 0.69. The p-values based on the newly estimated genewise variance are
depicted in Table 4. As explained in Fan and Niu (2007), T4 is the most stable test among the
four. It turns out that none of the arrays needs further normalization, which is the same as Fan
and Niu (2007). Furthermore, we separate the analysis into two groups: the first group using
15 arrays without dye-swap, which has the estimated correlation ρ̂ = 0.66, and the second group
using 15 arrays with dye-swap, resulting in an estimated correlation ρ̂ = 0.34. The p-values are
summarized in Table 5. Results show that array AGL-2-D3 and array AGL-2-D5 need further
normalization if 5% significance level applies. The difference is due to decreased estimated
ρ for the dye swap arrays and p-values are sensitive to the genewise variance. We also did
analysis by separating data into 6 groups: with and without dye swap, and three sites of
experiments. Due to the small sample size, the six estimates of ρ range from 0.08 to 0.74, and
we also find that array AGL-2-D3 needs further normalization.

4.2. Gene selection
To detect the differentially expressed genes, we follow the filter instruction and get 19,802
genes out of 41,000 unique non-control genes as in Patterson et al. (2006), i.e., I = 1. The dye
swap result was averaged before doing the one-sample t-test. Thus at each site, we have five
microarrays.

For each site, significant genes are selected based on these 5 dye-swaped average arrays. For
all N = 19, 802 genes, there are no within-array replications. However, model (2) is still
reasonable, in which i indexes the array. Hence, the “within-array correlation” becomes
“between-array correlation” and is reasonably assumed as ρ = 0.
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In our nonparametric estimation for the variance function, all the 19,802 genes are used to
estimate the variance function, which gives us enough reason to believe that the estimator

 is close to the inherent true variance function σ2(x).

We applied both the t-test and z-test to each gene to see if the logarithm of the expression ratio
is zero, using the five arrays collected at each location. The number of differentially expressed
genes detected by using the two different tests under three Fold Changes (FC) and four
significant levels are given in Table 6. Large numbers of genes are identified as differentially
expressed, which is expected when comparing a brain sample and a tissue pool sample
(Patterson et al., 2006). We can see clearly that the z-test associated with our new variance
estimator  leads to more differentially expressed genes. For example, at site 1, using α =
0.001, among the fold changes at least 2, t-test picks 8231 genes whereas z-test selects 8875
genes. This gives an empirical power increase of (8875–8231)/19802 ≈ 3.25% in the group
with observed fold change at least 2.

To verify the accuracy of our variance estimation in the z-test, we compare the empirical power
increase with the expected theoretical power increase. The expected theoretical power increase
is computed as

(21)

taking the average of power increases across all μg ≠ 0. However, in the absence of the
availability, we replace μg by its estimate, which is the sample average of n = 5 observed log-
expression ratios. Table 7 depicts the results at three different sites, in which the columns
“Theo” refer to the expected theoretical power increase defined by (21), with μg replaced by
Ȳg and σg replaced by its estimate from the genewise variance function, and the columns “Emp”
refer to the empirical power increase.

There are two things worth noticing here. First, for expected theoretical power increase, we
use the sample mean Ȳg = μg + ε ̄g instead of the real gene effect μg, which is not observable,
so it inevitably involves the error term ε ̄g. Second, the power functions Pz(μ) and Pt(μ) depend
sensitively on μ and the tails of the assumed distribution. Despite of these, the expected
theoretical and empirical power increases are in the same bulk and the averages are very close.
This provides good evidence that our genewise variance estimation has an acceptable accuracy.

We also apply SIMEX and permutation SIMEX methods in Wang and Carroll (2008) to the
MAQC data, to illustrate its utility. As mentioned in the introduction, their model is not really
intended for the analysis of two-color microarray data. Should we only use the information on
log-ratios (Y), the model is very hard to interpret. In addition, one might question why the
information on X (observed intensity levels) is not used at all. Nevertheless, we apply the
SIMEX methods of Wang and Carroll (2008) to only the log-ratios Y in the two-color data and
produce similar tables to the Table 6 and 7.

From the results, we have the following understandings. First, all the numbers for z-test in
Tables 8 and 9 at all significance levels are approximately the same. In fact, the p-values are
very small so that numbers at different significance levels are about the same. That indicates
that both SIMEX and permutation SIMEX method are tending to estimate genewise variance
very small, making the test statistics large for all the time. On the other hand, our method
estimates the genewise variance moderately so that the numbers are not exactly the same for
different significance levels. Second, in the implementation, we found that the SIMEX and
permutation SIMEX is computationally expensive (more than one hour) while our method only
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takes a few minutes. Third, from Tables 10 and 11 we can see that the expected theoretical
power increase and the empirical ones are reasonably close, which are in lines with our method.

5. Summary
The estimation of genewise variance function is motivated by the downstream analysis of
microarray data such as validation test and selecting statistically differentially expressed genes.
The methodology proposed here is novel by using across-array and within-array replications.
It does not require any specific assumptions on αg such as sparsity or smoothness, and hence
reduces the bias of the conventional nonparametric estimators. Although the number of
nuisance parameters is proportional to the sample size, we can estimate the main interest
(variance function) consistently. By increasing the degree of freedom largely, both the
validation tests and z-test using our variance estimators are more powerful in identifying arrays
that need to be normalized further and more capable of selecting differentially expressed genes.

Our proposed methodology has a wide range of applications. In addition to the microarray data
analysis with within-array replications, it can be also applied to the case without within-array
replications, as long as the model (2) is reasonable. Our two-way nonparametric model is a
natural extension of the Neyman-Scott problem. Therefore, it is applicable to all the problems
where the Neyman-Scott problem is applicable.

There are possible extensions. For example, the SIMEX idea can be applied on our model in
order to take into account the measurement error. We can also make adaptations to our methods
when we have a prior correlation structure among replications other than the identical
correlation assumption.
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APPENDIX A: APPENDIX
The following regularity conditions are imposed for the technical proofs:

1. The regression function σ2(x) has a bounded and continuous second derivative.

2. The kernel function K is a bounded symmetric density function with a bounded
support.

3. h → 0, Nh → ∞.

4. E[σ8(X)] exists and the marginal density fX(·) is continuous.

We need the following conditional variance-covariance matrix of the random vector Zg in our
asymptotic study.

Lemma 1
Let Ω be the variance-covariance matrix of Zg conditioning on all data X. Then respectively
the diagonal and off-diagonal elements are:

(22)

(23)
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Proof of Lemma 1
Let A be the variance-covariance matrix of rg conditioning on all data X. By direct computation,
the diagonal elements are given by

(24)

and the off-diagonal elements are given by

(25)

Using Ω = BABT, we can obtain the result by direct computation.

The proofs for Theorems 1 and 3 follow a similar idea. Since Theorem 1 doesn’t involve a lot
of coefficients, we will show the proof of Theorem 1 and explain the difference in the proof
of Theorem 3.

Proof of Theorem 1

First of all, the bias of  comes from the local linear approximation. Since  is
an i.i.d. sequence, by (4) and the result in Fan and Gijbels (1996), it follows that

Similarly, the asymptotic variance of  also follows from Fan and Gijbels (1996).

We now prove the off-diagonal elements in matrix var[η|X]

(26)

Recalling that , we have
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The equality follows by the fact that cov[(Zgi, Zg′j)|X] = 0 when g ≠ g′. Recall Ωij = cov[(Zgi,
Zgj)|X] and define RN,g = N · WN,j((Xgj − x)/h)Ωij. Thus

(27)

The right hand side of (27) can be seen as local linear smoother of the synthetic data

. Although RN,g involves N at the first glance, its conditional expectation E
[RN,g|Xgi = x] and conditional variance var[RN,g|Xgi = x] do not grow with N. Since

 is an i.i.d. sequence, by the results in Fan and Gijbels (1996), we obtain

To calculate E[RN,g|Xgi = x], we apply the approximation WN,i(u) = K(u)(1 + oP (1))/
(NhfX(x)) in the example of Fan and Gijbels (1996, p. 64) and have the following arguments

where s represents all the integrating variables corresponding to Xg1, ···, XgI except Xgi and
Xgj. That justifies (26).

To prove the multivariate asymptotic normality

(28)

we employ Cramér-Wold device: for any unit vector a = (a1, ···, aI)T in ℝI,
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Denote by Qg,i = WN,i((Xgi − x)/h)(Zgi− σ2(Xgi)) and . Note that the sequence

 is i.i.d. distributed. To show the asymptotic normality of F*, it is sufficient to check
Lyapunov’s condition:

To facilitate the presentation, we first note that sequences  are i.i.d. and satisfy

Lyapunov’s condition for each fixed i. Denote . And recall that

. Let c* be a generic constant which may vary from one line to
another. We have the following approximation

Therefore . By the marginal Lyapunov conditions, we have the
following inequality

For the denominator, we have the following arguments

Note that the second to last equality holds by the asymptotic conditional variance-covariance
matrix Σ. Therefore Lyapunov’s condition is justified. That completes the proof.

Proof of Theorem 2
First of all, for each given g,
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Note that by (8), we have

Thus, for all g, we have

Since { } and { } are i.i.d sequences across the N genes, by the central limit theorem, we
have

Therefore,

Proof of Theorem 3
Note that

Following similar steps in the proof of Theorem 1, one can verify
, where the coefficients C2, ···, C4, D0, ···, D4 are

as follows:
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Fig 1.
Variance estimators ξ ̂2(x) and η ̂2(x) with median performance when different gene effect
function α(·) are implemented. Left Panel: Smooth α(·) function. Right panel: Non-smooth α
(·) function.
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Fig 2.
Median performance of variance estimators η ̂2(x), σ ̂2(x), and  when ρ =−0.4, 0, 0.6, and
0.8.
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Table 4

Comparison of p-values for T1, ···, T4 for MAQC project data considering all 30 arrays together

p-values

slide name T1 T2 T3 T4

AGL-1-C1 1.0000 1.0000 1.0000 1.0000

AGL-1-C2 1.0000 1.0000 1.0000 1.0000

AGL-1-C3 1.0000 1.0000 1.0000 1.0000

AGL-1-C4 1.0000 1.0000 1.0000 1.0000

AGL-1-C5 1.0000 1.0000 1.0000 1.0000

AGL-1-D1 1.0000 1.0000 1.0000 1.0000

AGL-1-D2 1.0000 1.0000 1.0000 1.0000

AGL-1-D3 1.0000 1.0000 1.0000 1.0000

AGL-1-D4 1.0000 1.0000 1.0000 1.0000

AGL-1-D5 1.0000 1.0000 1.0000 1.0000

AGL-2-C1 1.0000 1.0000 1.0000 1.0000

AGL-2-C2 1.0000 1.0000 1.0000 1.0000

AGL-2-C3 1.0000 1.0000 1.0000 1.0000

AGL-2-C4 1.0000 1.0000 1.0000 1.0000

AGL-2-C5 1.0000 1.0000 1.0000 1.0000

AGL-2-D1 1.0000 0.9999 0.9996 0.9999

AGL-2-D2 0.8387 0.9011 0.8953 0.9182

AGL-2-D3 0.3525 0.1824 0.3902 0.1905

AGL-2-D4 1.0000 1.0000 1.0000 1.0000

AGL-2-D5 0.8820 0.8070 0.8848 0.7952

AGL-3-C1 1.0000 1.0000 1.0000 1.0000

AGL-3-C2 1.0000 1.0000 1.0000 1.0000

AGL-3-C3 1.0000 1.0000 1.0000 1.0000

AGL-3-C4 1.0000 1.0000 1.0000 1.0000

AGL-3-C5 1.0000 1.0000 1.0000 1.0000

AGL-3-D1 1.0000 1.0000 1.0000 1.0000

AGL-3-D2 1.0000 1.0000 1.0000 1.0000

AGL-3-D3 1.0000 1.0000 1.0000 1.0000

AGL-3-D4 1.0000 1.0000 1.0000 1.0000

AGL-3-D5 1.0000 1.0000 1.0000 1.0000
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Table 5

Comparison of p-values for T1, ···, T4 for MAQC project data considering the arrays with and without dye-swap
separately

p-values

slide name T1 T2 T3 T4

AGL-1-C1 1.0000 1.0000 1.0000 1.0000

AGL-1-C2 1.0000 1.0000 1.0000 1.0000

AGL-1-C3 1.0000 1.0000 0.9999 1.0000

AGL-1-C4 1.0000 1.0000 1.0000 1.0000

AGL-1-C5 1.0000 1.0000 0.9999 1.0000

AGL-1-D1 1.0000 1.0000 1.0000 1.0000

AGL-1-D2 1.0000 1.0000 1.0000 1.0000

AGL-1-D3 1.0000 1.0000 1.0000 1.0000

AGL-1-D4 1.0000 1.0000 1.0000 1.0000

AGL-1-D5 1.0000 1.0000 1.0000 1.0000

AGL-2-C1 1.0000 1.0000 0.9943 1.0000

AGL-2-C2 1.0000 1.0000 1.0000 1.0000

AGL-2-C3 1.0000 1.0000 1.0000 1.0000

AGL-2-C4 0.0152 0.9493 0.3931 0.9136

AGL-2-C5 1.0000 1.0000 0.8060 1.0000

AGL-2-D1 0.7806 0.8074 0.6622 0.6584

AGL-2-D2 0.2170 0.2984 0.1651 0.2217

AGL-2-D3 0.0002 0.0000 0.0001 0.0000

AGL-2-D4 1.0000 1.0000 1.0000 1.0000

AGL-2-D5 0.1236 0.0662 0.0669 0.0300

AGL-3-C1 1.0000 1.0000 0.9996 1.0000

AGL-3-C2 1.0000 1.0000 0.9988 1.0000

AGL-3-C3 1.0000 1.0000 0.9977 1.0000

AGL-3-C4 1.0000 1.0000 1.0000 1.0000

AGL-3-C5 1.0000 1.0000 0.9999 1.0000

AGL-3-D1 1.0000 1.0000 1.0000 1.0000

AGL-3-D2 1.0000 1.0000 1.0000 1.0000

AGL-3-D3 1.0000 1.0000 1.0000 1.0000

AGL-3-D4 1.0000 1.0000 1.0000 1.0000

AGL-3-D5 1.0000 1.0000 1.0000 1.0000
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