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Abstract

When estimating a mean regression function and its derivatives, locally weighted
least squares regression has been proven to be a very attractable technique. An im-
portant issue is how to determine the smoothing parameter or bandwidth. In case
of estimating curves with a complicated structure, a variable bandwidth is desirable.
Furthermore, the bandwidth should be ’instructed’ by the data itself. Recent advance-
ment of nonparametric smoothing techniques inspired us to propose such a data-driven
bandwidth selection procedure, which can be used to select both constant and variable
bandwidths. The idea is based on an Extended Cross-Validation criteria along with a
natural approximation of the bias and variance of the estimator. The procedure itself
can be applied to select bandwidths not only for estimating the regression curve, but
also for estimating its derivatives. The resulting estimation procedure possesses the
necessary flexibility for capturing complicated shapes of curves. This is illustrated via a
large variety of testing examples. Those include highly spatial-variable examples where
the variable bandwidth should be used. The results are also compared with wavelets
techniques, and it seems that our results are at least comparable with those produced
by the wavelets. In other words, local polynomial regression along with data-driven

variable bandwidth has a similar spatial adaptation feature as wavelets.
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Abbreviated title: Variable bandwidth selection.
AMS 1991 subject classification. Primary 62G07. Secondary 62E25, 62H99.
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1 Introduction

1.1 Objectives

In this paper the association between variables is exploited via describing the mean regres-
sion function and its derivatives. No preassumption about the form of this function is made
- the complexity of the model will be determined completely by the data. We will use a
particular nonparametric smoothing technique — local polynomial regression. The reasons
for this choice of smoothing method are ample: nice minimax properties, no need for bound-
ary modifications, applicable for various design-situations, easy to interpret, to implement,
and to adapt to estimating derivatives. All nonparametric smoothing techniques involve
the choice of a smoothing parameter or bandwidth. It is well-known that the choice of
the smoothing parameter is rather crucial in the performance of the estimation procedure.
Hence a very decisive question is how to choose this parameter.

The aim of this paper is to address this question when using local polynomial fitting
for estimating the regression function and its derivatives. A bandwidth can be chosen to
remain constant or to vary with the considered location point or with the data. Miiller
and Stadtmiiller (1987) discussed the issue of local variable bandwidth for convolution type
estimators for regression curves. Gasser, Kneip and Ké&hler (1991), Sheather and Jones
(1991), Hall, Sheather, Jones and Marron (1991) and Brockmann et al. (1993) consider
data-driven bandwidth selection rules based on “plug-in” techniques in a different setup.
See also Vieu (1991) and Ruppert, Sheather and Wand (1993). For a survey on recent
advancement of bandwidth selection see Jones, Marron and Sheather (1992) and references
therein.

A constant bandwidth can be sufficient if the unknown curve is not to wiggly, i.e. has
a high degree of smoothness. Such a bandwidth however fails to do a good job, when the
unknown curve has a rather complicated structure. In order to capture the complexity of
such a curve, a variable bandwidth is a necessity. This point will also be very clear from

the examples we present at the end of this paper. Those include the examples discussed



by Donoho and Johnstone (1992), which they used to illustrate the performance of their
Wayvelets-packages. Here, we analyse these examples using our proposed methodology based
on local polynomial approximations. The reasons for presenting these examples are twofold.
First of all, the theoretical curves are quite unsmooth or show many alterations, and are
hence a good test for a newly proposed methodology. Secondly, it is interesting to compare
the performance of both methods, wavelets and local polynomial fitting. It turns out that
our results are at least comparable to wavelets techniques.

We will introduce a procedure which selects the, constant or variable (i.e. varying with
the location point) bandwidth in a fully automatic way. The ideas for the developed pro-
cedure were inspired by the pioneering work on Generalized Cross-Validation by Wahba
(1977) and Craven and Wahba (1979), and are related to those in Miiller (1988). The pro-
cedure relies on the ideal assess of bias and variance discussed in Fan and Gijbels (1993).
The proposed methodology is applicable when dealing with estimating the unknown regres-
sion function or any of its derivatives, as will be demonstrated. The method is based on
a quantity called Extended Cross-Validation. The motivation and theoretical foundations
for considering such a quantity rely on a thorough study of bias and variance (exact and
approximated) of the estimators.

In organizing the paper, we opted for a presentation which highlights the main ideas
leading to the proposed procedure. Details are left for secondary reading and are therefore
collected in a last section. In the remainder of this section we give the notations involved
with the local polynomial approximation method. The next section then introduces and
motivates the Extended Cross-Validation quantity. Section 3 summarizes the ideal assess-
ment of the bias and variance. The materials established in Sections 2 and 3 will serve
as building blocks for the automatic bandwidth selection procedure described in Section
4. The performance of the proposed procedure is investigated extensively in Section 5. A
large variety of testing examples is provided, which is meant to give the reader a clear and

detailed picture of the strength of the methodology.



1.2 Local polynomial approximation

Let X and Y be two random variables whose relationship can be modeled as
Y =m(X)+ o(X)e, Ec=0 and Var(e) = 1,

where X and ¢ are independent. Of interest is to estimate the regression function m(z) =
E(Y|X = z) and its derivatives, based on (X3,Y1),---,(Xn,Ys), a random sample from
the population (X,Y). We use local polynomial fitting as estimation method, since it has
various nice features (see e.g. Stone (1977), Fan (1992, 1993), Fan and Gijbels (1992),
Ruppert and Wand (1992) and Fan et. al (1993)). The papers by Cleveland (1979) and
Cleveland and Devlin (1988) contain a variety of nice examples showing the performance of
locally-weighted regression in various fields of application. The particular class of locally-
weighted running-line smoothers were discussed in Hastie and Tibshirani (1986).

If the (p + 1) derivative of m(z) at the point zo exists, we approximate m(z) locally

by a polynomial of order p:
m(z) = m(zo) + m'(zo)(z — zo) + -+ + m(p)(zo)(z - z9)? /!, (1.1)

for z in a neighborhood of . One then carries through a local polynomial regression
2

3 (Y,- Y 8K - zo)j) K (=52, (1.2)

i=1 j=0
where K(-) denotes a nonnegative weight function and h — a smoothing parameter —
determines the size of the neighborhood of zg. If {3,} denotes the solution to the above
weighted least squares problem, then it is clear from (1,1) that v!3, estimates m(*)(zo),v =
0,---,p.

It is more convenient to write the above least squares problem in matrix notation.

Denote by W the diagonal matrix with entries W; = K (L;—’Q) Let X be the design
matrix whose (1, j)** element is (X;—2¢)’~! and put y = (Y,+-,Y,)T. Then, the weighted

least squares problem (1.2) can be written in matrix form as:
min(y - X8)"W(y - XB),
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where 8 = (B0, -, 8,)%. Ordinary least squares theory provides the solution
B =XTWX)'xXTwy

whose conditional mean and variance are:

EB|1 X1, Xs) = (XTWX)"1XTWm = 8 + (XTWX)-1XTWr (13)
Var(B|X1, - Xn) = (XTWX)(XTZX)(XTWX)-! ’ '
where m = (m(Xy),--,m(X,))7, r = m — Xg, the residual of the local polynomial

approximation, and ¥ = diag(K2((X,- - xo)/h)az(X,-)).

2 Extended Cross-Validation

We now introduce the Extended Cross-Validation quantity which will form one of the build-
ing blocks in the selection procedure.

Before introducing this quantity let us look at the theoretical optimal variable band-
width which would be the ideal one to work with. The theoretical variable bandwidth for
estimating 8, = m(*)(zo)/v! is the one that minimizes the theoretical Mean Squared Error
(MSE) which can be approximated by

o%(zg) 1

Fr(zo) nA1FE” (2.1)

B, 2R 4 g,

where fx(-) is the marginal density of X, i.e. the design density. Here we introduced the
notation a, for the (v+1)t* diagonﬁi;lement of the matrix §~15*S~1, where S (respectively
5*)is a (p+ 1) x (p+ 1) matrix whose (i, j)** element is s;4;_2 (respectively v;1;z), with
s; = [ K(u)du and >I/j = [ 4 K?(u)du. Further, b, is the (v + 1)** element of the (p+ 1)-
vector S™1(sp41,- -,32p+1)T. See Ruppert and Wand (1992) and Fan et al. (1993).

This approximated MSE is minimized at

(2v + 1)a,0%(z0) ) Ga (2.2)

h o) =
u,Opt( 0) (2(p +1- V)blz,ﬂg+1an(z0)
This theoretical optimal bandwidth does depend on unknown quantities. Plug-in methods

rely on estimating these quantities first and then substituting them into the expression.
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Our goal is now to come up with a statistic for which the minimizer leads to an estimator
for the theoretical optimal bandwidth. Such a statistic is provided by the Extended Cross-

Validation quantity which is based on the normalized weighted residual sum of squares:

" _ 1 id Y X,' - T
7@0) = S s ErwWR) X TWaR) % WK (F72), e

=1

with § = (Y3, -+, ¥»)T = XB. The Extended Cross-Validation (ECV) is defined as
ECV(zo;h) = 6*(z0) (1 + (p+ 1)Vs0), (2.4)

where V, , is the (v + 1)t* diagonal element of the matrix §715xS71, with §, = XTWX
and S* = XTW2X.

The intuition behind statistic (2.4) is as follows. When the local polynomial does not
fit well, i.e. the bandwidth A is too large, the bias is large and hence also the residual sum
of squares 6%(zg). When the bandwidth & is too small, the variance V,, o tends to be larger.
So the ECV-quantity does ’protect’ for both extreme choices.

The theoretical justification for the quantity ECV(zo; h) routes back to the following

result, which will be proved in Section 6.

Theorém 1

Suppose that 0?(z) = 0%(zo) in a neighbourhood of zo. If hn — 0, and nh, — oo, then

- 2
1
El . Xqi,--- n) = 2 2 2p+2 ————U (zo) iy _—
(ECV(z0; h)| X1, -+, Xn) = 0%(20) +CpB2, 1 h2 +(P+1)aonhn Fx(z0) +or(h" 4 ),
where
C, = S2p+2 — (Sp+1,° 7 32p+1)s-1(sz’+11 ) 32P+1)T . (2.5)

S0

The minimizer of E(ECV(zo; k)| X1, -+, X5) is approximately equal to

aoo(zo) =S
ho($0) = (2Cp,83+lnfx($0)) .




Now, the relationship between £, opt(20) in (2.2) and h,(zo) is very simple:

1
(2v+1) &&) P43
((p +1-v)ap b2 ho(20)

= a'djp,uho(xo)'

hu,opt(ZO)

Here, p— v must be odd. This is natural since the estimator with p— v even is inadmissible.

Remark that the adjusting constants adj, ,, appearing in this expression depend only
on the kernel function K, and hence can be calculated explicitly. As an illustration, we
present in Table 1 below, these constants for the Epanechnikov and the Gaussian kernel.
The above relationship and Theorem 1 form the core of the theoretical motivation for the

ECV-quantity.

Table 1: Adjusting constants for Epanechnikov and Gaussian kernel

Epanechnikov Kernel
p 1 2 3 4 5 6 7
p—v
1 8941 | .7643 | .7776 | .7639 | .7827 | .7835 | .7989
3 8718 | .8324 | .8384 | .8297 | .8392
5 .8819 | .8639 | .8679
7 .8932
Gaussian Kernel
1 1.000 | .8403 | .8285 | .8085 | .8146 | .8098 | .8159
3 9554 | .8975 | .8846 | .8671 | .8652
5 .9495 | .9165 | .9055
7 9470

The use of the ECV-quantity to estimate a global, i.e. constant, bandwidth becomes
transparent now. Suppose we want to estimate m(*)(-) on [c, d]. Then, find A that minimizes

the Integrated version of the Extended Cross-Validation quantity:

IECV(h) = / ECV(y; h)dy, (2.6)
)
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and obtain the “ECV bandwidth selector”
RESY = adj, h.

The integration in (2.6) has also a stabilizing effect on the variability of the ECV-
quantity. The performance of this estimation procedure was investigated via four simulated
examples in Section 5. We only present the results for Examples 2 and 4 (see Figures 2.c
and 4.c) since Examples 1 and 3 show approximately the same performance as Example
2. As can be seen from those examples, the performance is good but an improvement is
desirable. See Figure 4.c which shows a large variability of the bandwidth selection rule.
Important gains can be obtained via a refinement, for which the basics are described in
the next section. This refinement does not only improve the rate of convergence in the
bandwidth selection procedure (compare Figure 2.b with 2.c, and Figure 4.b with 4.c), but

also gives a better estimated curve in visual sense.

3 Assess of bias and variance in local polynomial fitting

The bias and variance in (1.3) are not directly accessible, since they depend on the unknown
quantities, the residual r and the diagonal matrix £. Good finite sample estimates of the
bias and variance are desirable in order to open a gate to a bandwidth selection procedure
with a good overall performance.

The bias in (1.3) can clearly be approximated by (X7 WX) 'XTWr, where the i

element of the n x 1 vector 7 equals

Bp+1(Xi — 20)P + -+ - + Bpra( Xi — zo)PHe.

The choice of a is discussed below. With

Snj = Zn:(Xi —zo) K (@) (3.1)

i=1



the approximated bias is equivalent with

Bp+18np+1 + + -+ + BptaSn,pta
51 : ) (3.2)
/Bp+13n,2p+l ++ ,Bp+a3n,2p+a
where S, = XTWX is the (p+ 1) x (p+ 1) matrix whose (7, j)** element is s, ;4;-2. Thus,

the bias vector can be estimated by

Bp+13n,p+1 R Bp+a3n,p+a
St : 1 (3.3)

n
Bp+13n,2p+1 +-- 4 ,Bp+asn,2p+a.
where Bp+17 RN ;Bp+a are the estimated regression coefficients from fitting a (p + a)** order
polynomial locally.
Further, we set

Sn,pta+l = 0,---, Sn,2p+a = 0,

in order to reduce the effect of collinearity. See Fan and Gijbels (1993) for details.

The choice a = 4 guarantees that the proposed selection procedure will be \/n-consistent.
On the other hand, the choice a = 2 leads to a reduction of the computational efforts, while
still having a selection rule which is not far from being \/n-consistent. This makes this
latter case attractable from practical point of view. Throughout the rest of the paper we
will put a = 2 for ease of presentation.

The variance in (1.3) can be approximated by
(XTWX) Y XTW2X)(XTWX)1o?(z0), (3.4)

using the local homoscedaéity. Substitution of o%(zg) by a natural estimator — e.g. a

residual sum of squares — leads to the variance estimator
XTWX)"Y(XTW2X)Y(XTWX) 162 (z0) (3.5)

where §%(z0) is the weighted residual sum of squares from a (p + a)** order polynomial fit.



Now, the Mean Squared Error (MSE) of 8,(zo) = m")(z0)/v! is estimated by
MSE,,, (203 h) = 8},,(20) + Vpu(20),

where b, , (o) estimates the bias and is given by the (v+1)*-element of the vector in (3.3).
The variance estimator V, (o) equals the (v + 1)** diagonal element of the matrix in (3.5).
This estimated MSE will serve as a second building block in the final bandwidth selection
procedure.

Note that preliminary estimates Bp+1, ﬁp+g, . ,Bp.,.a, and 6%(zo), based on a preliminary
choice of h (to be specified in the next section via the ECV-criteria), are used to compute

M’S\Ep’y(zo; h).

4 Implementation

The material established in Sections 2 and 3 enables us to develop an appealing methodology
for selecting a constant or variable bandwidth. Suppose the interest is in estimating m(*)(z)
by using a p** order polynomial. Usually p = v + 1 (see Fan and Gijbels (1993)). The

selection rules for each type of bandwidth are presented below.

4.1 Bandwidth selection rules

Constant bandwidth

The proposed bandwidth selection rule reads as follows. Fit a polynomial of order
P+ 2, use IECV in (2.6) to select the optimal bandwidth for estimating S,+1 and obtain
the estimates B+1(20), Bp+2(20) and 5%(2o). Now find the bandwidth that minimizes the

estimated Integrated Mean Squared Error:

fz&u = argm}%n / I\ZS\E,,,,,(y; h)dy,
[e.d]
and use this to fit a polynomial of order p . Throughout the paper we will refer to this

particular “plug-in” bandwidth selector as “Refined bandwidth selector”.
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The above refinement of the previously described selection rule does lead to a consid-
erable improvement, as evidenced by the examples in Section 5. See Figures 2 and 4, a —
c. If, in a particular situation, the one-stage procedure — the ECV bandwidth selector —
appears to be of sufficient performance, then one can stick to this since it is computation-
ally less involved. However, computation times for the “ECV-procedure” as well as for the
“Refined” (two-stage) procedure are very fast. Therefore, if computation is no issue, we
recommend to use the Refined bandwidth selector since its performance is superior.

Remark that the proposed estimation procedure does not require the choice of any
parameter, and hence is fully automatic.

Variable bandwidth

The experience with the constant bandwidth choice showed that a refined procedure is
recommendable. Selecting a variable bandwidth is even more involved and hence a similar
kind of procedure is a minimum requirement. The above exposed ideas are now used to
establish a selection procedure for a variable bandwidth. The main difference is here that
we start with splitting up the interval of estimation [c,d] in subintervals, say I;, and use

the Refined bandwidth selector in each interval. In detail this procedure reads as:

For each interval I, fit a polynomial of order p+ 2 and select the optimal band-
width for estimating 8,41 by minimizing IECV(h) = f ECV(y; h)dy. Smooth

the resulting bandwidth stepfunction by averaging loca.lly, using the same smooth-
ing parameter as for the initial partition, i.e. the length of I;. Use this
smoothed bandwidth function to fit a polynomial of order p + 2, and obtain

Bp+1(20), Bps2(0), and 63(zo).
For each interval I, choose the bandwidth which minimizes the estimated In-
tegrated Mean Squared Error f MSE(y, h)dy. Smooth the resulting bandwidth

stepfunction, using again the length of I, and fit a polynomial of order p.

We remark that the smoothing step in the above procedure leads to a smoother estimated
curve. In our simulated examples, we split the interval [, d] into [n/10log(n)] pieces. Such

a choice reflects somewhat the availability of data for exploiting complex structures.
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4.2 Practical implementation

We would like to make some remarks on the practical implementation of the estimation
procedure. First of all, in practice the estimated curves are evaluated in grid points z;, j =
1,++,ngiq. Consequently, the integrals involved in the methodology are implemented as
averages over appropriate grid points.

The methodology involves a few minimization problems. The functions in A which
have to be minimized are of a very complicated form, and hence usage of the Newton-
Raphson method for finding a minimum is almost impossible. A feasible method is to
compare function values at grid points (typically of geometric type). Suppose we want to
minimize a function M(h) over an interval [Amin, Amax). Here M(h) could either be IECV
or [ I\TS\E(y; h)dy. Starting from h = Am;n, keep inflating A by a factor C and compute M (h)
at these geometric grid points. Stop when the function values M(h) increase consecutively
a certain number of times, say IUP, or when A > hpax. Now, choose the minimizer of M (h)
as the grid point having the smallest computed M(h) value.

Fitting a local polynomial at a large bandwidth is computationally very costly. With
the above minimization procedure we try to avoid a fit with a large bandwidth, unless it
is absolutely necessary. In our implementation we took Amin = (X(n) = X(1))/7, hmax =
(X(n) — X(1))/2,IUP = 3,C = 1.1. With those choices, the described minimization method
enables us to compute an estimated curve with fully automatically selected bandwidth for
sample size n = 200 in less than 10 seconds using a Sparc 2 workstation.

Finally, it should be mentioned that there are possibilities for improving the compu-
tational speed. Fast computation algorithms such as linear binning and updating could
be implemented. A thorough investigation of fast implementations of nonparametric curve

estimators was carried through by Fan and Marron (1993) and Wand (1993).
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5 Test examples

We now investigate the performance of the proposed methodology, via a variety of simulated
examples, and the Motorcycle Data (see e.g. Hirdle (1990)). The study concerns estimation
of m(-) as well as its derivatives. In each of the examples we use the Epanechnikov kernel.
The number of simulations is 400. The table below summarizes the models used in the
simulated examples, and indicates the choices of m(z) and o(z) = o in the general regression
model Y = m(X) + o(X)e. The table also lists an approximation of the noise to signal
ratio o2/(Var(m(X)) + o?) (see column 4), which is an indicator for the difficulty of the
estimation problem. The bigger this ratio the harder the problem. Note that for the first
four simulated examples the noise to signal ratio is very high, which implies that for those
examples the estimation task is difficult. For Examples 5 — 8, the noise to signal ratio is

more moderate which lightens the estimation task.

Table 2: simulated examples

Example m(z) o | ~ signal/noise | sample size

1 ¢ + 2¢~16<° 0.4 1/3 50 200 800
2 sin(2z) + 2¢~16=" 0.3 1/3 50 200 800
3 0.3e~4(=+1)? 4 0 7¢-16(=-1)? 0.1 1/2 50 200 800
4 0.4z + 1 0.15 1/3 50 200 800
5 24./z(1 — z)sin(271.05/(z + 0.05)) | 1.0 1/7 2048

6 (see D&J (1992)) 1.0 1/7 2048 -

7 (see D&J (1992)) 1.0 1/7 2048

8 (see D&J (1992)) 1.0 1/7 2048

* Donoho and Johnstone (1992) was abbreviated as D&J (1992).

In Example 9 we analyse the Motorcycle Data.

For Examples 1 — 4 we used a random uniform design, i.e. X ~ Uniform(-2,2). For
Examples 5 — 9 the fixed uniform design z; = ;"- was applied. The estimated curve is
calculated in grid points. The number of grid points is 101 for Examples 1 — 4 and 9, and

for Examples 5 — 8 we took ngiq = 1001. In each of the examples we do local linear fits

(p = 1), and take a = 2 (see (3.2)).
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5.1 Constant bandwidth

The performance of the constant bandwidth selection procedure is illustrated via Examples
1 — 4. For each of the examples we provide two pictures. A first picture presents the true
regression curve, a typical simulated data set (n = 200) and some representative estimated
curves based on 400 simulations. Those representatives were chosen as follows: for each
estimated curve compute the Mean Squared Error averaged over all grid points, rank all
estimated curves according to this measure, and select the estimated curves corresponding
to the 10th%, the 50th% and the 90th% rank-observation. This first picture gives a visual
impression of the quality of the estimated regression curve m(z).

A second picture reports on the relative orders of the estimated bandwidth

(ilu,opt - hu,opt)/hu,opt (51)

where h, op: is the theoretical optimal constant bandwidth, computed via (1.3). The 400
relative errors are summarized by means of a kernel density estimate. For this kernel
density estimator we used a Gaussian kernel and Silverman’s (1986) bandwidth selector
h = 1.06 s n=9-2, where s denotes the standard deviation of the data. The three bars in the
second picture represent the percentage of relative errors (izu,opt ~ hyopt)/ hu,opt less than 20
% for sample sizes 50, 200 and 800. In Example 4 we took hy,op: = 1, and reported the
percentage of selected bandwidths using more than 40 % of the data, i.e. iz,,,o,,t > 0.8.

The more spiky the curve of relative errors, the better the criteria for selecting the
bandwidth. From the pictures it is clear that the estimated bandwidth converges to its
theoretical counterpart (the curves are more spiky when sample size ilicrea.ses).

Figures 1 — 4, a and b report on the performance of the Refined bandwidth selector.

|Put Figures 1 — 4, a and b about here

Figures 1.a — 4.a: A typical simulated data set along with 3 representative estimated
curves (n = 200). Solid line: true regression function; dashed lines: 3 representative
estimated curves.

Figures 1.b — 4.b: Kernel densily estimates for the relative errors of the Refined band-
width selector. The 3 curves represent the kernel density estimates for the distribution of

14



the relative errors (5.1), normalized to have mazimum height 1. The 3 vertical bars show
the percentage of relative errors less than 20 % (from left to right for n = 50, 200,800).

For comparison purposes we present the results of the one-stage procedure with the
ECV bandwidth selector, for Examples 2 and 4 in respectively Figures 2.c and 4.c. The
performance of the ECV procedure was very good for Examples 1 — 3, while for Example
4 the selected bandwidth ended up with having a large variability. Moreover, a further
conclusion can be drawn from the comparison of Figures 2.b and 2.c (and similar pictures
for Examples 1 and 3 not presented here): one can see that the Refined bandwidth selector

has a faster convergence rate (is getting ’spiky’ faster) than the ECV bandwidth selector.

IPut Figures 2.c and 4.c about here]

Figures 2.c and 4.c: Kernel density estimates for the relative errors of the ECV band-
width selector. The 8 curves represent the kernel density estimates for the distribution of
the relative errors (5.1), normalized to have mazimum height 1. The 3 vertical bars show
the percentage of relative errors less than 20 % (from left to right for n = 50,200, 800).

5.2 Local variable bandwidth

We first study the performance of the procedure with variable bandwidth when estimating
the regression function m(-) itself. We do this for Examples 1 — 9. For each of the Examples
1 — 8 we present a picture that summarizes the 400 estimated curves via the percentiles,
as before.

The sample size for Examples 1 — 4 was 200. The results for those examples are given
in Figures 1.c, 2.d, 3.c and 4.d, which all indicate that the data-driven choice of the variable

bandwidth does a good job.

lPut Figures 1.c, 2.d, 3.c and 4.d about herel

Figures l.c, 2.d, 3.c and 4.d: Three representatives of the estimated curves for sample
stze n = 200, based on 400 simulations.

Of particular interest are the analysis of Examples 5 — 8, reflected in Figures 5 —

8, a and b. The proposed methodology captures very nicely the complexity of each of
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the curves, due clearly to the appropriate data-driven choice of the variable bandwidth.
In comparing the performance of our methododology with that of the Wavelets-packages
provided in Donoho and Johnstone (1992), the present method performs at least as good.
In other words, the spatial-adaptation property of Wavelets can also easily be achieved via
local polynomial fitting, using an appropriate variable bandwidth. Moreover, a variable
bandwidth possesses the flexibility of adapting the smoothing parameter to the location

point.

[Put Figures 5 — 8, a and b about here

Figures 5.a — 8.2 : A typical simulated data set with sample size n = 2048.

Figures 5.b ~ 8.b : A typical (with median MISE) estimated curve, based on 31 simula-
tions.

Finally, we present the analysis of the Motorcycle data in Figure 9.

Put Figure 9 about here

Figure 9: Motorcycle data and its estimated curve.

We next report on the performance of the procedure for estimating the derivative curve
m/(-). For this illustration we consider Examples 2 and 5. The results for Example 2 are
in Figure 2.e, which gives the true derivative curve and typical estimated derivative curves
for sample sizes 200 and 800. Figure 5.c presents the true derivative curve and a typical
estimated derivative curve for Example 5. Both examples demonstrate that the procedure

also works out very neatly for derivative estimation.

lPut Figures 2.e and 5.c about herel

Figure 2.e: Derivative estimation. Solid Figure 5.c: Derivative estimation. Solid line:
line: the true derivative function; Dotted line: the true derivative function; Dotted line: the
the estimated derivative curve for n = 200, estimated derivative curve (n = 2048 ).
Dashed line: the estimated derivative curve for

n = 800.
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6 Justification of the proposed method

In this section we give the derivations which go with the results presented in Section 2. Let
us first of all look at appropriate approximations for the conditional bias and variance in
(1.3).

6.1 Assess to bias and variance

Starting from definition (3.1) it is easy to see that
snj = fx(zo)s;nhit(1+ Op(h)), (6.1)
and hence as a consequence
Sp = XTWX = fx(zo)nhHSH(1+ Op(h)), (6.2)

where H = diag(1,h,---,h?). Therefore a further approximation of the bias in (3.2) is

provided by
[ Boaserr +0p(h) )

2
hp+lH—15—1H—1 '37’+1h3p+2 + OP(h )

\ Bp+1hPsapr1 + Op(hPH1)
This also leads to
Sp+1
E(léulxla"'7Xn) = hp+1_uﬂp+les+1s_1 +OP(hP+1—V)’

S2p+1

where e,4, denotes the unit (p+ 1) x 1 vector, containing 1 on the (v + 1)* position. This
provides the bias part in (2.1).
For the conditional variance we proceed as follows. Using similar arguments as before,
we find that
5* = XTW?X = fx(zo)nhHS*H(1+ Op(h)).
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This together with (6.2) leads to a further approximation of the conditional variance in

(3.4), namely,
1

-1¢-1¢g*¢g-1pg-1_,2
—_—nhfx(xo)H ST S*ST'H ‘o (Zo),

and for example,

(130) 1

. 1
Var(B,| X1, -+, Xn) = fX(iI?O) nhit2v +0P(;}—lﬁ-2—u)’

(6.3)

which provides the variance part in (2.1).

6.2 Proof of Theorem 1

Note first of all that for the weighted residual sum of squares, defined in (2.3), we have

~2 _ 1
0°(z0) = (W — WX(XIWX)-1XIW) ;(Y Y;)?
_ 1 _ - .
B tT(W—WX(XTWX)—leW)(y XB)TW(y - XB)
1

= T(wW - wx(XTWX)"1XTW)y.
(W - WX (XTWX) i XTW)” ( ) ¥

and consequently,

E(6%(z0)| X1, -+, Xn)
1
T (W - WX(XTWX)-1XITW)
+0%(z0), (6.4)

m?T (W - WX(XTWX)"'XTW)m

where we used the local homoscedasity. Approximating r = m — X4 by
p .
= m(X:) = 37 Bi(Xi = 50 = Bpa(Xi — 2} + Op(h?+2),
7=0
the first term on the right-hand side of (6.4) becomes

1

T T —-1~T
W - WX(XTWX) 1 XTW
W — WX(XTWX)TXTW) " ( ) r

_ (Snapr2 = (9npris -+ 3n2p41) S (Smpt 1, -+ S2p41)T) g
1 h)). .
tr(W — WX(XTWX)-1XTW) Basi(L+o0p(R).  (6.5)
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Further, remark that

ti(W — WX(XTWX)1XTW) = 5,0 - tr((XTWX)"1XTW2X)
= fx(z)sonh + Op(1+ nh3). (6.6)

Finally, as provided in (6.3),

1 1 1
Vao = L w e ey + Op(n—h). (6.7)
Using (6.1) — (6.7) we find that
E(6%(z0)| X1, -, Xn)
Sn, — \Sn, 3" "y Sn, S-;l Sn 3%y S, T
= Catpta—Lonpas o napi )2 onpeonteit) i, 4 0%(an)-+ op(477+)
= Cpfipprh™*? + a*(z0) + op (%),
with C, as in (2.5).
This together with (6.7) leads to
E(ECV(zo; h)| X1, +, Xn)
= E(6%(20)| X1, ++, Xn) (1 + (P + 1) Vo)
2
_ 2 2 12p+2 o*(z9) 2p+2 _1_
= 0%(z0) + CpBpp R + (p+ l)ao-———-——-nhfx(zo) +op(h™7" 4+ —)
which completes the proof. a
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