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Abstract

When people in a society want to make inference about some parameter, each

person would potentially want to use data collected by other people. Information

(data) exchange in social contexts is usually costly, so to make sound statistical

decisions, people need to compromise between benefits and costs of information

acquisition. Conflicts of interests and coordination will arise. Classical statistics

does not consider people’s interaction in the data collection process. To address

this ignorance, this work explores multi-agent Bayesian inference problems with a

game theoretic social network model. Bearing our interest in aggregate inference at

the societal level, we propose a new concept finite population learning to address

whether with high probability, a large fraction of people can make “good” inferences.

Serving as a foundation, this concept enables us to study the long run trend of

aggregate inference quality as population grows.
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1 Introduction

Statistical inference framework usually adopts a single-person perspective without con-

sidering the potential impact of interaction between people. Take the Bayesian approach

for example. Suppose an agent (person) is interested in a parameter θ. The Bayesian

approach starts with a prior belief π(θ), a distribution on θ. After she observes data1

X1, . . . , Xn ∼ p(x|θ), where p(·|θ) is a conditional distribution given θ, the belief about θ

is updated using the Bayes’ Theorem,

π(θ|X1, . . . , Xn) =
p(X1, . . . , Xn|θ)π(θ)

m(X1, . . . , Xn)
,

where m(X1, . . . , Xn) =
∫
p(X1, . . . , Xn|θ)π(θ)dθ. Computation aside, such an update is

clear once {X1, . . . , Xn} are given.

However, a more realistic but complicated situation is that the available data

{X1, . . . , Xn} are scattered in the society. Then each agent has a choice between making

inference based on her own data, and acquiring more data through costly exchange before

inference. Given a fixed amount of information endowment to the society, information

exchange could lead to more accurate inference results at both individual and societal

levels. Boosted by the internet and particularly online social networks, this perspective

is especially important for communication and decision making in the modern world. A

subtle point is that the amount of information an agent is willing to share depends on

other agents’ actions, and such interactions call for tools beyond mainstream statistics.

Recall that in clinical trials, an agent weighs more accurate statistical inference against

higher monetary cost of data acquisition. Similarly, in social networks, agents balance

inference accuracy and time cost of data acquisition. However, agents’s inferences in a

network are dependent in the sense that their decisions influence each other’s data collec-

tion results. Therefore, aggregate inference at the societal level is not a trivial problem

that simply adds up each agent’s inference separately.

1No distinction will be made among “data”, “information” and “signal” in the discussion.
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Multi-agent inference with strategic data acquisition procedure introduces two impacts

to the statistics field. First, it extends the “pipeline” of classical statistical inference,

making agents’ access to data an endogenous outcome of their interactions. From an

individual agent’s perspective, her inference results could be fundamentally different from

those of classical statistical inference. Second, it provides a foundation to study aggregate

inference at the societal level. More concretely, we address an important question with a

new finite population learning concept: can a large fraction of agents in a given network

make “good” inference about θ with high probability? Note that the network structure

and agents’ inference are convoluted: social networks can influence agents’ decision on

information acquisition; meanwhile, aggregates of individual agents’ inference comprise

knowledge of the society.

This paper explores multi-agent Bayesian inference at the societal level using a game

theoretic social network model. Our work differs from social network papers in existing

statistical literature, in that the larger part of those papers focus on graphical models,

which are ideal to model network structural formation, but not individual agents’ deci-

sion. We refer interested readers to Kolacazyk (2009) and Newman (2010) as a broad

introduction to the existing literature. Our work supplements network structural model-

ing with an additional human behavior component using game theory. We demonstrate

that communication mechanisms, strategic interactions, among other elements that sit

outside graphical models are crucial to determine the aggregate inference quality at the

societal level. We were inspired by the information exchange game in Acemoglu et al.

(2012), which studies asymptotic and strategic learning behaviors when the network size

(population in the society) goes to infinity. In contrast, our work focuses on networks

of finite population, and predicts aggregate inference quality at the societal level. The

finite population approach not only allows us to study explicit interplay of parameters

regarding aggregate inference results, but also provides a more solid benchmark to assess

inference quality when network size grows.

The rest of the paper is organized as follows. In Section 2, the game theoretic social
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network model (Definition 1) and associated equilibria (Definition 2) is introduced and

illustrated with examples. In Section 3, we devise the finite population learning criterion to

capture the aggregate inference quality at the societal level (in an equilibrium), and derive

necessary conditions and sufficient conditions for this criterion. These conditions involve

only one equilibrium outcome—the number of signals each agent has acquired—in a clean

and transparent manner. With the finite population learning criterion as a foundation,

we study in Section 4 the long run trend of aggregate inference quality as population in a

society grows. The trend will be captured by the perfect learning concept and associated

learning rates. Two conditions for perfect learning are proposed: one involves equilibrium,

and the other (stronger condition) bypasses equilibrium, and only relies on information

precision, model parameters, and network structures. Learning rates measure the quality

of perfect learning, and are demonstrated in typical examples. Section 5 makes a few

remarks and suggests future research lines. Technical proofs and discussions on related

social learning literature in other disciplines are relegated to the Supplementary Materials.

2 The Model

We develop a game theoretic social network model, and introduce its components below.

Examples and illustrations are also provided to facilitate understanding.

Agents and Network Structure. In a directed graph Gn = (N n, En), each node

i ∈ N n = {1, 2, . . . , n} represents an agent, and an ordered pair (j, i) ∈ En means agent j

can send information to agent i directly (i.e., agent j is agent i’s in-degree neighbor, and

agent i is agent j’s out-degree neighbor). When both (j, i) ∈ En and (i, j) ∈ En, these

two agents can communicate directly with each other.

Inference Problem and Information. Each agent would like to make inference

about a parameter of common interest θ ∈ R (the exact criterion will be introduced later in

the section). Agents’ common prior knowledge on θ is modeled by a normally distributed

prior θ ∼ N(0, 1/ρ). At time t = 0, agent i is endowed with her own information, called
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as private signal, si = θ+ zi. All zi ∼ N(0, 1/ρ̄) are independent with each other and also

independent of θ.2 Both ρ and ρ̄ are assumed to be known parameters. The distributions

of zi’s are common knowledge to all agents and so is the network structure. Since the focus

of our paper is not on technical issues related to Bayesian updates, we choose Gaussian

distributions for simplicity.

Information Exchange. Agents can make inference based on their own signal, or

they might also exchange signals with other agents before making inferences. The in-

formation exchange process is described as follows. Suppose agents live in a world with

continuous time t ∈ [0,∞). Waiting incurs a common exponential discount of the payoff

with rate r > 0, i.e., exp(−rt). All agents communicate simultaneously at some time

points following a homogeneous Poisson process with rate λ > 0, independent of θ and

zi. This Poisson process, common knowledge to all agents, defines some discrete com-

munication rounds at which agents send off their private and acquired signals which are

tagged with identities. After each communication round, agents update beliefs according

to the Bayes’ rule. For example, the posterior distribution of θ given k distinct signals is

Gaussian with precision ρ+kρ̄. So more acquired signals, i.e., a larger k, will increase the

precision and lead to better inference results. Given the above, there is a natural trade-off

between acting earlier to reduce the payoff discount and waiting for more communication

rounds to acquire more signals. This becomes an optimal stopping problem for each agent

i: at any given time t, agent i either makes an estimate xi of the parameter θ and “ex-

its”, or “waits” for more signals. By “exiting”, we mean that agent i no longer receives

new signals, but continues to transmit signal(s) she has so far when new communication

rounds take place.3 In the following, we illustrate this information exchange scheme with

an example.

An Example of Information Exchange. Suppose there are four agents in a

2Our results are not affected if θ and zi have non-zero means.
3With this assumption, even if an agent decides to “exit” at time t = 0, she is obliged to send her

private signal to neighbors. In general, when she decides to “exit” at communication round j, she is still
obliged to send in future rounds the signals she collected up to round j. This assumption encourages
information exchange, and it would affect none of the results but Proposition 3.
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social network. At time t = 0, each agent i starts with her private signal si, and the

total information endowment in the network is {s1, s2, s3, s4}. We only need to study

communication rounds l = 1, 2, because the longest path in the network has length 2. We

focus on the information set I1 of agent 1.

1 I1 = {s1}

t = 0

2 3

4

Two scenarios are studied. First, suppose no agent exits after time t = 0. The

information flow is as follows:

1 I1 = {s1, s2, s3}

l = 1

2 3 I3 = {s3, s4}

4

s2 s3

s4

1 I1 = {s1, s2, s3, s4}

l = 2

2 3 I3 = {s3, s4}

4

s4

After the first communication round, the information sets of agents 1 and 3 are

changed: I1 = {s1, s2, s3}, I3 = {s3, s4}. After l = 2, I1 is updated to {s1, s2, s3, s4},

while I2, I3 and I4 are unchanged.

In the second scenario, suppose agent 3 exits after time t = 0. Although she is still

obliged to send all her signals (in this case, only her private signal s3) to out-degree

neighbors, she will not collect signals from in-degree neighbors. The information flow is

as follows.

1 I1 = {s1, s2, s3}

l = 1

2 3 I3 = {s3}

4

s2 s3

1 I1 = {s1, s2, s3}

l = 2

2 3 I3 = {s3}

4
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As agent 3 does not receive signals from agent 4 at l = 1, she does not have new

signals to send to agent 1 at l = 2. Therefore, I1 = {s1, s2, s3} at l = 2.

Comparing the two scenarios, individual agents’ decisions can affect others’ informa-

tion acquisition, thus inference. This interdependence differentiates aggregate inference

at the societal level from the trivial sum of individual inferences, and motivates a game

theoretical framework.

Payoff Function and Inference Decisions. We next specify the payoff function

and agents’ decision problems. Denote by Ini,t the information set of agent i at time t.

Suppose agent i estimate θ as xi at time t, her instantaneous payoff is

ui(xi) = ψ − (xi − θ)2 ,

where ψ is a real-valued constant. Note that the larger the ψ, the less sensitively the

payoff depends on the squared error (xi − θ)2, where xi further depends on the agent’s

final information set. Hence, in what follows we call ψ the information sensitiveness.

While ψ plays no role in classical statistical inference, it is important in individual agent’s

decision making due to the exponential discount of the payoff in time. Agent i’s opti-

mal expected instantaneous payoff with estimate xi given information set Ini,t (without

considering discounting) is

Un
i,t(I

n
i,t) = max

xi
E(ui(xi)|Ini,t) .

It is easy to see that agent i’s optimal estimate is xn,∗i,t = E[θ|Ini,t] if she decides to exit at

time t. Thanks to the normality assumption on θ and signals {si}ni=1, agent i’s optimal

expected instantaneous payoff based on k signals can be calculated explicitly:

E[ψ − (xn,∗i,t − θ)2|Ini,t] = ψ − 1

ρ+ ρ̄k
. (2.1)

At any time t with information set Ini,t, agent i has to make a decision about whether to
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wait or to make an optimal estimate and exit. As a result, due to the common exponential

discount in time, each agent should exit at some finite time point,4 and more precisely,

right after a communication round.5 Therefore, to assess agents’ inferences, we only need

to consider the numbers of communication rounds before exiting. This simplification

allows us to study the following game theoretic social network model, formally called a

network game.

The Network Game. Denote lni as agent i’s number of communication rounds

before exiting, i = 1, . . . , n; ln = (ln1 , . . . , l
n
n). Also denote by ln−i the vector ln without the

component lni . Let τk be the occurring time of the kth communication round. Agent i’s

payoff for choosing lni , i.e., making an optimal estimate and exiting after lni communication

rounds, is

Un
i (lni , l

n
−i) = E

{
e
−rτln

i max
xi

E[ψ − (xi − θ)2|Ini (ln)]

}
,

where Ini (ln) is agent i’s information set upon exiting, which not only depends on her

own lni , but also depends on other agents’ ln−i, as we have seen in the previous four-agent

example. By (2.1) and the exponential waiting time of the Poisson process, it is easy to

show that

Un
i (lni , l

n
−i) = r̄l

n
i

(
ψ − 1

ρ+ ρ̄kn,l
n

i

)
,

where r̄ = λ/(λ+ r) and kn,l
n

i is the number of signals agent i has upon exiting if agents

in the network adopt ln. With this reduction, the following game will be considered.

Definition 1 The network game Γ(Gn) is a triple {N n,Ln,Un}, in which

(a) N n is the set of agents, i.e., N n = {1, 2, ..., n};

(b) Ln = (Ln1 , . . . , L
n
n) is the collection of agents’ strategy spaces. For every agent i ∈ N n,

4This is because, waiting towards infinity would incur a zero payoff due to discounting.
5Suppose an agent exits at a time between two communication rounds. Because she does not get new

signals between two adjacent communication rounds, it is always better to exit right after the earlier
communication round, due to continuous time discounting.
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her strategy space Lni is a finite set

Lni = {0, 1, 2, ..., (lni )max} ,

where (lni )max = maxj∈Nn\{i}{length of shortest path from j to i} ;

(c) Un
i ∈ Un is the payoff function for agent i:

Un
i (lni , l

n
−i) = r̄l

n
i

(
ψ − 1

ρ+ ρ̄kn,l
n

i

)
.6 (2.2)

For brevity, we use Gn to refer to both the network and the associated network game Γ(Gn)

when there is no confusion.

We restrict ourselves to pure-strategy (no randomization) Nash equilibria of this game,

which is defined below for the readers’ convenience.

Definition 2 In the network game Γ(Gn) = {N n,Ln,Un}, a pure-strategy Nash equilib-

rium7 σn,∗ is a vector ln,σ
∗

= (ln,σ
∗

1 , . . . , ln,σ
∗

n ) ∈ Ln such that for every i ∈ N n,

Un
i (ln,σ

∗

i , ln,σ
∗

−i ) > Un
i (lni , l

n,σ∗

−i ), for every lni ∈ Lni .

In other words, agents’ strategies are a pure-strategy Nash equilibrium (or equilibrium

for brevity) if for every agent, her strategy is optimal given other players’ strategies.

Our network game is closely related to that in Acemoglu et al. (2012), which used a

more complicated model to accommodate possible non-truthful communications and the

resulting asymptotic learning behaviors. Their paper did not formally establish the exis-

tence or computability of an equilibrium. On the contrary, our goal is to study aggregate

inference in a finite population network. We develop a simpler model to capture the in-

6If the signal precisions ρ and ρ̄ are not known, we cannot simply replace the precisions by their
estimates, as the estimates depend not only the number of signals, but also on the signals themselves.
Generalization to the unknown precision cases would be interesting for further research.

7We refer interested readers to Fudenberg and Tirole (1991) that gives a textbook treatment of the
equilibrium and the general proofs for its existence.
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terdependence of agents’ inference. Our model allows us to establish the existence of an

equilibrium, which is also computationally feasible (Mckelvey and Mclennan, 1996). The

following lemma ensures the existence of equilibria in our network game.

Lemma 1 The network game Γ(Gn) has at least one pure-strategy Nash equilibrium.

We offer some intuition of this lemma here (its formal proof in the Supplementary

Materials). When some agents stay longer, all other agents have (weakly) larger incentives

to stay longer, because the amount of information that comes in the future (weakly)

increases. This property is formally called “strategic complementarity” (Fudenberg and

Tirole, 1991), and it essentially guarantees the existence of equilibria. This also plays

an important role in making the equilibria easily computable ((Mckelvey and Mclennan,

1996)).

An Example of the Network Game and Its Equilibrium. In the four-agent

network displayed previously, fix r̄ = 0.9, ψ = 1 and ρ = ρ̄ = 0.5. Agents 2 and 4 should

exit at t = 0, because they will not get any new signals due to the network structure,

while incurring discounting penalty should they not act promptly. The payoff matrix for

agent 1 (rows) and 3 (columns) is as follows, in which the first and the second value in

each cell are respectively the payoffs of agent 1 and agent 3 [see (2.2)].

Agent 3

Round 0 Round 1

Round 0 0, 0 0, .3

Agent 1 Round 1 .45, 0 .45, .3

Round 2 .405, 0 .486, .3

There is only one equilibrium of the game. In this equilibrium, agents 2 and 4 exit

immediately after they receive their own private signals in Round 0, while agent 3 exits

after Round 1, and agent 1 exits after Round 2. Such an outcome is hard to rationalize

with any single-agent decision models. No matter what other agents choose, agent 3

always prefers Round 1 to Round 0 (0.3 > 0). But without taking into account agent 3’s
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strategy, there is no clear best choice for agent 1: her best strategy is Round 1 should

agent 3 choose Round 0, while her best strategy is Round 2 should agent 3 choose Round

1. Agent 1 is willing to wait longer in the equilibrium only because she believes that agent

3 would wait longer, and agent 3 will indeed do so.

Another Example of Strategic Interactions. In the equilibrium of the above

example, all agents wait until their maximum rounds (lni )max. There would not be much

difference were we to assume no exits (strategic interaction) to start with. To highlight

the effect of strategic interactions, we provide another example. In the following network,

201 agents are organized in three layers. Agent 1 has 100 in-degrees, and agents 2 to 101

each has one in-degree. Fix r̄ = 0.95, ψ = 10, ρ = 0.2 and ρ̄ = 0.003. From (2.2) one can

check that there is only one equilibrium, in which agent 1 exits after Round 1, while all

other agents exit immediately at Round 0. In this equilibrium, agent 1 has 101 signals

upon existing. However, if agents 2 to 101 were forced not to exit, they would get the

signals from their in-degree neighbors at Round 1, and this encourages agent 1 to wait

until Round 2 and has 201 signals upon exiting. The latter hypothetical scenario would

not happen in an equilibrium since agents 2 to 101 want to exit earlier.

1

2 3 101

102 103 201

3 Finite Population Learning

In this section, we introduce finite population learning to assess aggregate inference quality

at the societal level. This criterion answers whether with high probability, a large fraction

of agents in the network can make “good” estimates in equilibrium. We derive necessary
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conditions and sufficient conditions for this criterion, and discuss their implications. The

finite population learning concept and its determination conditions echo the spirit of finite

sample approach in the statistical learning literature, and it helps reveal the explicit

interplay among the population size, parameters of the network game and the learning

tolerances. This methodological point distinguishes our paper from previous works in the

social networks literature that focus on the asymptotic effects of information aggregation

(Acemoglu et al., 2011, 2012).

Definition 3 Given a social network Gn with an equilibrium σn,∗, we say Gn achieves

(ε, ε̄, δ)-learning under σn,∗ if

Pσn,∗
(

1

n

n∑
i=1

(1−Mn,ε
i ) > ε̄

)
6 δ ,

in which Mn,ε
i = 1(|x∗i − θ| 6 ε) where x∗i is agent i’s optimal estimate upon exiting, and

Pσn,∗ denotes the conditional probability given σn,∗ .

In this definition, the parameter ε defines a “good” estimate for individual agents, 1−ε̄

represents the fraction of agents who make such good estimates, and 1− δ represents the

probability at which such a high fraction of agents make such good estimates. (ε, ε̄, δ)-

learning reflects a certain high quality of aggregate inference at the societal level, and

these tolerance parameters can be tuned to different applications. In verbal discussions

and when there is no confusion, we call (ε, ε̄, δ)-learning finite population learning.

A natural question to ask is whether such finite population learning occurs in a given

network. If so, under what conditions? The following proposition provides a necessary

condition and a sufficient condition. Denote by erf(x) = 2√
π

∫ x
0
e−t

2
dt the error function

of the standard normal distribution.

Proposition 1 For a given social network Gn under an equilibrium σ∗(= σn,∗),

12



(a) (ε, ε̄, δ)-learning does not occur if

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 < (1− ε̄)(1− δ) . (3.1)

(b) (ε, ε̄, δ)-learning occurs if

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 > 1− ε̄δ . (3.2)

This proposition provides simple conditions for the occurrence of finite population

learning: only one equilibrium outcome kn,σ
∗

i is involved. Hence, these conditions are

more operative and transparent than their asymptotic counterparts in previous literature.

Conditions (3.1) and (3.2) also allow us to untangle the interplay among parameters.

For example, we are able to answer the following question. Given the tolerances ε, ε̄,

δ and the signal precisions ρ and ρ̄, how does the change in kn,σ
∗

i affect the occurrence

of finite population learning in a given social network Gn? When kn,σ
∗

i ’s are sufficiently

small to validate condition (3.1), finite population learning does not occur. Similarly,

when some of kn,σ
∗

i ’s are sufficiently large so that the condition (3.2) is satisfied, finite

population learning occurs. Similar interpretations about unilateral changes also apply to

parameters ε, ε̄, δ, ρ and ρ̄. As interplays among the parameters ε, ε̄, δ, ρ, ρ̄ and kn,σ
∗

i are

clear through (3.1) and (3.2), the two conditions help us better understand the quality of

inference in different circumstances. Also, a beauty of symmetry arises in our necessary

conditions and sufficient conditions for finite population learning. The parameters ε̄ and

δ are completely interchangeable in these conditions, which was not expected as they

capture tolerances in different categories. On the other hand, in these two conditions, the

parameter ε stands in a position unchangeable with ε̄ or δ, which hints that ε plays a

different role in determining the aggregate inference quality.

Conditions (3.1) and (3.2) have powerful implications. For example, the next corollary

establishes a necessary condition and a sufficient condition without equilibrium outcomes.
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Corollary 1 For a given social network Gn,

(a) (ε, ε̄, δ)-learning does not occur if

erf

(
ε

√
ρ+ ρ̄n

2

)
< (1− ε̄)(1− δ) . (3.3)

(b) (ε, ε̄, δ)-learning occurs if

erf

(
ε

√
ρ+ ρ̄

2

)
> 1− ε̄δ . (3.4)

Corollary 1 follows from 1 6 kn,σ
∗

i 6 n. It is interesting because under some cir-

cumstances, we can determine an aggregate inference status without knowing either the

structure of the social network or the equilibrium. Intuitively, if any tolerance parameter,

information precision or the population size is too low, such that the condition (3.3) is

satisfied, finite population learning does not occur no matter how effective the network is

organized. Conversely, if any tolerance or information precision is sufficiently large such

that condition (3.4) holds, finite population learning occurs even if all agents are isolated.

Finally, multiple equilibria emerge under some circumstances. In the following, we in-

troduce a generalized (conservative) version of finite population learning to accommodate

multiple equilibria without equilibrium selection.

Definition 4 Denote by Σn,∗ = {σ∗} the set of equilibria of Γ(Gn). (ε, ε̄, δ)-learning

occurs if

sup
σ∗∈Σn,∗

Pσ∗
(

1

n

n∑
i=1

(1−Mn,ε
i ) > ε̄

)
6 δ .

This definition offers a conservative standard in the sense that the least favorable

equilibrium determines the aggregate inference status. When Σn,∗ is a singleton, the

above definition reduces to Definition 3. The proof of Proposition 1 can be recycled to

deliver the next remark.

Remark 1 For a given social network Gn,
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(a) (ε, ε̄, δ)-learning does not occur if

min
σ∗∈Σn,∗

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 < (1− ε̄)(1− δ) .

(b) (ε, ε̄, δ)-learning occurs if

min
σ∗∈Σn,∗

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 > 1− ε̄δ .

4 Perfect Learning and the Rates

The finite population learning concept and Proposition 1 provide a solid foundation to

investigate the aggregate inference quality as population in a network grows. This problem

is important because the evolution of a society can impact the organization of information,

the interdependence of individual inferences, and the aggregate inference at the societal

level. A new concept, perfect learning, determines whether in a sequence of growing

networks {Gn}∞n=1 (population goes to infinity), (ε, ε̄, δn)-learning can be achieved in Gn

for all n ∈ N with δn → 0. This means with increasing population, a large fraction of

the people in a society can make “good” inference almost surely. The sequence {δn}∞n=1

naturally induces a learning rate, which measures the speed towards perfect learning.

This perfect learning concept and associated learning rates also apply to the tolerance

parameters ε and ε̄. Our approach is different from previous social networks literature on

learning that follow a direct asymptotic approach (Acemoglu et al., 2011, 2012) or discuss

other notions of learning rate under non-Bayesian inference context (Golub and Jackson,

2012a,b,c; Jadbabaie et al., 2013).
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4.1 Perfect Learning

Recall that three tolerance parameters ε, ε̄, and δ tune the learning status of a society.

We call by an evolution path a sequence of growing networks {Gn}∞n=1 (population goes

to infinity), where existing links are kept when networks grow. To inquire the limiting

behavior under an evolution path, we can focus on one parameter at a time. The following

definition introduces δ-perfect learning on a given evolution path {Gn}∞n=1.

Definition 5 We say δ-perfect learning occurs on an evolution path {Gn}∞n=1 under equi-

libria {σn,∗}∞n=1
8 if there exists a vanishing positive sequence {δn}∞n=1 such that (ε, ε̄, δn)-

learning occurs in Gn under its associated σn,∗ for all n .

This definition conveys the idea that as a society becomes larger, eventually we know

for sure that a pre-specified large fraction of the people can make “good” inference. In

verbal discussions, we call δ-perfect learning just perfect learning. Compared to its coun-

terpart in previous works, our definition of perfect learning is both stronger and more

general for the following reasons. First, we require networks on an evolution path to

achieve a certain quality of inference not only in the limit but also all along the path

towards the limit. Second, by focusing on different parameters ε, ε̄ and δ, we could po-

tentially address three different kinds of limiting behaviors. As discussed in the previous

section, these three parameters exhibit different impacts on finite population learning, so

they play different roles in perfect learning as well. Third, this definition allows us to

investigate learning rates (in the next subsection).

In the following, we derive two sufficient conditions for δ-perfect learning as Proposition

2 and Proposition 3, both taking Proposition 1 as a foundation. The first condition relies

on the equilibrium outcome kn,σ
∗

i . The second condition relies only on the evolution path.

To deliver the first sufficient condition, we define an equilibrium informed agent.

8Since we assume that the graph is evolved such that nodes/edges can only be added, for any agent i,
the number of signals she gets increases in n. Concretely, if in a “smaller” graph i gets ki signals in some
equilibrium σn,∗, then one can define a corresponding equilibrium σn′,∗ (n′ > n), in which no agents exit
earlier than in σn,∗ and hence i gets (weakly) more signals. As an alternative, we can restrict the perfect
learning definition and associated learning rates on such equilibria sequences.
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Definition 6 (Equilibrium Informed Agent) For agent i on a given evolution path

{Gn}∞n=1, she is equilibrium informed with respect to {Gn}∞n=1 under equilibria {σn,∗}∞n=1

if

lim
n→∞

kn,σ
∗

i =∞ .

Intuitively, an agent is equilibrium informed means that she enjoys increasing infor-

mation advantage as population grows. The next proposition offers a sufficient condition

for δ-perfect learning. In a similar spirit, a more general sufficient condition is derived as

Lemma 3 in the Supplementary Materials. The proof of Proposition 2 is omitted as it is

a corollary to Lemma 3.

Proposition 2 δ-perfect learning occurs on an evolution path {Gn}∞n=1 under equilibria

{σn,∗}∞n=1 if

lim
n→∞

1

n
|EIn,∗| = 1 ,

where EIn,∗ is the set of equilibrium informed agents in the network Gn with respect to

{Gn}∞n=1 under {σn,∗}∞n=1.

Proposition 2 states that perfect learning occurs when almost all agents are equilibrium

informed. This reflects that most individuals should collect sufficient information for the

society to achieve a high level of aggregate inference. We have such a transparent condition

because our perfect learning concept is powered by finite population learning, a sufficient

condition of which only involves one set of equilibrium variables: {kn,σ
∗

i }.

Next we consider the second sufficient condition that relies only on an evolution path.

To streamline the presentation in the main texts, we assume that each agent enjoys a

positive payoff even if she exits at t = 0. From (2.1), this is equivalent to the following

assumption, which will be held for the rest of this section. In the Supplementary Materials,

we relax this assumption and show that none of the following results is affected.

Assumption 1 (ρ+ ρ̄)ψ > 1 .
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Before looking into the next sufficient condition for perfect learning, we point out an

important observation. Although the number of signals an agent gets in equilibrium may

diverge to infinity on an evolution path, the number of communication rounds she chooses

will not increase unboundedly.

Lemma 2 Under Assumption 1, given a network Gn under equilibrium σ∗, agent i’s opti-

mal communication round before exiting is bounded from above by a constant independent

of n. Mathematically,

ln,σ
∗

i 6 lni < ln

[
1− 1

(ρ+ ρ̄)ψ

]
/ ln r̄ , (4.1)

in which lni stands for agent i’s optimal communication round given that other agents wait

until their maximum rounds (lnj )max, j 6= i.

From condition (4.1), we see that the upper bound is exclusively determined by pa-

rameters of the network game. A more general version (Lemma 4) of Lemma 2 is in the

Supplementary Materials. A key idea behind this lemma is that an agent’s attainable

payoff is bounded from above by ψ, while waiting incurs a discounting of the payoff to-

wards zero. Hence, when an agent gets sufficiently large number of signals within some

finite communication rounds, even expecting infinite number of signals does not justify

the discount of further waiting.

Lemma 2 plays an important role in shaping our next sufficient condition that directly

links perfect learning status to formation of an evolution path. Recall that Proposition 2

states almost all agents’ kn,σ
∗

i →∞ is sufficient for perfect learning. On the other hand,

from Lemma 2 we know that no agent has an optimal unbounded communication round

ln,σ
∗

i . Combining the two observations, the only possibility to validate the conditions in

Proposition 2 is that almost all agents get unbounded number of signals within finite

communication rounds. This consideration leads to the following definition of a socially

informed agent.
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Definition 7 (Socially Informed Agent) For each agent i on a given evolution path

{Gn}∞n=1, let Li = min{l0 ∈ N : limn→∞ |Bn
i,l0
| =∞}, where Bn

i,l is the set of agents in Gn

whose shortest path to i has length at most l. Agent i is socially informed with respect to

{Gn}∞n=1 if Li is finite, and if there exists N ∈ N such that for n > N , we have

ψ − 1

ρ+ ρ̄|Bn
i,Li
|
> 0 , (4.2)

and

r̄Li

(
ψ − 1

ρ+ ρ̄|Bn
i,Li
|

)
> r̄l

(
ψ − 1

ρ+ ρ̄|Bn
i,l|

)
for all 0 6 l < Li . (4.3)

Moreover, we denote by SIn the set of socially informed agents in the network Gn.

The definition of a socially informed agent does not require knowledge of any specific

equilibrium. It only depends on the topological structure of the graph and on the param-

eters of the network game. In Definition 7, condition (4.2) is automatically satisfied in

view of Assumption 1. Intuitively, a socially informed agent can be reached by a large

number of neighbors after some finite communication rounds Li. Furthermore, condition

(4.3) ensures that this agent strictly prefers to wait at least until she collects all signals

from in-degree neighbors up to distance Li, given other agents do not exit. With the

help of socially informed agents, we bypass equilibrium and state the following sufficient

condition for perfect learning.

Proposition 3 δ-perfect learning occurs on an evolution path {Gn}∞n=1 (under any equi-

libria {σn,∗}∞n=1) if

lim
n→∞

1

n
|SIn| = 1 .

Proposition 3 is interesting because an agent’s socially informed status only depends

on network structures and model parameters alone. Since it is difficult to get closed form

solutions for equilibria in general scenarios, Proposition 3 is of more value.

One important intuition behind this result is that agent i’s socially informed status

guarantees that from a certain point on an evolution path, there is a “hub” within her
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finite distance who can collect unbounded number of signals at the first communication

round (i.e., in-degree goes to infinity). These hubs can collect their immediate in-degree

neighbors’ private signals regardless these neighbors’ strategies, enabling us to bypass

equilibrium. Moreover, conditions (4.2) and (4.3) ensure a chain of agents willing to pass

hub’s gathered signals to agent i. These hubs exist in important networks studied in

literature. For example, a good representation of many real-world scenarios in politics

and sociology is the island connection networks (Jackson, 2010; Easley and Kleinberg,

2010), which consist of nearly isolated subgraphs, but each subgraph is a nearly (two-

way) complete graph.9 This may also represent more general social cliques or homophily

as discussed in Golub and Jackson (2012a,b,c). Another typical class of networks with

hubs is the (two-way) star networks, in which the star (hub) collects signals from all others

and then send all signals together to every agent. In view of Proposition 3, a sequence

of such networks with hubs may achieve perfect learning under any equilibria. On the

negative side, the preferential attachment graphs, and Cayley trees where all nodes have

k degrees, do not have such hubs.

4.2 Learning Rates

In this subsection we define learning rates for δ-perfect learning, and derive them for some

typical network classes. Again, finite population learning serves as a foundation.

Definition 8 If δ-perfect learning occurs on an evolution path {Gn}∞n=1 under equilibria

{σn,∗}∞n=1, we call the corresponding sequence of tolerances {δn}∞n=1 a learning rate.

9On an evolution path, the populations of all but perhaps a finite number of subgraphs go to infinity.
Real-world examples of island connection networks include the US Congress, in which the two major
parties are well connected within themselves but there are only a few links between the two, and corporate
email communication networks, in which internal email lists construct nearly complete graphs within
individual companies, and a few connections are between companies. See Jackson (2010); Easley and
Kleinberg (2010) for more examples.
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Proposition 1 suggests a conservative approach to construct a learning rate. The

sufficient condition part of this proposition prescribes that (ε, ε̄, δn)-learning occurs if

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 > 1− δnε̄ .

Then we can solve the above inequalities with respect to δn, getting a sequence of lower

bounds. This sequence, if converging to zero (δ-perfect learning achieved), can serve as

a learning rate. However, without specific knowledge of network structures, it is hard

in general to solve for kn,σ
∗

i in terms of n and other parameters. In the following, we

will derive learning rates on some examples, and discuss general network classes when

possible.

Example 1 (Isolated Agents) When all agents are isolated from each other in a net-

work Gn, we have kn,σ
∗

i = 1 for every agent i.

In Example 1, the necessary condition (3.1) is reduced to

erf

(
ε

√
ρ+ ρ̄

2

)
< (1− ε̄)(1− δn) .

If parameters are such that erf
(
ε
√

ρ+ρ̄
2

)
< (1 − ε̄), the above inequality holds for large

n for any vanishing sequence {δn}∞n=1. This tells us that in fairly general circumstances,

an isolated evolution path cannot achieve δ-perfect learning.

Example 2 (Complete Graph) When the network Gn is a (two-way) complete graph,

and the benefit of getting n − 1 new signals justifies the discount of one communication

round, kn,σ
∗

i = n for every agent i.

In Example 2,

erf

(
ε

√
ρ+ ρ̄n

2

)
> 1− δnε̄ , ∀n ∈ N ,

is a sufficient condition for δ-perfect learning, which translates to
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δn >
1

ε̄

(
1− erf

(
ε

√
ρ+ ρ̄n

2

))
. (4.4)

The sequence of the right hand sides of inequality (4.4) can serve as a learning rate. We

approximate the error function to get a conservative but more transparent rate. Note

that the error function erf can be approximated by

1− erf(x) <
1√
2π

1

x
e−x

2/2 .

Therefore a sufficient condition for δ-perfect learning is

δn >
1√
πε̄

1

ε
√
ρ+ ρ̄n

exp

(
−ε

2(ρ+ ρ̄n)

4

)
.

Keep other parameters fixed, and focus on the relation between population size n and

δn. We see that δn could decrease in the order of exp (−ρ̄ε2n/5). This implies that when

population grows, the probability that at least ε̄ fraction of people make a “bad” inference

decreases very quickly to zero.

Following the idea of error function approximations, we go beyond Example 2 to

consider a more general case in which kn,σ
∗

i > f(n) for every agent i where f(n) is a

deterministic sequence. A sufficient condition for δ-perfect learning is then

δn >
1√
πε̄

1

ε
√
ρ+ ρ̄f(n)

exp

(
−ε

2(ρ+ ρ̄f(n))

4

)
. (4.5)

If f(n) diverges to infinity as n goes to infinity, the right hand side of inequality (4.5)

converges to 0. Keeping other parameters fixed, this implies δn could decrease in the order

of exp(−ρ̄ε2f(n)/5). Formally, we have the next proposition.

Proposition 4 Suppose there exists a diverging sequence f(n) such that kn,σ
∗

i > f(n) for

every agent i in network Gn with associated equilibrium σn,∗, then δ-perfect learning could

occur with learning rate {δn}∞n=1, where each δn is in the order of exp(−ρ̄ε2f(n)/5).
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An interpretation of this proposition is that, even if each agent can only get a small

proportion of information scattered in the network, perfect learning can still be reached

at a fast rate. This speaks to the commonly observed class of island connection networks

discussed above, and is also related to interesting results pertaining to social cliques or

homophily as discussed in Golub and Jackson (2012a,b,c). Lemma 3 in the Supplemen-

tary Materials further renders Proposition 4 as a special case and provides more general

implications on learning rates.

Next, we consider the binomial trees, which are an axiomatic representation of vari-

ous hierarchical social structures (Jackson, 2010). In particular, as the information flow

within a binomial tree can be either from the root to the leafs or from the leafs to the

root, binomial trees can accommodate both the top-down and the bottom-up cases of

information exchange in various real-world scenarios. Hence, it is instructive to analyze

the binomial tree with a few different settings, where we generalize our network game by

allowing the information sensitiveness ψ = ψn to vary along an evolution path {Gn}∞n=1.

Example 3 (Binomial Tree: Information Flow from Root to Leafs) The agents

in the communication network Gn form a binomial tree, where information can only

flow from root to leafs. For simplicity, consider only the number of agents n such that

n = 1 + 2 + 4 + ...+ 2(mn−1), where mn is the number of layers in the binomial tree. The

following graph illustrates such a binomial tree with three layers.

1

2 3

4 5 6 7

We will study two scenarios of this binomial tree, in both of which λ = r so that r̄ = 1/2.

i) ψn = ρ = ρ̄ = 1. For agent 1 on the top layer, he should exit right after round

0 because he does not have any chance to receive others’ private information. For
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agent 2 and 3, who are on the second top layer, they decide between round 0 and

1. A simple calculation on their pay off functions reveals that they should exit after

round 0. Agents 4, 5, 6, 7 who are on the third layer potentially should decide

between 0,1 and 2 rounds. But since agents 2 and 3 cannot not pass through agent

1’s info, round 2 is eliminated before any calculation. So agents on the third layer

actually faces same decision problems as agents on the second layer. Continue with

the same argument till the mn’th layer, we learn that everyone in the network exits

right after she gets her private signal. Therefore, this scenario is the same as isolated

agents in terms of information exchange.

In general, as depicted in this subcase i), when the game is less information sensitive (i.e.,

ψ higher), the precision of the prior ρ is higher, or ρ̄ is lower, it is less likely to achieve

δ-perfect learning, even if the agents are well connected.

ii) ψn <
2

ρ+(mn−1)ρ̄
− 1

ρ+mnρ̄
and ε2 < −4

ρ̄
log
(

1
2

√
ρ+2ρ̄
ρ+ρ̄

)
. Same as subcase i), agent 1

does not have a choice. For agents on the second layer to choose exit at round 1,

we need ψn <
2
ρ+ρ̄
− 1

ρ+2ρ̄
. For agents on the third layer to exit at round 2, we need

ψn < min

{
2

ρ+ ρ̄
− 1

ρ+ 2ρ̄
,

2

ρ+ 2ρ̄
− 1

ρ+ 3ρ̄

}
=

2

ρ+ 2ρ̄
− 1

ρ+ 3ρ̄
.

In general, an agent on layer j prefers to wait till the j − 1 round if

ψn < min {g(1), . . . , g(j − 1)} = g(j − 1) .

where g(x) = 2
ρ+xρ̄

− 1
ρ+(x+1)ρ̄

. The last equality holds because g(x) is a decreasing

function, thanks to g′(x) < 0. Hence under equilibrium, agents on layer j have j

signals. In particular, agents in the last layer each has mn = log2(n + 1) signals.

Note that there are n+1
2

agents in this layer. Using (3.2), a similar derivation to
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that in Example 2 leads to that a learning rate {δn} can be

δn >
1

nεε̄
√
π

log2(n+1)∑
i=1

2j−1 1√
ρ+ ρ̄j

exp

(
−ε

2(ρ+ ρ̄j)

4

)
.

To unravel the right hand side of the above inequality, we let

h(x) = 2x−1 1√
ρ+ ρ̄x

exp

(
−ε

2(ρ+ ρ̄x)

4

)
,

which is monotone increasing, because h(x + 1)/h(x) > 1 under our condition.

Therefore, it is sufficient to have

δn >
1

nεε̄
√
π

log2(n+ 1)h(log2(n+ 1)) .

Therefore δn could decay in the order of
√

log(n+ 1) · (n + 1)−ε
2ρ̄/4, which is a

polynomial rate.

Compared to the complete graph, the binomial tree achieves perfect learning more

slowly. The difference in learning rates arises not only from the physical network struc-

tures, but also from different strategic interactions among agents in the two environments.

Next, we consider two cases in which information flows in the opposite direction.

Example 4 (Binomial Tree: Information Flow from Leafs to Root) Now let in-

formation flow from leafs to root, i.e., reverse all the directed edges in Example 3. The

following graph illustrates such a binomial tree with three layers.

1

2 3

4 5 6 7

We give the following results. The detailed analysis is similar to Example 3.
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i) ψn = ρ = ρ̄ = 1. All agents exit after time 0.

ii) ψn <
2

ρ+2(mn−1)ρ̄
− 1

ρ+2mn ρ̄
. All agents get the maximum number of signals that they

could possibly get, then δn can be such that

δn >
1

nεε̄
√
π

log2(n+1)∑
j=1

2j−1 1√
ρ+ 2(mn−j+1)ρ̄

exp

(
−ε

2(ρ+ 2(mn−j+1)ρ̄)

4

)
.

A conservative estimate on the summation on the right hand side would give δn ∼

n−3/4, a much faster rate than that in Example 3 when ε2ρ̄ � 3 (a typical case as

we have in mind very small ε).

Note that information flow directions matter for learning rates. When parameters

are in a comparable range, the bottom-up case exhibits a higher learning rate than the

top-down case. In other words, the bottom-up organization of information flow within a

binomial tree is more efficient. This result is consistent with early economics and sociology

literature; Hayek (1945) for example, highlight the importance of effectively organizing

dispersed information sources.

5 Remarks and Further Research

We have explored multi-agent Bayesian inference at the societal level with a game the-

oretic social network model. The inference quality is captured by a new concept, finite

population learning, which answers the question: whether with high probability, a large

fraction of people can make “good” inferences. Echoing the spirit of the finite sample

method in statistics, our new concept helps reveal explicit interplays among people’s

preferences, network characteristics, and tolerances on inference quality. With finite pop-

ulation learning as a foundation, we also provide conditions to determine the long term

trend of aggregate inference quality as population in a society grows. Our work offers the

statistics community a tractable framework to assess the inference quality at the societal

level, taking strategic interdependence into account.
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A further question to ask is: what specific topologies of social networks would improve

inference quality at the societal level? To answer this question might open a new direction

for statistical research. Our paper makes an initial attempt to inquire the interplay

between network topology and aggregate inference, but a generic solution is difficult

to reach. The difficulty lies in the effect of game parameters on the inference results;

more concretely, slight perturbation of parameter realizations might lead to drastically

different inference results in the same social network. The fundamental reason is that our

approach calls for complete knowledge on the network structure to determine the quality of

aggregate inference. It would be interesting to develop new criteria for aggregate inference

on network classes with only some summary statistics regarding topologies. To achieve

this, we need to look for novel statistical properties of networks. Golub and Jackson

(2012a,b,c) are promising attempts towards this direction, but their results are currently

limited to non-Bayesian decision problems.
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Supplementary Materials

The Supplementary Materials provide related literature, proofs and generalized results

of corresponding parts in the main text.

Relation to the Literature of Learning in Social Networks. Our work lies in the

category of Bayesian social learning in social networks, in which decision makers in a social

network update their information according to the Bayes’ rule. General Bayesian social

learning is divided into two sub-categories, namely Bayesian observational learning and

Bayesian communication learning. In Bayesian observational learning, agents observe past

actions of their neighbors. From these observed actions, agents update their beliefs and

make inferences. Herd behavior is a very typical consequence of observational learning. In

literature, Banerjee (1992), Bikhchandani et al. (1992) and Smith and Sorensen (2000) are

early attempts to model herd effects through Bayesian observational learning. Banerjee

and Fudenberg (2004) relaxes the assumption of full observation network topology and

study Bayesian observational learning with sampling of past actions. Recently, Acemoglu

et al. (2011) and Muller-Frank (2012) investigate how detailed network structures could

add new interesting insights.

Our work belongs to Bayesian communication learning, which means that agents can-

not directly observe actions of others but can communicate with each other before making

a decision. Consequently, agents update their beliefs and make inferences based on the

information given by others. New interesting considerations arise in Bayesian communi-

cation learning; for example, agents may not want to truthfully reveal their information

to others through communication. Crawford and Sobel (1982) pioneers the research in

strategic communication, and Acemoglu et al. (2012) is an interesting piece that looks into

how communication learning shapes information aggregation in social networks. Other

works such as Galeotti et al. (2011) and Hagenbach and Koessler (2010) also study strate-

gic Bayesian communication in social networks, but their focus is not on social learning.
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Without investigating networks, Duffie et al. (2009) introduced a similar trade-off be-

tween better information and higher search costs in a social learning setting, and the

information communication in their setup is isomorphic to our information exchange with

identity-tagged signals.

There is a branch of literature that applies various non-Bayesian updating methods

to investigate social learning. DeGroot (1974) develops a tractable non-Bayesian learning

model which is frequently employed in research of social networks today. Essentially,

the DeGroot model is pertaining to observational learning, in which agents make today’s

decisions by taking the average of neighbors’ beliefs revealed in their decisions yesterday.

DeGroot (2003) and Golub and Jackson (2010, 2012a,b,c) apply the DeGroot model to

financial networks and general social networks, respectively. By a field experiment, Mobius

et al. (2010) compares a non-Bayesian model of communication with a model in which

agents communicate their signals and update information based on Bayes’ rule. Their

evidence is generally in favor of the Bayesian communication learning approach.

Proof of Lemma 1. In the network game, it is easy to check that an agent’s payoff gain

from waiting is weakly larger (i.e., no smaller than) when other agents also wait for more

rounds. Formally, for every i ∈ N n, we have

Un
i (lni , l

n
−i)− Un

i (l
′n
i , l

n
−i) > Un

i (lni , l
′n
−i)− Un

i (l
′n
i , l

′n
−i), (5.1)

for any ln−i, l
′n
−i ∈ Ln/Lni such that ln−i > l

′n
−i. Any complete information static game

that satisfies condition (5.1) is a supermodular game. The Topkis Fixed-Point Theorem

(Topkis, 1979) guarantees the existence of a pure-strategy Nash equilibrium in any super-

modular game. This concludes the proof. We refer interested readers to Fudenberg and

Tirole (1991) for a textbook treatment.

Proof of Proposition 1. To prevent (ε, ε̄, δ)-learning, it is enough to show that a lower

bound of Pσn,∗
(

1
n

∑n
i=1 (1−Mn,ε

i ) > ε̄
)

is greater than δ. It follows from Markov inequal-

2



ity,

Pσn,∗
(

1

n

n∑
i=1

Mn,ε
i > 1− ε̄

)
≤ n−1(1− ε̄)−1

n∑
i=1

Eσn,∗Mn,ε
i

= n−1(1− ε̄)−1

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 .

This implies that

Pσn,∗
(

1

n

n∑
i=1

(1−Mn,ε
i ) > ε̄

)
> 1− n−1(1− ε̄)−1

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 .

Therefore, it is enough to take

1− n−1(1− ε̄)−1

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 > δ ,

which concludes that condition (3.1) is necessary for (ε, ε̄, δ)-learning.

To ensure (ε, ε̄, δ)-learning, note that

Pσn,∗
(

1

n

n∑
i=1

(1−Mn,ε
i ) > ε̄

)
6

Eσn,∗ (
∑n

i=1(1−Mn,ε
i ))

nε̄
=

n−
∑n

i=1 erf

(
ε

√
ρ+ρ̄kn,σ

∗
i

2

)
nε̄

.

Demanding the right hand side of the above inequality no larger than δ is the same as

assuming condition (3.2). This completes the proof.

The following provides a more general sufficient condition for δ-perfect learning. Given

equilibria {σn,∗}∞n=1, let f1 > f2 > . . . > fJ , where each fj(n) is a monotone increasing

function on n, and let {bjn, j = 1, . . . , J} be such that

|{i : kn,σ
∗

i > f1(n)}|
n

> b1
n ,

|{i : f1(n) > kn,σ
∗

i > f2(n)}|
n

> b2
n ,

3



and up until

|{i : fJ−1(n) > kn,σ
∗

i > fJ(n)}|
n

> bJn .

Clearly, b1
n, . . . , b

J
n ∈ (0, 1) and 0 6 b1

n + . . . + bJn 6 1. The rest agents i’s are such that

fJ(n) > kn,σ
∗

i > 1. Their fraction is at most 1− (b1
n + . . .+ bJn).

Lemma 3 δ-perfect learning occurs if

(a) limn→∞
∑J

j=1 b
j
n = 1,

(b) for each j ∈ {1 . . . , J}, limn→∞ b
j
n

(
1− erf

(
ε
√

ρ+ρ̄fj(n)

2

))
= 0 .

Proof of Lemma 3. Recall that a sufficient condition for (ε, ε̄, δn)-learning is

1

n

n∑
i=1

erf

ε
√
ρ+ ρ̄kn,σ

∗

i

2

 > 1− δnε .

Then by the definition of bjn and fj, it is enough to have

J∑
j=1

erf

(
ε

√
ρ+ ρ̄fj(n)

2

)
· bjn +

(
1−

J∑
j=1

bjn

)
erf

(
ε

√
ρ+ ρ̄

2

)
> 1− δnε .

This translates to

δn >
1

ε̄

(
J∑
j=1

bjn

(
1− erf

(
ε

√
ρ+ ρ̄fj(n)

2

))
+

(
1−

J∑
j=1

bjn

)(
1− erf

(
ε

√
ρ+ ρ̄

2

)))
.

To ensure the existence of {δn} such that limn→∞ δn = 0, it is enough to have

limn→∞
∑J

j=1 b
j
n = 1 and

lim
n→∞

bjn

(
1− erf

(
ε

√
ρ+ ρ̄fj(n)

2

))
= 0, for j 6 J.

This completes the proof.

Note that if fj does not increase strictly for n > N∗, bjn needs to decrease to 0. Also,

allowing more than one tolerances among ε, ε̄, δ to vary with population size n leads

4



to interesting learning results. In particular, from the proof of Lemma 3, a sufficient

condition for (ε, ε̄n, δn)- learning is

δnε̄n >
J∑
j=1

bjn

(
1− erf

(
ε

√
ρ+ ρ̄fj(n)

2

))
+

(
1−

J∑
j=1

bjn

)(
1− erf

(
ε

√
ρ+ ρ̄

2

))
.

In this condition, the role of δn and that of ε̄n are completely interchangeable, which

implies that we can trade in some probabilistic confidence for some fraction of agents who

make wrong decisions.

The following provides a generalized version of Lemma 2 when Assumption 1 is relaxed.

Lemma 4 (Generalized Lemma 2) For any agent i, either the communication rounds

she optimally experiences before taking an action in any social network Gn along an evo-

lution path {Gn}∞n=1 is bounded from above by a constant independent of n, or she waits

until the maximum round. Specifically,

(a) If (ρ+ ρ̄)ψ > 1, then for any agent i

ln,σ
∗

i 6 lni < min

{
(lni )max, ln

(
1− 1

(ρ+ ρ̄)ψ

)
/ ln r̄

}
,

where lni stands for agent i’s optimal communication rounds given that other agents

wait till the maximum round.

(b) If (ρ+ ρ̄)ψ 6 0 (equivalently, ψ 6 0), then for any agent i

ln,σ
∗

i = lni = (lni )max .

(c) If 0 < (ρ+ ρ̄)ψ 6 1, then there are two subcases.

(c.1) For agent i with

lim
n→∞

|Bn
i | <

1− ρψ
ρ̄ψ

,

5



where Bn
i is the set of agents whose signals agent i can get if no one exits before

maximum round, we have

ln,σ
∗

i = lni = (lni )max .

(c.2) For agent i with

lim
n→∞

|Bn
i | >

1− ρψ
ρ̄ψ

,

we have either

ln,σ
∗

i 6 lni 6 min
(

(lni )max, l
{Gn}∞n=1
i

)
,

or

ln,σ
∗

i = (lni )max ,

where l
{Gn}∞n=1
i is a constant that depends on the society and agent i’s position

in the society, but does not change with n.

Proof of Lemma 4. We proceed case by case.

Case (a), (ρ+ ρ̄)ψ > 1.

In this case, agent i enjoys a positive payoff ψ− 1
ρ+ρ̄

if she exists at t = 0 and does not

communicate with anyone else. Note that her expected payoff by taking lni communication

rounds is strictly upper bounded by r̄l
n
i ψ. Therefore, it is suboptimal for her to choose a

lni such that

r̄l
n
i ψ 6 ψ − 1

ρ+ ρ̄
,

which implies

lni < ln

(
1− 1

(ρ+ ρ̄)ψ

)
/ ln r̄

is necessary for agent i’s optimality. It is obvious that ln,σ
∗

i 6 lni , since other agents do

not necessarily wait forever in an equilibrium, so that it may be optimal for agent i to exit

earlier too. We get the result by combining these with the upper bound lni 6 (lni )max.

Case (b), (ρ+ ρ̄)ψ 6 0.

6



Now agent i always gets a negative payoff whenever she exits. Because waiting dis-

counts the negative payoff, she optimally chooses to wait as long as possible, no matter

what other agents do. Therefore, ln,σ
∗

i = lni = (lni )max.

Case (c.1), 0 < (ρ+ ρ̄)ψ 6 1 and limn→∞ |Bn
i | <

1−ρψ
ρ̄ψ

.

The maximum number of private signals agent i can get is |Bn
i |. Again, agent i always

gets a negative payoff whenever she exists. Hence, ln,σ
∗

i = lni = (lni )max .

Case (c.2), 0 < (ρ+ ρ̄)ψ 6 1 and limn→∞ |Bn
i | >

1−ρψ
ρ̄ψ

.

For any Gn with |Bn
i | >

1−ρψ
ρ̄ψ

, we consider the communication round (lni )max when

agent i obtains signals from all her sources Bn
i , provided others wait until maximum

rounds. Note that (lni )max is non-decreasing in n for any agent i (by the no deleting

assumption), and |Bn
i,l| is strictly monotone increasing in l when l 6 (lni )max.

Also for a given communication network Gn, there exists one communication round

ln
′
i such that after this round agent i gets positive payoff, given that other agents wait

until maximum rounds. Hence, it is suboptimal for her to wait longer than ln
′
i if

r̄ψ 6 ψ − 1

ρ+ ρ̄|Bn
i,ln
′
i

|
,

which implies

|Bn
i,lni
| < λ+ r − ρrψ

ρ̄rψ
(5.2)

is necessary for agent lni ’s optimality.

Now we consider two sub-cases. First is when limn→∞ |Bn
i | <∞. Then we must have

limn→∞(lni )max <∞ , since (lni )max 6 |Bn
i |. Hence,

lni 6 lim
n→∞

(lni )max <∞ ,

for all Gn satisfying |Bn
i | >

1−ρψ
ρ̄ψ

and limn→∞ |Bn
i | < ∞. We denote limn→∞(lni )max as

l
{Gn}∞n=1
1i , which is a constant that depends on the society and agent i’s position in the

society and does not change with respect to n.
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Second, we discuss the case when limn→∞ |Bn
i | = ∞. Now there should be ei-

ther limn→∞(lni )max < ∞ or limn→∞(lni )max = ∞ . In the former scenario, we have

lni 6 limn→∞(lni )max = l
{Gn}∞n=1
1i for all Gn. In the latter case, as (lni )max is non-decreasing

in n for any given i and |Bn
i,l| is strictly monotone increasing in l when l 6 (lni )max for any

Gn, there exists a largest GN with its associated (LNi )max that satisfies condition (5.2).

Hence, by (5.2) we obtain

lni 6 (LNi )max ,

for all Gn satisfying |Bn
i | >

1−ρψ
ρ̄ψ

, limn→∞ |Bn
i | =∞ and limn→∞(lni )max =∞ . We denote

such (LNi )max as l
{Gn}∞n=1
2i , which is again a constant that depends on the society and agent

i’s position in the society and does not change with respect to n. To sum up, we denote

by l
{Gn}∞n=1
i either l

{Gn}∞n=1
1i or l

{Gn}∞n=1
2i in respective cases, and it follows lni 6 l

{Gn}∞n=1
i for

agent i in such Gn with |Bn
i | >

1−ρψ
ρ̄ψ

, where l
{Gn}∞n=1
i is independent of n.

As for ln,σ
∗

i , since other agents play equilibrium strategies, agent i gets weakly fewer

signals than that she can get when other agents wait until their maximum rounds. There

can be two cases, either she gets positive payoff and takes an action weakly earlier, namely,

ln,σ
∗

i 6 lni , or she cannot get enough signals to ensure a positive payoff so that she optimally

until the maximum round, i.e., ln,σ
∗

i = (lni )max. This concludes the proof.

Proof of Proposition 3. By Lemma 3, it suffices to show that limn→∞ k
n,σ∗

i =∞ under

any equilibria {σn,∗}∞n=1 for any socially informed agent i. In the following, we consider a

fixed socially informed agent i. Recall that in Definition 7, Li is defined as the smallest

positive integer such that limn→∞ |Bn
i,Li
| = ∞ . Denote by Bn,σ∗

i,l the set of agents whose

signals can reach i in the first l rounds of communication under equilibrium σn,∗.

The problem is simple when Li = 1. Clearly, Bn,σ∗

i,1 = Bn
i,1 under any equilibrium σn,∗.

As agent i is socially informed, we have for sufficiently large n

ψ − 1

ρ+ ρ̄|Bn,σ∗

i,1 |
> 0 under any σn,∗

8



and

r̄

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

i,1 |

)
> ψ − 1

ρ+ ρ̄
under any σn,∗ .

The above display implies that agent i should at least wait for one communication

round. Hence, kn,σ
∗

i > |Bn,σ∗

i,1 | under any σn,∗ for sufficiently large n. As a consequence,

limn→∞ k
n,σ∗

i > limn→∞ |Bn,σ∗

i,1 | = limn→∞ |Bn
i,1| =∞ under any {σn,∗}∞n=1.

The following discussion is on the cases when Li > 2. We proceed through three steps.

Step 1. We claim when Li > 2, for sufficiently large n, there exists at least one path

{jLi−1, jLi−2, ..., j1, i} from jLi−1 to i such that

lim
n→∞

|Bn
jLi−l,l

| =∞ for all l ∈ {1, . . . , Li − 1} . (5.3)

Now we construct such a path. Because Li is the smallest integer j such that

limn→∞ |Bn
i,j| = ∞, Bn

i,Li−1 \ Bn
i,Li−2, the set of agents that are of distance Li − 1 to

i, must be finite in the limit, i.e., limn→∞ |Bn
i,Li−1 \ Bn

i,Li−2| < ∞. Therefore, there is at

least one agent j of distance Li − 1 to i, such that limn→∞ |Bn
j,1| =∞. We denote one of

such agents j as jLi−1. If Li = 2, the desired path has been constructed. When Li > 3,

choose any path {jLi−1, jLi−2, ..., j1, i} from the chosen jLi−1 to i. Clearly, jLi−l ∈ Bn
i,Li−l.

Moreover, condition (5.3) is satisfied in view of limn→∞ |Bn
jLi−1,1

| =∞.

Step 2. We next argue that when Li > 2, agent jLi−l on the path {jLi−1, jLi−2, ..., j1, i}

will not exit before she experiences l communication rounds under any equilibrium σn,∗

provided that n is sufficiently large. It is worth noting that agent jLi−l does not necessarily

get a positive payoff when she experiences l communication rounds in equilibrium.

We will see this by induction from jLi−1 to j1 sequentially. We first show that agent

jLi−1 will not exit before she experiences her first communication round in any equilibrium

σn,∗ provided that n is sufficiently large. It requires that there exists N such that for all

9



social networks Gn ∈ {Gn}∞n=1 and its associated equilibrium σn,∗ with n > N ,

r̄

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

jLi−1,1
|

)
> ψ − 1

ρ+ ρ̄
. (5.4)

To validate condition (5.4), recall condition (4.3) from Definition 7 for l = Li − 1,

which states that there exists N such that for all social networks Gn ∈ {Gn}∞n=1 with

n > N it holds

r̄

(
ψ − 1

ρ+ ρ̄|Bn
i,Li
|

)
> ψ − 1

ρ+ ρ̄|Bn
i,Li−1|

. (5.5)

By the definition of Li, the construction of jLi−1 and the fact that Bn,σ∗

jLi−1,1
= Bn

jLi−1,1
under

any equilibrium σn,∗ with any n, we know that limn→∞ |Bn,σ∗

jLi−1,1
| = limn→∞ |Bn

jLi−1,1
| =∞

under any σn,∗ and limn→∞ |Bn
i,Li−1| <∞. Also we have |Bn

i,Li−1| > 1. Note that the right

hand side of condition (5.5) is greater than or equal to the right hand side of condition

(5.4), we obtain easily that (5.4) holds for sufficiently large n. Hence we get that agent

jLi−1 will not exit before she experiences her first communication round under any σn,∗

provided that n is sufficiently large.

We then show that agent jLi−2 (for Li > 3) will not exit before she experiences her

second communication round under any equilibrium for sufficiently large n. It requires

that there exists N such that for all social networks Gn ∈ {Gn}∞n=1 and its associated

equilibrium σn,∗ with n > N ,

r̄2

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

jLi−2,2
|

)
> ψ − 1

ρ+ ρ̄
, (5.6)

and

r̄2

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

jLi−2,2
|

)
> r̄

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

jLi−2,1
|

)
. (5.7)

To validate (5.6) and (5.7), we use again the condition (4.3) from Definition 7 for

l = Li−2 and l = Li−1, which state that there exists N such that for all social networks
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Gn ∈ {Gn}∞n=1 with n > N we have

r̄2

(
ψ − 1

ρ+ ρ̄|Bn
i,Li
|

)
> ψ − 1

ρ+ ρ̄|Bn
i,Li−2|

, (5.8)

and

r̄2

(
ψ − 1

ρ+ ρ̄|Bn
i,Li
|

)
> r̄

(
ψ − 1

ρ+ ρ̄|Bn
i,Li−1|

)
. (5.9)

Similarly, by the definition of Li and the construction of jLi−1 and jLi−2, we know that

limn→∞ |Bn
jLi−2,2

| = limn→∞ |Bn
i,Li
| = ∞, limn→∞ |Bn

i,Li−1| < ∞, limn→∞ |Bn
i,Li−2| < ∞,

and limn→∞ |Bn,σ∗

jLi−2,1
| 6 limn→∞ |Bn

jLi−2,1
| <∞ under any equilibrium σn,∗. Also we have

|Bn
i,Li−2| > 1 and Bn,σ∗

jLi−2,1
⊆ Bn

jLi−2,1
⊆ Bn

i,Li−1 (and thus |Bn
i,Li−1| > |Bn

jLi−2,1
| > |Bn,σ∗

jLi−2,1
|)

for any n under any equilibrium σn,∗. Note that the right hand side of condition (5.8) is

greater than or equal to the right hand side of condition (5.6), and the right hand side of

condition (5.9) is greater than or equal to the right hand side of condition (5.7). Then it

can be verified that the next two inequalities hold for sufficiently large n, the right hand

sides of which are the same as those in conditions (5.6) and (5.7):

r̄2

(
ψ − 1

ρ+ ρ̄|Bn
jLi−2,2

|

)
> ψ − 1

ρ+ ρ̄
, (5.10)

and

r̄2

(
ψ − 1

ρ+ ρ̄|Bn
jLi−2,2

|

)
> r̄

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

jLi−2,1
|

)
. (5.11)

Furthermore, recall that we have already shown that agent jLi−1 will not exit before

she experiences her first communication round under any equilibrium σn,∗ provided that

n is sufficiently large, which implies that Bn,σ∗

jLi−1,1
⊆ Bn,σ∗

jLi−2,2
under any σn,∗ for sufficiently

large n, and thus limn→∞ |Bn,σ∗

jLi−2,2
| > limn→∞ |Bn,σ∗

jLi−1,1
| = ∞ under any equilibrium σn,∗.

Also we know that limn→∞ |Bn,σ∗

jLi−2,1
| < ∞. Together with conditions (5.10) and (5.11),

these facts validate conditions (5.6) and (5.7). Hence we get that agent jLi−2 will not exit

before she experiences her second communication round in any σn,∗ provided that n is
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sufficiently large.

The arguments above for jLi−2 can be extended successively to j1. Hence, under any

equilibrium σn,∗, no jLi−l in the established path {jLi−1, jLi−2, ..., j1, i} will exit before

she experiences l communication rounds under any equilibrium σn,∗ provided that n is

sufficiently large. A byproduct is that limn→∞ |Bn,σ∗

jLi−l,l
| = ∞ under any σn,∗, for l ∈

{1, 2, ..., Li − 1}.

Step 3. Finally, we argue that the socially informed agent i will not exit before she

experiences Li communication rounds under any equilibrium σn,∗ when n is sufficiently

large. It requires that there exists N ∈ N such that for all social networks Gn ∈ {Gn}∞n=1

with n > N , we have

ψ − 1

ρ+ ρ̄|Bn,σ∗

i,Li
|
> 0 , (5.12)

and

r̄Li

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

i,Li
|

)
> r̄l

(
ψ − 1

ρ+ ρ̄|Bn,σ∗

i,l |

)
, (5.13)

for all l < Li.

Recall that we have already shown that agent jLi−l in the constructed path will

not exit before she experiences Li − l communication rounds for l ∈ {1, 2, ..., Li − 1},

under any equilibrium σn,∗ provided that n is sufficiently large, which implies that

Bn,σ∗

jLi−1,1
⊆ Bn,σ∗

j2,Li−2 ⊆ ... ⊆ Bn,σ∗

j1,Li−1 ⊆ Bn,σ∗

i,Li
under any σn,∗ for sufficiently large n, and thus

limn→∞ |Bn,σ∗

i,Li
| > limn→∞ |Bn,σ∗

j1,Li−1| > ... > limn→∞ |Bn,σ∗

jLi−2,2
| > limn→∞ |Bn,σ∗

jLi−1,1
| =∞ un-

der any σn,∗. Also, we have Bn,σ∗

i,l ⊆ Bn
i,l and thus |Bn,σ∗

i,l | 6 |Bn
i,l|, under any σn,∗ for

l ∈ {1, 2, ..., Li−1}, which implies the right hand sides of condition (4.3) are greater than

or equal to th right hand sides of condition (5.13), for l ∈ {1, 2, ..., Li − 1}. Moreover, we

know that limn→∞ |Bn,σ∗

i,l | 6 limn→∞ |Bn
i,l| <∞ for l ∈ {1, 2, ..., Li−1} by the definition of

Li. Together with conditions (4.2) and (4.3) in Definition 7, these facts validate conditions

(5.12) and (5.13). Hence the socially informed agent i will not exit before she experiences

Li communication rounds and she can enjoy a positive payoff when she experiences Li

communication rounds, under any σn,∗ provided that n is sufficiently large. This further

12



implies kn,σ
∗

i > |Bn,σ∗

i,Li
| under any σn,∗ with sufficiently large n, which finally leads to

limn→∞ |kn,σ
∗

i | > limn→∞ |Bn
i,Li
| = limn→∞ |Bn

i,Li
| =∞ under any σn,∗ when Li > 2. This

concludes the proof.

13


	Introduction
	The Model
	Finite Population Learning
	Perfect Learning and the Rates
	Perfect Learning
	Learning Rates

	Remarks and Further Research

