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Understanding statistical inference under possibly non-sparse high-
dimensional models has gained much interest recently. For a given
component of the regression coefficient, we show that the difficulty
of the problem depends on the sparsity of the corresponding row of
the precision matrix of the covariates, not the sparsity of the regres-
sion coefficients. We develop new concepts of uniform and essentially
uniform non-testability that allow the study of limitations of tests
across a broad set of alternatives. Uniform non-testability identifies a
collection of alternatives such that the power of any test, against any
alternative in the group, is asymptotically at most equal to the nom-
inal size. Implications of the new constructions include new minimax
testability results that, in sharp contrast to the current results, do
not depend on the sparsity of the regression parameters. We identify
new tradeoffs between testability and feature correlation. In particu-
lar, we show that, in models with weak feature correlations, minimax
lower bound can be attained by a test whose power has the

√

n rate,
regardless of the size of the model sparsity.

1. Introduction. Confidence intervals construction and hypothesis test-
ing in high-dimensional studies arise in almost all modern application areas,
ranging from biomedical imaging (Chalkidou et al., 2015) or disease track-
ing, to the discovery of genetic variants associated with normal and disorder-
related phenotypic variance in brain function (Ganjgahi et al., 2018; Krishnan et al.,
2016), to the evaluation of policy and marketing strategies (Verhoef et al.,
2017), and many more. There has been considerable interest in develop-
ing valid statistical methods for the construction of confidence intervals in
high-dimensional problems. Some notable recent advances include proposals
based on the ridge estimate (Bühlmann, 2013; Nickl and van de Geer, 2013),
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2 J. BRADIC, J. FAN AND Y. ZHU

on the lasso estimate (Van de Geer et al., 2014; Zhang and Zhang, 2014),
score and orthogonal moments methods (Belloni et al., 2014a; Goeman et al.,
2006), as well as combinations thereof (see for example Belloni et al. (2014b);
Javanmard and Montanari (2014)).

This line of work has produced many promising methods.The literature,
however, does not provide an answer as to how these methods should be
adapted for the possible lack of sparse structures in the underlying models.
First, there is no guidance on how to check whether a model is sparse or not.
The majority of current approaches construct confidence intervals under a
set of assumptions describing how sparse the underlying model is. The pro-
cess of developing algorithms that detect model sparsity is still somewhat
“unattainable”, therefore in practice effectively rendering a priori belief in
the sparsity. Second, no formal guarantees have been provided, to either con-
firm or deny, the ability to perform a hypothesis test (or to construct optimal
confidence intervals); not without imposing sparsity on model parameters.

In this paper, our primary goal is a theoretical understanding of the high-
dimensional minimax theory that can address both of these concerns. Our
framework allows for high dimensional linear models that are not necessarily
sparse. We illustrate that moving away from assumptions on sparse parame-
ters towards assumptions on the design matrix can allow for certain optimal
inferences. Moreover, we show how the estimators and tests can be designed
to achieve these new optimality results.

We formalize our results in terms of the high-dimensional linear regression:

(1) y = Xβ + ε, ε ∼ N (0, σ2In)

where y = (y1, · · · , yn)⊤ ∈ R
n, X is a collection of n i.i.d. vectors, X =

(X1, . . . ,Xn)
⊤ ∈ R

n×p and β ∈ R
p whose dimensionality p can be much

larger than the sample size n. Here, the covariance matrix of X is denoted
by Σ = E(XiX

⊤
i ), whereas its precision matrix is denoted by Ω = Σ−1. We

denote with k = ‖β‖0. In this paper, our focus is on the problem of testing
individual entries of β. Without loss of generality, we consider the first entry
and denote β = (β,γ⊤)⊤ ∈ R

p.
We provide a motivating result first. Note that β can be represented as

a linear combination of easily estimable quantity, E(Xiyi), with the weights
being the first row of Ω. We investigate if particular structures in Ω can
be leveraged to remove sparsity assumptions on k. When Ω is known, we
show that a simple plug-in estimate achieves the parametric rate for a full
range 0 ≤ k ≤ p. Hence, there is hope that strict sparsity requirements on k
are not necessary for valid inference. However, there are significant hurdles
that need to be cleared before minimax results can be directly developed for
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TESTABILITY OF NON-SPARSE MODELS 3

inference on models that are not necessarily sparse.
An impediment to exploring high-dimensional models is the fear that

the researchers will search for essential variables, and then report only the
results for variables with extreme effects, which in turn, are dependent on
the existence of only a small number of significant signals; highlighting thus
the signal that may be purely spurious. For this reason, such practices must
specify in advance that only a few signals are “real” and then they proceed to
find them. However, such procedures can make it difficult to discover strong
but unexpected signals. In this paper, we seek to address this challenge by
developing a method that yields valid asymptotic confidence intervals for the
real underlying signal by moving away from conditions on the conditional
expectation of y|X to exploring structures in the distribution of X such as
the sparsity of Ω. We showcase that sparsity in Ω can allow for arbitrary
growth of k.

In GWAS studies, an agnostic approach to the conditional distribution of
the response is especially valuable. Since around 2006, the advent of GWAS,
and more recently exome sequencing, has provided the first detailed under-
standing of the genetic basis of complex traits. To explain “missing heri-
tability,” a new paradigm has emerged in which complex disease is driven
by an accumulation of a large number of weak effects across all of the net-
work of genetic pathways (Boyle et al., 2017; Chakravarti and Turner, 2016;
Furlong, 2013). Similarly, it is deeply understood that microbial functional
relationship to the host is highly complex, that microbial communities have
highly complex structures and that small and numerous changes in the net-
work affect the host adversely (Huttenhower et al., 2012). At the same time,
it is widely believed that features in many studies have a sparse correlation
structure (providing evidence of sparseΩ). For example, only a certain num-
ber of genes functionally depend on one-another, clump together. Similarly,
far apart, SNPs are very nearly independent (Janson et al., 2017), so we
may expect that the true Ω has nearly banded structure.

Therefore, for many practically relevant examples, it is not necessary nor
wise to impose a sparse structure on the conditional distribution of y|X;
after all, if we are studying y|X, that typically means we do not know very
much about it.

Our detection rates are stated in terms of s, the number of non-zero entries
in the first row of Ω as well as the size of the ‖β‖2. Thanks to the newly
defined optimality criterion, the rate n−1/2 + sn−1 log p is identified as the
minimax rate of detection for the problem of identifying the null β = β0
against the alternative β = β0 + h, whenever ‖β‖2 ≤ κ for a fixed κ > 0,
regardless of the size of the model sparsity k. When Ω’s first row is sparse
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4 J. BRADIC, J. FAN AND Y. ZHU

enough, we provide a minimax optimal test and a confidence interval for β
without assuming an upper bound on k. We identify as well that even with
knowledge of sparsity of Ω, the detection rate will not tend to zero if κ &

√
n

and no constraint is imposed on k.
We propose a novel framework to study the detection rates for β while

allowing k . p. Impossibility results are established under the new concept
of (essentially) uniform non-testability. We state that the null hypothesis
is uniformly non-testable against the alternative if the power of any test
of nominal level α against any point in the alternative is at most α. The
proposed uniform non-testability results also provide new insights. Under
uniform non-testability, testing the null hypothesis against one (arbitrary)
point is impossible for any test. Since any test that has size control is pow-
erless against every point in the alternative, our work indicates that the
difficulty in these testing problems is quite fundamental. Besides, the new
non-testability results allow for a characterization of non-adaptivity; in a cer-
tain sense, those two notions match. It will enable us to shed new light on
the existing literature on the adaptivity of testing. Ideally, an adaptive con-
fidence interval should have its length automatically adjusted to the actual
sparsity of the unknown coefficient vector, while maintaining a pre-specified
coverage probability. We showcase that with knownΩ this can be done while
for the unknown Ω, adaptivity requires s ≪ √

n/ log p; both results do not
depend on the size of k.

1.1. Existing literature. Under the linear model above, the parameter of
interest can be written as

β = Ω,1E(Xiyi)

whereΩ,1 ∈ R
p denotes the first row of Ω. As a consequence of this represen-

tation, it may be tempting to first estimate Ω,1 as well as E(Xiyi) and then

set β̃ = Ω̂,1µ̂, where µ̂ = n−1
∑n

i=1Xiyi. This simple approach, however,
is often not optimal: Because n−1

∑n
i=1 Xiyi is a p-dimensional vector, that

does not have to have any sparse structures, the product may be highly un-
stable. As an example, consider fitting the graphical lasso (Meinshausen and Bühlmann,
2006; Wainwright et al., 2007) to estimate Ω,1. A naive approach would

make a product of such an estimate and µ̂ to construct β̃. However, since
Ω̂,1 is regularized towards zero, the bias at estimation will propagate in all
elements of µ̂ and, therefore, the product.

The recent literature on high-dimensional inference has proposed several
ideas on how to avoid such “regularization bias”. In particular, several recent
papers have proposed structural changes to various regularized methods,
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aimed at accurate estimation of β (Belloni et al., 2014a,b; Bühlmann, 2013;
Goeman et al., 2006; Javanmard and Montanari, 2014; Nickl and van de Geer,
2013; Van de Geer et al., 2014; Zhang and Zhang, 2014). These approaches
always correctly de-bias the estimates for valid high-dimensional inference.
However, they assume various sparsity structures in their analysis without
which no guarantees are provided for validity. In detail, their analysis re-
lies on the assumption that the vector of the nuisance parameters belongs
to the set of k-sparse regression vectors with k ≪ √

n/ log p. Such sparsity
requirement recently raised considerable interest since it appears to be a
much stronger condition than that needed for consistent estimation, which
only imposes k ≪ n/ log p; see, e.g., Negahban et al. (2009); Raskutti et al.
(2011).

The natural question is whether the strong condition of k ≪ √
n/ log p is

needed. The pioneering work of Cai and Guo (2017) and Javanmard and Montanari
(2018) aim to address this question, where the former derives the minimax
rate for the expected length of confidence intervals assuming k . n/ log p
and the latter, in a different context, improves the condition k ≪ √

n/ log p
to k ≪ n/(log p)2. This work provides a complementary study where we
reveal an intricate relationship between sparsity (or the non-existence of
thereof) and ℓ2-norm constraints.

Another line of work, closer to our paper, has focused on inference ap-
proaches not closely relying on sparsity assumptions; see e.g., Shah and Bühlmann
(2017) and Janson et al. (2017). The work of Zhu and Bradic (2018) and
Zhu and Bradic (2017) is particularly close to ours. There, the authors pro-
pose asymptotically exact confidence interval construction under no model
sparsity assumption. However, therein, no formal optimality guarantees were
derived beyond several specific examples in which the model parameters are
restricted to be small or approximately sparse. Therefore, it is not apparent
what the optimal detection rate is for general non-sparse models, and it is
not expected that methods discussed therein can provide uniform guarantees
for an ample parameter space. Inspired by those findings, we asked whether
any formal, minimax guarantees can be provided for a class of dense mod-
els? If so, what kind of estimates would be able to achieve the fundamental
limits of detection? We identify that sample-splitting helps guarantee uni-
form detection rates. We discuss in detail sparsity in the precision matrix
as being sufficient and necessary tools for this purpose. We also showcase
an increase in the minimax (testing) rates whenever ℓ2-norm of the model
parameters is not bounded, and the model is not necessarily sparse.
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6 J. BRADIC, J. FAN AND Y. ZHU

1.2. Organization of the paper. The rest of the paper is organized as
follows: After basic notation is introduced, Section 2 presents a precise for-
mulation of the problem and some initial insights. Section 3 establishes two
impossibility results under the lack of sparsity in the first row of Ω. These
results provide a lower bound on the detection rates. Section 4 focuses on
the upper bounds and the attainability of lower bounds. Section 5 discusses
connections to the minimax rates of detection and adaptivity of the confi-
dence intervals. Section 6 discusses minimax detection rates with growing
ℓ2 balls. The proofs of all of the results are presented in the Appendices:
A-C are collected in the main document whereas D-L are presented in the
Supplement.

2. Problem setup. We present in this section the framework for hy-
pothesis in high-dimensional models that are not necessarily sparse. We
begin with the notation that will be used throughout the manuscript.

2.1. Notation. For a matrix X ∈ R
n×p, Xi, X,j and Xij denote respec-

tively the i-th row, j-th column and (i, j) entry of the matrix X, Xi,−j

denotes the i-th row of X excluding the j-th coordinate, and X−j denotes
the submatrix of X excluding the j-th column. Let [p] = {1, 2, . . . , p}. For
a subset J ⊆ [p], XJ denotes the submatrix of X consisting of columns X,j

with j ∈ J and for a vector x ∈ R
p, xJ is the p-dimensional vector that has

the same coordinates as x on J and zero coordinates on the complement
Jc of J . Let x−J denote the subvector with indices in Jc. For a set S, |S|
denotes its cardinality. For a vector x ∈ R

p, supp(x) denotes the support
of x and the ℓq-norm of x is defined as ‖x‖qq =

∑
j∈[p] |xj|q for q ≥ 0, with

‖x‖0 = |supp(x)| and ‖x‖∞ = maxj∈[p] |xj |. For a matrix A and 1 ≤ q ≤ ∞,
‖A‖q = supx:‖x‖q=1 ‖A‖q. For a symmetric matrix A, λmin(A) and λmax(A)
denote respectively the smallest and largest eigenvalue of A. Iq denotes the
q × q identity matrix. For two positive sequences an and bn, an . bn means
an ≤ Cbn for a positive constant C independent of n. Moreover, we use
an ≍ bn if bn . an and an . bn. Lastly, an ≪ bn is used to denote that
limn→∞ an/bn = 0. For a ∈ R, let ⌊a⌋ denote the largest integer that is at
most a.

2.2. High-dimensional linear models that are not necessarily sparse. We
shall focus on the high-dimensional linear model (1) with the random design
such that Xi ∼ Np(0,Σ), 1 ≤ i ≤ n and are independent of the error ε.
Note that both Σ and the noise level σ are considered as unknown. Since
our problem is centered around the construction of confidence intervals for
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TESTABILITY OF NON-SPARSE MODELS 7

the univariate parameter β, we re-parametrize model (1) as

(2) y = Zβ +Wγ + ε, ε ∼ N (0, σ2I),

where β ∈ R, γ ∈ R
p−1, Z = (Z1, . . . , Zn)

⊤ ∈ R
n andW = (W1, . . . ,Wn)

⊤ ∈
R
n×(p−1). The distribution of the data is now indexed by the parameter

θ = (β,γ,Σ, σ),

which consists of parameter of interest β, the nuisance parameters γ, the co-
variance matrixΣ = E[XiX

⊤
i ] of the random design vectorXi = (Zi,W

⊤
i )

⊤,
and the variance of the noise σ. Observed data D = {D1, . . . ,Dn} consists
of i.i.d. triplets Di = (yi, Zi,Wi), for i = 1, . . . , n. Note that β in (2) can be
represented as

(3) β = Ω1,E(X
⊤
i yi).

Since each element of E(X⊤
i yi) can be easily estimated at a root-n rate, the

estimability of β depends on Ω only through its first row. Hence, it seems
prudent to define a parameter space that includes both the parameters of
the model as well as the matrix Ω,

Θ̃ =

{
θ = (β,γ,Σ, σ) : β ∈ R,

M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M, 0 ≤ σ ≤M1, ‖β‖2 ≤M2

}
,(4)

where β = (β,γ⊤)⊤ and M > 1, M1 and M2 are positive constants. Note
that

Var(yi) = βTΣβ + σ2 ≥ λmin(Σ)‖β‖22.
Thus, the constraint ‖β‖2 ≤ M2 can be dropped in the above definition if
we only consider bounded Var(yi).

Observe that whenever Ω is known, a simple plug-in estimate

(5) β̂ = Ω1,X
⊤y/n

achieves the parametric rate without any assumption on k. Namely, we pro-
vide the following result.

Theorem 1. For Θ̃ defined in (4) we have

(6) sup
θ∈Θ̃

Eθ|β̂ − β| ≍ n−1/2.
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8 J. BRADIC, J. FAN AND Y. ZHU

Theorem 1 is an oracle-like statement that holds for bounded constant
M2. It indicates that a parametric rate of detection is possible for dense
parameters (with p ≫ n) with bounded ℓ2 norm. Majority of the present
paper focuses on the parameter space Θ̃. In Section 6 we showcase minimax
optimality rates that do not restrict the growth of M2.

Observe that the above result allows for p ≫ n; in fact, it does not put
any restrictions on the growth of p or k. Additionally, Theorem 1 identifies
that the inference for non-sparse high-dimensional models is possible as long
as the precision matrix is known. It indicates that the ability to decorrelate
the features (i.e., to estimate Ω1, well) is the key to efficient inference in
high-dimensional non-sparse models.

To further study lower limits of detection of testing

H0 : β = β0

our focus is on the parameter spaces defined by

(7) Θ =

{
θ = (β,γ,Σ, σ) : β ∈ R, M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,

Σ(−1),(−1) = Ip−1, 0 ≤ σ ≤M1, and ‖β‖2 ≤M2

}
,

where M > 1 and M1,M2 > 0 are some universal constants. To study
upper limits of detection we still analyze Θ̃ as defined in (4). It is worth
pointing that none of the parameter spaces, Θ̃ or Θ, restricts k, the number
of non-zero elements in β of the linear model (1), or the ℓ1-norm of β (which
can grow at a rate of

√
p). Our work is hence very different from existing

minimax studies. We also define

Θ(s0, β0) = {θ = (β,γ,Σ, σ) ∈ Θ : β = β0, ‖Ω1,‖0 ≤ s0}

and
Θ(s0) =

⋃

β∈R

Θ(s0, β).

The main goal of this paper is to address the following questions:

1. Is it possible to have accurate inference procedure about univariate pa-
rameters without requiring the model parameter β itself to be sparse?

2. Is the accuracy in terms of the detection rates uniform over the pa-
rameter space?
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TESTABILITY OF NON-SPARSE MODELS 9

3. Lower bound. For 0 < α < 1 and a given parameter space Θ1, the
set of tests of nominal level α ∈ (0, 1) regarding the null hypothesis θ ∈ Θ1

is denoted with

Ψα(Θ1) =

{
ψ : D 7→ [0, 1] : sup

θ∈Θ1

Eθψ ≤ α

}
,

see, e.g., Lehmann and Romano (2006). Here, we allow for both random and
non-random tests.

Definition 1 (Uniform non-testability). Consider the hypothesis test-
ing problem of H0 : θ ∈ Θ(1) versus H1 : θ ∈ Θ(2). We say that Θ(1)

is asymptotically uniformly non-testable against Θ(2) at size α ∈ (0, 1) if
lim supn→∞ supθ∈Θ(2) Eθψ ≤ α for any test ψ ∈ Ψα(Θ

(1)).

Above Definition 1 introduces new concept of testability. Per Definition
1 there does not exist a test that is better than a simple coin toss. Since a
simple coin toss is uniformly most powerful asymptotically, the data cannot
provide sufficient statistical evidence to distinguish the null from the alter-
native hypothesis. This concept provides an alternative to the widely known
minimax-type results which state that for any test, there is one “difficult”
point in the alternative for which this test has no power; therefore, it is possi-
ble that beyond this “difficult” point, there might exist a test that has good
power against all the other points. We could argue that we are proposing a
different and not necessarily better characterization of optimality.

To characterize alternative hypothesis we introduce

Θζ,κ(s/2, β0 + hn) =

{
θ ∈ Θ(s/2, β0 + a) : 0 ≤ a ≤ hn, ‖β‖2 ≤ ζM2,

(ζM)−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ ζM, κ ≤ σ ≤ ζM1

}
,

where hn is a sequence of positive numbers and ζ ∈ (M−1, 1) and κ ∈
(0, ζM1) are constants.

Theorem 2. Suppose that sn−1 log p ≤ 1/4 and 2 ≤ s ≤ pc for some
constant c < 1/2. Then we have that for any β0

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+hn)

Eθψ = α,

where hn = ρsn−1 log p and
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10 J. BRADIC, J. FAN AND Y. ZHU

(8) ρ = min

{
4,

1/2− c

15(κ−2M + 1)
,

2
(
ζ−1 − 1

)2

M3(2M + 1)
,
2M(1− ζ)2

2M + 1
,

(1− ζ2)M2

8ζ
√
M

,
κ2(1− ζ2)2M2

2

64ζ4MM2
1

,
M2

√
1− ζ2

2
√
M

,
κ2(1− ζ2)M2

2

4ζ2M2
1M

}
.

Theorem 2 establishes that Θ(s, β0) is uniformly non-testable against all
points in the alternative Θζ,κ(s/2, β0+hn), i.e. every point in Θζ,κ(s/2, β0+
hn) is difficult for every test. The distance to the alternatives, ρsn−1 log p,
depends on the unknown constantsM,M1 andM2 characterizing invertabil-
ity of the covariance matrix Σ, noise level σ and the norm ‖β‖2, respectively;
see e.g., (8).

This result is unique in its treatment of nuisance parameters γ, which
are allowed to be fully dense. In the case of dense models, the lower bound
for detection depends on how sparse Ω1, is: it is impossible to have power
in testing β = β0 against β = β0 + h whenever |h| ≤ ρsn−1 log p. One
implication is that when Ω1, is not sparse enough (i.e., s & n/ log p), a
detection of alternatives separated by a constant is not guaranteed; that is,
even deviation of non-vanishing magnitude cannot be detected.

The proof of Theorem 2 is formulated in a novel way. For any point in the
alternative hypothesis, we compute the χ2 distance between that alternative
and a large collection of points in the null hypothesis. Whenever this distance
is small, it indicates that the average rejection probability for that particular
alternative is close to the average rejection probability for many of the nulls–
therefore indicating lack of power. Although uniform non-testability explores
a class of α level tests (only), by inspecting the proof of Theorem 2, we see
that the detection rate would not change even if we localize our problem and
impose k . n/ log(p). Therefore, the rate is not really driven by some ultra-
dense (and hence seemingly hopeless) k ≫ n/ log(p) points in the parameter
space.

Another novelty in the theoretical analysis is the construction of the prior.
The prior used by Cai and Guo (2017) can be adapted to the case of sparse
Ω1, (instead of sparse γ as in their paper). However, that adaption would
assume Ω1,−1 = 0 and thus would not be enough to show the uniformity
of non-testability. We compare this adaption with our construction in Ap-
pendix M.

Next, we fine-tune the above result in search of a parametric rate of
detection. In view of that fact, we introduce a slightly weaker notion of
essentially uniform non-testability.

Definition 2 (Essentially uniform non-testability). Consider the hy-
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TESTABILITY OF NON-SPARSE MODELS 11

pothesis testing problem of H0 : θ ∈ Θ(1) versus H1 : θ ∈ Θ(2). We say that
Θ(1) is asymptotically essentially uniformly non-testable against Θ(2) at size
α ∈ (0, 1/2) if lim supn→∞ supθ∈Θ(2) Eθψ ≤ 2α for any test ψ ∈ Ψα(Θ

(1)).

Essentially uniform non-testability implies

lim inf
n→∞

(
α+ inf

ψ∈Ψα(Θ(1))
inf

θ∈Θ(2)
Eθ(1− ψ)

)
≥ 1− α.

We note that this statement implies the following claim on the minimax
total error probability (a notion discussed by Ingster et al. (2010))

lim inf
n→∞

(
α+ inf

ψ∈Ψα(Θ(1))
sup
θ∈Θ(2)

Eθ(1− ψ)

)
≥ 1− α.

We also denote

Θκ(s, β0 + hn) =

{
θ ∈ Θ(s, β0 + a) : 0 ≤ a ≤ hn, ‖β‖2 ≤M2,

M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M, κ ≤ σ ≤M1

}
.

Theorem 3. Suppose that sn−1 log p ≤ 1/4 and 2 ≤ s ≤ pc for some
constant c < 1/2. Then for any constant κ ∈ (0,M1], we have that for any
β0,

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θκ(s,β0+hn)

Eθψ ≤ 2α,

where hn = n−1/2τ and τ = κ
√
M−1 log(1 + α2).

This results implies that Θ(s, β0) is essentially uniformly non-testable
against Θκ(s, β0 + n−1/2τ). This result confirms the intuition that para-
metric rate is a fundamental boundary for statistical inference, an insight
from the classical results of, for example, Lehmann and Romano (2006);
Van der Vaart (2000). Let c0 = min{ρ, τ}. Then

Θζ,κ(s/2, β0 + c0(n
−1/2 + sn−1 log p))

⊂ Θζ,κ(s/2, β0 + ρsn−1 log p)
⋂

Θκ(s, β0 + τn−1/2).

Hence, Theorems 2 and 3 imply

(9) lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+c0(n−1/2+sn−1 log p))

Eθψ ≤ 2α.

Therefore, constructing a meaningful test with a detection rate smaller than
that of n−1/2 + sn−1 log p is indeed impossible.
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12 J. BRADIC, J. FAN AND Y. ZHU

4. Upper bound. In this section, we show that the lower limit of de-
tection matches the upper limit of detection. In this section we focus our
analysis on the space Θ̃(s). Formally, we define Θ̃(s0) =

⋃
β0∈R

Θ̃(s0, β0) and

Θ̃(s0, β0) =
{
θ = (β,γ,Σ, σ) ∈ Θ̃ : β = β0, ‖Ω1,‖0 ≤ s0

}
.

We propose a test that achieves the bounds of Section 3. The newly
proposed estimator β̂ of β utilizes the constants that define the parameter
set of interest to us, Θ̃(s, ·), and is therefore of pure theoretical interest. It
is based on delicately designed high-dimensional estimators of the nuisance
parameters: both of the model as well as that of the partial correlations of
the features; an ℓ1 consistent in the big coordinates while ℓ∞ consistent in
the small coordinates. Lastly, the new estimates are based on cross-fitting
concepts enabling adaptivity to the rates of Section 3.

We introduce notation that helps with our construction. The constructed
method will utilize a sample-splitting scheme. Let bn = ⌊n/4⌋. We consider
four non-overlapping subsets of the original sample H1 = {1, ..., bn}, H2 =
{bn + 1, ..., 2bn}, H3 = {2bn + 1, ..., 3bn} and H4 = {3bn + 1, ..., 4bn}.

Next, we observe that the first rowΩ1, takes the form (1,−π⊤)/σ2V, where
π and σ2V are from the regression

(10) Z = Wπ +V,

where the vector V is independent of W with σ2V = E(V⊤V)/n. Moreover,
observe that

(11) yi = W⊤
i (πβ + γ) + ηi

for ηi = βvi + εi. Then, we notice that the parameter of interest, β, can be
defined through a moment condition

E[viyi] = βσ2V.

Therefore, for a suitably chosen estimator π̆ of π, let

v̂i = Zi −W⊤
i π̆

denote the estimated residuals of the model (10) and consider a natural
estimator of β arising from the above moment condition

(12) β̂ =

∑
i∈H4

v̂iyi∑
i∈H4

v̂2i
.
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TESTABILITY OF NON-SPARSE MODELS 13

Observe that this estimator is computed on the last fold, H4 of the data;
the remaining three folds are used to construct the estimator π̆. Note that
the numerator in (12) is estimating

E[viyi] = E[(Zi −W⊤
i π)yi] = E(Ziyi)− π⊤ξ, ξ = E[Wiyi].

Although the estimation of π is a sparse high-dimensional regression prob-
lem, existing estimators, such as Lasso, Dantzig selector or their debiased
version, do not possess the theoretical properties we need for inference on
β. Therefore, we construct a new estimator that is suitable for the purpose
of inference. This new projected de-biased estimator π̆ of π aims to bal-
ance the good properties of both Lasso as well as de-biased Lasso estimator;
balancing ℓ1 with ℓ∞ estimation quality.

We use the second and fourth fold of the data to construct cross-validated
de-biased estimator of π in the following way. On the second fold compute
a simple ℓ1-regularized estimator π̂,

π̂ = argmin
q∈Rp−1

b−1
n

∑

i∈H2

(Zi −W⊤
i q)

2 + λπ‖q‖1,

with λπ = 24M
√
b−1
n log p.

To shrink the bias in estimated large coefficients of π, we define a cross-
fitted estimator as

π̃ = π̂ + b−1
n

∑

i∈H4

Ω̂WWi(Zi −W⊤
i π̂),

In the above, Ω̂W is a carefully designed candidate estimate of ΩW = Σ−1
W ,

that utilizes model (11) while ensuring that Ω̂W is close to Σ−1
W . We propose

the following cross-fitted spectral estimate

Ω̂W = argmin
Q∈R(p−1)×(p−1)

λmax(Q)(13)

s.t. Q = Q⊤

∥∥∥
{
Ip−1 − Σ̂WQ

}
ξ̂A

∥∥∥
∞

≤ λΩ

ξ̂⊤A
{
Q Σ̂W Q

}
ξ̂A ≤ ηΩ,

for Σ̂W = b−1
n

∑
i∈H4

WiW
⊤
i as well as

λΩ = 24

√
b−1
n log pM3M2, ηΩ = 32M5M2

2 .
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14 J. BRADIC, J. FAN AND Y. ZHU

In the above ξ̂, a thresholded, marginal, estimate, and Σ̂W are computed on
different folds of the data. Correlation estimate, ξ̂A, is defined as a sparse
vector containing the top largest elements of the empirical inner product
〈W, y〉. Set A denotes the largest elements,

(14) A =
{
j ∈ [p] : |ξ̃j | > τn

}
, ξ̃ = b−1

n

∑

i∈H1

Wiyi.

Here, τn = 4Mb−1
n

√
n(log p)(M2

1 +M2
2 ). Then, {ξ̂A}j = 0 for j 6∈ A and

b−1
n

∑
i∈H3

Wijyi otherwise.

Finally, we construct the following projected de-biased estimator

π̆ = argminq∈Rp−1 ‖q‖1(15)

s.t.
∣∣∣ξ̂⊤A(qA − π̃A)

∣∣∣ ≤ ηπ

∥∥∥b−1
n

∑
i∈H4

Wi(Zi −W⊤
i q)

∥∥∥
∞

≤ λπ/4

b−1
n

∑
i∈H4

(Zi −W⊤
i q)

2 ≥ 1

2M
,

where the last three lines define the constraint set and where the tuning
parameter ηπ satisfies

ηπ = 6408

√
b−1
n log pM4M2sλπ + 8b−1/2

n M2M2

√
M log(100/α).

The estimator π̆ is carefully crafted in order to achieve the desirable
bias-variance tradeoff: it has small bias for entries corresponding to “large”
elements of ξ and has small variance on other entries. Here, sample splitting
is helpful in providing several independence structures that we need for the
theoretical analysis; for example, the set A that defines “large” and “small”
components needs to be independent of the subsequent constructions. As
a result, π̆ is quite different from the debiased estimator π̃ and these two

estimators only behave similarly on large elements, i.e.,
∣∣∣ξ̂⊤A(π̆A − π̃A)

∣∣∣ is
small.

We propose the following test

ψ∗ = 1
{
|β̂ − β0| > cn

}
,

where β̂ is defined in (12) and
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TESTABILITY OF NON-SPARSE MODELS 15

(16) cn = 2M

(
10b−1/2

n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α)+

+ 34M(1 +M2)λ
2
πs+ 1608b−1

n M2
√
n(log p)(M2

1 +M2
2 )λπs+ 2ηπ

)
.

We now show that even on the larger parameter Θ̃(s) (compared to Θ(s)),
the test ψ∗ is indeed valid and has the optimal detection rate.

Theorem 4. Suppose that p ≥ max
{
2
(
1 + 1764M2

)
s, 360/α

}
and

n ≥ max
{
4 + 784 log p, (5067 + 220M2) log(100/α),

4 + 4054
[
1 + 1764M2

]
s log(16ep)

}
.

Then ψ∗ ∈ Ψα(Θ̃(s, β0)), i.e.,

sup
θ∈Θ̃(s,β0)

Eθψ∗ ≤ α.

Moreover, cn ≍ sn−1 log p+ n−1/2 and

inf
θ∈Θ̃(s,β0+3cn)

Eθψ∗ ≥ 1− α.

Theorem 4 demonstrates that lower bound in (9) is achievable by a test ψ∗

as defined above. Notice that requirement on n and p in Theorem 4 is mild;
the key requirement is s . n/ log p. The proposed uniform non-testability
results indicate the new detection boundary of n−1/2 + sn−1 log p. Theorem
4 establishes that deviations of magnitude 3cn ≍ n−1/2 + sn−1 log p are
uniformly testable over Θ̃(s), whereas results in Section 3 imply that even on
the smaller Θ(s), deviations smaller than this rate are (essentially) uniformly
non-testable.

Moreover, the parametric rate can be attained whenever s .
√
n/ log p.

The case of
√
n/ log p≪ s≪ n/ log p is more difficult and our proposed test

still achieves the optimal rate. Note our test ψ∗ depends on the knowledge
of s. It turns out that the uniform non-testability results in Section 3 imply
that such knowledge is required to achieve the minimax rate, indicating
lack of adaptivity to the precision matrix sparsity. We make this argument
precise in Section 5.2 and in more generality in Section 5.3.

5. Connections to minimax rates and confidence intervals. In
this section we highlight the implication of the obtained results on the min-
imax theory and adaptivity.
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16 J. BRADIC, J. FAN AND Y. ZHU

5.1. Minimax rates. The (essential) uniform non-testability leads to the
following minimax lower bound.

Corollary 5. If sn−1 log p ≤ 1/4 and 2 ≤ s ≤ pc for some constant
c < 1/2, then there exists a constant h0 > 0 such that for any β0

lim sup
n→∞

sup
ψ∈Ψα(Θ̃(s,β0))

inf
θ∈Θ̃(s,β0+hn)

Eθψ ≤ 2α,

with hn = h0(n
−1/2 + sn−1 log p).

Observe that Corollary 5 establishes a minimax claim that spans the space
of Θ̃(s, β0 +h); it does not impose Σ(−1,),(−1) = Ip−1 and does not restrict k
(the sparsity of β). Therefore, Corollary 5 directly refines the existing results
on minimax testing, which routinely assume k . n/ log p; see Cai and Guo
(2017, 2018); Cai and Low (2004, 2006); Genovese and Wasserman (2008);
Hoffmann and Nickl (2011); Nickl and van de Geer (2013); Robins and Van Der Vaart
(2006). Corollary 5 establishes a lower bound for the minimax detection rate
of the null H0 : β = β0 against the alternative

H1 : β = β0 + h0(n
−1/2 + sn−1 log p)

regardless of the sparsity of the nuisance parameter γ in the regression
model (2). As such this result is the first that derives the lower bound for
the detection rate under fairly general model setting and in particular not
requiring a model to be sparse. Theorem 4 entails that sparsity of the first
row of the precision matrix (alone) is sufficient for minimax inference (per
Corollary 5), and the sparsity on regression coefficients is not necessary.

When s ≥ c0n/ log p, a direct consequence of Corollary 5 is that it is
impossible to distinguish H0 : β = β0 and H1 : β = β0+ c0h0 in a minimax
sense; in other words, there is no power even against fixed alternatives.
Whenever Ω1, is sparse in that ‖Ω1,‖0 = o(n/ log p), the lower bound for
minimax detection rate is of the order

n−1/2 + ‖Ω1,‖0n−1 log p.

However, when Ω1, is ultra sparse in that ‖Ω1,‖0 = o(
√
n/ log p), then this

lower bound is the parametric rate, i.e.

1/
√
n.
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TESTABILITY OF NON-SPARSE MODELS 17

5.2. Confidence intervals. The theoretical results in Sections 3 and 4 also
imply that the expected length of confidence intervals cannot be adapted to
s if s≫ √

n/ log p.
We denote by Cα(Θ1) the set of all (1 − α) level confidence intervals for

β over the parameter space Θ1 constructed from the observed data D:

(17) Cα(Θ1) =

{
[l(D), u(D)] : inf

θ∈Θ1

Pθ(l(D) ≤ β ≤ u(D)) ≥ 1− α

}
.

The construction in Section 4 yields the following confidence interval

CI∗ =
[
β̂ − cn, β̂ + cn

]
,

where cn is defined in (16). Theorem 4 implies that

inf
θ∈Θ̃(s)

Pθ (β ∈ CI∗) ≥ 1− α.

Since the diameter of the confidence set, diam(CI∗) = 2cn, Theorem 4
states the rate for cn and thus implies the following minimax upper bound
for the expected length of the confidence intervals:

(18) inf
CIα∈Cα(Θ̃(s))

sup
θ∈Θ̃(s)

Eθdiam(CIα) . n−1/2 + sn−1 log p,

where diam(CI) denotes the length of CI.
Since confidence intervals can be used to construct tests, minimax results

on tests have implications for the minimax length of confidence intervals.

Corollary 6. Suppose that sn−1 log p ≤ 1/4 and 2 ≤ s ≤ pc for some
constant c < 1/2. Then for any α ∈ (0, 1/3), we have

inf
CIα∈Cα(Θ(s))

sup
θ∈Θ(s)

Eθdiam(CIα) & n−1/2 + sn−1 log p.

See Theorem 1 and Equation (3.14) of Cai and Guo (2017) for quantifi-
cation of optimal confidence interval width for sparse or moderately sparse
models i.e., k . n/ log p. Complementary, we allow for non-sparse vectors
β, i.e., k . p.

Moreover, since Θ(s) ⊂ Θ̃(s) and Cα(Θ̃(s)) ⊂ Cα(Θ(s)), we have

inf
CIα∈Cα(Θ̃(s))

sup
θ∈Θ̃(s)

Eθdiam(CIα) ≥ inf
CIα∈Cα(Θ̃(s))

sup
θ∈Θ(s)

Eθdiam(CIα)

≥ inf
CIα∈Cα(Θ(s))

sup
θ∈Θ(s)

Eθdiam(CIα).

imsart-aos ver. 2014/10/16 file: Draft_20191118.tex date: November 26, 2019



18 J. BRADIC, J. FAN AND Y. ZHU

Therefore, Corollary 6 still holds if we replace Θ(s) by Θ̃(s). Combining this
with (18), we obtain the minimax optimal rate for the expected length of
confidence intervals over Θ(s) and Θ̃(s):

inf
CIα∈Cα(Θ(s))

sup
θ∈Θ(s)

Eθdiam(CIα) ≍ n−1/2 + sn−1 log p

and
inf

CIα∈Cα(Θ̃(s))
sup
θ∈Θ̃(s)

Eθdiam(CIα) ≍ n−1/2 + sn−1 log p.

In Theorem 4, we have constructed a minimax rate-optimal confidence
interval for β in the case that the sparsity s is assumed to be known. A sig-
nificant drawback of the construction is that it requires prior knowledge of s,
which is typically unavailable in practice. Is it possible to construct adaptive
confidence intervals that have the guaranteed coverage and automatically
adjust the length to s? In other words, does there exist a confidence interval
in Cα(Θ̃(s)) that has expected length of the order n−1/2 + s1n

−1 log p over
all Θ̃(s1) and any s1 ≪ s? One consequence of the uniform non-testability
result is that such adaptivity is not possible.

Theorem 7. Suppose that sn−1 log p ≤ 1/4 and 2 ≤ s ≤ pc for some
constant c < 1/2. Then for any α ∈ (0, 1/4) and s1 ≤ s/2, we have

inf
CIα∈Cα(Θ(s))

sup
θ∈Θ(s1)

Eθdiam(CIα) ≍ n−1/2 + sn−1 log p.

Even for s1 ≪ s, the optimal rate over Θ(s1) for all confidence intervals
that do not take into account knowledge of s1, is larger than that with
the knowledge of s1. Therefore, Theorem 7 implies that for dense models
(k . p), adaptivity with respect to s is in general not possible if Ω1, is in at
the least moderately sparse regime (

√
n/ log p≪ s . n/ log p).

5.3. Characterization of uniform non-testability. Here, we showcase that
uniform non-testability is equivalent to the lack of adaptivity in all subsets
of the parameter space.

Let Θ be a parameter space for a general model. We are interested in
confidence intervals of g(θ), where g is an arbitrary functional of the whole
parameter space, characterized by θ. For any Θ1 ⊆ Θ, define the set of valid
confidence intervals on Θ1:

Cα(Θ1) =

{
CI : inf

θ∈Θ1

Pθ(g(θ) ∈ CI) ≥ 1− α

}
.
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TESTABILITY OF NON-SPARSE MODELS 19

For Θ1 ⊆ Θ, the minimax rate over Θ1 confidence intervals valid over Θ
can be defined as

(19) L(Θ1,Θ) = inf
CI∈Cα(Θ)

sup
θ∈Θ1

Eθdiam(CI).

For Θ1 ⊆ Θ, we say that there is no adaptivity between Θ and Θ1 if

L(Θ1,Θ) ≍ L(Θ,Θ).

In other words, if we use a confidence interval that is valid over the larger
set Θ, then even on the smaller set Θ1, the length of the confidence interval
has no improvement. For confidence intervals, we say that points in Θ are
uniformly non-testable if

(20) inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≍ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI).

In other words, the minimax confidence intervals have the same order of
magnitude in terms of length for all the points in Θ. The following result
establishes the link between uniform non-testability and adaptivity.

Theorem 8. The uniform non-testability

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≍ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI)

if and only if there exists a constant c > 0 such that

cL(Θ,Θ) ≤ L(Θ1,Θ) ≤ L(Θ,Θ)

for any subset Θ1 ⊆ Θ.

Theorem 8 establishes that uniform non-testability simply means that
there is no adaptivity between Θ and any subset of Θ. Hence, uniform non-
testability provides a way of looking at adaptivity. Intuitively, adaptivity
means that a procedure can automatically adapt its efficiency to the param-
eter. Since uniform non-testability means that the minimax optimal proce-
dure has the same efficiency at each point in the parameter space, this rules
out the possibility that the efficiency of the optimal procedure can change
from parameter to parameter.

In the above setup, consider the testing problem

(21) H0 : g(θ) = τ, vs H1 : g(θ) = τ + c1hn.
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20 J. BRADIC, J. FAN AND Y. ZHU

For any τ ∈ R, Θ(τ) = {θ ∈ Θ : g(θ) = τ}, i.e., Θ(τ) is the set of parameters
θ satisfying the null hypothesis H0 : g(θ) = τ . For any Θ1 ⊆ Θ, let the set
of valid tests of size α over Θ1 be denoted by Ψα(Θ1), i.e.,

Ψα(Θ1) = {ψ : sup
θ∈Θ1

Eθψ ≤ α}.

Next, we showcase that the result of Theorem 8 applies to the hypothesis
testing problems studied in Section 3.

Corollary 9. Suppose that there exist constants c1, c2 > 0 and a con-
fidence interval CI∗ ∈ Cα(Θ) such that

(1) for any τ ∈ R

supψ∈Ψα(Θ(τ)) supθ∈Θ(τ+c1hn) Eθψ ≤ 2α,
(2)

supθ∈Θ Eθdiam(CI∗) ≤ c2hn.

Then,

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≍ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI) ≍ hn.

Condition (1) states that any α level test about (21) has power at most
2α whereas Condition (2) assumes a valid confidence interval with expected
length of the order hn, therefore hn is a detection boundary. Corollary 9
then states that we have uniform non-testability in the sense of (20) and the
optimal rate is hn which, by Sections 3 and 4 is hn = n−1/2 + sn−1 log p.

Theorem 8 suggests a much broader implication. Since the uniform non-
testability implies lack of adaptivity with respect to any subset of the param-
eter space, our result indicates that it is impossible for a confidence interval
to automatically exploit other structures of the model. In particular, if a
confidence interval is valid on Θ, then it will have the same rate even at
points with special structures, e.g., sparsity, homogeneity, etc. Hence, our
result not only states that there is no adaptivity with respect to s, we show
that there cannot be any adaptivity with respect to any structure.

6. Impact of an increasing ‖β‖2. We now discuss the case in which
the ℓ2-norm of β for the model (2) is allowed to grow. To explicitly write
out the dependence on ‖β‖2 i.e., M2, we introduce the notation

Θ̃M1,M2(s) =

{
θ = (β,γ,Σ, σ) :M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,
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‖Ω1,‖0 ≤ s, 0 ≤ σ ≤M1, ‖β‖2 ≤M2

}
,

where M > 1 is a constant. Now define the minimax length

A(s,M1,M2) = L
(
Θ̃M1,M2(s), Θ̃M1,M2(s)

)
,

where L(·, ·) is defined in (19). The following result states a scaling property
that allows us to derive the minimax result for dense models with growing
ℓ2-norm of the parameter.

Theorem 10. For any constants Q,M1,M2 > 0,

A(s,QM1, QM2) = QA(s,M1,M2).

By Theorem 10, it suffices to derive A(s,M0, 1) for all M0 > 0. This is
because A(s,M1,M2) =M2A(s,M0, 1) with M0 =M1M

−1
2 .

For that end we consider a specific asymptotic regime where M2 is con-
sidered fixed while M0 is allowed to grow to infinity or to shrink to zero.
Hence, for an arbitrary constant C > 0, in the duration of this section, we
assume that M2 > C.

Upper bound is obtain as a corollary of Theorem 4, from which we can
easily conclude

A(s,M0, 1) ≤ C1(M0 + 1)(n−1/2 + sn−1 log p),

where C1 > 0 is a constant independent of M1,M2, n, s or p.
To establish a lower bound, we establish the following result.

Theorem 11. Assume that p ≥ 2n+1. If α ∈ (0, 1/3), then there exists
a constant C > 0, depending only on α, such that

A(1, 0, 1) ≥ Cn−1/2.

Theorem 11 considers a particularly simple setting where the model has
no noise and the sparsity of the precision matrix, s = 1. Even in this simple
case, Theorem 11 suggests the following: Even if the noise level σ is zero,
perfect recovery of β is not possible as long as the vector γ is allowed to be
non-sparse with bounded ℓ2-norm.

First implication of this result is that imposing bounded ℓ2-norm is weaker
than imposing sparsity. When the model parameter γ is assumed to be
sparse ‖γ‖0 . n/ log p and the noise level is zero, one can invoke classical
results (e.g., Bickel et al. (2009); Raskutti et al. (2011)) and obtain that
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exact recovery of the model parameter is achievable. However, Theorem 11
says that no estimator can exactly recover dense signals that are only known
to have bounded ℓ2-norm. This is true even if the covariance matrix of the
design is known to be diagonal; in fact, by inspecting the proof, the same
result holds even if the covariance matrix is known to be Ip. Therefore, the
difficulty of identifying dense signals is quite fundamental (even if their ℓ2-
norm is bounded) and is not due to noise in the response or to unknown
distribution of the design.

Second implication of Theorem 11 is a lower bound of A(s,M0, 1). Notice
that for any non-singular covariance matrix, its inverse always has non-zero
diagonal entries, which means s ≥ 1. Hence, Theorem 11 implies that

A(s,M0, 1) ≥ A(1, 0, 1) ≥ Cn−1/2.

To sum up the above bounds, we have

Corollary 12. Suppose that p ≥ 2n+1, sn−1 log p ≤ 1/4 and 1 ≤ s ≤
pc for some constant c < 1/2. Then for any α ∈ (0, 1/4) and M2 ≥ C, we
have

C1M2n
−1/2 + C1sn

−1 log p ≤ A(s,M1,M2) ≤ C2M2(n
−1/2 + sn−1 log p),

where C1, C2 > 0 are constants depending only on M,M1, α, C, c.

Corollary 12 outlines a unique phenomenon for dense high-dimensional
models. Since efficiency for testing dense models depends on the ℓ2-norm of
the model parameter, consistency is impossible if this magnitude in ℓ2-norm
is of the order larger than

√
n. In contrast, for models with sparse parame-

ters, results in (Cai and Guo, 2017; Javanmard and Montanari, 2018) show
that ℓ2-norm requirements are not required.

An interesting, and yet challenging question arises from the above study:
What is the exact minimax lower bound as a function of the ℓ2-norm for
high-dimensional and dense models? We leave this investigation to future
research.

7. Discussion. This paper establishes theoretical results for hypoth-
esis testing problems in high-dimensional linear models. Our work pushes
the frontier of high-dimensional inference by allowing the model sparsity
to be arbitrary. We derive the optimal detection rates and show that the
accuracy of statistical inference without imposing model sparsity depends
on the ability to decorrelate the features. The sparsity of the first row of
the precision matrix controls the optimal detection rate; for sparse enough
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precision matrices, the parametric rate can be achieved. These results also
provide additional insights into the adaptivity of optimal inference.

The theoretical development in this paper has potential implications be-
yond minimax detection rates. In particular, we show that the detection rate
for every point in the alternative is the same, and thus the derived detection
rate is uniform over the alternative, which indicates that a simple coin toss
is a uniformly most powerful test asymptotically. For this reason, the detec-
tion rates established in this paper are driven by the fundamental difficulty
that cannot be adequately described under the general minimax framework.

Some important extensions and refinements are left open. Our current
results only provide confidence intervals and testability results regarding
univariate parameters; extending our theory to the setting of global testing
and especially multivariate testing, seems like a promising avenue for fur-
ther work. Another challenge is that many new hypothesis testing problems
have complex structures and some even non-convex boundaries. A system-
atic approach to studying such problems would improve and extend the
current scope of inferential theoretical results. In general, work can be done
to identify a subset of points for which attainable and optimal tests can be
developed, in turn, paving the way for new inferential methods.

Supplement contains the detailed proofs of all auxiliary lemmas as well
as details of the proofs of Theorems 1, 4, 7, 8 and 10 as well as Corollaries
5, 6 and 9. Below we present proofs of Theorems 2, 3 and 11.

APPENDIX A: PROOF OF THEOREM 2

Proof of Theorem 2 has been split into a sequence of smaller results. First
we present some notation, then auxiliary Lemmas 1-6 that are useful in the
proof of Theorem 2 and lastly the proof of the result itself.

A.1. Notations. In the rest of Appendix A, we introduce the follow-
ing notation. We utilize Lemma 6 below to pinpoint the structure of the
covariance matrices Σ that are of interest to us, i.e., the lower-right corner
is equal to Ip−1.

Namely, we show that for any point θ = (β,γ,Σ, σ) ∈ Θ, we can write Σ
as

Σ =

(
π⊤π + σ2V π⊤

π Ip−1

)
,

where π is a suitably chosen vector and σ2V is a suitably chosen constant
that is positive. This is equivalent to working with the vector π ∈ R

p−1 from
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the following regression,
Z = Wπ +V

for a vector of residuals V ∈ R
n. Coincidently, σV will be the standard

deviation of the residuals V. Recall that Eθ[W
⊤W]/n = Ip−1 for θ ∈ Θ. We

also define a matrix Lθ as follows

(22) Lθ = L(θ) =




Ip−1 0 0
π⊤ σV 0

(πβ + γ)⊤ βσV σ


 .

From Lemma 6 below we know that the space of correlation matrices is
spanned by the collection of Σ’s as described above. Notice that under Pθ,
vector (W⊤

i , Zi, yi)
⊤ ∈ R

p+1 has gaussian distribution N (0, LθL
⊤
θ ).

The plan of the proof proceeds as follows. We pick an arbitrary test ψ∗ ∈
Ψα(Θ(s, β0)) and an arbitrary point in the alternative

(23) θ∗ = (β∗,γ∗,Σ∗, σε,∗) ∈ Θζ,κ(s/2, β0 + hn),

where hn = ρsn−1 log p and

Σ∗ =

(
π⊤
∗ π∗ + σ2V,∗ π⊤

∗

π∗ Ip−1

)
.

We then construct points based on θ∗ according to Definition 3 below.
Observe that these points are chosen to be dependent on the alternative.
Then we proceed to show that (1) these points are in the null space Θ(s, β0)
and (2) the average χ2-distance between these points and θ∗ is small. There-
fore, the power of ψ∗ against θ∗ is close to the average power against these
points. Since these points are in the null space, the power against them is
at most equal to the nominal level. As a result, the power against θ∗ is also
close to the nominal level.

In the rest of Appendix A, we denote m = ⌊s/2⌋ and define the set of all
m-sparse vectors with entries taking values in {0, 1} as M, i.e.,

M =
{
δ ∈ {0, 1}p−1 : ‖δ‖0 = m

}

and let N denote the cardinality of M. Clearly, N =

(
p− 1
m

)
. We list M

as M = {δ(1), ..., δ(N)}, i.e., δ(j) denotes the element j of the set M.

Definition 3. Given θ∗ ∈ Θζ,κ(s/2, β0 + hn) as in (23), let 0 ≤ d ≤ ρ
be such that β∗ = β0 + h with h = dsn−1 log p. Let r = σV,∗/σε,∗ > 0. For
j ∈ {1, ..., N}, define

θj = (β0,γ(j),Σ(j), σε,0)
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with

β0 = β∗ − h

γ(j) = γ∗ + hπ(j) + r(1− h)σε,∗
√
h/mδ(j)

σε,0 = σε,∗
√

1− hr2 + h2r2

Σ(j) =

(
π⊤
(j)π(j) + σ2V,0 π⊤

(j)

π(j) Ip−1

)

where
π(j) = π∗ + σV,∗

√
h/mδ(j)

and σV,0 = σV,∗
√
1− h.

A.2. Auxiliary results. Below we present useful auxiliary results.

Lemma 1. For a constant c ∈ (0, 1/2), let the sequence (m,n, p) be such
that 1 ≤ m ≤ pc as well as mn−1 log p ≤ 1/4 as p → ∞. Then for any
a ∈ (0, (1 − 2c)/4),

m∑

k=0

[
1− kan−1 log p

]−n

(
m
k

)(
p−m− 1
m− k

)

(
p− 1
m

) ≤ 1 + o(1).

The next two results are useful for computing χ2-distance.

Lemma 2. Let gj denote the probability density function of N (0,Σj)
with nonsingular Σj ∈ R

k×k for j = 0, 1, 2. Suppose that Σj can be decom-
posed as Σj = LjL

⊤
j . Then

Eg0

(
dPg1
dPg0

× dPg2
dPg0

)
=

1√
det
(
Ik −

[
Q1Q

⊤
1 − Ik

] [
Q2Q

⊤
2 − Ik

]) ,

where Qj = L−1
0 Lj for j = 1, 2.

Lemma 3. Consider the notations in Definition 3. Let Qj = L−1
θ∗
Lθj .

Then for any j1, j2 ∈ {1, ..., N},

det
[
Ip+1 −

(
Qj1Q

⊤
j1 − Ip+1

)(
Qj2Q

⊤
j2 − Ip+1

)]

=
[
1−m−1h[r2(1− h)2 + 1]δ⊤(j1)δ(j2)

]2
.
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With the help of Lemmas 1, 2 and 3, we can provide the next result
concerning the distance between the null and alternative hypothesis.

Lemma 4. Consider θ∗ ∈ Θζ,κ(m,β0+ρsn
−1 log p) as defined in the proof

of Theorem 2. Consider {θj}Nj=1 defined in Definition 3. Let ρ be defined as
in (8). Then

lim sup
n→∞

Eθ∗


N−1

N∑

j=1

dPθj
dPθ∗

− 1




2

= 0.

Note that θj is a function of ρ and γ. Next, we show that the designed
points, θj belong to the the null parameter space.

Lemma 5. Consider θ∗ ∈ Θζ,κ(m,β0 + hn) with hn = ρsn−1 log p in the
proof of Theorem 2. Consider {θj}Nj=1 defined in Definition 3. Suppose that
the conditions in the statement of Theorem 2 hold. Then

{θj : 1 ≤ j ≤ N} ⊂ Θζ,κ(2m,β0).

Lastly, the following lemma describes the structure of the covariance ma-
trices.

Lemma 6. Consider any a > 0 and b ∈ R
p−1. Let Σ be a positive definite

matrix. If all the eigenvalue of

(
a b⊤Σ
Σb Σ

)
are positive, then a > b⊤Σb.

In particular, if all the eigenvalues of

(
a b⊤

b Ip−1

)
are positive, then a > b⊤b.

Now, that all of the auxiliary results are established, we are ready to
present the main proof.

A.3. Proof of Theorem 2. The proof methodology is novel in that
for each possible candidate point in the alternative, we need to design a
sequence of points in the null space and demonstrate that their χ2-distances
to the candidate point in the alternative will be small therefore limiting the
power of the test.

Proof of Theorem 2. Recall that m denotes the largest integer not ex-
ceeding s/2, i.e., m = ⌊s/2⌋. Fix any η > 0. Recall ρ defined in (8).

Observe that by the properties of the supremum, we can choose ψ∗ ∈
Ψα(Θ(s, β0)) and

θ∗ = (β∗,γ∗,Σ∗, σε,∗) ∈ Θζ,κ(s/2, β0 + hn)
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with hn = ρsn−1 log p such that

(24) sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+hn)

Eθψ ≤ Eθ∗ψ∗ + η.

Since ‖·‖0 can only take values in Z, Θζ,κ(s/2, β0+hn) = Θζ,κ(m,β0+hn).
By Lemma 6, there exist σV,∗ > 0 and π∗ ∈ R

p−1 such that

Σ∗ =

(
π⊤
∗ π∗ + σ2V,∗ π⊤

∗

π∗ Ip−1

)
.

We construct {θj}Nj=1 as in the Definition 3.

Since Eθjψ∗ = Eθ∗

(
ψ∗

dPθj

dPθ∗

)
, it follows that

∣∣∣∣∣∣
N−1

N∑

j=1

Eθjψ∗ − Eθ∗ψ∗

∣∣∣∣∣∣

=

∣∣∣∣∣∣
N−1

N∑

j=1

(
Eθ∗ψ∗

dPθj
dPθ∗

− Eθ∗ψ∗

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
Eθ∗ψ∗


N−1

N∑

j=1

dPθj
dPθ∗

− 1



∣∣∣∣∣∣

(i)

≤ Eθ∗

∣∣∣∣∣∣
N−1

N∑

j=1

dPθj
dPθ∗

− 1

∣∣∣∣∣∣

(ii)

≤


Eθ∗


N−1

N∑

j=1

dPθj
dPθ∗

− 1




2

1/2

,

where (i) holds by |ψ∗| ≤ 1 almost surely and (ii) holds by Lyapunov’s
inequality.

By Lemma 4 and the above display, we have

lim sup
n→∞

∣∣∣∣∣∣
N−1

N∑

j=1

Eθjψ∗ − Eθ∗ψ∗

∣∣∣∣∣∣
= 0.

By Lemma 5, θj ∈ Θζ,κ(2m,β0) ⊆ Θ(s, β0) for all j ∈ {1, ..., N}. This and
the fact that ψ∗ ∈ Ψα(Θ(s, β0)) imply

N−1
N∑

j=1

Eθjψ∗ ≤ α.

Hence, lim supn→∞ Eθ∗ψ∗ ≤ α. By (24), we have

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+hn)

Eθψ ≤ lim sup
n→∞

Eθ∗ψ∗ + η ≤ α+ η.
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Moreover, since η > 0 is arbitrary, we have

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+hn)

Eθψ ≤ α.

Notice that a random test that rejects the hypothesis at random with prob-
ability α has power equal to α. Since Ψα(Θ(s, β0)) includes such random
tests, the above inequality holds with equality. The proof is complete.

APPENDIX B: PROOF OF THEOREM 3

Proof of Theorem 3. Here we will show that no test can be better
than the Likelihood Ratio test.

Recall τ = κ
√
M−1 log(1 + α2). We choose an arbitrary test

ψ∗∗ ∈ Ψα(Θ(s, β0))

and an arbitrary point

θ∗∗ = (β∗∗,γ∗∗,Σ∗∗, σε,∗∗) ∈ Θκ(s, β0 + hn)

with hn = τn−1/2. Throughout this proof we denote with θ∗∗ the point in
the alternative space. Notice that β∗∗ = β0 + h with 0 ≤ h ≤ hn.

We define
θ0 = (β0,γ∗∗,Σ∗∗, σε,∗∗).

Clearly,
θ0 ∈ Θ(s, β0) and thus Eθ0ψ∗∗ ≤ α.

Recall the notation Xi = (Zi,W
⊤
i )

⊤ ∈ R
p. Let σ2z = Eθ0Z

2
i . By the

definition of Θκ(s, β0),

(25) σ2z ≤ λmax(Σ∗∗) ≤M and σε,∗∗ ≥ κ2.

Then the likelihood of the data under Pθ∗∗ can be written as a product of
the likelihood of y given X and the likelihood of X:

[
1

(
√
2πσε,∗∗)n

exp

(
− 1

2σ2ε,∗∗

n∑

i=1

(yi − Ziβ∗∗ −W⊤
i γ∗∗)

2

)]

×
[

1

(
√

det(2πΣ∗∗))n
exp

(
−1

2

n∑

i=1

X⊤
i Σ

−1
∗∗ Xi

)]
.

Similarly, the likelihood of the data under Pθ0 can be written as
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[
1

(
√
2πσε,∗∗)n

exp

(
− 1

2σ2ε,∗∗

n∑

i=1

(yi − Ziβ0 −W⊤
i γ∗∗)

2

)]

×
[

1

(
√

det(2πΣ∗∗))n
exp

(
−1

2

n∑

i=1

X⊤
i Σ

−1
∗∗ Xi

)]
.

Hence, the likelihood ratio can be written as

dPθ∗∗
dPθ0

= exp

(
1

2σ2ε,∗∗

n∑

i=1

[
(yi − Ziβ0 −W⊤

i γ∗∗)
2 − (yi − Ziβ∗∗ −W⊤

i γ∗∗)
2
])

(i)
= exp

(
h

σ2ε,∗∗

n∑

i=1

Zi

[
yi − Zi(β0 + h/2) −W⊤

i γ∗∗

])
,

(26)

where (i) follows by β∗∗ = β0 + h. Thus,

|Eθ0ψ∗∗ − Eθ∗∗ψ∗∗| =
∣∣∣∣Eθ0ψ∗∗ − Eθ0ψ∗∗

dPθ∗∗
dPθ0

∣∣∣∣

=

∣∣∣∣Eθ0ψ∗∗

(
dPθ∗∗
dPθ0

− 1

)∣∣∣∣
(i)

≤ Eθ0

∣∣∣∣
dPθ∗∗
dPθ0

− 1

∣∣∣∣

≤
√

Eθ0

(
dPθ∗∗
dPθ0

− 1

)2

=

√

Eθ0

(
dPθ∗∗
dPθ0

)2

− 1,(27)

where (i) follows by |ψ∗∗| ≤ 1. By (26), we have

Eθ0

(
dPθ∗∗
dPθ0

)2

= Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Zi

[
yi − Zi(β0 + h/2) −W⊤

i γ∗∗

])]

(i)
= Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Zi [εi − Zih/2]

)]

= Eθ0

{
Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Zi [εi − Zih/2]

)
| Z
]}

= Eθ0

{
Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Ziεi

)
| Z
]
exp

(
− h2

σ2ε,∗∗

n∑

i=1

Z2
i

)}
(28)
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where (i) follows by the fact that under Pθ0 , yi = Ziβ0 +W⊤
i γ∗∗ + εi.

Notice that under Pθ0 ,
∑n

i=1 Ziεi conditional on Z has a Gaussian dis-
tribution with mean 0 and variance equal to

∑n
i=1 Z

2
i σ

2
ε,∗∗. Hence, by the

moment generating function of Gaussian distributions, it follows that

Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Ziεi

)
| Z
]
= exp

(
2σ−2

ε,∗∗h
2

n∑

i=1

Z2
i

)
.

Therefore, we can use the above display to continue (28) and obtain

Eθ0

(
dPθ∗∗
dPθ0

)2

= Eθ0

{
Eθ0

[
exp

(
2h

σ2ε,∗∗

n∑

i=1

Ziεi

)
| Z
]
exp

(
− h2

σ2ε,∗∗

n∑

i=1

Z2
i

)}

= Eθ0

{
exp

(
2σ−2

ε,∗∗h
2

n∑

i=1

Z2
i

)
exp

(
− h2

σ2ε,∗∗

n∑

i=1

Z2
i

)}

= Eθ0

[
exp

(
σ−2
ε,∗∗h

2
n∑

i=1

Z2
i

)]

= Eθ0

[
exp

(
σ2zσ

−2
ε,∗∗h

2
n∑

i=1

(Z2
i σ

−2
z )

)]

(i)

≤ Eθ0

[
exp

(
[
log(1 + α2)

]
n−1

n∑

i=1

(Z2
i σ

−2
z )

)]

(ii)
=
(
1− 2n−1 log(1 + α2)

)−n/2

(iii)

≤ exp
[
log(1 + α2)

]
= 1 + α2,

where (i) follows by 0 ≤ h ≤ hn = τn−1/2 = n−1/2κ
√
M−1 log(1 + α2) and

(25), (ii) follows by the moment generating function of χ2(n) (chi-squared
distribution with n degrees of freedom) and the fact that

n∑

i=1

Z2
i σ

−2
z

has a χ2(n) distribution together with n−1 log(1+α2) < 1/2 (due to α2 < 1/4
and log(1.25) < 1/2) and (iii) follows by the fact that

(1− a/n)−n/2 ≤ exp(a/2)
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for any n ≥ 1 and a ≥ 0.
Therefore, the above display and (27) imply that

|Eθ0ψ∗∗ − Eθ∗∗ψ∗∗| ≤
√

Eθ0

(
dPθ∗∗
dPθ0

)2

− 1 =
√
α2 = α.

Since Eθ0ψ∗∗ ≤ α, it follows that Eθ∗∗ψ∗∗ ≤ 2α. Since ψ∗∗ and θ∗∗ are
chosen arbitrarily, the desired result follows.

APPENDIX C: PROOF OF THEOREM 11

Proof of Theorem 11 has been split into a sequence of smaller results. First
we present some notation, then auxiliary Lemmas 7 - 10 that are useful in
the proof of Theorem 11 and lastly the proof of the result itself.

We first recall the notions of total variation and KL divergence. Given
two probability measures P0 and P1 that are absolutely continuous with
each other, we define the total variation

TV(P0,P1) =
1

2

∫ ∣∣∣∣
dP1

dP0
− 1

∣∣∣∣ dP0

and KL divergence:

KL(P0,P1) =

∫ (
log

dP0

dP1

)
dP0.

C.1. Auxiliary results.

Lemma 7. Let P0 and P1 denote the probability measures for N (µ0,Σ0)
and N (µ1,Σ1), respectively. Then

KL(P0,P1) =
1

2

(
trace(Σ−1

1 (Σ0 −Σ1)) + log

(
det(Σ1)

det(Σ0)

)
+ (µ1 − µ0)

⊤Σ−1
1 (µ1 − µ0)

)
.

The proof of Lemma 7 follows by straight-forward computation and is
thus omitted. The next two results are useful bounding tools.

Lemma 8. Let W ∈ R
n×2n and Z ∈ R

n have entries being i.i.d standard
normal random variables. Then for any a > 0

P

(
Z⊤(WW⊤)−1Z > a

)
≤ 2 exp(−0.005n) + 12/a.

Lemma 9. Let ξ be a random vector with distribution N (0,Σ). Then for
any x > 0,

P(‖ξ‖2 > x) ≤ x−2trace(Σ).
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The main lemma utilized in the proof is the following one.

Lemma 10. Assume that p ≥ 2n+ 1. For any r ∈ R, we define

Θ∗(r) = {θ = (β,γ,Σ, σ) : β = r, ‖γ‖2 ≤ 1, Σ = Ip, σ = 0} .

Then there exists a constant K > 0 depending only on α such that

inf
θ∈Θ∗(n−1/2K)

Eθψ ≤ 1− 2α

for any measurable function of the data (y,W,Z) satisfying |ψ(y,W,Z)| ≤
1 and supθ∈Θ∗(0) Eθψ ≤ α.

C.2. Proof of Theorem 11.

Proof of Theorem 11. Let

CI(y,Z,W) = [l(y,Z,W), u(y,Z,W)]

be a confidence set for β with nominal coverage probability 1−α over Θ̃0,1(1).
Define ψ(y,Z,W) = 1 {0 /∈ CI(y,Z,W)}.

From now on, we will write CI, ψ, u and l without (y,Z,W) to simplify
the notation.

Recall the notation Θ∗(r) from Lemma 10. Since Θ∗(0) ⊂ Θ̃0,1(1), we
have

sup
θ∈Θ∗(0)

Eθψ ≤ α.

Moreover, by the same Lemma 10,

inf
θ∈Θ∗(n−1/2K)

Eθψ ≤ 2α

for some constant K > 0 depending only on α. This means that

inf
θ∈Θ∗(n−1/2K)

Pθ (l ≤ 0 ≤ u) ≥ 1− 2α.

Since Θ∗(n
−1/2K) ⊂ Θ̃0,1(1), we have that

inf
θ∈Θ∗(n−1/2K)

Pθ

(
l ≤ n−1/2K ≤ u

)
≥ 1− α.

Therefore,

inf
θ∈Θ∗(n−1/2K)

Pθ

(
l ≤ 0 < n−1/2K ≤ u

)
≥ 1− 3α.
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It follows that

inf
θ∈Θ∗(n−1/2K)

Pθ

(
u− l ≥ n−1/2K

)
≥ 1− 3α

and thus

sup
θ∈Θ̃0,1(1)

Eθ(u− l) ≥ sup
θ∈Θ∗(n−1/2K)

Eθ(u− l)

≥ sup
θ∈Θ∗(n−1/2K)

Eθ

[
1
{
u− l ≥ n−1/2K

}
× n−1/2K

]

≥ n−1/2K × (1− 3α).

Since the above bound holds for any confidence interval CI, the proof is
complete.
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TESTABILITY OF NON-SPARSE MODELS 1

SUPPLEMENT TO THE “TESTABILITY OF

HIGH-DIMENSIONAL LINEAR MODELS WITH

NON-SPARSE STRUCTURES”

This document collects detailed proofs of Theorems 1, 4, 7, 8 and 10 as
well as Corollaries 5, 6 and 9 of the main text, as well as detailed proofs of
the twelve supplementary lemmas (alphabetically enumerated in this docu-
ment): Lemma 1 - 12. In particular, Lemmas 1 - 7 are used for Theorem 4.
Lemmas 8-9 are used for Theorem 8. Lemmas 10 - 12 are used for Theorem
10.

APPENDIX D: PROOF OF THEOREM 1

Proof of Theorem 1. To simply notation, we write E instead of Eθ. All
the statements hold uniformly for any θ ∈ Θ̃. Let β̂ = Ω1,X

⊤y/n. Then

β̂ − β = Ω1,X
⊤(Zβ +Wγ + ε)/n − β

=
[
Ω1,X

⊤Z/n− 1
]
β +Ω1,X

⊤(Wγ + ε)/n.

Notice that

Σ =

(
γ⊤ΣWγ + σ2V ΣWγ

γ⊤ΣW ΣW

)

and Ω1, = σ−2
V (1,−π⊤), where ΣW = E(W⊤W)/n, σ2V = E(V⊤V)/n and

V = Z−Wπ. Then
[
Ω1,X

⊤Z/n− 1
]
β +Ω1,X

⊤(Wγ + ε)/n.

= n−1
n∑

i=1

[
(viZiσ

−2
V − 1) + σ−2

V vi(W
⊤
i γ + εi)

]
.

where vi, Zi and W⊤
i γ denote the i-th entry of V, Z and Wγ, respectively.

Notice that
{
(viZiσ

−2
V − 1) + σ−2

V vi(W
⊤
i γ + εi)

}n
i=1

is an i.i.d sequence of random variables with bounded sub-exponential norms.
Therefore,

E(β̂ − β)2 = n−2
n∑

i=1

[
(viZiσ

−2
V − 1) + σ−2

V vi(W
⊤
i γ + εi)

]2
. n−1.

imsart-aos ver. 2014/10/16 file: Draft_20191118.tex date: November 26, 2019



2 J. BRADIC, J. FAN AND Y. ZHU

The desired result follows by noticing E|β̂ − β| ≤
√

E(β̂ − β)2.

APPENDIX E: PROOF OF THEOREM 4

Before the main proof we establish a sequence of useful auxiliary results.
Then we shall prove Theorem 4. To simplify notations, we write P instead
of Pθ. Note that all the results here hold uniformly over θ ∈ Θ̃(s) in finite
samples. Therefore, we also omit supθ∈Θ̃(s) and infθ∈Θ̃(s) whenever possible.

E.1. Auxiliary results. The following result establishes a concentra-
tion result regarding the product of two Gaussian random variables that are
allowed to be dependent. In particular, the result generalizes the concentra-
tion of measure of chi-squared random variables.

Lemma 1. Let {ri,1}ni=1 and {ri,2}ni=1 be sequences of i.i.d random vari-
ables with N (0, σ21) and N (0, σ22) distributions, respectively that are not nec-
essarily independent from each other. Then for any t > 0,

P

(∣∣∣∣∣

n∑

i=1

(ri,1ri,2 − Eri,1ri,2)

∣∣∣∣∣ ≥ tσ1σ2

)
≤ 2 exp

(
− t2

2(2n + 7t)

)
.

Lemma 2. Let the assumption of Theorem 4 hold. Then,

(1) The population parameter ξ satisfies ‖ξ‖2 ≤ 2M2M2.
(2) The estimator ξ̂ satisfies

P

(
‖ξ̂ − ξ‖∞ > 2b−1

n M
√
n(log p)(M2

1 +M2
2 )

)
≤ 2/p.

(3) Similarly,

P

(
‖ξ̂ − b−1

n

∑

i∈H4

Wiyi‖∞ > 4b−1
n M

√
n(log p)(M2

1 +M2
2 )

)
≤ 4/p.

(4) Moreover,

P

(
‖ξ̂A‖2 ≤ 4M2M2

)
≥ 1− 4/p.

(5) The ℓ∞-norm of estimation error of the thresholded estimator is

P

(
‖ξ̂Ac‖∞ ≤ 8b−1

n M
√
n(log p)(M2

1 +M2
2 )

)
≥ 1− 4/p.
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(6) Lastly,

P

(∣∣b−1
n

∑

i∈H4

vi(W
⊤
i (πβ + γ) + εi))

∣∣

≤ 10b−1/2
n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α)

)
≥ 1− 0.02α,

(7) and

P

(
b−1
n

∑

i∈H4

v2i ≥ (2M)−1

)
≥ 1− 2 exp

(
−M−2bn/44

)
.

We now discuss the estimation properties of the proposed regularized
estimator Ω̂W.

Lemma 3. Let the assumption of Theorem 4 hold. Then ΩW satisfies the
constraint in (13) for Ω̂W with probability at least 1−10/p−2 exp(−bn/18).

The next result establishes a lower bound on the restricted eigenvalue
constant

κ(s) = min
|J |⊂{1,...,p−1},|J |≤s

min
‖qJc‖1≤3‖qJ‖1

b−1
n

∑
i∈H2

(W⊤
i q)

2

‖qJ‖22
.

Lemma 4. Let τ ∈ (0, 1) be an arbitrary constant. Whenever

(
1 + 36M2(1 + τ)2(1− τ)−2

)
s ≤ p− 1,

and bn ≥ 570
[
1 + 36M2(1 + τ)2(1− τ)−2

]
τ−2s log(12ep/τ), then

P
(
κ(s) > 0.24(1 − τ)2M−1

)
≥ 1− 4 exp(−τ2bn/570).

The following result establishes finite-sample properties of the Lasso esti-
mator and follows by standard arguments. We include it here for complete-
ness and clarity.

Lemma 5. Let the assumption of Theorem 4 hold. Then,

P (‖π̂ − π‖1 ≤ 267sλπM) ≥ 1− 4 exp (−3bn/3040) − 2/p2

and

P

(∥∥∑

i∈H4

Wivi
∥∥
∞
/bn ≤ λπ/4

)
≥ 1− 2/p2.
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4 J. BRADIC, J. FAN AND Y. ZHU

The next two results establish the properties of the proposed regularized
estimator π̆.

Lemma 6. Let the assumption of Theorem 4 hold. Then π satisfies
the constraints in (15) for π̆ with probability at least 1 − 14/p − 0.02α −
6 exp (−3bn/3040) − 2 exp(−M−2bn/44).

Lemma 7. Let the assumption of Theorem 4 hold. Then with probability
at least 1− 14/p − 0.02α − 10 exp (−3bn/3040) − 2 exp(−M−2bn/44),

‖π̆ − π‖1 ≤ 134Mλπs.

E.2. Proof of Theorem 4. Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let δ = π̆−π. Notice that v̂i = vi−W⊤
i δ. Then

β̂ − β =
b−1
n

∑
i∈H4

v̂i(yi − βv̂i)

b−1
n
∑

i∈H4
v̂2i

=
b−1
n

∑
i∈H4

vi(yi − βv̂i)

b−1
n
∑

i∈H4
v̂2i︸ ︷︷ ︸

T1

−
b−1
n

∑
i∈H4

δ⊤Wi(yi − βv̂i)

b−1
n
∑

i∈H4
v̂2i︸ ︷︷ ︸

T2

.(1)

We now bound T1 and T2 in two steps. We first make the following ob-
servations. Notice that Lemma 7 implies

P(M1) ≥ 1− 14/p − 0.02α − 10 exp(−3bn/3040) − 2 exp(−M−2bn/44),

where
M1 = {‖π̆ − π‖1 ≤ 134Mλπs} .

Moreover, Lemma 2 implies that P(M2) ≥ 1− 8/p− 0.02α, where

M2 =

{∥∥∥∥ξ̂ − b−1
n

∑

i∈H4

Wiyi

∥∥∥∥
∞

≤ 4b−1
n M

√
n(log p)(M2

1 +M2
2 )

}

⋂{
‖ξ̂Ac‖∞ ≤ 8b−1

n M
√
n(log p)(M2

1 +M2
2 )

}

⋂
{∣∣∣∣b

−1
n

∑

i∈H4

vi

(
W⊤

i (πβ + γ) + εi

) ∣∣∣∣

≤ 10b−1/2
n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α)

}
.
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TESTABILITY OF NON-SPARSE MODELS 5

Finally, Lemma 6 implies that

P(M3) ≥ 1− 14/p − 0.02α − 6 exp(−3bn/3040) − 2 exp(−M−2bn/44),

where

M3 =
{∣∣∣ξ̂⊤AπA − ξ̂⊤Aπ̃A

∣∣∣ ≤ ηπ

}⋂{
b−1
n

∑

i∈H4

(Zi −W⊤
i π̆)

2 ≥ 1

2M

}

⋂{∥∥∥∥b
−1
n

∑

i∈H4

Wi(Zi −W⊤
i π)

∥∥∥∥
∞

≤ λπ/4

}
.

Define
M = M1

⋂
M2

⋂
M3.

Since bn > n/4− 1 > n/5 (due to n > 784) and p ≥ 360/α, we have

P (M) ≥ 1− 36/p − 0.06α − 16 exp (−3bn/3040) − 4 exp(−M−2bn/44)

> 1− 0.1α − 0.06α − 16 exp (−3n/15200) − 4 exp(−M−2n/220)

(i)

≥ 1− 0.16α − 16× 0.01α − 4× 0.01α > 1− α(2)

where (i) follows by the assumption of n ≥ 5067 log(100/α) and n ≥ 220M2 log(100/α).
Since v̂i = Zi −W⊤

i π̆, we have that by definition, on the event M,

(3) b−1
n

∑

i∈H4

v̂2i ≥
1

2M
.

Step 1: bound T1.
First observe that

yi = Ziβ +W⊤
i γ + εi = W⊤

i (πβ + γ) + βvi + εi.

Hence, yi − βv̂i = W⊤
i (πβ + γ) +W⊤

i δ + εi. Therefore,

b−1
n

∑

i∈H4

vi(yi − βv̂i) = b−1
n

∑

i∈H4

vi

(
W⊤

i (πβ + γ) + εi

)

︸ ︷︷ ︸
T1,1

+ b−1
n

∑

i∈H4

viW
⊤
i δ

︸ ︷︷ ︸
T1,2

.

By definition, on the event M, we have

|T1,1| ≤ 10b−1/2
n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α).
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6 J. BRADIC, J. FAN AND Y. ZHU

Notice that Wivi = Wi(Zi −W⊤
i π). Therefore, on the event M,

|T1,2| ≤ ‖δ‖1
∥∥∥∥b

−1
n

∑

i∈H4

Wivi

∥∥∥∥
∞

≤ (134Mλπs)× (λπ/4) < 34Mλ2πs.

The above displays and (3) imply that on the event M,

(4) |T1| ≤ 2M

(
10b−1/2

n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α) + 34Mλ2πs

)
.

Step 2: bound T2.
First notice that

b−1
n

∑

i∈H4

δ⊤Wi(yi − βv̂i)(5)

= b−1
n

∑

i∈H4

δ⊤(Wiyi − ξ̂)

︸ ︷︷ ︸
T2,1

+ δ⊤ξ̂︸︷︷︸
T2,2

− b−1
n

∑

i∈H4

δ⊤Wiv̂iβ

︸ ︷︷ ︸
T2,3

.

On the event M, by Hölder’s inequality, we have

|T2,1| ≤ ‖δ‖1
∥∥∥∥b

−1
n

∑

i∈H4

(Wiyi − ξ̂)

∥∥∥∥
∞

≤ (134Mλπs)×
(
4b−1
n M

√
n(log p)(M2

1 +M2
2 )

)

= 536b−1
n M2

√
n(log p)(M2

1 +M2
2 )λπs.(6)

To bound T2,2, notice that on the event M,

|T2,2| =
∣∣∣δ⊤A ξ̂A + δ⊤Ac ξ̂Ac

∣∣∣

≤
∣∣∣(π̆A − π̃A)

⊤ ξ̂A

∣∣∣+
∣∣∣(π̃A − πA)

⊤ ξ̂A

∣∣∣+
∣∣∣δ⊤Ac ξ̂Ac

∣∣∣
(i)

≤ ηπ +
∣∣∣(π̃A − πA)

⊤ ξ̂A

∣∣∣+
∣∣∣δ⊤Ac ξ̂Ac

∣∣∣
(ii)

≤ ηπ + ηπ +
∣∣∣δ⊤Ac ξ̂Ac

∣∣∣

≤ 2ηπ + ‖δAc‖1‖ξ̂Ac‖∞
≤ 2ηπ + ‖δ‖1‖ξ̂Ac‖∞
(iii)

≤ 2ηπ + (134Mλπs)×
(
8b−1
n M

√
n(log p)(M2

1 +M2
2 )

)
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TESTABILITY OF NON-SPARSE MODELS 7

= 2ηπ + 1072b−1
n M2

√
n(log p)(M2

1 +M2
2 )λπs,(7)

where (i) follows by the constraint (15) and (ii) and (iii) follow by the
definition of M.

To bound T2,3, notice on the event M, the constraint in (15) is satisfied
by π̆ and thus ‖b−1

n

∑
i∈H4

Wi(Zi −W⊤
i π̆)‖∞ ≤ λπ/4, which is

∥∥∥∥∥∥
b−1
n

∑

i∈H4

Wiv̂i

∥∥∥∥∥∥
∞

≤ λπ/4.

Therefore, on the event M,

|T2,3| ≤ ‖δ‖1
∥∥∥∥b

−1
n

∑

i∈H4

Wiv̂i

∥∥∥∥
∞

|β|

(i)

≤ (134Mλπs)× (λπ/4) ×M2 < 34MM2λ
2
πs.(8)

where (i) follows by the definition of B and the fact that |β|2 ≤ β2+‖γ‖22 =
‖β‖22 ≤M2

2 .
In light of (5) and (3), we combine (6), (7) and (8), obtaining that on the

event M,
(9)

|T2| ≤ 2M

(
1608b−1

n M2
√
n(log p)(M2

1 +M2
2 )λπs+ 2ηπ + 34MM2λ

2
πs

)
.

By (1), (4) and (9), it follows that on the event M,

(10) |β̂ − β| ≤ cn.

Therefore, by (2), for any θ ∈ Θ̃(s, β0), we have Eθψ∗ = Pθ(|β̂ − β0| >
cn) = Pθ(|β̂ − β| > cn) ≤ α. This proves the first part of Theorem 4.

We now show the second part of Theorem 4. It is straight-forward to
see that bn ≍ n, λπ ≍

√
n−1 log p and ηπ ≍ sn−1 log p + n−1/2. Therefore,

cn ≍ n−1/2 + sn−1 log p.
Moreover, for any θ ∈ Θ̃(s, β0 + 3cn), we have that on the event M,

|β̂ − β0| ≥ |β − β0| − |β̂ − β| = 3cn − |β̂ − β|
(i)

≥ 2cn > cn,

where (i) follows by (10). Thus, for any θ ∈ Θ̃(s, β0 + 3cn), we have

Eθψ∗ = Pθ(|β̂ − β0| > cn) ≥ Pθ(M)
(i)

≥ 1− α,

where (i) holds by (2). This proves the second part of Theorem 4.
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8 J. BRADIC, J. FAN AND Y. ZHU

APPENDIX F: PROOF OF COROLLARY 5

Proof of Corollary 5. Let h0 = min{ρ, τ}, where ρ and τ are defined
in Theorems 2 and 3, respectively. Notice that

Θζ,κ(s/2, β0 + h0(n
−1/2 + sn−1 log p))

⊂ Θζ,κ(s/2, β0 + ρsn1 log p)
⋂

Θκ(s, β0 + τn−1/2).

Thus, Theorems 2 and 3 imply

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+h0(n−1/2+sn−1 log p))

Eθψ ≤ 2α.

Hence,

(11) lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

inf
θ∈Θζ,κ(s/2,β0+h0(n−1/2+sn−1 log p))

Eθψ ≤ 2α.

The desired result follows by noticing that Ψα(Θ̃(s, β0)) ⊂ Ψα(Θ(s, β0)) and
Θζ,κ(s/2, β0 + hn) ⊂ Θ̃(s, β0 + hn) with hn = h0(n

−1/2 + sn−1 log p).

APPENDIX G: PROOF OF COROLLARY 6

Consider a sequence of CI = [l, u] ∈ Cα(Θ(s)) such that

lim sup
n→∞

inf
θ∈Θ(s)

Eθdiam(CI) = lim sup
n→∞

inf
CI′∈Cα(Θ(s))

sup
θ∈Θ(s)

Eθdiam(CI ′).

Consider the test
ψ = 1{β0 /∈ CI}

for testing θ ∈ Θ(s, β0). Clearly, ψ ∈ Ψα(Θ(s, β0)). Consider Θ(s, β0 + hn)
with hn = h0(n

−1/2 + sn−1 log p) defined in Corollary 5.
Fix any θ ∈ Θ(s, β0 + hn). We have that β = β0 + h′ with 0 ≤ h′ ≤ hn.

Notice that

1− Eθψ = Pθ(β0 ∈ CI)
= Pθ(l ≤ β0 ≤ u)

= Pθ(l ≤ β0 ≤ u and β ∈ CI) + Pθ(l ≤ β0 ≤ u and β /∈ CI)
(i)
= Pθ(l ≤ β0 ≤ u and β0 + h′ ∈ CI) + Pθ(l ≤ β0 ≤ u and β /∈ CI)
= Pθ(max{l, l − h′} ≤ β0 ≤ min{u, u− h′}) + Pθ(l ≤ β0 ≤ u and β /∈ CI)
≤ Pθ(max{l, l − h′} ≤ min{u, u− h′}) + Pθ(β /∈ CI)
≤ Pθ(l ≤ u− h′) + α
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TESTABILITY OF NON-SPARSE MODELS 9

= Pθ(diam(CI) ≥ h′) + α ≤ Pθ(diam(CI) ≥ hn) + α

where (i) follows by β = β0 + h′. Hence,

inf
θ∈Θ(s,β0+hn)

Eθψ ≥ 1− α− sup
θ∈Θ(s,β0+hn)

Pθ(diam(CI) ≥ hn).

By (11) in the proof of Corollary 5, we have that

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

inf
θ∈Θ(s,β0+hn)

Eθψ

≤ lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

inf
θ∈Θ(s/2,β0+hn)

Eθψ

≤ lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

inf
θ∈Θζ,κ(s/2,β0+hn)

Eθψ ≤ 2α.

The above two displays imply

lim inf
n→∞

sup
θ∈Θ(s,β0+h)

Pθ(diam(CI) ≥ hn) ≥ 1− 3α.

The desired result follows by noticing that

diam(CI) ≥ diam(CI)1{diam(CI) ≥ hn} ≥ hn1{diam(CI) ≥ hn}

and thus

sup
θ∈Θ(s,β0+hn)

Eθdiam(CI) ≥ hn sup
θ∈Θ(s,β0+hn)

Pθ(diam(CI) ≥ hn).

APPENDIX H: PROOF OF THEOREM 7

Proof of Theorem 7. By Theorem 4, we have

inf
CI∈Cα(Θ(s))

sup
θ∈Cα(Θ(s1))

Eθdiam(CI) = O
(
n−1/2 + sn−1 log p

)
.

Hence, it suffices to show that

(12) lim inf
n→∞

infCI∈Cα(Θ(s)) supθ∈Cα(Θ(s1)) Eθdiam(CI)
(
n−1/2 + sn−1 log p

) > 0.

We proceed by contradiction. Let hn be defined as in Theorem 2. Fix an
arbitrary β0 ∈ R. Suppose that there exists CI0 = [l0, u0] ∈ Cα(Θ(s)) such
that

sup
θ∈Cα(Θ(s1))

Eθdiam(CI0) = h̃n
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10 J. BRADIC, J. FAN AND Y. ZHU

with lim infn→∞(h̃n/hn) = 0. Define ∆ = α−1h̃n. Consider

ψ0 = 1{β0 /∈ CI0}

as the test for H0 : β = β0 vs Ha : β = β0 +∆.
Notice that

sup
θ∈Θ(β0,s)

Eθψ0 = sup
θ∈Θ(β0,s)

Pθ (β0 /∈ CI0)
(i)

≤ α,

where (i) follows by CI0 ∈ Cα(Θ(s)). Thus, ψ0 ∈ Ψ(Θ(β0, s)).
Fix an arbitrary θ1 ∈ Θζ,κ(s1, β0 +∆). Notice that on the event

{β0 +∆ ∈ CI0}
⋂

{u0 −∆ < l0},

we have β0 + ∆ ≤ u0, which means β0 ≤ u0 −∆ < l0 and thus β0 /∈ CI0.
Hence,

Eθ1ψ0 = Pθ1 (β0 /∈ CI0) ≥ Pθ1

(
{β0 +∆ ∈ CI0}

⋂
{u0 −∆ < l0}

)

≥ Pθ1 (β0 +∆ ∈ CI0)− Pθ1 (u0 −∆ ≥ l0)

(i)

≥ 1− α− Pθ1 (u0 − l0 ≥ ∆)

(ii)

≥ 1− α− Eθ1 |u0 − l0|
∆

(iii)

≥ 1− α− h̃n
∆

(iv)
= 1− 2α

where (i) follows by CI0 ∈ Cα(Θ(s)), (ii) follows by Markov’s inequality, (iii)
follows by the fact that θ1 ∈ Θ(β0+∆, s1) and supθ∈Cα(Θ(s1)) Eθdiam(CI0) ≤
h̃n and (iv) follows by ∆ = α−1h̃n. Consequently, we obtain

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s1,β0+∆)

Eθψ ≥ 1− 2α.

Since ∆ ≍ h̃n = o(hn) and s1 ≤ s/2, we have that Θζ,κ(s/2, β0 + hn)
contains Θζ,κ(s1, β0 +∆) for large n and thus

lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s1,β0+∆)

Eθψ

≤ lim sup
n→∞

sup
ψ∈Ψα(Θ(s,β0))

sup
θ∈Θζ,κ(s/2,β0+hn)

Eθψ
(i)

≤ α,
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TESTABILITY OF NON-SPARSE MODELS 11

where (i) follows by Theorem 2. The above two displays imply that α ≥
1 − 2α. This is not possible since α < 1/3. Hence, we have arrived at the
contradiction.

Therefore, there does not exist CI0 = [l0, u0] ∈ Cα(Θ(s)) such that
supθ∈Cα(Θ(s1)) Eθdiam(CI0) = O(h̃n) with h̃n = o(hn). Hence,

lim inf
n→∞

(
inf

CI∈Cα(Θ(s))
sup

θ∈Cα(Θ(s1))
Eθdiam(CI)

)
/hn > 0.

Similarly using Theorem 3, we can show that

lim inf
n→∞

(
inf

CI∈Cα(Θ(s))
sup

θ∈Cα(Θ(s1))
Eθdiam(CI)

)
/(n−1/2) > 0.

Therefore, we have proved that the claim in (12). The proof is complete.

APPENDIX I: PROOF OF THEOREM 8

We rely on the following two lemmas.

Lemma 8. Suppose that points in Θ are uniformly non-testable, i.e.,

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≍ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI).

Then there exists a constant c > 0 such that cL(Θ,Θ) ≤ L(Θ1,Θ) ≤
L(Θ,Θ) for any Θ1 ⊆ Θ.

Lemma 9. Suppose that there exists a constant c > 0 such that cL(Θ,Θ) ≤
L(Θ1,Θ) ≤ L(Θ,Θ) for any subset Θ1 ⊆ Θ. Then

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≍ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI).

Now we are ready to prove Theorem 8.

Proof of Theorem 8. The result is simple consequence of the two
Lemmas, Lemma 8 and 9 whose proofs can be found in Section L.3.
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12 J. BRADIC, J. FAN AND Y. ZHU

APPENDIX J: PROOF OF COROLLARY 9

Proof of Corollary 9. Clearly,

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≤ sup
θ∈Θ

Eθdiam(CI) ≤ c2hn.

It remains to show that infCI∈Cα(Θ) infθ∈Θ Eθdiam(CI) & hn. For that
end, we fix an arbitrary τ ∈ R, an arbitrary CI ∈ Cα(Θ) as well as an
arbitrary θ ∈ Θ(τ).

Define a test ψ = 1{τ /∈ CI}. Clearly, ψ ∈ Ψ(Θ(τ)). Let [l, u] = CI. Since
g(θ) = τ + c1hn for θ ∈ Θ(τ + c1hn) and CI ∈ Cα(Θ), we have that for any
θ ∈ Θ(τ + c1hn)

Pθ (l ≤ τ + c1hn ≤ u) ≥ 1− α.

By assumption,

Pθ

(
{τ < l}

⋃
{τ > u}

)
= Eθψ ≤ 2α.

Let M = {l ≤ τ + c1hn ≤ u}⋂{l ≤ τ ≤ u}. Clearly, Pθ(M) ≥ 1− 3α.
Notice that on the event M, l ≤ τ ≤ u− c1hn, which means u− l ≥ c1hn.

It follows that

Eθdiam(CI) ≥ Eθdiam(CI)× 1{M} ≥ c1hnPθ(M) ≥ (1− 3α)c1hn.

Notice that the above bound holds for any θ ∈ Θ(τ) with any τ ∈ R.
Hence,

inf
θ∈Θ

Eθdiam(CI) ≥ (1− 3α)c1hn.

Since the above bound holds for any CI ∈ Cα(Θ), we have

inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI) ≥ (1− 3α)c1hn.

APPENDIX K: PROOF OF THEOREM 10

For θ = (β,γ,Σ, σ) and Q > 0, we denote θ ⊙Q = (βQ,γQ,Σ, σQ). For
any C ⊆ R and Q > 0, we define Q · C = {Qx : x ∈ C}.

Lemma 10. For any Q,N1, N2 > 0,

Θ̃QN1,QN2(s) = {θ ⊙Q : θ ∈ Θ̃N1,N2(s)}.
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TESTABILITY OF NON-SPARSE MODELS 13

Lemma 11. For any D,N1, N2 > 0, let θ ∈ Θ̃N1,N2(s). Then (y,Z,W) ∼
(θ ⊙D) if and only if (yD−1,Z,W) ∼ θ.

Lemma 12. For any D,N1, N2 > 0,

DA(s,N1, N2) ≥ A(s,DN1,DN2).

Proof of Theorem 10. By Lemma 12 with (D,N1, N2) = (Q,M1,M2),
we have that QA(s,M1,M2) ≥ A(s,QM1, QM2).

We now apply Lemma 12 with (D,N1, N2) = (Q−1, QM1, QM2), obtain-
ing Q−1

A(s,QM1, QM2) ≥ A(s,M1,M2). The desired result follows.

APPENDIX L: PROOF OF AUXILIARY LEMMAS

L.1. Proof of auxiliary lemmas used in proving Theorem 2.

Proof of Lemma 1. Let

Ak =
[
1− kan−1 log p

]−n

(
m
k

)(
p−m− 1
m− k

)

(
p− 1
m

) .

Notice that for 0 ≤ k ≤ m,

log
Ak+1

Ak
= log

[(
1− an−1 log p

1− kan−1 log p

)−n
(m− k)2

(k + 1)(p − 2m+ k)

]

= −n log
(
1− an−1 log p

1− kan−1 log p

)
+ log

(m− k)2

(k + 1)(p − 2m+ k)

≤ −n log
(
1− an−1 log p

1− kan−1 log p

)
+ log

(m− k)2

p− 2m+ k

(i)

≤ −n log
(
1− 2an−1 log p

)
+ log

p2c

p− 2pc

(ii)

≤ 2a log p

1− 2an−1 log p
+ log

p2c

p− 2pc

(iii)
< 4a log p+ log

p2c

p− 2pc

= log
p4a+2c−1

1− 2pc−1
,(13)
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14 J. BRADIC, J. FAN AND Y. ZHU

where (i) follows by the fact that

1− kan−1 log p ≥ 1−man−1 log p ≥ 1− a/4 ≥ 1/2,

(ii) follows by the fact that log(1 − x) ≥ x/(x − 1) for any x ∈ (0, 1) and
2an−1 log p ∈ (0, 1) (due to 2an−1 log p ≤ 2a/(4m) ≤ a/2 < 1/2) and (iii)
follows by 2an−1 log p < 1/2.

Notice that 4a+2c−1 < 0 and c−1 < 0. Hence, for large p, log(Ak+1/Ak) ≤
− log 2 for any 0 ≤ k ≤ m. It follows that for large p,

(14)

m∑

k=0

Ak = A0 +

m∑

k=1

Ak ≤ A0 +A1

m∑

k=1

2−k ≤ A0 + 2A1

Notice that

A0 =

(
p−m− 1

m

)

(
p− 1
m

) =

m−1∏

j=0

p− 2m+ j

p−m+ j
=

m−1∏

j=0

(
1− m

p−m+ j

)
.

Hence, (
1− m

p−m

)m
≤ A0 ≤

(
1− m

p

)m

Sincem2/p ≤ p2c−1 → 0, both sides tend to 1 and thus A0 → 1. To bound
A1, notice that (13) implies

A1 ≤
p4a+2c−1

1− 2pc−1
A0

(i)
= o(A0),

where (i) follows by 4a + 2c − 1 < 0 and c < 1. Hence, A1 = o(1). In light
of (14), the desired result follows.

Proof of Lemma 2. Notice that

Eg0

(
dPg1
dPg0

× dPg2
dPg0

)
=

∫

Rk

g1(x)g2(x)

g0(x)
dx.

By Lemma 11 in Cai and Guo (2017), we have

∫

Rk

g1(x)g2(x)

g0(x)
dx

=
1√

det
(
Ik −Σ−1

0 [Σ1 −Σ0]Σ
−1
0 [Σ2 −Σ0]

)
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TESTABILITY OF NON-SPARSE MODELS 15

=
1√

det
(
Ik − (L−1

0 )⊤L−1
0

[
L1L⊤

1 − L0L⊤
0

]
(L−1

0 )⊤L−1
0

[
L2L⊤

2 − L0L⊤
0

])

=
1√

det
(
Ik − (L−1

0 )⊤
[
Q1Q

⊤
1 − Ik

] [
Q2Q

⊤
2 − Ik

]
L⊤
0

)

=
1√

det
(
Ik − (L−1

0 )⊤
[
Q1Q⊤

1 − Ik

] [
Q2Q⊤

2 − Ik

]
L⊤
0

)

=
1√

det
{
(L−1

0 )⊤
(
Ik −

[
Q1Q

⊤
1 − Ik

] [
Q2Q

⊤
2 − Ik

])
L⊤
0

}

=
1√

det
[
(L−1

0 )⊤
]
det
(
Ik −

[
Q1Q⊤

1 − Ik

] [
Q2Q⊤

2 − Ik

])
det
(
L⊤
0

)

=
1√

det
(
Ik −

[
Q1Q⊤

1 − Ik

] [
Q2Q⊤

2 − Ik

]) .

Proof of Lemma 3. We first derive some preliminary results and then
compute

det
(
Ip+1 −

[
Qj1Q

⊤
j1 − Ip+1

] [
Qj2Q

⊤
j2 − Ip+1

])
.

Step 1: First we derive the form of the matrix QjQ
⊤
j − Ip for 1 ≤ j ≤ N .

By straight-forward computation, we can verify that

L−1
θ∗

=




Ip−1 0 0

−σ−1
V,∗π

⊤
∗ σ−1

V,∗ 0

−σ−1
ε,∗γ

⊤
∗ −β∗σ−1

ε,∗ σ−1
ε,∗


 .

Thus,

Qj = L−1
θ∗
Lθj

=




Ip−1 0 0

−σ−1
V,∗π

⊤
∗ σ−1

V,∗ 0

−σ−1
ε,∗γ

⊤
∗ −β∗σ−1

ε,∗ σ−1
ε,∗






Ip−1 0 0
π⊤
(j) σV,0 0

(π(j)β0 + γ(j))
⊤ β0σV,0 σε,0




=




Ip−1 0 0

σ−1
V,∗(π(j) − π∗)

⊤ σ−1
V,∗σV,0 0

σ−1
ε,∗

[
γ(j) − γ∗ + (β0 − β∗)π(j)

]⊤ −hσ−1
ε,∗σV,0 σ−1

ε,∗σε,0



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(i)
=




Ip−1 0 0

a2δ
⊤
(j) σ−1

V,∗σV,0 0

a1δ
⊤
(j) −hσ−1

ε,∗σV,0 σ−1
ε,∗σε,0




for a1 = r(1− h)
√
h/m and a2 =

√
h/m, where (i) follows by Definition 3.

Since δ⊤(j)δ(j) = m, we have

QjQ
⊤
j − Ip+1

=




Ip−1 0 0

a2δ
⊤
(j) σ−1

V,∗σV,0 0

a1δ
⊤
(j) −hσ−1

ε,∗σV,0 σ−1
ε,∗σε,0






Ip−1 a2δ(j) a1δ(j)
0 σ−1

V,∗σV,0 −hσ−1
ε,∗σV,0

0 0 σ−1
ε,∗σε,0


− Ip+1

(i)
=




0 a2δ(j) a1δ(j)
a2δ

⊤
(j) 0 0

a1δ
⊤
(j) 0 0


 .

(15)

where (i) follows by Definition 3 and the definitions of a1 and a2.

Step 2: Compute det
(
Ip+1 −

[
Qj1Q

⊤
j1
− Ip+1

] [
Qj2Q

⊤
j2
− Ip+1

])
for any

j1, j2 ∈ {1, ..., N}.
From Step 1, we have that for any j1, j2 ∈ {1, ...,M},

Ip+1 −
(
Qj1Q

⊤
j1 − Ip+1

)(
Qj2Q

⊤
j2 − Ip+1

)

= Ip+1 −




0 a2δ(j1) a1δ(j1)
a2δ

⊤
(j1)

0 0

a1δ
⊤
(j1)

0 0







0 a2δ(j2) a1δ(j2)
a2δ

⊤
(j2)

0 0

a1δ
⊤
(j2)

0 0


 .

=



Ip−1 − (a21 + a22)δ(j1)δ

⊤
(j2)

0 0

0 1− a22δ
⊤
(j1)

δ(j2) −a1a2δ⊤(j1)δ(j2)
0 −a1a2δ⊤(j1)δ(j2) 1− a21δ

⊤
(j1)

δ(j2)


 .

Since this is a block-diagonal matrix, the desired result follows by simple
computation

det
[
Ip+1 −

(
Qj1Q

⊤
j1 − Ip+1

)(
Qj2Q

⊤
j2 − Ip+1

)]

= det
(
Ip−1 − (a21 + a22)δ(j1)δ

⊤
(j2)

)
det

(
1− a22δ

⊤
(j1)

δ(j2) −a1a2δ⊤(j1)δ(j2)
−a1a2δ⊤(j1)δ(j2) 1− a21δ

⊤
(j1)

δ(j2)

)

(i)
=
[
1− (a21 + a22)δ

⊤
(j1)

δ(j2)

]
det

(
1− a22δ

⊤
(j1)

δ(j2) −a1a2δ⊤(j1)δ(j2)
−a1a2δ⊤(j1)δ(j2) 1− a21δ

⊤
(j1)

δ(j2)

)
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TESTABILITY OF NON-SPARSE MODELS 17

=
[
1− (a21 + a22)δ

⊤
(j1)

δ(j2)

]2
,

where (i) follows by the Sylvester’s determinant identity. The desired result
follows by the definitions of a1 and a2.

Proof of Lemma 4. Recall all the notations in Lemma 3 and ρ defined
in (8). Notice that

Eθ∗


N−1

N∑

j=1

dPθj
dPθ∗

− 1




2

= N−2
N∑

j2=1

N∑

j1=1

Eθ∗

(
dPθj1
dPθ∗

×
dPθj2
dPθ∗

)
− 1

(i)
= N−2

N∑

j2=1

N∑

j1=1

[
1−m−1h[r2(1− h)2 + 1]δ⊤(j1)δ(j2)

]−n
− 1

(ii)
= N−1

N∑

j=1

[
1−m−1h[r2(1− h)2 + 1]δ⊤(1)δ(j)

]−n
− 1,

where (i) follows by Lemmas 2 and 3 (since there are n i.i.d observations,
likelihood is a simple product) and (ii) follows by observing that

N∑

j1=1

[
1−m−1h[r2(1− h)2 + 1]δ⊤(j1)δ(j2)

]−n

does not depend on j2. To see this, simply notice that {δ⊤(j)δ(j2)}1≤j≤N is a

permutation of {δ⊤(j)δ(1)}1≤j≤N for any 1 ≤ j2 ≤ N .

For k ∈ {0, 1, ...,m}, let

Sk = {j ∈ {1, ..., N} : δ⊤(1)δ(j) = k}.

Notice that the cardinality of Sk is

(
m
k

)(
p−m− 1
m− k

)
. Recall that N =

(
p− 1
m

)
. It follows that

Eθ∗


N−1

N∑

j=1

dPθj
dPθ∗

− 1




2
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18 J. BRADIC, J. FAN AND Y. ZHU

=

m∑

k=0

[
1−m−1h[r2(1− h)2 + 1]k

]−n

(
m
k

)(
p−m− 1
m− k

)

(
p− 1
m

) − 1.

By Lemma 1, it suffices to verify that we can choose a ∈ (0, (1 − 2c)/4)
such that m−1h[r2(1 − h)2 + 1] ≤ an−1 log p. We now verify the stronger
condition of

m−1h[r2(1− h)2 + 1]

n−1 log p
< (1− 2c)/5.

To this end, we recall h = dsn−1 log p, 0 ≤ d ≤ ρ and s/2 − 1 < m ≤ s/2
from Definition 3. Since m ≥ 1, we have s/m ≤ (2m + 1)/m ≤ 3. Now we
observe that

m−1h[r2(1− h)2 + 1]

n−1 log p
=

(
m−1dsn−1 log p

)
[r2(1− h)2 + 1]

n−1 log p

≤ m−1ρs[r2(1− h)2 + 1]

(i)

≤ 3ρ[r2(1− h)2 + 1]

= 3ρ[r2(1− dsn−1 log p)2 + 1]

(ii)

≤ 3ρ[r2 + 1]

(iii)

≤ 3ρ
[
κ−2M + 1

]

(iv)

≤ (1/2 − c)/5,

where (i) follows by s/m ≤ 3, (ii) follows by dsn−1 log p ≤ 1 (due to
sn−1 log p ≤ 1/4 and 0 ≤ d ≤ ρ ≤ 4), (iii) follows by r ≤

√
M/κ (since

r = σV,∗/σε,∗, σ
2
V,∗ ≤ M and σε,∗ ≥ κ) and (v) follows by the definition of

ρ. The proof is complete.

Proof of Lemma 5. Recall that from Lemma 6, we can write θ∗ =
(β∗,γ∗,Σ∗, σε,∗) ∈ Θ using

Σ∗ =

(
π⊤
∗ π∗ + σ2V,∗ π⊤

∗

π∗ Ip−1

)
.

Since θ∗ ∈ Θζ,κ(m,β0+hn), we have (1) β∗ = β0+h with h = dsn−1 log p
and 0 ≤ d ≤ ρ and (2) λmax(Σ∗) ≤ ζM < M . Notice that π⊤

∗ π∗ + σ2V,∗ ≤
λmax(Σ∗). Hence,

(16) max {‖π∗‖2, σV,∗} ≤
√
M.
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TESTABILITY OF NON-SPARSE MODELS 19

Recall r = σV,∗/σε,∗. By the definition of Θζ,κ(s, β0 + hn), we have

(17) r ≤
√
M/κ.

The rest of the proof proceeds in four steps, where we verify that
(1) σε,0 ≤M1,
(2) ‖(Σ−1

(j)
),1‖0 ≤ 2m and

(3) M−1 ≤ λmin(Σ(j)) ≤ λmax(Σ(j)) ≤M .
(4) β20 + ‖γ(j)‖22 ≤ ζ2M2

2 .

Step 1: Show σε,0 ≤M1.
Notice that

σε,0 = σε,∗
√

1− hr2 + h2r2 ≤ ζM1

√
1− hr2 + h2r2

(i)

≤ ζM1 < M1,

where (i) −hr2 + h2r2 ≤ 0 (since 0 ≤ h ≤ ρsn−1 log p ≤ ρ/4 ≤ 1).

Step 2: Show ‖(Σ−1
(j)),1‖0 ≤ 2m.

Observe that (Σ−1
(j)),1 =

(
1

−π(j)

)
σ−2
V,0 and (Σ−1

∗ ),1 =

(
1

−π∗

)
σ−2
V,∗. Hence,

‖(Σ−1
(j)

),1‖0 = ‖π(j)‖0 + 1

and ‖(Σ−1
∗ ),1‖0 = ‖π∗‖0 + 1. Since

‖π(j)‖0 ≤ ‖π∗‖0 + ‖δ(j)‖0 = ‖π∗‖0 +m

and θ∗ ∈ Θζ,κ(m,β0 + hn), we have

‖(Σ−1
(j)),1‖0 ≤ ‖(Σ−1

∗ ),1‖0 +m ≤ 2m.

Step 3: Show M−1 ≤ λmin(Σ(j)) ≤ λmax(Σ(j)) ≤M .
Since 2m ≤ s ≤ 2m+ 1 and s ≥ 2, we have m ≥ 1 and

2 ≤ s/m ≤ 2 + 1/m ≤ 3.

Notice that ‖δ(j)‖2 =
√
m and

(18) ‖π(j) − π∗‖2 = σV,∗
√
h/m‖δ(j)‖2 = σV,∗

√
h.

Let ‖ · ‖F denote the Frobenius norm and observe that

‖Σ(j) −Σ∗‖2F =
(
π⊤
(j)π(j) − π⊤

∗ π∗ + σ2V,0 − σ2V,∗

)2
+ 2‖π(j) − π∗‖22
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20 J. BRADIC, J. FAN AND Y. ZHU

(i)
=
(
‖π(j) − π∗‖22 + 2(π(j) − π∗)

⊤π∗ − hσ2V,∗

)2

+ 2‖π(j) − π∗‖22
(ii)
=
(
2(π(j) − π∗)

⊤π∗

)2
+ 2σ2V,∗h

≤
(
2‖π(j) − π∗‖2 × ‖π∗‖2

)2
+ 2σ2V,∗h

(iii)

≤
(
2σV,∗

√
hM

)2
+ 2σ2V,∗h

(iv)

≤
(
2
√
hM

)2
+ 2Mh

(v)

≤ M(2M + 1)ρ/2

(vi)

≤ min

{
1

M2

(
1

ζ
− 1

)2

, M2(1− ζ)2

}
,

where (i) follows by σ2V,0−σ2V,∗ = −σ2V,∗h (due to Definition 3), (ii) follows
by (18), (iii) follows by (18), (iv) follows by (16), (v) follows by h ≤ ρ/4
(due to h = dsn−1 log p with 0 ≤ d ≤ ρ and sn−1 log p ≤ 1/4) and (vi)
follows by 0 ≤ d ≤ ρ and the definition of ρ in (8).

Let ‖ ·‖ denote the spectral norm of a matrix (i.e., ‖A‖ =
√
λmax(A⊤A)).

Notice that
λmin(Σ(j)) ≥ λmin(Σ∗)− ‖Σ(j) −Σ∗‖

and λmax(Σ(j)) ≤ λmax(Σ∗)+‖Σ(j)−Σ∗‖. Since ‖Σ(j)−Σ∗‖ ≤ ‖Σ(j)−Σ∗‖F ,
the above display implies that

λmin(Σ(j)) ≥ λmin(Σ∗)−min

{
1

M

(
1

ζ
− 1

)
, M(1− ζ)

}

≥ λmin(Σ∗)−
1

M

(
1

ζ
− 1

)

and similarly

λmax(Σ(j)) ≤ λmax(Σ∗) + min

{
1

M

(
1

ζ
− 1

)
, M(1− ζ)

}

≤ λmax(Σ∗) +M(1− ζ).

Since (ζM)−1 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ ζM , we obtain

M−1 ≤ λmin(Σ(j)) ≤ λmax(Σ(j)) ≤M

.
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Step 4: Show β20 + ‖γ(j)‖22 ≤ ζ2M2
2 .

Since θ∗ ∈ Θζ,κ(m,β0 + hn), we have that

(19) (β0 + h)2 + ‖γ∗‖22 ≤ ζ2M2
2 .

Therefore, we need to show that

(20)
[
β20 + ‖γ(j)‖22

]
−
[
(β0 + h)2 + ‖γ∗‖22

]
≤ (1− ζ2)M2

2 .

Let δγ,j = γ(j) − γ∗. Notice that

[
β20 + ‖γ(j)‖22

]
−
[
(β0 + h)2 + ‖γ∗‖22

]

= −2(β0 + h)h+ h2 + ‖δγ,j‖22 + 2γ⊤
∗ δγ,j

≤ 2|β0 + h|h+ h2 + ‖δγ,j‖22 + 2‖γ∗‖2 · ‖δγ,j‖2
(i)

≤ 2ζM2h+ h2 + ‖δγ,j‖22 + 2ζM2‖δγ,j‖2
≤ 2ζM2hn + h2n + ‖δγ,j‖22 + 2ζM2‖δγ,j‖2,(21)

where (i) follows by ‖γ∗‖2 ≤ ζM2 and |β0 + h| ≤ ζM2 (due to (19)).
By the assumption of sn−1 log p ≤ 1/4, M > 1 and the definition of ρ in

(8) we have that

(22) h2n = ρ2(sn−1 log p)2 ≤ ρ2/16 ≤ (1− ζ2)M2
2

64M
< (1− ζ2)M2

2 /4

and

(23) 2ζM2hn = 2ζM2ρsn
−1 log p ≤ ζM2ρ/2

≤ (1− ζ2)M2
2

16
√
M

< (1− ζ2)M2
2 /4.

By Definition 3, we have

‖δγ,j‖2 ≤ h‖π(j)‖2 + rσε,∗
√
h/m‖δ(j)‖2 = h‖π(j)‖2 + rσε,∗

√
h.

By (16) and (18), ‖π(j)‖2 ≤ ‖π∗‖2 + ‖π(j) − π∗‖2 ≤
√
M + σV,∗

√
h. Since

h ≤ hn = ρsn−1 log p ≤ ρ/4, we have that

‖δγ,j‖2 ≤
1

4
ρ
(√

M + σV,∗
√
ρ/4
)
+ rσε,∗

√
ρ/4

(i)

≤ 1

4
ρ
(
1 +

√
ρ/4
)√

M + κ−1
√
MζM1

√
ρ/4
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(ii)

≤ 1

2
ρ
√
M + κ−1

√
MζM1

√
ρ/4,

where (i) follows by σV,∗ ≤
√
M (due to (16)), σε,∗ ≤ ζM1 (due to the

definition of Θζ,κ(s)) and r ≤
√
M/κ (due to (17)) and (ii) follows by

ρ ≤ 4. By the definition of ρ in (8), we have

2ζM2‖δγ,j‖2 ≤ ζM2

√
Mρ+

√
M

κ
ζ2M1M2

√
ρ

≤ (1− ζ2)M2
2

8
+

(1− ζ2)M2
2

8
≤ (1− ζ2)M2

2

4
.(24)

By the elementary inequality of (a+ b)2 ≤ 2a2 + 2b2, we also have

‖δγ,j‖22 ≤
(
1

2
ρ
√
M + κ−1

√
MζM1

√
ρ/4

)2

≤ 1

2
ρ2M +

M

2κ2
ζ2M2

1ρ

(i)

≤ (1− ζ2)M2
2

8
+

(1− ζ2)M2
2

8
≤ (1− ζ2)M2

2

4
,(25)

where (i) follows by the definition of ρ in (8).
In light of (21), we obtain (20) by combining (22), (23), (24) and (25).

The proof is complete.

Proof of Lemma 6. Notice that

(
a b⊤Σ
Σb Σ

)−1

=

(
a−1 + a−2b⊤Σ(Σ− a−1Σbb⊤Σ)−1Σb −b⊤Σ(Σ− a−1Σbb⊤Σ)−1

−(Σ− a−1Σbb⊤Σ)−1Σb (Σ− a−1Σbb⊤Σ)−1

)
.

Since all the eigenvalues of the above matrix are positive, the eigenval-
ues of the blocks on the diagonal are also positive. This means that the
eigenvalues of Σ− a−1Σbb⊤Σ are positive. Notice that

Σ− a−1Σbb⊤Σ = Σ1/2(I− a−1Σ1/2bb⊤Σ1/2)Σ1/2.

Since Σ1/2 is positive definite, we have that all the eigenvalues of I −
a−1Σ1/2bb⊤Σ1/2 is positive. It follows that

det(I− a−1Σ1/2bb⊤Σ1/2) > 0.

By Sylvester’s determinant identity, we have det(I − a−1Σ1/2bb⊤Σ1/2) =
1− a−1b⊤Σb. The desired result follows.
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L.2. Proof of auxiliary lemmas used in proving Theorem 4.

Proof of Lemma 1. We first prove the result assuming σ1 = σ2 = 1.
Let ri = ri,1ri,2. Then for any m ≥ 3,

|ri|m = |ri,1ri,2|m
(i)

≤ 2−m(r2i,1 + r2i,2)
m

(ii)

≤ 1

2
(|ri,1|2m + |ri,2|2m),

where (i) follows by |ri,1ri,2| ≤ (r2i,1 + r2i,2)/2, (ii) follows by the elementary

inequality (a+ b)m ≤ 2m−1(am + bm) for a, b ≥ 0 and m ≥ 2. Hence,

n∑

i=1

E|ri|m ≤ n

2

(
E|r1,1|2m + E|r1,2|2m

)
.

Since r1,1 ∼ N (0, 1), we have that r21,1 ∼ χ2(1). The moment generating

function of χ2 distributions implies

E exp(r21,1/3) = (1− 2/3)−1 = 3.

Notice that by Taylor’s series,

E exp(r21,1/3) = 1 +

∞∑

j=1

3−jE exp(|r1,1|2j)
j!

.

Therefore, for any j ≥ 1,

3−jE exp(|r1,1|2j)
j!

< 3.

Similarly, we can show that for any j ≥ 1,

3−jE exp(|r1,2|2j)
j!

< 3.

Let ν = 2n. Hence, for m ≥ 6,

n∑

i=1

E|ri|m ≤ n

2

(
E|r1,1|2m + E|r1,2|2m

)

≤ n

2

(
3m+1m! + 3m+1m!

)
= n3m+1m! <

m!

2
ν7m−2.
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Since both r1,1 and r1,2 are standard normal, we can easily compute for
m = 3, 4, 5

n∑

i=1

E|ri|m ≤ n

2

(
E|r1,1|2m + E|r1,2|2m

)
=





15n m = 3

105n m = 4

945n m = 5.

Thus,
∑n

i=1 E|ri|m ≤ m!
2 ν7

m−2 for m ≥ 3. Clearly,
∑n

i=1 E(r
2
i ) = n < ν.

Therefore, by Corollary 2.11 of Boucheron et al. (2013), we have that for
any t > 0,

P

(
n∑

i=1

(ri − Eri) ≥ t

)
≤ exp

(
− t2

2(2n + 7t)

)
.

Similarly, we can show the same result for −ri: for any t > 0,

P

(
−

n∑

i=1

(ri − Eri) ≥ t

)
≤ exp

(
− t2

2(2n + 7t)

)
.

Hence,

P

(∣∣∣∣∣

n∑

i=1

(ri − Eri)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(2n+ 7t)

)
.

We have proved the result for σ1 = σ2 = 1. In the general case, notice that
ri,1σ

−1
1 ∼ N (0, 1) and ri,2σ

−1
2 ∼ N (0, 1). Hence, the above display implies

P

(∣∣∣∣∣

n∑

i=1

(
ri,1ri,2σ

−1
1 σ−1

2 − Eri,1ri,2σ
−1
1 σ−1

2

)
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(2n + 7t)

)
.

The desired result follows.

Proof of Lemma 2. By the definition of Θ̃(s), we have that β2+‖γ‖22 ≤
M2

2 . Notice that the first row of Σ−1 is (1,−π⊤)σ−2
V . Therefore,

M−1 ≤ λmin(Σ
−1) ≤ ‖π‖22σ−2

V + σ−2
V ≤ λmax(Σ

−1) ≤M.

This means that M−1/2 ≤ σV ≤ M1/2 and ‖π‖2 ≤ M . Since M > 1, it
follows that

‖ξ‖2 ≤ λmax(ΣW) (|β| · ‖π‖2 + ‖γ‖2)
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≤M (M2M +M2) =M2M(M + 1) < 2M2M2.

This proves part (1).
Since EWiyi = ΣW(πβ + γ), we have that for each 1 ≤ j ≤ p− 1,

ξ̂j − ξj = b−1
n

∑

i∈H3

[Wi,jyi − EWi,jyi] .

Notice that both Wi,j and yi are normal random variables with mean zero.
Moreover,

EW2
i,j ≤ λmax(Σ) ≤M

and
Ey2i = σ2 + β⊤Σβ ≤ σ2 + λmax(ΣW)‖β‖22 ≤M2

1 +MM2
2 ,

where we recall β = (β,γ⊤)⊤ ∈ R
p.

It follows by Lemma 1 that ∀t > 0,

P

(
bn|ξ̂j − ξj| > t

√
M(M2

1 +MM2
2 )

)
≤ 2 exp

(
− t2

2(2bn + 7t)

)
.

We set t = 2
√
n log p. Since n/4−1 < bn ≤ n/4 and n/ log p ≥ 784 = 282,

the union bound implies

P

(
‖ξ̂ − ξ‖∞ > 2b−1

n

√
n(log p)M(M2

1 +MM2
2 )

)

≤ 2p exp

(
− t2

2(2bn + 7t)

)

≤ 2p exp

(
− 4n log p

2(n/2 + 14
√
n log p)

)

= 2exp

((
1− 4

1 + 28
√
n−1 log p

)
log p

)

≤ 2 exp

((
1− 4

1 + 1

)
log p

)
= 2/p.(26)

Since M > 1, we have proved part (2).
By the same argument,

(27) P

(
‖ξ̃ − ξ‖∞ > 2b−1

n M
√
n(log p)(M2

1 +M2
2 )

)
≤ 2/p

and

P



∥∥∥∥∥∥
b−1
n

∑

i∈H4

Wiyi − ξ

∥∥∥∥∥∥
∞

> 2b−1
n M

√
n(log p)(M2

1 +M2
2 )


 ≤ 2/p.

imsart-aos ver. 2014/10/16 file: Draft_20191118.tex date: November 26, 2019



26 J. BRADIC, J. FAN AND Y. ZHU

Part (3) follows.
Now we prove part (4).
Denote τ = 2b−1

n M
√
n(log p)(M2

1 +M2
2 ) and the event B = {‖ξ̃− ξ‖∞ ≤

τ}. Notice that A = {j : |ξ̃j | ≥ 2τ} by the definition in (14). Define
Aτ = {j : |ξj | ≥ τ}.

Since |ξj | ≥ |ξ̃j |− |ξ̃j−ξj|, we have that |ξj | ≥ |ξ̃j |−‖ξ̃−ξ‖∞. Therefore,
on the event B, |ξj | ≥ τ for any j ∈ A. In other words, on the event B,
A ⊆ Aτ and thus |A| ≤ |Aτ |. To bound |Aτ |, notice that τ2|Aτ | ≤ ‖ξ‖22.

Define the event B′ = {‖ξ̂ − ξ‖∞ ≤ τ}. On the event B⋂B′,

‖ξ̂A‖2 ≤ ‖ξA‖2 + ‖ξ̂A − ξA‖2
≤ ‖ξ‖2 +

√
|A|‖ξ̂A − ξA‖∞

≤ ‖ξ‖2 +
√

|Aτ |‖ξ̂A − ξA‖∞
≤ ‖ξ‖2 +

√
‖ξ‖22τ−2τ

= 2‖ξ‖2 ≤ 4M2M2.

Part (4) follows because (27) and part (2) imply P(B⋂B′) ≥ 1− 4/p.
To see part (5), notice that for any j ∈ Ac,

|ξ̂j | ≤ ‖ξ̂ − ξ‖∞ + ‖ξ̃ − ξ‖∞ + |ξ̃j | ≤ ‖ξ̂ − ξ‖∞ + ‖ξ̃ − ξ‖∞ + 2τ.

Therefore, on the event B⋂B′, |ξ̂j | ≤ 4τ for any j ∈ Ac. Part (5) follows.
Now we show part (6). The argument is similar to the proof of part (2).

Notice that vi ∼ N (0, σ2V) and

W⊤
i (πβ + γ) + εi ∼ N (0, (πβ + γ)⊤ΣW(πβ + γ) + σ2).

Also notice that σ2V ≤M and

(πβ + γ)⊤ΣW(πβ + γ) + σ2 ≤ λmax(ΣW)‖πβ + γ‖22 +M2
1

≤ λmax(ΣW) (‖π‖2 · |β|+ ‖γ‖2)2 +M2
1

≤M (M2M +M2)
2 +M2

1

(i)
< 4M2

2M
3 +M2

1 ,

where (i) follows by M > 1.
Since Evi[W

⊤
i (πβ + γ) + εi] = 0, it follows by Lemma 1 that for any

t > 0,

P



∣∣∣∣∣∣

∑

i∈H4

vi

(
W⊤

i (πβ + γ) + εi

)
∣∣∣∣∣∣
> tb1/2n

√
M
(
4M2

2M
3 +M2

1

)


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≤ 2 exp

(
− t2bn

2(2bn + 7tb
1/2
n )

)
= 2exp

(
− t2

2(2 + 7tb
−1/2
n )

)
.(28)

Now we take t = 10
√

log(100/α). The assumption of (n− 4)/ log p ≥ 784

implies that n > 784. Hence, bn > n/4 − 1 > n/5, which means b
−1/2
n <√

5/n. Thus, the assumption of Theorem 4 implies that n > 500 log(100/α)

and thus tb
−1/2
n ≤ 10

√
5n−1 log(100/α) < 1. The above display implies

P



∣∣∣∣∣∣

∑

i∈H4

vi

(
W⊤

i (πβ + γ) + εi

)
∣∣∣∣∣∣
> 10b1/2n

√
M
(
4M2

2M
3 +M2

1

)
log(100/α)




< 2 exp

(
−100 log(100/α)

2(2 + 7)

)
= 2exp

(
−50

9
log(100/α)

)

< 2 exp (− log(100/α)) = α/50.

This proves part (6).
It remains to show part (7). Notice that vi ∼ N (0, σ2V) and M−1 ≤ σ2V ≤

M . By an argument similar to (28), we have that for any t > 0,

P



∣∣∣∣∣∣

∑

i∈H4

(
v2i − Ev2i

)
∣∣∣∣∣∣
> tM


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
.

Now we take t = bn/(2M
2). Hence,

P


b−1

n

∑

i∈H4

v2i <
1

2M


 ≤ P


b−1

n

∑

i∈H4

(v2i − Ev2i ) <
1

2M
− Ev2i




≤ P


b−1

n

∑

i∈H4

(v2i − Ev2i ) <
1

2M
− 1

M




≤ P


b−1

n

∣∣∣∣∣∣

∑

i∈H4

(
v2i − Ev2i

)
∣∣∣∣∣∣
>

1

2M




= P



∣∣∣∣∣∣

∑

i∈H4

(
v2i − Ev2i

)
∣∣∣∣∣∣
> tM




≤ 2 exp

(
− b2n/(4M

4)

2(2bn + 7bn/(2M2))

)

= 2exp

(
− bn/M

4

(16 + 28/M2)

)
(i)
< 2 exp

(
−M−2bn/44

)
,
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where (i) follows by 28/M2 < 28 (since M > 1). The proof is complete.

Proof of Lemma 3. We need to show
(29)

P


∥∥(Ip−1 − b−1

n

∑

i∈H4

WiW
⊤
i ΩW

)
ξ̂A
∥∥
∞
> 24

√
b−1
n log pM3M2


 < 6/p

and
(30)

P

(
ξ̂⊤AΩW

(
b−1
n

∑

i∈H4

WiW
⊤
i

)
ΩWξ̂A ≤ 32M5M2

2

)
≤ 2 exp(−bn/18) + 4/p.

We prove these two claims in two steps.
Step 1: show (29).
Define qi = WiW

⊤
i ΩWξ̂A and qi,j = Wi,jW

⊤
i ΩWξ̂A for 1 ≤ j ≤ p − 1.

Let F denote the σ-algebra generated by {(Wi, yi, Zi)}i∈H1
⋃
H3

. Notice that

ξ̂A is F-measurable and {Wi}i∈H4 is independent of F due to the sample

splitting. Therefore, for i ∈ H4, conditional on F , Wi,j and W⊤
i ΩWξ̂A are

both Gaussian with mean zero.
Also observe that for i ∈ H4, E(W

2
i,j | F) ≤ λmax(ΣW) ≤M and

E[(W⊤
i ΩWξ̂A)

2 | F ] ≤ ξ̂⊤AΩWΣWΩWξ̂A = ξ̂⊤AΩWξ̂A

≤ λmax(ΩW)‖ξ̂A‖22 ≤
‖ξ̂A‖22

λmin(ΣW)
≤M‖ξ̂A‖22.

Therefore, Lemma 1 implies that for any t > 0,

P



∣∣∣∣∣∣

∑

i∈H4

[qi,j − E(qi,j | F)]

∣∣∣∣∣∣
> tM‖ξ̂A‖2 | F


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
.

Since E(qi | F) = E(WiW
⊤
i ΩWξ̂A | F) = ΣWΩWξ̂A = ξ̂A, we apply the

union bound and obtain that ∀t > 0,

P


∥∥(b−1

n

∑

i∈H4

WiW
⊤
i ΩW − Ip−1

)
ξ̂A
∥∥
∞
> tM‖ξ̂A‖2 | F




= P


 max

1≤j≤p−1

∣∣∣∣
∑

i∈H4

[qi,j − E(qi,j | F)]

∣∣∣∣> tbnM‖ξ̂A‖2 | F



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≤ 2p exp

(
− t2b2n
2(2bn + 7tbn)

)
= 2p exp

(
− t2bn
2(2 + 7t)

)
.

By choosing t = 6
√
b−1
n log p, it follows that

P



∥∥∥∥
(
b−1
n

∑

i∈H4

WiW
⊤
i ΩW − Ip−1

)
ξ̂A

∥∥∥∥
∞

> 6

√
b−1
n log pM‖ξ̂A‖2




≤ 2p exp

(
− 36 log p

4 + 14× 8
√
b−1
n log p

)

(i)

≤ 2p exp

(
− 36 log p

4 + 14 × 6/14

)
= 2p−2.6 < 2p−2,

where (i) follows by the fact that bn > n/4 − 1 and the assumption (n −
4)/ log p ≥ 784 = 282. By Lemma 2, P

(
‖ξ̂A‖2 ≤ 4M2M2

)
≥ 1−4/p. There-

fore, we have

P



∥∥∥∥
(
Ip−1 − b−1

n

∑

i∈H4

WiW
⊤
i ΩW

)
ξ̂A

∥∥∥∥
∞

> 24

√
b−1
n log pM3M2




≤ 4/p + 2p−2 < 6/p.

We have proved (29).
Step 2: show (30).
Let ri = ξ̂⊤AΩWWi. For i ∈ H4, notice that conditional on F , ri is

Gaussian with mean zero and variance ξ̂⊤AΩWΣWΩWξ̂A = ξ̂⊤AΩWξ̂A. It
follows by Lemma 1 that

P



∣∣∣∣∣∣

∑

i∈H4

[
r2i − E(r2i | F)

]
∣∣∣∣∣∣
> tξ̂⊤AΩWξ̂A | F


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
.

Since E(r2i | F) = ξ̂′AΩWξ̂A, we have

P


b−1

n

∑

i∈H4

r2i >
(
1 + b−1

n t
)
ξ̂⊤AΩWξ̂A




= P


∑

i∈H4

[
r2i − E(r2i | F)

]
> tξ̂⊤AΩWξ̂A


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
.
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Notice that ξ̂⊤AΩWξ̂A ≤ λmax(ΩW)‖ξ̂A‖22 = ‖ξ̂A‖22/λmax(ΣW) ≤M‖ξ̂A‖22.
By Lemma 2, ‖ξ̂A‖2 ≤ 4M2M2 with probability at least 1− 4/p. Therefore,
we have that

P


b−1

n

∑

i∈H4

r2i > 16
(
1 + b−1

n t
)
M5M2

2


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
+ 4/p.

Since b−1
n

∑
i∈H4

r2i = ξ̂⊤AΩW

(
b−1
n

∑
i∈H4

WiW
⊤
i

)
ΩWξ̂A, we choose t =

bn and obtain (30).

Proof of Lemma 4. We invoke Corollary 18 of Rudelson and Zhou (2013)
and Lemma 4.1 of Bickel et al. (2009).

For any k between 1 and p, we define the sparse eigenvalues

φmin(k) = min
1≤‖q‖0≤k

b−1
n

∑
i∈H2

(W⊤
i q)

2

‖q‖22
and

φmax(k) = max
1≤‖q‖0≤k

b−1
n

∑
i∈H2

(W⊤
i q)

2

‖q‖22
.

The proof proceeds in two steps. We first verify a sufficient condition for
the sparse eigenvalue condition and then derive the desired result.

Step 1: Show that rows of Σ
−1/2
W W are isotropic and ψ2 with constant√

8/3.

Notice that Σ
−1/2
W W is a matrix whose entries are i.i.d N (0, 1). Let

r⊤ denote the first row of Σ
−1/2
W W. For any nonzero vector q ∈ R

p−1,
(r⊤q)2/‖q‖22 has a chi-squared distribution with one degree of freedom. By
the moment generating function of chi-squared distributions, we have that
for any t >

√
2‖q‖2,

E

[
exp

(
(r⊤q)2/t2

)]
= E

[
exp

(
(r⊤q)2

‖q‖22
× ‖q‖22

t2

)]
=

(
1− 2‖q‖22

t2

)−1/2

.

Thus,

inf
{
t : E

[
exp

(
(r⊤q)2/t2

)]}
≤
√

8/3‖q‖2.

In other words, r is isotropic and ψ2 with constant
√

8/3; see Definition
5 of Rudelson and Zhou (2013).

Step 2: Show the desired result.
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By Corollary 18 of Rudelson and Zhou (2013), we have that with proba-
bility at least 1− 2 exp(−τ2bn/570),

(1− τ)2M−1 ≤ φmin(k) ≤ φmax(k) ≤ (1 + τ)2M

if bn ≥ 570τ−2k log(12ep/τ). Let m be the smallest integer satisfying

m ≥ 36M2(1 + τ)2(1− τ)−2s.

This means that if bn ≥ 570τ−2(s + m) log(12ep/τ), then P (B) ≥ 1 −
4 exp(−τ2bn/570), where the event B is defined as

B =
{
φmin(s +m) ≥ (1− τ)2M−1 and φmax(m) ≤ (1 + τ)2M

}
.

Notice that on the event B, mφmin(m+ s) > c20sφmax(m) with c0 = 3. By
Lemma 4.1(ii) of Bickel et al. (2009), on the event B

√
κ(s) =

√
φmin(m+ s)

(
1− c0

√
sφmax(m)

mφmin(m+ s)

)

=
√
φmin(m+ s)− c0

√
s

m
φmax(s)

≥ (1− τ)M−1/2 − 3×
√

s

36M2(1 + τ)2(1− τ)−2s
× (1 + τ)2M

= 0.5(1 − τ)M−1/2.

The desired result follows.

Proof of Lemma 5. We invoke Theorem 6.1 of Bühlmann and Van De Geer
(2011). We first show a concentration result for ‖∑i∈H2

Wivi‖∞.
For 1 ≤ j ≤ p − 1, Wi,j ∼ N (0,E(W2

i,j)) with E(W2
i,j) ≤ λmax(Σ) ≤

M . Also observe that vi ∼ N (0, σ2V) with σ2V ≤ λmax(Σ) ≤ M . Since
E(Wi,jvi) = 0, it follows by Lemma 1 that ∀t > 0,

P



∣∣∣∣∣∣

∑

i∈H2

Wi,jvi

∣∣∣∣∣∣
> tM


 ≤ 2 exp

(
− t2

2(2bn + 7t)

)
.

By the union bound, we have

P


∥∥

∑

i∈H2

Wivi
∥∥
∞
> tM


 ≤ 2p exp

(
− t2

2(2bn + 7t)

)
.
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Taking t = 6
√
bn log p, we have that

P


∥∥

∑

i∈H2

Wivi
∥∥
∞
> 6M

√
bn log p


 ≤ 2p exp

(
− 36 log p

4 + 14× 6
√
b−1
n log p

)

(i)

≤ 2p exp

(
−36 log p

4 + 6

)
= 2p−2.6 < 2/p2,

where (i) follows by bn > n/4−1 and the assumption (n−4)/ log p ≥ 784 =
282. In other words,

(31) P


2
∥∥∑

i∈H2

Wivi
∥∥
∞
/bn ≤ λπ/2


 ≥ 1− 2/p2.

By the assumptions of Theorem 4 and bn > n/4− 1, we can easily verify
the assumption of Lemma 4 with τ = 3/4. Thus, we apply Lemma 4 with
τ = 3/4 and obtain the restricted eigenvalue condition

(32) P
(
κ(s) > 0.015M−1

)
≥ 1− 4 exp (−3bn/3040) ,

where κ(s) is defined in Lemma 4. Notice that due to Hölder’s inequal-
ity, κ(s) is smaller than the compatibility constant in Equation (6.4) of
Bühlmann and Van De Geer (2011):

κ(s) = min
|J |⊂{1,...,p−1},|J |≤s

min
‖qJc‖1≤3‖qJ‖1

b−1
n

∑
i∈H2

(W⊤
i q)

2

‖qJ‖22

≤ min
|J |⊂{1,...,p−1},|J |≤s

min
‖qJc‖1≤3‖qJ‖1

b−1
n

∑
i∈H2

(W⊤
i q)

2

‖qJ‖21/s
.

By (31) and (32), together with Theorem 6.1 of Bühlmann and Van De Geer
(2011), we have that

P (‖π̂ − π‖1 ≤ 267sλπM) ≥ 1− 4 exp (−3bn/3040) − 2/p2.

This proves the first claim. For the second claim, we simply follow the
same argument as in (31) with H2 replaced by H4.

Proof of Lemma 6. We need to show that with high probability,

(33)
∣∣∣ξ̂⊤AπA − ξ̂⊤Aπ̃A

∣∣∣ ≤ ηπ,
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and ∥∥b−1
n

∑

i∈H4

Wi(Zi −W⊤
i π)

∥∥
∞
≤ λπ/4

as well as

b−1
n

∑

i∈H4

(Zi −W⊤
i π)

2 ≥ 1

2M
.

Since Zi −W⊤
i π = vi, Lemmas 5 and 2 imply that

(34) P


∥∥b−1

n

∑

i∈H4

Wi(Zi −W⊤
i π)

∥∥
∞
≤ λπ/4


 ≥ 1− 2/p2 > 1− 2/p

and

(35) P


b−1

n

∑

i∈H4

(Zi −W⊤
i π)

2 ≥ 1

2M


 ≥ 1− 2 exp(−M−2bn/44).

It remains to show (33). Notice that

π̃ − π =


Ip−1 − Ω̂Wb−1

n

∑

i∈H4

WiW
⊤
i


 (π̂ − π) + b−1

n

∑

i∈H4

Ω̂WWivi

and thus

ξ̂⊤Aπ̃A − ξ̂⊤AπA

= ξ̂⊤A


Ip−1 − Ω̂Wb−1

n

∑

i∈H4

WiW
⊤
i


 (π̂ − π)

︸ ︷︷ ︸
T1

+ b−1
n

∑

i∈H4

ξ̂⊤AΩ̂WWivi

︸ ︷︷ ︸
T2

.

We proceed in two steps. We first bound T1 and then T2.
Let B denote the event that ΩW satisfies the constraint in (13) for Ω̂W.

By Lemma 3,

(36) P (B) ≥ 1− 10/p − 2 exp(−bn/18).

Step 1: bound T1
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Notice that on the event B, Ω̂W satisfies the constraint in (13) and there-
fore,

|T1| ≤

∥∥∥∥∥∥
ξ̂⊤A


Ip−1 − Ω̂Wb−1

n

∑

i∈H4

WiW
⊤
i



∥∥∥∥∥∥
∞

‖π̂ − π‖1

(i)

≤ 24

√
b−1
n log pM3M2 ‖π̂ − π‖1 ,

where (i) follows by the constraint in (13). By the bound in Lemma 5, we
have that
(37)

P

(
|T1| > 6408

√
b−1
n log pM4M2sλπ and B

)
≤ 4 exp (−3bn/3040) + 2/p2.

Step 2: bound T2
Let F be the σ-algebra generated by {(yi,Wi, Zi)}i∈H1

⋃
H3

and {Wi}i∈H4 .
Notice that {vi}i∈H4 is independent of both {Wi}i∈H4 and {(yi,Wi, Zi)}i∈H1

⋃
H3

.

Hence, {vi}i∈H4 is independent of F . On the other hand, notice that {ξ̂⊤AΩ̂WWi}i∈H4

is F-measurable. Since {vi}i∈H4 is i.i.d N (0, σ2V), we have that conditional
on F , T2 is Gaussian with mean zero and variance

ξ̂⊤AΩ̂W


b−2

n

∑

i∈H4

WiW
⊤
i


 Ω̂Wξ̂A.

By the elementary bound of P(|X| > tσ) ≤ 2 exp(−t2/2) for X ∼ N (0, σ2),
we have that for any t > 0,

P


|T2| > t

√√√√√ξ̂⊤AΩ̂W


b−2

n

∑

i∈H4

WiW
⊤
i


 Ω̂Wξ̂A | F


 ≤ 2 exp

(
−t2/2

)
.

We notice that, on the event B, Ω̂W satisfies the constraint in (13) and
thus

ξ̂⊤AΩ̂W

(
b−2
n

∑

i∈H4

WiW
⊤
i

)
Ω̂Wξ̂A ≤ 32M5M2

2 b
−1
n .

It follows that for any t > 0,

P

(
|T2| > 4tb−1/2

n M2M2

√
2M | F

)
≤ 2 exp

(
−t2/2

)
.
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We take t =
√
2 log(100/α) and obtain

(38) P

(
|T2| > 8b−1/2

n M2M2

√
M log(100/α) and B

)
≤ 0.02α.

Now we combine (36), (37) and (38), obtaining

P (|T1|+ |T2| > ηπ) ≤ 10/p + 2exp(−bn/18) + 0.02α + 4exp (−3bn/3040) + 2/p2

< 12/p + 0.02α + 6exp (−3bn/3040) .

Since ξ̂⊤Aπ̃A − ξ̂⊤AπA = T1 + T2, we have proved that (33) holds with
probability at least 1− 12/p− 0.02α− 6 exp (−3bn/3040). By recalling (34)
and (35), we complete the proof.

Proof of Lemma 7. Let δ = π̆−π and Σ̂W = b−1
n

∑
i∈H4

WiW
⊤
i . Let

J0 = supp(π). Define B to be the event that π satisfies the constraint in
(15) and κ(s) ≥ 0.24(1 − τ)2M−1, where κ(s) is defined in Lemma 4 and
τ ∈ (0, 1) is a constant to be determined later.

On the event B, we have that ‖π̆‖1 ≤ ‖π‖1, which means ‖π + δJ0‖1 +
‖δJc

0
‖1 ≤ ‖π‖1. Hence, on the event B,

(39) ‖δJc
0
‖1 ≤ ‖δJ0‖1.

Also observe that on the event B, ‖b−1
n

∑
i∈H4

WiZi − Σ̂Wπ‖∞ ≤ λπ/4

and ‖b−1
n

∑
i∈H4

WiZi − Σ̂Wπ̆‖∞ ≤ λπ/4, which means

‖Σ̂δ‖∞ ≤ λπ/2.

Therefore, on the event B,

δ⊤Σ̂δ ≤ ‖δ‖1‖Σ̂Wδ‖∞ ≤ 0.5λπ‖δ‖1

= 0.5λπ(‖δJ0‖1 + ‖δJc
0
‖1)

(i)

≤ λπ‖δJ0‖1 ≤ λπ
√
s‖δJ0‖2,

where (i) follows by (39).
On the other hand, we can lower bound δ⊤Σ̂δ via the restricted eigenvalue

condition. By (39), we have that on the event B, ‖δJc
0
‖1 ≤ ‖δJ0‖1 ≤ 3‖δJ0‖1.

Thus, we have that

δ⊤Σ̂δ ≥ κ(s)‖δJ0‖22 ≥ 0.24(1 − τ)2M−1‖δJ0‖22.

Now we combine the above two displays and obtain that on the event B,

‖δJ0‖2 ≤
Mλπ

√
s

0.24(1 − τ)2
.
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Therefore, (39) implies that on the event B,

‖δ‖1 ≤ 2‖δJ0‖1 ≤ 2
√
s‖δJ0‖2 ≤

2Mλπs

0.24(1 − τ)2
.

Notice that by Lemmas 4 and 6,

P(B) ≥ 1− 14/p − 0.02α − 6 exp (−3bn/3040)

− 2 exp(−M−2bn/44) − 4 exp(−τ2bn/570).

Hence, the desired result follows by choosing τ = 3/4.

L.3. Proof of auxiliary results used in proving Theorem 8.

Proof of Lemma 8. Clearly, we always have L(Θ1,Θ) ≤ L(Θ,Θ). We
only need to show the other direction. Let c > 0 be a constant such that

c inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≤ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI).

Notice that

L(Θ1,Θ) = inf
CI∈Cα(Θ)

sup
θ∈Θ1

Eθdiam(CI)

≥ inf
CI∈Cα(Θ)

inf
θ∈Θ1

Eθdiam(CI)

≥ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI)

≥ c inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) = cL(Θ,Θ).

The proof is complete.

Proof of Lemma 9. Clearly, we have

inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI) ≥ inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI).

We only need to show the other direction. Let CI∗ ∈ Cα(Θ) and θ∗ ∈ Θ
be such that

inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI) ≥ 0.9Eθ∗diam(CI∗).

Now define Θ1 = {θ∗}. Clearly,

Eθ∗diam(CI∗) = sup
θ∈Θ1

Eθdiam(CI∗) ≥ inf
CI∈Cα(Θ)

sup
θ∈Θ1

Eθdiam(CI).
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By the assumption of cL(Θ,Θ) ≤ L(Θ1,Θ), we have

Eθ∗diam(CI∗) ≥ c inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI).

Hence,

inf
CI∈Cα(Θ)

inf
θ∈Θ

Eθdiam(CI) ≥ 0.9c inf
CI∈Cα(Θ)

sup
θ∈Θ

Eθdiam(CI).

The proof is complete.

L.4. Proof of auxiliary results used in proving Theorem 10.

Proof of Lemma 10. Due to length of the work we comment that the
result above is quite easy to verify. We leave the details to the reader.

Proof of Lemma 11. If (y,Z,W) ∼ (θ ⊙D) with

θ = (β,γ,Σ, σ) ∈ Θ̃N1,N2(s),

then
y = ZβD +WγD + ε

with ε ∼ Nn(0, In(σD)2) and rows of [Z,W] being i.i.d N(0,Σ). Now we
divide both sides by D, obtaining

yD−1 = Zβ +Wγ + ε̃

with ε̃ = εD−1. Notice that ε̃ ∼ Nn(0, Inσ
2) and rows of [Z,W] being i.i.d

N(0,Σ). Thus, (y,Z,W) ∼ θ. This shows the “only if” direction. The “if”
direction follows by an analogous argument.

Proof of Lemma 12. Here, for notational simplicity, we use | · | to de-
note diam(·). Fix any η > 0. By the definition of infimum, there exists
T∗ ∈ Cα(Θ̃N1,N2(s)) satisfying

A(s,N1, N2) = inf
T∈Cα(Θ̃N1,N2

(s))
sup

θ∈Θ̃N1,N2
(s)

Eθ|T (y,Z,W)|

≥ sup
θ∈Θ̃N1,N2

(s)

Eθ|T∗(y,Z,W)| − η.(40)

Define T̃ by
T̃ (y,Z,W) = D · T∗(yD−1,Z,W).
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For an arbitrary θ0 = (β0,γ0,Σ, σ0) ∈ Θ̃DN1,DN2(s), we define θ1 =
(β1,γ1,Σ, σ1) by

β1 = β0D
−1, γ1 = γ0D

−1, and σ1 = σ0D
−1.

Notice that θ0 = θ1 ⊙D. Notice that

|T̃ (y,Z,W)| = D|T∗(yD−1,Z,W)|.

Therefore,

sup
θ1∈Θ(s,DN1,DN2)

E(y,Z,W)∼θ1 |T̃ (y,Z,W)|

= D sup
θ1∈Θ̃DN1,DN2

(s)

E(y,Z,W)∼θ1 |T∗(yD−1,Z,W)|

(i)
= D sup

θ∈Θ̃N1,N2
(s)

E(y,Z,W)∼(θ⊙D)|T∗(yD−1,Z,W)|

(ii)
= D sup

θ∈Θ̃N1,N2
(s)

E(yD−1,Z,W)∼θ|T∗(yD−1,Z,W)|

(iii)

≤ D(A(s,N1, N2) + η),(41)

where (i) follows by Lemma 10, (ii) follows by Lemma 11 and (iii) follows
by (40).

Now we show T̃ ∈ Cα(Θ(s,DN1,DN2)). Notice that

P(y,Z,W)∼θ0(β0 ∈ T̃ (y,Z,W)) = P(y,Z,W)∼θ0(β1D ∈ D · T∗(yD−1,Z,W))

= P(y,Z,W)∼θ0(β1 ∈ T∗(yD
−1,Z,W))

= P(y,Z,W)∼(θ1⊙D)(β1 ∈ T∗(yD
−1,Z,W))

(i)
= P(yD−1,Z,W)∼θ1(β1 ∈ T∗(yD

−1,Z,W))

(ii)

≥ 1− α,

where (i) follows by Lemma 11 and (ii) follows by T∗ ∈ Cα(Θ̃N1,N2(s)) and

θ1 ∈ Θ̃N1,N2(s). Hence, T̃ ∈ Cα(Θ(s,DN1,DN2)) and

sup
θ1∈Θ(s,DN1,DN2)

E(y,Z,W)∼θ1 |T̃ (y,Z,W)| ≥ A(s,DN1,DN2).
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By (41), it follows that

D(A(s,N1, N2) + η) ≥ A(s,DN1,DN2).

Since η > 0 is arbitrary, we have DA(s,N1, N2) ≥ A(s,DN1,DN2).

L.5. Proof of auxiliary results used in proving Theorem 11.

Proof of Lemma 8. Let λmin(·) denote the minimal eigenvalue. Then

P

(
Z⊤(WW⊤)−1Z > a

)
≤ P

(
λmax[(WW⊤)−1]‖Z‖22 > a

)
= P

(
‖Z‖22 > λmin(WW⊤)a

)
.

By Corollary 5.35 of Vershynin (2010), we have that

P

(√
λmin(WW⊤) <

√
2n −√

n− 0.1
√
n

)
≤ 2 exp(−0.01n/2).

Since
√
2− 1− 0.1 > 0.3, we have that

P

(
Z⊤(WW⊤)−1Z > a

)
≤ P

(
‖Z‖22 > λmin(WW⊤)a

)

≤ 2 exp(−0.01n/2) + P
(
‖Z‖22 > 0.09na

)

≤ 2 exp(−0.01n/2) +
E‖Z‖22
0.09na

= 2exp(−0.01n/2) +
n

0.09na

< 2 exp(−0.01n/2) +
12

a
.

Proof of Lemma 9. We first notice that

E‖ξ‖22 = Eξ⊤ξ = Etrace(ξξ⊤) = trace(Eξξ⊤) = trace(Σ).

Then the desired result follows by Markov’s inequality

P(‖ξ‖2 > x) = P(‖ξ‖22 > x2) ≤ x−2
E‖ξ‖22.

Proof of Lemma 10. We use an argument that is inspired by the proof
of Proposition 1 of Carpentier and Verzelen (2019). Let C1 > 0 be a con-
stant to be chosen later. Let µn(·) denote the probability measure of the
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Gaussian distribution N (0, Ip−1C
2
1 (p − 1)−1). Recall for the parameter θ =

(β,γ,Σ, σ) ∈ Θ∗(r), we have σ = 0 and Σ = Ip. Thus, we can write
y = Zβ +Wγ with γ ∈ R

p−1, where entries of Z ∈ R
n and W ∈ R

n×(p−1)

are i.i.d standard normal random variables.
Since p ≥ 2n+1, we can without loss of generality set p = 2n+1 and hence

W ∈ R
n×2n. If p > 2n+1, then we can simply apply this distribution to the

first (2n+1) elements of γ and leave the other (p−2n−1) elements to be zero;
since doing so would create additional unnecessary notations without really
changing the argument, we work with p = 2n + 1 for notational simplicity.
Define two probability measures

P[A] =

∫

Rp−1

P(0,γ,Ip,0)dµn(γ)

and

P[B] =

∫

Rp−1

P(rn,γ,Ip,0)dµn(γ),

where rn > 0 is a sequence to be determined. We define the event

A =
{
Z⊤(WW⊤)−1Z ≤ C2

}
,

where C2 > 0 is a constant to be determined. For a fixed (W,Z), y follows
N (0,WW⊤C2

1 (p−1)−1) under P[A] and follows N (Zrn,WW⊤C2
1(p−1)−1)

under P[B].
Let B = {v ∈ R

p−1 : ‖v‖2 ≤ 1}. Let µ̃n(·) be the truncated Gaussian
measure on B, i.e., µ̃n(C) = µn(C

⋂B)/µn(B) for any set C. Define

PÃ =

∫

Rp−1

P(0,γ,Ip,0)dµ̃n(γ).

and

PB̃ =

∫

Rp−1

P(rn,γ,Ip,0)dµ̃n(γ).

The rest of proof proceeds in three steps in which we bound (1) difference
between P[A] and P[B], (2) difference between P[A] and PÃ and (3) difference
between P[B] and PB̃.

Step 1: bound the difference between P[A] and P[B]

Let γ̃ be a random vector that is independent of (y,W,Z) and has the
distribution µn. Let Y ×W×Z be the support of (y,W,Z). We notice that

EP[B]
ψ(y,W,Z) =

∫

Y×W×Z
ψ(y,W,Z)dP[B](y,W,Z)
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=

∫

Y×W×Z
ψ(y,W,Z)

(∫

Rn

dP(rn,γ,Ip,0)(y,W,Z)dµn(γ)

)

(i)
=

∫

Rp−1

∫

Y×W×Z
ψ(y,W,Z)dP(rn ,γ,Ip,0)(y,W,Z)dµn(γ)

=

∫

Rp−1

∫

W×Z
ψ(Zrn +Wγ,W,Z)dP(rn,γ,Ip,0)(W,Z)dµn(γ)

=

∫

W×Z

∫

Rp−1

ψ(Zrn +Wγ,W,Z)dµn(γ)dP(rn,γ,Ip,0)(W,Z)

= Eψ(Zrn +Wγ̃,W,Z)

with E being expectation over random elements W, Z and γ̃, where (i) and
(ii) follow by Fubini’s theorem (since ψ(Zrn+Wγ,W,Z)dP(rn,γ,Ip,0)(W,Z)
is integrable). Here, notice that W, Z and γ̃ are mutually independent,
where entries of W and Z follow the standard normal distribution.

Similarly, we have

EP[A]
ψ(y,W,Z) = Eψ(Wγ̃,W,Z).

Let Q(w,z;rn)(·) denote the distribution

N (zrn, ww
⊤C2

1 (p − 1)−1).

Then we have

Eψ(Wγ̃,W,Z) = E

(∫

Y
ψ(y,W,Z)Q(W,Z;0)(dy)

)

= E

(∫

Y
ψ(y,W,Z)Q(W,Z;rn)(dy)

Q(W,Z;0)(dy)

Q(W,Z;rn)(dy)

)
.

Moreover,

∣∣∣EP[A]
ψ − EP[B]

ψ
∣∣∣

= |E[ψ(Zrn +Wγ̃,W,Z) − ψ(Wγ̃,W,Z)]|
= |E {E [ψ(Zrn +Wγ̃,W,Z)− ψ(Wγ̃,W,Z) | W,Z]}|
= |E {1A × E [ψ(Zrn +Wγ̃,W,Z)− ψ(Wγ̃,W,Z) | W,Z]}|

+ |E {1Ac × E [ψ(Zrn +Wγ̃,W,Z) − ψ(Wγ̃,W,Z) | W,Z]}|
≤ |E {1A × E [ψ(Zrn +Wγ̃,W,Z)− ψ(Wγ̃,W,Z) | W,Z]}|+ P(Ac)

≤ E |1A × E [ψ(Zrn +Wγ̃,W,Z) − ψ(Wγ̃,W,Z) | W,Z]|+ P(Ac)
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= E

∣∣∣∣1A × E

[
ψ(Wγ̃,W,Z)

(
dQ(W,Z;rn)

dQ(W,Z;0)
(Wγ̃)− 1

)
| W,Z

]∣∣∣∣+ P(Ac)

≤ E

∣∣∣∣1A × E

[∣∣∣∣
dQ(W,Z;rn)

dQ(W,Z;0)
(Wγ̃)− 1

∣∣∣∣ | W,Z

]∣∣∣∣+ P(Ac)

= E
(
1A × TV(Q(W,Z;rn), Q(W,Z;0))

)
+ P(Ac)

(i)

≤ E

(
1A ×

√
KL(Q(W,Z;rn), Q(W,Z;0))/2

)
+ P(Ac),

where (i) follows by the first Pinsker’s inequality (Lemma 2.5 of Tsybakov
(2008)). By Lemma 7, we have

KL(Q(W,Z;rn), Q(W,Z;0)) =
1

2
r2nZ

⊤
[
WW⊤C2

1n
−1
]−1

Z =
nr2n
2C2

1

Z⊤(WW⊤)−1Z.

Thus,

1A ×KL(Q(W,Z;rn), Q(W,Z;0)) =
nr2n
2C2

1

Z⊤(WW⊤)−1Z× 1A ≤ nr2nC2

2C2
1

and ∣∣∣EP[A]
ψ − EP[B]

ψ
∣∣∣ ≤ n1/2rn

√
C2

2C1
+ P(Ac).

Fix an arbitrary α > 0. By Lemma 8, there exists a constant C2 depending

only on α such that P(Ac) ≤ α/4. Then we take rn = n−1/2C
−1/2
2 C1α/2 and

obtain that

(42)
∣∣∣EP[A]

ψ − EP[B]
ψ
∣∣∣ ≤ α/2.

Step 2: bound the difference between P[B] and PB̃ .
Recall from Step 1 that

EP[B]
ψ(y,W,Z) =

∫

W×Z

∫

Rp−1

ψ(Zrn +Wγ,W,Z)dµn(γ)dP(rn,γ,Ip,0)(W,Z)

=

∫

Rp−1

φ(γ)dµn(γ),

where φ(γ) =
∫
W×Z ψ(Zrn + Wγ,W,Z)dP(rn,γ,Ip,0)(W,Z). Similarly, we

have

EP
B̃
ψ(y,W,Z) =

∫

Rp−1

φ(γ)dµ̃n(γ) =
1

µn(B)

∫

B
φ(γ)dµn(γ).
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We observe
∣∣∣EP[B]

ψ(y,W,Z) − EP
B̃
ψ(y,W,Z)

∣∣∣

=

∣∣∣∣
∫

Rp−1

φ(γ)dµn(γ)−
1

µn(B)

∫

B
φ(γ)dµn(γ)

∣∣∣∣

=

∣∣∣∣
∫

B
φ(γ)dµn(γ) +

∫

Bc

φ(γ)dµn(γ)−
1

µn(B)

∫

B
φ(γ)dµn(γ)

∣∣∣∣

≤
∣∣∣∣
∫

B
φ(γ)dµn(γ)−

1

µn(B)

∫

B
φ(γ)dµn(γ)

∣∣∣∣+
∣∣∣∣
∫

Bc

φ(γ)dµn(γ)

∣∣∣∣

=

∣∣∣∣1−
1

µn(B)

∣∣∣∣×
∣∣∣∣
∫

B
φ(γ)dµn(γ)

∣∣∣∣+
∣∣∣∣
∫

Bc

φ(γ)dµn(γ)

∣∣∣∣
(i)

≤
∣∣∣∣1−

1

µn(B)

∣∣∣∣+ µn(Bc) =
µn(Bc)

1− µn(Bc)
+ µn(Bc),

where (i) follows by |φ(γ)| ≤ 1 (since |ψ| ≤ 1). By Lemma 9,

µn(Bc) ≤ trace
(
Ip−1C

2
1 (p− 1)−1

)
= C2

1 .

Now we choose C1 =
√
α/12. This means that µn(Bc) ≤ α/12. Hence,

µn(Bc) < 1/2.
∣∣∣EP[B]

ψ(y,W,Z) − EP
B̃
ψ(y,W,Z)

∣∣∣

≤ µn(Bc)
1− µn(Bc)

+ µn(Bc) ≤ 2µn(Bc) + µn(Bc) ≤ α/4.(43)

Step 3: bound the difference between P[A] and PÃ.
Similarly to Step 2, we can show that

(44)
∣∣∣EP[A]

ψ(y,W,Z) − EP
Ã
ψ(y,W,Z)

∣∣∣ ≤ α/4.

Now we combine (42), (43) and (44), obtaining
∣∣∣EP

Ã
ψ(y,W,Z) − EP

B̃
ψ(y,W,Z)

∣∣∣ ≤ α.

Since supθ∈Θ∗(0) Eθψ ≤ α and PÃ is by definition a mixed of distributions
in Θ∗(0), we have EP

Ã
ψ(y,W,Z) ≤ α, which means

EP
B̃
ψ(y,W,Z) ≤ 2α.

Notice that PB̃ is a mixture of distributions in Θ∗(rn), we have that

inf
θ∈Θ∗(rn)

Eθψ ≤ 2α.
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The proof is complete since

rn = n−1/2C
−1/2
2 C1α/2

with C1, C2 depending only on α.

APPENDIX M: COMPARISON OF PRIORS

To provide a comparison of the priors, we outline an adaptation of the
prior from Cai and Guo (2017) and compare with our prior for the proof
of minimax lower bound. This comparison illustrates the main differences.
(We thank an anonymous reviewer for suggesting this.)

A simple adaptation of the prior considered in Cai and Guo (2017) under

our notation: y = Zβ + Wγ + ε and Σ =

(
π⊤π + σ2V π⊤

π Ip−1

)
. Let the

parameter be indexed by (β,γ,π, σV, σε).
The priors used by Cai and Guo (2017) in Equation (7.13) on page 636

therein can be adapted (switching ) as follows. Given (β∗,γ∗, 0, 1, σ0), their
prior is

β = β∗

γ = γ∗ + c1

√
log(p/m2)

n
δ

π = c2

√
log(p/m2)

n
δ

σV =

√
1− c22

m log(p/m2)

n

σε = σ0

where δ is from the uniform distribution from the set M = {v ∈ {0, 1}p−1 :
‖v‖0 = m}. Here, ‖(β∗,γ⊤

∗ )
⊤‖0 = m and c1 > 0 is a constant.

Here is our prior in Definition 3 from Appendix A. Given (β∗,γ∗,π∗, σV,∗, σε,∗)
with ‖π∗‖0 = s (with m ≍ s), we define

β = β∗ − h with h =
ds log p

n

γ = γ∗ + hπ + r(1− h)σε,∗
√

2d log(p)/nδ = γ∗ +
ds log p

n
π∗ + σV,∗

√
2d log p

n
δ

π = π∗ + σV,∗

√
2d log p

n
δ

σV = σV,∗

√
1− ds log p

n
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σε = σε,∗

where d > 0 is a constant and r = σV,∗/σε,∗.
From the above comparison, the difference between our prior and that in

Cai and Guo (2017) is not simply that γ and π are switched. Notice that
in our prior, the construction of γ depends on π∗, whereas in Cai and Guo
(2017), π∗ is set to be zero. A priori, it is not obvious whether there exists
a construction of γ under nonzero π∗ such that the calculation in our Ap-
pendix A would go through. From this perspective, the prior of Cai and Guo
(2017) is just a special case of our construction. For the uniform non-
testability result to hold, we need to build the prior around a general point
(β∗,γ∗,π∗, σV,∗, σε,∗).
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