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nomial regression, we develop nonparametric estimates for a conditional density function,
its square root and its partial derivatives. The proposed procedures are innovative and of
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1 Introduction

A significant feature of nonlinear systems exhibiting chaos is that a small perturbation in
the initial condition could possibly lead to a considerable divergence of the state of the system
in the short or the medium term. In a deterministic dynamic system, this phenomenon is
usually characterized by the well-known Lyapunov exponents (cf. Eckmann and Ruelle 1985).
However, in a stochastic system, it has not been explored systematically. For example, most
of the nonlinear time series literature has concentrated on the distributional properties, which
are completely determined by the random law in the system (cf. Tong 1990 and references
therewith). The possible divergence caused by the perturbation in the initial value is largely
neglected. This may well be irrelevant for linear systems but is certainly not the case for
nonlinear systems, because the divergence through nonlinear dynamics could be considerable
in the time evolution. In the context of nonlinear prediction, the effect of the perturbation in
the initial value was illustrated by Yao and Tong (1994).

The goal of this paper is to define two measures on the sensitivity of a nonlinear system
to its initial values, as a formalization of a general idea which has already had a significant
impact on statistical applications (especially, in nonlinear time series) and the study of noisy
chaos (cf. Yao and Tong 1993). The notion of sensitivity measures and dimensionality of
attractors of nonlinear time series has gained increasingly attention. See, for example, the
recent development by Eckmann and Ruelle (1985), Nychka et al. (1992), Smith (1992) and
Wolff (1992), Hall and Wolff (1993). Further, we develop some estimates for these measures
without assuming any specific form of the model. We measure the sensitivity in terms of the
discrepancy of the conditional distributions of the state variables given two different but nearby
initial values. The adopted measures are the mutual information based on the Kullback-Leibler
information, and the L?-distance. The locally polynomial regression method (cf. Fan 1992,
Fan et al. 1993, and Ruppert and Wand, 1994) is adapted in order to estimate the conditional
density function, its square root and the sensitivity measures. The size of local neighborhood
(i.e. bandwidth) is objectively determined by data via a Residual Square Criterion (RSC)
proposed in Fan and Gijbels (1993) together with a plug-in rule (See e.g. Jones, Marron and
Sheather, 1993).



The plan of the paper is as follows. In Section 2, we first summarize the idea of the Lyapunov
exponents of a deterministic system. Then we derive two sensitivity measures for a stochastic
system. Section 3 presents the nonparametric estimators for conditional density functions and
the sensitive measures, which are constructed by using the locally polynomial regression. Some
methods for bandwidth selection are also suggested. Section 4 reports the simulation results.
Some asymptotic results are stated in Section 5. All mathematical proofs are relegated to the

appendix.

2 Measures of the sensitivity of a stochastic system

2.1 Lyapunov exponents for a deterministic system

To highlight the essential idea of how the Lyapunov exponents can be used to monitor the
sensitivity of a deterministic system on its initial conditions, we consider a one-dimensional
discrete-time deterministic system generated by the dynamical equation Y; = f(Y;_1) fort > 1.
Let {Yy(z), t > 0} denote the trajectory starting at Yo = z € R, and z and z + 6 be two nearby
initial values, Then, after m iterations

d .
V(2 + 8) = Ym() = f™ (2 + 8) = fW(2) % § ™ (2) = & [[ H{Vi(2)},
Coi=1
where f(™) denotes the m-fold composition of f, and f denotes the derivative of f. The (local)

Lyapunov exponent (at initial value z) is defined as

.1 d . R s .
K(z) = lim —log|—f(e)| = lim — ; log | f{Y:(z)}!,

when the limit exists. Hence, we have the approximation
Y (z + 6) = Yo (2)| = |6]e™(),

which entails that two trajectories with nearby initial values around z could diverge at an
exponential rate if k(z) > 0. Obviously, the sensitivity of the system is fully monitored by x(.),

which is a function of the derivatives of the map f(-).
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2.2 Measures of sensitivity for a stochastic system

A discrete-time stochastic dynamical system can be described by the equation
Xt = F(Xt—l, et), (21)

for t > 1, where X, denotes a state vector in R?, F(.) is a real vector-valued function, and {e;}
is a noise process which satisfies the equality E( e; | Xo,...,X¢—1) = 0. If the noise is additive,
(2.1) can be written as

Xt: F(Xt_1)+€¢, (22)

which includes the nonlinear autoregressive model as a special case. Specifically, suppose that
{Y:; —o0 <t < o} is a one-dimensional strictly stationary time series, which is d-dependent
(d > 1) in the sense that given {Y;, i < t}, the conditional distribution of Y;,; depends on
{Y;, ¢ < t} only through X;, where X; = (Y;,Yi—1,...,Yi_as1)T. Let f(z) = E(W1|Xo = z).
Then Y; can be expressed as

i = f(Xi-1) + e, (2.3)

where ¢, = Y; — f(X;-1). Define F(X;_,) = (f(Xt_]),}/t_l,...,)/g_d+1)T, e; = (€,0,...,0)T.
Then equation (2.2) holds.

To apply the key ingredient in Section 2.1 to a stochastic system, we investigate how sensi-
tively the conditional expectation Fy,(z) = E( X, | Xo = z ) depends on z. Formally, we can
define an index in a similar way as (.) (cf. Yao and Tong 1994). However, that approach is not
very appropriate. Because of the accumulation of noise through the time evolution, the system
seems unlikely to have a strong memory of its initial value after a long time, i. e. Fy,,(z) would
be nearly a constant when m is sufficiently large. This suggests that asymptotics are unlikely
to yield a practically useful characteristic exponent, unless we are prepared to entertain the
assumption that the different trajectories have the same realization of the random noise (cf.
Nychka et al.1992). Practically, it seems to us that we should seek some indices which capture
the divergence caused by a small shift in the initial value in the short or the medium term.
Yao and Tong (1994) used the derivative of F,,,(z) to monitor the sensitivity of the conditional
mean to the initial value, which also played an important role in m-step pointwise prediction

in nonlinear time series.



A more informative way is to consider the global deviation of the conditional distribution
of X,, given Xy, which has obviously a wider impact on statistical applications as well as the
study of noisy chaos (cf. Yao and Tong 1993). To simplify our discussion, we suppose that the
system variables as given in (2.1) are bounded. Let g, (y|z) denote the conditional density of
X, given Xg = z, which is smooth in both z and y. Let z and z 4+ 6§ € R% be two nearby
initial values. There are quite a few measures available for the discrepancy of two densities. In

this paper, we adopt the following two indices. The Lj-distance is simply defined as

Drn(i8) = [{gm(yla +8) - gm(s12)}dy.
It follows from the Taylor’s expansion that
D(2;8) = 67 I m(2)8 + o(]14117), (2.4)
where
him(z) = /s’zm(ylz)gﬂ(ylm)dy, (2.5)

dm(y|z) denotes dgn,(y|z)/0z, and ¢Z (y|z) denotes its transpose. We also consider the (nega-
tive) mutual information based on the Kullback-Leibler information, which may be expressed

as follows

Km(@i8)= [{gn(s12 +8) = gn(312)} 108{gm(slz + 8)/gm(sl2)}dy.

It is known that for small §, Kn(z;6) has the approximation
Kn(z;8) = 67 I m(2)8 + o([]6]]%), (2.6)

where

Iam(@) = [ m(yl2)3% (12 9m(v12)d, 27)

(cf. §2.6 of Kullback 1967). If we treat the initial value 2 as a parameter vector of the
distribution, I m»(z) is the Fisher’s information matrix, which represents the information on
the initial value X = z contained in X,,. Roughly speaking, (2.6) may be interpreted as saying
that the more information X,, contains, the more sensitively the distribution depends on the

initial condition.



2.3 Relation with deterministic system

For the additive system (2.2), with small noise (i.e. the variance of noise is small), I; m(z)
and I ,(z) are dictated by some functions of the derivatives of the map F(.), a feature which
is very similar to the deterministic case. To see this, let us suppose that e, is independent of
{Xi—k, forall k > 1}. For all ¢t > 1, let e; have a smooth density function alog(;'a), where
g(.) has a bounded support, and [zg(z)dz = 0, [zzTg(z)dz = . The assumption of the
bounded support is not essential and is introduced only for the sake of brevity of mathematical
derivation. It can be removed at the expense of a lengthier derivation.

Under the above assumption, it can be proved that as g — 0,

gm(tl2) = [ gm-1(vloos + F(z))g(s)ds

0.2
Im-1(31F(2)) + 3 tr{Gm-1 (41 F(2))ZH1 + o(1)} (2.8)

gm(ylz) = F(2)gm1(yIF(2)){1+ (1)}
(H F{FO)(c ) agg(——————y i(:)(z)) {1+0(1)}, (2.9)

where §(y|z) denotes 82{gn(y|x)}/(02zdzT), and F()(z) denotes the i-fold composition of F
starting with F(©)(z) = z. It follows from (2.5), (2.7), (2.8) and (2.9) that

T
Iim(2) = (H F{FO )110 (H F{F (w)}) (o)), (210)

m—1 T
Ipm(z) = (1‘[ F{F! )(z)}> I (H F{F“)(z)}) {1+ 0(1)}, (2.11)
1=0

where I o = [§(y)§T (y)dy and 0 = [ §(v)d7 (v)/g(y)dy which are independent of z. Thus,
for model (2.2) with a small additive noise, we can monitor a profile of I; m(z) (¢ =1,2) by a
functional of the derivatives of F(.), which plays a similar role as the Lyapunov exponent and
can be estimated by using the locally polynomial regression method (cf. Fan et. al 1993, Yao
and Tong 1994). However, for the general model (2.1) or for model (2.2) with considerable noise,
instead of going throuhg the functional we have to estimate I; n(z) and I3 n,(z) directly for
obvious reasons. Note that oy appears in denominator in both (2.10) and (2.11), which implies

that the increase of stochastic noise will reduce the sensitivity of the system to its initial values.



3 Estimating the measures of divergence

When the system is high-dimensional (i.e. d > 1), the task of estimating the divergence
measures is quite horrendous. Therefore, we consider the divergence in the marginal, rather
than the joint, conditional distributions of X,, given Xy = z. It is also of practical interests
to concentrate on the divergence in one particular component of the system, e. g. the first
component as in the time series model (2.3). Thus, our task can be abstractly stated as follows.

For a (d + 1)-dimensional random vector (Y, X ), where Y is a scalar, X is d-dimensional,
let g(y|z) be the conditional density of Y given X and ¢(y|z) denote %g(ylx). Of interest is

to estimate the functions

h(2) = [ dl)" (wla)dy, (3.0
and
I(@) = [ 9(s12)i" (wle) /9(yle)d, (3.2
based on a sequence of data (Y1, X3),:-+,(Yn, Xn). Specifically, for univariate time series data
{z1,--+,z,}, by taking
X = (zi,---,zi_d)T, and Y; = ziym,

the task reduces to estimating the m-step divergence measures Iy ,,(z) and Iy n,(z) defined
respectively in (2.5) and (2.7).
The building blocks for estimating I;(z) and I(z) are g(y|z) and g(y|z). This forms the

subject of Section 3.1. Let g(z,y) denote ,/g(y|z). Note that

h(@) = 4 [ d(a, )iz, ) dy. (3:3)

An estimator for ¢(z,y) will also be proposed in Section 3.2.

3.1 Estimating conditional density and its derivative

Estimating the conditional density and its derivatives can be regarded as a nonparametric

regression problem. To make this connection, note that

E(Kn(Y —y)|X =) = g(y|z),as hy — 0, (3.4)



where K is a nonnegative density function and hereafter we always denote K (z) = K(z/h)/h.
The left hand side of (3.4) can be regarded as the regression function of the data K4,(Y; —y) on
{Xi}. Recent nonparametric regression theory (see Fan 1992, Fan et al. 1993, and Ruppert and
Wand 1994) suggests that we use a local polynomial regression to estimate g(y|z) and §(y|z).
For estimating the first derivative, local quadraticity is preferable (see Fan and Gijbels, 1993).

By Taylor’s expansion about = = (zq,... ,z‘d)T € R%, we have

E(Kn(Y -y)lX =2) =~ g(y]2)

Q

9(312) + §(312)7 (= ~ 2) + 3z ~ =Y i3la)(z - 2)

Bo + By (2 — z) + f7 vec{(2 - 2) ® (2 — &)},

where g(y|z) is the Hessian matrix of g(y|z) with respect to z, ® denotes the Kronecker product

)T € Rd!d;-l!

of matrices, vec(A) = (a11,a22,...,84,d,@12,...,81,d4,823,-- - ,8d—1,4 for any d x d

symmetric matrix A = (e;;), and

T
5, = [Lollz) Peylz)  g(slz) O’g(yle)  Og(yle) Pg(ylz)  Hg(yle)

? 20z% ° 20z 77 2022 7 8124032 ' 079024 09073 Oz4_1024
Considerations of this nature suggest the following least squares problem: Let §p and 8, and
ﬁg minimize

S T T T1\?
Y (Kna(Yi = 9) = o= A1 (Xi —2) - B vee{(Xi = 2) @ (Xi - 2)T}) Wi, (Xi—2), (3.5)
i=1
where W is a nonnegative function, which serves as a kernel function, and h, is the bandwidth,
controlling the size of the local neighborhood. Then, clearly fp and §; estimate respectively

9(ylz) and g(y|z), namely,
d(ylz) = Bo and §(y|z) = fi.

The least squares theory provides the solution:
B=(ho,B" 8" )T = (XTWX) I XTWY, (3.6)

where X is the design-matrix of the least-squares problem (3.5), W = diag(W4, (X1 ~z),- -, Wi, (Xn—
z)),and Y = (I(hz(Yl —Y) e, I"'h'z(yn - y))T‘



For simplicity of the presentation, from now on, we treat only a univariate z,i.e. d = 1. For
the multivariate case, both the theory and the method also hold but with more complicated

notation. For the univariate case, simple algebra establishes that

fite) = 1t W7 (T K=, j=01 (3.7

where

W (t) = el S (1, hat, R3)T x W(2) (3.8)
with e; the unit vector with (j + 1)** element 1 and

Sn,0 Sn,1  Sn2 n
Sp = Sn1 Sn2 Sp3 |0 g = Z(Xi - w)jWhI(Xi - ). (3.9)

Sn2 Sn3 Snd =
See Fan and Gijbels (1993) for details. We remark that for a fixed hz, the problem is a
standard nonparametric regression problem. The bandwidth h; can be selected by using the

‘RSC’ ( Residual Squares Criterion) or the ‘refined’ criteria proposed in Fan and Gijbels (1993).

See Section 3.3 for more detailed discussions.

3.2 Estimating divergence measures

With the derivative of the conditional density estimated by (3.7), a natural estimator for

I](w) is

/ ey
Zwl (

1=1j5=1

Ii(z)

2Ywp (2222) [ Ko - )y, - )y

2
1 —00

Assume that the kernel K(-) is symmetric. Then,

+ 00
/ Kny(Yi = 9)Kny (Y; — y)dy = K7, (Yi - Y),

—oo
where K* = K x K is a convolution of the kernel function K with itself. Thus, the proposed
estimator can be expressed as

b = 3wt (2

111]1

DY wr (T Kn (- ). (3.10)



Analogously, an estimator for I3(z) can be defined by

. +oo R
h@) = [ B v ol vdy, (3.11)

with the usual convention 0/0 = 0. The above integration is typically finite under some mild
conditions. However, the estimator (3.11) can not easily be simplified.

An alternative estimator to I;(z) originates from (3.3). For given bandwidths h; and h;,

define
C(Xi,Yi) = #{(X0 Y),1 <t <n ¢ [Xo— Xi| < hyand |Y; - ¥i] < by},

C(X‘L) = #{Xt,]- S t S n, : |Xt - th S hl},

for 1 < ¢ < n. Then

Zy = \JC(X., Y;) [{C(X1) ha)

is a natural estimate of ¢(z,y) = \/g(y[z) at (z,y) = (X,,Y;). Fitting it into the context of
locally quadratic regression, we estimate ¢(z,y), ¢(z,y) = %q(z,y), and §(z,y) = %q(z,y),
by using §(z,y) = &, ¢(z,y) = b, and §(z,y) = ¢é, where (d,l;,é) are the minimizer of the
function

S (20 a = bXe - 2) - e(X, - o) 2 (F4EE, 2
=1 hl h2

H being a probability density function on R?. Consequently, we estimate I;(z) by
Ir(z) = 4/{&(w,y)}2dy~ (3.12)

3.3 Selection of bandwidths

While the quality of curve estimation depends sensitively on the choice of the smoothing pa-
rameters h; and hgy, no final recommendation has been made in the smoothing community. See
Jones, Marron and Sheater (1993) for an overview of the current state of the art. For a non-
standard problem such as estimating 1(z) and I2(z), this issue is even harder. Nevertheless, in
this section, we propose a simple and intuitively appealing method for choosing these smooth-
ing parameters. For simplicity of notation, we treat explicitly the one-dimensional case. We

first propose a bandwidth choice for estimating the conditional density and then for estimating
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I(z) and Iy(z) (by using (3.11)). For estimator (3.12), we have not found a systematic way to
search for the smoothing parameters hy and h;.

Bandwidth selection for estimating conditional density. As remarked in Section 3.1,
for a given bandwidth hj, the problem (3.5) is a standard nonparametric problem of regressing
Zi(y) = Kp,(Y: — y) on X;. Thus, we could use some bandwidth selection techniques in
nonparametric regression. A simple and appealing rule is the RSC proposed in Fan and Gijbels
(1993). That rule translates into our specific case as follows. Let Z;(y) be the fitted value of

the regression problem (3.5) and define the normalized weighted residual sum of squares by

1
tr(W - S71T,)

zn:(Zi(y) - Zi(y))zwhl(Xi - z), (3.13)

i=1

6% (z,y;h) =

Spn=XTWX and T, = XTW?2X. See (3.9) for the 3 x 3-matrix S, (and similarly T,) except
that Wi, (X; — ) is replaced by W2 (X; — z)). Define

RSC(z,y;h) = o*(2,y;h1)(1 + 3Va(2; b1)), (3.14)

where V,,(z;hy) is the first diagonal element of the matrix S, !7,5,'. Here, RSC estimates,
in a sense, the mean squared error at the point z.

For a given h; and y, the proposed bandwidth selection for the estimation of the derivative

a—g%%lfl by using (3.5) is
h1(y) = adj argminh/RSC(z,y;h)da:, (3.15)

where the integration of z is conducted in a region where the curve has to be estimated. Here,
the adjusted constant adj depends only on the kernel function W, and is used to adjust the
selected bandwidth so that it converges to the theoretical optimal one. From Table 1 of Fan
and Gijbels (1993), adj = 0.7643 for the Epanechnikov kernel W(z) = 0.75(1 — z?); and
adj = 0.8403 for the Gaussian kernel W(z) = (27)~ /2 exp(—z?%/2).

The proposed bandwidth (3.15) depends on y. If a constant suffices, we would select
hy = adj argminh//RSC(z,y;h)dzdy, (3.16)

where the integration is conducted on the region of z and y of interest. We could regard (3.16)

as minimizing over the average estimated mean squared error for z and y in a region of interest.
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Remark that the design matrix in (3.14) does not depend on y. It remains the same for
different values of y. This can be used to speed up the computation.
Now, let us turn to h;. To make the selection rule simple and quick, we use normal refer-

encing rule of Silverman (1986). That rule selects the bandwidth

) 2 1/5
i (Sﬁf}'\ (:c)d:z:) s

~ \3(J2?K(z)dz)? (3.17)

where s, is the sample standard deviation of the Y-variable. When K is Gaussian kernel,
ha = 1.06s,n~1/%; for the Epanechnikov kernel, hy = 2.34s,n~1/5,

Selecting bandwidths for I1(z) and I,(z). For estimating the first derivative, the
optimal bandwidth of h, is of the order O(n!/7) under the assumption that the third derivative
with respect to z exists. Thus, for that choice of k,, there are about N = O(n®/7) data points
in the neighborhood of z + hy. Now, by the theory of Fan (1991) and Hall and Marron (1991),
the choice bandwidth h, is not very sensitive to Il(z) and fz(z), owing to the integration over
y. The choice of order O(N~7/3%) = O(n~1/%) would be sufficient. To make this order of

magnitude meaningful in terms of the scale of y and that of K, we suggest that we use

8T [ K2 (x)dz\"* s
“ 3(f 22K (z)dz)? R

ha

(3.18)

where @ € [0.5,1) is a specified constant, which makes k2 smaller than h; in (3.17). The smaller
choice of A is natural. For, the integration over y in the definitions of fl(x) and Iz(m) reduces
the noise level of the estimators, and this allows us to use a smaller bandwidth to reduce the bias
in these estimation procedures. The above choice of b, and h, is also supported by Theorem
5.2. See Remark 5.2 in Section 5 for details.

In the examples that we present in the next section, we will use A5 in the estimation of I
and I;. Once h; is selected, the choice of the bandwidth A; is determined by (3.16), which
minimizes the average MSE, as explained above.

We do not claim that the any one of the bandwidths (3.15) — (3.18) would be the best
choice for all statistical problems that we would encounter. They are basically just quick and
simple selection procedures which take the structure and the scale of the data into account.
They give us an initial idea as to how much smoothing should be done. However, the theory

for estimating I; and I, is so complicated that there is not much guidance available.
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To summarize, we propose that we use the bandwidths h, and A; to estimate Ii(z) and

I;(z) and use bandwidths hy and hy or izl(y) to estimate the conditional densities.

4 Examples

Before proving some asymptotic theorems for the estimators, we illustrate the methods via the
following two simulated models.

Example 1. We begin with a simple quadratic model
Xt = 023Xt..1(16 — Xt—-l) + 0.4€t t Z 1, (41)

where ¢, t > 1, are independent random variables with the same distribution as the random
variable 7, and 7 is equal to the sum of 48 independent random variables each uniformly
distributed on [-0.25, 0.25]. According to the central limit theorem, €; can be treated as nearly
a standard normal variable. However, it has a bounded support [-12, 12]. Note the bounded
support of ¢ is necessary for the stationarity of the time series (cf. Chan and Tong 1994). In
fact, the skeleton of (4.1) is a transformed logistic map with the coefficient 3.936 (=16x0.246).
We have adopted the transformation in order to enlarge the dynamic range of the model. A
sample of 1000 is generated form model (4.1). It is well known that the skeleton of this model
is chaotic (cf. Hall and Wolff 1993, also see top panel of Figure 1(a)). A typical simulated
time series is shown at the bottom panel of Figure 1(a). We consider three cases: Y; = X1
for m = 1,2,3, whose scatter plots are presented in Figures 1(b) — 1(d). As indicated in these
figures, there are only a few data at the boundary regions. Thus, we can not expect a very
reliable estimate at these regions. As time evolves, the system accumulates more noise, which
makes multiple-step prediction harder. Since the signal to noise ratio decreases with the time
evolution, we would expect a decrease of the sensitivity to the initial values.

Choosing both kernels K and W to be Gaussian , we have hy = 0.98 by (3.17). By using
the RSC-criterion described in Section 3.3, the selected values for A; are 0.62 for m = 1, 0.70
for m = 2, and 0.71 for m = 3 respectively (cf. (3.16)). The estimated conditional density
functions gm(y|z) = Bo(z,y) are displayed in Figure 2, which shows that given X, = z, the
distribution of X;i,, is around f(™)(z), where f(z) = 0.23z(16 — z), and f(™) denotes the

13



m-th fold composition of f (m = 1,2,3). Let hy = 0.852, we estimate [;,(z) by using
(3.10). The estimated curves are plotted in Figure 3. The sensitivity does vary with the
initial value. For example, for m = 1, Il(z) attains its minimal value at z = 8, monotonically
increases when z spreads to both side. From (2.10), we would expect that the sensitivity
of the conditional distribution of X,;; to the condition X; = z is at its weakest at z = 8,
and increases monotonically when z spreads to both side too. Similar but more complicated
conclusions can be made for the cases m = 2,3. (Also see Section 4.1 of Yao and Tong 1993, and
Example 1 of Yao and Tong 1994.) Figure 4 reports the estimated curves of I ,(z). We expect
that the curves obtained by using (3.11) tend to be somewhat wiggly. This is due to the fact
that in (3.11) the estimator Bo(z,y) appears in the denominator of the integrand. The curves
estimated by (3.12) are smoother. However, it remains an open problem as to how to choose
the smoothing parameters in using (3.12). For this example, we manually choose bandwidths
(h1,h2) = (0.34,0.68), (0.41,0.89), and (0.46, 0.85) for m = 1,2, and 3 respectively. Although
the magnitudes of the functions I1 n,(z) and I (z) are different, their profiles are somehow
similar in the sense that both of them reveal the variation of the strength of the sensitivity of

the conditional distribution to its initial value.
(Figures 1 — 4 are about here.)

Example 2. Let us consider the cosine model

X; = 20cos (W§6_1> + €, (4.2)

where ¢;, t > 1, are independent standard normal random variables. A sample of 1000 is
generated from the above model. The skeleton of this model has a limit point z = 20, which
converges very fast for a wide range of initial values (see the top panel of Figure 5(a)). The
bottom panel of Figure 5(a) indicates a typical simulated data set, which does not show any
obvious limit point due to the corruption of the stochastic noise in the model. The scatter plots
of X, against X;4m, for m = 1,2,3, are displayed in Figures 5(b) — 5(d). Although the skeleton
of this model is not chaotic, Figure 5(b) shows that a small change in X;, when X, is around
+5,+15, will lead a considerable shift in X;4+;. On the other hand, X4, is less sensitive to

Xt when X; is about 0,410. Figure 5 also shows that the memory of the system variable on
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its initial value decays quickly in the time evolution, which is due to effect of the considerable
random noise in the system. For example, it is difficult to trace the trajectory three step ahead
(cf. Figure 5(d)).

Choosing both K and W being Gaussian kernel, we have hy = 3.65 by (3.17). By using the
RSC-criterion described in last section, the selected values for A; are 1.12 for m = 1, 1.32 for
m = 2, and 1.51 for m = 3 respectively (cf. (3.16)). The estimated conditional density functions
dm(ylz) = Bo(z,y) are displayed in Figure 6. Let hy = 0.8h2, we plot estimated I m(z) for
m = 1,2,3 together in Figure 7. It is easy to observe that I; ,(z) decreases sharply as m
increases. Further, for fixed m, the sensitivity varies with respect to the initial value, although
the variation becames less significant due to the accumulation of considerable random noise
when m increases. For example, for m = 1, the I;(z) attains its minimal values at = = 0, +10.
Figure 8 reports the estimated curves of I (). Similar to Example 1, the curves obtained by
using (3.11) are wiggly, and the curves estimated by (3.12) are smoother. In applying (3.12), we
use bandwidths (hy, hy) = (0.89, 1.88), (0.94,2.00), (1.48,2.14) for m = 1,2, and 3 respectively.

(Figure 5 — Figure 8 are about here.)

5 Some asymptotic results

Assume that the sequence of random vectors {(X;,Y;)} is strictly stationary. Denote by g(-|-)
the conditional density of Y; given X; and p(z) the marginal density of X;. Let F¥ be the
o-algebra of events generated by the random variables {X;,Y;,i < j < k} and L2(F¥) denote

the collection of all second-order random variables which are F¥-measurable. Let

(5.1)

p(k) = sup |cov(U, V)]
UeLa(F2 ) VELAF) varl/2(U)varl/2(V)

denote the p-mixing coefficient (Kolmogorov and Rozanov, 1960). We first impose some regu-

larity conditions:
(C1) The kernel functions W and K are symmetric and bounded with bounded supports.

(C2) The process {X;,Y;} is p-mixing with _ p(£) < co. Further, assume that there exists a se-

quence of positive integers s, — oo such that s, = o((nh1h2)'/?) and {n/(h1h2)}/?p(sn) —
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(C3) The function g(y|z) has bounded continuous third order derivatives at point (z,y), and

p(z) is continuous at the point z.

(C4) The joint density of the distinct elements of (X, Yo, X¢,Ys) (£ > 0) is bounded by a

constant independent of .

(C5) The bandwidths hy and h; converge to zero in such a way that nh3hy; — oo.

Condition (C1) is imposed for the brevity of proofs, which can be removed at the expense of a
longer proof. In particular, the Gaussian kernel is allowed. The assumption on the convergence
rate of {p(£)} in (C2) is also for the technical convenience, which is not the weakest possible.

Theorem 5.1. Under Conditions (C1) — (C5), for z € {z : p(z) > 0},
Vahiha {§(yle) = g(vlz) = a1} = N (0, o¥(z,9)), (5.2)
Vrhdha{g(vle) = i(vle) ~ Inz} = N (0, o3(z.9). (53)

Further, §(y|z) and §(y|z) are asymptotically independent in the sense that the random variables

on the RHS of (5.2) and (5.3) are joint asymptotic normal with zero covariance. Here,

1 829(1/“”) 2 2 g(y|z)vovk pivo — 2uapave + Fpudva
Un1 = mpKx —=5—h3 + o(h + h3), oi(z,y) = 2 ,
PR gy o) ey = TG (e — 37
5
19_”'2 _ M4 Mh% + l K g(y| ) + (h2 +h ), Ug(x,y) g(ylz)w\ V0V2,

6pp, Oz3 6:c8y2 Cp(z)  pl

and pi = [PK(t)dt, v = [{K(t)}*dt, p; = [EW(t)dt, v; = [P{W ()}t (G >0).
Remark 5.1. Without the assumption that W(-) is symmetric, the asymptotic biases for

g(y|z) will be

3 2
1 = 10°g(y|z) paps — ,usm K3 + 1# 0%g(ylz)

- h2 + o(h3 + h2
N E ghK gy2 12 T )

If our interest is to estimate the conditional density, then the locally linear (instead of the
locally quadratic) regression suffices. In that case, the asymptotic normality admits a more

symmetric form

2 2 2, . 92
vnhihy (g(y]z) - g(ylz) - hips 0°g(ylz) _ hjpk 0 g(y|z)> £ N (0, VKVogl(’ylx)) ’

2 0x? 2 0y?
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under the assumptions (C1) — (C4) and nhihy — oo. Our results and proofs can be readily
extended to higher order polynomial regression. We prefer not to present the general theory
for the sake of simplicity.

Theorem 5.2. Under Conditions (C1) — (C5), if nh3h3 — oo, for z € {z : p(z) > 0},
Vuhith(z) - L(z) - 9} > N(0, 02), where

9. = p2ba /{ag(ylx)asg(ym}dy + Wlux /{ag(y|x>639(ylz)}d +o(h? 4 12),

13p, oz 0z3 oz  0z0y?

o = u;:(zz) [/{6géilz)}2y(ylw)dy— {/ Ogéyl )g(ylw)dy}z]

Remark 5.2. The choice of h, for estimating I;(z) is not as sensitive as that for estimating
the conditional density. In fact, for hy in the range that (nh3)~4 >> hy >> (nh})~1/2
the asymptotic bias and variance of I;(z) remain the approximately the same; i.e. the term
O(h%) in ¥, becomes negligible. Thus, the optimal choice of bandwidth is h; = e¢n1/7 and

n~ U7 >> hy >> n~ %7, where

-1/7
. _ )21’ /ag( yle) Pg(ylz) | dy

Appendix — Proofs

Proof of Theorem 5.1. Let m(z,y) = E{K,(Y:=y)|X: = 2}, 8 = (mo(z, ), mi(z,y), ma(z,y))T

= (m(z,y), Zm(z,y ,—‘9—25m z,y))T, and H = diag(1, hy, h?). It follows from (3.6) that
dr oz 1

H(B-0)= HXTWX) ' XTW(Y = XB8) = 527 H{(tn0s tn1r tn2)T + (Y00 Yn1s 1n2)T 15 (A1)

where
tnj = %,Z:; <Xih: z)j Wi, (Xi — ) {Kp, (Y — y) - m(Xi,9)},
s = %g K2 EY W, (X 2 9) = m(a,0) = e, 0) (i~ 2) = o) E 2D,
Spj = % z": (Xih: aE)j Wi, (Xi = ),

-
L
—
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and 57 is a 3 X 3 matrix with the (7,7)-element s7,. ,. Let §, and ¥ be 3 x 3 matrices with
the (¢,7)-element p;4;_2, and v;y;_2 respectively, and v = (u3, i, 5)7. In the sequel, we will

establish
(a) St =3 p(z)§, in the mean square sense.

(b) hT (’Yn 0y Yn1,Yn2) T —5 6p(:l:) cal' y Zl4, in the mean square sense.

(¢) vVrhiha(trno,tn1,tn2) £, N(0, g(y|z)p(z)vovk ).

Combining these with (A.1), we have

\/nhlhg{ (B - ) - 6?‘9%(-’{,]” }—L—+N(O,p(x)_lg(y|x)uouk—5—1ES"I). (A.2)

It follows from Taylor expansion that m;(z,y) = m—g%m + 1hduk %‘ﬂ + o(h%). Using this
expansion and considering the marginal distribution of (A.2), we obtain the result.
We are now in a position to establish the conclusions (a) — (¢). Conclusions (a) and (b) can

be proved by computing the means and the variances of Sp,; and vn,j. We only prove (a). By

Taylor’s expansion:

Xy —z\’
ES;,J‘ZE( ]hl >Whl(X1—z):p(z)uj+o(1).

The variance of s ; can be calculated by using the stationarity and mixing conditions, and is
of size (nhy)~!. Since these calculations are similar to those given in the proof of (A.8), we
omit the details.

To prove (c), we consider arbitrary linear combinations of ¢, ; with constant coefficients 7;

(1 =0,1,2). Let

= Vnhihy(notno + Tin s + M2tn2)

_ —1/22\/;@1),“ i — 2) {Kn,(Yi — y) — m(Xi,9)), (A.3)

where D(u) = (no + mu + nu?)W(u). Write Q, = n~1/2 Z?;ol Zn i
We now employ the small-block and large-block arguments. Following the proof of Masry

and Fan (1993), partition the set {1,---,n} into 2k + 1 subsets with large blocks of size r = r,,

18



n

and small block of size s = s,. Put k =k, = | |. Define the random variables

Tn+Sn
j(r+s)+r-1 (7+1)(r+s)-1 n-1
= Z Zniy &= Z Znjis Gk = Z Zni-
i=j(r+s) i=j(r+s)+r i=k(r+s)

Then,
k-1

k-1
Qn =273 i+ &+ G} =07 VHQL + QU+ QY.
7=0 1=0

We will show that as n — oc,

1 n 1 m
k-1
E [exp(itQ;,)] — [] E [exp(étn;)}f — 0 (A.5)
7=0
1 k—1 1 k-1
“SE(n) -0t X E(rfHinl 2e0vm)) —0 (A.6)
i=0 j=0

for every €, where 02 = p(z)g(y|z)vovp with vp = [ D?(u)du. (A.4) implies that Q7 and Q)
are asymptotically negligible, (A.5) implies that the summands {7;} in @/, are asymptotically
independent, and (A.6) is the standard Lindeberg-Feller conditions for asymptotic normality of
Q! under independence. Expressions (A.4) — (A.6) entail the following asymptotic normality:
Qn LN (0,02).

We first choose the block sizes. Condition (C2) implies that there exist constants ¢, — oo

such that gns, = o(v/nh1hy) and g, {n/(h1h2)}/?p(sn) — 0. Define the large block size r, =

|(nh1h2)/?/g,]. Then, it can easily be shown that
$p/Tn = 0, 7o/n—0, rn/(nh1h2)1/2 — 0, and lp(sn) — 0. (A.7)
Tn
We first establish the following approximation:

var(Zn,0) = p(z)g(ylz)vpro(l + o(1)), ni, lcov(Zn,0, Zn,e)l = o(1). (A.8)
=1

The first part follows directly from Taylor’s expansion:

var(Zn0) = hiha ED} (X1 — z){K},(Y1 — y) - m*(X1,9)} = p(z)g(ylz)vpro + o(1).
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To prove the second conclusion, by a change of variable and Condition (C4), |cov(Z, 0, Z, ¢)| <
¢, for some constant sequence ¢, — 0. Also, by (5.1), |cov(Z,0,Zn¢)| < var(Z,0)p(€). Let
d,, — oo such that ¢,d,, — 0. Then, we have

n—1
Y 1€0V(Zn0, Zn,e)| < cndn + var(Zno) Z p(t) —
=1 {=dp+1

We now establish (A.4). First of all, by stationarity and (A.8),

s—1
var(§;) = svar(Z, o) + 2s Z(l —Jj/8)cov(Zn 0,2y ;) = sa%(1 4+ o(1)),
Jj=1
and
k—1 -
Z var(§;) + Z Z cov(&i, &) = Fy + F. (A.9)
1=0 ;=0
t#]

By (A.8), F1 = O(ks) = o(n). Now, we consider F,. We first note that with n; = j(r +s)+ 7

k— s—1 s—1

k-1
F, = E Z Z Z COV nn'+ll,Z'n. nJ+€2)

1-—Q .2—0 £y=04¢2=0
i#)

but since i # 7, |n; — n; + €, — €3] > r so that

|F2| <2 Z Z |C0V(Zn lyy nlz)l
1=0 flr=f1+T
By stationarity and (A.8),
n-1
|Fy| < 2n Z lcov(Zn 0, Zn ;)| = o(n).
I=r

This together with (A.9) proves the first part of (A.4). For the second part of (A.4), using a

similar argument together with (A.8), we obtain that

n—1

E(Sy)? < l(n— k(r + s))var( no)+2§:|cov n.0s Zn,j)|
i=1
Tn + Sn 2
< —_—
< TR0 4 o(1) - 0.

Equation (A.5) can be proved as follows. Note that 7, is f{:-mea.surable with i, = a(r+s)+1
and j, = a(r+s)+r. Hence, applying Volkonskii and Rozanov’s Lemma with V; = exp(itn;) and
using the fact that a-mixing coefficients are bounded by p-mixing coefficients: a(k) < p(k)/4,
we have

k—1

Eexp(itQ’) - ] Elexp(itn;))| < 4kp(sn — 1) ~ 4=p(sn = 1),
7=0 n
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which tends to zero by (A.7).
We now show the first part of (A.6). By stationarity and (A.8), var(n;) = var(ng) =
ro2(1 + o(1)). This implies that

l nn 2 2 2
n;E( n;) = ——0o°(1+o(1)) n+sna o°.

It remains to establish the second part of (A.6). Using the fact that D(-) is bounded, we
have |Zn ;] < C(h1hz)~1/? for some constant C. This and (A.7) entail maxo<j<k—1|7;l/v/7 <
Crn(nhihy)™1/2 — 0. Hence, when n is large the set {|n;| > oe\/n} becomes an empty set,
namely the second part of (A.6) holds. a
Proof of Theorem 5.2. We adopt the notation introduced in the proof of Theorem 1. Let
£s,i(2,y) = (tn,; + Yn,j)/h1. To prove Theorem 2, we need the following asymptotic results,

which will be proved later.
(d) E [{€&na(z,y)}2dy = O{h + (nh3hs)™'} = o(h} + (nh1)~/3),
) Vb3S Ena(z,y)ma(z, y)dy — L) [ 2N ZAE) gyp? 4 o(h})} £+ N(0,03), where
o = v2p(z) [[{9(yl2) Y 9(ylz)dy — { [ 9(yl=)g(ylz)dy}?].
By (A.1), we have that Bi(z,y) — mi(z,y) = (0,1,0)5% 7 (€0, €n1s€n2)T. Tt follows from
(a) that
- /{ml(r,y)}zdy
[ths(a,) - mata, Yy + 2 [ ma@,9)iBi(e,9) - mi(z, 1)}y
1 2
{m /fg,l(z,y)dy + p(2)2 /En,l(zay)ml(zsy)dy} (1+0p(1)). (A.10)

Since [{mi(z,y)}2dy = L(z) + h3uk f{ azay }dy, Theorem 5.2 follows immediately
from (d), (e), and (A.10).
The proof of (d) is similar to that of (a), and is omitted here [The conclusion (d) is basically

the MISE for the derivative estimation]. To prove (e), we define that

Uz, 11;2,y) = hy2(e1-2)Wh, (21-2){ K, (31 -y)—m(z,y)—mi(z, y)(z1-2) -ma(z, y)(z1-2)* /2}
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and that V(z1,11) = [U(z1, 9157, y)mu(z,y)dy. Then, [&,1(z,y)mi(z,y)dy = "1 T, V(X Y5).

It can be shown via Taylor’s expansion that

3

and that
EU*(X1,Y1;2,9)U*(X,Y;2,y + haz) = h73h5  g(y|2)p(z)ve /I\"(u)K(u + 2)du(1 + o(1)),
where U*(zq,91;2,y) = hl_z(:l:] — z)Wh, (21 — ) Kp,(y1 — y). Thus,

var(V(X1,Y1)) = EV3X,,Y:)+ O(h?
1
= hz//EU*(Xl,Yl;xay)U*(XhYl;z,y+h22)m1($7y)m1(z§y+ haz)dydz
~E([ h7?(X1 = 2)Wh, (X1 = 2)m(Xs, y)ms (2, 9)ds (1 + o(1)

= hp(@)al [ mi(z, »g(ule)dy - { [ ma(z, 9g(ula)dn?)(1 + o(1).

Now, using the big-small block arguments as in the proof of Theorem 5.1, we establish ¢). O
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Figure Captions

Figure 1 (a) Plot of the skeleton of model (4.1) and a simulated time series. Top panel is the
plot of the skeleton z; = 0.23z,_1(16 — z;~1), which is a chao, and the bottom panel is
the plot of ¢ against X; — 16; (b) — (d) are the scatter plots of X; against X;,, for (b)
m=1; (¢) m=2; (d) m=3.

Figure 2 The estimated g,,(y|z): the conditional density function of Yi4,, given Y; = z for

logistic model (4.1). (a) m = 1;(b) m = 2; (¢) m = 3.

Figure 3 The estimated curves of I; (z) for logistic model (4.1) by (3.10). (a) m = 1; (b)
m=2;(c)m=3.

Figure 4 The estimated curves of I3 ,(z) for logistic model (4.1). Solid curve — estimated

by (3.11); dashed curve — estimated by (3.12). (a) m = 1; (b) m = 2; (¢) m = 3.

Figure 5 (a) Plot of the skeleton of model (4.1) and a simulated time series. Top panel is the
plot of the skeleton of z; = 20 cos(mz;—;/10), which converges to its limit point very fast,
the bottom panel is the plot of ¢ against X; — 45; (b) — (d) are the scatter plots of X

against X4, for (b) m=1; (c) m=2; (d) m=3.

Figure 6 The estimated gn(y|z): the conditional density function of Yi4., given Y; = z for

cosine model (4.2). (a) m = 1; (b) m = 2; (¢) m = 3.

Figure 7 The estimated curve of I; () for cosine model (4.2): Solid curve — m = 1; dashed

curve — m = 2; dotted curve — m = 3.

Figure 8 The estimated curves of I »(z) for cosine model (4.2). Solid curve — estimated by

(3.11); dashed curve — estimated by (3.12). (a) m = 1; (b) m = 2; (c) m = 3.
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