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S

There are few techniques available for testing whether or not a family of parametric
times series models fits a set of data reasonably well without serious restrictions on the
forms of alternative models. In this paper, we consider generalised likelihood ratio tests
of whether or not the spectral density function of a stationary time series admits certain
parametric forms. We propose a bias correction method for the generalised likelihood
ratio test of Fan et al. (2001). In particular, our methods can be applied to test whether
or not a residual series is white noise. Sampling properties of the proposed tests are established.
A bootstrap approach is proposed for estimating the null distribution of the test statistics.
Simulation studies investigate the accuracy of the proposed bootstrap estimate and compare
the power of the various ways of constructing the generalised likelihood ratio tests as well
as some classic methods like the Cramér–von Mises and Ljung–Box tests. Our results
favour the newly proposed bias reduction method using the local likelihood estimator.

Some key words:  model; Generalised likelihood ratio test; Local least squares; Local likelihood;
Periodogram; Spectral density.

1. I

To verify whether or not a family of parametric models fits a given set of time series,
we need to specify a class of alternative models. A common practice is to embed the family
of parametric models into an even larger family of parametric models and to use this
larger family of models as the alternative models. This parametric approach implicitly
assumes that the larger family of parametric models contains the true model, and this
assumption is not always true. Therefore, one can further enlarge the family of alternative
models to include the structured nonparametric models; see Chapters 8 and 9 of Fan &
Yao (2003).
The structured nonparametric models are much more flexible than parametric ones, but
it is still possible that structured nonparametric models such as the functional autoregressive
models (Chen & Tsay, 1993) and the additive model (Hastie & Tibshirani, 1990) do not
fit the data well. One may therefore not wish to impose any structure on the alternative
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models. Under the stationarity assumption, a convenient technique is to test whether or
not the spectral density of the data admits a certain parametric form. This is the approach
that we follow.
The tests proposed in this paper are mainly based on the stationary assumption. This

reduces dramatically the danger of model misspecification, but at the cost of power reduction
when one can correctly specify a smaller family of alternative models. Tests based on spectral
density functions verify only the autocovariance structure of an underlying process. When
the null model is rejected, with high confidence, the family of models under the null
hypothesis does not fit well the data. If one assumes further that the series comes from a
stationary Gaussian process, then the autocovariance structure completely governs the
law of the process.
Nonparametric methods (Brillinger, 1981; Brockwell & Davis, 1991; Fan & Yao, 2003)

provide estimates of the spectral density under alternative models. Under the parametric
family of models, one can obtain the form of spectral density and hence an estimate of
the spectral density can be formed under the null hypothesis. The distance between the
estimates under the null and the alternative hypotheses provides a measure of discrepancy
between them.
In nonparametric regression models, Fan et al. (2001) argued that the likelihood ratio

statistic is one of the most natural measures. However, for nonparametric models, the
maximum likelihood ratio test usually does not exist, and even if it does exist it is not
easily computed. Furthermore, they showed that the nonparametric maximum likelihood
ratio test does not achieve the optimal rate of convergence for hypothesis testing in the
sense of Ingster (1993a,b,c). This led them to replace the maximum likelihood estimator
under the alternative model by any reasonable nonparametric estimator, resulting in a
generalised likelihood ratio statistic. They demonstrated that the asymptotic null distribution
of the generalised likelihood ratio statistic is asymptotically x2 and is independent of the
nuisance parameters, and the generalised likelihood ratio test is optimal in the sense of
Ingster (1993a,b,c). The first property allows one to compute the p-value easily.
The problem of testing whether or not a spectral density admits a certain parametric

form is approximately the same as that of testing against a family of parametric models
in the nonparametric regression setting, based on the observed periodogram. Thus, the
generalised likelihood ratio test can be employed. We also introduce a technique for
reducing the biases of the nonparametric estimator when the underlying distribution is
indeed from a parametric family of models. This reduces the biases of the asymptotic null
distribution of the generalised likelihood ratio test statistic.
There are several other approaches for validating a parametric form for the spectral

density. Paparoditis (2000) constructed a testing procedure based on the Priestley–Chao
estimator and an L 2-distance, and established the asymptotic normality of his test statistic.
Some authors also considered constructed tests without smoothing, as with Dzhaparidze’s
(1986, p. 273) test statistic based on a cumulative rescaled spectral density. The asymptotic
distribution of his test statistic is identical to that of the Cramér–von Mises test, considered
by Anderson (1993), based on the integrated squared difference between the standardised
sample spectral distribution function and the standardised spectral distribution under the
null hypothesis. Anderson (1993) also considered the corresponding Kolmogorov–Smirnov
test and derived the asymptotic null distribution. The null distributions of the test statistics
can also be approximated via frequency domain bootstrap; see for example Paparoditis
(2000) and references therein.
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In §2, we introduce the generalised likelihood ratio test for the spectral density. The
bias reduction techniques are given in §3. Section 4 presents the asymptotic properties of
the proposed tests under the restrictions of stationarity, linearity and positivity of the
spectrum. Numerical examples are given in §5 and technical proofs are deferred to the
Appendix.

2. T    

2·1. Introduction

LetX
t
, for t=0,±1,±2, . . . , be a stationary time series with mean zero and autocovariance

function

c(u)=E(X
t
X
t+u

) (u=0,±1,±2, . . . ).

Its spectral density is

g(x)= (2p)−1 ∑
2

u=−2
c(u) exp (−iux), xµ[0, p].

Let X1 , . . . , XT be the observed time series. The raw material for estimating the spectral
density is the periodogram

I
T
(w
k
)=T−1 K ∑T

t=1
X
t
e−itw

kK2 , w
k
=2pk/T (k=1, . . . , n, n=[(T−1)/2]).

It is well known that the periodogram is not a consistent estimator of the spectral density
(Brillinger, 1981, Ch. 5; Brockwell & Davis, 1991, Ch. 10). Smoothing techniques are
needed.
There are two approaches for smoothing {I

T
(w
k
)}. The methods can be classified by

whether they are based on the spline or kernel-local linear fit, or the least-squares or the
Whittle (1962) likelihood-based fit. For example, Wahba (1980) applied the least-squares
method to the log-periodogram using spline approximations, while Pawitan & O’Sullivan
(1994) and Kooperberg et al. (1995a,b) used the Whittle likelihood to estimate parameters
in the spline models. Fan&Kreutzberger (1998) proposed automatic procedures for estimating
spectral densities, using a local linear fit. Both the least-squares and the Whittle-likelihood
methods are studied there, and it was shown that the Whittle-likelihood type of estimators
are asymptotically more efficient. The approaches of Fan & Kreutzberger (1998) will be
employed here for constructing the generalised likelihood ratio test statistics.

2·2. Relationship to nonparametric regression

It is known (Fan & Yao, 2003) that periodograms I
T
(w
k
) are asymptotically exponentially

distributed with mean g (w
k
) and asymptotically independent:

(2p)−1I
T
(w
k
)=g(w

k
)V
k
+R
n,k

(k=1, . . . , n),

where V
k
(k=1, . . . , n) are independently and identically distributed with the standard

exponential distribution and R
n,k
is a term that is asymptotically negligible. Furthermore,

let Y
k
= log {I

T
(w
k
)/(2p)} and m ( . )= log g ( . ). Then we have

Y
k
=m(w

k
)+z
k
+r
k

(k=1, . . . , n), (2·1)

where

r
k
= log [1+R

n,k
/{g(w

k
)V
k
}], z

k
= log V

k
.
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Thus, {z
k
, k=1, . . . , n} are independently and identically distributed random variables with

density function

f
z
(x)=exp {−exp (x)+x},

and r
k
is an asymptotically negligible term; see Lemma A1.

Suppose we wish to test whether or not the spectral density of an observed time series
belongs to a specific parametric family {g

h
( . ) : hµH}. The problem can be formulated as

testing the hypothesis

H
0
: g( . )=g

h
( . ) versus H

1
: g( . )Ng

h
( . ),

which is equivalent to

H
0
: m( . )=m

h
( . ) versus H

1
: m( . )Nm

h
( . ), (2·2)

where m
h
( . )= log g

h
( . ). To test (2·2), we apply the generalised likelihood ratio test of Fan

et al. (2001), pretending that the following regression model holds:

Y
k
=m(w

k
)+z
k

(k=1, . . . , n), (2·3)

which is an approximation of (2·1) obtained by ignoring r
k
.

The mean of z
k
in model (2·3) is the Euler constant, which is E(z

k
)=C0=−0·57721,

and the variance is var (z
k
)=p2 /6; see Davis & Jones (1968). Let Y *

k
=Y
k
−C
0
and

z*
k
=z
k
−C
0
. By (2·3), we have the standard nonparametric regression model

Y *
k
=m(w

k
)+z*
k

(k=1, . . . , n).

Appealing to the method in Fan et al. (2001), we can easily construct the least-squares-based
test statistic. Since the distribution of z

k
is not normal, the test based on the least-squares

estimate does not fully use the likelihood information and cannot be powerful. Furthermore,
the likelihood-based approach is more appealing. Indeed, in an earlier draft of this paper,
we conducted extensive simulations which show the likelihood-based approach is more
powerful than the least-squares one. We omit those results to save space.

2·3 L ikelihood-based approaches

For any given spectral density function, the loglikelihood function associated with (2·3) is

∑
n

k=1
[Y
k
−m(w

k
)−exp {Y

k
−m(w

k
)}].

For any x, approximating m (w
k
) by the linear function a+b (w

k
−x) for w

k
near x, we

obtain the local loglikelihood function

∑
n

k=1
[Y
k
−a−b(w

k
−x)−exp {Y

k
−a−b(w

k
−x)}]K

h
(w
k
−x). (2·4)

The local maximum likelihood estimator m@ LK(x) of m(x) is a@ in the maximiser (a@, b@) of (2·4);
see Fan & Kreutzberger (1998).
Under the null hypothesis, the loglikelihood function of (2·3) would be

∑
n

k=1
[Y
k
−m
h
(w
k
)−exp {Y

k
−m
h
(w
k
)}].

Its maximiser h@ would be the maximum likelihood estimate of h.
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The generalised likelihood test statistic can be constructed as

TLK= ∑
n

k=1
[exp {Y

k
−m
h@
(w
k
)}+m

h@
(w
k
)−exp {Y

k
−m@ LK (wk )}−m@ LK (wk )].

This would have been the maximum likelihood ratio test, had m@ LK been the nonparametric
maximum likelihood estimator. If TLK is bigger than a selected critical value, reject (2·2);
otherwise, accept.

2·4. Bandwidth selection

The test statistic TLK depends on the choice of the bandwidth h, and the optimal bandwidth
for hypothesis testing differs from that for estimating the spectral density (Ingster, 1993a,b,c).
The problem of choosing the optimal bandwidth for hypothesis testing has not been
seriously studied in the literature, partly because the optimal bandwidth for estimating
the underlying nonparametric function provides, intuitively, a good proxy for the optimal
bandwidth for nonparametric testing. For this reason, we will use the data-driven bandwidth
for estimating the spectral density function as the bandwidth for the hypothesis testing.
More careful study of a good choice of the bandwidth for the generalised likelihood ratio
test is beyond the scope of this study.
In spectral density estimation, Fan & Kreutzberger (1998) give a data-driven bandwidth

selection rule, based on the pre-asymptotic substitution method of Fan & Gijbels (1995),
for the least-squares estimate of the log-spectral density and that for the local likelihood
estimator. That bandwidth selection rule will be used in our paper. We omit the details.

2·5. Bootstrap estimate of null distribution

To implement the generalised likelihood ratio statistics, we need to obtain their distributions
under the null hypothesis. The asymptotic distributions, studied in §4, are independent of
the nuisance parameters under the null hypothesis, thereby exhibiting what Fan et al.
(2001) refer to as the Wilks phenomenon. We can fix these parameters at the estimated
values and obtain by simulation the bootstrap estimate of the null distributions.
The schematic algorithm of the bootstrap estimate is as follows. The algorithm can be

applied to both the least-squares based estimate and the maximum likelihood based estimate.

Step 1. Obtain the parametric estimate h@ and the nonparametric estimate m@ along with
its associated bandwidth h@ .

Step 2. Compute the generalised likelihood ratio test statistic Tobs .

Step 3. Generate a random sample of size n from model (2·3) with m=m
h@
.

Step 4. Using the generated random sample with the bandwidth h@, obtain the generalised
likelihood ratio statistic T *.

Step 5. Repeat B times Steps 3 and 4 and obtain the bootstrap generalised likelihood
ratio test statistics T *

1
, . . . , T *

B
.

Step 6. The p-value of the test statistic is the percentage of the bootstrap generalised
likelihood ratio test statistics {T *

1
, . . . , T *

B
} that exceed Tobs .
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The null distribution of the generalised likelihood ratio test statistic is approximated
by the distribution of the bootstrap generalised likelihood ratio statistics {T *

1
, . . . , T *

B
}.

When a parametric model such as an  model is specified under the null hypothesis,
one can sample directly from the  model and then compute the log-periodogram.
While this will give a more accurate estimate of the null distribution, it increases the
computational demand. The bandwidth h@ in Step 4 can also be data-driven.

3. B   - 

3·1. Bias reduction

The function m
h
( . ) is typically nonlinear, so that the local linear estimator of the function

m@ contains biases even under the null hypothesis, and this affects the null distribution of
the generalised likelihood ratio statistic. In §4, we let the bandwidth go to zero sufficiently
fast, but in practice we do not know the size of bandwidth which would make the bias
negligible. This motivates us to introduce a bias correction technique.
We can correct the bias of the test under the null model as follows. Let h@ be an estimator

of the parameters under the null hypothesis and let m*(w)=m (w)−m
h@
(w). Then the testing

problem (2·2) is equivalent to testing between

H*
0

: m*(w)¬0, H*
1

: m*(w)N0. (3·1)

Note that m*( . ) is simply a reparametrisation of the function m. Hence, the testing problem
(3·1) can be dealt with by applying the generalised likelihood ratio test based on the
synthetic data YB

k
=Y
k
−m
h@
(w
k
). With this new parametrisation, the local linear estimator

of the function m*( . ) does not incur serious biases under H*
0
.

The appropriate test statistic is

TLK,bc= ∑
n

k=1
[exp (YB

k
)−exp {YB

k
−m@ *LK (wk )}−m@ *LK (wk )],

where h@ is obtained via the maximum likelihood estimator and m@ *LK is the local likelihood
estimator of m* based on the data YB

k
. Recall that we simply reparameterise the testing

problem. The bandwidth selection and bootstrap estimation of the null distribution outlined
in §2 still apply.
The above idea is similar to the prewhitening technique of Press & Tukey (1956) and

the technique used by Härdle & Mammen (1993). It is also related to the nonparametric
estimate using parametric start of Hjort & Glad (1995) and Glad (1998).

3·2. T esting whiteness of residuals

The scope of the tests can be significantly enhanced when we reduce a testing problem
to the problem of testing whether or not the residuals under the null hypothesis are white
noise. Suppose that we wish to verify whether or not a family of models fits a given time
series. Let {e@

t
} be the residuals resulting from a fit. If the null hypothesis is reasonable,

then the residuals should behave like a white noise series with variance s2. In the spectral
domain, this is equivalent to testing between

H
0
: m
h
(w)= log {s2/(2p)}, H

1
: m
h
(w)N log {s2/(2p)}. (3·2)
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The generalised likelihood ratio test approach can be applied to (3·2). Since the local
linear fit does not have any biases for the spectral density estimate under the null hypothesis,
no bias correction is needed. The resulting procedure will be referred to as the residual-based
test and we denote the test statistic by TR .

4. A     

Let h0 be the true parameter under the null hypothesis. Then we can write

TLK=TLK,1−TLK,2 , (4·1)

where

TLK,1= ∑
n

k=1
[exp {Y

k
−m
h
0

(w
k
)}+m

h
0

(w
k
)−exp {Y

k
−m@ LK (wk )}−m@ LK (wk )],

TLK,2= ∑
n

k=1
[exp {Y

k
−m
h
0

(w
k
)}+m

h
0

(w
k
)−exp {Y

k
−m
h@
(w
k
)}−m

h@
(w
k
)].

The test statistic TLK,1 is the generalised likelihood ratio test statistic for testing between

H
0
: m( . )=m

h
0

( . ), H
1
: m( . )Nm

h
0

( . ), (4·2)

while TLK,2 is the maximum likelihood ratio test statistic for testing between

H
0
: h=h

0
, H

1
: hNh

0
(4·3)

in the parametric family of models {m
h
( . )}. Under certain regularity conditions, the asymptotic

null distribution of TLK,2 is x2p , where p is the dimension of vector h. Hence,

TLK,2=O
P
(1). (4·4)

It will be shown that TLK,1 follows asymptotically a scaled x2 distribution with degrees of
freedom tending to infinity. Thus, TLK,2 is asymptotically negligible and the asymptotic
distribution is completely determined by TLK,1 . Therefore, we need only to consider the
case where the null hypothesis is simple, see (4·2), in which case TLK can be simplified to

TLK= ∑
n

k=1
[exp {Y

k
−m
h
0

(w
k
)}−exp {Y

k
−m@ LK (wk )}+m

h
0

(w
k
)−m@ LK (wk )].

In the sequel, we will drop the subscript h0 .
We now introduce some notation to facilitate the presentation. Let

n
0
=P P t2 (s+t)2K(t)K(t+s)dt ds,

m
n
=h−1pqK(0)−2−1 P K2 (t)dtr , s2n=2h−1p P {K(t)−2−1K1K(t)}2dt,

D
K
=qK(0)−2−1 P K2 (t)dtrNP {K(t)−2−1K1K(t)}2dt,

d
1ng
=8−1h4n

0
∑
n

k=1
m◊
h
(w
k
)2/g
h
(w
k
).
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Theorems 1 and 2 below require the following technical conditions.

Condition 1. The kernel function K (t) is a symmetric probability density function,
bounded with a bounded support, and K∞(t) is bounded.

Condition 2. The series {X
t
} is a linear Gaussian process; that is X

t
=W2j=−2 a

j
f
t−j
,

f
j
are independently and identically distributed as N (0, s2 ), and W2

j=−2
|a
j
| j2<2.

Condition 3. The spectral density g ( . ) is positive on [0, p].

It follows from Conditions 2 and 3 that the second derivative m◊( . ) of m ( . ) is continuous
on [0, p]; see for example Kooperberg et al. (1995b).
In the sequel, we use the notation Y

n
~
a
x2
a
n

to denote a sequence of random variables Y
n

for which

(Y
n
−a
n
)/(2a
n
)D�N(0, 1),

in distribution, as n�2.

T 1. If Conditions 1–3 are satisfied, then, under H
0
, as h� 0, nh2�2 and

n(j−1)/jh�c
0
logd n for some d> (j−1)/(j−2) and j>2,

s−1
n

(TLK−mn+d
1ng

)�N(0, 1),

in distribution. Furthermore, if nh9/2� 0, then

D
K
TLK~a x2D

K
m
n

.

The result shows that the asymptotic null distribution is independent of nuisance parameters
when the bandwidth converges to zero fast enough. Fan et al. (2001) called such a phenomenon
the Wilks phenomenon. This result permits one to use parametric bootstrap to estimate
the asymptotic null distribution. Recently, Zhang (2003) provided a useful method for
calibrating the degrees of freedom, which makes the approximation more accurate.
After bias correction with known h0 , there will be no bias in the test under the null
hypothesis. Thus, the bias is governed by the quality of the estimator h@ . It is to be expected
that the d

1ng
in Theorem 1 will disappear, and the following theorem confirms this.

T 2. If Conditions 1–3 are satisfied, ∂m
h
(x)/∂h is continuous and bounded, and

h@−h=O
P
(n−D log n), then, under H

0
, as h� 0, nh2�2 and n(j−1)/jh�c

0
logd n for some

d> (j−1)/(j−2) and j>2,

D
K
TLK,bc~a x2D

K
m
n

.

The condition imposed on h@ in Theorem 2 is very mild as usually the parametric
estimator can reach the convergence rate of n−D. Thus, the generalised likelihood ratio
statistics with bias correction perform better than those without any bias correction. The
proofs of Theorems 1 and 2 are given in the Appendix.

5. N 

5·1. Simulations

Here and in §5·2, the Epanechnikov kernel is used for constructing nonparametric
estimators. The bandwidth is chosen by the method of Fan & Kreutzberger (1998) for
estimating the spectral density.



203T ests for a spectral density

We use a simulated example to verify how well the sizes of the generalised test statistics
are approximated by the bootstrap method and to compare the power of various versions
of the generalised likelihood ratio statistics. Under the null hypothesis, this example
satisfies the technical conditions listed in §4.
As expected, the generalised likelihood ratio test with bias correction performs better

than the uncorrected counterpart. We also include the residual-based statistic TR in §3·2
for comparisons.

Example 1. We consider the  (3) model with h1=0·8, h2=−0·56 and h3=0·6,
confounded with a nonlinear function. We simulate a series of length T from the model

X
t
={h

1
(1−b)+bv(X

t−3
)}X
t−1
+h
2
X
t−2
+h
3
X
t−3
+e
t
, (5·1)

where v (x)=0·95I (−5∏x<0)−0·18xI (0∏x∏5 ), the e
t
are independently and ident-

ically distributed N (0, 1) random variables and b is a given parameter.
For each fixed b, we simulate a time series of length T=500, and then test if the time
series shares the same spectral density as that of an  (3) model. In other words, we test
the hypothesis (2·2) with

g
h
(x)= (2p)−1s2 K1− ∑3

j=1
h
j
exp (−ijx)K−2

and evaluate the power of the test at the model (5·1). When b=0, the power becomes the
size of the test.
All of the preceding three generalised likelihood ratio tests are used and compared. The

related bandwidth is taken to be 0·23, a data-driven choice based on a few simulations.
The distributions of TLK , TLK,bc and TR under the null hypothesis are approximated by
1000 Monte Carlo simulations.
To verify whether or not the Wilks phenomenon holds for reasonably large sample

sizes, we deliberately set the parameters in the  (3) model to zero and simulated the
null distributions of the test statistics.
If the Wilks phenomenon holds, the null distributions of the test statistics should not

depend sensitively on the nuisance parameters under the null hypothesis, and hence the
above approximation should be reasonably accurate. Table 1 confirms this, especially for
the bias-reduction-based approaches.

Table 1: Example 1. T he sizes of the tests
under H

0
a TLK,bc TLK TR (M) 

0·01 0·012 0·088 0·011 0·012 0·014
0·05 0·054 0·038 0·058 0·051 0·053
0·10 0·114 0·080 0·101 0·098 0·102

The proposed tests were performed at three different significance levels, namely 0·01,
0·05 and 0·1. The percentages of rejections by each test statistic are computed, based on
1000 simulations. Figure 1 (a) depicts the empirical power functions for various choices of
b. When b=0, the null and alternative hypotheses coincide and the power function
becomes the probability of type I errors; see also Table 1.
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Fig. 1: Example 1. (a) Powers of the generalised likelihood ratio statistics at significance levels
0·01, 0·05 and 0·1, based on 1000 simulations for different choices of b; the solid lines are for
the likelihood-based approach with bias correction, the dotted lines are for the residual-based
approach, and the dashed lines are for the likelihood-based approach without bias correction.
(b) Comparison between the likelihood-based test with bias reduction, the Cramér–von Mises
test and the Ljung–Box test; the solid line is the power of the likelihood-based test with bias
reduction at significance levels 0·01, 0·05 and 0·1, based on 1000 simulations, the dotted line
is the power of the Ljung–Box test, and the dashed line is that of the Cramér–von Mises test.

Figure 1 (a) clearly indicates that the likelihood-based test with bias reduction is the
most powerful one. The residual-based approach performs quite well too, the bias being
automatically corrected.
Comparisons are also made with two other popular tests. The first is the Ljung & Box

(1978) statistic, given by

(M)=T (T+2) ∑
M

i=1
r2
i
/(T− i ),

where r
i
is the ith sample autocorrelation of the residuals, and M=20. The distribution

of  (M ) is obtained by standard bootstrap. The sizes of the Ljung–Box test at three
different significance levels are given in Table 1, and the power at different b is plotted in
Fig. 1 (b).
The second test is the Cramér–von Mises test which is based on

=T {4p4G2 (p)}−1 ∑
2

i=1
q ∑T−1
j=1

(r
j
−r
j
) (r
i+j
−r
i−j

)/ jr2 ,
where, with abuse of notation, r

j
is the jth sample autocorrelation of X

t
, r
j
is the jth

autocorrelation under the null hypothesis, and G (p)=2 ∆p
0
g2
h
(x)dx. Since  as written

above involves unknown parameters, we use a version in which unknown parameters are
replaced by their maximum likelihood estimators. Distribution of this  is approximated
by bootstrap. Sizes and powers are presented in Table 1 and Fig. 1 (b). Figure 1 (b) shows
that the likelihood-based test with bias reduction is the most powerful, and the Cramér–von
Mises test performs worst.
We also did some simulations for the  (1, 1) model; the conclusions were the same
as that for Example 1.

5·2. Real data examples

Example 2. The annual record of the numbers of the Canadian lynx trapped in the
Mackenzie River district of northwest Canada is a popular dataset in time series. The
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periodic fluctuation has a big impact on ecological theory. Moran (1953) used an  (2)
model

X
t
=a
0
+a
1
X
t−1
+a
2
X
t−2
+e
t

to fit the logarithms of the lynx data. However, he noted that the sum of squares of
residuals corresponding to values of X

t
greater than the mean is 1·781 while the sum of

squares of residuals corresponding to values of X
t
smaller than the mean is 4·007. Tong

(1990, Ch. 7) suggested a  (2) model,

X
t
=qa0+a

1
X
t−1
+a
2
X
t−2
+e
t

(X
t−2
∏C),

b
0
+b
1
X
t−1
+b
2
X
t−2
+e
t

(X
t−2
>C).

To investigate whether the  (2) model or the  (2) model is more suitable for this
dataset, the residual-based test is employed. The null distribution of TR is approximated
by the bootstrap using 10 000 Monte Carlo simulations. The test gives p-value 0·0009 for
the  (2) model. This provides stark evidence against the  (2) model. On the other
hand, the test gives p-value 0·423 for the  (2) model. Thus the  (2) model fits the
dataset, which is in line with the biological interpretation in Stenseth et al. (1998).

Example 3. Figure 2 (a) displays the weekly egg prices at a German agricultural market in
April 1967–May 1990. Since the data exhibit clear nonstationary features, we take first-order
differences of the series. The differenced series are plotted in Fig. 2 (b), which looks more
stationary. Fan & Yao (2003, §3·6), concluded that  (1, 2) and  (7) models are
suitable for this dataset.
We use the likelihood-based generalised likelihood ratio statistic with bias reduction to

test the suitability of these models. The null distributions of the test statistic are approximated

Fig. 2: Example 3. (a) Weekly egg prices (per egg in Deutsch Marks/100)
at a German agricultural market from April 1967 to May 1990. (b) First

differences of the egg prices.
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by the bootstrap described in §2·5 using 10 000 Monte Carlo simulations. The test gives
p-values of 0·370 for the  (1, 2) model and 0·531 for the  (7) model. These p-values
lend further support to the conclusions made by Fan & Yao (2003).
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A

Proofs

L A1. Under Condition 2 of §4,

max
1∏k∏n

|R
n,k
|=O

P
(n−D log n).

See Kooperberg et al. (1995b) for the proof.

L A2. Suppose that e
1
, . . . , e

n
are independently and identically distributed with E(e

1
)=0

and E( |e
1
|s )<2. Suppose also that 0<X

1
< . . .<X

n
<1 are fixed designed points, that

X
i
−X
i−1
=O(n−1 ) and that K(t) satisfies the L ipschitz condition and has a bounded support. T hen,

for any sequence a
n
�2,

sup
0∏x∏1

n−1 K ∑n
i=1

K
h
(X
i
−x)e

iK=o{(nh)−D (− log h)Da
n
},

almost surely, provided that there exists 0<g<s such that h−1n(4−s+g)/(s−g) log n� c, where c is a
constant.

Proof. This follows immediately from Theorem 11·2 in Müller (1988, p. 162). %

L A3. Under Conditions 1–3 of §4, if nh2�2, we have

sup
0∏x∏p

|m@ LK (x)−m@ **LK (x) |=O
P
(n−D log n),

where m@ **LK (wk ) is the same as m@ LK (wk ) but replacing Y
k

by Y **
k
=Y
k
−r
k
.

Proof. Let

b= (nh)D (a−m(x), h{b−m∞(x)})T, W
k
= (1, (w

k
−x)/h)T ,

and m: k=m(x)+m∞(x) (w
k
−x). Then the local likelihood (2·4) can be written as

L (b)= ∑
n

k=1
[Y
k
−m: k− (nh)−DbTW

k
−exp {Y

k
−m: k− (nh)−DbTW

k
}]K
h
(w
k
−x).

Using some simple algebra, we have

L (b)−L (0)= ∑
n

k=1
[−(nh)−DbTW

k
−exp {Y

k
−m: k− (nh)−DbTW

k
}

+exp (Y
k
−m: k )]Kh (wk−x)

=l(b)−U
n
(b),

where l(b) is the same as L (b)−L (0) but with Y
k
substituted by Y **

k
, and

U
n
(b)= ∑

n

k=1
R
n,k

[exp {−m: k− (nh)−DbTW
k
}−exp (−m: k )]Kh (wk−x).
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For any fixed b, using Taylor’s expansion and Lemma A1, we have

h sup
0∏x∏p

U
n
(b)=O

P
(hD log n). (A·1)

Similarly, we can show that the following hold uniformly in x:

hU∞
n
(b)=O

P
(hD log n), hU◊

n
(b)=O

P
(hU∞
n
(b) ), hl(3) (b)=O

P
(n−Dh−D ), (A·2)

hl(4) (b)=O
P
(n−1h−1 ), hl◊( 0̃)−A

1
=O
P
(h2+n−Dh−D log ha

n
), (A·3)

where a
n
is any sequence such that a

n
�2,

0̃= (0, 0)T , A
1
=−p−1 diag (1, m

2
), m

2
=P m2K(u)du.

Let

y
n
(x)=h(nh)−D ∑

n

k=1
{−1+exp (Y **

k
−m: k )}WkKh (wk−x).

By Taylor’s expansion and (A·1), (A·2) and (A·3), the following hold uniformly in x:

hl(b)=y
n
(x)Tb+2−1bTA

1
b+D

1
(b), h{L (b)−L (0)}=y

n
(x)Tb+2−1bTA

1
b+D

2
(b),

D
1
(b)=O

P
(1), D

2
(b)=O

P
(1),

D∞
1
(b)=O

P
{(nh)−D log ha

n
+h2}, D∞

2
(b)=D∞

1
(b)+O

P
(hD log n).

Using the same argument as that for the proof of Theorem 2 in Carroll et al. (1997) and the proof
of the quadratic approximation lemma in Fan et al. (1995), we obtain that

(nh)D{m@ **LK (x)−m(x)}= (p, 0)y
n
(x)+O

P
(h−Dn−D log ha

n
+h2 ), (A·4)

(nh)D{m@ LK (x)−m(x)}= (p, 0)y
n
(x)+O

P
(hD log n),

hold uniformly in x, which leads to Lemma A3. %

Proof of T heorem 1. Observe that

TLK= ∑
n

k=1
[m
h
(w
k
)−m@ LK (wk )+exp {Y

k
−m
h
(w
k
)}−exp {Y

k
−m@ LK (wk )}]

=T *LK+B
1
+B
2
{1+O

P
(1)}−B

3
, (A·5)

where T*LK is the same as TLK but with Y
k
and m@ LK(wk) replaced respectively by Y**

k
and m@**LK (wk),

B
1
= ∑
n

k=1
[exp {Y

k
−m@ **LK (wk )}−1]{m@ **LK (wk )−m@ LK (wk )},

B
2
= ∑
n

k=1
exp {Y

k
−m@ **LK (wk )}{m@ **LK (wk )−m@ LK (wk )}2 ,

B
3
= ∑
n

k=1
R
n,k

[exp {m
h
(w
k
)−m@ **LK (wk )}−1]/g

h
(w
k
).

By Lemmas A1–A3, (A·4) and since exp (u)=1+u+O(u2 ), we have B2=O
P
( log2 n), and

B
3
∏ max
1∏k∏n

{R
n,k

/g
h
(w
k
)} ∑
n

k=1
|exp {m

h
(w
k
)−m@ **LK (wk )}−1|

∏nDh−Dq sup0∏x∏p | (−p, 0)y
n
(x) |+O

P
(1)r max1∏k∏n

R
n,k

/g
h
(w
k
)

=O
P
[h−D log n{logD h log log h+O(nDh5/2 )}].
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Similarly, we have

B
1
=B
1,1
+ ∑
n

k=1
R
n,k
exp {−m@ **LK (wk )}{m@ **LK (wk )−m@ LK (wk )}=B

1,1
+O
P
( log2 n),

where

B
1,1
= ∑
n

k=1
[V
k
exp {m

h
(w
k
)−m@ **LK (wk )}−1]{m@ **LK (wk )−m@ LK (wk )}.

By using Lemmas A1–A3 and (A·4) again, we have

B
1,1
= ∑
n

k=1
(V
k
−1){m@ **LK (wk )−m@ LK (wk )}+o

P
(h−D log n log ha

n
}=o

P
(h−D log n log ha

n
).

As a special case of Theorem 10 in Fan et al. (2001), we have that

s−1
n

(T *LK−mn+d
1ng

)�N(0, 1), (A·6)

in distribution. Theorem 1 follows from (A·6) and the bounds for B1 , B2 and B3 . %

Proof of T heorem 2. Obviously,

YB
k
=z
k
+r
k
+m
h
(w
k
)−m

h@
(w
k
)=z
k
+r*
k

and r*
k
=O
P
(n−D log n) holds uniformly in k. Using exactly the same argument as in the proof of

Theorem 1, and noting that for this case the d
1ng
in (A·6) is zero, we prove Theorem 2. %
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