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a b s t r a c t

The leverage effect refers to the generally negative correlation between an asset return

and its changes of volatility. A natural estimate consists in using the empirical correla-

tion between the daily returns and the changes of daily volatility estimated from high

frequency data. The puzzle lies in the fact that such an intuitively natural estimate yields

nearly zero correlation for most assets tested, despite the many economic reasons for

expecting the estimated correlation to be negative. To better understand the sources

of the puzzle, we analyze the different asymptotic biases that are involved in high

frequency estimation of the leverage effect, including biases due to discretization errors,

to smoothing errors in estimating spot volatilities, to estimation error, and to market

microstructure noise. This decomposition enables us to propose novel bias correction

methods for estimating the leverage effect.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The leverage effect refers to the observed tendency of an
asset’s volatility to be negatively correlated with the asset’s
returns. Typically, rising asset prices are accompanied by
declining volatility, and vice versa. The term ‘‘leverage’’ refers
. All rights reserved.
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to one possible economic interpretation of this phenomenon,
developed in Black (1976) and Christie (1982): as asset prices
decline, companies become mechanically more leveraged
since the relative value of their debt rises relative to that of
their equity. As a result, it is natural to expect that their stock
becomes riskier, hence more volatile. While this is only a
hypothesis, this explanation is sufficiently prevalent in the
literature that the term ‘‘leverage effect’’ has been adopted to
describe the statistical regularity in question. It has also been
documented that the effect is generally asymmetric: other
things equal, declines in stock prices are accompanied by
larger increases in volatility than the decline in volatility that
accompanies rising stock markets (see, e.g., Nelson, 1991;
Engle and Ng, 1993). Various discrete-time models with a
leverage effect have been estimated by Yu (2005).

The magnitude of the effect, however, seems too large to
be attributable solely to an increase in financial leverage:
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4 As a result, various data synchronization methods have been

developed to address this issue: for instance, Hayashi and Yoshida

(2005) have proposed a modification of the realized covariance which

corrects for this effect; see also Large (2007), Griffin and Oomen (2008),

Voev and Lunde (2007), Zhang (2011), Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2011), Kinnebrock and Podolskij (2008), and Aı̈t-Sahalia,

Fan, and Xiu (2010).
5 In the univariate volatility case, many estimators have been

developed to produce consistent estimators despite the presence of

the noise. These include the Maximum-Likelihood Estimator (MLE) of

Aı̈t-Sahalia, Mykland, and Zhang (2005), shown to be robust to stochas-

tic volatility by Xiu (2010), Two Scales Realized Volatility (TSRV) of

Zhang, Mykland, Aı̈t-Sahalia (2005), Multi-Scale Realized Volatility

(MSRV), a modification of TSRV which achieves the best possible rate

of convergence proposed by Zhang (2006), Realized Kernels (RK) by

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and the Pre-

Averaging volatility (PAV) estimator by Jacod, Li, Mykland, Podolskij, and

Vetter (2009). Related works include Bandi and Russell (2006), Delattre

and Jacod (1997), Fan and Wang (2007), Gatheral and Oomen (2010),

Hansen and Lunde (2006), Kalnina and Linton (2008), Li and Mykland

(2007), Aı̈t-Sahalia, Mykland, and Zhang (2011), and Li, Mykland,

Renault, Zhang, and Zheng (2009). To estimate the correlation between

two assets, or any two variables that are observable, Zhang (2011)

proposed a consistent Two Scales Realized Covariance estimator (TSCV),
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Figlewski and Wang (2000) noted among other findings that
there is no apparent effect on volatility when leverage
changes because of a change in debt or number of shares,
only when stock prices change, which questions whether
the effect is linked to financial leverage at all. As always,
correlation does not imply causality. Alternative economic
interpretations have been suggested: an anticipated
increase in volatility requires a higher rate of return from
the asset, which can only be produced by a fall in
the asset price (see, e.g., French, Schwert, and Stambaugh,
1987; Campbell and Hentschel, 1992). The leverage expla-
nation suggests that a negative return should make the firm
more levered, hence riskier and therefore lead to higher
volatility; the volatility feedback effect is consistent with the
same correlation but reverses the causality: increases in
volatility lead to future negative returns.

These different interpretations have been investigated
and compared (see Bekaert and Wu, 2000), although at the
daily and lower frequencies the direction of the causality
may be difficult to ascertain since they both appear to be
instantaneous at the level of daily data (see Bollerslev,
Litvinova, and Tauchen, 2006). Using higher frequency data,
namely, five-minute absolute returns, to construct a realized
volatility proxy over longer horizons, Bollerslev, Litvinova,
and Tauchen (2006) find a negative correlation between the
volatility and the current and lagged returns, which lasts for
several days, low correlations between the returns and the
lagged volatility, and strong correlation between the high
frequency returns and their absolute values. Their findings
support the dual presence of a prolonged leverage effect at
the intradaily level, and an almost instantaneous volatility
feedback effect. Differences between the correlation mea-
sured using stock-level data and index-level data have
been investigated by Duffee (1995). Bollerslev, Sizova, and
Tauchen (2012) develop a representative agent model based
on recursive preferences in order to generate a volatility
process which exhibits clustering, fractional integration, and
has a risk premium and a leverage effect.

Whatever the source(s) or explanation(s) for the pre-
sence of the leverage effect correlation, there is broad
agreement in the literature that the effect should be
present. So why is there a puzzle, as suggested by the
title of this paper? As we will see, using high frequency
data and standard estimation techniques, the data stub-
bornly refuse to conform to these otherwise appealing
explanations. We find that, at high frequency and over
short horizons, the estimated correlation r between the
asset returns and changes in its volatility is close to zero,
instead of the strong negative value that we have come to
expect. At longer horizons, or especially using option-
implied volatilities in place of historical volatilities, the
effect is present. If we accept that the true correlation is
indeed negative, then this is especially striking since a
correlation estimator relies on second moment, or quad-
ratic (co)variation, and quantities like those should be
estimated particularly well at high frequency, or instan-
taneously, using standard probability limit results. We
call this disconnection the ‘‘leverage effect puzzle,’’ and
the purpose of this paper is to examine the reasons for it.

At first read, this behavior of the estimated correlation
at high frequency can be reminiscent of the Epps Effect.
Starting with Epps (1979), it has indeed been recognized
that the empirical correlation between the returns of two
assets tends to decrease as the sampling frequency of
observation increases. One essential issue that arises in
the context of high frequency estimation of the correla-
tion coefficient between two assets is the asynchronicity
of their trading, since two assets will generally trade,
hence generate high frequency observations, at different
times. Asynchronicity of the observations has been shown
to have the potential to generate the Epps Effect.4

However, the asynchronicity problem is not an issue
here since we are focusing on the estimation of the correla-
tion between an asset’s returns and its (own) volatility.
Because the volatility estimator is constructed from the
asset returns themselves, the two sets of observations are by
construction synchrone. On the other hand, while asynchro-
nicity is not a concern, one issue that is germane to the
problem we consider in this paper is the fact that one of two
variables entering the correlation calculation is latent,
namely, the volatility of the asset returns. Relative to the
Epps Effect, this gives rise to a different set of issues,
specifically, the need to employ preliminary estimators or
proxies for the volatility variable, such as realized volatility
(RV), for example, in order to compute its correlation with
asset returns. We will show that the latency of the volatility
variable is partly responsible for the observed puzzle.

One further issue, which is in common at high fre-
quency between the estimation of the correlation
between two asset returns and the estimation of the
correlation between an asset’s return and its volatility, is
that of market microstructure noise. When sampled at
sufficiently high frequency, asset prices tend to incorpo-
rate noise that reflects the mechanics of the trading
process, such as bid/ask bounces, the different price
impact of different types of trades, limited liquidity, or
other types of frictions. To address this issue, we will
analyze the effect of using noise-robust high frequency
volatility estimators for the purpose of estimating the
leverage effect.5



6 VIX is subject to a risk premium which might make the observed

correlation between VIX changes and asset returns even more negative

than what results from the leverage effect, if the risk premium happens

to increase when prices go down. So the point of Fig. 2 is not to suggest

that VIX provides a solution to the measurement problem, but simply to

investigate the magnitude of the effect when employing a data source

for volatility that is not directly obtained from the price data itself. The

leverage effect can be measured using options data by estimating a
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Related studies include the development of nonpara-
metric estimators of the covariance between asset returns
and changes in volatility in Bandi and Ren �o (2012) and
Wang and Mykland (2009). Both papers propose non-
parametric estimators of the leverage effect and develop
the asymptotic theory for their respective estimators; our
focus by contrast is on understanding the source of, and
quantifying, the bias(es) that result from employing
what is otherwise a natural approach to estimate that
correlation.

Our main results are the following. We provide theo-
retical calculations that disentangle the biases involved in
estimating the correlation between returns and changes
in volatility, when a sequence of progressively more
realistic estimators is employed. We proceed incremen-
tally, in such a way that we can isolate the sources of the
bias one by one. Starting with the spot volatility, an ideal
but unavailable estimator since volatility is unobservable,
we will see that the leverage effect parameter r is already
estimated with a bias that is due solely to discretization.
This bias is small when the discretization step is small,
but we will soon see that the optimal discretization step is
not small when more realistic measures of volatilities are
used. The unobservable spot volatility is frequently esti-
mated by a local time-domain smoothing method which
involves integrating the spot volatility over time, locally.
Replacing the spot volatility by the (also unavailable) true
integrated volatility, the bias for estimating r is very
large, but remains quantifiable. The incremental bias is
due to smoothing. Replacing the true integrated volatility
by an estimated integrated volatility, the bias for estimat-
ing r becomes so large that, when calibrated on realistic
parameter values, the estimated r becomes essentially
zero, which is indeed what we find empirically. The
incremental bias represents the effect of the estimation
error. We then examine the effect of using noise-robust
estimators of the integrated volatility, and compute the
resulting additional bias term, which can make the
estimated leverage effect to go in the reverse direction.
Based on the above results, we propose a regression
approach to compute bias-corrected estimators of r. We
mainly investigate these effects in the context of the
Heston stochastic volatility model, which has the advan-
tage of providing explicit expressions for all these bias
terms. The effect of a jump component in the price
process is also further analyzed.

The paper is organized as follows. Section 2 documents
the presence of the leverage effect puzzle. The prototypi-
cal model for understanding the puzzle and nonpara-
metric estimators for spot volatility are described in
Section 3. Section 4 presents the main results of the
paper, which unveil the biases of estimating the leverage
effect parameter in all steps of approximations. Section 5
analyzes the role that price jumps can play when measur-
ing the leverage effect. A possible solution to the puzzle is
(footnote continued)

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) a Multivariate

Realized Kernel (MRK), Kinnebrock and Podolskij (2008) a multivariate

Pre-Averaging estimator, and Aı̈t-Sahalia, Fan, and Xiu (2010) a multi-

variate Quasi-Maximum Likelihood Estimator (QMLE).
proposed in Section 6. Section 7 demonstrates the lever-
age effect puzzle, the effectiveness of the proposed solu-
tion, and the robustness to alternative models by Monte
Carlo simulations. Section 8 presents empirical studies
based on high frequency data from Standard and Poor’s
500 Index (S&P 500) and Microsoft. Section 9 concludes.
The Appendix contains the mathematical proofs.

2. Motivation: the leverage effect puzzle

To motivate the theoretical analysis that follows, we
start with a straightforward empirical exercise to illus-
trate the leverage effect puzzle. Fig. 1 presents the time
series of the log-returns of the S&P 500 index and the
index itself. Large volatility periods accompanied by a
decline of the index are symptomatic of the leverage
effect.

Slightly more formally, a scatter plot of estimated
changes of volatilities and returns provides a simple
way to examine graphically the relationship between
estimated changes in volatility and changes in log-prices
(i.e., log-returns). Fig. 2 shows scatter plots of the differ-
ences of estimated daily volatilities V̂ t�V̂ t�m against the
corresponding returns of horizon m days for several
assets, where V̂ t is the integrated daily volatility esti-
mated by the noise-robust TSRV estimator. If we start
with long horizons, as shown in Fig. 2, we see that
the effect is present albeit seriously underestimated in
the data.

In addition to the evidence that comes from long
horizons, the effect is even stronger empirically if we
use a different measurement altogether of the asset
volatility, based on market prices of derivatives. In the
case of the S&P 500 index, we employ VIX, which is the
square-root of the par variance swap rate with 30 days to
maturity; that is, VIX measures the square-root of the
risk-neutral expectation of the S&P 500 variance over the
next 30 calendar days. Using this market-based volatility
measure, the leverage effect is indeed very strong as
demonstrated in Fig. 3.6

Yet, starting at the daily horizon, even when using high
frequency volatility estimates, we see in Fig. 4 that the
scatter plot of D̂t ¼ V̂ t�V̂ t�1 against daily returns Rt shows
no apparent leverage effect for the different assets
considered. As discussed in the Introduction, different
economic explanations provide for different causation
between returns and their volatility. To be robust against
parametric model which also takes into account the risk premia: see, for

example, Pan (2002) who estimates r near �0.5, including jumps in

prices, Bakshi, Cao, and Chen (1997) who estimate r in the range

[�0.6,�0.8] without jumps, and around �0.5 when including jumps,

and the likelihood-based estimates in Aı̈t-Sahalia and Kimmel (2007)

near �0.75 without jumps but across a wide range of parametric

stochastic volatility specifications.



Y. Aı̈t-Sahalia et al. / Journal of Financial Economics 109 (2013) 224–249 227
the timing differences that different causality explana-
tions would generate, we next examine scatter plots
of different time lags and leads such as fðD̂t�1,RtÞg and
fðD̂t ,Rt�1Þg. The evidence again reveals no leverage effect.
Similar results are obtained if we employ different time
periods and/or different noise-robust volatility estimators
such as QMLE or PAV.

There are sound economic rationales to support a prior
that a leverage effect is present in the data, and we do
indeed find it in Figs. 1 and 2. So why are we unable to
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Fig. 3. Daily changes of squared volatility indices versus daily returns. Using the

be seen. Left: S&P 500 data from January 2004 to December 2007, in which t

Average data from January 2005 to March 2007 in which the Chicago Board Opt

measure.
detect it on short horizons based on high frequency
volatility estimates that should provide precise volatility
proxies? This is the nature of the ‘‘leverage effect puzzle’’
that we seek to understand. Can it be the result of
employing estimators that are natural at high frequency
for the latent volatility variable, but somehow result in
biasing the estimated correlation all the way down to
zero? Why does this happen? The goal of this paper is to
understand the sources of the puzzle and propose a
solution.

3. Data generating process and estimators

In order to study the leverage effect puzzle, we need
two ingredients: nonparametric volatility estimators that
are applicable at high frequency, and data generating
processes for the log-returns and their volatility in the
form of a stochastic volatility model. Employing a specific
stochastic volatility model has the advantage that the
properties of nonparametric estimators of the correla-
tion between asset returns and their volatility become
fully explicit. We can derive theoretically the asymptotic
biases of different nonparametric estimators applied to
this model, and verify their practical relevance via small-
sample simulation experiments. Putting together, these
ingredients lead to a solution to the leverage puzzle by
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introducing a tuning parameter (represented by m below)
that attempts to minimize the estimation bias. Of course,
this solution assumes the constraints implicit in the esti-
mation of the leverage effect in practice: in keeping with
the spirit of the analysis of the paper, we attempt to fix the
estimator employed in practice, rather than design a better
estimator from scratch. In Sections 5 and 7, we discuss
generalizations of the model considered here; in particular,
we study what happens when jumps are present.
3.1. Stochastic volatility model

The specification we start with for this purpose is the
stochastic volatility model of Heston (1993) for the log-
price dynamics:

dXt ¼ ðm�nt=2Þ dtþn1=2
t dBt , ð1Þ

dnt ¼ kða�ntÞ dtþgn1=2
t dWt , ð2Þ

where B and W are two standard Brownian motions with
EðdBt dWtÞ ¼ r dt, and the parameters m, a, k, g, and r are
constants. We assume that the initial variance n040 is a
realization from the stationary (invariant) distribution
of (2) so that nt is a stationary process. Under Feller’s
condition 2ka4g2, the process nt stays positive, a condi-
tion that is always assumed in what follows. Note that

r¼ lim
s-0

Corrðntþ s�nt ,Xtþ s�XtÞ ð3Þ

so that the leverage effect is summarized by the parameter r
under the Heston model (1) and (2). We use st to denote n1=2

t

in the following. In Sections 5 and 7, we will add jumps to the
model to investigate their impact on the estimation of r.
Throughout the paper, we refer to the correlation (3)
between changes in volatility and changes in asset log-prices,
i.e., returns, as the ‘‘leverage effect.’’ Other papers define it as
the correlation between the level of volatility and returns, or
the correlation between the level of absolute returns and
returns (see, e.g., Bollerslev, Litvinova, and Tauchen, 2006.)
The latter definition, however, would not predict that the
parameter r should be identified as the high frequency limit
of that correlation; while that alternative definition is appro-
priate at lower frequencies, it yields a degenerate high
frequency limit since it measures the correlation between
two variables that are of different orders of magnitude in that
limit. High frequency data can be employed to estimate the
correlation between volatility levels and returns, but only
over longer horizons, as it is indeed employed in Bollerslev,
Litvinova, and Tauchen (2006).

We consider a different problem: the nature of the
‘‘leverage effect puzzle’’ we identify lies in the fact that
it is difficult to translate the otherwise straightforward
short horizon/high frequency limit (3) into a meaningful
estimate of the parameter r.

3.2. Nonparametric estimation of volatility and sampling

Our first task will be to understand why natural
approaches to estimate r based on (3) do not yield a
good estimator when nonparametric estimates of volati-
lity based on high frequency data are employed. With a
small time horizon D (e.g., one day or D¼ 1=252 year), let

Vt,D ¼

Z t

t�D
ns ds ð4Þ

denote the integrated volatility from time t�D to t and
V̂ t,D be an estimate of it based on the discretely observed
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log-price process Xt, which additionally may be contami-
nated with the market microstructure noise. Recall that
the quantity of interest is r and is based on (3). However,
the spot volatility process nt is not directly observable and
has to be estimated by D�1V̂ t,D. Thus, corresponding to a
given estimator V̂ , a natural and feasible estimator of r is

r̂ ¼ CorrðV̂ tþ s,D�V̂ t,D,Xtþ s�XtÞ: ð5Þ

With s¼D, V̂ tþ s,D and V̂ t,D are estimators of integrated
volatilities over consecutive intervals. This is a natural
choice for parameter s: changes of daily estimated inte-
grated volatility are correlated with changes of daily
prices in two consecutive days. However, as to be demon-
strated later, the choice of s¼mD (changes over multiple
days apart) can be more advantageous.

We now specify the different nonparametric estima-
tors of the integrated volatility that will be used for V̂ t,D.
We assume that the log-price process Xt is observed at
higher frequency, corresponding to a time interval d (e.g.,
one observation every ten seconds). In order for the
nonparametric estimate V̂ t,D to be sufficiently accurate,
we need d5D; asymptotically, we assume that D-0 and
d-0 in such a way that D=d-1.

In the absence of microstructure noise, the log-prices
Xt�Dþ id ði¼ 0,1, . . . ,D=dÞ are directly observable, and the
most natural (and asymptotically optimal) estimator of
Vt,D is the realized volatility

V̂
RV

t,D ¼
XD=d�1

i ¼ 0

ðXt�Dþðiþ1Þd�Xt�Dþ idÞ
2: ð6Þ

Here, for simplicity of exposition, we assume there is an
observation at time t�D, and that the ratio D=d is an
integer (denoted by n throughout the paper); otherwise
D=d should be replaced by its integer part ½D=d�, without
any asymptotic consequences.

In practice, high frequency observations of log-prices
are likely to be contaminated with market microstructure
noise. Instead of observing the log-prices Xt�Dþ id, we
observe the noisy version

Zt�Dþ id ¼ Xt�Dþ idþEt�Dþ id, ð7Þ

where the Et�Dþ id’s are white noise random variables with
mean zero and standard deviation sE. With this type of
observation, we can use noise-robust methods to obtain
consistent estimates of the integrated volatility. We will
primarily employ PAV as it is one of the rate-efficient
estimators. Results for TSRV are available in the Appendix
for comparison purposes. The PAV estimator with weight
function chosen as gðxÞ ¼ x4ð1�xÞ is defined as follows:
with yPAV a constant and kn ¼ ½yPAV

ffiffiffi
n
p
� the window length

over which the averaging takes place, let

V̂
PAV

t,D :¼
12

yPAV

ffiffiffi
n
p

Xn�kn þ1

i ¼ 0

1

kn

Xkn�1

j ¼ bkn=2c

Zt�Dþðiþ jÞd

0
@

�
1

kn

Xbkn=2c�1

j ¼ 0

Zt�Dþðiþ jÞd

1
A2

�
6

y2
PAVn

Xn�1

i ¼ 0

ðZt�Dþðiþ1Þd�Zt�Dþ idÞ
2: ð8Þ
A consistent estimator of the variance of this estimator is
available, as well as a consistent estimator of the inte-
grated quarticity

R t
t�D s

4
s ds (see (27) and (62)).

4. Biases in estimation of the leverage effect

We now present the results of the paper, consisting of
the biases of estimators of the leverage effect parameter
r in four progressively more realistic scenarios, each
employing a different nonparametric volatility estimator.
We stress again that our purpose in analyzing these
estimators is to match the empirical practice. These
progressive scenarios help us document an incremental
source for the bias: discretization, smoothing, estimation
error, and market microstructure noise. The results in this
section are based on the model (1) and (2): we apply
nonparametric estimators, but study their properties
when they are applied to a specific parametric model.

4.1. True spot volatility: discretization bias

First, we consider the unrealistic but idealized situation
in which the spot volatility process ns is in fact directly
observable. This helps us understand the error in estimat-
ing r that is due to discretization alone. Theorem 1 reports
the correlation between asset returns and changes of the
instantaneous volatility, from which the bias can easily be
computed.

Theorem 1. Changes of the true spot volatility and changes of

log-prices have the following correlation:

Corrðnsþ t�nt ,Xsþ t�XtÞ ¼
r

ffiffiffiffiffiffiffiffiffiffiffi
1�e�ks

k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ e�ks�1

k
� � g2

4k2 �
gr
k

� �
þs

r : ð9Þ

Let us denote the right-hand side of the expression in
(9) as C1ðs,k,g,a,rÞ. From Theorem 1, the bias due to the
discrete approximation can be easily computed, in the
form C1ðs,k,g,a,rÞ�r. In particular, we have the following
proposition expressing the bias as a function of the
integration interval D and the interval length over which
changes are evaluated, mD, mZ1, under different asymp-
totic assumptions on the sampling scheme:

Proposition 1. When mD-0 (either with m fixed and D-0,
or m-1 and mD-0), we have

CorrðntþmD�nt ,XtþmD�XtÞ

¼ r�
r g2�4gkrþ4k2
� �

16k
mDþoðmDÞ: ð10Þ

Since the value r is negative, the first order of the bias
is positive, which pulls the function C1ðs,k,g,a,rÞ towards
zero, weakening the leverage effect. Fig. 5 shows how the
function C1ðmD,k,g,a,rÞ varies with m for two sets of
parameter values: ðr,k,g,a,mÞ ¼ ð�0:8,5,0:5, 0:1,0:05Þ and
ðr,k,g,a,mÞ ¼ ð�0:3,5,0:05,0:04,0:02) when D is taken to
be 1=252 (one day). The former set of parameters was
adapted from those in Aı̈t-Sahalia and Kimmel (2007) and
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Fig. 5. Theoretical estimated leverage effect parameter r as a function of the tuning parameter m when D is taken to be 1=252; using the spot volatility

(Corr_nu), ideally estimated spot volatility (Corr_V), realized volatility estimator (Corr_RV), pre-averaging volatility estimator (Corr_PAV), and two-

time scale volatility estimator (Corr_TSRV), respectively. They correspond, respectively, to the function C1ðmD,k,g,a,rÞ in Theorem 1, A2=ðB2C2Þ in

Theorem 2, and the main terms in Theorems 3, 4, and 6, respectively (we used Cm ¼m2D for the sake of accuracy. Cm¼0 gives very similar graphs). Two

sets of parameter values are considered. Left panel: ðr,k,g,a,mÞ ¼ ð�0:8,5,0:5,0:1,0:05Þ; right panel: ðr,k,g,a,mÞ ¼ ð�0:3,5,0:05,0:04,0:02Þ.
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the latter set was taken to weaken the leverage
effect but still maintain Feller’s condition: 2ka4g2. As
expected, the smaller the m, the smaller the discretization
bias.

4.2. True integrated volatility: smoothing bias

The spot volatilities are latent. They can be (and usually
are) estimated by a local average of integrated volatility,
which is basically a smoothing operation, over a small time
horizon D. How big are the biases for estimating r even in
the idealized situation where the integrated volatility is
known precisely? The following theorem gives an analytic
expression for the resulting smoothing bias:

Theorem 2. Changes of the true integrated volatility and

changes of log-prices have the following correlation:

CorrðVtþmD,D�Vt,D,XtþmD�XtÞ ¼ A2=ðB2C2Þ, ð11Þ

where

A2 ¼ 2gð1�DkÞþ4Dk2r�2ge�Dk

þe�Dkðmþ1Þðe2Dkðg�4krÞ�2eDkðg�2krÞþgÞ,

B2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�Dkðmþ1Þð2eDkm�ðeDk�1Þ2Þþ2Dk�2

q
,

and

C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ðDkmþe�Dkm�1Þþ4gkrð�Dkm�e�Dkmþ1Þþ4Dk3m

q
:

While the expressions in Theorem 2 are exact, further
insights can be gained when we consider the resulting
asymptotic expansion as D-0. We consider both situa-
tions where m is fixed and m-1 while still mD-0.

Proposition 2. The following asymptotic expansions show the

incremental bias due to smoothing induced by the local

integration of spot volatilities:

CorrðVtþmD,D�Vt,D,XtþmD�XtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
þ

OðDÞ when D-0 for any m,

oðmDÞ when m-1 and mD-0:

(
ð12Þ
The first factor on the right-hand side of (12) is the
same as if the true spot volatility were observable. For
the second factor, it is the asymptotic bias, which isffiffiffiffiffiffiffiffiffi

3=8
p

� 0:612 when m¼1. Note that the asymptote of
the bias factor

ð2m�1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p ¼ 1þO
1

m

� �
when m is large: ð13Þ

Hence, when m is large, the bias of estimated r based on
integrated volatilities is asymptotically the same as that
of the estimated r based on spot volatilities.

Fig. 5 shows the resulting numerical values for the same
sets of parameter values considered above. They are plotted
along with the correlations of the other estimators to facil-
itate comparisons. First, as expected, the bias is larger than
that when spot volatilities are available. Fig. 5 also reveals an
interesting shape of biases of the idealized estimate of spot
volatility. When m is small, the bias is large and so is when m

is large. There is an optimal choice of m that minimizes the
bias. For the case D¼ 1=252, with the chosen parameters
as in the left panel of Fig. 5 ½ðr,k,g,a,mÞ ¼ ð�0:8,5,0:5,
0:1,0:05Þ�, the optimum is m0 ¼ 8 with the optimal value
�0.74, leading to a bias of 0.06. On the other hand, using the
natural choice m¼1, the estimated correlation is about �0.5,
meaning that the bias is about 40% of the true value.

4.3. Estimated integrated volatility: shrinkage bias due to

estimation error

Theorems 1 and 2 provide a partial solution to the
puzzle. If the spot volatility were observable, the ideal
estimate of leverage effect is to use the change of volatility
over two consecutive intervals against the changes of the
prices over the same time interval, i.e., m¼1. However,
when the spot volatility has to be estimated, even with the
ideally estimated integrated volatility Vt,D, the choice of
m¼1 is far from being optimal. Indeed, the resulting bias is
quite large: for r¼�0:8, with the same set of parameters
as above, the estimated r is about �0.5 even when
employing the idealized true integrated volatility Vt,D.
When the sample version of integrated volatility is used,
we should expect that the leverage effect is further masked
by estimation error. This is due to the well-known shrink-
age bias of computing correlation when variables are
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measured with errors. In fact, we already know that it
becomes so large that it masks completely the leverage
effect when m¼1 is used as in Fig. 4. We now derive the
theoretical bias expressions corresponding to this more
realistic case.

The following theorem calculates the bias of using a data-
driven estimator of the integrated volatility in the absence of
microstructure noise. In other words, we use the realized
volatility estimator. As introduced in Section 3.2, we use n to
denote the number of observations during each interval D,
and assume for simplicity that the observation intervals are
equally spaced at a distance d¼D=n.
Theorem 3. When D-0 and nD-C 2 ð0,1Þ, the following

expansion shows the incremental bias due to estimation

error induced by the use of RV:

CorrðV̂
RV

tþmD,D�V̂
RV

t,D,XtþmD�XtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�

m

3

r

� 1þ
12akþ6g2

ð3g2m�g2ÞkC� 3
2 g2k2CCm

 !�1=2

þRRV
r , ð14Þ

where RRV
r is OðDÞ for any fixed m, with Cm above replaced

by0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.

The above theorem documents the bias when there is
no market microstructure noise. Interestingly, it is
decomposed into two factors. The first factor is the
smoothing bias and the second factor is the shrinkage
bias due to the estimation errors. The second factor
reflects the cost of estimating the latency of volatility
process. The larger the C, the smaller the shrinkage bias.
Similarly, within a reasonable range such that mD is not
too big, the larger the m, the smaller the shrinkage bias.

To appreciate the bias due to the use of RV, the main
term in Theorem 3 as a function of m is depicted in Fig. 5
for the same sets of the aforementioned parameters. The
daily sampling frequency is taken to be n¼390 (one
observation per minute) so that C ¼ 390=252. The choice
of m¼1 corresponds to the natural estimator but it results
in a very large bias.

Even in the absence of market microstructure noise,
the estimated correlation based on the natural estimator

r̂RV
¼ CorrðV̂

RV

tþD,D�V̂
RV

t,D,XtþD�XtÞ ð15Þ

is very close to zero. This provides a mathematical
explanation for why the leverage effect cannot be
detected empirically using a natural approach. On the
other hand, Theorem 3 also hints at a solution to the
leverage effect puzzle: with an appropriate choice of m,
there is hope to make the leverage effect detectable. For
the left panel of Fig. 5, if the optimal m¼15 is used, the
estimated correlation is about �0.68, when the true value
is �0.8.
4.4. Estimated noise-robust integrated volatility: shrinkage

bias due to estimation error and noise correction error

Under the more realistic case where the presence of
market microstructure noise under (7) is recognized, the
integrated volatility Vt is estimated based on noisy log-
returns, using bias-corrected high frequency volatility
estimators such as TSRV or PAV. In this case, as we will
see, detecting the leverage effect based on the natural
estimator is even harder. It may in fact even result in an
estimated correlation coefficient with the wrong sign.
Again, the tuning parameter m can help with the issue.

We consider the PAV estimator as defined in (8),
the corresponding result for TSRV can be found in the
Appendix.

Theorem 4. When D-0, n1=2D-CPAV, and s2
E=D-CE with

CPAV and CE2 ð0,1Þ, the following expansion shows the

incremental bias due to estimation error and noise correction

induced by the use of PAV:

CorrðV̂
PAV

tþmD,D�V̂
PAV

t,D ,ZtþmD�ZtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
�ð1þA4þB4þC4Þ

�1=2
þRPAV

r , ð16Þ

where RPAV
r is OðDÞ for any fixed m, with Cm below replaced

by 0; and oðmDÞ when m2D-Cm 2 ð0,1Þ, and

A4 ¼
24F22yPAVð2akþg2Þ

c2
2CPAVkg2ð6m�2�3kCmÞ

,

B4 ¼
96F12CE

yPAVc
2
2CPAVg2ð6m�2�3kCmÞ

,

C4 ¼
48F11C2

E

y3
PAVc

2
2CPAVag2ð6m�2�3kCmÞ

,

where c2 ¼
1

12 ,F11 ¼
1
6 ,F12 ¼

1
96 ,F22 ¼

151
80 640.

For the same reasons behind the above theorem, using
the parameter m helps in resolving the leverage effect
problems. When yPAV is taken to be 0.5, with m¼1 and
the same set of parameters ðr,k,g,a,m,D,nÞ ¼ ð�0:8,5,0:5,
0:1,0:05,1=252,390Þ, the leverage effect is barely notice-
able whereas using m¼25 yields a correlation of about
�0.60. Even though the bias is large, the leverage effect is
clearly noticeable.

Again, the estimation biases can be decomposed into
two factors. The first factor is the smoothing bias, the same
as that in the RV. The second factor reflects the shrinkage
biases due to estimation errors and noise correction errors.
The rate of convergence of PAV is slower than that of RV
(but RV is biased). This is reflected in the factor CPAV which
is of order n1=2D, rather than C ¼ nD in RV.

Theorem 4 and a parallel result to Theorem 4 for TSRV
(see Theorem 6 in the Appendix) are illustrated in Fig. 5 in
which the main terms of the correlations are graphed. For
TSRV, when yTSRV is taken to be 0.5 (see details about the
TSRV setting and notation in the Appendix), with m¼1
and the same set of parameters ðr,k,g,a,D,nÞ ¼ ð�0:8,5,
0:5,0:1,1=252,390Þ, the leverage effect is nearly zero
whereas using m¼37 yields a correlation of about �0.48.
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4.5. Another view on sources of biases

The correlation between the returns of an asset and
their volatilities is their covariance divided by their
standard deviations. A natural question is which of these
three quantities are understated/overstated in the pro-
cess. We focus on the case where m2D-Cm 2 ð0,1Þ for
ease of presentation below.

Under the conditions of Theorem 4, we have (see
details in the Appendix)

CovðV̂
PAV

tþmD,D�V̂
PAV

t,D ,ZtþmD�ZtÞ

¼ CovðVtþmD,D�Vt,D,XtþmD�XtÞð1þoðmDÞÞ,

VarðV̂
PAV

tþmD,D�V̂
PAV

t,D Þ ¼VarðVtþmD,D�Vt,DÞ

� 1þO
1

m

� �
þoðmDÞ

	 

,

VarðZtþmD�ZtÞ ¼VarðXtþmD�XtÞ½1þoðmDÞ�:

That means that the shrinkage bias due to estimation
error mainly comes from the denominator, more specifi-
cally, the variance of change in volatilities.

By contrast, both the covariance and variance contri-
bute to the source of the smoothing bias. Indeed, under
the same conditions as above, we have

CovðVtþmD,D�Vt,D,XtþmD�XtÞ

¼DCovðntþmD�nt ,XtþmD�XtÞ 1�
1

2m
þoðmDÞ

� �
,

VarðVtþmD,D�Vt,DÞ ¼D2 VarðntþmD�ntÞ 1�
1

3m
þoðmDÞ

� �
:

Hence, both the numerator and the denominator, more
specifically, the covariance and the variance of change in
volatilities, contribute to the smoothing bias.

For the discretization bias, we have the following
relations:

1

mD
CovðntþmD�nt ,XtþmD�XtÞ ¼ agr�

1

2
agkrmDþoðmDÞ,

1

mD
VarðntþmD�ntÞ ¼ ag2�

1

2
ag2kmDþoðmDÞ,

1

mD
VarðXtþmD�XtÞ ¼ aþ

agmDðg�4krÞ
8k þoðmDÞ:

They imply that all three components in the calculation of
the correlation contribute to the discretization bias.

5. The effect of jumps

Jumps are an important feature of asset returns. The
extent to which their presence impacts the measurement
of the leverage effect depends primarily on two factors:
first, price jumps that are not accounted for when esti-
mating volatility do bias upwards the volatility estimates
and affect the correlation measurement; second, if there
are jumps in volatility and the volatility process tends to
jump at the same time as the price process, then the bias
can go in either direction depending upon whether those
co-jumps tend to be of the same sign or not.

If we allow for co-jumps in price and volatility, then
the notion of a leverage effect needs to be extended to
incorporate not only the correlation arising between
the two Brownian shocks, but also the correlation arising
between the two jump terms. This results in a total
covariation between the price and volatility processes
that includes both a continuous and a discontinuous part,
namely,

rg
Z t

0
ns dsþ

X
0r sr t

ðDXsÞðDvsÞ,

where DXs and Dvs denote jumps in log-price and vola-
tility, respectively. The total quadratic variations of prices
and volatility are respectively given byZ t

0
ns dsþ

X
0r sr t

ðDXsÞ
2 and g2

Z t

0
ns dsþ

X
0r sr t

ðDvsÞ
2:

Now there are different possible definitions for the
leverage effect: one is r, as before, which we can estimate
using the continuous part of the covariation. But another
part is due to the co-jumps,

P
0r sr tðDXsÞðDvsÞ.

The two parts can in principle be estimated consis-
tently, although any estimates of the latter are likely to be
unreliable in practice since they would necessarily rely on
observing jumps that are rare to begin with for each
series, but in fact rely on jumps in both price and volatility
series that happen at the same time. We will therefore
focus on analyzing the first effect, namely, the impact of
price jumps on estimating the correlation between the
Brownian shocks to price and volatility, involving a direct
effect on the covariation measurement and an indirect
effect on the volatility level measurement. The impact of
co-jumps will be studied via simulation in Section 7.2.

We consider for this purpose a natural extension of
the Heston model that allows for jumps in the price
process, as follows:

dXt ¼ ðm�nt=2Þ dtþn1=2
t dBtþ Jt dNt , ð17Þ

dnt ¼ kða�ntÞ dtþgn1=2
t dWt , ð18Þ

where Bt and Wt are Brownian motions with correlation r,
Nt is a Poisson process with intensity l, and Jt denotes the
jump size which is assumed independent of everything
else. We assume that Jt follows a distribution with mean
zero and variance s2

J . We label this model Heston(J).
We analyze what happens to natural estimators of the

leverage effect parameter r. In the absence of market
microstructure noise, we employ the truncated realized
volatility estimator

V̂
RV,TR

t,D ¼
XD=d�1

i ¼ 0

ðXt�Dþðiþ1Þd�Xt�Dþ idÞ
21f9Xt�Dþ ðiþ 1Þd�Xt�Dþ id9rad$g

ð19Þ

for some $ 2 ð0,1=2Þ and a40. V̂
RV,TR

t,D is a consistent
estimator of the integrated volatility Vt,D that filters out
the large increments for the purpose of computing the
continuous part of the quadratic variation. By including
only increments that are of an order of magnitude smaller
than what the jumps can generate, this estimator com-
putes the sum of squared log-returns only for log-returns
that are likely to have been generated by the Brownian
part of the model, and is known to effectively address the
problem of the upward bias in volatility that is caused
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Fig. 6. Effectiveness of the multiplicative correction of smoothing bias, based on the main term in (21). The solid curve (labeled as Corr_nu) depicts

CorrðntþmD�nt ,XtþmD�XtÞ as a function of m; the dash curve (labeled as Corr_V) shows CorrðVtþmD,D�Vt,D,XtþmD�Xt Þ, and the dot-dashed curve (labeled

as Corr_V) Corr_nu) plots ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
=ð2m�1ÞÞCorrðVtþmD,D�Vt,D ,XtþmD�XtÞ. After correction, the estimate of r based on the integrated volatility V

is approximately the same as that based on the spot volatility. Left panel: ðr,k,g,a,m,DÞ ¼ ð�0:8,5,0:5,0:1,0:05,1=252Þ; right panel: ðr,k,g,a,m,DÞ ¼
ð�0:3,5,0:05,0:04,0:02,1=252Þ.
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by the jumps (see Mancini, 2009; Aı̈t-Sahalia and Jacod,
2009). Without truncation, price jumps could be a sub-
stantial source of attenuation of the leverage effect.

We have the following result about the correlation
when the truncated realized volatility is used as a proxy
for the continuous part of the volatility:

Theorem 5. When D-0, nD-C, and m2D-Cm with C,
Cm 2 ð0,1Þ, and 5=16o$o1=2,

CorrðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ,XtþmD�XtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p

� 1þ
12akþ6g2

ð3g2m�g2ÞkC� 3
2 g2k2CCm

 !�1=2

�

aþ g2a
8k �

gar
2

� �
mD

aþs2
J lþ

g2a
8k �

gar
2

� �
mD

0
B@

1
CA

1=2

þoðmDÞ: ð20Þ

Theorem 5 shows that, once we filter out the jumps
using truncated realized volatility, then up to an addi-
tional bias factor which is due to the addition of jump
variance in the variance of XtþmD�Xt , the estimated
leverage effect r is subject to the same bias terms as
when jumps are absent.
6. A solution to the puzzle

Sections 4 and 5 documented the various biases arising
when estimating the leverage effect parameter r in four
progressively more realistic scenarios. The message was
decidedly gloomy: even in idealized situations, the bias is
large, and attempts to correct for the latency of the
volatility, or for the presence of market microstructure
noise, do not improve matters. In fact, they often make
matters worse. But, fortunately, they also point towards
potential solutions to the bias problem, even if one insists
upon using estimators that are constructed by plugging
into the correlation log-returns and realized volatility-
type estimators.
6.1. Back to the latent spot volatility

We focus on model (1) and (2) first. We show that all
the additional biases that are introduced by the latency of
the spot volatility can be corrected, and the problem is
reduced to the discretization bias left in Theorem 1.

Recall the asymptotic expression given in Proposition 2,
which can be inverted to yield

CorrðntþmD�nt ,XtþmD�XtÞ

¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
ð2m�1Þ

CorrðVtþmD,D�Vt,D,XtþmD�XtÞ

þ
OðDÞ when D-0 for any m,

oðmDÞ when m-1, mD-0:

(
ð21Þ

Thus, up to a multiplicative correction factor that is
independent of the model’s parameters, the integrated
volatility V can work as well as the spot volatility n. The
effectiveness of this simple bias correction is demonstrated
in Fig. 6.

In the absence of microstructure noise, using the
realized volatility (6), the asymptotic relative bias in
comparison with the use of the true spot volatility is
given by Theorem 3. Using the expressions given there,
we can correct the bias due to the estimate by realized
volatility back to that based on the spot volatility. How-
ever, such a correction involves unknown parameters in
the Heston model, which is nontrivial to estimate due to
the stochastic volatility, which relies on a nonparametric
correction. An alternative approach is to use the following
result, demonstrated in the Appendix. This avoids the
challenge of directly estimating the unknown parameters
in the model. For ease of presentation we again focus on
the case where m2D-Cm 2 ð0,1Þ in the following.

Proposition 3. When D-0, nD-C and m2D-Cm with C

and Cm 2 ð0,1Þ,

CorrðntþmD�nt ,XtþmD�XtÞ ¼ c3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
ð2m�1Þ

CorrðV̂
RV

tþmD,D

�V̂
RV

t,D,XtþmD�XtÞþoðmDÞ,

ð22Þ
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where c3 is given by

c3 ¼ 1�
4E½s4

t �D
2

n VarðV̂
RV

tþmD, D�V̂
RV

t,DÞ

0
@

1
A
�1=2

: ð23Þ

Note that in (23), the stationarity of the process of nt is
used so that the correction factor does not depend on t.

In practice, we can estimate E½s4
t � nonparametrically

based on the fact that the realized quarticity

RQn
t :¼

n

3

Xn�1

i ¼ 0

ðXtþðiþ1Þd�Xtþ idÞ
4

satisfies

E½RQn
t � ¼D2E½s4

t �ð1þoð1ÞÞ ð24Þ

for any fixed D as n-1. A long-run average of scaled
realized quarticity can be used to estimate E½s4

t �. The
variance in (23) can be estimated by its sample version.

For the PAV estimator, the bias correction admits the
same form as (22) with a different correction factor.

Proposition 4. When D-0, n1=2D-CPAV, s2
E=D-CE, and

m2D-Cm for constants CPAV, CE, and Cm 2 ð0,1Þ,

CorrðntþmD�nt ,XtþmD�XtÞ ¼ c4
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
ð2m�1Þ

CorrðV̂
PAV

tþmD,D

�V̂
PAV

t,D ,ZtþmD�ZtÞþoðmDÞ,

ð25Þ

where

c4 ¼ 1�
2ðA04þB04þC 04Þ

n1=2VarðV̂
PAV

tþmD,D�V̂
PAV

t,D Þ

0
@

1
A
�1=2

, ð26Þ

with

A04 ¼
4F22yPAVE½s4

t �D
2

c2
2

, B04 ¼
8F12E½s2

t �s2
ED

yPAVc
2
2

,

C 04 ¼
4F11s4

E

y3
PAVc

2
2

,

where c2,F11,F12,F22 are the constants given in Theorem 4.

One can make use of the long-run average of the
quantity Gn

t defined in Jacod, Li, Mykland, Podolskij, and
Vetter (2009) to estimate A04þB04þC04:

Gn
t ¼

4F22

3yPAVD
1=2c4
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Then, we have

EðGn
t Þ ¼D�1=2

ðA04þB04þC04Þð1þoð1ÞÞ ð28Þ

for any fixed D as n-1. A long-run average of scaled Gn
t

can be used to estimate A04þB04þC04.
A result parallel to Proposition 4 for TSRV (see

Proposition 6) can be found in the Appendix.

6.2. Correction in the presence of jumps

In the presence of jumps, for model (17) and (18), we
have the following result.

Proposition 5. When D-0, nD-C, and m2D-Cm with C

and Cm 2 ð0,1Þ, and 5=16o$o1=2,

CorrðntþmD�nt ,XtþmD�XtÞ

¼ c5
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
ð2m�1Þ

CorrðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ,XtþmD�XtÞþoðmDÞ,

ð29Þ

where c5 is given by

c5 ¼ 1�
4E½s4

t �D
2

n VarðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D Þ

0
@

1
A
�1=2

�
VarðXtþmD�XtÞ

VarðXtþmD�XtÞ�VarðJðt,tþmDÞÞ

 !1=2

, ð30Þ

and Jðs,tÞ ¼
P

r2½s,t�ðXr�Xr�Þ.

To implement the result above in practice, we can
estimate E½s4

t � consistently using a long-run average
of truncated realized quarticity ðn=3Þ

Pn�1
i ¼ 0ðXtþðiþ1Þd�

Xtþ idÞ
41f9Xtþ ðiþ 1Þd�Xtþ id9rad$g (scaled by D2), and

VarðJðt,tþmDÞÞ by m times the long-run variance of
Pn

i ¼ 0

ðXtþðiþ1Þd�Xtþ idÞ1f9Xtþ ðiþ 1Þd�Xtþ id94ad$g, for some a40 and
5=16o$o1=2.

6.3. Correcting the discretization bias from spot volatilities

The above results reveal that the biases due to the
various estimates are correctable back to the case where
the spot volatility can be viewed as observable. However,
Theorem 1 implies that the estimate of r based on nt itself is
also biased. If the model were known, then the bias in (10)
can be computed and corrected. However, this depends on
the Heston model and its unknown parameters.

A parameter-independent method is as follows. Let
rm ¼ CorrðntþmD�nt ,XtþmD�XtÞ. Then, by Theorem 1 we
see that

rm ¼ rþbmþoðmDÞ: ð31Þ

This suggests that the parameter of interest r (as well
as the slope b but this is not needed) can be estimated by
running a linear regression of the data fðm,rmÞg. The bias-
corrected estimate of r is simply the intercept of that
linear regression. The scatter plot of fðm,rmÞg can also
suggest a region of m to run the above simple linear
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regression (31). A data-driven choice of the range of m to
be used for the regression is given in Section 7.1.2.

The above discussion suggests a rather general strategy
for bias correction. First, compute the simple correlation
between estimated changes of volatilities and changes of
prices. Second, conduct a preliminary bias correction
according to (21)–(30) or (61), depending on which esti-
mated volatilities are used. Third, run the simple regression
Eq. (31) for the preliminary bias-corrected estimated
correlations. Fourth, take the intercept of the simple linear
regression as the final estimate. The method turns out to
be very effective in practice, as we now see.

7. Monte-Carlo simulations

In this section, we use simulations to reproduce the
leverage effect puzzle and its proposed solution, and to
verify the practical validity of the results presented in the
previous sections at finite sample. We devised the bias
terms and their correction using the tractable mathe-
matics of the Heston model. In these simulations, we first
seek both to validate the theoretical results presented in
the previous section under the Heston model, and then
examine the conjecture that these corrections can be
useful in practice under different data generating pro-
cesses than what was assumed in the theory part of
the paper.

7.1. Data generating processes under prototypical models

We first validate the theoretical results above using
the Heston model (1)–(2) without price jumps, and then
with price jumps (17)–(18), as assumed in our deriva-
tions. We employ broadly realistic parameter values:
a¼ 0:1, g¼ 0:5, k¼ 5, r¼�0:8, and m¼ 0:05 over 252n5
trading days in five years (D¼ 1=252). The sampling
frequency is one minute per sample, giving an intraday
number of observations of n¼390. Therefore, the total
number of observations over five years is N¼ 252n390n5
¼ 491,400. The true price is latent. Instead, the observed
data fZidg

491,400
i ¼ 1 are contaminated with market micro-

structure as in (7): the noise is independent and identi-
cally distributed (i.i.d.) N ð0,s2

E Þ with sE ¼ 0:0005.

7.1.1. Visualizing the leverage effect puzzle

With the latent spot volatility nt and latent price Xt

known in simulated data, we can easily examine the
correlation of fðXtD�Xðt�1ÞD,ntD�nðt�1ÞDÞg over N observa-
tions. As expected, the leverage effect is strong, with the
sample correlation being �0.79 for a given realization.
This is in line with the result of Theorem 1.

Next, consider the more realistic situation that the
spot volatility needs to be estimated by a smoothing

method such as a local integrated average Vt,D ¼
R t

t�D

s2
t dt. A natural estimate is the average of daily spot

volatility V̂ t,D ¼ n�1
Pn

j ¼ 1 ŝ
2
t�Dþ jD=n. In this ideal situation,

s2
t�Dþ jD=n is known, resulting in Vt,D ¼ n�1

Pn
j ¼ 1 s2

t�Dþ jD=n.

The correlation of fðXðtþ1ÞD�XtD,V ðtþ1ÞD,D�VtD,DÞg
1259
t ¼ 1 is

�0.49 for the given realization examined above. This is
in line with the result of Theorem 2. The magnitude of the
leverage effect parameter r is significantly under esti-
mated. To appreciate the effect of the tuning parameter m,
the upper panel of Fig. 7 plots the correlation fðXðtþmÞD�

XtD,nðtþmÞD,D�ntD,DÞg
1260�m
t ¼ 1 and fðXðtþmÞD�XtD,V ðtþmÞD,D

�VtD,DÞg
1260�m
t ¼ 1 against m. To examine the sampling vari-

abilities, the simulation is conducted 100 times. The
averages of the sample correlations are plotted along
with its standard deviation (SD) in the figure. The impact
of m can easily be seen and the natural estimate based on
Vt,D with m¼1 is far from optimal.

In practice, the integrated volatility is not observable.
It has to be estimated using the discretely observed data.
In absence of the market microstructure noise, the rea-
lized volatility provides a good estimate of the integrated
volatility. Using RV based on the simulated latent
prices Xi

n
, we have a sample correlation of �0.26 for the

same realization discussed above based on fðXðtþ1ÞD�XtD,

V̂
RV

ðtþ1ÞD,D�V̂
RV

tD,DÞg
1259
t ¼ 1. More generally, the correlation of

fðXðtþmÞD�XtD,V̂
RV

ðtþmÞD,D�V̂
RV

tD,DÞg
1260�m
t ¼ 1 as a function of m is

depicted in the lower left panel of Fig. 7. As above, this is
repeated 100 times so that the average correlations along
with their errors at each m are computed.

For a more realistic situation, the integrated volatility has
to be estimated based on the contaminated log-prices
Zt in (7). The volatility parameter is now estimated

by the correlation fðZðtþmÞD�ZtD,V̂
PAV

ðtþmÞD,D�V̂
PAV

tD,DÞg
1260�m
t ¼ 1

or fðZðtþmÞD�ZtD,V̂
TSRV

ðtþmÞD,D�V̂
TSRV

tD,D Þg
1260�m
t ¼ 1 with a suitable

choice of m. The lower middle and lower right plots of
Fig. 7 show the correlation as a function of m. In particular,
when m¼1, the sample correlation is merely �0.13 for PAV
and �0.06 for TSRV for the same simulated path as
mentioned above, which would be interpreted in practice
as showing little support for the leverage effect. But we
know that this is due to the statistical bias of the procedure
as demonstrated in Theorems 4 and 6. For this realization,
using PAV with m¼31, the sample correlation is �0.63; and
using TSRV with m¼50, the sample correlation is �0.53.
While this is still a biased estimate, the leverage effect can
be clearly seen.

The averages of these correlations, based on the 100
simulations, against m are plotted together in Fig. 8. These
are in line with the theory (see the left panel of Fig. 5).
7.1.2. Effectiveness of the bias correction method

We now illustrate the effectiveness of the bias correc-
tion method proposed in Section 6. We simulate sample
paths with the same parameters as above. yTSRV and yPAV

are both taken to be 0.5.

For each volatility or volatility proxy n, V, V̂
RV

, V̂
PAV

, and

V̂
TSRV

, let r̂m be the sample version or bias-corrected

estimate of rm ¼ CorrðntþmD�nt ,XtþmD�XtÞ. We call this

preliminary bias-correction. In practice, the model para-
meters are unknown. We use the non parametric methods
as described in Section 6.1 to obtain the preliminary correc-

tions. More specifically, E½s4
t � in RV is estimated by the long-

run average of scaled realized quarticity based on Eq. (24);
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A04þB04þC04 in PAV is estimated by the long-run average of

scaled Gn
t based on Eq. (28). For the unknown values of E½s4

t �

and s2
E in TSRV, we use long-run average of Q̂

n

t as defined in

(62) and long-run average of ðV̂
RV

t,D�V̂
TSRV

t,D Þ=2n as discussed

above Eq. (62) in the Appendix.
In our simulation and empirical studies, we employ the

following automated method to select the range of m for the
linear extrapolation in Section 6.3. Note that the average of
r̂m over many simulations should behave like the black solid
curve in Figs. 5, 6 or 8. For each given sample path, r̂m can
deviate from the theoretical curve as demonstrated in (the
left panel of) Fig. 9, and the deviation can be large when m is
small. Therefore, choosing an appropriate range for linear
extrapolation is important and challenging. Our data-driven
procedure goes as follows:
1.
 Compute r̂m for every m in ½1,l� (l¼252, say). Let m1,
m2, m3 be the positions corresponding to the smallest,
second smallest, third smallest among fr̂mg

l=2
m ¼ a0

(a0 ¼ 6, say, which avoids instable estimates for small
m). The notation fr̂mg

l=2
m ¼ a0

means the sequence r̂m

when m runs from a0 to l=2. Set mn ¼maxfm1,m2,m3g.
mn basically corresponds to the minimum value of
fr̂mg

l=2
m ¼ a0

, but is computed more robustly. It is the
lower end point of the range of m to be used for
regression.
2.
 Run the simple linear regression based on the pair of
the data fm,r̂mg

mnþk
m ¼ mn , for k in ½k0,l�mn�, where k0

(¼11, say) is the minimum number of data points
needed to run such a regression. Let kn be the value of
k that corresponds to the largest multiple-R2. It is
taken to determine the upper end point of the range
of values of m to be used.

n

3.
 Run a regression based on fm,r̂mg
mn þk
m ¼ mn ; the intercept

of the regression is taken as our final estimate of r.
In the simulation studies, we take l¼252, a0 ¼ 6, and
k0 ¼ 11. The results are not sensitive to the choices of
these parameters. Fig. 9 demonstrates how this works on
a simulated sample path. More extensive results are given
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based on PAV is �0.86, that based on TSRV is �0.82 for this realization. The true leverage effect parameter r is �0.8.

Table 1
Performance of the (feasible) bias correction method based on nonparame-

trically estimated asymptotic quantities and an automated linear regression

for Heston model. The 100 estimates of r are summarized by their

minimum, first quartile, median, third quartile, maximum, mean, and SD.

Parameters: ðr,k,g,a,m,sE ,D,nÞ ¼ ð�0:8,5,0:5,0:1,0:05,0:0005,1=252,390Þ.

Estimator Min. 1st

Qu.

Median 3rd

Qu.

Max. Mean SD

r̂RV �0.95 �0.84 �0.81 �0.78 �0.67 �0.82 0.047

r̂PAV �0.99 �0.85 �0.82 �0.77 �0.64 �0.81 0.064

r̂TSRV �1.00 �0.87 �0.83 �0.74 �0.63 �0.81 0.089
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in Table 1, which shows that the automated method
works very well among 100 simulations.

For the simulation studies, we have the data without
microstructural noise available and hence, r̂m can be
computed based on the realized volatility via (22). Let
us denote the bias-corrected estimate of r as r̂RV after
running the automated linear extrapolation algorithm. In
the presence of microstructure noise, r̂m can be computed
based on PAV (see (25)) or TSRV (see (61)). After running
the automated linear extrapolation algorithm, the results
are denoted, respectively, as r̂PAV and r̂TSRV. Table 1
summarizes the results of 100 simulations of minute-
by-minute (n¼390) data over a five-year period (T¼5) for
the model (1) and (2) with a¼ 0:1, g¼ 0:5, k¼ 5, r¼�0:8,
and m¼ 0:05.

The means of these corrected estimates are all close
to the true value r¼�0:8, which implies that these
estimates are nearly unbiased. The fact that the problems
become progressively harder can easily be seen from the
SD of the estimates.

In summary, Table 1 provides stark evidence that
the methods in Section 6 solve the leverage effect
puzzle. It also quantifies the extent to which the
problem gets progressively harder. When the sampling
frequency is more frequent than one sample per minute,
the estimation error can be reduced. We omit the
details here.
7.1.3. Models with jumps

We now consider the model Heston(J) (17) and (18),
which incorporates jumps. For the diffusion part, we use
the same parameter values as above: a¼ 0:1, g¼ 0:5,
k¼ 5, r¼�0:8, m¼ 0:05, n¼390 over 252n5 trading days

in five years. The jumps are of intensity l¼ 5 with sizes

distributed as N ð0,0:0152
Þ (sJ ¼ 0:015). The empirical

findings in Andersen, Benzoni, and Lund (2002) are taken
as reference when selecting the parameter values.
We consider the case without market microstructure

noise. The observed data are fXidg
491,400
i ¼ 1 . For the truncated

realized volatility and truncated realized quarticity,

we use a truncation level ad$ ¼ 4
ffiffiffiffî
a
p

d1=2 following the
suggested value and the rationale behind Aı̈t-Sahalia and

Jacod (2012, Section 9.1), where â is the
scaled long-run average of daily realized volatilities,

â ¼D�1
naverage of fV̂

RV

t,Dg
1260
t ¼ 1, which is taken as a rough

estimate of a.
Fig. 10 shows the mean and standard deviation of the

sample correlations between the log-returns and the
changes of the truncated realized volatility based on 100



Y. Aı̈t-Sahalia et al. / Journal of Financial Economics 109 (2013) 224–249238
simulated sample paths. This is in line with Theorem 5
and shows the same feature as the no-jump case.
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Fig. 10. Sample correlations based on truncated RV for the model

Heston(J). Sample correlations between the log-returns and the changes

of truncated realized volatilities over a period of m days for 100 sample

paths simulated based on the model Heston(J) (17) and (18). The solid

curve is the average of one hundred simulations; the dots are one

standard deviations away from the averages. Parameters: ðr,k,g,a,m,

sE ,D,n,l,sJÞ ¼ ð�0:8,5,0:5,0:1,0:05,0:0005,1=252,390,5,0:015Þ.

Table 2
Performance of the bias correction based on nonparametrically estimated asym

the raw correlation based on truncated realized volatility. The 100 estimates of

quartile, maximum, mean, and SD. Parameters: ðr,k,g,a,m,D,n,sJ ,lÞ ¼ ð�0:8,5,0

Estimator Min. 1st Qu. Median 3

r̂RV,TR �0.94 �0.85 �0.82 �
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Fig. 11. Sample correlations between the log-returns and the changes of trunca

paths simulated based on models Heston(J)–VindJ, Heston(J)–VcoJ(i), Heston(J)

simulations; the dots are one standard deviations away from the averages. Pa

390,5,0:015,5,0:01,0:75,�0:75Þ.
We next consider the correction based on Proposition 5.
To estimate the quantities in c5, we use the long-run

variances to estimate VarðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D Þ and VarðXtþmD

�XtÞ; apply

m
Xn

i ¼ 0

ðXtþðiþ1Þd�Xtþ idÞ
21f9Xtþ ðiþ 1Þd�Xtþ id94ad$g

to estimate VarðJðt,tþmDÞÞ; and employ a long-run scaled

average of truncated realized quarticity

D�2 n

3

Xn�1

i ¼ 0

ðXtþðiþ1Þd�Xtþ idÞ
41f9Xtþ ðiþ 1Þd�Xtþ id9rad$g

to estimate E½s4
t �. Then, based on Eq. (29), we can correct

the raw correlation CorrðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ,XtþmD�XtÞ back

to CorrðntþmD�nt ,XtþmD�XtÞ. The same automated linear
extrapolation procedure as described in Section 7.1.2 is
used to estimate r. The results are collected in Table 2
which shows that the correction is effective.

This illustrates that the leverage effect puzzle exists
beyond the Heston model. In particular, when jumps are
ptotic quantities and linear regression for model Heston(J), starting with

r (r̂RV ,TR) are summarized by their minimum, first quartile, median, third

:5,0:1,0:05,1=252,390,0:015,5Þ.

rd Qu. Max. Mean SD

0.79 �0.68 �0.82 0.048
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n ,sJn ,rJp ,rJnÞ ¼ ð�0:8,5,0:5,0:1, 0:05,1=252,
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present, the nature of the puzzle is the same as in
the continuous case when truncated realized measures
are used. The proposed nonparametric correction remains
effective.

7.2. Alternative data generating processes

The bias correction methods were derived for the
Heston model. Yet, the method for the correction itself
is nonparametric, independent of the prototypical model.
The question that arises naturally is whether the non-
parametric corrections still work with different models.
The results that we now present from nine alternative
models show that the proposed correction method
works about as well for those models as it does for the
Heston model.

7.2.1. Jumps in prices and volatilities

To investigate the performance of the proposed bias
correction methods in a model that is different from the
Table 3
Performance of the bias correction based on nonparametrically estimated as

Heston(J)–VcoJ(i), Heston(J)–VcoJ(p), and Heston(J)–VcoJ(n), starting with the

models, the 100 estimates of r (r̂RV ,TR) are summarized by their minimum, firs

ðr,k,g,a,m,D,n,sJ ,l,sJn ,ln ,rJp ,rJnÞ ¼ ð�0:8,5,0:5,0:1,0:05,1=252,390,0:015,5,0:01,5

Estimator/Model Min. 1st Qu. Median

r̂RV ,TR , Heston(J)–VindJ �0.94 �0.85 �0.81

r̂RV ,TR , Heston(J)–VcoJ(i) �0.97 �0.84 �0.81

r̂RV ,TR , Heston(J)–VcoJ(p) �0.97 �0.83 �0.80

r̂RV ,TR , Heston(J)–VcoJ(n) �0.95 �0.85 �0.82
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Fig. 12. Sample correlations between the log-returns and the changes of truncated

simulated based on models OU(J), OU(J)–VindJ, OU(J)–VcoJ(i), OU(J)–VcoJ(p), and OU

one standard deviations away from the averages. Parameters: ðr,a,g,k,m,D,n,l,sJ ,l
one assumed for the theoretical analysis, we first add
volatility jumps to the model (17) and (18).

When adding volatility jumps, we consider two cases.
First, we add the term Jnt dNv

t to the volatility stochastic
differential equations (18), where Nn

t is a Poisson process
with intensity ln independent of Nt, and Jt

v
is independent of

everything else with mean zero and variance s2
Jn

. We label
this model ‘‘Heston(J)–VindJ.’’; We then consider the cases
where volatility and price jump together, i.e., Nn

t ¼Nt . We
study three cases: ‘‘Heston(J)–VcoJ(i)’’ is the model where Jt

v

is independent of Jt; ‘‘Heston(J)–VcoJ(p)’’ is the model where
Jt
v

and Jt are positively correlated with correlation rJp,
and ‘‘Heston(J)–VcoJ(n)’’ is the model where Jt

v
and Jt are

negatively correlated with correlation rJn.
We consider the case where there is no market micro-

structure noise. The parameter values are: a¼ 0:1, g¼ 0:5,
k¼ 5, r¼�0:8, m¼ 0:05, n¼390, l¼ ln ¼ 5, rJp ¼ 0:75,
and rJn ¼�0:75. Jt and Jnt are normally distributed with
sJ ¼ 0:015 and sJn ¼ 0:01. Based on the 100 sample paths
simulated over 252n5 trading days in five years, we found
that the correlations exhibit the same features as above
ymptotic quantities and linear regression for models Heston(J)–VindJ,

raw correlation based on truncated realized volatility. For each of these

t quartile, median, third quartile, maximum, mean, and SD. Parameters:

,0:75,�0:75Þ.

3rd Qu. Max. Mean SD

�0.79 �0.67 �0.82 0.047

�0.79 �0.67 �0.81 0.051

�0.78 �0.68 �0.81 0.052

�0.80 �0.66 �0.82 0.048
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realized volatilities over a period of m days for one hundred sample paths

(J)–VcoJ(n). The solid curves are the average of 100 simulations; the dots are
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(see Fig. 11). The correction method as discussed in
Section 7.1.3 works well for these non-prototypical mod-
els: see Table 3.
0 50 100 150 200 250

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

m

C
or

re
la

tio
n

Corr_VIX
Corr_PAV

Fig. 13. S&P 500 leverage effects based on PAV and VIX. The raw sample

correlations based on PAV with minute-by-minute data and VIX

(squared) are plotted, for different horizons m, for S&P 500 in the time

period 2004–2007.
7.2.2. Non-Heston stochastic volatility models

We now employ a different stochastic volatility model
where the log-variance follows an Ornstein-Uhlenbeck
process. We first consider the SV1ðJÞmodel as in Andersen,
Benzoni, and Lund (2002). We label this model as ‘‘OU(J)’’

dSt

St
¼ ðm�ltJÞ dtþ

ffiffiffiffiffi
nt
p

dBtþ Jt dNt , ð32Þ

d ln nt ¼ kða�ln ntÞ dtþg dWt , ð33Þ

where lt ¼ l0þl1nt , J is a parameter, and Jt is such that
lnð1þ JtÞ �Nðlnð1þ JÞ�0:5s2

J ,s2
J Þ. We choose the following

(annualized) parameters which are in line with the
empirical results in Andersen, Benzoni, and Lund (2002):
a¼�1, m¼ 0:05, g¼ 0:5, k¼ 5, r¼�0:8, J ¼ 0, l1 ¼ 0,
l0 ¼ 5, sJ ¼ 0:015.

We further consider the case where there are addi-
tional jumps in volatilities, both independent jumps and
co-jumps. More specifically, model ‘‘OU(J)–VindJ’’ refers
to the case when Jnt dNn

t is added to (33), where Nn
t is a

Poisson process with intensity ln independent of Nt, and Jt
v

is independent of everything else following lnð1þ Jnt Þ �

Nð0,s2
Jn
Þ. The model ‘‘OU(J)–VcoJ(i)’’ is when Nn

t ¼Nt and Jt
v

is independent of Jt; ‘‘OU(J)–VcoJ(p)’’ is when Nn
t ¼Nt and

Jt
v

is positively correlated with Jt; ‘‘OU(J)–VcoJ(n)’’ is when
Nn

t ¼Nt and Jt
v

is negatively correlated with Jt. Jt
v

is again
distributed such that lnð1þ Jnt Þ �Nð0,s2

Jn
Þ. We simulated

OU(J)–VcoJ(p) and OU(J)–VcoJ(n) such that lnð1þ Jnt Þ and
lnð1þ JtÞ are correlated with correlations rJp ¼ 0:75 and
rJn ¼�0:75, respectively. We again take sJn to be 0.01.
Fig. 12 summarizes the raw correlations. The leftmost
points on the plots are the averages of the naive esti-
mates. They are about �0.12 for all the models OU(J),
OU(J)–VindJ, OU(J)–VcoJ(i), OU(J)–VcoJ(p), and OU(J)–
VcoJ(n), and are seriously biased. As m increases, the
Table 4
Performance of the bias correction based on nonparametrically estimated asy

OU(J)–VcoJ(i), OU(J)–VcoJ(p), and OU(J)–VcoJ(n), starting with the raw correlat

100 estimates of r (r̂RV ,TR) are summarized by their minimum, first qua

ðr,a,g,k,m,D,n,sJ ,l,sJn ,ln ,rJp ,rJnÞ ¼ ð�0:8,�1,0:5,5,0:051=252,390,0:015,5,0:01,5

Estimator/Model Min. 1st Qu. Median

r̂RV ,TR , OU(J) �0.98 �0.85 �0.82

r̂RV ,TR , OU(J)–VindJ �0.99 �0.85 �0.82

r̂RV ,TR , OU(J)–VcoJ(i) �0.98 �0.85 �0.81

r̂RV ,TR , OU(J)–VcoJ(p) �0.99 �0.85 �0.81

r̂RV ,TR , OU(J)–VcoJ(n) �0.99 �0.85 �0.81

Table 5
The sample correlations at different horizons m between the returns of S&P 500

using PAV with sampling frequencies at one per minute and VIX (squared).

m 1 2 5

Corr_PAV �0.26 �0.32 �0.40
Corr_VIX �0.78 �0.77 �0.76
smoothing biases decrease up to the point at which the
discretization biases dominate.

Fig. 12 illustrates further that the leverage effect
puzzle exists beyond the Heston model and the Heston
model with jumps. Table 4 collects the results of the
correction as used in Section 7.1.3. The results show that
the bias correction, while derived from the Heston model,
is also effective in the above alternative models.
8. Empirical evidence on the leverage effect at high
frequency

We now apply our bias-corrected methods to examine
the presence of the leverage effect using high frequency
data. We have seen in Section 2 that, due to the latency of
the volatility process, it is nearly impossible to use only
returns data and no extraneous volatility proxy to get as
nice a plot as what was shown in Fig. 4. Nevertheless, we
will demonstrate that, after applying bias correction, we
can uncover the presence of a strong leverage effect in
high frequency data. We only focus on the data of S&P 500
mptotic quantities and linear regression for models OU(J), OU(J)–VindJ,

ion based on truncated realized volatility. For each of these models, the

rtile, median, third quartile, maximum, mean, and SD. Parameters:

,0:75,�0:75Þ.

3rd Qu. Max. Mean SD

�0.79 �0.68 �0.82 0.055

�0.79 �0.68 �0.82 0.055

�0.78 �0.67 �0.81 0.057

�0.79 �0.68 �0.82 0.056

�0.79 �0.68 �0.82 0.055

(January 2004–December 2007) and the estimated changes of volatilities,

21 63 126 252

�0.49 �0.37 �0.32 �0.15
�0.79 �0.61 �0.47 �0.11



Table 6
The sample correlations at different horizons m between the returns (January 2005–June 2007) of Microsoft and the estimated changes of volatilities,

using PAV with sampling frequencies at one per minute.

m 1 2 5 10 21 63 126 252

Corr_PAV 0.03 0.00 �0.02 �0.04 �0.17 �0.34 �0.40 �0.28
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Fig. 15. Bias correction procedure applied to Microsoft returns. The plot on the left is a scatter plot of preliminary bias-corrected estimates based on PAV

of the leverage effect parameter r against m based on the minute-by-minute data of Microsoft returns in the time period January 2005–June 2007. The

plot on the right shows how estimates in the range identified by an automated procedure are further aggregated by using a simple linear regression to

obtain a final estimate of the leverage effect.
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Fig. 14. Bias correction procedure applied to S&P 500 returns. The plot of the left is a scatter plot of preliminary bias-corrected estimates based on PAV of

the leverage effect parameter r against m for S&P 500 2004–2007 minute-by-minute data. The plot on the right shows how estimates in the range

identified by an automated procedure are further aggregated by using a simple linear regression to obtain a final estimate of the leverage effect.

7 In practice, to best use the automated procedure, we should take

into account the behavior of the preliminary corrections (see left panel

of Figs. 14 and 15 when choosing a0. We should use an a0 close to the

right boundary of the first ‘‘decreasing zone’’ to get rid of random effects

for small m. Note that our automated procedure is fairly robust to the

choice of a0. Roughly, for a0 between 20 and 40 for S&P 500 data, or

between 5 and 100 for Microsoft data, the estimated leverage effect

remains very close.
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and Microsoft Corp.; we have applied the methods to
various other data sets and the conclusions are similar.

8.1. S&P 500

Based on the high frequency returns (one sample per
minute) on S&P 500 futures from January 2004 to
December 2007, the naive or natural estimates give the
results reported in Table 5. The leverage effect at the
natural choice of m¼1 is nearly zero. This is the main
message of the paper: the natural choice of m¼1 leads to
estimates that are seriously biased.

Even with the data-optimized choice of m, the correla-
tion with PAV is around �0.5, significantly smaller than
that computed based on VIX. Fig. 13 summarizes
the sample correlations based on PAV and VIX, respec-
tively, as a function of the horizon m. We note the loose
resemblance between the two empirical curves in Fig. 13
and the predictions of the theory from Fig. 5.

We now apply our bias-corrected methods. First, we
compute the preliminarily bias-corrected estimates r̂m

using PAV for m in [1,252]. The scatter plot is presented in
Fig. 14, which is somewhat curvy. As illustrated in Fig. 9,
although on average we would expect to see a smooth
curve like the black solid curve in Fig. 8, variations should
be expected for individual sample paths. The automated
data-driven procedure described in Section 7.1.2 (with
a0 ¼ 25, k0 ¼ 10)7 identifies a range of m for the regres-
sion: m¼ ½37,76� (see Fig. 14) and our final estimate is
r̂PAV ¼�0:77.

The estimation with extrapolation has its own issues,
including the dependence on the choice of the range of m

selected for the regression, and could overstate the true
magnitude of r, but it is likely closer to it than what the a
priori natural choice of m¼1 produces.
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8.2. Microsoft

We now use our method to examine how strong
the leverage effect is for Microsoft. The high frequency
returns at sample frequencies of one data point
per minute from January 2005 to June 2007 are used
for estimating the leverage effect parameter. PAV is
employed as the volatility estimator. Again, we apply
both the naive method, the simple sample correlation,
and the more sophisticated volatility estimation method,
based on preliminary correction and linear regression.
Table 6 summarizes the results of the simple sample
correlations. As before, the leverage effect is barely
noticeable for the natural choices of m consisting of small
values.

The preliminary corrections based on PAV are sum-
marized on the left panel of Fig. 15 and the regression is
illustrated on the right. Our automated procedure (with
a0 ¼ 25, k0 ¼ 10) identifies the range m¼ ½125,187� for the
linear extrapolation, which leads to an estimated leverage
effect parameter r̂PAV ¼�0:68.

9. Conclusions

We showed that there are different sources of error
when estimating the leverage effect using high frequency
data, a discretization error due to not observing the full
instantaneous stochastic processes, a smoothing error due
to using integrated volatility in place of spot volatilities,
an estimation error due to the need to estimate the
integrated volatility using the price process, and a noise
correction error introduced by the need to correct the
integrated volatility estimates for the presence of market
microstructure noise. Perhaps paradoxically, attempts to
improve the estimation by employing statistically better
volatility estimators (such as noise-robust estimators) can
actually make matters worse as far as the estimation of
the leverage effect is concerned.

These errors tend to be large even when the window
size is small and lead to significant bias in the leverage
effect estimation. They are typically convex as a function
of the length of time, controlled by m which is used to
compute changes in the volatilities and prices. These
errors can have an adverse effect on the assessment of
the leverage effect.

Fortunately, these errors are correctable to some
extent. There is still a substantial discretization bias that
remains when using the spot volatility over a longer time
horizon, yet a reasonable large choice of m is necessary so
that biases based on integrated volatility become correct-
able. This led us to further correcting the biases by
aggregating the information in various preliminary esti-
mates of the leverage effect over different values of m.
This is achieved by using a simple linear regression
technique. The effectiveness of the method is demon-
strated using both simulated examples and an empirical
study of real asset returns.

Of course, to demonstrate the effect, our analysis
necessarily proceeded by analyzing estimators based
on the realized correlation between log-returns and
realized volatility-type quantities. To be consistent with
the theoretical analysis in the first part of the paper, what
we proposed as a bias correction procedure is what’s
feasible given the constraint that we only consider estima-
tors of that type. But, once the puzzle is identified and
understood, a real solution must include the development
from scratch of estimators that are not hindered by that
constraint.

Appendix A. Preliminary results

We first compute some moments that are related to
the Heston model. They will be useful for proofs of the
theorems. Throughout the Appendix, we use the notation
En and Varn to denote the conditional mean and condi-
tional variance given the latent volatility process fntg, and
Et to denote the conditional expectation given the filtra-
tion up to time t. Other similar notations will be adopted.

A.1. Conditional moments of returns

Rewrite the process as

dXt ¼ ðm�nt=2Þ dtþrn1=2
t dWtþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

q
n1=2

t dZt ,

where Zt is another Brownian motion process indepen-
dent of W. Let Yt ¼ gXt�rnt , which eliminates the dWt

term. Then, it follows that

dYt ¼ ½gm�rkaþðrk�g=2Þnt� dtþg
ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

q
n1=2

t dZt :

Denoting by a¼ m�rka=g, b¼ rk=g�1=2, and c¼ r=g, we
have from the above expression that

Xu�Xs ¼

Z u

s
fðaþbntÞ dtþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

q
n1=2

t dZtgþcðnu�nsÞ:

ð34Þ

Hence, conditioning on the process fntg, Xu�Xs is normally
distributed with mean

EnðXu�XsÞ ¼

Z u

s
ðaþbntÞ dtþcðnu�nsÞ � mn ð35Þ

and variance

VarvðXu�XsÞ ¼ ð1�r2Þ

Z u

s
nt dt� s2

n : ð36Þ

Using the moment formulas of the normal distribution,
we can easily obtain the first four moments for the
changes of the prices:

EnðXu�XsÞ
2
¼ m2

nþs
2
n ,

EnðXu�XsÞ
3
¼ m3

nþ3mns2
n ,

EnðXu�XsÞ
4
¼ m4

nþ3s4
nþ6m2

ns
2
n :

A.2. Cross-moments of the Feller process

We now compute the cross-moments of the Feller
process fntg. First of all, it is well known that

EðntÞ ¼ a and VarðntÞ ¼
g2a
2k : ð37Þ



Y. Aı̈t-Sahalia et al. / Journal of Financial Economics 109 (2013) 224–249 243
Using again Itô’s formula, we have

dðektntÞ ¼ kaekt dtþgektn1=2
t dWt ,

which implies for s4t,

Eðns9ntÞ ¼ e�kðs�tÞntþað1�e�kðs�tÞÞ: ð38Þ

Similarly, by using Itô’s formula again

dðektntÞ
2
¼ ð2kaþg2Þe2ktnt dtþ2ge2ktn3=2

t dWt :

This together with (38) implies that for s4t,

Eðn2
s 9ntÞ ¼ e�2kðs�tÞn2

t þe�2ks

Z s

t
ð2kaþg2Þe2kuEðnu9ntÞ du

¼ e�2kðs�tÞn2
t þ

2kaþg2

k ðnt�aÞðe�kðs�tÞ�e�2kðs�tÞÞ

þ
2ka2þg2a

2k ð1�e�2kðs�tÞÞ: ð39Þ

Therefore, for rrs,

EðnrnsÞ ¼ EðnrEðns9nrÞÞ

¼ E½n2
r e�kðs�rÞ það1�e�kðs�rÞÞnr�

¼ a2þg2ae�kðs�rÞ=ð2kÞ: ð40Þ

Using the same technique, we can calculate higher
moments and cross-moments. From

dðektntÞ
3
¼ 3e2ktn2

t ðkaekt dtþgektn1=2
t dWtÞ

þ3ðektntÞg2e2ktnt dt, ð41Þ

we have

EðektntÞ
3
¼ En3

0þ3

Z t

0
ðkaþg2Þe3kuEn2

u du:

Using the fact that En3
t ¼ En3

0 and En2
u ¼ a2þg2a=ð2kÞ, we

deduce that

En3
t ¼ aþ g2

k

� �
a2þ

g2a
2k

� �
:

Recall that Et denotes the conditional expectation given
the filtration up to time t. For s4t, we deduce from (41)
that

Etðe
ksnsÞ

3
¼ ektn3

t þ

Z s

t
ð3kaþ3g2Þe3kuEtn2

u du:

Now, substituting (39) into the above expression, we
obtain after some calculation that

Etn3
s ¼ e�3kðs�tÞ½n3

t þ3b1ðe
kðs�tÞ�1Þn2

t þ1:5b1b2ðe
2kðs�tÞ

�2ekðs�tÞ þ1Þntþ0:5ab1b2ð3ekðs�tÞ

�3e2kðs�tÞ þe3kðs�tÞ�1Þ�, ð42Þ

where b1 ¼ aþg2=k and b2 ¼ 2aþg2=k. For rosou, by
using conditional expectation and (38), we have

EðnrnsnuÞ ¼ Enrns½aþe�kðu�sÞðns�aÞ�
¼ aEðnrnsÞþe�kðu�sÞE½nrErðn2

s�ansÞ�:

Substituting (38)–(40) into the above formula, the result-
ing expression involves only the first three moments of nr ,
which has already been derived. Therefore, after some
calculation, it follows that

EðnrnsnuÞ ¼ a3þ
g2a2

2k
½e�kðs�rÞ þe�kðu�rÞ þe�kðu�sÞ

þg2k�1a�1e�kðu�rÞ�: ð43Þ
The fourth-order cross-moment can be derived analo-
gously using what has already been derived along with
Itô’s formula:

dðektntÞ
4
¼ 4e3ktn3

t ðkaekt dtþgektn1=2
t dWtÞ

þ6ðe2ktn2
t Þg

2e2ktnt dt:

We omit the detailed derivations, but state the following
results:

Eðn4
t Þ ¼ aþ 3g2

2k

� �
aþ g2

k

� �
a2þ

g2a
2k

� �
,

and for rosouot,

EðnrnsnuntÞ ¼ a4þ
a3g2

2k ½e
�kðu�rÞ þe�kðt�rÞ

þe�kðs�rÞ þe�kðu�sÞ þe�kðt�sÞ þe�kðt�uÞ�

þ
a2g4

2k2
½e�kðtþu�r�sÞ þe�kðu�rÞ þ2e�kðt�rÞ

þe�kðsþ t�u�rÞ=2þe�kðt�sÞ�

þ
ag6

4k3
½e�kðtþu�r�sÞ þ2e�kðt�rÞ�: ð44Þ

Appendix B. Proofs
Proof of Theorem 1 and Proposition 1. Let us first compute
the covariance. It follows from (34) that

Covðntþ s�nt ,Xtþ s�XtÞ

¼ Eðntþ s�ntÞ

Z tþ s

t
ðaþbnuÞ duþcðntþ s�ntÞ

	 


¼ b

Z tþ s

t
½Eðnuntþ sÞ�EðnuntÞ� duþcEðntþ s�ntÞ

2:

Now, using the moment formulas (37) and (40) and some
simple calculus, we have

Covðntþ s�nt ,Xtþ s�XtÞ ¼ agr½1�expð�skÞ�=k:

By using (37) and (40) again, we easily obtain

Varðntþ s�nsÞ ¼ g2a½1�expð�ksÞ�=k: ð45Þ

Hence, it remains to compute VarðXtþ s�XtÞ. By (35)
and (36),

VarðXtþ s�XtÞ ¼VarðmnÞþEðs2
n Þ ¼ Eðm2

nþs
2
n Þ�ðEðmnÞÞ

2

¼

Z tþ s

t

Z tþ s

t
EðaþbnrÞðaþbnuÞ dr du

þ2bc

Z tþ s

t
Enrðntþ s�ntÞ drþc2Eðntþ s�ntÞ

2

þð1�r2Þas�

Z tþ s

t
aþbEðnrÞ dr

� �2

:

Using the moments for nt computed in Appendix A.2, after
some calculus, we obtain

VarðXtþ s�XtÞ ¼ sþ
e�ks�1

k

� �
g2a
4k2
�
gar
k

� �
þas: ð46Þ

Finally, combinations of the covariance and variance
expressions lead to the correlation formula in Theorem 1.

Expanding the result of Theorem 1 around s¼0, we
obtain Proposition 1. &
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Proof of Theorem 2 and Proposition 2. Recall Vt,D ¼
R t

t�D ns ds.
Let us compute the variance of the change of the ideally
estimated spot volatility. Note that EðVtþmD,D�Vt,DÞ ¼ 0.
Using the stationarity of the process fntg, we have

VarðVtþmD,D�Vt,DÞ ¼ EðVtþmD,D�Vt,DÞ
2

¼ 2

Z t

t�D

Z t

t�D
Ensnu ds du�2

Z tþmD

tþðm�1ÞD

Z t

t�D
Ensnu ds du:

Now, by (40), the above variance is given by

4

Z t

t�D

Z u

t�D
a2þ

g2a
2k e�kðu�sÞ

	 

ds du

�2

Z tþmD

tþðm�1ÞD

Z t

t�D
a2þ

g2a
2k

e�kðu�sÞ

	 

ds du:

Simple calculus leads to

VarðVtþmD,D�Vt,DÞ ¼ ag2B2
2=4k3,

where B2 is as given in Theorem 2. Comparing this with
the variance of differenced spot volatilities, we have

VarðVtþmD,D�Vt,DÞ

D2 VarðntþmD�ntÞð1�1=3mÞ
¼ 1þRV

v , ð47Þ

where RV
v is OðDÞ for any fixed m as D-0, and oðmDÞ if

m-1 and mD-0.
Next, we compute the covariance. By (35) and the

double expectation formula, we have

CovðVtþmD,D�Vt,D,XtþmD�XtÞ

¼ E

Z tþmD

tþðm�1ÞD
ns ds�

Z t

t�D
ns ds

" #

�

Z tþmD

t
ðaþbnrÞ drþcðntþmD�ntÞ

" #

¼ b

Z tþmD

tþðm�1ÞD

Z tþmD

t
EðnsnrÞ dr ds�b

Z t

t�1

Z tþmD

t
EðnsnrÞ dr ds

þc

Z tþmD

tþðm�1ÞD
EnsðntþmD�ntÞ ds�c

Z t

t�1
EnsðntþmD�ntÞ ds:

Using (40), after some calculus, we obtain that

CovðVtþmD,D�Vt,D,XtþmD�XtÞ ¼ agA2=ð4k3Þ,

where A2 is again as given in Theorem 2. The conclusion of
Theorem 2 follows from (46) and the above results.
Comparing this with the covariance based on the spot
volatilities, we have

CovðVtþmD,D�Vt,D,XtþmD�XtÞ

DCovðntþmD�nt ,XtþmD�XtÞð1�1=2mÞ
¼ 1þRV

c , ð48Þ

where RV
c is OðDÞ for any fixed m as D-0, and oðmDÞ if

m-1 and mD-0.
By (47) and (48), the following asymptotic expressions

are easily obtained:

CorrðVtþmD,D�Vt,D,XtþmD�XtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�

m

3

r

þ
OðDÞ when D-0 for any fixed m,

oðmDÞ when m-1,mD-0,

(
ð49Þ

which proves Proposition 2. &
Proof of Theorem 3 and Proposition 3. The calculation is
very involved, and we separate the steps into several

subsections. Recall that n¼D=d. Without loss of general-

ity, we assume that t¼D and rewrite V̂
RV

D,D ¼ V̂
RV

D . Note

that it is easy to verify that EðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ ¼ 0.

(a) Calculation of E½V̂
RV

D ðXðmþ1ÞD�XDÞ�: Note that V̂
RV

D and
Xðmþ1ÞD�XD involve two different time intervals. By con-
ditioning on the latent process fntg, V̂

RV

D and Xðmþ1ÞD�XD

are independent by (34). Thus,

E½V̂
RV

D ðXðmþ1ÞD�XDÞ� ¼ E½EnV̂
RV

D EnðXðmþ1ÞD�XDÞ�:

Using (34)–(36), the above expectation is given by

Xn�1

i ¼ 0

E

Z ðiþ1Þd

id
ðaþbnrÞ drþcnðiþ1Þd�cnid

" #2
8<
:
þð1�r2Þ

Z ðiþ1Þd

id
nr dr

)

�

Z ðmþ1ÞD

D
ðaþbnrÞ drþcnðmþ1ÞD�cnD

( )
: ð50Þ

Expanding the first curly bracket into four terms, we have
four product terms with the second curly bracket in (50).
Denote those four terms by I1, . . . ,I4, respectively.

We now deal with each of the four terms. The first term
is given by

I1 �
Xn�1

i ¼ 0

Z ðmþ1ÞD

D
ðaþbnrÞ drþcnðmþ1ÞD�cnD

( )

Z ðiþ1Þd

id
ðaþbnrÞ dr

" #2

:

Expressing the square-term above as the double inte-
gral, I1 involves only the third cross-moment of the
process fntg. By using (40) and (43), it follows that as
D-0 and n-1 or as m-1, mD-0, and n-1,

I1 ¼
Xn�1

i ¼ 0

Z ðmþ1ÞD

D

Z ðiþ1Þnd

id

Z r

id
�2

g4a3

2k2a2
e�kðs�uÞ du dr ds

þ
Xn�1

i ¼ 0

Z ðiþ1Þd

id

Z r

id
2ca2 g4

2k2a
½e�kððmþ1ÞD�uÞ�e�kðD�uÞ� du d

¼�
a2g4ðaþackÞ

2a2k2

mD3

n
þo

mD3

n

 !
,

in particular,

I1

mD2
¼O

D
n

� �
:

Using the same argument, the second term can be
calculated as follows:

I2 � 2c
Xn�1

i ¼ 0

Z ðmþ1ÞD

D
ðaþbnrÞ drþcnðmþ1ÞD�cnD

( )

�

Z ðiþ1Þd

id
ðaþbnrÞ dr

" #
ðnðiþ1Þd�nidÞ

¼
Xn�1

i ¼ 0

Z ðmþ1ÞD

D

Z ðiþ1Þd

id
2ca2 g4

2k2a
½e�kðs�rÞ�e�kðs�idÞ� dr ds
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þ

Z ðiþ1Þd

id
2ac2 g4

2k2
½e�kððmþ1Þ�idÞ�e�kððmþ1ÞD�rÞ�e�kðD�idÞ

þe�kðD�rÞ� dr,

where the cross-moment function of the process fntg is
used. We have as D-0 and n-1 or as m-1, mD-0,
and n-1,

I2 ¼
acg4ðaþackÞ

2ak
mD3

n
þo

mD3

n

 !
,

hence,

I2

mD2
¼O

D
n

� �
:

Similarly, we can calculate the third term and the fourth
term based on the cross-moments of the process fntg.
They are given by

I3 ¼�c2g4ðeDk�1Þe�Dkðmþ1ÞðeDkm�1ÞðaþackÞ=ð2k3Þ,

I4 ¼ g2ðr2�1ÞðeDk�1Þe�Dkðmþ1ÞðeDkm�1ÞðaþackÞ=ð2k3Þ:

(b) Calculation of EV̂
RV

ðmþ1ÞD,DðXðmþ1ÞD�XDÞ and the covar-

iance: By the definition of V̂
RV

ðmþ1ÞD,D, it follows that

EV̂
RV

ðmþ1ÞD,DðXðmþ1ÞD�XDÞ

¼ E
Xn�1

i ¼ 0

½XmDþðiþ1Þd�XmDþ id�
2

� fðXmDþ id�XDÞþðXmDþðiþ1Þd�XmDþ idÞ

þðXðmþ1ÞD�XmDþðiþ1ÞdÞg:

Let J1, J2, and J3 be, respectively, the product of the first,
second, and third term in the curly bracket with that in the
square bracket. Each of these terms can be treated similarly
as those in Appendix B. That is, by conditioning on the
process fntg, they can be reduced to the calculation of the
cross-moments of fntg, by using the conditional moments in
Appendix A.1. After tedious calculations involving the cross-
moments discussed in Appendix A.2, we can obtain asymp-
totic expressions for J1, J2, and J3. Using these together with
what we get for I1, . . . ,I4, we can easily obtain an asymptotic

expression of CovðV̂
RV

ðmþ1ÞD,D�V̂
RV

D ,Xðmþ1ÞD�XDÞ. Comparing

this asymptotic expression with what we have obtained in
Theorem 2, we conclude that, as D-0, and nD-C 2 ð0,1Þ,

m�1D�2 CovðV̂
RV

ðmþ1ÞD,D�V̂
RV

D ,Xðmþ1ÞD�XDÞ

¼m�1D�2 CovðV ðmþ1ÞD,D�VD,D,Xðmþ1ÞD�XDÞ

þ
OðDÞ for any fixed m,

oðmDÞ when m-1 and mD-0:

(
ð51Þ

(c) Calculation of the variance of changes of estimated RV:
Let Yi ¼ Xðiþ1Þd�Xid. Then,

EðV̂
RV

D Þ
2
¼
Xn�1

i ¼ 0

EY4
i þ2

Xn�1

i ¼ 1

Xi�1

j ¼ 0

EY2
i Y2

j : ð52Þ

By using the expression at the end of Appendix A, we have

EY4
i ¼ E

Z ðiþ1Þd

id
ðaþbnrÞ drþcnðiþ1Þd�cnid

 !4
þ3E ð1�r2Þ

Z ðiþ1Þd

id
nr dr

 !2

þ6ð1�r2ÞE

Z ðiþ1Þd

id
nr dr

�

Z ðiþ1Þd

id
ðaþbnrÞ drþcnðiþ1Þd�cnid

 !2

:

By conditioning on the process fntg, Y2
i and Y2

j are
conditionally independent for jo i. Appealing to (35)
and (36), we have that for jo i,

EY2
i Y2

j ¼ E

Z ðiþ1Þd

id
ðaþbnrÞ drþcnðiþ1Þd�cnid

 !2
2
4

8<
:
þð1�r2Þ

Z ðiþ1Þd

id
nr dr

#

�

Z ðjþ1Þd

jd
ðaþbnrÞ drþcnðjþ1Þd�cnjd

 !2
2
4

þð1�r2Þ

Z ðjþ1Þd

jd
nr dr

#)
:

Both terms above only involve the cross-moments of the
process fntg. After tedious calculations, we obtain

EðV̂
RV

D Þ
2
¼ a2þ

ag2

2k

� �
D2
�
ag2

6
D3

þ
að3r4�6r2þ4Þð2akþg2Þ

k
D2

n
þOðD4

Þ, ð53Þ

when D-0 and nD-C 2 ð0,1Þ. This is the same for

EðV̂
RV

ðmþ1ÞD,DÞ
2.

By conditioning on the process fntg, using the condi-
tional independence, we have

EV̂
RV

D V̂
RV

ðmþ1ÞD,D ¼
Xn�1

i ¼ 0

Xn�1

j ¼ 0

E

Z ðiþ1Þd

id
ðaþbnrÞ drþcnðiþ1Þd�cnid

 !2
2
4

þð1�r2Þ

Z ðiþ1Þd

id
nr dr

#

�

Z ðjþ1Þd

jd
ðaþbnmDþ rÞ drþcnmDþðjþ1Þd

 "

�cnmDþ jd
�2
:þð1�r2Þ

Z ðjþ1Þd

jd
nmDþ r dr

#
:

Additional calculations involving the cross-moments of
the process fntg yield

EV̂
RV

D V̂
RV

ðmþ1ÞD,D ¼
að2akþg2Þ

k D2
�ag2mD3

þOðmD4
Þ, ð54Þ

as D-0 and nD-C 2 ð0,1Þ, for fixed m or when m-1

and mD-0. Combination of (53) and (54) results in

VarðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ ¼ EðV̂
RV

D Þ
2
þEðV̂

RV

ðmþ1ÞD,DÞ
2
�2EðV̂

RV

D V̂
RV

ðmþ1ÞD,DÞ

¼ 2 a2þ
ag2

2k

� �
D2
�
ag2

6
D3
þ
að2akþg2Þ

k
D2

n

" #

�2
að2akþg2Þ

k D2
�ag2mD3

	 

þOðmD4

Þ,

ð55Þ
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as D-0 and nD-C 2 ð0,1Þ, for fixed m or when m-1

and mD-0. Comparing this with the variance expression
obtained in the proof of Theorem 2, we have

VarðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ ¼VarðVtþmD,D�Vt,DÞ

þ
2að2akþg2Þ

k
D2

n
þOðmD4

Þ,

or, equivalently,

m�1D�3 VarðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
4Es4

t D
2

n

 !
þOðDÞ,

ð56Þ

m�1D�3 VarðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
2að2akþg2Þ

kCm
þOðDÞ,

ð57Þ

as D-0 and nD-C 2 ð0,1Þ, for fixed m or when m-1

and mD-0.
(d) Adjustment to the leverage parameter: Further, from

(45) and (47), we have

m�1D�3 VarðVtþmD,D�Vt,DÞ ¼ g2a� g
2a

3m

þ
OðDÞ for any fixed m,

� 1
2ag

2kmDþoðmDÞ when m2D-Cm 2 ð0,1Þ,

(

ð58Þ

and (56) becomes

m�1D�3 VarðV̂
RV

ðmþ1ÞD,D�V̂
RV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞ

� 1þ
6 2akþg2
� �

ð3g2m�g2ÞkC� 3
2 g2k2CCm

 !
þRRV

v , ð59Þ

where RRV
v is OðDÞ for fixed m, with Cm above replaced by

0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.
By using (51), (59), and (49), we can easily obtain the

following relationship:

CorrðV̂
RV

ðmþ1ÞD,D�V̂
RV

D ,Xðmþ1ÞD�XDÞ

¼ CorrðV ðmþ1ÞD�VD,Xðmþ1ÞD�XDÞÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
12akþ6g2

ð3g2m�g2ÞkC� 3
2 g2k2CCm

s þRRV
c

¼ Corrðnmþ t�nt ,Xmþ t�XtÞ

�
1�1=2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
12akþ6g2

ð3g2m�g2ÞkC� 3
2 g2k2CCm

 !
1�

1

3m

� �vuut
þRRV

c ,

where RRV
c is OðDÞ for fixed m, with Cm above replaced by

0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.
Proposition 3 follows from (49), (51), and (56). &

We now state the result parallel to Theorem 4 for
TSRV. Let yTSRV be a constant, L¼ ½yTSRVn2=3� be the
number of grids over which the subsampling is per-
formed, and n ¼ ðn�Lþ1Þ=n. The TSRV estimator is
defined as

V̂
TSRV

t,D ¼
1

L

Xn�L

i ¼ 0

ðZt�Dþðiþ LÞd�Zt�Dþ idÞ
2

�
n

n

Xn�1

i ¼ 0

ðZt�Dþðiþ1Þd�Zt�Dþ idÞ
2: ð60Þ

Theorem 6. When D-0, n1=3D-CTSRV, and s2
E=D-CE with

CTSRV and CE 2 ð0,1Þ, the following expansion shows the

incremental bias due to estimation error and noise correction

induced by the use of TSRV:

CorrðV̂
TSRV

tþmD,D�V̂
TSRV

t,D ,ZtþmD�ZtÞ

¼ CorrðntþmD�nt ,XtþmD�XtÞ
ð2m�1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
�ð1þA6þB6Þ

�1=2
þRTSRV

r ,

where

A6 ¼
96y�2

TSRVC2
E

CTSRVag2ð6m�2�3kCmÞ

and

B6 ¼
8yTSRVð2akþg2Þ

kCTSRVg2ð6m�2�3kCmÞ

and RTSRV
r is OðDÞ for any fixed m, with Cm above replaced

by0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.

A result parallel to Proposition 4 for TSRV is the
following.

Proposition 6. When D-0, n1=3D-CTSRV, s2
E=D-CE, and

m2D-Cm with CTSRV, CE, and Cm 2 ð0,1Þ,

CorrðntþmD�nt ,XtþmD�XtÞ

¼ c6
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�m=3

p
ð2m�1Þ

CorrðV̂
TSRV

tþmD,D�V̂
TSRV

t,D ,ZtþmD�ZtÞþoðmDÞ,

where

c6 ¼ 1�
48y�2

TSRVs4
E þ8yTSRVE½s4

t �D
2

3n1=3 VarðV̂
TSRV

tþmD,D�V̂
TSRV

t,D Þ

0
@

1
A
�1=2

: ð61Þ

Two unknown quantities are involved and can be
estimated nonparametrically here. For sE, we have under

our model that EðV̂
RV

t,D�V̂
TSRV

t,D Þ=2n¼ s2
E ð1þoð1ÞÞ. A long-

run average of ðV̂
RV

t,D�V̂
TSRV

t,D Þ=2n can be used as a good

estimate of s2
E . This is similar to the way the average of

the subsampled RV estimators is bias-corrected to con-

struct TSRV. For E½s4
t �, consistent noise-robust estimators

of
R t

t�D s
4
s ds are proposed in Zhang, Mykland, Aı̈t-Sahalia

(2005) and Jacod, Li, Mykland, Podolskij, and Vetter

(2009). We can use, for instance, the estimator called Q̂
n

t

in the latter paper:

Q̂
n

t ¼
1

3y2
PAVc

2
2D

Xn�knþ1

i ¼ 0

1

kn

Xkn�1

j ¼ bkn=2c

Zt�Dþðiþ jÞd

0
@
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�
1

kn

Xbkn=2c�1

j ¼ 0

Zt�Dþðiþ jÞd

1
A

4

�
d

y4
PAVc

2
2D

2

Xn�2knþ1

i ¼ 0

1

kn

Xkn�1

j ¼ bkn=2c

Zt�Dþðiþ jÞd

0
@

0
@

�
1

kn

Xbkn=2c�1

j ¼ 0

Zt�Dþðiþ jÞd

1
A

2

�
Xiþ2kn�1

j ¼ iþkn

ðZt�Dþðjþ1Þd�Zt�Dþ jdÞ
2

1
A

þ
d

4y4
PAVc

2
2D

2

Xn�2

i ¼ 1

ðZt�Dþðiþ1Þd�Zt�Dþ idÞ
2

�ðZt�Dþðiþ3Þd�Zt�Dþðiþ2ÞdÞ
2, ð62Þ

where c2 ¼
1

12, kn ¼ ½yPAV

ffiffiffi
n
p
� for an appropriately chosen

yPAV for any D. A scaled long-run average of this estimator

can be used to estimate E½s4
t �, based on the fact that

EðQ̂
n

t Þ ¼D2Es4
t ð1þoð1ÞÞ.

Proof of Theorem 6, Proposition 6 and Theorem 4, Proposition

4. Under the assumptions that n1=3D-CTSRV 2 ð0,1Þ and
s2
E =D-CE 2 ð0,1Þ, we have

m�1D�2 CovðV̂
TSRV

ðmþ1ÞD,D�V̂
TSRV

D ,Zðmþ1ÞD�ZDÞ

¼m�1D�2 CovðV ðmþ1ÞD,D�VD,D,Xðmþ1ÞD�XDÞþRTSRV
c

ð63Þ

and

m�1D�3 VarðV̂
TSRV

ðmþ1ÞD,D�V̂
TSRV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
16y�2

TSRVs4
E

n1=3

 

þ
8yTSRVEs4

t D
2

3n1=3

!
þRTSRV

v ð64Þ

m�1D�3 VarðV̂
TSRV

ðmþ1ÞD,D�V̂
TSRV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
16y�2

TSRVC2
E

mCTSRV
þ

8yTSRVEs4
t

3mCTSRV
þRTSRV

v

¼m�1D�3 VarðVtþmD,D�Vt,DÞ½1þA6þB6�þRTSRV
v , ð65Þ

where by (58) A6 ¼ 96y�2
TSRVC2

E=CTSRVag2ð6m�2�3kCmÞ,

B6 ¼ 8yTSRVð2akþg2Þ=kCTSRVg2ð6m�2�3kCmÞ, and RTSRV
c

and RTSRV
v are OðDÞ for any fixed m, with Cm above replaced

by 0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.
Under the assumptions that n1=2D-CPAV 2 ð0,1Þ and

s2
E =D-CE 2 ð0,1Þ, with the constants c2, F11, F12, F22 as

specified in Theorem 4, we have

m�1D�2 CovðV̂
PAV

ðmþ1ÞD,D�V̂
PAV

D ,Zðmþ1ÞD�ZDÞ

¼m�1D�2 CovðV ðmþ1ÞD,D�VD,D,Xðmþ1ÞD�XDÞþRPAV
c

ð66Þ

and

m�1D�3 VarðV̂
PAV

ðmþ1ÞD,D�V̂
PAV

D Þ
¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
8F22yPAVEs4

t D
2

c2
2n1=2

 

þ
16F12Es2

t s2
ED

yPAVc
2
2n1=2

þ
8F11s4

E

y2
PAVc

2
2n1=2

!
þRPAV

v ð67Þ

m�1D�3 VarðV̂
PAV

ðmþ1ÞD,D�V̂
PAV

D Þ

¼m�1D�3 VarðVtþmD,D�Vt,DÞþ
8F22yPAVEs4

t

mc2
2CPAV

þ
16F12Es2

t CE

myPAVc
2
2CPAV

þ
8F11C2

E

my2
PAVc

2
2CPAV

þRPAV
v

¼m�1D�3 VarðVtþmD,D�Vt,DÞ½1þA4þB4þC4�þRPAV
v ,

ð68Þ

where

A4 ¼ 24F22yPAVð2akþg2Þ=c2
2CPAVkg2ð6m�2�3kCmÞ,

B4 ¼ 96F12CE=yPAVc
2
2CPAVg2ð6m�2�3kCmÞ,

C4 ¼ 48F11C2
E =y

2
PAVc

2
2CPAVag2ð6m�2�3kCmÞ, and RPAV

c and

RPAV
v are OðDÞ for any fixed m, with Cm above replaced by

0; and oðmDÞ when m2D-Cm 2 ð0,1Þ.
Theorem 6 follows from (63) and (65), and Theorem 4

from (66) and (68). Proposition 6 follows from (63) and
(64), and Proposition 4 from (66) and (67). &

Proof of Theorem 5 and Proposition 5. Let Xc be the contin-
uous part of the log-price process: dXc

¼ ðm�nt=2Þ dtþ

n1=2
t dBt . The proof is based on comparing the covariance

and variances with jump components to those without
the jump component so that the previous calculations can
be used. We first introduce some notation to facilitate the
technical arguments. Let

IJ
t ¼ fi : 0r irn�1, X process has jumps between

tþ id and tþðiþ1Þdg,

and

Ic
t ¼ fi : 0r irn�1, X process has no jump between

tþ id and tþðiþ1Þdg

be, respectively, the set of time indices for the process Xt

with jumps and without jumps, and

DXc
t,i ¼ Xc

t�Dþðiþ1Þd�Xc
t�Dþ id,

DXt,i ¼ Xt�Dþðiþ1Þd�Xt�Dþ id:

Define V̂
~RV

t,D ¼
PD=d�1

i ¼ 0 ðDXc
t,iÞ

2 the quadratic variation of the
continuous part,

A1,t ¼
X
i2IJ

t

ðDXc
t,iÞ

2, A2,t ¼
X
i2IJ

t

ðDXt,iÞ
21f9DXt,i9rad$g;

and

A3,t ¼
X
i2Ic

t

ðDXt,iÞ
21f9DXt,i94ad$g:

Then, we have the following simple relation:

V̂
RV,TR

t,D ¼ V̂
~RV

t,D�A1,tþA2,t�A3,t :

Our aim is to show Ai,t for i¼ 1,2,3 are negligible by
evaluating their second moments.
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To this end, let PJ,d ¼ Pfat least one jump between ð0,dÞg,
which is of order OðdÞ. By independence of the jump and
continuous parts of the X process, we have

EðA1,tÞ
2
¼ E

Xn�1

i ¼ 0

ðDXc
t,iÞ

41i2IJ
t
þ2

X
0r io jrn�1

ðDXc
t,iÞ

2
ðDXc

t,jÞ
21i2IJ

t
1j2IJ

t

0
@

1
A

¼ E
Xn�1

i ¼ 0

ðDXc
t,iÞ

4PJ,dþ2
X

0r io jrn�1

ðDXc
t,iÞ

2
ðDXc

t,jÞ
2P2

J,d

0
@

1
A

¼ P2
J,dEððV̂

~RV

t,DÞ
2
Þþ
Xn

i ¼ 1

EðDXc
t,iÞ

4
ðPJ,d�P2

J,dÞ

¼Oðd2
� D2
ÞþOðnd2

� dÞ ¼O
D3

n2

 !
:

Following a similar calculation:

EðA2,tÞ
2ra4d4$nPJ,dþ2

X
0r io jrn

a4d4$P2
J,d

¼Oðd4$
ðn2d2

þndÞÞ ¼O
D1þ4$

n4$

 !
:

To analyze A3,t , we first apply the Cauchy-Schwarz
inequality to obtain

A2
3,t rn

X
i2Ic

t

ðDXt,iÞ
41f9DXt,i94ad$g:

Taking expectation on both sides and utilizing the Cauchy-
Schwarz inequality again, we obtain

EðA2
3,tÞrn

Xn�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðDXc

t,iÞ
8
� Pc,d

q
,

where Pc,d ¼ Pf9Xc
d�Xc

094ad$g. By similar derivation as in
Fan, Li, and Yu (2012), we have that Pc,d is exponentially
small as d-0 for any 0o$o1=2. Yet, EðDXc

t,iÞ
8
¼

OððD=nÞ4Þ. Therefore, EðA2
3,tÞ ¼ oðDk

Þ for any k.
Now, we are ready to compute the variances and

covariance involved in the theorem. First, notice that

V̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ¼ V̂
~RV

tþmD,D�V̂
~RV

t,DþDmD,t ,

where
DmD,t ¼�ðA1,tþmD�A1,tÞþðA2,tþmD�A2,tÞ�ðA3,tþmD�A3,tÞ.
Thus, by the covariance formula and the Cauchy-Schwarz
inequality, we have

9VarðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D Þ�VarðV̂
~RV

tþmD,D�V̂
~RV

t,DÞ9

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðV̂

~RV

tþmD,D

r
�V̂

~RV

t,DÞVarðDmD,tÞþVarðDmD,tÞ:

Using the order of magnitude of EðAi,tÞ
2 for i¼ 1,2,3, it is

easy to see that

VarðDmD,tÞrEðD2
mD,tÞ ¼OðD1þ8$

Þ for 0o$o1=2:

Therefore, when 5
16 o$o1

2 and m2D-Cm 2 ð0,1Þ,

9VarðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D Þ�VarðV̂
~RV

tþmD,D�V̂
~RV

t,DÞ9¼ oðD3
Þ: ð69Þ

The relation between the observed components and
continuous component is simply

VarðXtþmD�XtÞ ¼VarðXc
tþmD�Xc

t Þþs
2
J lmD: ð70Þ

We now relate the covariance component. By indepen-
dence of the jump part and the continuous part of the X
process, we have when 5
16 o$o1

2 and m2D-Cm 2 ð0,1Þ,

CovðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ,XtþmD�XtÞ

�CovðV̂
~RV

tþmD,D�V̂
~RV

t,D,Xc
tþmD�Xc

t Þ

¼ CovðDmD,t ,XtþmD�XtÞ

¼Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1þ8$

�mD
p

Þ ¼ oðD2
Þ: ð71Þ

By (69)–(71), it is easy to see when 5
16 o$o1

2,

CorrðV̂
RV,TR

tþmD,D�V̂
RV,TR

t,D ,XtþmD�XtÞ

¼ CorrðV̂
~RV

tþmD,D�V̂
~RV

t,D,Xc
tþmD�Xc

t Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXc

tþmD�Xc
t Þ

VarðXc
tþmD�Xc

t Þþs2
J lmD

s
ð1þoðmDÞÞ: ð72Þ

Proposition 5 follows from (72) and Theorem 5 follows
by substituting

VarðXc
tþmD�Xc

t Þ ¼ amDþ
g2a
8k �

gar
2

� �
m2D2

þoðm2D2
Þ: &
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