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a b s t r a c t

Several large volatility matrix estimation procedures have been recently developed for
factor-based Itô processes whose integrated volatility matrix consists of low-rank and
sparse matrices. Their performance depends on the accuracy of input volatility matrix
estimators. When estimating co-volatilities based on high-frequency data, one of the
crucial challenges is non-synchronization for illiquid assets,whichmakes their co-volatility
estimators inaccurate. In this paper,we studyhow to estimate the large integrated volatility
matrix without using co-volatilities of illiquid assets. Specifically, we pretend that the
co-volatilities for illiquid assets are missing, and estimate the low-rank matrix using a
matrix completion scheme with a structured missing pattern. To further regularize the
sparse volatility matrix, we employ the principal orthogonal complement thresholding
method (POET). We also investigate the asymptotic properties of the proposed estimation
procedure and demonstrate its advantages over using co-volatilities of illiquid assets.
The advantages of our methods are also verified by an extensive simulation study and
illustrated by high-frequency data for NYSE stocks.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High-frequency financial data have provided researchers and practitioners with incredible information to investigate
asset pricing and market volatility dynamics. New analytic challenges also arise from analysis of high-frequency financial
data. First, due to small market inefficiency such as bid–ask bounce, asymmetric information, latency, and so on, stock
prices are contaminated by micro-structural noises. If the micro-structural noises are not accounted for, estimators for
integrated volatilities will diverge as the frequency increases (Aït-Sahalia et al., 2005). Second, the observation time
points are not synchronized, which makes it hard to estimate co-volatilities, particularly for those illiquid assets. Despite
these challenges, several efficient estimation procedures have been developed. Examples include two-time scale realized
volatility (TSRV) (Zhang et al., 2005), multi-scale realized volatility (MSRV) (Zhang, 2006, 2011), wavelet estimator
(Fan and Wang, 2007), pre-averaging realized volatility (PRV) (Christensen et al., 2010; Jacod et al., 2009), kernel realized
volatility (KRV) (Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood estimator (QMLE) (Aït-Sahalia et al., 2010;
Xiu, 2010), local method ofmoments (Bibinger et al., 2014), and robust pre-averaging realized volatility (Fan and Kim, 2018).

When estimating co-volatilities, to handle the non-synchronization problem, we often employ some synchronization
scheme such as generalized sampling time (Aït-Sahalia et al., 2010), refresh time (Barndorff-Nielsen et al., 2011; Fan et al.,
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2012), previous tick (Wang and Zou, 2010; Zhang, 2011), and some linear interpolation (Bibinger et al., 2014) schemes.
See also Hayashi and Yoshida (2005, 2011); Malliavin and Mancino (2002); Malliavin et al. (2009); Mancino and Sanfelici
(2008); Park et al. (2016). These synchronization schemes asymptotically guarantee that the errors coming from the
non-synchronized observations can be negligible as the frequency increases. However, for illiquid assets, whose trading
frequencies are relatively low, the errors may not be asymptotically negligible, as the refresh times are too long to be useful
so that estimators for co-volatilities can be inaccurate. This generates demand for investigating how to better estimate co-
volatilities for illiquid assets. Apparently, we need to appeal to structural aspects of the model.

A commonly used structure to account for cross-sectional dependence is the factor model. It was first used to estimate
high-dimensional covariance matrix in Fan et al. (2008) for portfolio allocation and risk management and admits a low-
rank plus sparse volatility matrix structure (Fan et al., 2013; Aït-Sahalia and Xiu, 2017; Fan et al., 2016a; Kim et al., 2018;
Kong et al., 2018). When the number of assets is large, the latent factors can be accurately estimated. The performance of
these factor-based estimators depends critically on the accuracy of the initial volatility matrix input. However, as discussed
above, the co-volatility estimators for illiquid assets are inaccurate, due to relatively long refresh times between any two
illiquid assets. On the other hand, the special covariance structure implied by the factor model makes us possible to use the
covariance information from liquid blocks to infer about those in illiquid blocks.

How to estimate co-volatilities for illiquid assets, which have serious non-synchronization issue? In this paper, we appeal
to the factor structure to infer these co-volatilities. The factor structure implies that the volatility matrix consists of a low-
rank covariance matrix induced by the linear combinations of common factors and a sparse covariance matrix induced
by idiosyncratic components. We investigate how to estimate the low-rank (or factor) volatility matrix without using
estimators for illiquid assets. Due to the low-rankness of the covariance matrix induced by the linear combinations of the
common factors, the sub-matrix corresponding to the illiquid assets is spanned by the column space of the remaining low-
rank volatility sub-matrices and can be determined analytically from the sub-matrices that involve liquid assets. Thus, the
problem of estimating the low-rank volatilitymatrix is related to the popularmatrix completion problem (Candès and Recht,
2009; Koltchinskii et al., 2011), except that the entries (corresponding to the illiquid assets) are not ‘missing’ at random, but
‘missing’ (not used due to their inaccuracies) with a structured pattern (Cai et al., 2016). This structured pattern allows us to
use the aforementioned analytical formula to estimate the factor-induced volatility submatrix that corresponds to illiquid
assets. Then we estimate the sparse (or idiosyncratic) volatility matrix by subtracting the low-rank volatility estimator from
the input volatility matrix estimator and apply the adaptive thresholding scheme to the sparse volatility matrix estimator.
The resulting procedure of this kind is called Principal Orthogonal complEment Thresholding (POET) in Fan et al. (2013).

We will investigate the asymptotic behaviors of the proposed estimators for the volatility matrices that correspond
to linear combinations of factors, the idiosyncratic components, and the log-returns of assets. We assume that the high-
frequency data are contaminated with micro-structural noises. We ideally model the trading volumes of liquid and illiquid
assets. We explicitly show when and where the gain can be made by ignoring the co-volatilities of the illiquid assets.

The rest of the paper is organized as follows. Section 2 provides a factor-based diffusion process and data structure and
Section 3 reviews thepairwise refresh time schemeandpre-averaging realized volatility estimationmethod. A large volatility
estimation procedure is proposed in Section 4 using matrix completion scheme with the structured missing pattern, whose
asymptotic properties are established. The advantages of the proposed method is demonstrated via a simulation study in
Section 5 and is illustrated by an application to the NYSE stocks in Section 6. Proofs are collected in Section 7.

2. Model set-up

We first define some notations. For any given vector a, diag(a) creates a diagonal matrix using elements of a. For any
given d1 × d2 matrix U =

(
Uij
)
,

∥U∥1 = max
1≤j≤d2

d1∑
i=1

|Uij|, ∥U∥∞ = max
1≤i≤d1

d2∑
j=1

|Uij|, and ∥U∥max = max
i,j

|Uij|.

Matrix spectral norm ∥U∥2 is the largest eigenvalue of UU⊤, the Frobenius norm of U is ∥U∥F =
√
tr(U⊤U). UIJ denotes

the sub-matrix of U formed by rows and columns whose indices are in I and J , respectively, where I and J are subsets of
{1, . . . , d1} and {1, . . . , d2}, respectively. We will use C to denote a generic constant whose value is free of n and p and may
change from occurrence to occurrence.

Let X(t) = (X1(t), . . . , Xp(t))⊤ be the vector of true log-prices at time t . We assume that the log-prices of assets follow
a continuous-time diffusion model. In economic and financial studies, the approximate factor model is widely employed
to account for the effect of macro-economic factors and market factors such as sector and industry classification, firm size,
price to book ratios, etc. (Bai and Ng, 2002; Chamberlain and Rothschild, 1982; Fama and French, 1992; Fan et al., 2016a;
Aït-Sahalia and Xiu, 2017). In light of these, we employ the factor-based diffusion model

dX(t) = µ(t)dt + ϑ⊤(t)dW∗

t + σ⊤(t)dWt , (2.1)

where µ(t) = (µ1(t), . . . , µp(t))⊤ is a drift vector, ϑ(t) is a r × pmatrix, σ(t) is a p × pmatrix,W∗
t andWt are independent

r-dimensional and p-dimensional Brownian motions, respectively. Stochastic processes µ(t), X(t), σ(t), and ϑ(t) are defined
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on a filtered probability space (Ω,F, {Ft , t ∈ [0, 1]}, P) with filtration Ft satisfying the usual conditions. Note that r is the
number of latent factors. The instantaneous (or spot) volatility matrix of the log-prices X(t) in (2.1) is

γ(t) =
(
γij(t)

)
1≤i,j≤p = ϑ⊤(t)ϑ(t) + σ⊤(t)σ(t).

The parameter of interest is the integrated volatility matrix over time [0, 1]

Γ =

∫ 1

0
γ(t)dt

=

∫ 1

0
ϑ⊤(t)ϑ(t)dt +

∫ 1

0
σ⊤(t)σ(t)dt

= Θ + Σ . (2.2)

The matrixΘ in (2.2) accounts for the factor influence on the volatility matrix. In this paper, we assume that the rank, r , of
Θ is fixed and finite. Additionally, we impose some sparse structure on the idiosyncratic volatility matrixΣ (see Section 4).
Thus, the integrated volatility matrix Γ has the low-rank plus sparse structure which is widely used in analyzing large
covariance or volatility matrices (Fan et al., 2013, 2016b; Aït-Sahalia and Xiu, 2017; Kim et al., 2018; Kong et al., 2018).

Unfortunately, in the high-frequency finance, we cannot observe the true log-prices due to the micro-structural noises
caused by smallmarket inefficiencies, for example, asymmetric information, bid–ask bounce, and latency.We also encounter
the so-called non-synchronization problem that transactions for different assets occur at distinct times, and the observation
time points are not synchronized. To model these stylized features, in the high-frequency finance, it is usually assumed that
the observed price Yi(ti,k) has an additive noise as follows:

Yi(ti,k) = Xi(ti,k) + ϵi(ti,k) for i = 1, . . . , p, k = 0, . . . , ni, (2.3)

where ϵi(ti,k), i = 1, . . . , p, k = 0, . . . , ni, are independent noises with mean zero and variance ηii and p is the number of
assets. Furthermore, we observe that the numbers, n1, . . . , np, of high-frequency observations are heterogeneous. For the
simplicity, we assume that there are two sub-groups of stocks which have high trading volumes (liquid assets) and low
trading volumes (illiquid assets) as follows:

H = {i ∈ {1, . . . , p}, ni ≍ n} and L = {i ∈ {1, . . . , p}, ni ≍ na
}, (2.4)

where a < 1 andH ∪ L = {1, . . . , p}. Their cardinalities are |H| = p1 and |L| = p2. Then, without loss of generality, we can
rearrange the integrated volatility matrix Γ as follows:

Γ =

(
Γ 11 Γ 12
Γ 21 Γ 22

)
,

where Γ 11 = ΓHH, Γ 12 = ΓHL, Γ 21 = ΓLH, and Γ 22 = ΓLL. Note that the sub-matrices have the low-rank plus sparse
structure as follows:

Γ ij = Θ ij + Σ ij for i = 1, 2, j = 1, 2,

when we use the following partitions:

Θ =

(
Θ11 Θ12
Θ21 Θ22

)
and Σ =

(
Σ 11 Σ 12
Σ 21 Σ 22

)
.

Due to the errors coming from non-synchronized observation time points, co-volatility estimators are less accurate
especially for the low trading volume set L. That is, estimators for co-volatilities of Γ 22 are less accurate than those of
other blocksΓ 11 andΓ 12. In light of this, in this paper, we study how to estimate the integrated volatility matrixΓ without
estimating the off-diagonal elements of Γ 22.

3. Co-volatility estimation

3.1. Pairwise refresh method

To handle the non-synchronization problem, we can use synchronization schemes such as generalized sampling time
(Aït-Sahalia et al., 2010), refresh time (Barndorff-Nielsen et al., 2011; Fan et al., 2012), and previous tick (Wang and Zou,
2010; Zhang, 2011) schemes, or some linear interpolation scheme (Bibinger et al., 2014). There are estimation procedures
which do not require to align data (Hayashi and Yoshida, 2005, 2011; Malliavin and Mancino, 2002; Malliavin et al., 2009;
Mancino and Sanfelici, 2008; Park et al., 2016). One way to utilize the data efficiently is to apply the pairwise refresh time
scheme to estimate co-volatility. Given the kth refresh time, the (k+1)-th refresh time is theminimum calendar time needed
for both stock to be traded at least once. The formal definition is as follows.
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Definition 1. Let {tij}
ni
j=1 be the calendar times where the ith stock is traded as in (2.3). The first refresh time for the ith and

jth assets is defined as τij,1 = max{ti,1, tj,1}. The subsequent refresh times are

τij,k+1 = max{ti,Ni(τij,k)+1, tj,Nj(τij,k)+1},

where Ni(t) is the number of observations in the ith asset made up to time t .

With the refresh time scheme, for the ith asset, we select any observation, Yi(ti,k), for ti,k between τij,k−1 and τij,k, to be
paired or synchronized with Yj(tj,k) with tj,k chosen similarly, for computing the co-volatility of asset i and asset j. Let n̄ij be
the number of such synchronized observations for the ith and jth assets. Then n̄ij ≤ min(ni, nj) and n̄ii = ni.

3.2. Pre-averaging realized volatility estimation

To handle the micro-structural noise, several estimation methods have been developed and the error from the noise can
be removed effectively (see Aït-Sahalia et al. (2010); Barndorff-Nielsen et al. (2008, 2011); Bibinger et al. (2014); Christensen
et al. (2010); Fan and Wang (2007); Jacod et al. (2009); Xiu (2010); Zhang et al. (2005); Zhang (2006, 2011)). In this paper,
we use the pre-averaging realized volatility estimation scheme (Christensen et al., 2010; Jacod et al., 2009).

Definition 2 (Christensen et al. (2010) and Jacod et al. (2009)). For the pairwise refresh time, {τij,k}nk=1 with n = n̄ij, the
pre-averaging realized volatility (PRV) estimator is given by

Γ̂ij =
1
ψK

n−K+1∑
k=1

{
Zi(τij,k)Zj(τij,k) − ς η̂ij 1(i = j)

}
,

where ψ =
∫ 1
0 g2(t)dt ,

η̂ii =
1
2ni

ni∑
k=1

{
Yi(ti,k) − Yi(ti,k−1)

}2
,

Zi(τij,k) =

K−1∑
l=1

g
(

l
K

){
Yi(τij,k+l) − Yi(τij,k+l−1)

}
,

ς =

K−1∑
l=0

{
g
(

l
K

)
− g

(
l + 1
K

)}2

= O
(

1
K

)
,

K = Cn1/2 is a bandwidth parameter for some constant C free of n and p, and g(·) is a weight function satisfying that g is
continuous and piecewise continuously differentiable with a piecewise Lipschitz derivative g ′ and satisfies g(0) = g(1) = 0.

Remark 1. The bias correction term η̂ij is required to obtain the optimal convergence rate n−1/4 with the presence of
the micro-structural noise. In this paper, we simply assume that the micro-structural noises are independent and so their
diagonal parts are only required to be estimated. When they have some correlation structure, we may need to estimate
the off-diagonal parts ηij for i ̸= j. When it comes to constructing estimation procedures for co-volatility part ηij, due to
the non-synchronization problem, we need to define the correlation structure carefully, and the estimation procedures are
depending on the correlation structure. Kim et al. (2016) discussed and studied this issue. Fortunately, as long as we can
estimate the co-volatilities well, theoretical results obtained in this paper will be the same. Thus, to focus on solving the
non-synchronization problem, we simply assume that the micro-structural noises are independent.

To investigate the large volatility matrices, we need the sub-Gaussian concentration inequality

Pr
(

|Γ̂ij − Γij| ≥ Cm

√
log p/n̄1/2

ij

)
≤ p−m,

where Cm is some constant depending only on given constant m. With mild conditions, Kim and Wang (2016) studied its
sub-Gaussian concentration inequality. We will utilize their result.

Assumption 1.

(1) There are some fixed constants Cµ and Cσ such that, almost surely,

max
1≤i≤p

max
0≤t≤1

|µi(t)| ≤ Cµ, max
1≤i≤p

max
0≤t≤1

γii(t) ≤ Cσ ;

(2) ϵi(ti,k) and X(t) are independent. For each i, ϵi(ti,k), k = 0, . . . , ni, have sub-Gaussian distributions;
(3) The observation time points are independent with log-stock price processes X(t) and micro-structural noises ϵi(ti,k)’s,

and the pairwise refresh time points τij,k satisfy max1≤i,j≤p max1≤k≤n̄ij (τij,k − τij,k−1)n̄ij ≤ Cτ a.s. for some generic
constant Cτ free of n and p.
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Remark 2. Assumption 1 is usually assumed to obtain the sub-Gaussian concentration inequality which plays an important
role in the high-dimensional inferences (Tao et al., 2013; Kim and Wang, 2016). Recently, Fan and Kim (2018) proposed
the robust pre-averaging realized volatility which can obtain the sub-Gaussian concentration inequality with only the finite
fourth moment condition. The sub-Gaussian conditions Assumption 1(1)–(2) can be relaxed by employing the robust pre-
averaging realized volatility. Assumption 1(3) indicates that the time intervals for each pair have the order n̄−1

ij which goes
to zero as the sample size goes to infinity.

Proposition 3.1 (Theorem 1 (Kim and Wang, 2016)). Under the models (2.1) and (2.3), if Assumption 1 is met, then the pre-
averaging realized volatility estimator Γ̂ij in Definition 2 has the following sub-Gaussian concentration:

Pr
(
|Γ̂ij − Γij| ≥ x

)
≤ ϑ1 exp

(
−
√
n̄ijx2/ϑ2

)
, (3.1)

where x is a positive number in a neighbor of 0, and ϑ1 and ϑ2 are generic constants free of n and p.

We need only the input volatility estimator that satisfies the sub-Gaussian concentration inequality (3.1) in order
to investigate the asymptotic behavior of the proposed estimation procedure. Thus, we can use any other estimation
procedure satisfying (3.1). For example, multi-scale realized volatility (Zhang, 2006, 2011) and robust pre-averaging realized
volatility (Fan and Kim, 2018) can be used. In the numerical analysis, we use the pre-averaging realized volatility matrix
(PRVM) estimation procedure in Definition 2 with K = n1/2 and g(x) = x ∧ (1 − x).

4. Large volatility matrix estimation

4.1. Low-rank volatility matrix estimation

Several large volatility matrix estimation procedures have been developed based on the factor model (Fan et al., 2016a;
Aït-Sahalia and Xiu, 2017; Kim et al., 2018; Kong et al., 2018). Their performances may depend on the accuracy of the input
volatilitymatrix estimator Γ̂ . As discussed in Section 2,when it comes to estimating co-volatilities in high-frequency finance,
one of the crucial issues is the non-synchronization problem.Weuse the pairwise refresh timedefined inDefinition 1 in order
to utilize the information efficiently. Then when estimating co-volatilities for liquid assets H, the estimation errors coming
from the non-synchronized observations can be small. Thus, we can estimate the co-volatilities well in the corresponding
block Γ 11. On the other hand, when estimating co-volatilities for illiquid assets L, it is hard to expect that the estimated co-
volatilities are accurate due to the errors coming from non-synchronized observation time points. The intervals for refresh
time can be so large that the approximation errors are too big for applications. In this section, we investigate how to estimate
the low-rank (or factor) volatility matrixΘ without estimating the co-volatilities for illiquid assets L.

In order to investigate the effect of the non-synchronization problem in estimating co-volatilities, we assume that the
number of the synchronized time points is

n̄ij = c min

{(
ni + nj

2

)b

, ni, nj

}
for i ̸= j, (4.1)

where some generic constant c ≤ 1 and b ∈ (a, 1) with a defined in (2.4). In literature, researchers usually assume that
b = 1 and n̄ij = c min(ni, nj). However, this is too optimistic due to lost of data in the synchronization process and hence we
will assume b < 1. Combining (2.4) and (4.1), we have⎧⎨⎩

n̄ij ≍ nb if i, j ∈ H
n̄ij ≍ na if i ∈ H, j ∈ L
n̄ij ≍ nab if i, j ∈ L,

where n̄ij = n̄ji. The above formula is a reasonable model, since for the synchronization between liquid and illiquid assets,
it is reasonable to assume that we are able to observe the liquid assets around each observation time point of illiquid assets
so that n̄ij ≍ na. On the other hand, for the synchronization of similar liquidity assets (liquid–liquid or illiquid–illiquid),
there is some cost to align the data, which is mathematically expressed by b ∈ (a, 1). Thus, under the assumption (4.1), the
estimators for the off-diagonal elements of Γ 22 have slower convergence rates.

To account for the common factors in the financial market, we assume that the integrated volatility matrix Γ consists of
the low-rank and sparse matrices with the block structure as follows:

Γ = Θ + Σ =

(
Θ11 Θ12
Θ21 Θ22

)
+

(
Σ 11 Σ 12
Σ 21 Σ 22

)
.

The volatility matrixΣ of the idiosyncratic component is sparse in the sense that it satisfies

max
1≤j≤p

p∑
i=1

|Σij|
q(ΣiiΣjj)(1−q)/2

≤ Mσ s(p) a.s., (4.2)
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where Mσ is a positive random variable with E
(
M2
σ

)
< ∞, q ∈ [0, 1), and s(p) is a deterministic function of p that grows

slowly in p. Here we define 00
= 0. For the exact sparse matrix, that is, q = 0, whenΣii is bounded from below, the sparsity

level s(p) measures the maximum number of non-vanishing elements in each row of the idiosyncratic volatility matrixΣ .
As discussed before, due to the non-synchronization problem, the estimators for the off-diagonal elements ofΓ 22 maynot

be accurate. With the inaccurate estimator, when we apply the POET procedure (Fan et al., 2013) to estimating the low-rank
volatilitymatrixΘ , the resulting estimatormay have a poor asymptotic behavior due to the inaccuracy of the input volatility
matrix. The simulation study supports this (see Section 5). To avoid this problem,we do not use the illiquid asset information
for estimatingΘ22, but get a better estimator forΘ22 using the low-rank structure ofΘ .

Note thatΘ11 is a p1 × p1 integrated volatility matrix of p1 liquid assets. Let λi, i = 1, . . . , r, be the eigenvalues ofΘ11
with decreasing order and Q ∈ Rp1×r be the matrix of their associated eigenvectors. When the rank ofΘ11 is r , which is the
number of the latent factors, it admits the spectral decomposition:

Θ11 = QΛQ⊤, where Λ = diag(λ1, . . . , λr ).

SinceΘ has a rank r ,Θ22 must be the linear combinations of the columns spanned byΘ21. It can easily be shown that

Θ22 = Θ21QΛ−1Q⊤Θ12; (4.3)

see Proposition 1 in Cai et al. (2016). Also, columns ofΘ12 are linear combinations ofΘ11 as follows:

Θ12 = Θ11QΛ−1Q⊤Θ12 = QQ⊤Θ12. (4.4)

Thus, as long as we have well-performing estimators for Θ11 and Θ12, we can construct the low-rank volatility matrix Θ
using the relationship in (4.3) and (4.4). Identity (4.4) will be used below to ensure that the rank of empirically constructed
Θ̂ has the rank r . See Remark 3.

For any estimators Γ̂ij for Γij, let

Γ̂ 11 = (Γ̂ij)i,j∈H, Γ̂ 22 = (Γ̂ij)i,j∈L, Γ̂ 12 = (Γ̂ij)i∈H,j∈L, and Γ̂ 21 = Γ̂
⊤

12.

The corresponding true volatility sub-matrices Γ 11 and Γ 12 have the low-rank plus sparse structure. To estimate the latent
low-rank volatility sub-matrices, Θ11, Θ12, and Θ22, we employ the POET procedure, and then use the relationship (4.3)
and (4.4) to construct the low-rank volatility matrixΘ . For example, let the singular value decompositions of Γ̂ 11 and Γ̂ 12
be

Γ̂ 11 =

p1∑
k=1

λ̂k̂qk̂q⊤

k and Γ̂ 12 =

p1∧p2∑
k=1

ξ̂k̂vkû⊤

k ,

where λ̂k and ξ̂k are the kth largest singular values of Γ̂ 11 and Γ̂ 12, respectively, q̂k are the singular vectors (eigenvectors)
corresponding to λ̂k, and ûk and v̂k are the left and right singular vectors corresponding to ξ̂k. Using the plug-in procedure,
we estimate the low-rank volatility sub-matricesΘ11 andΘ12 by

Θ̂11 = Q̂Λ̂Q̂⊤ and Θ̃12 =

r∑
k=1

ξ̂k̂vkû⊤

k ,

respectively, where Q̂ = (̂q1, . . . , q̂r ) and Λ̂ = diag(̂λ1, . . . , λ̂r ). Under the pervasive and incoherence conditions
(Assumption 2(d)–(e)), they will be shown to have good asymptotic performances. The liquid asset block estimator Θ̂11
is the most accurate estimator and will be used as the pivotal estimator. We estimate the other blocks,Θ12 andΘ22, using
the relationship (4.3) and (4.4) as follows:

Θ̂22 = Θ̂21Q̂Λ̂
−1Q̂⊤Θ̂12 and Θ̂12 = Θ̂11Q̂Λ̂

−1Q̂⊤Θ̃12 = Q̂Q̂⊤Θ̃12.

See Remark 3 for the reasonwhywe do not use directly Θ̃12 in the both expression above. Combining the low-rank volatility
sub-matrix estimators, we estimate the low-rank volatility matrix estimator by

Θ̂ =

(
Θ̂11 Θ̂12

Θ̂21 Θ̂22

)
, (4.5)

where Θ̂21 = Θ̂
⊤

12. We call it the structured low-rank volatility matrix estimator.

Remark 3. The other possible estimator ofΘ is

Θ̂
alt

=

(
Θ̂11 Θ̃12

Θ̃21 Θ̂22

)
, (4.6)

which has the same element-wise convergence rate of the proposed estimator in (4.5). However, for the finite sample, we
cannot guarantee that the rank of Θ̂

alt
is r . This is because the columns of Θ̃12 are not necessary in the space spanned by
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the columns of Θ̂11. In contrast, by the construction of Θ̂12, the structured low-rank volatility estimator Θ̂ has the rank r ,
which is one of the desired properties. For the same reason, we used Θ̂12 instead of Θ̃12 in constructing Θ̂22. The simulation
study in Section 5 indicates that Θ̂ outperforms Θ̂

alt
.

To investigate the asymptotic behavior of the low-rank volatility matrix estimator Θ̂ , we make several technical
conditions.

Assumption 2.

(a) The ranks ofΘ11 andΘ are the same;
(b) There are some deterministic sequences β1,n and β2,n such that, with probability greater than 1 − δ,

∥Γ̂ 11 − Γ 11∥max ≤ β1,n = o(1), ∥Γ̂ 12 − Γ 12∥max ≤ β2,n = o(1),

and β1,n ≤ β2,n;
(c) The sparsity level diverges slowly such that s(p)/

√
p1 ∧ p2 = o(1);

(d) Let Dλ = min{λi − λi+1 : 1 ≤ i ≤ r} and Dξ = min{ξi − ξi+1 : 1 ≤ i ≤ r}, and there are some fixed constants c1, . . . , c4
such that λ1/Dλ + p1Mσ /Dλ + ξ1/Dξ +

√
p1p2Mσ /Dξ ≤ c1, ξ1/Dλ ≤ c2

√
p2/p1, Dξ ≥ c3

√
p1p2, and Dλ ≥ c4p1 almost

surely, where ξi’s are singular values ofΘ12 with decreasing order;
(e) For some fixed constants c5, c6, and c7, we have almost surely

p1
r

max
1≤i≤p1

r∑
j=1

q2ij ≤ c5,
p1
r

max
1≤i≤p1

r∑
j=1

v2ij ≤ c6,
p2
r

max
1≤i≤p2

r∑
j=1

u2
ij ≤ c7,

where Q = (qij)1≤i≤p1,1≤j≤r is the eigenvector matrix ofΘ11, and V = (vij)1≤i≤p1,1≤j≤r and U = (uij)1≤i≤p2,1≤j≤r are the
left and right singular vector matrices ofΘ12.

Remark 4. Assumption 2(a) indicates that the liquid–liquid block Θ11 has the full information of the low-rank volatility
matrixΘ and the liquid–illiquid blockΘ12 provides the linear relationship betweenΘ11 andΘ22. This assumption allows
us to use the accurate estimator Θ̂11 as the pivotal estimator. The common factor affects on the whole stock prices and
so the corresponding volatility matrix Θ is dense. This implies that eigenvalues of Θ increase with the p order. Thus, the
so-called pervasive condition (Assumption 2(d)) is reasonable to impose on the factor volatility matrixΘ . Assumption 2(e)
is called the incoherence condition which is widely used in analyzing low-rank matrices (see Candès and Recht (2009); Fan
et al. (2016b)). This technical condition allows us to analyze the element-wise asymptotic behavior of the factor volatility
matrix estimator Θ̂ .

The following theorem shows the element-wise convergence rate of the structured low-rank volatility matrix
estimator Θ̂ .

Theorem 4.1. Under the models (2.1) and (2.3), if Assumption 2 and the sparse condition (4.2) are met, then the structured
low-rank volatility matrix estimator in (4.5) has for large n, with probability greater than 1 − δ,

∥Θ̂11 − Θ11∥max ≤ C
{
β1,n + Mσ

s(p)
p1

}
, (4.7)

∥Θ̂12 − Θ12∥max ≤ C
{
β2,n + Mσ

s(p)
p1 ∧ p2

}
, (4.8)

∥Θ̂22 − Θ22∥max ≤ C
{
β2,n + Mσ

s(p)
p1 ∧ p2

}
. (4.9)

Remark 5. Under the assumption (4.1), Proposition 3.1 shows that the pre-averaging realized volatility estimator have,
with probability greater than 1 − p−1, β1,n = C

√
log p/nb/2 and β2,n = C

√
log p/na/2. In the financial market, the numbers

of stocks in the high trading volume and low trading volume, H and L, are comparable, and so p1 ≍ p2. Then Theorem 4.1
shows that the low-rank volatility matrix estimator Θ̂ has, with probability greater than 1 − p−1,

∥Θ̂ − Θ∥max ≤ C
{√

log p/na/2 + Mσ

s(p)
p

}
.

On the other hand, when estimating the low-rank volatility matrix Θ using the POET procedure (Fan and Kim, 2018; Fan
et al., 2013), we have, with probability greater than 1 − p−1,

∥Θ̂POET − Θ∥max ≤ C
{√

log p/nab/2 + Mσ

s(p)
p

}
,

where Θ̂POET is the low-rank volatilitymatrix estimator calculated from the POET procedure. Due to the inaccurate estimator
for the off-diagonal elements of Γ 22, Θ̂POET has the term

√
log p/nab/2.
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4.2. Sparse volatility matrix estimation

Wecan estimate the sparse (or idiosyncratic) volatilitymatrix using some thresholding procedures. For the general sparse
structure (4.2), we still need to estimate the off-diagonal elements of Γ 22, which causes slower convergence rates for the
sparse volatility matrix Σ . To avoid this, we need to impose more structure on Γ 22 that it is a low-rank plus a diagonal
matrix (Fan et al., 2008). That is, the idiosyncratic risks for the illiquid assets are uncorrelated and satisfies

Σ 22 = diag ((Σii)i∈L) . (4.10)

Based on the sparse conditions (4.2) and (4.10), we estimate the sparse idiosyncratic volatility matrix Σ by letting Σ̃ij =

Γ̂ij − Θ̂ij and

Σ̂ij =

⎧⎨⎩
Σ̃ij ∨ 0, if i = j
sij(Σ̃ij)1(|Σ̃ij| ≥ ϖij), if i ̸= j and (i, j) /∈ {(l, k) : l, k ∈ L}

0, if i ̸= j and (i, j) ∈ {(l, k) : l, k ∈ L},

where the adaptive thresholding level ϖij = {(ϖ1,n − ϖ2,n)1(i, j ∈ H) + ϖ2,n}

√
(Σ̃ii ∨ 0)(Σ̃jj ∨ 0), and sij(·) satisfies

that |sij(x) − x| ≤ ϖij. The shrinkage function sij(x) includes the useful examples such as the soft thresholding function
sij(x) = x − sign(x)ϖij and the hard thresholding function sij(x) = x. The tuning parametersϖ1,n andϖ2,n will be specified
in Theorem 4.2.

With the structured low-rank volatility matrix estimator Θ̂ = (Θ̂ij)1≤i,j≤p in (4.5) and the sparse volatility matrix
estimator Σ̂ = (Σ̂ij)1≤i,j≤p, we estimate the integrated volatility matrix Γ by

Γ̃ = Θ̂ + Σ̂ .

We call it the structured POET (SPOET) estimator.
To investigate the asymptotic behavior of the SPOET, we make the following technical conditions.

Assumption 3.

(a) We have, with probability greater than 1 − δ,

max
i∈L

|Γ̂ii − Γii| ≤ β2,n = o(1) and Mσ ≤ C;

(b) (Pervasive condition) There are some fixed constants c8 and c9 such that λr (Θ) ≥ c8p and λ1(Θ)/λr (Θ) ≤ c8 almost
surely, where λk(Θ) is the kth largest eigenvalue ofΘ .

The following theorem shows the convergence rate of the proposed SPOET estimator.

Theorem 4.2. Under the models (2.1) and (2.3), assume that Assumption 2–3, the sparse conditions (4.2), (4.7) and (4.10)–(4.9)
are met. Takeϖ1,n = C1,ϖ (β1,n + Mσ s(p)/p1) andϖ2,n = C2,ϖ (β2,n + Mσ s(p)/p1 ∧ p2) for some large fixed constants C1,ϖ and
C2,ϖ . Then we have for large n, with probability greater than 1 − δ,

∥Γ̃ − Γ∥Γ ≤ C

{
pβ2

1,n + p2β2
2,n

p1/2
+

p2s2(p)
p1/2(p1 ∧ p2)2

+ Mσ s(p)α1−q
n

}
, (4.11)

∥Γ̃ − Γ∥max ≤ Cαn, (4.12)
∥Σ̂ − Σ∥2 ≤ CMσ s(p)α1−q

n , (4.13)

∥Σ̂ − Σ∥max ≤ Cαn, (4.14)

where the relative Frobenius norm ∥U∥
2
Γ = p−1

∥Γ−1/2UΓ−1/2
∥
2
F , and αn = β2,n +Mσ s(p)/p1 ∧ p2. Furthermore, if the smallest

eigenvalues of Γ̃ and Σ̂ are positive, we have for large n, with probability greater than 1 − δ,

∥Γ̃
−1

− Γ−1
∥2 ≤ CMσ s(p)α1−q

n , (4.15)

∥Σ̂
−1

− Σ−1
∥2 ≤ CMσ s(p)α1−q

n . (4.16)

Remark 6. Theorem 4.2 shows the consistency of the SPOET in terms of the relative Frobenius norm. For example, when
both p1 and p2 have the order of p, we have, with probability greater than 1 − p−1,

∥Γ̃ − Γ∥Γ ≤ C

⎧⎨⎩p1/2 log p
na/2 + Mσ s(p)

(√
log p
na/2 + Mσ

s(p)
p

)1−q
⎫⎬⎭ .

The SPOET estimator is consistent so long as p = o(na).
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Remark 7. The diagonal condition (4.10) may be too restrictive in analyzing volatilities. So when relaxing the sparse
condition (4.10) to the following sparse condition

max
j∈L

∑
i∈L

|Σij|
q(ΣiiΣjj)(1−q)/2

≤ Mσ s(p),

the convergence rates corresponding to the sparse volatility matrix Σ are changed. For example, we have the term√
log p/nab/2 + Mσ s(p)/p1 ∧ p2 instead of αn in the results of Theorem 4.2. When p1 ≍ p2, we have, with probability greater

than 1 − p−1,

∥Γ̃ − Γ∥Γ ≤ C

⎧⎨⎩p1/2 log p
na/2 + Mσ s(p)

(√
log p
nab/2 + Mσ

s(p)
p

)1−q
⎫⎬⎭ .

5. Simulation study

5.1. Consistency of estimators

To check the finite sample performance of the proposed estimator, we conducted a simulation study. The true log-stock
price follows a continuous-time r-factor model defined in (2.1) with µ(t) = 0. Let σ(t) be the Cholesky decomposition
of the instantaneous volatility process ς(t) = (ςij(t))1≤i,j≤p. The diagonal elements of ς(t) follow four different processes
such as geometric Ornstein–Uhlenbeck processes, the sum of two CIR processes (Barndorff-Nielsen, 2002; Cox et al., 1985),
the volatility process in Nelson’s GARCH diffusion limit model (Wang, 2002), and two-factor log-linear stochastic volatility
process (Huang and Tauchen, 2005) with leverage effect. Details can be found in Wang and Zou (2010). To obtain the sparse
integrated volatility matrixΣ , we generated the off-diagonal elements as follows:

ςij(t) =

{
0, if i, j ∈ L
{κ(t)}|i−j|

√
ςii(t)ςjj(t), otherwise,

where the process κ(t) is

κ(t) =
e

1
2 u(t) − 1

e
1
2 u(t) + 1

, du(t) = 0.03{0.64 − u(t)}dt + 0.118u(t)dWκ,t ,

Wκ,t =
√
0.96W 0

κ,t − 0.2
p∑

i=1

Wit/
√
p,

and W 0
κ,t , κ = 1, . . . , p, are one-dimensional Brownian motions which are independent of the Brownian motions W∗

t and
Wt . The low-rank instantaneous volatility matrix ς f (t) = ϑ⊤(t)ϑ(t) is H⊤

{ϑf (t)}⊤ϑf (t)H, where H = (Hij)1≤i≤r,1≤j≤p ∈ Rr×p

and Hij were generated from i.i.d. uniform distribution on [−2, 2]. ϑf (t) was generated similarly to σ(t). For example, ϑf (t)
is a diagonal matrix, and its squared diagonal elements were generated from three different processes: geometric Ornstein–
Uhlenbeck processes, the sum of two CIR processes, and the volatility process in Nelson’s GARCH diffusion limit model.

We generated the noisy high-frequency data Yi(tk) by adding a noise term ϵi(tk) obtained from independent normal
distribution withmean zero and standard deviation 0.1

√
Γ ii. To generate the non-synchronized data, we randomly selected

the non-synchronized observation time points from the synchronized observation time points tk =
k

nall
, k = 1, . . . , nall

− 1.
For example, the number of observation timepoints for each asset is determined by

⌊
πinall

⌋
, where the proportionπi ∈ (0, 1).

For liquid assets, the proportion πi was generated from i.i.d. uniform distribution (0.5, 1), while for illiquid assets, the
proportion πi was generated from i.i.d. uniform distribution ( 5L

√

nall
, 10L

√

nall
), where the liquidity level L was varied from 0.25

to 2. Then we obtained the non-synchronized sample path by randomly sampling
⌊
πinall

⌋
observation time points from

{t1, t2, . . . , tnall−1}.
We fixed the proportion of liquid assets to be 0.5, that is, p1 = p/2. Using the simulated noisy non-synchronized data

Yi(ti,k), i = 1, . . . , p, k = 1, . . . , ni, we calculated the PRVM, defined inDefinition 2with theweight function g(x) = x∧(1−x)
and K = ⌊n1/2

⌋. Then we applied the proposed SPOET procedure and POET procedure. The latter regularizes directly
the PRVM estimator Γ̂ . For the thresholding step, we used the adaptive hard thresholding scheme and chose the optimal
thresholding level for eachmethod byminimizing the corresponding Frobenius norm of the difference between the estimate
and true value. In the simulation study,we fixed p = 200, r = 3, and nall

= 23400which equals the number of seconds in one
day’s trading period. The simulation process was repeated 500 times. The average numbers of synchronized observations
after applying the pairwise refresh time scheme for liquid–liquid, liquid–illiquid, illiquid–illiquid combinations are reported
in Table 1.

Fig. 1 depicts the average estimation errors of the SPOET and POET for estimating the low-rank volatilitymatrixΘ against
the liquidity level L and the numerical results are reported in Table 2. It can easily be seen that the SPOET outperforms the
POET (relative efficient greater than one) except one case where L = 2 using spectral norm. In terms of the Frobenius norm,
the SPOET gets more efficiency than the POET as the liquidity level L decreases. In fact, when the liquidity level decreases,
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Table 1
Average sample sizes after applying the refresh time scheme for liquid–liquid, liquid–illiquid,
and illiquid–illiquid combinations.
L liquid–liquid liquid–illiquid illiquid–illiquid

0.25 14300.82 286.27 186.75
0.5 14292.87 573.04 374.48
1 14305.63 1145.44 752.32
2 14295.88 2279.87 1517.39

Table 2
Average errors under Frobenius norm and spectral norm of the SPOET, A-SPOET, and POET forΘ with L = 0.25, 0.5, 1, 2.

Θ Θ11 Θ22 Θ12

L SPOET A-SPOET POET SPOET POET SPOET POET SPOET A-SPOET POET

Frobenius

0.25 437.18 519.76 525.59 119.79 177.72 293.91 343.83 211.41 289.62 251.19
0.5 367.59 421.48 426.16 119.76 151.45 234.92 270.16 180.48 231.80 206.77
1 313.33 347.68 353.97 119.80 133.95 188.54 216.86 155.02 188.03 173.47
2 269.98 290.40 297.53 119.69 121.83 150.51 174.20 133.79 153.67 147.04

Spectral

0.25 297.96 329.07 326.38 74.98 99.58 219.82 230.02 143.57 181.05 155.61
0.5 239.34 258.64 263.53 75.11 86.26 165.79 179.94 119.60 143.18 128.37
1 196.57 207.73 218.08 75.02 78.01 126.47 143.33 100.32 115.00 107.74
2 162.20 167.90 181.27 74.87 72.36 95.09 113.11 83.64 92.38 90.65

Fig. 1. Relative efficiency of the SPOET with respect to the POET for estimatingΘ against the liquidity level L.

both SPOET and POET estimators have larger average errors. However, the SPOET has smaller increment of errors than the
POET, as the SPOET does not use the illiquid–illiquid block data but infers volatility in this block from the low-rank structure.
Thus, it is more robust to the liquidity level L. On the other hand, the performance in terms of the spectral norm is relatively
stable over the liquidity level L. To check the effect of the projection of Θ̃12 onto the space spanned by Θ̂11, we compare
the SPOET with A-SPOET (alternative SPOET in (4.6)). The projected low-rank estimator Θ̂12 shows better performance than
Θ̃12. From this result, we can find that the projection onto the accurate estimator Θ̂11 helps to improve the performance of
estimating low-ranking volatilityΘ .

Table 3 reports the average estimation errors,measured by the Frobenius, spectral, relative Frobenius norms, of the SPOET,
A-SPOET, POET, and PRVMestimators forΓ ,Γ 11,Γ 12, andΓ 22. Fig. 2 shows the average errors of estimates for the integrated
volatility matrix Γ based on the SPOET, A-SPOET, POET, and PRVM procedures for different liquidity levels L. As what we
expected, SPOET, A-SPOET, and POET usually show better performance than PRVM. Furthermore, SPOET has the smallest
average errors among these four estimators.

Finally, we compare performances of estimating the sparse volatility matrix Σ and inverse matrices Γ−1 and Σ−1. We
report average estimation errors in Table 4, using both Frobenius and spectral norms. Similar to the previous results, the
SPOET usually shows better performance than other estimation procedures. However, when the liquidity level L is large
(L = 2), the performances of the SPOET and POET procedures are similar. This is understandable: when the liquidity level is
large, there is no big benefit from using accurate estimates to reconstruct the low-rank volatility matrixΘ .
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Table 3
The average estimation errors of the SPOET, A-SPOET, POET, and PRVM for Γ using different matrix norms with L = 0.25, 0.5, 1, 2.

Frobenius

Γ Γ 11 Γ 22 Γ 12

L SPOET A-SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM SPOET POET PRVM

0.25 441.9 523.6 527.9 790.1 128.1 182.8 162.3 297.5 344.7 478.5 211.4 251.2 429.4
0.5 372.5 425.8 429.6 671.3 128.1 158.3 162.3 238.3 271.7 404.1 180.5 206.8 361.2
1 318.5 352.3 358.2 572.5 128.1 142.1 162.3 191.7 218.5 341.5 155.1 173.5 303.9
2 275.4 295.5 302.4 488.2 128.0 130.9 162.3 153.4 175.9 285.8 133.8 147.1 255.2

Spectral

0.25 294.2 325.5 319.7 313.9 71.5 91.7 58.2 216.2 224.5 210.0 143.6 155.6 182.9
0.5 236.6 256.1 259.0 251.7 71.6 80.9 58.2 163.6 176.2 166.6 119.6 128.4 145.3
1 194.4 205.8 214.9 205.8 71.5 74.3 58.2 125.3 140.7 134.4 100.3 107.7 117.0
2 160.3 166.3 179.0 168.7 71.3 69.6 58.0 94.6 111.3 107.3 83.6 90.6 94.4

Relative Frobenius

0.25 1.23 1.65 1.60 2.94 0.56 0.86 0.91 1.13 1.44 2.35 – - –
0.5 1.03 1.31 1.26 2.49 0.55 0.73 0.91 0.88 1.09 1.98 – - –
1 0.88 1.06 1.04 2.13 0.55 0.65 0.91 0.70 0.86 1.67 – - –
2 0.76 0.88 0.87 1.82 0.56 0.60 0.91 0.55 0.67 1.40 – - –

Table 4
Average errors under Frobenius and spectral norms of the SPOET, POET, and PRVM forΣ ,Σ−1 and Γ−1 with
L = 0.25, 0.5, 1, 2.

Σ Σ−1 Γ−1

L SPOET POET SPOET POET SPOET POET PRVM

Frobenius

0.25 82.379 107.408 0.786 5.321 1.362 10.074 58.239
0.5 74.629 88.109 0.612 4.113 0.547 3.342 67.054
1 69.349 75.566 0.577 1.279 0.507 0.807 82.767
2 65.904 67.645 0.573 0.588 0.502 0.554 54.519

Spectral

0.25 17.098 23.652 0.495 4.932 1.074 9.713 56.479
0.5 16.466 19.490 0.361 3.845 0.296 3.089 64.938
1 16.416 17.154 0.349 1.039 0.280 0.566 80.336
2 16.417 15.976 0.356 0.360 0.287 0.327 51.740

Fig. 2. The average estimation errors of the SPOET, A-SPOET, POET, and PRVM for Γ using different matrix norms against the liquidity level L.

5.2. Portfolio risks

In this section, we further compared the SPOET, A-SPOET, POET, and PRVM for volatility matrix estimation using the
portfolio risks as evaluation. Specifically, for each simulation setting, we generate 200 randomportfoliosw = (w1, . . . , wp)⊤
(approximately) uniformly from the set {w :

∑p
i=1wi = 1 and ∥w∥1 = c0}, where c0 is a given gross exposure. That is

accomplished as follows. See Fan et al. (2015) for details and derivations. The number, k, of long positions is determined by a
realization from binomial distribution Bin(p, c0+1

2c0
). Then we generated independently {Ei}i=1,...,p from standard exponential

distributions. For the k long positions, the weight wi = (c0 + 1)Ei/(2
∑k

j=1 Ej), i = 1, . . . , k, and for the short positions,
wi = −(c0 − 1)Ei/(2

∑p
j=k+1 Ej), i = k + 1, . . . , p. Finally, randomly permute those weights {wi}

p
i=1.
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Fig. 3. Average relative errors of estimators for the portfolio risk calculated using the SPOET, A-SPOET, POET, and PRVM estimators against the liquidity
level L with the gross exposures c0 = 1, 1.2, 1.4, 1.6, 1.8, 2, p = 200, and r = 3.

For each of 500 simulated sample paths, we generated 200 testing portfolios, and so we have 100,000 portfolios in total
for each estimation method. We varied the gross exposure c0 from 1 to 2. For each portfolio, we calculated the relative
error of estimated risk using the estimate Γ̂ by |w⊤(Γ̂−Γ )w|

w⊤Γw , where Γ̂ can be the SPOET, A-SPOET, POET, and PRVM. Then we
computed the averages of 100,000 errors as the performance measure for each method.

Fig. 3 depicts the average relative errors of the portfolio risks calculated by the SPOET, A-SPOET, POET, and PRVM against
the liquidity level L. We can find that the estimates based on the SPOET have the smallest error. As the liquidity level L
increases, the difference between estimates based on the SPOET and POET estimators gets smaller. This is because when the
liquidity level L is large, the illiquid partΓ 22 is well estimated via POET procedure and so there is no huge benefit from using
the structure of the low-rank matrix.

6. Empirical applications

We collected intra-daily transaction prices of NYSE constituents from January to March in 2016 from the TAQ database
in the Wharton Data Service (WRDS) system, 60 trading days in total. We excluded stocks which have less than 100
trading observations and chose the top 100 liquid stocks and the top 100 illiquid stocks as the candidates of our portfolio
construction. We used the log-prices in seconds and exclude overnight returns to avoid dividend issuances and stock splits.
To manage the non-synchronization problem, we used the pairwise refresh time. Average sample sizes for liquid–liquid,
liquid–illiquid, and illiquid–illiquid blocks after applying the refresh time scheme are 6400, 615, and 313, respectively.

We calculated the SPOET, POET, and PRVM estimators for each trading day. For PRVM, we chose g(x) = x ∧ (1 − x) and
K = ⌊n1/2

⌋. For the thresholding step for the sparse volatility matrix Σ , we used two different thresholding techniques
for each of SPOET and POET that avoid the choice of thresholding parameters (Fan et al., 2016a): block diagonal, and
block diagonal but using the diagonal part of estimated Σ 22. We denoted the latter block diagonal threshold estimators
by SPOET+Block and POET+Block. Blocks are determined using the Global Industry Classification Standard (GICS) (Fan et al.,
2016a; Aït-Sahalia and Xiu, 2017). The idiosyncratic components for different blocks (sector) are set to zero and for the same
block are untouched (Fan et al., 2016a). To determine the number, r , of factors, we calculated 60 integrated volatilitymatrices
using the PRVM estimation procedure. Then we used the average eigenvalues from 60 PRVM estimators and draw the scree
plot, which is shown in Fig. 4. From Fig. 4, we can see that the number of leading factors is around 5. In the empirical study,
we chose r = 1, 2, 3, 4, 5, 6 for sensitivity analysis, though it is known that slight overestimate of the number of factors
does no little harm to the portfolio choice (Fan et al., 2013).



J. Fan and D. Kim / Journal of Econometrics 209 (2019) 61–78 73

Fig. 4. The scree plot of average eigenvalues of 60 PRVMs.

Fig. 5. The out-of-sample risks of the optimal portfolios constructed by using the volatility matrix from SPOET, SPOET+Block, POET, POET+Block, and PRVM
estimators with r = 1, . . . , 6.

We examined the performance of the integrated volatility matrix estimators in a minimum variance portfolio allocation
problem. We consider the following constrained minimum variance portfolio allocation problem:

min
ω

ω⊤Γ̂ω, subject to ω⊤J = 1 and ∥ω∥1 = c0,

where J = (1, . . . , 1)⊤ ∈ Rp, the gross exposure constraint c0 was varied from 1 to 3, and Γ̂ could be SPOET, POET, and
PRVM. To make the estimates positive semi-definite, we projected the sparse volatility estimators for SPOET and POET, and
PRVM estimator onto the positive semi-definite cone in the spectral norm. We constructed the portfolio at the beginning of
each trading day and held it for one day. We calculated the standard deviation using the open-to-close log-returns of the
portfolios, which is used to measure the portfolio risk.

Fig. 5 depicts the out-of-sample risks of the portfolios constructed by SPOET, SPOET+Block, POET, POET+Block, and PRVM
against the exposure constraint c0. The minimum risks for portfolios constructed by using SPOET, SPOET+Block, POET,
POET+Block, and PRVMover the c0 are 13.2%, 13.27%, 17.19%, 18.34%, and 18.91%, respectively. The SPOET estimationmethod
reduces the minimum risks by 30%–43%. We can find that for the purpose of portfolio allocation, the SPOET and POET type
estimators perform well and improve the performance of the PRVM. In addition, the PRVM estimator becomes unstable as
the exposure constraint increases.When comparing thresholding schemes, the block thresholding scheme is generally better
than takingΣ 22 to be diagonal, which indicates that the block diagonal assumption is an appropriate assumption for stock
returns. Meanwhile, when the number of factor is 5, the SPOET shows the stable results and performs better than others.
The results suggest that the proposed SPOET procedure can help estimate the volatilities for illiquid assets.
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7. Proofs

Proof of Theorem 4.1. Similar to the proof of Theorem 4.1 of Fan and Kim (2018), we can show

∥Θ̂11 − Θ11∥max ≤ C
(
Mσ

s(p)
p1

+ β1,n

)
.

Now consider ∥Θ̂12 − Θ12∥max. By Weyl’s Theorem, we have

max
1≤k≤r

|̂ξk − ξk| ≤ ∥Γ̂ 12 − Θ12∥2

≤ ∥Γ̂ 12 − Γ 12∥2 + ∥Γ 12 − Θ12∥2

≤
√
p1p2∥Γ̂ 12 − Γ 12∥max + Mσ s(p). (7.1)

By Theorem 1.1 in Fan et al. (2016b), we have

max
1≤k≤r

∥̂vk − sign(⟨̂vk, vk⟩)vk∥max

≤ C
√
p1p2∥Γ̂ 12 − Γ 12∥max + Mσ

√
p1p2 max(s(p)/p1, s(p)/p2)

Dξ
√
p1

≤ C
√
p2

∥Γ̂ 12 − Γ 12∥max + Mσ max(s(p)/p1, s(p)/p2)
Dξ

(7.2)

and

max
1≤k≤r

∥̂uk − sign(⟨̂uk,uk⟩)uk∥max

≤ C
√
p1p2∥Γ̂ 12 − Γ 12∥max + Mσ

√
p1p2 max(s(p)/p1, s(p)/p2)

Dξ
√
p2

≤ C
√
p1

∥Γ̂ 12 − Γ 12∥max + Mσ max(s(p)/p1, s(p)/p2)
Dξ

. (7.3)

Then simple algebraic manipulations show

∥̂vkû⊤

k − vkuk∥max

≤ ∥̂vk − vk∥max∥̂uk − uk∥max + ∥̂vk − vk∥max∥uk∥max + ∥vk∥max∥̂uk − uk∥max

≤
C
Dξ

{
β2,n + Mσ max(s(p)/p1, s(p)/p2)

}
. (7.4)

By (7.1) and (7.4), we have

∥Θ̃12 − Θ12∥max

= ∥

r∑
k=1

(̂
ξk̂vkû⊤

k − ξkvku⊤

k

)
∥max

≤

r∑
k=1

∥(̂ξk − ξk)(̂vkû⊤

k − vku⊤

k )∥max + ∥(̂ξk − ξk)vku⊤

k ∥max + ∥ξk(vku⊤

k − v̂kû⊤

k )∥max

≤ C
{
β2,n + Mσ max(s(p)/p1, s(p)/p2)

}
≤ C

{
β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
. (7.5)

Simple algebraic manipulations show

∥Θ̂12 − Θ12∥max

≤ ∥QQ⊤(Θ̃12 − Θ12)∥max + ∥(̂QQ̂⊤
− QQ⊤)Θ12∥max

+∥(̂QQ̂⊤
− QQ⊤)(Θ̃12 − Θ12)∥max

= (a) + (b) + (c).

For (a), we have

(a) ≤ ∥QQ⊤
∥1∥Θ̃12 − Θ12∥max

≤ C
{
β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
, (7.6)
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where the last inequality is due to (7.5) and Assumption 2(e). For (b), we have

(b) ≤ p1∥Q̂Q̂⊤
− QQ⊤

∥max∥Θ12∥max

≤ C
p1
Dλ

{
β1,n + Mσ s(p)/p1

} ξ1
√
p1p2

≤ C
{
β1,n + Mσ s(p)/p1

}
, (7.7)

where the second inequality can be derived similar to the proof of (7.4). Finally, for (c), similar to the proofs of (7.6) and (7.7),
we can show

(c) ≤ p1∥Q̂Q̂⊤
− QQ⊤

∥max∥Θ̃12 − Θ12∥max

≤ C
p1
Dλ

{
β1,n + Mσ s(p)/p1

}{
β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
= o((a) + (b)). (7.8)

Thus, from (7.6)–(7.8), we have

∥Θ̂12 − Θ12∥max ≤ C
{
β1,n + β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
.

Consider ∥Θ̂22 − Θ22∥max. It follows that

∥Θ̂22 − Θ22∥max

≤ ∥(Θ̂21 − Θ21 )̂QΛ̂
−1Q̂⊤Θ̂12∥max + ∥Θ21Q̂Λ̂

−1Q̂⊤(Θ̂12 − Θ12)∥max

+∥Θ21{̂QΛ̂
−1Q̂⊤

− QΛ−1Q⊤
}Θ12∥max

= (I) + (II) + (III).

For (I), we have for large n,

(I) ≤ ∥Θ̂21 − Θ21∥max∥Q̂Λ̂
−1Q̂⊤Θ̂12∥1

≤

r∑
k′=1

r∑
k=1

ξ̂k′

λ̂k
∥̂qk̂q⊤

k v̂k′ û
⊤

k′∥1∥Θ̂21 − Θ21∥max

≤ C
ξ1

λr
max

1≤k,k′≤r
∥̂qkû⊤

k′∥1∥Θ̂21 − Θ21∥max

≤ C
ξ1

λr
p1/21 max

1≤k≤r
∥uk∥max∥Θ̂21 − Θ21∥max

≤ C∥Θ̂21 − Θ21∥max

≤ C
{
β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
,

where the third inequality is due to (7.1) and Proposition 7.1 (Fan and Kim, 2018) and the fourth inequality is from (7.3).
Similarly, we can show

(II) ≤ C
{
β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}
.

For (III), we have

(III) ≤ ∥Θ12∥
2
1∥Q̂Λ̂

−1Q̂⊤
− QΛ−1Q⊤

∥max

≤ Cξ 21 max
1≤k≤r

∥vku⊤

k ∥
2
1∥Q̂Λ̂

−1Q̂⊤
− QΛ−1Q⊤

∥max

≤ C
ξ 21 p1
p2

∥Q̂Λ̂−1Q̂⊤
− QΛ−1Q⊤

∥max

≤ C
ξ 21 p1
p2

r∑
i=1

(
∥(̂λ−1

i − λ−1
i )qiq⊤

i ∥max + ∥̂λ−1
i (̂qîq⊤

i − qiq⊤

i )∥max
)

≤ C
ξ 21 p1
p2

(
p1β1,n + Mσ s(p)

p1λ2r
+
β1,n + Mσ s(p)/p1

Dλλr

)
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≤ C
ξ 21 p1
p2

1
λrDλ

(
β1,n + Mσ

s(p)
p1

)
≤ C

(
β1,n + Mσ

s(p)
p1

)
,

where the fifth inequality can be derived similar to (7.1) and (7.4). ■

Proof of Theorem 4.2. (4.12) and (4.14) are immediately proved by Theorem 4.1, Assumption 2(b), and Assumption 3(a).
Consider (4.13). By Theorem 4.1, Assumption 2(b), and Assumption 3(a), we have

∥Σ̃ 11 − Σ 11∥max ≤ C
{
β1,n + Mσ

s(p)
p1

}
,

∥Σ̃ 12 − Σ 12∥max ≤ C
{
β2,n + Mσ

s(p)
p1 ∧ p2

}
. (7.9)

Then we have for j ∈ H,
p∑

i=1

|Σ̂ij −Σij|

≤

p∑
i=1

|sij(Σ̃ij) −Σij|1(|Σ̃ij| ≥ ϖij) +

p∑
i=1

|Σij| |1(|Σ̃ij|≥ ϖij) − 1(|Σij|≥ ϖij)|

+

p∑
i=1

|Σij|1(|Σij| < ϖij)

≤
3
2

p∑
i=1

ϖij1(|Σij| ≥ ϖij − |Σij − Σ̃ij|) +

p∑
i=1

|Σij|1
(⏐⏐|Σ̃ij| −ϖij

⏐⏐ ≤ |Σij − Σ̃ij|
)

+

p∑
i=1

|Σij|
qϖ

1−q
ij

≤
3
2
2q

p∑
i=1

|Σij|
qϖ

1−q
ij +

p∑
i=1

|Σij| 1
(

|Σij| ≤
3
2
ϖij

)
+

p∑
i=1

|Σij|
qϖ

1−q
ij

≤ C
p∑

i=1

|Σij|
qϖ

1−q
ij

≤ C

(∑
i∈H

|Σij|
qϖ

1−q
ij +

∑
i∈L

|Σij|
qϖ

1−q
ij

)

≤ CMσ

[
s(p)

{
β1,n + Mσ

s(p)
p1

}1−q

+s(p)
{
β1,n + β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}1−q
]
,

and similarly, for j ∈ L,
p∑

i=1

|Σ̂ij −Σij|

≤ C

[
Mσ s(p)

{
β1,n + β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}1−q

+

{
β1,n + β2,n + Mσ

(
s(p)
p1

+
s(p)
p2

)}]
.

Thus,

∥Σ̂ − Σ∥2 ≤ CMσ s(p)α1−q
n .
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Consider (4.11). Simple algebraic manipulation shows

∥Γ̃ − Γ∥Γ ≤ ∥Θ̂ − Θ∥Γ + ∥Σ̂ − Σ∥Γ .

For ∥Θ̂ − Θ∥Γ , similar to the proofs of Theorem 4.2 (Kim et al., 2018), we have

∥Θ̂ − Θ∥Γ

≤ C
{

1
p1/2λr (Θ)

∥Θ̂ − Θ∥F +
λ1(Θ̂)

p1/2λr (Θ)2
∥Θ̂ − Θ∥

2
F +

λ1(Θ̂)
p1/2λr (Θ)3/2

∥Θ̂ − Θ∥F

}
≤ C

{
1

p1/2λr (Θ)
∥Θ̂ − Θ∥

2
F +

1
p1/2λr (Θ)1/2

∥Θ̂ − Θ∥F

}
.

For ∥Σ̂ − Σ∥Γ , we have

∥Σ̂ − Σ∥Γ ≤ p−1/2
∥Σ̂ − Σ∥2∥Γ

−1
∥F

≤ CMσ s(p)α1−q
n ,

where the last inequality is due to (4.13). Therefore,

∥Γ̃ − Γ∥Γ ≤ C
{

∥Θ̂ − Θ∥
2
F

p1/2λr (Θ)
+

∥Θ̂ − Θ∥F

p1/2λr (Θ)1/2
+ Mσ s(p)α1−q

n

}
≤ C

[
p−3/2 {p21β2

1,n + p1p2β2
2,n + p22(β

2
1,n + β2

2,n)
}

+
p2s2(p)

p1/2(p1 ∧ p2)2
+ Mσ s(p)α1−q

n

]
,

where the last inequality is due to Theorem 4.1.
The statements (4.15) and (4.16) can be shown similar to the proofs of Theorem 4.1 (Fan and Kim, 2018). ■
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