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Abstract

The problem of estimating the density function and the regression function involving

errors-in-variables in time series is considered. Under appropriate conditions, it is shown

that the rates obtained in Fan (1991), Fan and Truong (1990) are also achievable in the

context of dependent observations. Consequently, the results presented here extend our

previous results for cross-sectional data to the longitudinal ones.
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1 Introduction

Let (Ui, l'i) denote a bivariate stationary time series and let m(·) denote the regression

function so that m(u) =E(YilUl =u). Suppose now that the series {UiJ is not observable,

instead Xi = Ui + Ci is available. Based on the realization (Xt, Yi), ... ,(Xn , Yn ), is it

possible to estimate the function m(.)? The problem just stated is not a well defined one,

since there is an identifiability problem about Ci. This can be resolved by assuming that

the error Ci is independent of Ui and has a known distribution. To simplify our discussion,

we further assume that {ci} forms an iid sequence of random variables.

There has been a great deal of interest in this so called errors-in-variable regression

problem. For a comprehensive approach of parametric m(·), see Stefanski and Carroll

(1985, 1987) and Fuller (1987). Recently, Fan and Truong (1990) proposed a nonparametric

procedure based on the method of deconvoluting kernel and it is shown, under the iid

assumption, this class of estimators possesses various optimal properties. In a subsequent

paper, Fan, Truong and Wang (1990) addresses issues on numerical examples and confidence

intervals. An important feature of deconvoluting kernel method is that it provides useful

diagnostic tools in working with regression problems involving errors-in-variables. Another

is its flexibility in dealing with different type of error distributions. Both of these features

are regrettably missing in most of the current parametric or semiparametric approaches

(Whittemore, 1989).

Fan and Truong (1990), Fan, Truong and Wang (1990) were dealing with the so called

cross-sectional data, the current approach continues the same line of research by extending

them to time series or longitudinal data. Under appropriate regularity and mixing con­

ditions, the rates of convergence of the deconvoluting kernel density estimators are shown

to be compatible to results of Carroll and Hall (1988), Fan (1991) and Zhang (1990) in

the iid case. They are also compatible with the result obtained by Masry (1991) in the

stationary case. The rates of convergence of the deconvoluting kernel regression estimators
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are identical to the results of Fan and Truong (1990) for the iid case. Since iid is a special

case of the stationary sequence of random variables, the rates obtained here are therefore

optimal by virtue of Fan (1991) and Fan and Truong (1990).

2 Deconvoluting Kernel Estimators

2.1 Density Function Estimation

Let {Xd and {Ud denote a stationary time series so that Xi = Ui +Ei, where Ei are iid with

mean zero and variance (72. Denote the density function of U1 by 1(')' Given a sequence of

observations XI, ... , X n , consider the following deconvoluting kernel estimator of 1(·):

(2.1)

where {hn } is a sequence of positive numbers converging to zero, and

(2.2)

with

<PK{t) =JeitxK(x) dx, (2.3)

That is, <PK{') is the Fourier transform of the kernel function K{·) and <Pe{') is the character-

istic function of the error variable €. The above estimator has been considered extensively

in the literature. See, for example, Carroll and Hall (1988), Fan (1991), Masry (1991),

Stefanski and Carroll (1990) and Zhang (1990).

2.2 Regression Function Estimation

Given the bivariate series (XI, Y1 ), ... , (Xn , Yn ), the regression function m(·) can be esti­

mated by the following deconvoluting kernel estimator:

(2.4)

where K n {·) is given in (2.2). See Fan and Truong (1990) and Fan, Truong and Wang (1990)

for optimal results and numerical examples in the cross-sectional situation.
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3 Performance of kernel estimators

The sampling behaviors of the kernel estimators (2.1) and (2.4) considered in the pre-

vious section will be treated here. The rates of convergence of these estimators depend on

the smoothness of error distributions, which can be classified into:

• Super smooth of order f3: if the characteristic function of the error distribution <Pi,)

satisfies

where do, db f3, '1 are positive constants and f3o, f31 are constants.

• Ordinary smooth of order f3: .if the characteristic function of the error distribution

<Pe(') satisfies

for positive constants do, db f3.

For example,

{
N(O, 1) with f3 = 2,

Super smooth distributions:
~H~? Cauchy (0,1) with f3 = 1.

{

~xP-le-ax (Gamma) with f3 =p
Ordinary smooth distributions: P ,

!e-1xl (double exponential) with f3 =2 .

(3.2)

The rates of convergence depend on f3, the order of smoothness of the error distribu­

tion. They also depend on the smoothness of the regression function m(·) and regularity

conditions on the marginal distribution which are given as follows.

Condition 1. Let a < b.

a. The marginal density 1(') has a bounded kth derivative on the interval (a, b).

b. The characteristic function of U1 is absolutely integrable.
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c. The characteristic function of the error distribution <Pe(') does not vanish.

d. The marginal density 1(') of the unobserved UI is bounded away from zero on the

interval [a, b].

e. The regression function m(·) has a bounded kth derivative.

The rates depend on the following condition of the kernel function:

Condition 2. The kernel K(·) is a kth order kernel. Namely,

i: K(x)dx = 1,i: x"K(x)dx # 0,

i:XiK(X)dx=O, [orj=1, ... ,k-1.

Let :Ft and :;:t denote the O'-fields generated respectively by (Ui, Yi),-oo < i ~ t, and

(Ui, Yi), t ~ i < 00. Given a positive integer k, set [Rosenblatt (1956)]

a(k) =sup{1 peA n B) - P(A)P(B) I : A E:Ft and BE :Ft+k}.

The stationary sequence is said to be a-mixing or strongly mixing if a(k) - °as k - 00.

Condition 3. The stationary sequence (Ui, Yi) is a mixing with

E a l
- 2!(J(j) =O(N-I) as N - 00.

i>N

It follows from the assumption on {Ci} that (Xi, Yi) is also a-mixing.

3.1 Rates of Convergence in the Density Case

The deconvoluting kernel density estimator will be considered in this section. We start with

super smooth error distributions:
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Theorem 1. Suppose Conditions l(a)-{c), 2 and 3 hold and that [see (3.1)]

Assume that tPK(t) has a bounded support on ItI ~ Mo. Then, for bandwidth hn =
c(1ogn)-l/13 with c > Mo(2h)1/13,

lin(u) - f(u)1 =Op((logn)-k/13 ), u E [a,b].

To compute the variance of the deconvoluting density estimator for the ordinary smooth

error distributions, we need the following condition on the tail of tPe(t):

Itl3+2tP~(t)1 = 0(1) as t -- 00 (3.3)

for some constants Co, Cl :f. o. Note that (3.3) is a special case of (3.2).

Theorem 2. Suppose Conditions l(a)-{c), 2 and 3 hold and that

Then, under the ordinary smooth error distribution (3.3) and hn = dn-1/(2k+2I3+1) with

d> 0,

lin(u) - f(u)1 = Op (n-k/(2k+213+t») , u E [a,b].

Remarks.

• Under the iid assumption, Fan (1991) showed that the above rates are optimal in the

minimax sense. Hence, they are also optimal in the stationary setup, since iid random

variables are special cases of strong mixing stationary process. For more details on

rate optimality in the deconvoluting density estimationJor the iid case, see Fan (1991).

• In Theorem 1, only the first half of (3.1) is needed for establishing the so-called

achievable rates. The other halfis used for showing the lower bound (rates optimality).
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3.2 Rates of Convergence in the Regression Case

The rates of convergence for the deconvoluting regression function estimator will be dis­

cussed in this section. We begin with the super smooth error distributions:

Theorem 3. Suppose Conditions 1-3 hold and that

Assume that ¢>K(t) has a bounded support on ItI 5 Mo. Then, for bandwidth hn =

c(log n )-1/,6 with c > Mo(2/'r )1/,6,

To compute the variance of the deconvoluting regression estimator for ordinary smooth

error distributions, the condition similar to density estimation given in Section 3.1 is re-

quired. See (3.3).

Theorem 4. Suppose Conditions 1-3 hold and that

Then, under the ordinary smooth error distribution (3.3) and hn = dn-1/(2k+2,6+l) with

d> 0,

Remark. Under the iid assumption, Fan and Truong (1990) showed that the rates

given in Theorems 3 and 4 can not be improved. Hence, these rates are optimal for the

stationary sequences. More detailed discussion on rate optimality of the deconvoluting

regression estimators for the iid case can be found in Fan and Truong (1990).

4 Proofs

Lemma 4.1. Under the conditions given in Theorems 1 or 2, then

1 100
u - vEin(u)-f(u) = h

n
_oo[f(v)-f(u)]K(~)dv
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= !(u)b1,1I:(u)h:(1 +0(1)),

where

Proof. This follows from Lemma 6.2 of Fan and Truong (1990) and Taylor's expansion.

The following lemma computes the variances of in(u) for super smooth errors and or-

dinary smooth errors, respectively.

Lemma 4.2. Under the conditions given in Theorem 1,

(
~) 211:Var !n(U) = o(hn ).

Under the conditions given in Theorem 2,

Proof. Set Kn,j = Kn((u-Xj)Jhn). Suppose first that the error is super smooth. Then

Var (in(u))

= 21h2 Var (L: Kn,j)
n n

< n~~EIKn (U~X)12 + n~~ ~Cov(Kn,l,Kn,l+j)
J

< n~~EIKn (U~nX)12 + n~~ ~IIKn,lll~a(ljl).
J

The last inequality follows from Corollary A.1 of Hall and Heyde (1980). Now according to

Fan and Truong (1990),

By Condition 3 and hn = c(1ogn)-l/l3,
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Suppose now that the error distribution is ordinary smooth. Invoke the integration by

parts twice and by an analogous argument in Lemma 6.4 of Fan and Truong (1990), there

exists a constant C such that

(4.4)

Let h(') and h,j(',') denote the density functions of Xl and (XbXj), respectively. Then

EKn,1 = EKn (U ~nXI) = hn JKn(v)h(u - vhn)dv = O(h~-I3),

EKn,IKn,j =h~JJK n(vI)Kn(v2)h,j(U - vlhn, u - V2 hn) dVldv2 = O(h~-213).

Similarly,

Set

where

and

1
I:2 = -h2 L COV(Kn,b Kn,l+j).

n n j>N

Choose N "" h;;l. It follows from (4.6) that

I:I = 0 ( 2~+l)'nhn

By (4.7) and Corollary A.2 of Hall and Heyde (1980),

I:2 = ~2 L (EIKn ,118r/
8

a l - 2/8(j)
n n j>N

= 0 ( 1 ) h2
/

8
-

1
" a l

-
2

/
8(J')

nh213+l n LJ
n j>N

= 0 ( 2~+l)'nhn

(4.5)

(4.6)

(4.7)

This completes the proof of Lemma 2.

For the following discussions, set An(u) = (nhn)-l E Kn«u - Xj)/hn)(Y; - m(u)).
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Lemma 4.3. Given the conditions in Theorem 3 or 4, then

1 JOO u - v
EAn(u) = h

n
_oo[m(v)-m(u)]K(~)!(v)dv

= !(u)b2,k(U)h:(1 +0(1»,

where

Proof. This follows from Lemma 6.2 of Fan and Truong (1990) and Taylor's expansion.

Lemma 4.4. Under the conditions given in Theorem 3,

While under the conditions given in Theorems 4,

Proof. Set Kn,j = Kn((u - Xj)/hn). For the super smooth error distribution,

Var(An(u» = n2~2 Var (L:Kn,iCYj - m(u»)
n

$ n~~ E IKn (U ~nX) (Y - m(u»1
2

1+nh~ 4: COV(Kn,l(Yi - m(u», Kn,l+i(Yl+i - m(u»).
J

By Corollary A.2 of Hall and Heyde (1980),

COV(Kn,l(Yl - m(u»,Kn,l+j{Yl+j - m(u»)

$ 8 (EIKn ,lI I1 IYl _ m(u)ll1) 2/11 a?-211(lil)

< 8I1Kn,11l~ (EIYi - m(u)ll1) 2/11 o:l-211(lil).

It follows from Condition l(f),
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that

For the ordinary smooth error distributions, set Zi = }Ii - m(u) and

where

and
1

~2 =-h2 E COV(Kn,lZt, Kn,l+jZl+j).
n 1'1 • NJ>

Applying Holder inequality twice,

COV(Kn,lZt, Kn,l+jZl+j)

= E (K Z9)2/ 9. E (K K .)1-2/9. O(h-2(J/9) +O(h2k )1'1,1 1 1'1,1 n,l+J 1'1 1'1

By Condition l(f) and (4.4)-(4.7),

Choose N f'V h;,l+2/9. Then

~1 = 0 ( 2~+l).
nhn

By Conditions l(f), 3 and Corollary A.2 of Hall and Heyde (1980),
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,

The last two equalities follow from (4.7) and Condition 3, respectively. This completes the

proof of Lemma 4.

By Lemmas 4.1 and 4.2, it follows from the Cheby~hev's inequality and the usual

variance-bias decomposition that the conclusions of Theorems 1 and 2 hold.

To prove Theorem 3, note that

mn(u) - m(u) = ~n(U).
fn(u)

Given u E [1, b], set f. = f( u)/2. Then Condition 1(d) implies f. > O. By Theorem 1,

lim P (On) = 1,
n

(4.8)

where On = {Iin(u) - f(u)1 :5 f.}. In particular, for n sufficiently large, in(u) > f. > 0 on

On. Hence, by Chebyshev's inequality, Lemmas 4.3 and 4.4, on On,

(4.9)

The conclusion of Theorem 3 follows from (4.8) and (4.9).

The argument for Theorem 4 follows similarly by virtue of Theorem 2, Lemma 4.3 and

the second part of Lemma 4.4.

References

[1] Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvoluting a

density. J. Amer. Statist. Assoc., 83, 1184-1186.

[2] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution

problem. Ann. Statist. To appear.

[3] Fan, J. and Truong, Y. (1990). Nonparametric regression with errors-in-variables. In­

stitute of Statistics Mimeo Series #2023, Univ. of North Carolina, Chapel Hill.

[4] Fan, J., Truong, Y. and Wang, Y. (1990). Measurement errors regression: A nonpara­

metric approach. Institute of Statistics Mimeo Series #2036, Univ. of North Carolina,

Chapel Hill.

12



[5] Fuller, W. A. (1987). Measurement efTOr models. Wiley, New York.

[6] Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its applications. Academic

Press, New York.

[7] Masry, E. and Rice, J. A. (1991). Gaussian deconvolution via differentiation. To appear

in Can. J. Statist..

[8] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc.

Nat. Acad. Sci. U.S.A. 42, 43-47.

[9] Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic

regression. Ann. Statist., 13, 1335-1351.

[10] Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for

generalized linear measurement-error models. Biometrika, 74, 703-716.

[11] Stefanski, 1. A. and Carroll, R. J. (1990). Deconvoluting kernel density estimators.

Statistics, 21, 169-184.

[12] Whittemore, A. S. (1989). Errors-in-variables regression using Stein estimates. Amer­

ican Statistician. 43, 226-228.

[13] Zhang, C. H. (1990). Fourier methods for estimating mixing densities and distributions.

Ann. Statist., 18, 806-830.

13


