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Abstract

In this thesis, we study several problems related to the existence problem of Kähler-Einstein

metric on Fano manifold. After introduction in the first chapter, in the second chapter, we

review the basic theory both from PDE and variational point of view. Tian’s program using finite

dimensional approximation is then explained. Futaki invariant is discussed in detail for both its

definition and calculation. K-stability is introduced following Tian and Donaldson. In the third

chapter, we extend the basic theory to the twisted setting. As an important case, the analytic

and algebraic theory are both extended to the conic setting. In the third chapter, we study the

continuity method on toric Fano manifolds. We calculate the maximal value of parameter for

solvability and study the limit behavior of the solution metrics. As a corollary, we prove Tian’s

partial C0-estimate on toric Fano manifolds. The log-Futaki invariant is calculated on toric

Fano manifolds too. In the fourth chapter, we discuss the recent joint work with Dr. Chenyang

Xu. We use Minimal Model Program (MMP) to simplify the degeneration and prove Tian’s

conjecture which reduce the test for K-stability to special degenerations. In the final chapter, we

construct examples of rotationally symmetric solitons. These solitons are local models of special

singularities of Kähler-Ricci flow.
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Chapter 1

Introduction

1.1 Main Theme: Kähler-Einstein metric as canonical met-

ric

Complex geometry aims to study complex manifolds, which are manifolds with complex struc-

tures. Kähler manifolds form a large class of complex manifolds. A Kähler manifold is a complex

manifold with a Riemannian metric compatible with the complex structure. One basic problem

in Kähler geometry is to find the canonical metric on a given Kähler manifold. Canonical means

that the metric depends on the complex structure and is unique up to biholomorphic automor-

phisms. This problem is similar to Thurston’s Geometrization Conjecture for real 3-manifolds.

They all intend to classify manifolds by extending the Uniformization Theorem for Riemann

Surfaces to higher dimensions.

One class of canonical metric is Kähler-Einstein (KE) metric. In order for a Kähler manifold

X to have a Kähler-Einstein metric, its first Chern class has to be definite, that is either −c1(X)

is a Kähler class, or c1(X) = 0, or c1(X) is a Kähler class. For the first case, Aubin [Aub]

and Yau [Yau1] independently proved the existence of Kähler-Einstein metric in −c1(X). For

the second case, the existence of Kähler-Einstein metric in any Kähler class follows from Yau’s

solution of Calabi conjecture [Yau1]. These Kähler-Einstein metrics with zero Ricci curvature

are known as Calabi-Yau metrics and play a major role in the String Theory.

The remaining case is the Fano case, i.e. when the anti-canonical line bundle −KX is ample.

In general, there are obstructions to the existence of Kähler-Einstein metric on X. For example,

a theorem of Matsushima [Mat] says that, any Kähler-Einstein Fano manifold has a reductive
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automorphism group, which is the complexification of the isometry group of the Kähler-Einstein

metric. The goal now is to find all obstructions and characterize all Fano manifolds with Kähler-

Einstein metric. Now this is a big subject of intensive research.

On the one hand, finding Kähler-Einstein metric reduces to solving a fully non-linear complex

Monge-Ampère equation. The standard tool from PDE is to use continuity method or flow

method.

Since the equation in general can not be solved, in both of these methods, the difficulty

lies in studying the singularities formed at certain threshold of the parameter and hopefully the

information of the singularities will give us obstructions to the existence. These are tied with

the compactness result from Riemannian geometry. More specifically, along continuity method,

the metrics have a uniform lower Ricci bound. By Cheeger-Colding’s theory, they converge in

Gromov-Hausdorff sense to some metric space. But it’s a weak limit and one does not know

much things about the singularities. For the Kähler-Ricci flow case, there is the well-known

Hamilton-Tian’s conjecture, which predicts the limit to be Kähler-Ricci soliton on some normal

Fano variety. In general there may be a jump to a different complex structure and even jump to

a singular variety.

On the other hand, Kähler-Einstein problem is a variational problem. Futaki [Fut] found

an important invariant as the obstruction to this problem. Then Mabuchi [Mab1] defined the

K-energy functional by integrating this invariant. The minimizer of the K-energy is the Kähler-

Einstein metric. Tian [Tia9] proved that there is a Kähler-Einstein metric if and only if the

K-energy is proper on the space of all Kähler metrics in c1(X). So the problem is how to test

the properness of the K-energy.

Tian developed a program to reduce this infinitely dimensional problem to finitely dimensional

problems. More precisely, he proved in [Tia9] that the space of Kähler metrics in a fixed Kähler

class can be approximated by a sequence of spaces consisting of Bergman metrics. The latter

spaces are finitely dimensional symmetric spaces. Tian ([Tia9]) then introduced the K-stability

condition using the generalized Futaki invariant ([DiTi]) for testing the properness of K-energy

on these finitely dimensional spaces. Later Donaldson [Don4] reformulated it using algebraically

defined Futaki invariant (see (2.27)), which is now called the Donaldson-Futaki invariant. The

following folklore conjecture is the guiding question in this area.

Conjecture 1 (Yau-Tian-Donaldson conjecture). Let (X,L) be a polarized manifold. Then there

is a constant scalar curvature Kähler metric in c1(L) if and only if (X,L) is K-polystable.
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1.2 Content of the thesis

Chapter 2 In 2.1, we will recall some standard notation in Kähler geometry. In 2.2, we will reduce the

Kähler-Einstein problem to solving a complex Monge-Ampère equation. Then we introduce

the continuity method and reduce the solvability to establishing a priori estimates. In 2.3,

we explain how the C2-estimate and higher order estimate follow from the C0-estimate.

This means the non-existence of KE is due to the failure of uniform C0-estimate. In

2.4, we will view Kähler-Einstein metric as critical points of two functionals: K-energy

and F-functional. We will also define various other energy functional which we will use

frequently later. We will state Tian’s important result which gives a analytic criterion of

existence of Kähler-Einstein metric using properness of K-energy or F-functional. This

raise the problem of how to test the properness of K-energy functional. In 2.5, we will

explain the important results and idea of finite dimensional approximation. This is the

link to the algebraic geometry side of the problem. As an application of finite dimensional

approximation, we prove:

Theorem 1. Constant scalar curvature Kähler (CSCK) metric obtains the minimum of

K-energy.

In 2.6, we will explain Tian’s conjecture which reduces properness of K-energy on the

infinite dimensional space of Kähler metrics to the properness of K-energy on finite dimen-

sional spaces. We explain how Tian’s another conjecture called partial C0-estimate would

complete the program if established. In 2.7, we will explain the important Futaki invariant,

which is roughly the asymptotic slope of K-energy along a one parameter subgroup of pro-

jective transformations. This invariant is used to test the properness in finite dimensional

spaces.

Chapter 3 In this chapter, we generalize some of the standard theory associated to classical Kähler-

Einstein problem. In 3.1, we consider the twisted Kähler-Einstein equation. We define the

corresponding twisted version of K-energy and F-functional. We define the invariant Rη

which measures the extent to which we can untwist such equation. Continuity method is

a special case of twisted Kähler-Einstein. The other important case is the conic Kähle-

Einstein metric. In 3.2, we explain the recent work of Jeffrey-Mazzeo-Rubinstein-Li which

proved existence of conic Kähler-Einstein metric on Fano manifold along a smooth anti-

canonical divisor under the assumption that the log-K-energy is proper. The main strategy
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is the same as in the smooth case. But there are many technical difficulties to overcome.

One technical point is

Proposition 1. There exists a reference conic Kähler metric whose holomorphic bisectional

curvature is bounded from above but not from below.

In 3.3, we extend the algebraic part of story to the conic setting. In particular, we explain

the log-Futaki invariant and log-K-stability, and extend conjectural K-stability picture to

conic case.

Chapter 4 This chapter forms first main part of this thesis. Here we carry out a detailed study of

continuity method in Kähler-Einstein problem on toric Fano manifolds. As explained in

4.2, this study is partly based on Wang-Zhu’s [WaZh] a priori estimates of the convex

solutions to real Monge-Ampère equations which are reductions of the complex Monge-

Ampère equations by toric symmetry. In 4.3, we calculate the greatest lower bound of Ricci

curvature in the first Chern class of toric Fano manifold. This invariant (called R(X)) is

also the maximal parameter for which one can solve the equations in the continuity method.

It is entirely determined by the geometry of the momentum polytope. Such a polytope 4

contains the origin O ∈ Rn. We denote the barycenter of 4 by Pc. If Pc 6= O, the ray

Pc + R≥0 ·
−−→
PcO intersects the boundary ∂4 at point Q.

Theorem 2. If Pc 6= O,

R(X4) =

∣∣OQ∣∣∣∣PcQ∣∣
Here

∣∣OQ∣∣, ∣∣PcQ∣∣ are lengths of line segments OQ and PcQ. In other words,

Q = − R(X4)
1 −R(X4)

Pc ∈ ∂4

If Pc = O, then there is Kähler-Einstein metric on X4 and R(X4) = 1.

In 4.4, we study the limit behavior of the sequence of solutions to continuity family when

the parameter approach the maximal value. We prove the convergence upon holomorphic

transformation.

Theorem 3. After some biholomorphic transformation σt : X4 → X4, there is a subse-

quence ti → R(X), such that σ∗
tiωti converge to a Kähler current ω∞ = ω +

√
−1∂∂̄ψ∞,

with ψ∞ ∈ L∞(X4)∩C∞(X4\Bs(LF )), which satisfies a complex Monge-Ampère equation
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of the form

(ω +
√
−1∂∂̄ψ∞)n = e−R(X)ψ∞

(∑
α

′bα|sα|2
)−(1−R(X))

Ω. (1.1)

Here Ω = ehωωn is a smooth volume form. For each vertex lattice point pFα of F , bα is a

constant satisfying 0 < bα ≤ 1. ‖ · ‖ = ‖ · ‖FS is (up to multiplication of a constant) the

Fubini-Study metric on K−1
X4

. In particular

Ric(ωψ∞) = R(X)ωψ∞ + (1 −R(X))
√
−1∂∂̄ log(

∑
α

′bα|sα|2). (1.2)

This convergence should be compared to the Cheeger-Gromov convergence of manifolds

with lower Ricci bounds. In particular, the limit we get has conic type singularities whose

information can be read out from the geometry of the moment polytope. As a corollary of

the convergence result, in 4.5, we prove

Corollary 1. Tian’s partial C0-estimate holds along the continuity method on toric Fano

manifolds.

For special toric Fano manfolds, we can describe the multipler ideal sheaf very explicitly.

We give examples in 4.6. In 4.7, we do some calculation for the log-Futaki invariant on

toric Fano manifolds.

Theorem 4. Let X4 be a toric Fano variety with a (C∗)n action. Let Y be a general

hyperplane section of X4. When β < R(X4), (X4, βY ) is log-K-stable along any 1 pa-

rameter subgroup in (C∗)n. When β = R(X4), (X4, βY ) is semi-log-K-stable along any

1 parameter subgroup in (C∗)n and there is a 1 parameter subgroup in (C∗)n which has

vanishing log-Futaki invariant. When β > R(X4), (X4, βY ) is not log-K-stable.

Chapter 5 This chapter grow out of the joint work with Dr. Chenyang Xu. In 5.2, we derive the

intersection formula for Donaldson-Futaki invariant.

Theorem 5. [LiXu] Assume X is normal, then

a1b0 − a0b1
a2
0

= DF(X ,L) =
1

(n+ 1)!a0

(
a1

a0
L̄n+1 +

n+ 1
2

KX/P1 · L̄n
)
. (1.3)

In 5.3, we modify the test configuration using Minimal Model Program (MMP) step by

step and calculate the derivative of the Donaldson-Futaki invariant. We prove that any
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test configuration can be modified to a special test configuration which means the central

fibre is a Q-Fano variety. Moreover, the Donaldson-Futaki invariant is decreasing along the

process.

Theorem 6. [LiXu]Let X be a Q-Fano variety. Assume (X ,L) → A1 is a test configuration

of (X,−rKX). We can construct a special test configuration (X s,−rKX s) and a positive

integer m, such that (X s,−rKX s) is a and

mDF(X ,L) ≥ DF(X s,−rKX s).

Furthermore, if we assume X is normal, then the equality holds only when (X ,X0) itself is

a special test configuration.

These important facts allows us to confirm one of Tian’s conjecture: to test K-stability,

one only needs to test on special test configurations.

Theorem 7 (Tian’s conjecture). ([LiXu])Assume X is a Q-Fano variety. If X is destablized

by a test configuration, then X is indeed destablized by a special test configuration. More

precisely, the following two statements are true.

1. (K-semistability) If (X,−rKX) is not K-semi-stable, then there exists a special test

configuration (X s,−rKX s) with a negative Futaki invariant DF(X s,−rKX s) < 0.

2. (K-polystability) Let X be a K-semistable variety. If (X,−rKX) is not K-polystable,

then there exists a special test configuration (X st,−rKX s) with Donaldson-Futaki in-

variant 0 such that X s is not isomorphic to X × A1.

Chapter 6 In the last chapter, we construct examples of Kähler-Ricci solitons on direct sum of KE

line bundles on KE manifolds. The construction is straightforward using the rotational

symmetry to reduce the equation to an ODE.

Theorem 8. Assume (L, h) → (M,ωKE) is a line bundle with Hermitian metric h over

a Kähler-Einstein manifold, such that −
√
−1∂∂̄ log h = −εωKE and Ric(ωKE) = τωKE.

Then on the total space of L⊕n, there exist complete rotationally symmetric solitons of types

depending on the sign of λ = τ −nε. If λ > 0, there exists a unique rotationally symmetric

shrinking soliton. If λ = 0, there exists a family of rotationally symmetric steady solitons.

If λ < 0, there exists a family of rotationally symmetric expanding solitons.
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When n = 1, this construction recovers the previous constructions by Cao [Cao], Koiso

[Koi], Feldman-Ilmane-Knopf [FIK]. The singularities of Kähler-Ricci flow correspond to

extremal contractions in MMP. While their examples can serve as the local model in the

case of divisorial contraction, the example in the above theorem should correspond to the

Kähler-Ricci soliton appeared when a special flipping contraction happens, because the

contracting base is of high codimension.

In the compactified Fano manifold, there also exists shrinking Kähler-Ricci soliton.

Theorem 9. [Li3] Using the notation as in Theorem 8, assume λ = τ − nε > 0, then

on the space P(C ⊕ L⊕n) = P(L−1 ⊕ C⊕n), there exists a unique rotationally symmetric

shrinking Kähler-Ricci soliton.

Remark: Ideas in different chapters are inter-related. For example,

• The theory to the twisted KE problem, in particular for the conic KE, are essentially the

same as in the smooth case except for several technical difficulties.

• The idea of using symmetry to simplify the problem is manifest in both Chapter 4 (toric

symmetry) and Chapter 6 (rotational symmetry).

• Since the Kähler-Ricci flow is just the metric counter part of Minimal Model Program

(MMP) with scaling. The solitons in Chapter 6 should be the scaling limit of the special

extremal contractions in MMP with scaling. Actually, this is true if the singularity of

Kähler-Ricci flow is of type I.

• The study of singularities are important for the existence problem. These are tied with

the compactness result from Riemannian geometry. Chapter 4 and Chapter 6 can be seen

as examples of the singularities developed along continuity method and Kähler-Ricci flow

respectively.
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Chapter 2

Preliminaries

2.1 Basic Kähler geometry

Let (X,J) be a complex manifold. g is a Riemannian metric on X. Assume g is compatible with

respect to J , i.e.

g(JV, JW ) = g(V,W ), for any V,W ∈ TRX

Define the form ωg(X,Y ) = g(JX, Y ). Then g(X,Y ) = ωg(X, JY ). Then

Lemma 1. The following are equivalent: 1. ∇LCJ = 0, 2. dωg = 0.

The Kähler condition is characterized by either of the condition. ωg is called the Kähler form

of the Kähler metric g.

In local complex coordinate, any Kähler metric can be represented by its Kähler form

ωg =
√
−1
∑
i,j

gij̄dz
i ∧ dz̄j , satisfying g = (gij̄) > 0 and dωg = 0

Since dωg = 0 and ωng 6= 0, ω represents a nonzero cohomology class in H1,1(M,R). Since ωg

comes from a Kähler metric which is positive definite, we write [ωg] > 0. The Kähler cone on

any Kähler manifold is characterized by Demailly-Paun [DePau]. If [ω] ∈ H2(X,Z) then [ω] is

the first Chern class of an ample line bundle L: [ω] = c1(L).

The curvature tensor of a Kähler metric is easier to compute using the complex coordinates.

• ∇∂zi
∂zj = Γkij∂zk , with Γkij = gkl̄∂zjgil̄. Similarly, Γk̄

īj̄
= glk̄∂z̄iglj̄

• ∇∂zi
∂z̄j = 0 = ∇∂z̄i

∂zj
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So the curvature is (use ∂i = ∂zi and ∂j̄ = ∂z̄j )

R(∂zi , ∂z̄j )∂zk = Rlij̄k∂zl , with Rlij̄k = −∂z̄jΓlik = gls̄(∂j̄grs̄)g
rq̄(∂igkq̄) − glq̄∂i∂j̄gkq̄

So we get:

Rij̄kl̄ = − ∂2gkl̄
∂zi∂z̄j

+ grq̄
∂gkq̄
∂zi

∂grl̄
∂z̄j

The Ricci curvature

Rij̄ = Rj̄i = Rkkj̄i = −∂j̄
(
gkl̄∂igkl̄

)
= −∂j̄∂i log det(gkl̄)

So we get the simple expression for the Ricci curvature of the

Ric(ω) = −
√
−1∂∂̄ logωn = −

√
−1
∑
i,j

∂2

∂zi∂z̄j
log det(gkl̄)dz

i ∧ dz̄j

We can give the Chern-Weil explanation of this formula. Any volume form Ω induces an Hermi-

tian metric on K−1
X by

|∂z1 ∧ · · · ∂zn |
2
Ω =

2nΩ
√
−1

n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

By abuse of notation, we denote the Chern curvature of the (K−1
X , | · |Ω) to be Ric(Ω) then we

see that Ric(ω) = Ric(ωn). So we see that the Ricci form is a closed (1,1) form representing the

class 2πc1(X).

S(ωφ) = gij̄φ Ric(ωφ)ij̄ , S =
〈n(2πc1(X))[ω]n−1, [X]〉

〈[ω]n, [X]〉

are the scalar curvature of ωφ and average of scalar curvature. Note that S is a topological

constant.

Lemma 2 (∂∂̄-Lemma). If [ω1] = [ω2], then there exists φ ∈ C∞(M) such that ω2 − ω1 =
√
−1∂∂̄φ.

This Lemma is very useful because it reduces equations on Kähler metriccs to equations

involving Kähler potentials.

Definition 1. Fix a reference metric ω and define the space of smooth Kähler potentials as

H := Hω = {φ ∈ C∞(M)|ωφ := ω +
√
−1∂∂̄φ > 0} (2.1)

9



Remark 1. The set H depends on reference Kähler metric ω. However in the following, we will

omit writing down this dependence, because it’s clear that H is also the set of Hermitian metrics

h on L whose curvature form

ωh := −
√
−1∂∂̄ log h

is a positive (1,1) form on X. Since ωφ determines φ up to the addition of a constant, H/C is

the space of smooth Kähler metric in the Kähler class [ω]. By abuse of language, sometimes we

will not distinguish H and H/C.

2.2 Kähler-Einstein problem and complex Monge-Ampère

equation

We are interested in Kähler-Einstein metrics on Kähler manifolds, that is the Kähler metric

ωKE ∈ [ω] satisfying

Ric(ωKE) = λωKE

There are three cases.

c1(X, J) < 0: X is canonically polarized. Let [ω] = −c1(X,J) and λ = −1. There exists a unique

Kähler-Einstein metric ωKE in −c1(X, J) such that Ric(ωKE) = −ωKE . This was proved

independently by Aubin [Aub] and Yau [Yau1].

c1(X, J) = 0: X is Calabi-Yau. Let [ω] be any Kähler class and λ = 0. There exists a unique Kähler

metric in [ω] which is Ricci flat Ric(ω) = 0. This is a consequence of Yau’s solution of

Calabi’s conjecture in [Yau1].

c1(X, J) > 0: X is Fano, i.e. anti-canonically polarized. Let [ω] = c1(X) and λ = 1. In contrast with

the previous 2 cases, in general there are obstructions to the existence of KE metric. Mat-

sushima [Mat] proved Kähler-Einstein Fano manifold must have reductive automorphism

group which is just the complexification of the isometric group Isom(X, gKE). Futaki [Fut]

found an important invariant which is now called Futaki invariant as the obstruction to the

existence. The Yau-Tian-Donaldson conjecture aims to characterize all the Fano manifolds

which have Kähler-Einstein metrics.
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From PDE point of view, the Kähler-Einstein equation is equivalent to the complex Monge-

Ampère equation

(ω +
√
−1∂∂̄φ)n = ehω−λφωn

where hω is the function measuring the deviation of ω from ωKE which is determined by the

following Lemma.

Lemma 3. There exists hω ∈ C∞(X) such that

Ric(ω) − λω =
√
−1∂∂̄hω,

∫
X

ehωωn/n! = V

Through out the paper, we will use the notation hω for this meaning and call it the Ricci potential

of the smooth metric ω.

One classical method to solve the complex Monge-Ampère equation is continuity method.

The main reason that we can solve the case when λ = −1, 0 is that along the continuity method

we can get a priori C0-estimate from which the C2 and higher order estimate follows (as we will

discuss in the next section). But for the λ = 1 case, the C0-estimate in general does not hold.

More precisely, for the Fano case, we fix a reference metric ω and consider a family of equations

with parameter t:

Ric(ωφ) = tωφ + (1 − t)ω ⇐⇒ (ω +
√
−1∂∂̄φ)n = ehω−tφωn (∗)t

Define S = {t ∈ [0, 1]; ((∗)t) is solvable }. Then by [Yau1], 0 ∈ S. By implicit function theorem,

S is open. To show the closed-ness of S one needs to show uniform a priori estimate for φt. But

when there is no Kähler-Einstein metric on X, then ‖φt‖C0 will blow up when t approaches some

critical value. We will study this continuity method in detail on toric Fano manifolds in Chapter

4.

The other method to get a Kähler-Einstein metric is to use the Kähler-Ricci flow. Actually

one can run Kähler-Ricci flow on any projective variety with mild singularties [SoTi]. This can

be seen as the metric counterpart of Minimal Model Program in birational algebraic geometry.

See Chapter 6 for more details.
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2.3 C2-estimate and complex Krylov-Evans estimate

2.3.1 C2-estimate

Lemma 4. [Yau1, Yau2]

1. Assume ωφ satisfies ωnφ = eFωn. Let Λ = log(n+ ∆φ) − λφ = log trωωφ − λφ, then

∆′Λ ≥
(

inf
i 6=j

Sīijj̄ + λ

)∑
i

1
1 + φīi

+
(

∆F − n2 inf
i 6=j

Sīijj̄

)
1

n+ ∆φ
− λn (2.2)

2. Define Ξ = log trωφω − λφ, then

∆′Ξ ≥ (inf R′
īi − λn) + (λ− supSīijj̄)trωφω (2.3)

Proof. Let f = trωφω and ∆′ be the complex Laplacian associated with Kähler metric ωφ. As in

[Yau2], we have the Chern-Lu’s identity:

∆′f = g′il̄g′kj̄R′
kl̄gij̄ + g′ij̄g′kl̄Tαi,kT

β

j̄,l̄
gαβ̄ − g′ij̄g′kl̄Sij̄kl̄.

Here the tensor Tαi,j = Γ̃αij − Γαij is the difference of Levi-Civita connections Γ̃ and Γ associated

with gω and g′ = gωφ respectively. R′
kj̄

is the Ricci curvature of ωφ and Sij̄kl̄ is the curvature of

reference metric ω. Let ∇′ be the gradient operator associated with gωφ , then

∆′ log f =
∆′f

f
−

|∇′f |2ωψ
f2

=
g′il̄g′kj̄R′

kl̄
gij̄

f
−
g′ij̄g′kl̄Sij̄kl̄

f
+
g′ij̄g′kl̄Tαi,kT

β

j̄,l̄
gαβ̄

f
−
g′pq̄g′ij̄g′kl̄TαipT

β̄

l̄q̄
gαj̄gkβ̄

f2

=
∑
i µ

−2
i R′

īi∑
i µ

−1
i

−
∑
i,j µ

−1
i µ−1

j Sīijj̄∑
i µ

−1
i

+

∑
i,k,α µ

−1
i µ−1

k |Tαik|2∑
i µ

−1
i

−
∑
p µ

−1
p |
∑
i µ

−1
i T iip|2

(
∑
i µ

−1
i )2

≥ inf
i
Rīi − (sup

i,j
Sīijj̄)

∑
i

µ−1
i = inf

i
Rīi − (sup

i,j
Sīijj̄)f (2.4)

In the 3rd equality in (2.4), for any fixed point P ∈ X, we chose a coordinate near P such that

gij̄ = δij , ∂kgij̄ = 0. We can assume g′ = gωφ is also diagonalized so that

g′ij̄ = µiδij , with µi = 1 + ψīi.
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For the last inequality in (2.4), we the following inequality:

∑
p

µ−1
p |
∑
i

µ−1
i T iip|2 =

∑
p

µ−1
p

∣∣∣∣∣∑
i

µ
−1/2
i T iipµ

−1/2
i

∣∣∣∣∣
2

≤ (
∑
p,i

µ−1
p µ−1

i |T iip|2)(
∑
i

µ−1
i )

≤ (
∑
p,i,α

µ−1
p µ−1

i |Tαip|2)(
∑
i

µ−1
i ).

Proposition 2. 1. There exists λ = λ(n, inf ∆F, infi 6=j Sīijj̄) and C = C(n, inf ∆F, supF, infi 6=j Sīijj̄)

such that

trωωφ ≤ Ceλ(Osc(φ))

2. There exists a constant λ = λ(n, supSīijj̄) and C = C(inf Ric(ωφ), supSīijj̄) such that

trωφω ≤ Ceλ(Osc(φ)) (2.5)

Remark 2. This proposition implies that, under appropriate assumptions, the C2 estimate is

valid if there is a C0 estimate for the potential. Yau [Yau2] used Chern-Lu’s formula to deduce

the Schwartz Lemma which generalize the classical Schwartz Lemma by Ahlfors.

Proof. 1. Let C1 = −min(0, inf ∆F − n2 infi 6=j Sīijj̄) ≥ 0. Since 1
1+φiī

≥ 1
n+∆φ , we get

∆′Λ ≥ (λ+ inf
i 6=j

Sīijj̄ − C1)
∑
i

1
1 + φīi

− λn = C2

∑
i

1
1 + φīi

− C3

≥ C2(n+ ∆φ)1/(n−1)e
−F
n−1 − C3

with C2 = (λ+ infi 6=j Sīijj̄ −C1) > 0 by choosing λ sufficiently large and C3 = λn. For the

2nd inequality, we used the following trick

∑
i

1
1 + φīi

≥

(∑
i(1 + φīi)∏
j(1 + φjj̄)

)1/(n−1)

= ((n+ ∆φ)ωn/ωnφ)1/(n−1).

So at the maximal point P of Λ, we have

0 ≥ ∆′Λ ≥ C2(trωωφ)(P )
1

n−1 e
−F (P )
n−1 − C3,
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which implies trω(ωφ)(P ) ≤ (C3
C2

)n−1eF (P ) ≤ C4e
supF = C5. So at general point x ∈ X,

we get the C2-estimate:

n+ ∆φ(x) ≤ (trωωφ)(x) ≤ trωωφ(P )eλ(φ(x)−φ(P )) ≤ C5e
λOsc(φ)

2. Assume Ric(ωφ) ≥ −δωφ. Let f = trωφω, then by (2.3),

∆′(log f − λφ) ≥ −(δ + λn) + (λ− supSīijj̄)f =: C1f − C2

for some constants C1 > 0, C2 > 0, if we choose λ to be sufficiently large. So at the

maximum point P of the function log f − λφ, we have

0 ≥ ∆′(log f − λφ)(P ) = C1f(P ) − C2.

with C1 = −(δ + λn) and C2 = λ− supSīijj̄ . So

f(P ) = trωφ(ω)(P ) ≤ C3.

So for any point x ∈ X, we have

trωφω(x) ≤ C3e
λ(φ(x)−φ(P )) ≤ C3e

λ(Osc(φ)).

To apply the Chern-Lu’s inequality method, we sometimes need to use the following observa-

tion [Yau2]:

Lemma 5. Let (X,J, g) be a complex Kähler manifold. If Y ⊂ X is a complex submanifold.

Then the holomorphic bisectional curvature RY
īijj̄

of Y is bounded from above by the holomorphic

bisectional curvature RX
īijj̄

of X.

Proof. By Gauss’ formula:

RX(∂i, ∂i, ∂j , ∂j) = RY (∂i, ∂i, ∂j , ∂j) + |II(∂i, ∂j)|2 − |II(∂i, ∂j)|2
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For any V,W ∈ TY and N ∈ (TY )⊥, because ∇J = 0 by Lemma 1, we have

〈II(JV, JW ), N〉 = 〈∇JV (JW ), N〉 = 〈J∇JVW,N〉 = −〈∇JVW,JN〉

= −〈∇W (JV ), JN〉 = −〈J∇WV, JN〉

= −〈∇WV,N〉 = −〈II(V,W ), N〉

So II(JV, JW ) = −II(V,W ) which implies II(∂i, ∂j) = 0.

In particular, if X ⊂ PN is a projective manifold and ω = ωFS |X . Then where R̃ is the

curvature of Fubini-Study metric of ambient PN . R̃ satisfies: R̃ij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ , So the holo-

morphic bisectional curvature of the restriction of Fubini-Study metric satisfies Rīijj̄ ≤ R̃īijj̄ = 2.

For any σ ∈ PSL(N,C), let ωσ = σ∗ωFS |X = ωFS +
√
−1∂∂̄φσ. Then

φσ = log
|σ · Z|2

|Z|2

By the above discussion and by (2.5), we have the C2-estimate of φσ in terms of oscillation of φσ

Corollary 2.

ωσ ≤ Ceλ osc(φσ)ω

In particular, since Osc(φσ) has log polynomial growth,

log
ωnσ
ωn

≤ n logC + nλ Osc(φσ)

has log polynomial growth.

2.3.2 Complex Krylov-Evans estimate

In the proof of Calabi conjecture in [Yau1], Yau proved 3rd order estimate. Define S =∑
g′ir̄g′j̄sg′kt̄φij̄kφr̄st̄. By complicated computation, Yau showed that

∆′(S + C1∆φ) ≥ C2S − C3

We have now a systematic way of getting higher order estimate thanks to the work of Krylov-

Evans-(Safonov). This estimate is purely local in contrast with Yau’s proof which is global and

uses maximal principle. We record a version here from [B lo] (See also [Tia3]:
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Theorem 10 ([B lo]). Let u be a C4 plurisubharmonic function in an open Ω ⊂ Cn such that

f := det(uij̄) > 0. Then for any Ω′ b Ω there exist α ∈ (0, 1) depending only on n and on

upper bounds for ‖u‖C0,1(Ω), supΩ ∆u, ‖f‖C0,1(Ω), 1/ infΩ f and C > 0 depending in addition on

a lower bound for dist(Ω′, ∂Ω) such that

‖u‖C2,α ≤ C

2.4 Energy functionals and Variational point of view

The Kähler-Einstein problem is variational. Futaki [Fut] found an important invariant (now

known as Futaki invariant) as the obstruction to its existence. Then Mabuchi [Mab1] defined

K-energy functional by integrating this invariant:

νω(ωφ) = −
∫ 1

0

dt

∫
X

(S(ωφt) − S)φ̇tωnφ/n!

where φt is any path connecting 0 and φ in the space of Kähler potentials H. This is well-defined,

i.e. it is independent of the path connecting ω and ωφ. This follows from Stokes’ Theorem because

the one form defined by the variation:

δνω(ωφ) · δφ = −
∫
X

S(ωφ) − S)δφωnφ/n! (2.6)

is a closed one form one H and H is contractible.

It’s easy to see that the constant scalar curvature Kähler (CSCK) metric is the critical point

of K-energy. Actually, CSCK metric obtains the absolute minimum of K-energy. (See section

2.5.3).

In the Fano case, it’s easy to see that for ω ∈ 2πc1(X),

ω is CSCK ⇐⇒ hω = 0 ⇐⇒ ω is KE

Define the functional:

Iω(ωφ) =
∫
X

φ(ωn − ωnφ)/n!, Jω(ωφ) =
∫ 1

0

I(xφ)
x

dx, F 0
ω(φ) = Jω(φ) −

∫
X

φωn/n!
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We have the well known formula for K-energy [Tia10]:

νω(ωφ) =
∫
X

log
ωnφ

ehωωn
ωnφ
n!

− (Iω − Jω)(φ) +
∫
X

hωω
n/n!

=
∫
X

log
ωnφ

ehω−φωn
ωnφ
n!

+ F 0
ω(φ) +

∫
X

hωω
n/n!

It’s easy to verify that

(Iω − Jω)(φ) = −
(∫

X

φωnφ/n! + F 0
ω(φ)

)
There is another energy functional associated with Monge-Ampère equation:

Fω(φ) = F 0
ω(φ) − V log

(
1
V

∫
X

ehω−φωn/n!
)

Lemma 6. We have the following relations between these functionals:

1.

Fω(ωφ) = νω(ωφ) −
∫
X

hω
ωn

n!
+
∫
X

hωφ
ωnφ
n!

≤ νω(ωφ) −
∫
X

hω
ωn

n!
.

2.

Jω(φ) =
n−1∑
i=0

n− i

n+ 1

∫
X

∂φ ∧ ∂̄φ ∧ ωkφ ∧ ωn−1−k/n!

3.
n+ 1
n

Jω(φ) ≤ Iω(φ) ≤ (n+ 1)Jω(φ),

4.

F 0
ω(φ) = − 1

n+ 1

n∑
i=0

∫
X

φωiφ ∧ ωn−i/n!

5.

F 0
ω(φ2) ≥ F 0

ω(φ1) −
∫
X

(φ2 − φ1)ωnφ1
/n!

6.
d

dt
Jω(φt) =

∫
X

φ̇(ωn − ωnφ)/n!,
d

dt
F 0
ω(φt) = −

∫
X

φ̇ωnφ/n!

7. [Ding]

Jω(tφ) ≤ t1+1/nJω(φ), for 0 < t < 1.
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Definition 2. A functional F : H → R is called proper if there is an inequality of the type

F (ωφ) ≥ f ((I − J)ω(ωφ)) , for any ωφ ∈ H

where f(t) : R+ → R is some monotone increasing function satisfying limt→+∞ f(t) = +∞.

Theorem 11. [Tia9] If Aut(X, J) is discrete. There exists a Kähler-Einstein metric on X if

and only if either Fω(ωφ) or νω(ωφ) is proper.

So, at least when there is no holomorphic vector field, the problem is how to test the properness

of K-energy. The basic idea due to Tian ([Tia4], [Tia5]) is to use finite dimensional approximation.

2.5 Finite dimensional approximation

2.5.1 Tian-Catlin-Zelditch-Lu expansion

Let (X,L) be a fixed polarized manifold. h is any fixed Hermitian metric on L with positive

Chern curvature ωh = −
√
−1∂∂̄ log h. Let Nk = dim H0(X,Lk), V =

∫
X
ωnh/n!.

Definition 3. 1. Bk :=
{

1
k log

∑Nk
α=1 |sα|2; {sα} is a basis of H0(X,Lk)

}
⊂ H

2. Hk = ( the space of inner products on the vector space H0(X,L⊗k)) ∼= GL(Nk,C)/U(Nk, C)

3. Define two maps between Hk and H.

Hilbk : H −→ Hk

h 7→ 〈s1, s2〉Hilbk(h)
=
∫
X

(s1, s2)h⊗kωnh/n!, ∀s1, s2 ∈ H0(X,Lk)

FSk : Hk −→ Bk ⊂ H

Hk 7→ |s|2FSk(Hk)
=

|s|2(∑Nk
α=1

∣∣∣s(k)α

∣∣∣2)1/k
, ∀s ∈ L.

In the above definition, {s(k)α ; 1 ≤ α ≤ Nk} is an orthonormal basis of the Hermitian

complex vector space (H0(X,Lk),Hk).

For any Hermitian metric h on L such that ωh > 0, the kth Bergman metric of h is

hk = FSk(Hilbk(h)) ∈ H.
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Let {s(k)α , 1 ≤ α ≤ Nk} be an orthonormal basis of Hilbk(h). Define the kth (suitably

normalized) Bergman kernel of ω

ρk(ω) =
Nk∑
α=1

|s(k)α |2h⊗k .

Note that although h is determined by ωh up to a multiplication by a positive constant, ρk(ωh)

doesn’t depend on the choice of h.

The following proposition is now well known.

Proposition 3. ([Tia4],[Cat],[Zel],[Ruan],[Lu2])

(i) For fixed ω, there is an asymptotic expansion as k → +∞

ρk(ω) = A0(ω)kn +A1(ω)kn−1 + . . .

where Ai(ω) are smooth functions on X defined locally by ω.

(ii) In particular

A0(ω) = 1, A1(ω) =
1
2
S(ω).

(iii) The expansion holds in C∞ in that for any r,N ≥ 0

∥∥∥∥∥ρk(ω) −
N∑
i=0

Ai(ω)kn−i
∥∥∥∥∥
Cr(X)

≤ Kr,N,ωk
n−N−1

for some constants Kr,N,ω. Moreover the expansion is uniform in that for any r,N , there

is an integer s such that if ω runs over a set of metrics, which are bounded in Cs, and with

ω bounded below, the constants Kr,N,ω are bounded by some Kr,N independent of ω.

The following approximation result is a corollary of Proposition 3.(i)–(ii).

Corollary 3 ([Tia4]). Using the notation at the beginning of this subsection, we have, as

k → +∞, hk → h, and ωk → ω, the convergence in C∞ sense. More precisely, for any r > 0,

there exists a constant Cn,r,ω such that

∥∥∥∥log
hk
h

∥∥∥∥
Cr

≤ Cn,r,ω
log k
k

, ‖ωk − ω‖Cr ≤ Cn,r,ωk
−2. (2.7)
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Proof. It’s easy to see that

hk = h ·

(∑
α

|s(k)α |2h⊗k

)− 1
k

=: he−ψk .

Note that by the expansion in Proposition 3.(i)–(ii), we have

∑
α

|s(k)α |2h⊗k = kn
(

1 +
1
2
S(ω)k−1 +O(k−2)

)
= kn(1 +O(k−1)).

So

ψk =
1
k

log

(∑
α

|s(k)α |2h⊗k

)
= n

log k
k

+O(k−2).

The error term is in C∞ sense. So the first inequality in (2.7) holds. The second inequality in

(2.7) follows because

ωk − ω =
√
−1∂∂̄ψk.

2.5.2 F 0
ω functional and Chow norm

Under the orthonormal basis {τ (k)
α , 1 ≤ α ≤ Nk} of H∗

k , H0(X,Lk) ∼= CNk and P(H0(X,Lk)∗) ∼=

CPNk−1.

For any Hk ∈ Hk, take an orthonormal basis {sα, 1 ≤ α ≤ Nk} of Hk. Let detHk

denote the determinant of matrix (Hk)αβ = (H∗
k(sα, sβ)). {sα} determines a projective

embedding into CPNk−1. (Note that the fixed isomorphism P(H0(X,Lk)∗) ∼= CPNk−1 is

determined by the basis {τ (k)
α }.) The image of this embedding is denoted by Xk(Hk) ⊂ CPNk−1

and has degree dk = V n!kn. Xk(Hk) has a Chow point ([Zha], [Paul]):

X̂k(Hk) ∈ Wk := H0(Gr(Nk − n− 2,PNk−1),O(dk))

such that the corresponding divisor

Zero(X̂k(Hk)) = {L ∈ Gr(Nk − n− 2,PNk−1);L ∩Xk(Hk) 6= ∅}.

Proposition 4 ([Zha], [Paul]). Wk has a Chow norm ‖ · ‖CH(H∗
k), such that for all Hk ∈ Hk we
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have
1
Nk

log detHk −
k

V
F 0
ω(FS(Hk)) =

1
V kn

log ‖X̂k(Hk)‖2
CH(H∗

k)

SL(Nk,C) acts on Hk and Wk. Note that Xk(σ ·H∗
k) = σ ·Xk(H∗

k). Define

fk(σ) = log
(
‖X̂k(σ ·H∗

k)‖2
CH(H∗

k)

)
∀σ ∈ SL(Nk,C)

It’s easy to see that fk(σ ·σ1) = fk(σ) for any σ1 ∈ SU(Nk), so fk is a function on the symmetric

space SL(Nk,C)/SU(Nk). We have

Proposition 5. ([KeNe], [Zha], [Don2], [PhSt1]) fk(σ) is convex on SL(Nk,C)/SU(Nk).

To relate H and Hk, following Donaldson [Don2], we change FS(Hk) in the above formula

into general hφ ∈ H and define:

Definition 4. For all hφ ∈ H and Hk ∈ Hk,

P̃k(hφ,Hk) =
1
Nk

log detHk −
k

V
F 0
ω(φ).

Note that, for any c ∈ R,

P̃k(echφ, eckHk) = P̃k(hφ,Hk). (2.8)

Remark 3. This definition differs from Donaldson’s definition by omitting two extra terms, since

we find no use for these terms in the following argument.

2.5.3 Application: CSCK as minimizer of K-energy

The finite dimensional symmetric space Hk
∼= GL(Nk)/U(Nk) in Definition section 5.3 can be

identified as the space of Hermitian inner products on H0(X,Lk). There are natural convex

functional on Hk:

1
Nk

log detHk −
k

V
F 0
ω(FS(Hk)) =:

1
V kn

log ‖X̂k(Hk)‖2
CH(H∗

k)

where Ik is called Aubin-Yau functional defined as integration of some Bott-Chern class. For

any Hk ∈ Hk, we can choose an orthonormal base of Hk and get a Kodaira’s embedding into

Xk(Hk) ⊂ P(H0(X,Lk)∗) ∼= PNk−1. X̂k(Hk) denotes the Chow form of Xk(Hk). The functional
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defines some norm ‖ ·‖CH(H∗
k) for any Chow form. These Chow-norm functionals approximate K-

energy as Hk approximate H by the Tian-Catlin-Zelditch-Lu expansion. If there exists a constant

scalar curvature Kähler (CSCK) metric ω∞, then its Bergman metrics ω(k)
∞ is the approximate

minimum of the k-th Chow-norm. Using this, we can prove

Theorem 12. [Li2] Assume there is CSCK metric ω∞ on the polarized manifold (X,L), then it

obtains the global minimum of K-energy.

Remark 4. In the Fano case, this was proved by Bando-Mabuchi [BaMa] using the continuity

method. Donaldson [Don2] proved the above result assuming the automorphism group is discrete.

Chen-Tian [ChTi] proved the same result for general Kähler class (not necessarily rational) using

the convexity of K-energy along geodesics in H.

To prepare for the proof of the above theorem, assume we have a Kähler metric of constant

scalar curvature ω∞ in the Kähler class c1(L). Take a h∞ ∈ K1 such that ω∞ = ωh∞ . We will

make extensive use of the kth Bergman metric of h∞ and its associated objects, so for the rest

of this note, we denote

H∗
k = Hilbk(h∞), h∗k = FSk(H∗

k) = FSk(Hilbk(h∞)), ω∗
k = ωh∗

k
=

1
k

√
−1∂∂̄ log

(
Nk∑
α=1

|τ (k)
α |2

)
.

(∗)

Hereafter, we fix an orthonormal basis {τ (k)
α , 1 ≤ α ≤ Nk} of H∗

k = Hilbk(h∞).

The following is the direct corollary of Proposition 3.

Proposition 6. For any r > 0, there exists some constant Cn,r,ω∞ such that

∥∥∥∥∥
Nk∑
α=1

|τ (k)
α |2

h⊗k
∞

− Nk
V

∥∥∥∥∥
Cr

≤ Cn,r,ω∞k
n−2 (2.9)

So in particular,
1
k

√
−1∂∂̄ log

(
Nk∑
α=1

|τ (k)
α |2

)
− ω∞ = O(k−3) (2.10)

Lemma 7. For any hφ1 , hφ2 ∈ Kk, we have

−
∫
X

(φ2 − φ1)
ωnφ1

n!
≤ F 0

ω(φ2) − F 0
ω(φ1) ≤ −

∫
X

(φ2 − φ1)
ωnφ2

n!
.

This is the same as Lemma 6-5

Proof. This lemma just says F 0
ω is a convex function on H, regarded as an open subset of C∞(X).
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We only need to calculate its second derivative along the path φt = tφ:

d2

dt2
F 0
ω(tφ) = −

∫
X

φ∆tφ
ωnt
n!

=
∫
X

|∇tφ|2
ωnt
n!

≥ 0

∆t and ∇t are the Laplace and gradient operators of Kähler metric c1(Lk, hk(t)).

From now on, fix a H such that ωφ = ωhφ ∈ c1(L).

Lemma 8.

P̃k(hφ,Hilb(hφ)) ≥ P̃k(FS(Hilb(hφ)),Hilb(hφ)) − log
Nk
V
.

This is a corollary of [Don2, Lemma 4]. Since the definition of P̃ is a little different from that

in [Don2], we give a direct proof here.

Proof. Let he−φk = FSk(Hilbk(hφ)). Then

P̃k(hφ,Hilb(hφ)) − P̃k(FS(Hilb(hφ)),Hilb(hφ)) =
k

V
(F 0
ω(φk) − F 0

ω(φ)).

Let {s(k)α , 1 ≤ α ≤ Nk} be an orthonormal basis of Hilbk(hφ). Then φ−φk = φ− 1
k log

(∑Nk
α=1 |s

(k)
α |2h⊗k

)
=

− 1
k log ρk(ωφ). By Lemma 7 and concavity of the function log,

k

V

(
F 0
ω(φk) − F 0

ω(φ)
)

≥ − 1
V

∫
X

log ρk(ωφ)
ωnφ
n!

≥ − log

(
1
V

∫
X

∑
α

|s(k)α |2hk
ωnφ
n!

)

= − log
Nk
V

Lemma 9. There exists a constant C > 0, depending only on hφ and h∞, such that

P̃k(FSk(Hilbk(hφ)),Hilbk(hφ)) − P̃k(FSk(H∗
k),H∗

k) ≥ −Ck−1.

Proof. Recall that H∗
k = Hilbk(h∞) and {τ (k)

α ; 1 ≤ α ≤ Nk} is an orthonormal basis of H∗
k (see

(∗)). Let Hk = Hilbk(hφ) and {s(k)α ; 1 ≤ α ≤ Nk} be an orthonormal basis of Hk. Transforming

by a matrix in SU(Nk), we can assume

s(k)α = eλ
(k)
α τ (k)

α
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Evaluating the norm Hilbk(hφ) on both sides, we see that

e−2λ(k)
α =

∫
X

|τ (k)
α |2

h⊗k
φ

ωnφ
n!
. (2.11)

There exists a constant C1 > 0, C2 > 0, depending only on hφ and h∞, such that C−1
1 ≤

hφ
h∞

≤ C1, C−1
2 ω∞ ≤ ωφ ≤ C2ω∞, so we see from (2.11) that |λ(k)

α | ≤ Ck.

Let λ = (1/Nk)
∑Nk
β=1 λ

(k)
β , H ′

k = e2λHk, λ̂(k)
α = λ

(k)
α − λ. Then {ŝ(k)α = eλ̂

(k)
α τ

(k)
α } is an

orthonormal basis of H ′
k. Note that λ̂(k)

α satisfies the same estimate as λ(k)
α :

|λ̂(k)
α | ≤ Ck. (2.12)

(eΛ̂)αβ = eλ̂
(k)
α δαβ is a diagonal matrix in SL(Nk,C). By scaling invariance of P̃k (2.8) and

Proposition 4, we have

P̃k(FS(Hk),Hk) = P̃k(FS(H ′
k),H ′

k) = − k

V
F 0
ω(FSk(H ′

k))

=
1

V kn
log ‖X̂k(H ′

k)‖2
CH(H∗

k) = − 1
V kn

F 0
kω((FSk(H ′

k))⊗k) (2.13)

P̃k(FS(H∗
k),H∗

k) = − k

V
F 0
ω(FSk(H∗

k))

=
1

V kn
log ‖X̂k(H∗

k)‖2
CH(H∗

k) = − 1
V kn

F 0
kω((FSk(H∗

k))⊗k) (2.14)

As in Section 2.5.2, let

Xk(s) = esΛ̂ ·Xk(H∗
k)

fk(s) = log ‖X̂k(s)‖2
CH(H∗

k) = −F 0
kω((FSk(esΛ̂ ·H∗

k))⊗k).

Then Xk(0) = Xk(H∗
k) and Xk(1) = Xk(H ′

k) = Xk(Hk). By Proposition 5, fk(s) is a convex

function of s, so

fk(1) − fk(0) ≥ f ′k(0).
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We can estimate f ′k(0) by the estimates in Proposition 6:

f ′k(0) =
∫
X

∑
α λ̂

(k)
α |τ (k)

α |2
h⊗k
∞∑

α |τ
(k)
α |2

h⊗k
∞

(
√
−1∂∂̄ log

Nk∑
α=1

|τ (k)
α |2

)n

=
∫
X

∑
α λ̂

(k)
α |τ (k)

α |2
h⊗k
∞

Nk/V +O(kn−2)
(1 +O(k−3))

(kω∞)n

n!

=
∫
X

O(k−2)(
Nk∑
α=1

λ̂(k)
α |τ (k)

α |2
h⊗k
∞

)
ωn∞
n!

where the last equality is because of

∫
X

Nk∑
α=1

λ̂(k)
α |τ (k)

α |2
h⊗k
∞

ωn∞
n!

=
Nk∑
α=1

λ̂(k)
α = 0

By the estimate for λ̂(k)
α (2.12), we get

|f ′k(0)| ≤ Ck−2kNk ≤ Ckn−1.

So fk(1) − fk(0) ≥ f ′k(0) ≥ −Ckn−1, and

1
V kn

(log ‖X̂k(H ′
k)‖2

CH−
1

V kn
log ‖X̂k(H∗

k)‖2
CH) =

1
V kn

(fk(1)−fk(0)) ≥ −C 1
V kn

kn−1 ≥ −Ck−1.

So the lemma follows from identities (2.13) and (2.14).

Remark 5. The proof of this lemma is similar to the argument in the beginning part of [Mab6,

Section 5] where Mabuchi proved K-semistability of varieties with constant scalar curvature met-

rics. Roughly speaking, here we consider geodesic segment connecting H∗
k and Hk in Hk, while

Mabuchi [Mab6, Section 5] considered geodesic ray in Hk defined by a test configuration. The es-

timates in Proposition 6 show that, to prove the K-semistability as in Mabuchi’s argument [Mab6,

Section 5], we only need Bergman metrics of h∞ instead of Mabuchi’s T-balanced metrics.

Remark 6. Some similar argument also appears in the proof of Theorem 2 in [PhSt2].

Remark 7. In [Don2, Corollary 2], H∗
k is taken to be balance metric, that is, H∗

k is a fixed point

of the mapping Hilb(FS(·)). Then the difference in Lemma 9 is nonnegative, instead of bounded

below by error term −Ck−1.
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Lemma 10. There exists a constant C > 0, which only depends on h∞, such that

∣∣∣∣P̃k(FSk(H∗
k),H∗

k) − P̃k(h∞,Hilbk(h∞)) + log
Nk
V

∣∣∣∣ ≤ Ck−2

Proof. Recall from (∗) that: Hilbk(h∞) = H∗
k , h∗k = FSk(H∗

k) = FSk(Hilbk(h∞)). Let h∞ =

he−φ∞ , h∗k = he−φ
∗
k . Since F 0

ω(φ + c) = F 0
ω(φ) − cV . So defining φ̃∗k = φ∗k − 1

k log(Nk/V ), it’s

easy to see that,

P̃k(FSk(H∗
k),H∗

k) − P̃k(h∞,Hilbk(h∞)) =
k

V
(F 0
ω(φ∞) − F 0

ω(φ∗k))

=
k

V

(
F 0
ω(φ∞) − F 0

ω(φ̃∗k)
)

+ log(Nk/V )

For any section s of L, |s|2h∗
k

=
|s|2h∞

„

P

α |τ(k)
α |2

h
⊗k
∞

«1/k . So by proposition 6.

∣∣∣φ̃∗k − φ∞

∣∣∣ =
∣∣∣∣log

h∞
h∗k

− 1
k

log
Nk
V

∣∣∣∣ =

∣∣∣∣∣1k log

(
V

Nk

∑
α

|τ (k)
α |2

h⊗k
∞

)∣∣∣∣∣ = O(k−3).

So by Lemma 7, we get ∣∣∣∣ kV (F 0
ω(φ∞) − F 0

ω(φ̃∗k)
)∣∣∣∣ ≤ Ck−2

Definition 5. For any hφ = he−φ ∈ H and its corresponding Kähler form ωφ ∈ [ω]. Define

Lk(ωφ) = P̃k(hφ,Hilbk(hφ))

Lemma 11 ([Don2]). There exist constants µk, such that

Lk(ωφ) + µk =
1
2
νω(ωφ) +O(k−1).

Here O(k−1) depends on ω and ωφ.

Proof. Let ψ(t) = tφ ∈ H connecting 0 and φ, htφ = he−tφ, ωt = ω + t
√
−1∂∂̄φ, ∆t be the

Laplace operator of metric ωt. Plugging in expansions for Bergman kernels ρk in Proposition 3,
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we get

d
dt
P̃k(htφ,Hilbk(htφ)) =

1
Nk

∫
X

∑
α

|s(k)α |2h⊗ke
−kφ(−kφ+ 4tφ)

ωnt
n!

+
k

V

∫
X

φ
ωnt
n!

=
1
V

1
kn + 1

2S k
n−1 + · · ·

∫
X

(−kρk(ωt) + 4tρk(ωt))φωnt +
k

V

∫
X

φωnt

= − 1
2V

∫
X

(S(ωt) − S)φωnt +O(k−1)

{ωt, 0 ≤ t ≤ 1} have uniformly bounded geometry, so by Proposition 3.(3), the expansions above

are uniform. So the lemma follows after integrating the above equation.

Proof of Theorem 12. By Lemma 8, Lemma 9, Lemma 10

P̃k(hφ,Hilbk(hφ)) ≥ P̃k(FSk(Hilbk(hφ)),Hilb(hφ)) − log
Nk
V

≥ P̃k(FS(H∗
k),H∗

k) − log
Nk
V

+O(k−1)

= P̃k(h∞,Hilbk(h∞)) +O(k−1)

So by Lemma 11

νω(ωφ) = 2Lk(ωφ) + 2µk +O(k−1) = 2P̃k(hφ,Hilbk(hφ)) + 2µk +O(k−1)

≥ 2P̃k(h∞,Hilbk(h∞)) + 2µk +O(k−1) = 2Lk(ω∞) + 2µk +O(k−1)

= νω(ω∞) +O(k−1)

The Theorem 12 follows by letting k → +∞.

2.6 Tian’s Conjecture and Partial C0-estimate

The following conjecture of Tian is the analytic version of Yau-Tian-Donaldson conjecture spe-

cialized to the Fano case.

Conjecture 2 (Tian). There is a Kähler-Einstein metric on X if and only if for sufficiently

large k, νω is proper on Bk.

Lemma 12. [PaTi2] For fixed k, there exists a constant Ck > 0 such that for any

C−1
k · (I − J)ω(ωφ) ≤ Osc(φ) ≤ Ck · (I − J)ω(ωφ)
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Remark 8. So the properness in the sense of Definition 2 is the same as saying that there exists

some monotone increasing function fk as in Definition 2 such that:

νω(ωφ) ≥ fk(Osc(φ))

holds for any φ ∈ Bk. In particular, Osc(φ) → +∞ would imply νω(ωφ) → +∞.

Definition 6 (Partial C0-estimate). Assume {ωφt} ⊂ c1(L) is a family of Kähler metrics

parametrized by t, we say the partial C0-estimate holds for {ωφt} if there exists an integer k

and positive constants Ck, both independent of t, such that C−1
k ≤ ρk(ωφt) ≤ Ck. Equivalently,

if {s(k)α (t)}Nkα=1 are orthonormal basis of Hilbk(hφ) then

∣∣∣∣∣φt − 1
k

log
∑
α

|s(k)α (t)|2h⊗k

∣∣∣∣∣ ≤ logCk
k

To get the upper bound for Bergman kernel, we use the standard Moser iteration. We need

to the estimate on L2-Sobolev constant.

Definition 7 (L2-Sobolev constant). For any fixed Kähler metric ωg, there exists a positive

constant CSob > 0 such that for any F ∈ C∞(X) we have

CSob

(∫
X

|F |
2n
n−1 dVω

)n−1
n

≤
∫
X

(|∇F |2 + F 2)dVω (2.15)

Remark 9. If Ric(ωg) ≥ δωg with δ > 0, then Csob ≥ C(δ, n) > 0. The L2-Sobolev constants is

also uniformly bounded away from 0 along the normalized Kähler-Ricci flow [Zhu].

Lemma 13. Suppose φ = φ(t) is a sequence of Kähler potentials. k ≥ 1 is fixed integer. Then

1. If the Sobolev constant of ωφt is uniformly bounded, then ρk(ωφt) ≤ C(Csob, k) or equiva-

lently, if {s(k)α } is an orthonormal basis of Hilbk(hφ) then

φ− 1
k

log

(∑
α

|s(k)α |2h⊗k

)
≥ − logC(Csob, k)

k

2. Assume the Sobolev constant of ωφt is uniformly bounded. If exists a constant C2 indepen-

dent of t, such that for every t there exists a base {s̃(k)α (t)} of H0(X,−kKX) such that the

inequality ∣∣∣∣∣φ− 1
k

log

(
Nk∑
α=1

|s̃(k)α (t)|2h⊗k

)∣∣∣∣∣ ≤ C2
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holds, then the the partial C0-estimate holds.

3. Assume ωt converge to ω∞ = ω +
√
−1∂∂̄ψ∞ with ψ∞ ∈ L∞(X) and the relative density

function ωn∞
ωn is integrable. Assume there is a closed subset S ⊂ X with zero Hausdorff

measure, such that for any compact set K ⊂⊂ X\S, φt converge to ψ∞ uniformly on K.

Then the partial C0-estimate holds.

Proof. 1.

∆ωφ |s|2h⊗k
φ

= |∇s|2hφ − nk|s|2
h⊗k
φ

Let ω′ = ωφ, ∆′ = ∆ωφ and f = |s|h⊗k
φ

. We get −∆′f2 ≤ nkf2 which implies

−∆′f ≤ kn

2
f

We want to use Moser iteration method, so we multiply both sides by fp for p ≥ 1 and

integrate by parts with respect volume form dVω′ = ω′n/n! to get

4p
(p+ 1)2

∫
X

|∇f (p+1)/2|2ω′dVω′ ≤ nk

2

∫
X

fp+1dVω′

Using this and rearranging the terms we get

(∫
X

f (p+1) n
n−1 dVω′

)n−1
n

≤ 1
C(Csob, n)

(
(p+ 1)2

4p
nk

2
+ 1
)∫

X

fp+1dVω′

Taking (p+ 1)-th root on both sides, we get

‖f‖(p+1) n
n−1

≤ (C̃(Csob, n)k(p+ 1))
1
p+1 ‖f‖p+1

Define pi + 1 = (pi−1 + 1) n
n−1 for i ≥ 1 and p0 = 1. We get pi + 1 = 2( n

n−1 )i. So

‖f‖∞ = lim
i→+∞

‖f‖pi+1 ≤ C(k, n, Csob)‖f‖2
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where

C(k, n, Csob) =
∞∏
i=0

(C̃k(pi + 1))
1

pi+1

= exp

[
log(C̃k)

2

∑
i

(
n− 1
n

)i
+

1
2

∑
i

(
n− 1
n

)i(
log 2 + i log

(
n

n− 1

))]
= Ckn/2

If we assume ‖s‖Hilb(h⊗k
φ ) =

∥∥∥|s|h⊗k
φ

∥∥∥
2

= 1 then |s|2
h⊗k
φ

≤ Ckn which implies

ρk = sup{|s|2
h⊗k
φ

; ‖s‖2
Hilbk(hφ) = 1} ≤ Ckn

2. By a unitary transformation, we can assume s(k)α =
√
dα(t)s̃(k)α (t).

‖
√
cαs̃α‖2

Hilbk
=

∫
X

cα|s̃α|2h⊗ke
−kφω

n
φ

n!

≤ ekC2

∫
X

cα|s̃α|2∑
β cβ |s̃β |2

ωnφ
n!

≤ ekC2V

where we used
(
−φ+ 1

k log
∑
α cα|sα|2h⊗k < C2

)
. So cα ≤ ekC2V dα, and

ρk(ωt) =
∑
α

dα|s̃α|2h⊗k
φt

≥ e−kC2V −1
∑
α

cα|s̃α|2h⊗k
φt

≥ e−2kC2V −1 > 0

The upper bound follows from part (1).

3. This follows from ρk(ωt) → ρk(ω∞) ≥ inf ρk(ω∞) > 0.

Remark 10. In Section 4.5, we will show that the partial C0-estimate holds along the classical

continuity method on toric Fano manifolds. More precisely, on toric Fano manifolds, we will

prove, along the continuity method, the condition (2) holds, and also (3) holds upon transforma-

tion by holomorphic automorphisms.

But in general, one can not expect such strong convergence in the fixed complex manifold

and one expects the jump of complex structure. This is where the notion of Gromov-Hausdorff

convergence comes in. The partial C0-estimate should comes from the understanding of Gromov-

Hausdorff limit, in particular the structure of the singular set.

One such successful example is in Tian’s solution of Kähler-Einstein problem on del Pezzo

surfaces [Tia4] where the partial C0-estimate for a sequence of Kähler-Einstein complex del Pezzo
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surfaces played an important role. Tian proved the partial C0-estimate by proving the Gromov-

Hausdorff limit of a sequence of Kähler-Einstein del Pezzo surfaces is an complex orbifold.

Partial C0-estimate and Tian’s Conjecture

The importance of partial C0-estimate lies in its implication of Tian’s conjecture 2. We will

explain this now. For more discussion, see [Tia10].

Along the continuity method (∗)t, it’s easy to see that the K-energy is decreasing. So in

particular it’s uniformly bounded from above: νω(ωt) ≤ C.

Lemma 14. If the partial C0-estimate holds, then νω(ωk(t)) ≤ C ′, where ωk(t) is the k-th

Bergman metric of ωφt .

Proof. By the co-cycle property of ν-energy. νω(ωk(t)) = νω(ωt) + νωt(ωk(t)). So we only need

to bound νωt(ωk(t)). By the explicit formula of ν-energy:

νωt(ωk(t)) =
∫
X

log
ωk(t)n

ωnt

ωk(t)n

n!
− (I − J)ωt(ωk(t)) ≤

∫
X

log
ωk(t)n

ωnt

ωk(t)n

n!

where ψt = 1
k log ρk(ωt) = 1

k log
∑
α |s

(k)
α (t)|2h − φ is the relative potential between ωt and ωk(t):

√
−1∂∂̄ψt = ωk(t) − ωt. By Corollary 2, we have the C2-estimate: log ωk(t)

n

ωnt
≤ C · Osc(ψ) So

νωt(ωk(t)) ≤ CV · Osc(ψ). The bound Osc(ψ) follows from partial C0-estimate.

Now we can prove Tian’s Conjecture 2 assuming partial C0-estimate as follows. If νω is proper

on Bk, then by Remark 8 Osc(φk(t)) must be bounded. But since |φk(t) − φt| = |ψt| ≤ C by

partial C0-estimate, Osc(φt) is uniformly bounded. By Harnack inequality, ‖φ‖C0 is uniformly

bounded. So there exists Kähler-Einstein metric.

Partial C0-estimate and effective finite generation

Following the idea of Siu [Siu], we explain how partial C0-estimate implies some effective finite

generation of the rings
∞⊕
m=1

H0(X, kL)

Let’s first recall the following generation theorem of Skoda.

Theorem 13. ([Sko]) Let Ω be a domain spread over Cn which is Stein. Let ψ be a plurisubhar-

monic function on Ω, g1, . . . , gp be holomorphic functions on Ω, α > 1, q = min(n, p− 1), and f
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be a holomorphic function on Ω. Assume that

∫
Ω

|f |2e−ψ

(
∑p
j=1 |gj |2)αq+1

< +∞

Then there exist holomorphic functions h1, · · · , hp on Ω with f =
∑p
j=1 hjgf on Ω such that

∫
Ω

|hk|2e−ψ

(
∑p
j=1 |gj |2)αq

≤ α

α− 1

∫
Ω

|f |2e−ψ

(
∑p
j=1 |gj |2)αq+1

for 1 ≤ k ≤ p.

We also have the global version due to [Siu]. Note that we can choose α = n+l
n and q = n.

Theorem 14. ([Siu, 2.4]) Let X be a compact complex algebraic manifold of complex dimension

n, G be a holomorphic line bundle over X, and E be a holomorphic line bunlde on X with

e−ψ such that ψ is plurisubharmonic. Let l ≥ 1 be an integer, g1, . . . , gp ∈ H0(X,G), and

|g|2 =
∑p
j=1 |gj |2. If f ∈ H0(X, (n+ l + 1)G+ E +KX) satisfies

∫
X

|f |2e−ψ

|g|2(n+l+1)
< C

Then f =
∑p
j=1 hjgj with hj ∈ H0(X, ((n+ l)G+ E +KX)) satisfying

∫
X

|hj |2e−ψ

|g|2(n+l)
≤ n+ l

l

∫
X

|f |2e−ψ

|g|2(n+l+1)

Write mL = (n+ l+ 1)(kL) + ((m− (n+ l+ 1)k)L−KX) +KX =: (n+ l+ 1)G+E +KX .

Define the ψ = (m− (n+ l + 1)k)φ− log ωnφ
n! . Then

√
−1∂∂̄ψ = (m− (n+ l + 1)k)ωφ +Ric(ωφ) ≥ (m− (n+ l + 1)k + δ)ωφ

Now assume the partial C0-estimate in the definition 6 holds for some integer k. Let s1, . . . , sNk

be the orthonormal basis of (H0(X, kL),Hilbk(hφ)). We want to prove

Proposition 7.
+∞⊕
m=1

H0(X,mL)

is finite generated by
(n+2)k⊕
i=0

H0(X, iL)
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with effective estimates.

Proof. • Fix m ≥ (n+ 2)k, assume m = (n+ l + 1)k + r with 0 ≤ r < k.

• For any u(0) := u ∈ H0(mL), there exists u(1)
α ∈ H0(X, (n+ l)G+E +KX) = H0(X, (m−

k)L) with u(0) =
∑Nk
α=1 u

(1)
α sα such that

∫
X

|u(1)
α |2e−ψ

|s|2(n+l)
≤ n+ l

l

∫
X

|u(0)|2e−ψ

|s|2(n+l+1)
(2.16)

The left hand side

∫
X

|u(1)
α |2e−ψ

|s|2(n+l)
=

∫
X

|u(1)
α |2e−(m−k)φ e

−(n+l)kφ

|s|2(n+l)

ωnφ
n!

=
∫
X

|u(1)
α |2e−(m−k)φρ

−(n+l)
k

ωnφ
n!

Similarly

∫
X

|u(0)|2e−ψ

|s|2(n+l+1)
=
∫
X

|u(0)|2e−mφ e
−(n+l+1)kφ

|s|2(n+l+1)

ωnφ
n!

=
∫
X

|u(0)|2e−mφρ−(n+l+1)
k

ωnφ
n!

So (2.16) is equivalent to

∫
X

|u(1)
α |2e−(m−k)φρ

−(n+l)
k

ωnφ
n!

≤ n+ l

l

∫
X

|u(0)|2e−mφρ−(n+l+1)
k

ωnφ
n!

(2.17)

• Repeat the above process for each u
(1)
α ∈ H0(X, (m − k)L). We get u(2)

α1,α2 ∈ H0(X, (m −

2k)L) with u
(1)
α1 =

∑Nk
α2=1 u

(2)
α1,α2sα, such that

∫
X

|u(2)
α1,α2

|2e−(m−2k)φρ
−(n+l−1)
k

ωnφ
n!

≤ n+ l − 1
l − 1

∫
X

|u(1)
α |2e−(m−k)φρ

−(n+l)
k

ωnφ
n!

• By induction, we get u(j+1)
α1,...,αj+1 ∈ H0(X, (m− (j + 1)k)L) with

u(j)
α1,...,αj =

Nk∑
αj+1=1

u(j+1)
α1,...,αj+1

sαj+1

such that

∫
X

|u(j+1)
α1,...,αj+1

|2e−(m−(j+1)k)φρ
−(n+l−j)
k

ωnφ
n!

≤ n+ l − j

l − j

∫
X

|u(j)
α1,...,αj |

2e−(m−jk)φρ
−(n+l−j+1)
k

ωnφ
n!
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• When j + 1 = l, we get u(l)
α1,...,αl ∈ H0(X, (m− lk)L) = H0(X, ((n+ 1)k + r)L) with

u(l−1)
α1,...,αl−1

=
Nk∑
αl=1

u(l)
α1,...,αl

sαl

such that

∫
X

|u(l)
α1,...,αl

|2e−(m−lk)φρ
−(n+1)
k

ωnφ
n!

≤ (n+ 1)
∫
X

|u(l−1)
α1,...,αl−1

|2e−(m−(l−1)k)φρ
−(n+2)
k

ωnφ
n!

• So for any u ∈ H0(X,mL) with m ≥ (n+ 2)k, if we let l = bmk c − n− 1, then

u =
Nk∑

α1,...,αl=1

u(l)
α1,...,αl

sα1 . . . sαl

with u
(l)
α1,...,αl ∈ H0(X, (m− lk)L) and

‖u(l)
α1,...,αl

‖2
Hilbm−lk

≤ (n+ l)!
l!n!

(sup ρk)n+1

(inf ρk)n+l+1
‖u‖2

Hilbm

2.7 Futaki invariant and K-stability

2.7.1 Analytic and algebraic definition of Futaki Invariant

Let X be an n dimensional normal variety. Assume it’s Fano, i.e. its anticanonical line bundle

K−1
X is ample. If X is smooth, then for any Kähler form ω in c1(X), by ∂∂̄-lemma, we have

a smooth function hω, such that Ric(ω) − ω =
√
−1∂∂̄hω. We call hω := − log ωnh

ηh
the Ricci

potential of ω. Let v be a holomorphic vector field on X, i.e. v is of type (1,0) and ∂̄v = 0. Then

the Futaki invariant is defined to be

Fc1(X)(v) =
∫
X

v(hω)ωn (2.18)

It’s a holomorphic invariant, as a character on the Lie algebra of holomorphic vector field, and

independent of the choice of the Kähler form in c1(X). See [Fut]. The necessary condition of

existence of Kähler-Einstein metric on X is that the Futaki invariant vanishes.

In [DiTi], the Futaki invariant is generalized to the singular case. When X is possibly singular
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normal, first use |kK−1
X | to embed X into projective spaces, φk = φ|kK−1

X | : X ↪→ CPNk . hFS

is the Fubini-Study metric determined by an inner product on H0(X, kK−1
X ). h = (φ∗khFS)1/k

is an Hermitian metric on K−1
X . Note that on the smooth part of X, Hermitian metrics on

K−1
X one-to-one corresponds to volume forms. If {zi} is a local holomorphic coordinate, denote

dz1 ∧ · · · ∧ dzn by dz, and dz̄1 ∧ · · · dz̄n by dz̄, the correspondence is given by

h 7→
√
−1

n dz1 ∧ · · · dzn ∧ dz̄1 ∧ · · · ∧ dz̄n
|dz1 ∧ · · · ∧ dzn|2h−1

=
√
−1

n dz ∧ dz̄
|dz|2h−1

=: ηh

|dz|−2
h−1 = |∂z1 ∧ · · · ∧ ∂zn |2h is the induced Hermitian metric on KX by the metric dual. On the

smooth part of X,

ωh :=
√
−1∂̄∂ log h = −

√
−1∂∂̄ log

ηh√
−1

n
dz ∧ dz̄

=: −
√
−1∂∂̄ log ηh

is a Kähler form, its Ricci curvature is: Ric(ωh) = −
√
−1∂∂̄ log detωnh .

Ric(ωh) − ωh = −
√
−1∂∂̄ log

ωnh
ηh

So the Ricci potential is hωh = − log ωnh
ηh

.

−
∫
Xsm

v(log
ωnh
ηh

)ωnh = −
∫
Xsm

v(
ωnh
ηh

)ηh = −
∫
Xsm

(Lvωnh − Lvηh
ηh

ωnh)

=
∫
Xsm

divηh(v)ωnh =
1

n+ 1

∫
Xsm

(divηh(v) + ωh)n+1

In [DiTi], it’s proved this is still a well defined holomorphic invariant. Note that in local holo-

morphic coordinate, Lvdz̄i = 0, so

Lv(ηh)
ηh

=
Lv(dz)
dz

+ v(log |dz|−2
h−1)

Note that the first term on the right is holomorphic , so

∂̄divηh(v) = −iv∂̄∂ log |dz|−2
h−1 = − 2π√

−1
ivωh (2.19)

We can transform the expression of Futaki invariant (2.18) into another form:

Fc1(X)(v) = −
∫
X

(S(ω) − ω)θvωn (2.20)
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where S(ω) is the scalar curvature of ω, and θv is the potential function of the vector field v

satisfying

ivω =
√
−1∂̄θv

In this way, the Futaki invariant generalizes to any Kähler class. The vanishing of Futaki invariant

is necessary for the existence of constant scalar Kähler metric in the fixed Kähler class.

Assume there is a C∗ action on (X,L), there are induced actions on H0(X,Lk). Let wk be

the k − th (Hilbert) weight of these actions. For k sufficiently large,

dk = dimH0(X,Lk) = a0
kn

n!
+ a1

kn−1

2n!
+O(kn−2) , a0 =

∫
X

ωn, a1 =
∫
X

S(ω)ωn

wk = b0
kn+1

n!
+ b1

kn

2n!
+O(kn−1) (2.21)

At least in the smooth (or normal) case, one can show that (See [Don4])

b0 =
∫
X

θvω
n, b1 =

∫
X

S(ω)θvωn (2.22)

By this, Donaldson [Don4] gives an algebro-geometric definition of Futaki invariant:

Fc1(L)(v) =
a1b0 − a0b1

a0
(2.23)

Remark 11. Assume we can embed X into P(H0(X,L)∗) using the complete linear system |L|

such that the C∗ action is induced by a one parameter subgroup in SL(d1,C). Then we see that,

at least in the smooth case, if we normalize θv, the (normalized) leading coefficient ((n + 1)b0)

in the expansion (2.21) is the Chow weight of this C∗ action.

2.7.2 Donaldson-Futaki invariant and asymptotic slope of K-energy

along one parameter subgroup

Sean Paul’s work

Assume X ⊂ PN is embedded into the projective space and ωFS is the standard Fubini-Study

metric on PN . For any σ ∈ SL(N + 1,C), denote ωσ = σ∗ωFS |X .

Theorem 15. [Paul] Let Xn ↪→ PN be a smooth, linearly normal, complex algebraic variety of

degree ≥ 2. Let RX denote the X-resultant (the Cayley-Chow form of X). Let 4X×Pn−1 denote
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the X-hyperdiscriminant of f format (n-1) (the defining polynomial for the dual of X × Pn−1

in the Segre embedding). Then there are norms such that the Mabuchi-energy restricted to the

Bergman metrics is given as follows:

νω(ωσ) = deg(RX) log
‖σ · 4X×Pn−1‖2

‖4X×Pn−1‖2
− deg(4X×Pn−1) log

‖σ ·RX‖2

‖RX‖2

Lemma 15 (Tian).

log
‖σ ·RX‖2

‖RX‖2
= (n+ 1)

∫ 1

0

∫
X

φ̇σω
n
σ

log
‖σ · 4X×Pn−1‖2

‖4X×Pn−1‖2
= (N + n− 1)

∫ 1

0

dt

∫
(X×Pn−1)∨

Φ̇σωN+n−1
FS(PN+n−1∨)

Lemma 16.

deg(4X×Pn−1) = deg((X × Pn−1)∨) =
∫
X×Pn−1

c2n−1(J(O(1, 1))) = (n(n+ 1) − nµ)V

where J(O(1, 1)) is the jet bundle of O(1, 1) = π∗
1OPN (1) ⊗ π∗

2OPn−1(1) while

deg(RX) = (n+ 1)d

The most important ingredient is the following identity

Theorem 16 (Hyper-discriminant part in the K-energy).

(N+n−1)
∫ 1

0

dt

∫
(X×PN+n−1)∨

Φ̇σωN+n−1
FS(P∨) =

∫ 1

0

dt

∫
X

φ̇σ(n(n+1)ωnσ−nRic(ωσ)∧ωn−1
σ ) (2.24)

To get the above identity, the idea is to consider both sides as function of G := SL(N + 1,C).

Then one takes ∂∂̄ of both sides and pair with any smooth test (m − 1,m − 1)-form η on G

to conclude the above identity after taking ∂∂̄. To remove the transgression operator ∂∂̄ one

uses the following trick by Tian. First compactify G to be G such that G\G has an irreducible

divisor. Then one verify the log polynomial growth of both sides. The following is an immediate

corollary of Corollary 2 in Section 2.3.1.

Proposition 8. The functional

−
∫ 1

0

dt

∫
X

nφ̇σ(Ric(ωσ) −Ric(ω0)) ∧ ωn−1
σ =

∫
X

log
ωnσ
ωn0

ωnσ
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has log polynomial growth as function on SL(N + 1,C). In particular, the K-energy ν(ωσ) has

log polynomial growth as a function of σ ∈ SL(N + 1,C).

Futaki invariant as asymptotic slope

By Tian’s Conjecture 2, we need to test if the K-energy functional is proper on Bk. Following the

Hilbert-Mumford Criterion for GIT stability, we consider any one parameter subgroup λ(t) =

tA ∈ SL(N + 1,C). Although the K-energy is not convex along λ(t), the above theorem 15 by

Sean Paul says that it is the difference of two convex functionals. As a corollary, we have the

existence of asymptotic slope as the difference of Chow weight and the hyperdiscriminant weight.

Define ωλ(t) = λ(t)∗ωFS |X , and X0 to be the limit limt→0 λ(t) ·X in the Hilbert scheme (which

is the central fibre of the induced test configuration introduced in the next subsection). Then

combined with [PaTi2], we also have the following expansion

Proposition 9. [Tia9, PaTi2]

νω(ωλ(t)) = (F1(λ) + a) log
1
t

+O(1) (2.25)

where F1 is the Donaldson-Futaki invariant. a ∈ Q is negative if and only if the central fibre X0

has generically non-reduced fibre.

Remark 12. In fact, if X0 is irreducible, then by ([Tia9], [PaTi2]) one can calculate that

−a = c · (mult(X0) − 1) for c > 0 ∈ Q.

Without loss of generality, we assume each homogeneous coordinate Zi are the eigenvector

of λ(t) on H0(X,O(1)) with eigenvalues λ0 = · · · = λK < λK+1 ≤ · · · ≤ λN . Let ωλ(t) =

ωFS +
√
−1∂∂̄φt. Then

φt = log
∑
i t
λi |Zi|2∑
i |Zi|2

(2.26)

There are three possibilities for X0. Compare [Sto1].

1. (non-degenerate case)

limt→0 Osc(φt) → +∞. By (2.26), this is equivalent to ∩Ki=0{Zi = 0}
∩
X 6= ∅.

2. (degenerate case) Osc(φt) ≤ C for C independent of t. This is equivalent to ∩Ki=0{Zi =

0}
∩
X = ∅. In this case, X0 is the image of X under the projection PN → PK given by

[Z0, . . . , ZN ] 7→ [Z0, . . . , ZK , 0, . . . , 0] and there is a morphism from Φ : X = Xt6=0 → X0

which is the restriction of the projection. There are two possibilities.
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(a) deg(Φ) > 1. In this case, X0 is generically non-reduced. So a < 0 in (2.25).

Example: X = {Z3
0+Z3

1+Z3
2+Z3

3 = 0}. λ(t) : (Z0, Z1, Z2, Z3) 7→ (t−1Z0, t
−1Z1, t

−1Z2, Z3).

X0 = 3{Z3 = 0}.

More generally, assume Xn ⊂ PN is in general position. Then the generical linear

subspace L ∼= PN−n−1 satisfies L ∩X = ∅. Let M ∼= Pn be a complement of L ⊂ PN .

Then the projection of Φ : PN\L → M gives a projection Φ : X → Φ(X) with degree

equal to the degree of X.

(b) deg(Φ) = 1. In this case, X0 is generically reduced. We have the following fact

Lemma 17. If Φ(X) is normal, then X ∼= Φ(X).

Proof. Note that Φ is generically one to one, Φ is a birational morphism. Assume

y ∈ Φ(X), such that Φ−1(y) contains a positive dimensional subvariety C. The sub-

linear system L of |O(1)| defining Φ has a basis {Z0, . . . , ZK} has no base point, so

the form defined by

ω =
√
−1∂∂̄ log

K∑
i=1

|Zi|2

is a smooth form representing c1(O(1)). By assumption ω|C = 0. So

degC =
∫
C

ωdimC = 0

This contradicts the ampleness of O(1). So the inverse image of Φ contains only finite

many points. Since Φ(X) is normal, by Zariski’s main theorem [Hart, 11.4], the fibre

of Φ is connected, so Φ must be isomorphism.

Example: Assume Xn ⊂ PN is in general position. Assume K ≥ n+ 1, then N −K−

1 ≤ N −n− 2. So the generical linear subspace L ∼= PN−K−1 satisfies L∩X = ∅. Let

M ∼= PK be a complement of L ⊂ PN . Then the projection of Φ : PN\L → M gives a

projection Φ : X → Φ(X) with degree 1.

Now assume νω(ωφ) is proper on Bk in the sense of Definition 2. Then by Lemma 12 and Remark

8 (See [PaTi2]), in case 1 or 2(a), F1 > 0. However, in case 2(b), F1 = 0. So there always exists

non-product test configuration with vanishing Donaldson-Futaki invariant. This case was missing

in most of previous works as pointed out in [LiXu] (See also [Sto2] and [Odak4]).
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2.7.3 Test configuration and K-stability

Following [LiXu], we will state the definition for any Q-Fano variety X which by definition is a

normal, klt variety with −KX ample.

Definition 8. 1. Let X be a Q-Fano variety. Assume −rKX is Cartier. A test configuration

of (X,−rKX) consists of

• a variety X with a Gm-action,

• a Gm-equivariant ample line bundle L → X ,

• a flat Gm-equivariant map π : (X ,L) → A1, where Gm acts on A1 by multiplication in the

standard way (t, a) → ta,

such that for any t 6= 0, (Xt = π−1(t),L|Xt) is isomorphic to (X,−rKX).

2. If L is only a Q-Cartier divisor on X such that for an integer m ≥ 1, (X ,mL) yields a test

configuration of (X,−mrKX). We call (X ,L) a Q-test configuration of (X,−rKX).

Remark 13. With this definition, in fact any test configuration comes from a Q-test configura-

tion of (X,−KX) by taking power of a Q-polarization. In the following, by the abuse of notation,

if we do not want to specify the exponent r, we will just call (X ,L) a test configuration for both

cases in the above definition.

Similarly, we have the following definition.

Definition 9. A Q-test configuration (X ,L) of (X,−rKX) is called a special test configuration

if L = −rKX and X0 is a Q-Fano variety.

For any test configuration, we can define the Donaldson-Futaki invariant. First by the

Riemann-Roch theorem,

dk = dimH0(X,OX(−rkKX)) = a0k
n + a1k

n−1 +O(kn−2)

for some rational numbers a0 and a1. Let (X0,L0) be the restriction of (X ,L) over 0. Since Gm

acts on (X0,L⊗k
0 ), Gm also acts on H0(X0,L⊗k

0 ). We denote its total Gm-weight by wk. By the

equivariant Riemann-Roch Theorem,

wk = b0k
n+1 + b1k

n +O(kn−1).
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So we can expand
wk
kdk

= F0 + F1k
−1 +O(k−2).

Definition 10 ([Don4]). The (normalized) Donaldson-Futaki invariant (DF-invariant) of the

test configuration (X ,L) is defined to be

DF(X ,L) = −F1

a0
=
a1b0 − a0b1

a2
0

(2.27)

With the normalization in (2.27), we can define the Donaldson-Futaki invariant for any Q-test

configuration by DF(X ,L) := DF(X ,mL). It is easy to see that this definition does not depend

on the choice of m because of the normalization in the definition (2.27).

Definition 11. Let X be a Q-Fano variety.

1. X is called K-semistable if for any Q-test configuration (X ,L) of (X,−rKX) with r > 0,

we have DF(X ,L) ≥ 0.

2. X is called K-stable (resp. K-polystable) if for any normal Q-test configuration (X ,L) of

(X,−rKX) with r > 0, we have DF(X ,L) ≥ 0, and the equality holds only if (X ,L) is

trivial (resp. X ∼= X × A1).

Remark 14. The original definition of K-polystability and K-stability need to be amended as

pointed out in [LiXu] or at the end of Subsection 2.7.2. Here for the triviality of the test con-

figuration with Donaldson-Futaki invariant 0, we require the test configuration to be normal.

See the case 2-(b) at the end of Section 2.7.2 and Remark 41 in Section 5.3.2. On the other

hand, for K-semistability, it follows from [RoTh1, 5.2] that we only need to consider normal test

configurations, too. See Subsection 5.3.2.

2.7.4 Calculation of Futaki invariant

by Log Resolution

Assume X̃ is an equivariant log resolution of singularity of X such that

K−1

X̃
= π∗K−1

X −
∑
i

aiEi

Ei are exceptional divisors with normal crossings. v lifts to be a smooth holomorphic vector

field ṽ on X̃, which is tangential to each exceptional divisor Ei. Let Si be the defining section of
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[Ei], so Ei = {Si = 0}. Let hi be an Hermitian metric on [Ei] and Rhi =
√
−1∂̄∂ log hi be the

corresponding curvature form. By ∂∂̄ lemma (or Hodge theory), there is an Hermitian metric h̃

on K−1

X̃
such that its curvature form Rh̃ =

√
−1∂̄∂ log h̃ = −

√
−1∂∂̄ log ηh̃ satisfies

Rh̃ = π∗ωh −
∑
i

aiRhi

So

π∗(Ric(ωh) − ωh) = −
√
−1∂∂̄ log

π∗ωnh
ηh̃

+
√
−1
∑
i

ai∂∂̄ log |Si|2hi

π∗hωh = − log
π∗ωnh
ηh̃

+
∑
i

ai log |Si|2hi + C

∫
Xsm

v(hωh)ωnh =
∫
X\∪iEi

π∗(v(hωh))π∗ωnh =
∫
X\∪iEi

−ṽ(
π∗ωnh
ηh̃

)ηh̃ +
∑
i

aiṽ(log |Si|2hi)π
∗ωnh

ṽ(π
∗ωnh
ηh̃

) is a smooth function on X̃.

Lemma 18. θi = ṽ(log |Si|2hi) extends to a smooth function on X̃ such that

√
−1∂̄θi = −iṽRhi

Proof. It’s clearly true away from exceptional divisors. Let p ∈ Ei, in a neighborhood U of p,

choose a local frame ei of [Ei], Si = fiei, and Ei = {fi = 0}. We assume Ei is smooth at p, so

we can take fi to be a coordinate function, say z1. Since ṽ is tangent to Ei, ṽ is of the form

ṽ(z) = z1b1(z)∂z1 +
∑
i>1

ci(z)∂zi

b1(z), ci(z) are holomorphic functions near p. Now

θi = ṽ(log |z1|2) + ṽ(log |ei|2hi)

the second term is smooth near p, and

ṽ(log |z1|2) =
ṽ(z1)
z1

= b1(z)
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is holomorphic near p. Also

∂̄θi = ∂̄(v(log |ei|2hi)) = −iv∂̄∂ log |ei|2hi = − 2π√
−1

ivRhi (2.28)

So the Futaki invariant can be written as

Fc1(X)(v) =
∫
X̃

(
Lṽηh̃
ηh̃

+
∑
i

aiθi)(Rh̃ +
∑
i

aiRhi)
n

=
1

n+ 1

∫
X̃

(divη̃(ṽ) +
∑
i

aiθi +Rh̃ +
∑
i

aiRhi)
n+1

Now by (2.19) and (2.28), (divη̃(ṽ) +
∑
i aiθi + Rh̃ +

∑
i aiRhi) is an equivariantly closed form,

so we can apply localization formula to this integral. See [BGV], [Tia10] for localization formula.

Remark 15. Note that at any zero point p of ṽ, the divergence divη̃(ṽ) is well defined independent

of volume forms. Also by the proof of previous lemma, if p ∈ Ei, θi(p) = b1(p) is the weight

on the normal bundle of Ei at p, otherwise θi(p) = 0. In any case, if q = π(p) ∈ X, then

div(ṽ)(p) +
∑
i aiθi(p) is the weight on K−1

X |q.

An example of calculation

We calculate an example from [DiTi] using log resolution.

X is the hypersurface given by F = Z0Z
2
1+Z1Z

2
3+Z3

2 . v is given by λ(t) = diag(1, e6t, e4t, e3t).

The zero points of v are [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1].

[1, 0, 0, 0] is an A-D-E singular point of type E6. Locally, it’s C2/Γ, Γ is the lifting to SU(2)

of the symmetric group of Tetrahedron in SO(3). |Γ| = 24. After a (nonlinear) change of

coordinate, we change it to the standard form z2
1 + z3

2 + z4
3 . The vector field is given by v =

6z1∂z1 + 4z2∂z2 + 3z3∂z3 . By viewing the surface as a two-fold covering of C2, branched along a

singular curve, we can equivariantly resolve the singularity by blowup and normalization (at the

origin of each step). See [BPV].

1. z2
1 + z3

2 + z4
3 = 0. z1 7→ e6tz1, z2 7→ e4tz2, z3 7→ e3tz3.

2. s21 + z3(z3 + t31) = 0. t1 = z2
z3

7→ ett1, s1 = z1
z3

7→ e3ts1.

3. s22 + t2(t2 + t21) = 0. t2 = z3
t1

7→ e2tt2, s2 = s1
t1

7→ e2ts2.

4. s23 + t3(t3 + t1) = 0. t3 = t2
t1

7→ ett3, s3 = s2
t1

7→ ets3.
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5. s24 + t4(t4 + 1) = 0. t4 = t3
t1

7→ t4, s4 = s3
t1

7→ s4.

z2

z3

z3
2 + z4

3 = 0

z3

t1

z2
z3 + t31 = 0

t2

t1

z2
z3

t2 + t21 = 0

t3

t1

t1 + t3 = 0

z2
t2

z3 t4

t1

z2
t3

t2

z3

t4 = −1

P6

P7

P4

P5

E4

E1
3

P2

E1
2

E2
3

P3

E2
2

P9

P8E1
P1

E1
2

(−2)
E1

3

(−2)
E4

(−2)
E2

3

(−2)
E2

2

(−2)

E1(−2)

P4 P6 P7 P5

P8

The intersection diagram of Exceptional divisors is of type E6. Assume

KX̃ = π∗KX +
∑
i

aiEi

Note that π∗KX · Ei = 0, then

KX̃ · Ei =
∑
j

ajEj · Ei

By adjoint formula,

KX̃ · Ei = KEi · Ei − E2
i = 0

Because the intersection matrix {Ei · Ej} is negative definite, we have ai = 0. So

KX̃ = π∗KX

The zero points set of ṽ are: ∪5
i=1{Pi} ∪ E4.

1. equation near P1 is: u2
1 + z2(1 + t′41 z2) = 0. u1 = z1

z2
7→ e2tu1, t′1 = z3

z2
7→ e−tt′1.

2. equation near P2, P3 is: u2
2 + t′32 z

2
3 + 1 = 0. t′2 = t1

z3
7→ e−2tt′2, z3 7→ e3tz3.

3. equation near P4, P5 is: u2
3 + t′23 t2 + 1 = 0. t′3 = t1

t2
7→ e−tt′3, t2 7→ e2tt2.

4. equation near E4 (away from P6, P7) is: s24 + t4(t4 + 1) = 0. (near P6, P7, the equation is

u2
4 + t′24 + 1 = 0) E4 = {t1 = 0}. t1 7→ ett1.
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So the contribution to the localization formula of Futaki invariant at point [1, 0, 0, 0] is:

1
−2

+ 2
1
−6

+ 2
1
−2

+
∫
E

1
1 + c1([E])

=
1
6

the contributions from the other two fixed points are easily calculated, so the Futaki invariant is:

Fc1(X)(v) =
1
3

(
1
6

+
(−5)3

6
+

(−2)3

−3
) = −6

Remark 16. The contribution of the singular point can also be calculated using the localization

formula for orbifolds given in [DiTi]. Note that the local uniformization is given by:

π1 : C2 −→ C2/Γ ⊂ C3

(z1, z2) 7→ [1, (z4
1 + 2

√
−3z2

1z
2
2 + z4

2)3, 2(−3)
3
4 z1z2(z4

1 − z4
2),−(z8

1 + 14z4
1z

4
2 + z8

2)]

So π∗
1v = 1

2 (z1∂z1 + z2∂z2), and

1
|Γ|

(div(π∗
1v))n+1

det(∇(π∗
1v)|TzX)

=
1
24

13

1/4
=

1
6

Futaki invariant of Complete Intersections

We will use the algebraic definition to calculate. Assume X ∈ CPN is a complete intersection

given by: X = ∩rα=1{Fα = 0}. Assume degFα = dα, so degX =
∏
α dα. Let R = C[Z0, · · · , ZN ].

X has homogeneous coordinate ring

R(X) = C[Z0, · · · , ZN ]/(I(X)) = R/I(X)

I(X) is the homogeneous ideal generated by homogeneous polynomial {Fα}. It is well known

that R(X) has a minimal free resolution by Koszul complex:

0 → R(−
r∑

α=0

dα)⊗(C·
∏
α

Fα) → · · · →
r⊕

α<β

R(−dα−dβ)·(C·(FαFβ)) →
r⊕

α=0

R(−dα)⊗(C·Fα) → R→ R(X) → 0

Let λ(t) ∈ PSL(N + 1,C) be a one-parameter subgroup generated by A = diag(λ0, · · · , λN ),

and v be the corresponding holomorphic vector field. Assume that

N∑
i=0

λiZi
∂

∂Zi
F (Z) = µαFα
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(C∗)2 acts on S(X). Let ak,l = dimS(X)k,l be the dimensions of weight spaces, then this action

has character:

Ch(S(X)) =
∑

(k,l)∈N×Z

ak,lt
k
1t
l
2 =

∏r
α=1(1 − tdα1 tµα2 )∏N
i=0(1 − t1t

λi
2 )

= f(t1, t2)

The k − th Hilbert weight is (note it’s a finite sum) wk =
∑
l∈Z ak,l × l and

∑
k∈N

wkt
k
1 =

∂f

∂t2

∣∣∣∣
t2=1

= −
∑
α(µαtdα1

∏
β 6=α(1 − t

dβ
1 ))

(1 − t1)N+1
+ (
∑
i

λi)t1

∏r
α=1(1 − tdα1 )

(1 − t1)N+2

= −
∑
α(µαtdα1

∏
β 6=α(1 + · · · + t

dβ−1
1 ))

(1 − t1)N+2−r + λt1

∏r
α=1(1 + · · · + tdα−1

1 )
(1 − t1)N+2−r (2.29)

Lemma 19. Let

f(t) =
g(t)

(1 − t)n+1
=
∑r
i=0 ait

i

(1 − t)n+1
=

+∞∑
k=0

bkt
k

then

bk =
kn

n!
g(1) +

kn−1

2(n− 1)!
((n+ 1)g(1) − 2g′(1)) +O(kn−2)

Proof.

f(t) = (
r∑
i=0

ait
i) ·

∞∑
j=0

(
n+ j

n

)
tj

So when k � 1,

bk =
r∑
i=0

ai

(
n+ k − i

n

)
=

r∑
i=0

ai
(n+ k − i) · · · (k − i+ 1)

n!

=
kn

n!

r∑
i=0

ai +
kn−1

2(n− 1)!

r∑
i=0

ai(n+ 1 − 2i) +O(kn−2)

=
kn

n!
g(1) +

kn−1

2(n− 1)!
((n+ 1)g(1) − 2g′(1)) +O(kn−2)

Let g(t) = −
∑
α(µαtdα1

∏
β 6=α(1 + · · · + t

dβ−1
1 )) + λt1

∏r
α=1(1 + · · · + tdα−1

1 ), n = N + 1 − r,

let µ̃α = µα − λ
N+1dα, then µ̃ is invariant when λ(t) differs by a diagonal matrix. by the lemma,

we can get

g(1) = −
∑
α

µα
∏
β 6=α

dβ+λ
∏
α

dα = −
∏
α

dα(
∑
β

µβ
dβ

−λ) = −
∏
α

dα

∑
β

µ̃β
dβ

− λ

N + 1
(N + 1 − r)


(2.30)
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(N − r + 2)g(1) − 2g′(1) = −
∏
α

dα

(N + 1 −
∑
β

dβ)
∑
γ

µγ
dγ

−
∑
β

µβ − λ(N −
∑
β

dβ)


= −

∏
α

dα

(N + 1 −
∑
β

dβ)
∑
γ

µ̃γ
dγ

−
∑
β

µ̃β − λ

N + 1
(N − r)(N + 1 −

∑
α

dα)



wk = −
∏
α

dα
∑
β

µ̃β
dβ

kN+1−r

(N + 1 − r)!
−
∏
α

dα

(N + 1 −
∑
β

dβ)
∑
γ

µ̃γ
dγ

−
∑
β

µ̃β

 kN−r

2(N − r)!
+O(kN−r−1)

+
λ

N + 1
k · dimH0(X,O(k)) (2.31)

By (2.23), we can get the Futaki invariant

Fc1(O(1))(v) = −
∏
α

dα

∑
β

µ̃β −
N + 1 −

∑
γ dγ

N + 1 − r

∑
β

µ̃β
dβ


Remark 17. In hypersurface case, the above formula becomes

Fc1(O(1))(v) = − (d− 1)(N + 1)
N

(µ− λ

N + 1
d)

Apply this to the example in section 2.7.4, where d = 3, N = 3, λ = 6 + 3 + 4 = 13, µ = 12,

O(1) = K−1
X , then we get the same result as before.

Fc1(X)(v) = −2 · 4
3

(12 − 13
4

· 3) = −6

Remark 18. We can calculate directly the leading coefficient of wk in (2.31)using the Lelong-

Poincáre equation. Also see [Lu1].

Lemma 20 (Poincáre-Lelong equation). Assume L is a holomorphic line bundle on X, s is

a nonzero holomorphic section of L, D is the zero divisor of s, i.e. {s = 0} counted with

multiplicities. h is an Hermitian metric on L, Rh =
√
−1∂̄∂ log h is its curvature form. Then in

the sense of distribution, we have the identity

√
−1∂∂̄ log |s|2h =

∫
D

−Rh
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i.e., for any smooth (2n− 2) form η on X, we have

√
−1
∫
X

(log |s|2h)∂∂̄η =
∫
D

η −
∫
X

Rh ∧ η

Let X0 = CPN , Xa+1 = Xa ∩ {Fa = 0}, then X0 ⊃ X1 · · · ⊃ Xr = X. θv =
P

i λi|Zi|
2

P

i |Zi|2
, then

ivωFS =
√
−1∂̄θv. On Xa−1, by the lemma, we have

√
−1∂∂̄ log

|Fa|2

(
∑
i |Zi|2)da

∣∣∣∣
Xa−1

=
∫
Xa

−da · ωFS |Xa−1

So

∫
Xa

θvω
N−a
FS = da

∫
Xa−1

θvω
N−a+1
FS +

√
−1
∫
Xa−1

θv∂∂̄ log
|Fa|2

(
∑
i |Zi|2)d

∧ ωN−a
FS

Using integration by parts, the second integral on the right equals

√
−1
∫
Xa−1

∂̄θv ∧ ∂ log
|Fa|2

(
∑
i |Zi|2)d

∧ ωN−a
FS =

∫
Xa−1

ivωFS ∧ ∂ log
|Fa|2

(
∑
i |Zi|2)da

∧ ωN−a
FS

= − 1
N − a+ 1

∫
Xa−1

v(log
|Fa|2

(
∑
i |Zi|2)da

)ωN−a+1
FS

= − 1
N − a+ 1

∫
Xa−1

(µa − da

∑
i λi|Zi|2∑
i |Zi|2

)ωN−a+1
FS

= − 1
N − a+ 1

µa deg(Xa−1) + da
1

N − a+ 1

∫
Xa−1

θvω
N−a+1
FS

So

(N − a+ 1)
∫
Xa

θvω
N−a
FS = −µa deg(Xa−1) + da(N − a+ 2)

∫
Xa−1

θvω
N−a+1
FS

While

(N + 1)
∫
X0

θvω
N
FS = (N + 1)

∫
CPN

∑
i λi|Zi|2∑
i |Zi|2

ωNFS =
∑
i

λi = λ

By induction, we get

(N − r + 1)
∫
Xr

θvω
N−r
FS = −

∏
α

dα
∑
β

µβ
dβ

+ λ
∏
α

dα =
∏
α

dα

−
∑
β

µ̃β
dβ

+ (N + 1 − r)
λ

N + 1


This is the same as g(1), (2.30).
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Chapter 3

Some Extension of general

theories

3.1 Twisted Kähler-Einstein equation and Invariant Rη(X)

In the following, we will always use the notation: β ∈ [0, 1] and α = 1 − β.

Let’s consider the twisted Kähler-Einstein equation

Ric(ωφ) = βωφ + αη (3.1)

for some current η ∈ 2πc1(X) which is allowed to be non-positive and singular. This is equivalent

to the following Monge-Ampère equation:

(ω +
√
−1∂∂̄φ)n = eHω,αη−βφωn

where Hω,αη satisfies:

√
−1∂∂̄Hω,αη = Ric(ω) − βω − αη,

∫
X

eHω,αηωn/n! = V

One can define the associated K-energy and F -energy:

•

Fω,αη(ωφ) = F 0
ω(φ) − V

β
log
(

1
V

∫
X

eHω,αη−βφωn/n!
)
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•

νω,αη(ωφ) = βF 0
ω(φ) +

∫
X

log
ωnφ

eHω,αη−βφωn
ωnφ
n!

+
∫
X

Hω,αηω
n/n!

It’s easy to verify that these two functional are dual to each other under Legendre transform

([Berm]). Berman called νω,αη the free energy associated with (3.24). The name comes from

his statistical mechanical derivation of Kähler-Einstein equations. Note that in this notation,

νω(ωφ) = νω,0(ωφ).

Proposition 10. We have the following formulas:

1.

νω,αη(ωφ) = −
∫ 1

0

dt

∫
X

φ̇t · n(Ric(ωt) − βωt − αη) ∧ ωn−1
t

2.

νω,αη(ωφ) = βFω,αη(ωφ) +
∫
X

Hω,αηω
n/n! −

∫
X

Hωφ,αηω
n
φ/n!

≥ βFω,αη +
∫
X

Hω,αηω
n/n!

3. Let ωψ solve the equation ωnψ = eHω,αη−βφωn. In other words, Ric(ωψ) = βωφ + αη. then

βFω,αη(ωφ) +
∫
X

Hω,αη
ωn

n!
≥ νω,αη(ωψ)

4.

νω,αη(ωφ) =
∫
X

log
ωnφ

eHω,αηωn
ωnφ
n!

− β(Iω − Jω)(ωφ) +
∫
X

Hω,αηω
n/n!

5. Assume ω1 = ω +
√
−1∂∂̄φ1, ω2 = ω +

√
−1∂∂̄φ2 = ω +

√
−1∂∂̄(φ1 + φ2). Then

νω,αη(ω1) + νω1,αη(ω2) = νω,αη(ω2), Fω,αη(ω1) + Fω1,αη(ω2) = Fω,αη(ω2)

In other words, νω,αη and Fω,αη satisfy the cocycle condition.

Proof. (2),(3) and (5) follows from the formula relating twisted potentials of two Kähler metrics.

Hωφ,αη = Hω,αη + log
ωn

ωnφ
− βφ− log

(
1
V

∫
X

eHω,αη−βφωn/n!
)

= −
(

log
ωnφ

eHω,αη−βφωn
+ log

(
1
V

∫
X

eHω,αη−βφωn/n!
))
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The inequality in (3.2) follows from concavity of log:

1
V

∫
X

Hωφ,αη

ωnφ
n!

≤ log
(

1
V

∫
X

eHωφ,αη
ωnφ
n!

)
= 0

For (3), since we have normalized φ so that
∫
X
eHω,αη−βφωn/n! = V ,

Fω,αη(φ) = F 0
ω(φ)

νω,αη(ωψ) = βF 0
ω(ψ) + β

∫
X

(φ− ψ)
ωnψ
n!

+
∫
X

Hω,αη
ωn

n!

So (3) follows from

F 0
ω(φ) ≥ F 0

ω(ψ) −
∫
X

(φ− ψ)
ωnψ
n!

Corollary 4. Fω,αη is bounded from below if and only if νω,αη is bounded from below. In this

case, ∫
X

Hω,αη
ωn

n!
+ β inf Fω,αη = inf νω,αη

Proposition 11. ([Bern],[BaMa],[Ban]) If η is a positive current, and ωβ := ωφβ solves the

equation (3.1), then ωβ obtains the minimum of Fω,αη(ωφ) and νω,αη(ωφ).

Proof. If ωβ to the equation (3.1) is the critical point of Fω,αη(ωφ). Berndtsson [Bern] proved

Fω,αη(ωφ) is convex on H. So ωβ obtains the minimum of Fω,αη(ωφ). The inequality (3.2) implies

νω,αη also obtains the minimum at ωβ .

There are 2 cases we would like to consider in this Chapter.

• η is any smooth Kähler metric in 2πc1(X).

It was first showed by Tian [Tia6] that we may not be able to solve (∗)t on certain Fano

manifold for t sufficiently close to 1. Equivalently, for such a Fano manifold, there is some

t0 < 1, such that there is no Kähler metric ω in c1(X) which can have Ric(ω) ≥ t0ω. It is

now made more precise. Define

R(X) = sup{t : (∗)t is solvable}

Székelyhidi proved
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Proposition 12 ([Szé]).

R(X) = sup{t : Ric(ω) > tω, ∀ smooth Kähler metric ω ∈ c1(X)}

In particular, R(X) is independent of η ∈ c1(X).

• η = {D = 0} is the integration along a smooth anti-canonical divisor. One can extend the

theory in smooth case to the conic case. We can define the logarithmic Futaki invariant

after Donaldson (See Section 3.3, [Don6]) and integrate the log-Futaki invariant to get log-

K-energy (See Section 3.3.2). If we assume the log-K-energy is proper, then there exists

conic Kähler-Einstein metric. (Cf. [JMRL]). Note that, we need to relax the C∞ condition

for Kähler potentials to include the potential of Kähler metric with conic singularities. This

conic type Höler space is studied by Donaldson [Don6] (also called wedge Hölder space in

[JMRL]). See section 3.2 for sketched proof.

The two cases can be related as follows. Take ηε = ω +
√
−1∂∂̄ log(|s|2 + ε), then it’s easy to

verify that limε→0 ηε = α{s = 0} =: D, and

lim
ε→0

νω,αηε(φ) = νω,D(φ)

lim
ε→0

Fω,αηε(φ) = Fω,D(φ)

Proposition 13. ([Tia1],[Tia10],[Berm]) For the above two cases, when 0 < β � 1, νω,αη is

proper.

Proof. When η is smooth, this was proved by Tian ([Tia1], [Tia10]). The modification to the

conic case was proved by [Berm]. First define the log-alpha-invariant.

α(K−1
X , (1−β)D) = max

{
u > 0;∃0 < Cu < +∞ such that

1
V

∫
X

e−u(φ−supφ) ehωωn

|sD|2(1−β)n!
≤ Cu

}

Now for any u < α(K−1
X , (1 − β)D),

logCu ≥ log
(

1
V

∫
X

e−u(φ−supφ) ehωωn

n!|sD|2(1−β)

)
= log

(
1
V

∫
X

e−u(φ−supφ)−log
|sD|2(1−β)ωnφ

ehωωn
ωnφ
n!

)

≥ − 1
V

∫
X

log

(
|sD|2(1−β)ωnφ

ehωωn

)
ωnφ
n!

+ u

(
supφ− 1

V

∫
X

φ
ωnφ
n!

)

≥ 1
V

(
−
∫
X

log
|sD|2(1−β)ωnφ

ehωωn
ωnφ
n!

+ uIω(ωφ)

)
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νω,(1−β)D(ωφ) ≥ uIω(ωφ) − β(I − J)ω(ωφ) − C(β)

≥
(
u− β

n

n+ 1

)
Iω(ωφ) − C

So if

β <
n+ 1
n

α(K−1
X , (1 − β)D),

then log-K-energy is proper for smooth reference metric. Berman estimated the log-alpha-

invariant:

Proposition 14. [Berm]

α(K−1
X , (1 − β)D) = α(LD, (1 − β)D) ≥ min{β, α(LD|D), α(LD)} > 0 (3.2)

So when

0 < β <
n+ 1
n

min{α(LD|D), α(LD)}, (3.3)

the log-K-energy is proper. In particular, when 0 < β � 1, the log-K-energy is proper.

Remark 19. Let D be a smooth divisor such that D ∼Q −λKX for some 0 < λ ∈ Q. If we let

η = λ−1{D} ∈ c1(X), then as we will show in [LiSu], the conclusion in Lemma 13 in general is

false if λ < 1.

Proposition 15. ([Berm], [Rub]) νω,αη is proper if and only if Fω,αη is proper.

We give a proof due to Berman [Berm, Cor.3.5].

Proof. If Fω,αη is proper, then νω,αη is proper by inequality in (3.2).

Now assume νω,αη is proper. Then νω,αη − δ(I − J)ω is proper for δ small. Let η′ = (αη −

δω)/(α− δ). Note that α− δ = 1− (β+ δ). Then it’s easy to verify that Hω,(α−δ)η′ = Hω,αη and

νω,αη − δ(I − J)ω = νω,(α−δ)η′

Because it’s bounded from below, by Corollary 4, Fω,(α−δ)η′ is bounded from below (even when
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η′ is not a positive current). So

Fω,αη(φ) = F 0
ω(φ) − β + δ

β

V

β + δ
log
(

1
V

∫
X

eHω,αη−(β+δ) βφ
β+δωn/n!

)
≥ F 0

ω(φ) − β + δ

β
F 0
ω

(
β

β + δ
φ

)
+
β + δ

β
Fω,(α−δ)η′(βφ/(β + δ))

≥ F 0
ω(φ) − β + δ

β
F 0
ω

(
β

β + δ
φ

)
− C

= Jω(φ) − β + δ

β
Jω

(
β

β + δ
φ

)
− C

≥ (1 − (β/(β + δ))1/n)Jω(φ) − C

Now by Lemma 13,

Corollary 5. In the two cases (smooth or conic), when β � 1, Fω,(1−β)η is proper.

The following lemma is observed together with Dr. Song Sun.

Lemma 21. If Fω,(1−β)η is proper (resp. bounded) when β = β0 and it’s bounded (resp. proper)

when β = β1, then it’s proper when β = (1− t)β0 + tβ1 for 0 < t < 1. The same conclusion holds

for νω,(1−β)η.

Proof. Let βt = (1− t)β0 + tβ1. First note that Hω,(1−βt)η = (1− t)Hω,(1−β0)η + tHω,(1−β1)η. So

by Hölder inequality we get

∫
X

eHω,(1−βt)η−βtφ
ωn

n!
=

∫
X

(
eHω,α0η−β0φ

)1−t (
eHω,α1η−β1φ

)t ωn
n!

≤
(∫

X

eHω,(1−β0)η−β0φ
ωn

n!

)1−t(∫
X

eHω,(1−β1)η−β1φ
ωn

n!

)t

So the statement follows. The last statement follows by noting νω,(1−β)η is linear in β.

Proposition 16. In the above two cases (smooth or conic), if (3.1) is solvable for β = β1 ≤ 1,

then it’s solvable for any 0 < β < β1.

Proof. Let ωβ1 be a solution of the equation (3.1). Because η is positive, ωβ1 obtains the minimum

of νω,α1η(ωφ) by Proposition 11. In particular it’s bounded from below . By Proposition 13, νω,α0η

is proper for any 0 < β0 � 1. So by Lemma 21, νω,(1−β)η is proper for any 0 < β < β1. By

Proposition 15, Fω,(1−β)η is proper for 0 < β < β1. Now the solvability in the smooth case is

well known ([Tia9],[Tia10]). The conic case is solved in [JMRL]. See section 3.2 for sketched

proof.
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For the above two cases (smooth or conic), we can define

Rη(X) = sup{s : (3.1) is solvable for β ∈ (0, s]}

Corollary 6. The following are equivalent:

1. Rη(X) ≥ t0, i.e. (3.1) is solvable for 0 < β < t0;

2. The function νω,αη(ωφ) is proper for any 0 < β < t0;

3. Fω,αη(ωφ) is proper for any 0 < β < t0.

Proof. (1)⇒(2). Take any β1 < t0. The solution ωβ1 obtains the minimum of νω,(1−β1)η by

Proposition 11. By Proposition 13, νω,(1−β0)η is proper for any 0 < β0 � 1. So by Lemma 21,

νω,(1−β)η is proper for β0 < β < β1. (2)⇒(3) follows from Proposition 15. (3)⇒(1): This is well

known in the smooth case (See e.g. [BaMa], [Tia10]). In the conic case, see Section 3.2.

3.2 Existence of conic Kähler-Einstein metric on Fano man-

ifold

There is another continuity method, which is via Kähler-Einstein metrics with conic singularities.

This is equivalent to solving the following family of equations with parameter β:

Ric(ωψ) = βωψ + (1 − β){D} ⇐⇒ (ω +
√
−1∂∂̄ψ)n = ehω−βψ

ωn

|s|2(1−β)
(∗)β

where D ∈ | −KX | is a smooth divisor, s is the defining section of [D] ∼= −KX , and | · |2 is a

Hermitian metric on −KX such that its curvature form −
√
−1∂∂̄ log | · |2 = ω.

Remark 20. The weak solution was obtained by Berman [Berm] using pluripotential theory. For

the geometric conic solution, in the early version of [JMRL], the authors need to assume the cone

angle is in (0, π] or the bisectional curvature of some reference conic metric has upper bound.

Joint with Yanir Rubinstein, by carefully choosing adapted local coordinates, we showed in the

appendix that the bisectional curvature of a natural reference conic metric is indeed bounded from

above. So this allows any cone angle in (0, 2π].

We will use the log-K-energy associated with a reference conic metric. Let ω̂ = ω+
√
−1∂∂̄|s|2β .

55



So for any ω̂ ∈ [ω] with at most conic singularities, we can define the log-K-energy and

log-F-energy to be

ν̂
bω(ψ) := ν̂

bω,D =
∫
X

log
ω̂nψ

ebh
bω−βψω̂n

ω̂nψ
n!

+ βF 0
bω(ψ) +

∫
X

ĥ
bωω̂

n/n!.

F̂
bω(ψ) = F 0

bω(ψ) − V

β
log
(

1
V

∫
X

e
bh

bω−βψω̂n/n!
)
.

where ĥ
bω satisfies

√
−1∂∂̄ĥ

bω = Ric(ω̂) − βω̂ − α{s = 0}, and
∫
X

e
bh

bωωn = V (3.4)

Theorem 17. [JMRL] Assume F̂
bω is proper or ν̂

bω is proper, then there exists a conic metric

along the divisor D of conic angle 2πβ.

Sketch of the proof. The idea is using continuity method as in the proof in the smooth case. So

we consider a family of equations:

(ω̂ +
√
−1∂∂̄ψ)n = e

bh
bω−tψω̂n (3.5)

This is equivalent to the equation

Ric(ω̂ψ) = tω̂ψ + (β − t)ω̂ + α{s = 0}. (3.6)

• Step 0: Set up good function space. This is essentially carried out by Donaldson in [Don6].

We first write the metric and differential operator in the conic coordinate. Let z = reiθ be

the ordinary complex coordinate. Define ρ = rβ . The model case tells us the right thing

to do.

ω̂ =
dz1 ∧ dz̄1
|z1|2α

+
∑
j>1

dzj ∧ dz̄j =
(dr + irdθ) ∧ (dr − irdθ)

r2β
+
∑
j>1

dzj ∧ dz̄j

= (dρ+ iβρdθ) ∧ (dρ− iβρdθ) +
∑
j>1

dzj ∧ dz̄j

Let ε = eiβθ(dρ+iβρdθ) = dζ, where ζ = zβ = ρeiβθ is defined by choosing a branch locally

away from 0. Then the general (1,1) form, in particular the Käler form for a conic metric,
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also has cross terms:

ω̂ =
√
−1
(
fε ∧ ε̄+ fj̄ε ∧ dz̄j + fjdzj ∧ ε̄+ fij̄dzi ∧ dz̄j

)
(3.7)

If ω̂ =
√
−1∂∂̄φ,

f =
∂2φ

∂ζ∂ζ̄
=

1
4

(
e−iβθ(

∂

∂ρ
− i

βρ

∂

∂θ
)
)(

eiβθ(
∂

∂ρ
+

i

βρ

∂

∂θ
)
)
φ

=
1
4

∆C2,βφ =
1
4

1
βρ

(
∂

∂ρ
(βρ

∂

∂ρ
) +

1
β2ρ2

∂

∂θ
(βρ

∂

∂θ
)
)
φ

=
1
4

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
β2ρ2

∂2

∂θ2

)
φ

where ∆C2,β is the Laplacian associated with the standard conic metric on C2: gβ =

dρ2 + β2ρ2dθ2.

fj̄ =
∂2φ

∂ζ∂z̄j
=

1
2
e−iβθ

(
∂

∂ρ
− i

βρ

∂

∂θ

)
∂

∂z̄j
φ

Following Donaldson, we define

Definition 12. 1. f is in C ,γ,β if f is Höler continuous in the coordinate

(ζ̂ = ρeiθ = rβeiθ = z|z|β−1, zj)

2. A (1,0)-form α = f1ε+
∑
j>1 fjdzj is in C,γ,β if fi ∈ C,γ,β for 1 ≤ i ≤ n, and f1 → 0

as z1 → 0.

3. A (1,1)-form ω is in C,γ,β if f, fj , fj̄ , fij̄ ∈ C,γ,β, and fj , fj̄ → 0 as z1 → 0.

4. A function f is in C2,γ,β if f, ∂f, ∂∂̄f are all C ,γ,β.

Remark 21. The point is the derivatives involve only the following wedge differentials:

∂

∂ρ
,

1
ρ

∂

∂θ
,
∂

∂zj
,
∂2

∂ζ∂ζ̄
,

∂2

∂ρ∂z̄j
,

1
ρ

∂2

∂θ∂z̄j
,

∂2

∂zi∂z̄j

The linear theory is set up by Donaldson:

Proposition 17. [Don6] If γ < µ = β−1 − 1, the inclusion C2,α,β → C ,γ,β is compact.

If ω̂ is a C ,γ,β Kähler metric on (X,D) then the Laplacian of ω̂ defines a Fredholm map

∆
bω : C2,γ,β → C,γ,β.
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• Step 1: Start the continuity method. Let

S = {t ∈ (−∞, β); (3.5) is solvable}.

Then S is non-empty. This is achieved by solving the equation (3.5) when t � 0 using

Newton-Moser iteration method.

• Step 2: Openness of solution set. This follows from implicit function theorem thanks to

the Fredholm linear theory set up in Step 0. See [JMRL] for details.

• Step 3: C0-estimate. This is the same as in the smooth case. By taking derivative with

respect to t on both sides of (3.5)

∆
bωψ̇t = −tψ̇ − ψ

By calculation, one can prove that

F 0
bω(ψt) = −1

t

∫ t

0

(I − J)
bωt(ψt)ω̂

n
t /n! ≤ 0

So

F
bω(ψt) ≤ −V

β
log
(

1
V

∫
X

e
bh

bω−βψω̂n/n!
)

= −V
β

log
(

1
V

∫
X

e−(β−t)ψω̂nt /n!
)

≤ β − t

β

∫
X

ψtω̂
n
t /n! ≤ β − t

β2
V log

(
1
V

∫
X

eβψt ω̂nt /n!
)

=
β − t

β2
V log

(
1
V

∫
X

e
bh

bω ω̂n/n!
)

= 0

So if F
bω(ψ) is proper, then I

bω(ω̂ψt) ≤ C. Now the C0-estimate follows from the following

Proposition.

Proposition 18. 1. Osc(ψt) ≤ I
bω(ψt).

2. (Harnack estimate) − infX ψt ≤ n supX ψt.

• Step 3: C2-estimate. To get the C2-estimate, we can use the Chern-Lu’s inequality and

maximal principle as in Proposition 2. By the equation (3.6), Ric(ω̂ψt) ≥ tω̂ψt . The

upper bound of bisectional curvature of ω̂ is crucial, which will be shown in the following

subsection.
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Let Ξ = log tr
bωψ ω̂ − λψ as in (2.3). To use the maximal principle in the conic setting, one

can use Jeffrey’s trick as in [Jef]. We add the barrier function ε‖s‖2γ′
for 0 < γ′ < γ so

that Ξ + ε‖s‖2γ′
obtains the maximum x′0 6∈ D. We then apply the maximal principle to

Ξ + ε‖s‖2γ′
and let ε→ 0.

• Step 4: C ,2,γ,β-estimate. There is a Krylov-Evans’ estimate in the conic setting as developed

in [JMRL]. The proof is similar to the smooth case in Subsection 2.3.2 but adapted to the

conic(wedge) Hölder space.

3.2.1 A calculation of bisectional curvature of a conic metric

We consider reference metric of the form

ω = ω′ +
√
−1∂∂̄‖S‖2β

ω′ is a smooth Kähler form. Let D = {S = 0}. Assume we choose a local coordinate {zi}, such

that D = {zn = 0}. Denote ∇zn = dzn + zna
−1∂a.

∂‖S‖2β = β‖S‖2(β−1)azn∇zn

∂∂̄‖S‖2β = −β‖S‖2βω̃ + β2‖S‖2β−2a∇zn ∧∇zn

where ω̃ = c1([D], ‖ · ‖) = −∂∂̄ log a. So

ω = ω′ − β‖S‖2βω̃ + β2‖S‖2β−2a∇zn ∧∇zn (3.8)

By scaling the Hermitian metric ‖ · ‖, we can assume this is positive definite.

To simplify the calculation of curvature of ω, we need lemma.

Lemma 22. For any point p ∈ X\D, there exists ε > 0, such that if distg′(p,D) ≤ ε, then we

can choose local holomorphic frame e of LD and local coordinates {zi}ni=1 such that S = zne, and

a = ‖e‖2 satisfies a(p) = 1, da(p) = 0, ∂2a
∂zi∂zj

a(p) = 0.

Proof. Fix any point q ∈ D, we can choose local holomorphic frame e′ and complex coordinates

{wi} in Bg′(q, ε(q)) for ε(q) � 1. Let S = f ′e′ with f ′ a holomorphic function and ‖e′‖2 = c. Let

e = he′ for some holomorphic function h to be chosen. Then a = ‖he′‖2 = |h|2c. Now fix any

59



point p ∈ Bg′(q, ε(q)). In order for a to satisfy the vanishing property with respect to variables

{wi} at point p, we can just choose h such that h(p) = c(p)−1/2, ∂̃ih(p) = −c(p)−1h(p)∂̃ic(p) =

−c(p)−3/2∂̃ic(p) and

∂̃i∂̃jh(p) = −c(p)−1(h(p)∂̃i∂̃jc(p) + ∂̃jc(p)∂̃ih(p) + ∂̃ic(p)∂̃jh(p))

= −c(p)−3/2∂̃i∂̃jc(p) + 2c(p)−5/2∂̃ic(p)∂̃jc(p)

Here we used ∂̃i to mean partial derivatives with respect to variable wi. Then we get S = fe =

f ′e′ with f = f ′h−1 a holomorphic function. Since D = {S = 0} is a smooth divisor, we can

assume ∂f
∂wn

(q) 6= 0. Choose ε(q) sufficiently small, we can assume ∂f
∂wn

6= 0 in Bg′(q, ε(q)). So by

inverse function theorem, z1 = w1, · · · , zn−1 = wn−1, zn = f(w1, · · · , wn) are complex coordinate

in Bg′(q, ε(q)/2) and now S = ef(w) = zne. By chain rule, it’s easy to verify that a satisfy the

condition. a(p) = 1, ∂ia(p) = ∂i∂ja(p) = 0.

We can cover D by Bg′(q, ε(q)/2) for any q ∈ D. By compactness of D, the conclusion

follows.

Remark 22. By the above proof, we can choose zn = f = f ′h−1 = f ′c1/2 for any point p in

Bg′(q, ε(q)). So zn is uniformly equivalent to f ′, i.e. C−1|f ′|(p) ≤ |zn|(p) ≤ C|f ′|(p) for any

p ∈ Bg′(q, ε(q)/2).

Proposition 19. The holomorphic bisectional curvatures of ω are bounded from above.

Proof. Using the above lemma, for any point q ∈ D, fix any point p ∈ Bg′(q, ε) and choose the

adapted local holomorphic frame e and complex coordinate {zi} provided by the last lemma.

Assume in the representation (3.8), ω′ =
∑
i,j g

′
ij̄
dzi ∧ dz̄j , ω̃ =

∑
i,j hij̄dzi ∧ dz̄j and ω =∑

i,j gij̄dzi∧dz̄j . We do some calculation. The calculation is straightforward although laborious.

In particular, note that the formula we get has the right symmetry for the subindex.

gij̄ = g′ij̄ − βaβ |zn|2βhij̄ + β2aβ |zn|2β
(

(dzn + a−1∂azn) ∧ (dz̄n + a−1∂̄az̄n)
|zn|2

)
ij̄

= g′ij̄ − βaβhij̄ |zn|2β + β2aβ−2∂ia∂j̄a|zn|2β + β2aβ−1∂ia|zn|2(β−1)znδjn

+β2aβ−1∂j̄a|zn|2(β−1)z̄nδin + β2aβ |zn|2(β−1)δinδjn

Using the vanishing property of a we get

gij̄(p) = g′ij̄ − βhij̄ |zn|2β + β2|zn|2(β−1)δinδjn (3.9)
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∂gij̄
∂zk

=
∂g′

ij̄

∂zk
− β∂k(aβhij̄)|zn|2β + β2∂k(aβ−2∂ia∂j̄a)|zn|2β + β2∂k(aβ−1∂ia)|zn|2(β−1)znδjn

+β2∂k(aβ−1∂j̄a)|zn|2(β−1)z̄nδin + β2∂k(aβ)|zn|2(β−1)δinδjn

−β2aβhij̄ |zn|2(β−1)z̄nδnk + β3aβ−2∂ia∂j̄a|zn|2(β−1)z̄nδnk + β3aβ−1∂ia|zn|2(β−1)δnkδnj

β2(β − 1)aβ−1∂j̄a|zn|2(β−2)z̄2
nδnkδin + β2(β − 1)aβ |zn|2(β−2)z̄nδnkδinδnj

Now we use the vanishing property of a and ∂i∂j̄a(p) = ∂i∂j̄ log a(p) = −hij̄ to get

∂kgij̄(p) = ∂kg
′
ij̄ − β∂khij̄ |zn|2β − β2hkj̄ |zn|2(β−1)z̄nδin − β2hij̄ |zn|2(β−1)z̄nδnk

+β2(β − 1)|zn|2(β−2)z̄nδnkδniδnj

= ∂kg
′
ij̄ − β∂khij̄ |zn|2β − β2(hkj̄δin + hij̄δnk)|zn|2(β−1)z̄n

+β2(β − 1)|zn|2(β−2)z̄nδnkδniδnj

The last ingredient appearing in holomorphic bisectional curvature can also be calculated.

∂l̄∂kgij̄(p) = ∂l̄∂kg
′
ij̄ − β(−βhkl̄hij̄ + ∂l̄∂khij̄)|zn|2β + β2hil̄hkj̄ |zn|2β − β2∂khil̄|zn|2(β−1)znδjn

−β2∂l̄hkj̄ |zn|2(β−1)z̄nδin − β3hkl̄|zn|2(β−1)δinδjn − β2∂l̄hij̄ |zn|2(β−1)z̄nδnk

−β3hil̄|zn|2(β−1)δnkδnj

−β2(∂khij̄)|zn|2(β−1)znδnl − β3hkj̄ |zn|2(β−1)δnlδin − β3hij̄ |zn|2(β−1)δnlδnk

+β2(β − 1)2|zn|2(β−2)δnlδnkδniδnj

= ∂l̄∂kg
′
ij̄ + β2(hkl̄hij̄ + hil̄hkj̄)|zn|2β − β(∂l̄∂khij̄)|zn|2β

−β2(∂khil̄δjn + ∂khij̄δnl)|zn|2(β−1)zn − β2(∂l̄hij̄δin + ∂l̄hij̄δnk)|zn|2(β−1)z̄n

−β3(hkl̄δinδjn + hkj̄δnlδin + hij̄δnlδnk + hil̄δnkδnj)|zn|2(β−1)

+β2(β − 1)2|zn|2(β−2)δnlδnkδniδnj (3.10)

Now we can estimate the holomorphic bisectional curvature. Let {ξi}ni=1, {ηi}ni=1 be two unit

vectors with respect to gij̄(p): gij̄(p)ξiξ̄j = gij̄(p)ηiη̄j = 1. Using the formula for gij̄(p) in (3.9).

This implies in particular

|ξi| ≤ C, |ηi| ≤ C, 1 ≤ i ≤ n− 1

|ξn| ≤ C|zn|1−β , |ηn| ≤ C|zn|1−β (3.11)
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We want to estimate

Rij̄kl̄(p)ξiξ̄jηkη̄l =
(
−
∂2gij̄
∂zk∂z̄l

+
∂giq̄
∂zk

gpq̄
∂gpj̄
∂z̄l

)
ξiξ̄jηkη̄l

There are several types of singular terms. In order to estimate them, we first estimate the inverse

of (gij̄). Let fij̄ = g′
ij̄
− βhij̄ |zn|2β , It’s easy to get from (3.9) that

det(gij̄) =
β2

|zn|2(1−β)
det(fij̄)1≤i,j≤n−1 + det(fij̄) =:

β2

|zn|2(1−β)
(a+ b|zn|2(1−β))

with a = det(fij̄)1≤i,j≤n−1 and b = det(fij̄)/(β2) and


gpq̄ = O(1) p, q < n

gpn̄, gnq̄ = O(|zn|2(1−β)) p, q < n

gnn̄ = β−2|zn|2−2β a
a+b|zn|2(1−β)

(3.12)

Remark 23. Since when |zn| is small, fij̄ is uniformly positive definite, a and b are uniformly

positive when |zn| is small.

1. Possible singular terms in − ∂2gij̄
∂zk∂z̄l

ξiξ̄jηkη̄l

(a) ∣∣O(1)δjn|zn|2β−2znξ̄j
∣∣ =

∣∣|zn|2β−1ξ̄n
∣∣ ≤ C|zn|β

(b) ∣∣O(1)δinδjn|zn|2β−2ξiξ̄j
∣∣ =

∣∣|zn|2β−2|ξn|2
∣∣ ≤ C

∣∣O(1)δinδkn|zn|2β−2ξiηk
∣∣ =

∣∣|zn|2β−2ξnηn
∣∣ ≤ C

(c) So here the singular term is the only last one

−β2(β − 1)2|zn|2β−4|ξn|2|ηn|2 (3.13)

2. Possible singular terms in ∂giq̄
∂zk

gpq̄
∂gpj̄
∂z̄l

ξiξ̄jηkη̄l.

We first define the bilinear form for local tensor A = (Aikq̄) satisfying Aikq̄ = Akiq̄ as

follows:

A ∗B = Aikq̄g
pq̄Bj̄l̄pξiξ̄jηkη̄l (3.14)
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where Bj̄l̄p = Bjlp̄.

By diagonalization, it’s easy to see that ∗ is a semipositive bilinear form.

Now we can write

gpq̄
∂giq̄
∂zk

∂gpj̄
∂z̄l

ξiξ̄jηkη̄l = (A+B + C +D) ∗ (A+B + C +D)

where

Aikq̄ = ∂kg
′
iq̄, Bikq̄ = −β∂khiq̄|zn|2β

Cikq̄ = −β2(hkq̄δin + hiq̄δnk)|zn|2(β−1)z̄n, Dikq̄ = β2(β − 1)|zn|2(β−2)z̄nδnkδniδnq

Using (3.12) and (3.11), let’s check all the possible singular terms:

(a) Terms in C ∗ C:

∣∣hkq̄δin|zn|2β−2z̄ng
pq̄hpl̄δjn|zn|2β−2znξiξ̄jηkη̄l

∣∣ =
∣∣O(1)|zn|4β−2|ξn|2

∣∣ ≤ C|zn|2β

∣∣hiq̄δkn|zn|2β−2z̄ng
pq̄hpl̄δjn|zn|2β−2znξiξ̄jηkη̄l

∣∣ =
∣∣O(1)|zn|4β−2ξ̄nηn

∣∣ ≤ C|zn|2β

(b) Terms in A ∗ C:

∣∣(∂kg′iq̄)gpq̄hpl̄δjn|zn|2β−2znξiξ̄jηkη̄l
∣∣ =

∣∣O(1)|zn|2β−1ξ̄n
∣∣ ≤ C|zn|β

This also implies the terms in B ∗ C are bounded.

(c) Terms in B ∗D:

∣∣(∂khiq̄)|zn|2βgpq̄|zn|2β−4znδnpδnjδnlξiξ̄jηkη̄l
∣∣ =

∣∣O(1)|zn|4β−3gnq̄ ξ̄nη̄n
∣∣ ≤ C|zn|

(d) Terms in C ∗D:

∣∣hkq̄δin|zn|2β−2z̄ng
pq̄|zn|2β−4znδnpδnjδnlξiξ̄jηkη̄l

∣∣ =
∣∣gnq̄|zn|4β−4|ξn|2η̄n

∣∣ ≤ C|zn|1−β

(e) So the only singular terms are contained in (A+D) ∗ (A+D).

Now to deal with this bad term, we first note the Cauchy-Schwartz inequality

(A+D) ∗ (A+D) = |A|2 + |D|2 +A ∗D +D ∗A ≤ (1 + 1/ε)A ∗A+ (1 + ε)D ∗D
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where ε is to determined. Indeed, this follows from ( 1√
ε
A−

√
εD) ∗ ( 1√

ε
A−

√
εD) ≥ 0.

To find ε, replacing gnn̄ by it’s explicit expression in (3.12) we get:

D ∗D = β4(β − 1)2|zn|4β−6gnn̄|ξn|2|ηn|2 = β2(β − 1)2|zn|2β−4|ξn|2|ηn|2
a

a+ b|zn|2−2β

(3.15)

We can add (3.13) and (1 + ε)D ∗D to get

β2(β − 1)2|zn|2β−4|ξn|2|ηn|2
(
−1 + (1 + ε)

a

a+ b|zn|2−2β

)

So if we choose ε:

1 = (1 + ε)
a

a+ b|zn|2−2β
=⇒ ε =

b

a
|zn|2−2β

The only singular term left is

E := (1 + 1/ε)A ∗A =
a+ b|zn|2−2β

b|zn|2−2β
gpq̄(∂kg′iq̄) (∂l̄g

′
pj̄)ξiξ̄jηkη̄l (3.16)

To bound this term, we first note that there were some ambiguity in choosing first

n − 1 coordinates z1, · · · , zn−1 in Lemma 22. Now we can choose these coordinates

more carefully.

Lemma 23. At a fixed point P , We can modify the first (n− 1) coordinates {zi}n−1
i=1

and leave zn unchanged such that ∂kg′iq̄(P ) = 0, for 1 ≤ q ≤ n− 1. Also under these

coordinate, the condition for a is preserved: a(p) = 1, ∂ia(p) = 0, ∂i∂ja(p) = 0.

Proof. Denote z̃i = zi − zi(P ) for 1 ≤ i ≤ n, we can write ω′ as

ω′ = (cij̄ + aij̄kz̃k + ajīkz̃k)dz̃i ∧ dz̃j +O(2) (3.17)

We want to do coordinate change:

z̃i = wi +
1
2
bilmwmwl (3.18)

with bilm = biml, and bnlm = 0 since we want z̃n to stay unchanged.
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When we substitute (3.18) into (3.17), we get

ω′ =
(
cij̄ + (aij̄k + crj̄brki)wk + (ajīk + cis̄bskj)w̄k

)
dwi ∧ dw̄j +O(2)

For any fixed 1 ≤ i, k ≤ n, we want to solve (n-1) unknown {brki}n−1
r=1 from (n-1)

equations:

aij̄ +
n−1∑
r=1

crj̄brki = 0, 1 ≤ j ≤ n− 1

Note that the 1 ≤ r ≤ n− 1 since bnki = 0.

If we denote the truncated square matrix (c̃rj̄ = crj̄)
n−1
r,j=1, then c̃rj̄ is positive definite.

Denote by c̃rj̄ its inverse matrix. Then we can choose

brki = −
n−1∑
r=1

c̃rj̄aij̄k for 1 ≤ r, j ≤ n− 1, and bnki = 0

to get
∂

∂wk
g′
(

∂

∂wi
,
∂

∂w̄j

)
(P ) = aij̄k + crj̄brki = 0 for 1 ≤ j ≤ n− 1

The last statement follows from chain rule.

Using this lemma and gnn̄ in (3.12), we see the last singular term in (3.16) becomes

E =
a+ b|zn|2−2β

b|zn|2−2β
gnn̄(∂kg′in̄)(∂l̄g

′
nj̄)ξiξ̄jηkη̄l = β−2 a

b
O(1) = O(1)

3.3 Log-Futaki invariant and log-K-stability

3.3.1 Log-Futaki invariant

In this section, we recall Donaldson’s definition of log-Futaki invariant (3.22). Let (X,L) be a

polarized projective variety and D be a normal crossing divisor:

D =
r∑
i=1

αiDi

with αi ∈ (0, 1).

From now on, we fix a Hermitian metric | · |i = hi and defining section si of the line bundle
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[Di]. Assume ω ∈ c1(L) is a smooth Kähler form. We define

P(ω) =
{
ωφ := ω +

√
−1∂∂̄φ; φ ∈ L∞(X) ∩ C∞(X\D) such that ω +

√
−1∂∂̄φ ≥ 0

}
Around any point p ∈ X, we can find local coordinate {zi; i = 1, · · · , n}, such that D is defined

by

D = ∪rpi=1αi{zi = 0}

where rp = ]{i; p ∈ Di}.

Definition 13. We say that ω̂ ∈ P(ω) is a conic Kähler metric on (X,D), if around p, ω is

quasi-isometric to the metric

rp∑
i=1

dzi ∧ dz̄i
|zi|2αi

+
n∑

j=rp+1

dzj ∧ dz̄j

We will simply say that ω̂ is a conic metric if it’s clear what D is.

Geometrically, this means the Riemannian metric determined by ω has conic singularity along

each Di of conic angle 2π(1 − αi).

Remark 24. Construction of Kähler-Einstein metrics with conic singularites was proposed long

time ago by Tian, see [Tia8] in which he used such metrics to prove inequalities of Chern numbers

in algebraic geometry.

One consequence of this definition is that globally the volume form has the form

ω̂n =
Ω∏r

i=1 |si|
2αi
i

where Ω is a smooth volume form. For any volume form Ω, let Ric(Ω) denote the curvature of

the Hermitian metric on K−1
X determined by Ω. Then, by abuse of notation,

Ric(ω̂) = Ric(ω̂n) = Ric(Ω) +
√
−1

r∑
i=1

αi∂∂̄ log |si|2hi = Ric(Ω) −
r∑
i=1

αic1([Di], hi) +
r∑
i=1

αi{Di}

= Ric(Ω) − c1([D], h) + {D} (3.19)

where h = ⊗ri=1h
αi
i and s = ⊗ri=1s

αi
i are Hermitian metric and defining section of the R-line

bundle [D] = ⊗ri=1[Di]αi .
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Here we used the Poincáre-Lelong identity:

√
−1∂∂̄ log |si|2hi = −c1([Di], hi) + {Di}

where {Di} is the current of integration along the divisor Di.

The scalar curvature of ω̂ on its smooth locus X\D is

S(ω̂) = ĝij̄R̂ij̄ =
nRic(ω̂) ∧ ω̂n−1

ω̂n
=
n(Ric(Ω) − c1([D], h)) ∧ ω̂n−1

ω̂n

So if S(ω̂) is constant, then the constant only depends on cohomological classes by the identity:

nµ1 :=
n(c1(X) − c1([D])) ∧ [c1(L)]n−1

c1(L)n
=

−n(KX +D) · Ln−1

Ln
= nµ− V ol(D)

V ol(X)
(3.20)

Here

nµ =
n c1(X) · c1(L)n−1

c1(L)n
=

−nKX · Ln−1

Ln

is the average scalar curvature for smooth Kähler form in c1(L). And

V ol(D) =
∫
D

c1(L)n−1

(n− 1)!
=
D · Ln−1

(n− 1)!
, V ol(X) =

∫
X

c1(L)n

n!
=
Ln

n!

Now assume C∗ acts on (X,L) and v is the generating holomorphic vector field. Recall that the

ordinary Futaki-Calabi invariant ([Fut], [Cal3]) is defined by

F (c1(L))(v) = −
∫
X

θv(S(ω) − nµ)
ωn

n!

where θv satisfies

ιvω = ∂̄θv

Now assume ω̂∞ ∈ P(ω) is a conic metric and satisfies

S(ω̂∞) = nµ1 (3.21)

Assume D is preserved by the C∗ action. Let’s calculate the ordinary Futaki invariant using the

conic metric ω̂∞. Let θ̂v = θ̂(ω̂∞, v). Then near p ∈ D, v ∼
∑rp
i=1 cizi∂zi+ ṽ with ṽ = o(z1 · · · zrp)

holomorphic. θ̂v ∼
∑rp
i=1 |zi|2(1−αi).
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We then make use of the distributional identity (3.19) to get

F (c1(L))(v) = −
∫
X

θ̂v(nRic(ω̂∞) − nµω̂∞) ∧ ω̂n−1
∞
n!

= −
∫
X

θ̂v [(nRic(Ω) − nc1([D], h) − nµ1ω̂∞) + n{D} − (nµ− nµ1)ω̂∞] ∧ ω̂n−1
∞
n!

= −
∫
X

θ̂v(S(ω̂∞) − nµ1)
ω̂n∞
n!

−
∫
X

{D}θ̂v
ω̂n−1
∞

(n− 1)!
+ (nµ− nµ1)

∫
X

θ̂v
ω̂n∞
n!

= −
(∫

D

θ̂v
ω̂n−1
∞

(n− 1)!
− V ol(D)
V ol(X)

∫
X

θ̂v
ω̂n∞
n!

)

So we get

0 = F (c1(L))(v) +
(∫

D

θ̂v
ω̂n−1
∞

(n− 1)!
− V ol(D)
V ol(X)

∫
X

θ̂v
ω̂n∞
n!

)
Since the two integrals in the above formula is integration of (singular) equivariant forms, they are

independent of the chosen Kähler metric in P(ω) with at worst conic singularities. In particular,

we can choose the smooth Kähler metric ω, then we just discover the log-Futaki invariant defined

by Donaldson:

Definition 14. [Don6]

F (c1(L), D)(v) = F (c1(L))(v) +
(∫

D

θv
ωn−1

(n− 1)!
− V ol(D)
V ol(X)

∫
X

θv
ωn

n!

)
(3.22)

Remark 25. This differs from the formula in [Don6] by a sign. And we think of D as a cycle

with real coefficients, so if we replace D by (1−β)4, we have the same formua as that in [Don6].

3.3.2 Integrating log-Futaki-invariant

We can integrate the log-Futaki-invariant to get log-K-energy

νω,D(φ) = −
∫ 1

0

dt

∫
X

(S(ωt) − S)φ̇
ωnt
n!

+
∫ 1

0

dt

∫
D

φ̇
ωn−1
t

(n− 1)!
− V ol(D)
V ol(X)

∫ 1

0

dt

∫
X

φ̇
ωnt
n!

= νω(φ) +
∫ 1

0

∫
X

(
i∂∂̄ log |sD|2 + 2πc1([D], h)

)
φ̇
ωn−1
t

(n− 1)!
+
V ol(D)
V ol(X)

F 0
ω(φ)

= νω(φ) +
V ol(D)
V ol(X)

F 0
ω(φ) + J χD

ω (φ) +
∫
X

log |sD|2(ωnφ − ωn)/n! (3.23)

where χD = c1([D], h) is the Chern curvature form. The J χ
ω (φ) is defined by:

J χ
ω (φ) =

∫ 1

0

dt

∫
X

φ̇χ ∧
ωn−1
φt

(n− 1)!
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Let’s now focus on the Fano case as in the beginning of this paper. ((∗)β) is equivalent to the

following singular complex Monge-Ampère equation:

(ω +
√
−1∂∂̄φ)n = e−βφ

Ω1

|s|2(1−β)
(3.24)

with Ω1 = ehωωn and s is a defining section of [Y ]. Note that the line bundle [Y ] = K−1
X has the

Hermitian metric ‖ · ‖ such that the curvature is ω.

We have D = (1 − β)Y . Since [Y ] = K−1
X , we can assume χD = (1 − β)ω, V ol((1 − β)D) =

n(1 − β)V ol(X). Then (3.23) becomes

νω,D(ωφ) = νω(ωφ) + (1 − β)
(
nF 0

ω(φ) + J ω
ω (φ)

)
+ (1 − β)

∫
X

log |s|2
ωnφ
n!

= νω(ωφ) + (1 − β)(Iω − Jω)(ωφ) + (1 − β)
∫
X

log |s|2
ωnφ
n!

=
∫
X

log
ωnφ

ehωωn
ωnφ
n!

− β(Iω − Jω)(ωφ) + (1 − β)
∫
X

log |s|2
ωnφ
n!

+
∫
X

hωω
n/n!

=
∫
X

log
ωnφ

ehωωn/|s|2(1−β)

ωnφ
n!

+ β

(∫
X

φωnφ/n! + F 0
ω(φ)

)
+
∫
X

hωω
n/n!

=
∫
X

log
ωnφ

ehω−α log |s|2−βφωn
ωnφ
n!

+ βF 0
ω(φ) +

∫
X

hωω
n/n!

=
∫
X

log
ωnφ

ebhω−βφωn

ωnφ
n!

+ βF 0
ω(φ) +

∫
X

hωω
n/n!

where ĥω = hω − α log |s|2 satisfies

√
−1∂∂̄ĥω = Ric(ω) − βω − α{s = 0}, and

∫
X

e
bhωωn = V (3.25)

3.3.3 log-K-stability

We imitate the definition of K-stability to define log-K-stability. First we recall the definition of

test configuration [Don4] or special degeneration [Tia9] of a polarized projective variety (X,L).

Definition 15. A test configuration of (X,L), consists of

1. a scheme X with a C∗-action;

2. a C∗-equivariant line bundle L → X

3. a flat C∗-equivariant map π : X → C, where C∗ acts on C by multiplication in the standard

way;
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such that any fibre Xt = π−1(t) for t 6= 0 is isomorphic to X and (X,L) is isomorphic to

(Xt,L|Xt).

Any test configuration can be equivariantly embedded into PN × C∗ where the C∗ action on

PN is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X, the test

configuration of (X,L) also induces a test configuration (Y,L|Y) of (Y,L|Y ) .

Let dk, d̃k be the dimensions of H0(X,Lk), H0(Y, L| kY ), and wk, w̃k be the weights of C∗

action on H0(X0,L| kX0
), H0(Y0,L| kY0

), respectively. Then we have expansions:

wk = a0k
n+1 + a1k

n +O(kn−1), dk = b0k
n + b1k

n−1 +O(kn−2)

w̃k = ã0k
n +O(kn−1), d̃k = b̃0k

n−1 +O(kn−2)

If the central fibre X0 is smooth, we can use equivariant differential forms to calculate the

coefficients by [Don4]. Let ω be a smooth Kähler form in c1(L), and θv = Lv −∇v, then

a0 = −
∫
X

θv
ωn

n!
; a1 = −1

2

∫
X

θvS(ω)
ωn

n!
(3.26)

b0 =
∫
X

ωn

n!
= V ol(X); b1 =

1
2

∫
X

S(ω)
ωn

n!
(3.27)

ã0 = −
∫
Y0

θv
ωn−1

(n− 1)!
; b̃0 =

∫
Y0

ωn−1

(n− 1)!
= V ol(Y0) (3.28)

Remark 26. To see the signs of coefficients and give an example, we consider the case where

X = P1, L = OP1(k). C∗ acts on P1 by multiplication: t · z = tz. A general D ∈ |L| consists of k

points. As t→ 0, t ·D → k{0}. D is the zero set of a general degree k homogeneous polynomial

Pk(z0, z1) and k{0} is the zero set of zk1 . C∗ acts on H0(P1,O(k)) by t · zi0z
j
1 = t−jzi0z

j
1 so

that limt→0[t · Pk(z0, z1)] = [zk1 ], where [Pk] ∈ P(H0(P1,O(k))). Take the Fubini-Study metric

ωFS =
√
−1∂∂̄ log(1 + |z|2) =

√
−1 dz∧dz̄

(1+|z|2)2 , then θv = ∂ log(1+|z|2)
∂ log |z|2 = |z|2

1+|z|2 . So

−a0 =
∫

P1
θvωFS =

∫ +∞

0

r2

(1 + r2)3
2rdr =

1
2

−a1 =
1
2

∫
P1
S(ωFS)θvωFS =

∫
P1
θvωFS =

1
2

While

wk = −(1 + · · · + k) = −1
2
k2 − 1

2
k
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which gives exactly a0 = a1 = − 1
2 .

Comparing (3.22), (3.26)-(3.28), we can define the algebraic log-Futaki invariant of the given

test configuration to be

F (X ,Y,L) =
2(a1b0 − a0b1)

b0
+ (−ã0 +

b̃0
b0
a0)

=
(2a1 − ã0)b0 − a0(2b1 − b̃0)

b0
(3.29)

Definition 16. (X,Y, L) is log-K-stable along the test configuration (X ,L) if F (X ,Y,L) ≤ 0,

and equality holds if and only if (X ,Y,L) is a product configuration.

(X,Y, L) is semi-log-K-stable along (X ,L) if F (X ,Y,L) ≤ 0. Otherwise, it’s unstable.

(X,Y, L) is log-K-stable (semi-log-K-stable) if, for any integer r > 0, (X,Y, Lr) is log-K-stable

(semi-log-K-stable) along any test configuration of (X,Y, Lr).

Remark 27. When Y is empty, then definition of log-K-stability becomes the definition of K-

stability. ([Tia9], [Don4])

Remark 28. In applications, we sometimes meet the following situation. Let λ(t) : C∗ →

SL(N+1,C) be a 1 parameter subgroup. As t→ ∞, λ(t) will move X,Y ⊂ PN to the limit scheme

X0, Y0. Then stability condition is equivalent to the other opposite sign condition F (X0, Y0, v) ≥

0. This is of course related to the above definition by transformation t→ t−1.

Example 1 (Orbifold). Assume X is smooth. Y =
∑r
i=1(1− 1

ni
)Di is a normal crossing divisor,

where ni > 0 are integers. The conic Kähler metric on (X,Y ) is just the orbifold Kähler metric

on the orbifold (X,Y ). Orbifold behaves similarly as smooth variety, but in the calculation, we

need to use orbifold canonical bundle Korb = KX + Y . For example, think L as an orbifold line

bundle on X, then the orbifold Riemann-Roch says that

dimH0
orb((X,Y ), L) =

Ln

n!
kn +

1
2
−(KX + Y ) · Ln

(n− 1)!
kn−1 +O(kn−2)

= b0k
n +

1
2

(2b1 − b̃0)kn−1 +O(kn−2)

For the C∗-weight of H0
orb((X,Y ), L), we have expansion:

worbk = aorb0 kn+1 + aorb1 kn +O(kn−1)
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By orbifold equivariant Riemann-Roch, we have the formula:

aorb0 =
∫
X

θ̂v
ω̂n

n!
=
∫
X

θv
ωn

n!
= a0

aorb1 =
∫
X

θ̂vS(ω̂)
ω̂n

n!

To calculate the second coefficient aorb1 , we choose an orbifold metric ω̂, then by (3.26):

a1 = −1
2

∫
X

θ̂vn Ric(ω̂) ∧ ω̂n−1

n!

= −1
2

∫
X

θ̂vn(Ric(Ω) − c1([D], h) + {D}) ∧ ω̂n−1

n!

= −1
2

∫
X

θ̂vS(ω̂)
ω̂n

n!
− 1

2

∫
D

θ̂v
ω̂n−1

(n− 1)!

= aorb1 − 1
2

∫
D

θv
ωn−1

(n− 1!
= aorb1 +

1
2
ã0

So

aorb1 =
1
2

(2a1 − ã0) (3.30)

Comparing (3.29), we see that the log-Futaki invariant recovers the orbifold Futaki invariant,

and similarly log-K-stability recovers orbifold K-stability. Orbifold Futaki and orbifold K-stability

were studied by Ross-Thomas [RoTh2].

Example 2. X = P1, L = K−1
P1 = OP1(2), Y =

∑r
i=1 αipi. For any i ∈ {1, · · · , r}, we choose

the coordinate z on P1, such that z(pi) = 0. Then consider the holomorphic vector field v = z∂z.

v generates the 1 parameter subgroup λ(t) : λ(t) · z = t · z. As t → ∞, λ(t) degenerate (X,Y )

into the pair (P1, αi{0} +
∑
j 6=i αj{∞}). We take θv = −|z|−2+|z|2

|z|−2+1+|z|2 . Then it’s easy to get the

log-Futaki invariant of the degeneration determined by λ:

F (P1,

r∑
i=1

αipi,OP1(2))(λ) =
∑
j 6=i

αj − αi

If (P1,
∑r
i=1 αipi) is log-K-stable, by Remark 28, we have

∑
j 6=i

αj − αi > 0 (3.31)

Equivalently, if we let t→ 0, we get αi −
∑
j 6=i αj < 0 from log-K-stability.

Let’s consider the problem of constructing singular Riemannian metric g of constant scalar
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curvature on P1 which has conic angle 2π(1−αi) at pi and is smooth elsewhere. Assume pi 6= ∞

for any i = 1, . . . , r. Under conformal coordinate z of C ⊂ P1, g = e2u|dz|2. u is a smooth

function in the punctured complex plane C−{p1, . . . , pr} so that near each pi, u(z) = −2αi log |z−

pi|+a continuous function, where αi ∈ (0, 1) and u = −2 log |z|+ a continuous function near

infinity. We call such function is of conic type. The condition of constant scalar curvature

corresponds to the following Liouville equations.

1. ∆u = −e2u

2. ∆u = 0

3. ∆u = e2u

which correspond to scalar curvature=1, 0, -1 case respectively.

For such equations, we have the following nice theorem due to Troyanov, McOwen, Thurston,

Luo-Tian.

Theorem 18 (See [LuTi] and the reference there). 1. For equation 1, it has a solution of

conic type if and only if

(a)
∑r
i=1 αi < 2, and

(b)
∑
j 6=i αj − αi > 0, for all i = 1, . . . , n.

2. For equation 2, it has a solution of conic type if and only if (a):
∑r
i=1 αi = 2.

In this case, (a) implies the condition: (b)
∑
j 6=i αj − αi > 0, for all i = 1, . . . , r.

3. For equation 3, it has a solution of conic type if and only if (a):
∑r
i=1 αi > 2.

Again in this case, (a) implies the condition: (b)
∑
j 6=i αj − αi > 0, for all i = 1, . . . , r.

Moreover, the above solutions are all unique.

Note that deg(−(KP1 +
∑r
i=1 αipi)) = 2 −

∑r
i=1 αi, so by (3.20), conditions (a) in above

theorem correspond to the cohomological conditions for the scalar curvature to be positive, zero,

negative respectively. While the condition (b) is the same as (3.31). So by the above theorem,

if (P1,
∑r
i=1 αipi) is log-K-stable, then there is a conic metric on (P1,

∑r
i=1 αipi) with constant

curvature whose sign is the same as that of 2 −
∑
i αi.

This example clearly suggests

Conjecture 3 (Logarithmic version of Tian-Yau-Donaldson conjecture). There is a constant

scalar curvature conic Kähler metric on (X,Y ) if and only if (X,Y ) is log-K-stable.

73



Chapter 4

Continuity method in

Kähler-Einstein problem on toric

Fano manifold

4.1 Introduction to results

Recall that the continuity method on Fano manifold in (∗)t is defined as the following family of

equations parameterized by t

(ω +
√
−1∂∂̄φt)n = ehω−tφtωn

where hω is defined by

Ric(ω) − ω =
√
−1∂∂̄hω,

∫
X

ehωωn/n! = V (4.1)

We get much information about the continuity method for toric Fano manifolds. A toric Fano

manifold X4 is determined by a reflexive lattice polytope 4. For example, BlpP2 i.e. P2 blown

up one point is represented by

@
@

@

@
@

@
@

@
@

@
@@

�
�

qqq
Q

O Pc
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Such a polytope 4 contains the origin O ∈ Rn. We denote the barycenter of 4 by Pc. If Pc 6= O,

the ray Pc + R≥0 ·
−−→
PcO intersects the boundary ∂4 at point Q.

Theorem 19. ([Li1]) If Pc 6= O,

R(X4) =

∣∣OQ∣∣∣∣PcQ∣∣
Here

∣∣OQ∣∣, ∣∣PcQ∣∣ are lengths of line segments OQ and PcQ. In other words,

Q = − R(X4)
1 −R(X4)

Pc ∈ ∂4

If Pc = O, then there is Kähler-Einstein metric on X4 and R(X4) = 1.

Remark 29. The last statement was already proved by Wang-Zhu [WaZh].

Remark 30. Székelyhidi [Szé] proved that R(BlpP2) = 6
7 and R(Blp,qP2) ≤ 21

25 . My result gives

the sharp value for R(X4) of any toric Fano manifold.

The next natural problem is how the limit metric looks like as t → R(X). For the special

example X = BlpP2, which is also the projective compactification of the total space of line bundle

O(−1) → P2. Székelyhidi [Szé] constructed a sequence of Kähler metric ωt, with Ric(ωt) ≥ tωt

and ωt converge to a metric with conic singularty along the divisor D∞ of conic angle 2π × 5/7,

where D∞ is divisor at infinity added in projective compactification. Shi-Zhu [ShZh] proved that

rotationally symmetric solutions to the continuity equations (∗)t converge to a metric with conic

singularity of conic angle 2π× 5/7 in Gromov-Hausdorff sense, which seems to be the first strict

result on the limit behavior of solutions to (∗)t. Note that by the theory of Cheeger-Colding-

Tian [CCT], the limit metric in Gromov-Hausdorff sense should have complex codimension 1

conic type singularities since we only have the positive lower Ricci bound.

For the more general toric case, if we use a special toric metric, which is just the Fubini-Study

metric in the projective embedding given by the vertices of the polytope, then, after transforming

by some biholomorphic automorphism, we prove that there is a sequence of Kähler metrics which

solve the equation (∗)t, and converge to a limit metric satisfying a singular complex Monge-

Ampère equation (Also see equivalent real version in Theorem 21). This generalizes the result of

[ShZh] for the special reference Fubini-Study metric. Precisely, let {pα;α = 1, . . . , N} be all the

vertex lattice points of 4 and {sα;α = 1, . . . , N} be the corresponding holomorphic sections of
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K−1
X4

. Then we take the reference metric to be

ω = ωFS :=
√
−1∂∂̄ log

N∑
α=1

|sα|2,

which is the pull-back of the Fubini-Study metric of CPN−1 under Kodaira embedding induced

by {sα}. Now using the above notation, let F be the minimal face of 4 containing Q. Let {pFk }

be the vertex lattice points of F , then they correspond to a sub-linear system LF of | −KX4 |.

We let Bs(LF ) denote the base locus of this sub-linear system. Also let
∑
α

′ denote the sum∑
pFk

, then we have

Theorem 20. ([Li4]) After some biholomorphic transformation σt : X4 → X4, there is a

subsequence ti → R(X), such that σ∗
tiωti converge to a Kähler current ω∞ = ω +

√
−1∂∂̄ψ∞,

with ψ∞ ∈ L∞(X4) ∩ C∞(X4\Bs(LF )), which satisfies a complex Monge-Ampère equation of

the form

(ω +
√
−1∂∂̄ψ∞)n = e−R(X)ψ∞

(∑
α

′bα|sα|2
)−(1−R(X))

Ω. (4.2)

Here Ω = ehωωn is a smooth volume form. For each vertex lattice point pFα of F , bα is a constant

satisfying 0 < bα ≤ 1. ‖ · ‖ = ‖ · ‖FS is (up to multiplication of a constant) the Fubini-Study

metric on K−1
X4

. In particular

Ric(ωψ∞) = R(X)ωψ∞ + (1 −R(X))
√
−1∂∂̄ log(

∑
α

′bα|sα|2). (4.3)

The above equation shows the conic type singularities for the limit metric. We can read out

the place of conic singularities and conic angles from the geometry of the polytope. See Section

4.4.3 for the method and discussions. In particular, this can give a toric explanation of the special

case BlpP2 just mentioned (See example 3).

Note that, although we can prove the limit metric is smooth outside the singular locus, to

prove geometrically it’s a conic metric along codimension one strata of singular set, we need to

prove more delicate estimate that we wish to discuss in future. There are also difficulties for

studying the behavior of limit metric around higher codimensional strata (See Remark 34 and

Example 2).

Finally, we remark that, in view of the special case BlpP2 in [ShZh] and results in [LaSo], we

expect the following statement is true: the Gromov-Hausdorff limit of (X4, ωti) is the metric

completion of (X4\Bs(LF ), ω∞).
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4.2 Consequence of Wang-Zhu’s theory

For a reflexive lattice polytope 4 in Rn = Zn ⊗Z R, we have a Fano toric manifold X4 ⊃ (C∗)n

with a (C∗)n action. In the following, we will sometimes just write X for X4 for simplicity.

Let (S1)n ⊂ (C∗)n be the standard real maximal torus. Let {zi} be the standard coordinates

of the dense orbit (C∗)n, and xi = log |zi|2. We have a standard lemma about toric Kähler

metric, which we omit the proof. See for example [WaZh].

Lemma 24. Any (S1)n invariant Kähler metric ω on X has a potential u = u(x) on (C∗)n, i.e.

ω =
√
−1∂∂̄u. u is a proper convex function on Rn, and satisfies the momentum map condition:

Du(Rn) = 4.

Also,
(
√
−1∂∂̄u)n/n!

dz1
z1

∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n
z̄n

= det
(

∂2u

∂xi∂xj

)
=: det(uij). (4.4)

Let {pα; α = 1, · · · , N} be all the vertex lattice points of 4. Each pα corresponds to a

holomorphic section sα ∈ H0(X4,K
−1
X4

). We can embed X4 into PN using {sα}. Let us first

find the appropriate potential on (C∗)n for the pull back of Fubini-Study metric. (Cf. [WaZh])

Recall that, for any section s of K−1
X , the Fubini-Study metric as a Hermitian metric on K−1

X

is defined up to the multiplication by a positive constant:

|s|2FS = e−C̃
|s|2∑
β |sβ |2

. (4.5)

The righthand side is well defined by using local trivializations. C̃ is some normalizing constant

which we choose now to simplify the computation later.

First, let s̃0 be the section corresponding to the origin 0 ∈ 4. On the open dense orbit (C∗)n,

by standard toric geometry, we can assume

sα
s̃0

=
n∏
i=1

z
pα,i
i . (4.6)

So the Fubini-Study norm of s̃0 is

‖s̃0‖2
FS = e−C̃

|s̃0|2∑N
α=1 |sα|2

= e−C̃

(
N∑
α=1

n∏
i=1

|zi|2pα,i
)−1

= e−C̃

(
N∑
α=1

e<pα,x>

)−1

=: e−ũ0 .
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In other words, we define

ũ0 = log

(
N∑
α=1

e<pα,x>

)
+ C̃. (4.7)

Now we can choose C̃ by the normalization condition:

∫
Rn
e−ũ0dx = V ol(4) =

c1(X4)n

n!
=

1
(2π)n

∫
X4

ωn

n!
. (4.8)

On the other hand, Ric(ω) is the curvature form of Hermitian line bundle K−1
M with Hermitian

metric determined by the volume form ωn. Note that we can take s̃0 = z1
∂
∂z1

∧· · ·∧zn ∂
∂zn

. Since

∂
∂ log zi

= 1
2 ( ∂
∂ log |zi| −

√
−1 ∂

∂θi
) = ∂

∂ log |zi|2 = ∂
∂xi

when acting on any (S1)n invariant function on

(C∗)n, we have

‖s̃0‖2
ωn =

∥∥∥∥z1 ∂

∂z1
∧ · · · ∧ zn

∂

∂zn

∥∥∥∥2

ωn
= det

(
∂2ũ0

∂ log zi ∂ log zj

)
= det

(
∂2ũ0

∂ log |zi|2 ∂ log |zj |2

)
= det(ũ0,ij).

It’s easy to see from definition of hω in (4.1) and normalization condition (4.8) that

ehωωn/n!
dz1
z1

∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n
z̄n

= ehω‖s̃0‖2
ωn = ‖s̃0‖2

FS = e−ũ0 . (4.9)

Remark 31. We only use vertex lattice points because, roughly speaking, later in Lemma 23,

vertex lattice points alone helps us to determine which sections become degenerate when doing

biholomorphic transformation and taking limit. See remark 33. We expect results similar to

Theorem 20 hold for general toric reference Kähler metric.

So divide both sides of (∗)t by meromorphic volume form n!(dz1z1 ∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n
z̄n

), We

can rewrite the equations (∗)t as a family of real Monge-Ampère equations on Rn:

det(uij) = e−(1−t)ũ0−tu (∗∗)t

where u is the potential for ω +
√
−1∂∂̄φ on (C∗)n, and is related to φ in (∗)t by

φ = u− ũ0.

Every strictly convex function f appearing in (∗∗)t (f = ũ0, u, wt = (1− t)ũ0 + tut) must satisfy

Df(Rn) = 4◦ (4◦ means the interior of 4). Since 0 is (the unique lattice point) contained in
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4◦ = Df(Rn), the strictly convex function f is properly. For simplicity, let

wt(x) = tu(x) + (1 − t)ũ0.

Then wt is also a proper convex function on Rn satisfying Dwt(Rn) = 4. So it has a unique

absolute minimum at point xt ∈ Rn. Let

mt = inf{wt(x) : x ∈ Rn} = wt(xt).

Wang-Zhu’s [WaZh] method for solving (∗∗)t consists of two steps. The first step is to show

some uniform a priori estimates for wt. For t < R(X4), the proper convex function wt obtains

its minimum value at a unique point xt ∈ Rn. Let

mt = inf{wt(x) : x ∈ Rn} = wt(xt)

Proposition 20 ([WaZh],See also [Don3]). [1.]

1. there exists a constant C, independent of t < R(X4), such that

|mt| < C

2. There exists κ > 0 and a constant C, both independent of t < R(X4), such that

wt ≥ κ|x− xt| − C (4.10)

For the reader’s convenience, we record the proof here.

Proof. Let A = {x ∈ Rn;mt ≤ w(x) ≤ mt+1}. A is a convex set. By a well known lemma due to

Fritz John, there is a unique ellipsoid E of minimum volume among all the ellipsoids containing

A, and a constant αn depending only on dimension, such that

αnE ⊂ A ⊂ E

αnE means the αn-dilation of E with respect to its center. Let T be an affine transformation

with det(T ) = 1, which leaves x′=the center of E invariant, such that T (E) = B(x′, R), where
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B(x′, R) is the Euclidean ball of radius R. Then

B(x′, αnR) ⊂ T (A) ⊂ B(x′, R)

We first need to bound R in terms of mt. Since D2w = tD2u+ (1 − t)D2ũ0 ≥ tD2u, by ((∗∗)t),

we see that

det(wij) ≥ tne−w

Restrict to the subset A, it’s easy to get

det(wij) ≥ C1e
−mt

Let w̃(x) = w(T−1x), since det(T ) = 1, w̃ satisfies the same inequality

det(w̃ij) ≥ C1e
−mt

in T (A).

Construct an auxiliary function

v(x) = C
1
n
1 e

−mt
n

1
2
(
|x− x′|2 − (αnR)2

)
+mt + 1

Then in B(x′, αnR),

det(vij) = C1e
−mt ≤ det(w̃ij)

On the boundary ∂B(x′, αnR), v(x) = mt + 1 ≥ w̃. By the Comparison Principle for Monge-

Amère operator, we have

w̃(x) ≤ v(x) in B(x′, αnR)

In particular

mt ≤ w̃(x′) ≤ v(x′) = C
1
n
1 e

−mt
n

1
2

(−R
2

n2
) +mt + 1

So we get the bound for R:

R ≤ C2e
mt
2n

So we get the upper bound for the volume of A:

V ol(A) = V ol(T (A)) ≤ CRn ≤ Ce
mt
2
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By the convexity of w, it’s easy to see that {x;w(x) ≤ mt + s} ⊂ s · {x;w(x) ≤ mt + 1} = s ·A,

where s ·A is the s-dilation of A with respect to point xt. So

V ol({x;w(x) ≤ mt + s}) ≤ snV ol(A) ≤ Csne
mt
2 (4.11)

The lower bound for volume of sublevel sets is easier to get. Indeed, since |Dw(x)| ≤ L, where

L = maxy∈4 |y|, we have B(xt, s · L−1) ⊂ {x;w(x) ≤ mt + s}. So

V ol({x;w(x) ≤ mt + s}) ≥ Csn (4.12)

Now we can derive the estimate for mt. First note the identity:

∫
Rn
e−wdx =

∫
Rn

det(uij)dx =
∫
4
dσ = V ol(4) (4.13)

Second, we use the coarea formula

∫
Rn
e−wdx =

∫
Rn

∫ +∞

w

e−sdsdx =
∫ +∞

−∞
e−sds

∫
Rn

1{w≤s}dx

=
∫ +∞

mt

e−sV ol({w ≤ s})ds

= e−mt
∫ +∞

0

e−sV ol({w ≤ mt + s})ds (4.14)

Using the bound for the volume of sublevel sets (4.11) and (4.12) in (4.14), and compare with

(4.13), it’s easy to get the bound for |mt|.

Now we prove the estimate (4.10) following the argument of [Don3]. We have seenB(xt, L−1) ⊂

{w ≤ mt + 1}, and V ol({w ≤ mt + 1}) ≤ C by (4.11) and uniform bound for mt. Then we must

have {w ≤ mt + 1} ⊂ B(xt, R(C,L)) for some uniformly bounded radius R(C,L). Otherwise,

the convex set {w ≤ mt + 1} would contain a convex subset of arbitrarily large volume. By the

convexity of w, we have w(x) ≥ 1
R(C,L) |x − xt| + mt − 1 Since mt is uniformly bounded, the

estimate (4.10) follows.

The second step is trying to bound |xt|. In Wang-Zhu’s [WaZh] paper, they proved the exis-

tence of Kähler-Ricci soliton on toric Fano manifold by solving the real Monge-Ampère equation

corresponding to Kähler-Ricci solition equation. But now we only consider the Kähler-Einstein

equation, which in general can’t be solved because there is the obstruction of Futaki invariant.
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Proposition 21 ([WaZh]). the uniform bound of |xt| for any 0 ≤ t ≤ t0, is equivalent to that

we can solve (∗∗)t, or equivalently solve (∗)t, for t up to t0. More precisely, (by the discussion

in introduction,) this condition is equivalent to the uniform C0-estimates for the solution φt in

(∗)t for t ∈ [0, t0].

Again we sketch the proof here.

Proof. If we can solve (∗∗)t (or equivalently (∗)t) for 0 ≤ t ≤ t0. Then {w(t) = (1− t)ũ0 + tu; 0 ≤

t ≤ t0} is a smooth family of proper convex functions on Rn. By implicit function theorem, the

minimal point xt depends smoothly on t. So {xt} are uniformly bounded in a compact set.

Conversely, assume |xt| is bounded. First note that φt = u− ũ0 = 1
t (wt(x) − ũ0).

As in Wang-Zhu [WaZh], we consider the enveloping function:

v(x) = max
pα∈Λ∩4

〈pα, x〉

Then 0 ≤ ũ0(x) − v(x) ≤ C, and Dw(ξ) · x ≤ v(x) for all ξ, x ∈ Rn. We can assume t ≥ δ > 0.

Then using uniform boundedness of |xt|

φt(x) =
1
t
(wt(x) − ũ0) =

1
t
[(wt(x) − wt(xt)) − v(x) + (v(x) − ũ0(x)) + wt(xt)]

≤ δ−1(Dwt(ξ) · x− v(x) −Dwt(ξ) · xt) + C ≤ C ′

Thus we get the estimate for supt φt. Then one can get the bound for inft φt using the Harnack

inequality in the theory of Monge-Ampère equations. For details see ([WaZh], Lemma 3.5) (see

also [Tia1]).

By the above proposition, we have

Lemma 25. If R(X4) < 1, then there exists a subsequence {xti} of {xt}, such that

lim
ti→R(X4)

|xti | = +∞

The observation now is that

Lemma 26. If R(X4) < 1, then there exists a subsequence of {xti} which we still denote by

{xti}, and y∞ ∈ ∂4, such that

lim
ti→R(X4)

Dũ0(xti) = y∞ (4.15)
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This follows easily from the properness of ũ0 and compactness of 4.

We now use the key relation (See [WaZh] Lemma 3.3, and also [Don3] page 29)

0 =
∫

Rn
Dw(x)e−wdx =

∫
Rn

((1 − t)Dũ0 + tDu)e−wdx

Since ∫
Rn
Due−wdx =

∫
Rn
Du det(uij)dx =

∫
4
ydσ = V ol(4)Pc

where Pc is the barycenter of 4, so

1
V ol(4)

∫
Rn
Dũ0e

−wdx = − t

1 − t
Pc. (4.16)

Remark 32. This identity is a toric form of a general formula for solutions of equations (∗)t:

− 1
V

∫
X

divΩ(v)ωnt =
t

1 − t
F2πc1(X)(v).

Here Ω = ehωωn. v is any holomorphic vector field, and divΩ(v) = LvΩ
Ω is the divergence of v

with respect to Ω.

F2πc1(X)(v) =
1
V

∫
X

v(hω)ωn

is the Futaki invariant in class 2πc1(X) [Fut].

We will show this vector tend to a point on ∂4 when t goes to R(X4). To prove this we use

the defining function of 4. Similar argument was given in the survey [Don3], page 30.

4.3 Calculate R(X) on any toric Fano manifold

We now assume the reflexive polytope 4 is defined by inequalities:

λr(y) ≥ −1, r = 1, · · · ,K (4.17)

λr(y) = 〈vr, y〉 are fixed linear functions. We also identify the minimal face of 4 where y∞ lies:

λr(y∞) = −1, r = 1, · · · ,K0 (4.18)

λr(y∞) > −1, r = K0 + 1, · · · ,K
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Clearly, Theorem 19 follows from

Proposition 22. If Pc 6= O,

− R(X4)
1 −R(X4)

Pc ∈ ∂4

Precisely,

λr

(
− R(X4)

1 −R(X4)
Pc

)
≥ −1 (4.19)

Equality holds if and only if r = 1, · · · ,K0. So − R(X4)
1−R(X4)Pc and y∞ lie on the same faces (4.18).

Proof. By (4.16) and defining function of 4, we have

λr

(
− t

1 − t
Pc

)
+1 =

1
V ol(4)

∫
Rn
λr(Dũ0)e−wdx+1 =

1
V ol(4)

∫
Rn

(λr(Dũ0)+1)e−wdx (4.20)

The inequality (4.19) follows from (4.20) by letting t→ R(X4). To prove the second statement,

by (4.20) we need to show

lim
ti→R(X4)

1
V ol(4)

∫
Rn
λr(Dũ0)e−wtidx+ 1

 = 0 : r = 1, · · · ,K0

> 0 : r = K0 + 1, · · · , N
(4.21)

By the uniform estimate (4.10) and fixed volume (4.13), and since Dũ0(Rn) = 4◦ is a bounded

set, there exists Rε, independent of t ∈ [0, R(X4)), such that

1
V ol(4)

∫
Rn\BRε (xt)

λr(Dũ0)e−wtdx < ε, and
1

V ol(4)

∫
Rn\BRε (xt)

e−wtdx < ε (4.22)

Now (4.21) follows from the following claim.

Claim 1. Let R > 0, there exists a constant C > 0, which only depends on the polytope 4, such

that for all δx ∈ BR(0) ⊂ Rn,

e−CR(λr(Dũ0(xti)) + 1) ≤ λr(Dũ0(xti + δx)) + 1 ≤ eCR(λr(Dũ0(xti)) + 1) (4.23)

Assuming the claim, we can prove two cases of (4.21). First by (4.15) and (4.18), we have

lim
ti→R(X4)

λr(Dũ0(xti)) + 1 = λr(y∞) + 1 =

 0 : r = 1, · · · ,K0

ar > 0 : r = K0 + 1, · · · , N
(4.24)

1. r = 1, · · · ,K0. ∀ε > 0, first choose Rε as in (4.22). By (4.23) and (4.24), there exists
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ρε > 0, such that if |ti −R(X4)| < ρε, then for all δx ∈ BRε(0) ⊂ Rn,

0 ≤ λr(Dũ0(xti + δx)) + 1 < eCRε(λr(Dũ0)(xti) + 1) < ε

in other words, λr(Dũ0(xti + δx)) + 1 → 0 uniformly for δx ∈ BRε(0), as ti → R(X4). So

when |ti −R(X4)| < ρε,

1
V ol(4)

∫
Rn
λr(Dũ0)e−wdx+ 1 =

1
V ol(4)

∫
Rn\BRε (xti )

λr(Dũ0)e−wdx

+
1

V ol(4)

∫
Rn\BRε (xti )

e−wdx+
1

V ol(4)

∫
BRε (xti )

(λr(Dũ0) + 1)e−wdx

≤ 2ε+ ε
1

V ol(4)

∫
BRε (xti )

e−wdx ≤ 3ε

The first case in (4.21) follows by letting ε→ 0.

2. r = K0 + 1, · · · , N . We fix ε = 1
2 and R 1

2
in (4.22). By (4.23) and (4.24), there exists

ρ > 0, such that if |ti −R(X4)| < ρ, then for all δx ∈ BR 1
2

(0) ⊂ Rn,

λr(Dũ0(xti + δx)) + 1 > e
−CR 1

2 (λr(Dũ0(xti)) + 1) > e
−CR 1

2
ar
2
> 0

1
V ol(4)

∫
Rn
λr(Dũ0)e−wdx+ 1 ≥ 1

V ol(4)

∫
BR 1

2
(xti )

(λr(Dũ0) + 1)e−wdx

≥ e
−CR 1

2
ar
2

1
V ol(4)

∫
BR 1

2
(xti )

e−wdx

≥ e
−CR 1

2
ar
2

1
2
> 0

Now we prove the claim. We can rewrite (4.23) using the special form of ũ0 (4.53).

Dũ0(x) =
∑
α

e<pα,x>∑
β e

<pβ ,x>
pα =

∑
α

cα(x)pα

Here the coefficients

0 ≤ cα(x) =
e<pα,x>∑
β e

<pβ ,x>
,

N∑
α=1

cα(x) = 1
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So

λr(Dũ0(x)) + 1 =
∑
α

cα(x)(λr(pα) + 1) =
∑

{α:λr(pα)+1>0}

cα(x)(λr(pα) + 1)

Since λr(pα) + 1 ≥ 0 is a fixed value, to prove the claim, we only need to show the same estimate

for cα(x).

But now

cα(xti + δx) =
e<pα,xti>e<pα,δx>∑
β e

<pβ ,xti>e<pβ ,δx>
≤ e|pα|R · emaxβ |pβ |·R e<pα,xti>∑

β e
<pβ ,xti>

≤ eCR
e<pα,xti>∑
β e

<pβ ,xti>
= eCRcα(xti)

And similarly

cα(xti + δx) ≥ e−CRcα(xti)

So the claim holds and the proof is completed.

4.4 On behaviors of the limit metric

4.4.1 Equation for the limit metric

We first fix the reference metric to be the Fubini-Study metric.

ω =
√
−1∂∂̄ũ0 =

√
−1∂∂̄ log(

∑
α

|sα|2)

We want to see what’s the limit of ωt as t→ R(X) under suitable transformation, where

ωt = ω +
√
−1∂∂̄φt

is solution of continuity equation (∗)t. We now use notations from previous section. So in toric

coordinates,

ωt =
∂2u

∂ log zi∂ log zj
d log zi ∧ d log zj = −

√
−1uijdxidθj ,

where u = ut is the solution of real Monge-Ampère equation (∗∗)t.

Let σ = σt be the holomorphic transformation given by

σt(x) = x+ xt.

86



Assume xt = (x1
t , · · · , xnt ), then under complex coordinate, we have

σt({zi}) = {ex
i
t/2zi}.

By the analysis of previous section, we do the following transformation.

U(x) = σ∗
t u(x) − u(xt) = u(x+ xt) − u(xt), Ũt(x) = σ∗

t ũ0(x) − ũ0(xt) = ũ0(x+ xt) − ũ0(xt).

(4.25)

Note that wt(x) = tu+(1−t)ũ0. Then U = Ut(x) satisfies the following Monge-Ampère equation

det(Uij) = e−tU−(1−t)Ũ−w(xt) (∗∗)′t

By Proposition 22, we know that Q = − R(X4)
1−R(X4)Pc lies on the boundary of 4. Let F be the

minimal face of 4 which contains Q. Now the observation is

Proposition 23. There is a subsequence ti → R(X), Ũti converge locally uniformly to a convex

function of the form:

Ũ∞ := log

∑
pα∈F

bαe
〈pα,x〉

 , (4.26)

where 0 < bα ≤ 1 are some constants. For simplicity, we will use
∑
α

′ =
∑
pα∈F to denote the

sum over all the vertex lattice points contained in F .

Proof. By (4.53) and (4.25), we have

Ũ(x) = log(
∑
α

e〈pα,x+xt〉) − log(
∑
α

e〈pα,xt) = log(
∑

b(pα, t)e〈pα,x〉), (4.27)

where

b(pα, t) =
e〈pα,xt〉∑
β e

〈pβ ,xt〉
.

Since 0 < b(pα, t) < 1, we can assume there is a subsequence ti → R(X), such that for any vertex

lattice point pα,

lim
t→R(X)

b(pα, t) = bα. (4.28)

We need to prove bα 6= 0 if and only if pα ∈ F . To prove this, we first note that

Dũ0(xt) =
∑
α pαe

〈pα,xt〉∑
β e

〈pβ ,xt〉
=
∑
α

b(pα, t)pα. (4.29)
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By Lemma 25, Dũ0(xt) → y∞ ∈ ∂4. So by letting t→ R(X) in (4.29) and using (4.28), we get

y∞ =
∑
α

bαpα.

By Proposition 22, y∞ ∈ ∂4 lies on the same faces as Q does, i.e. F is also the minimal face

containing y∞, so we must have bα = 0 if pα /∈ F . We only need to show if pα ∈ F , then bα 6= 0.

If dim F=k, then there exists k+1 vertex lattice points {p1, · · · , pk+1} of F , such that the

corresponding coefficient bi 6= 0, i = 1, · · · , k + 1, i.e. limt→R(X) b(pi, t) = bi > 0.

Remark 33. Here is why we need to assume pα are all vertex lattice points.

Let p be any vertex point of F , then

p =
k+1∑
i=1

cipi, where
k+1∑
i=1

ci = 1.

Then

b(p, t) =
e〈

Pk+1
i=1 cipi,xt〉∑
β e

〈pβ ,xt〉
=
k+1∏
i=1

(
e〈pi,xt〉∑
β e

〈pβ ,xt〉

)ci
=
k+1∏
i=1

b(pi, t)ci
t→R(X)
−−−→

k+1∏
i=1

bcii > 0.

We can now state a real version of Theorem 20

Theorem 21. There is a subsequence ti → R(X), Uti(x) converge to a smooth entire solution

of the following equation on Rn

det(Uij) = e−R(X)U(x)−(1−R(X))Ũ∞(x)−c (∗∗)′∞

c = limti→R(X) w(xti) is some constant.

4.4.2 Change to Complex Monge-Ampère equation

The proof of Theorem 21 might be done by the theory of real Monge-Ampère equation. But

here, we will change our view and rewrite (∗∗)′t as a family of complex Monge-Ampère equations.

This will alow us to apply some standard estimates in the theory of complex Monge-Ampère

equations.
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We rewrite the formula for Ũ(x) in (4.27) as

eŨ =
∑
α b(pα, t)e

〈pα,x〉∑
β e

〈pβ ,x〉

∑
β

e〈pβ ,x〉 =
∑
α b(pα, t)|sα|2∑

β |sβ |2
e−C̃+ũ0 = (

∑
α

b(pα, t)|sα|2)eũ0 . (4.30)

sα is the holomorphic section of K−1
X corresponding to lattice point pα. Here and in the following

‖ · ‖ := ‖ · ‖FS is the Fubini-Study metric on K−1
X . Recall that, by (4.5), for any section s,

|s|2FS = e−C̃
|s|2∑
β |sβ |2

.

The second equality in (4.30) holds because e〈pα,x〉 =
∣∣∣ sαs̃0 ∣∣∣2 by (4.6). We also used the definition

of ũ0 in (4.53).

(∗∗)′t can then be rewritten as

det(Uij) = e−tψe−ũ0

(∑
α

b(pα, t)|sα|2
)−(1−t)

e−w(xt).

where

ψ = ψt = U − ũ0. (4.31)

By (4.4) and (4.54), (∗∗)′t can finally be written as the complex Monge-Ampère equation

(ω +
√
−1∂∂̄ψ)n = e−tψ

(∑
α

b(pα, t)|sα|2
)−(1−t)

ehω−w(xt)ωn (∗ ∗ ∗)t

Similarly for Ũ∞ in (4.26), we write

eŨ∞ =
∑
α

′bαe
〈pα,x〉∑

β e
〈pβ ,x〉

∑
β

e〈pβ ,x〉 = (
∑
α

′bα|sα|2)eũ0 .

And the limit equation (∗∗)′∞ becomes:

(ω +
√
−1∂∂̄ψ)n = e−R(X)ψ

(∑
α

′bα|sα|2
)−(1−R(X))

ehω−cωn (∗ ∗ ∗)∞

So we reformulate Theorem 21 as the main Theorem 20 in the introduction.
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4.4.3 Discussion on the conic behavior of limit metric

For any lattice point pα ∈ 4, let Dpα = {sα = 0} be the zero divisor of the corresponding

holomorphic section sα. By toric geometry , we have

Dpα = {sα = 0} =
K∑
i=1

(〈pα, vi〉 + 1)Di.

Here vi is the primitive inward normal vector to the i-th codimension one face, and Di is the

toric divisor corresponding to this face.

Recall that F is the minimal face containing Q. Let {pFk } be all the vertex lattice points of

F . They correspond to a sublinear system LF of |K−1
X |. The base locus of LF is given by the

schematic intersection

Bs(LF ) =
∩
k

DpFk

The fixed components in Bs(LF ) are

DF =
r∑
i=1

aiDi, (4.32)

where

N 3 ai = 1 + min
k

〈pFk , vi〉 > 0, i = 1, . . . , r.

For i = 1, . . . ,K, we always have ai = 1 + mink〈pFk , vi〉 ≥ 0. In (4.32), the coefficients ai are

those with ai 6= 0.

Pick any generic point p on DF . p lies on only one component of DF . Without loss of

generality, assume p ∈ D1, and in a neighborhood Up of p, choose local coordinate {zi} such that

D1 is defined by z1 = 0, then the singular Monge-Ampère equation (4.2) locally becomes:

(ω +
√
−1∂∂̄ψ)n = |z1|−2a1(1−R(X))Ω (4.33)

with Ω a nonvanishing smooth volume form in Up.

So locally around generic point on p, we have

Ric(ωψ) = 2π(1 −R(X))a1({z1 = 0}) +Ric(Ω) (4.34)

where {z1 = 0} is the current of integration along divisor {z1 = 0}.
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Note that we have the following singular conic metric in Up

η =
dz1 ∧ dz̄1
|z1|2α

+
n∑
i=2

dzi ∧ dz̄i.

η has conic singularity along {z1 = 0} with conic angle 2π(1 − α), and satisfies

ηn =
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

|z1|2α
, and Ric(η) = 2πα({z1 = 0}).

Comparing this with (4.33) and (4.34), we expect that the limit Kähler metric around p has

conic singularity along D1 with conic angle equal to 2π(1− (1−R(X))a1) and the same hold for

generic points on Di, i.e. the limit metric should have conic singularity along Di of conic angle

equal to 2π(1 − (1 −R(X))ai).

Remark 34. At present, it seems difficult to speculate the behavior of limit metric around higher

codimensional strata of DF . See the discussion in example 2. We hope to return to this issue in

future.

4.4.4 Proof of Theorem 20

We are now in the general setting of complex Monge-Ampère equations. (∗ ∗ ∗)∞ is a complex

Monge-Ampère equation with poles at righthand side. (∗ ∗ ∗)t can be seen as regularizations of

(∗ ∗ ∗)∞. We ask if the solutions of (∗ ∗ ∗)t converge to a solution of (∗ ∗ ∗)∞. Starting from

Yau’s work [Yau1], similar problems have been considered by many people. Due to the large

progress made by Ko lodziej[Kolo], complex Monge-Ampère equation can be solved with very

general, usually singular, righthand side. Ko lodziej’s result was also proved by first regularizing

the singular Monge-Ampère equation, and then taking limit back to get solution of original

equation.

We will derive several apriori estimate to prove Theorem 20. For the C0-estimate, the upper

bound follows from how we transform the potential function in (4.25). The lower bound follows

from a Harnack estimate for the transformed potential function which we will prove using Tian’s

argument in [Tia3]. For the proof of partial C2-estimate, higher order estimates and convergence

of solutions, we use some argument similar to that used by Ruan-Zhang [RuZh], and Demailly-

Pali [DePai].

91



C0-estimate

We first derive the C0-estimate for ψ = U − ũ0. Let v̄ = v̄(x) be a piecewise linear function

defined to be

v̄(x) = max
pα

〈pα, x〉.

Then u0 is asymptotic to v̄ and it’s easy to see that |v̄ − ũ0| ≤ C. So we only need to show that

|U(x) − v̄(x)| ≤ C. Here and in the following, C is some constant independent of t ∈ [0, R(X)).

One side is easy. Since DU(Rn) = 4 and U(0) = 0, we have for any x ∈ Rn, U(x) =

U(x) − U(0) = DU(ξ) · x ≤ v̄(x). ξ is some point between 0 and x. So

ψ = (U − v̄) + (v̄ − ũ0) ≤ C.

To prove the lower bound for ψ, we only need to prove a Harnack inequality

Proposition 24.

sup
X

(−ψ) ≤ n sup
X
ψ + C(n)t−1. (4.35)

For this we use the same idea of proof in [Tia3]. First we rewrite the (∗ ∗ ∗)t as

(ω +
√
−1∂∂̄ψ)n = e−tψ+F−Btωn, (4.36)

where

Bt = (1 − t) log

(∑
α

b(pα, t)|sα|2
)
, F = hω − w(xt).

Now consider a new continuous family of equations

(ω +
√
−1∂∂̄θs)n = e−sθs+F−Btωn. (4.36)s

Define S = {s′ ∈ [0, t]|(4.36)s is solvable for s ∈ [s′, t]}. We want to prove S = [0, t]. Since (4.36)

has a solution ψ, t ∈ S and S is nonempty. It is sufficient to show that S is both open and closed.

For openness, we first estimate the first eigenvalue of the metric gθ associated with the Kähler
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form ωθ = ω +
√
−1∂∂̄θ for the solution θ of (4.36)s.

Ric(ωθ) = s
√
−1∂∂̄θ −

√
−1∂∂̄F +

√
−1∂∂̄Bt +Ric(ω)

= s
√
−1∂∂̄θ + ω + (1 − t)(σ∗ω − ω) = s(

√
−1∂∂̄θ + ω) + (t− s)ω + (1 − t)σ∗ω

= sωθ + (t− s)ω + (1 − t)σ∗ω. (4.37)

In particular, Ric(ωθ) > sωθ. So by Bochner’s formula, the first nonzero eigenvalue λ1(gθs) > s.

This gives the invertibility of linearization operator (−∆s)−s of equation (4.36)s, so the openness

of solution set S follows.

Recall the functional Iω, Jω defined in Section 2.4.

Lemma 27 ([BaMa],[Tia3]). (i) n+1
n Jω(θs) ≤ Iω(θs) ≤ (n+ 1)Jω(θs),

(ii) d
ds (I(θs) − J(θs)) = −

∫
X
θs(∆sθ̇s)ωnθs .

Using λ1(gθs) > s, Lemma 27.(ii) gives

Lemma 28 ([BaMa],[Tia3]). I(θs) − J(θs) is monotonically increasing.

Let’s recall Bando-Mabuchi’s estimate for Green function.

Proposition 25 ([BaMa]). For every m-dimensional compact Riemannian manifold (X,g) with

diam(X, g)2Ric(g) ≥ −(m− 1)α2, there exists a positive constant γ = γ(m,α) such that

Gg(x, y) ≥ −γ(m,α)diam(X, g)2/Vg. (4.38)

Here the Green function Gg(x, y) is normalized to satisfy

∫
M

Gg(x, y)dVg(x) = 0.

Bando-Mabuchi used this estimate to prove the key estimate:

Proposition 26 ([BaMa]). Let

Hs = {θ ∈ C∞(X);ωθ = ω +
√
−1∂∂̄θ > 0, Ric(ωθ) ≥ sωθ},

then for any θ ∈ Hs, we have
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(1)

sup
X

(−θ) ≤ 1
V

∫
X

(−θ)ωnθ + C(n)s−1, (4.39)

(2)

Osc(θ) ≤ I(θ) + C(n)s−1. (4.40)

Proposition 27. (4.36)s is solvable for 0 ≤ s ≤ t.

Proof. From (4.36)s, there exists xs ∈ X such that −sθs(xs) +F (xs)−Bt(xs) = 0, so |θs(xs)| =

1
s |F −Bt|(xs) ≤ Cts

−1. By (4.40) and I ≤ (n+ 1)(I − J) (by Lemma 27-(i)), we get

sup
X
θs ≤ Osc(θ) + θ(xs) ≤ (n+ 1)(I − J)(θ) + C(n)s−1 + Cts

−1.

By Lemma 28, for any δ > 0, we get uniform estimate for supX θs and hence also infX θs for

s ∈ [δ, t]. So ‖θs‖C0 ≤ Cδ−1. We can use Yau’s estimate to get C2 and higher order estimate.

So we can solve (4.36)s for s ∈ [δ, t], for any δ > 0.

On the otherhand, by Yau’s theorem, we can solve (4.36)s for s = 0. And by implicit function

theorem, we can solve (4.36)s for s ∈ [0, τ) for τ sufficiently small. We can pick δ such that δ < τ ,

so we get solution of (4.36)s for s ∈ [δ, τ) in two ways. They must coincide by the recent work of

Berndtsson [Bern] on the uniqueness of solutions for the twisted Kähler-Einstein equation (4.37).

So we complete the proof.

Then one can use the same argument as in [Tia3] to prove

Proposition 28 ([Tia3]).

− 1
V

∫
X

θωnθ ≤ n

V

∫
X

θωn ≤ n sup
X
θ. (4.41)

Proof. First by taking derivatives to equation (4.36)s, we get

∆sθ̇ = −θ − sθ̇.

So

d

ds
(I − J)(θs) = −

∫
X

θ
d

ds
ωnθ = − d

ds

(∫
X

θωnθ

)
+
∫
X

θ̇ωnθ

= − d

ds

(∫
X

θωnθ

)
− 1
s

∫
X

θωnθ = −1
s

d

ds

(
s

∫
X

θωnθ

)
.
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So
d

ds
(s(I − J)(θs)) − (I − J)(θs) = − d

ds

(
s

∫
X

θωnθ

)
. (4.42)

By Proposition 27, θs can be solved for s ∈ [0, t], and θt = ψ = ψt, we can integrate to get

t(I − J)(ψ) −
∫ t

0

(I − J)(θs)ds = −t
∫
X

ψωnψ.

Divide both sides by t to get

(I − J)(ψ) − 1
t

∫ t

0

(I − J)(θs)ds = −
∫
X

ψωnψ.

By Lemma 27.(i), we can get

n

n+ 1

∫
X

ψ(ωn − ωnψ) =
n

n+ 1
I(ψ) ≥ −

∫
X

ψωnψ.

(4.41) follows from this inequality imediately.

Combine (4.41) with Bando-Mabuchi’s estimate (4.39) when s = t, we then prove the Harnack

estimate (4.35). So we can derive the lower bound of ψ from the upper bound of ψ and C0-

estimate is obtained.

Remark 35. Professor Jian Song showed me that by modifying the above argument one can

prove Harnack inequality using the weaker statement instead of that in Proposition 27: (4.36)s

can be solved for s ∈ (0, t]. In this way, one can avoid using Berndtsson’s uniqueness result. Here

we give his nice argument from [Son] for comparison. First by the concavity of log function and

using (4.36)s, we have

1
V

(
−s
∫
X

θsω
n +

∫
X

(F −Bt)ωn
)

≤ log
(

1
V

∫
X

e−sθs+F−Btωn
)

= log
(

1
V

∫
X

ωnθS

)
= 0.

So

−s
∫
X

θsω
n ≤

∫
X

(Bt − F )ωn ≤ C. (4.43)

C is a constant independent of both s and t. Now we integrate (4.42) from any s to t, then

t(I − J)(ψ) − s(I − J)(θs) −
∫ t

s

(I − J)(θs)ds = −t
∫
X

ψωnψ + s

∫
X

θs(ωnθs − ωn) + s

∫
X

θsω
n.
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Using positivity of I − J , (4.43), Lemma 27 and Lemma 28, we get

t(I − J)(ψ) ≥ −t
∫
X

ψωnψ − sI(θs) − C

≥ −t
∫
X

ψωnψ − s(n+ 1)(I − J)(θs) − C

≥ −t
∫
X

ψωnψ − s(n+ 1)(I − J)(ψ) − C.

Now letting s→ 0, we get

(I − J)(ψ) ≥ −
∫
X

ψωnψ − C

t
.

Now we can argue as before to get Harnack.

Partial C2-estimate

(∗)t is equivalent to

Ric(ωφ) = tωφ + (1 − t)ω.

From our transformation (4.25), we get

Ric(ωψ) = tωψ + (1 − t)σ∗ω. (4.44)

In particular, Ric(ωψ) > tωψ.

By C0-estimate of ψ and Proposition 2, we get the estimate trωψω ≤ C4. So ωψ ≥ C4ω. If

we choose local coordinate such that ω(∂i, ∂j̄) = δij and ωψ(∂i, ∂j̄) = µiδij , then µi ≥ C4.

Now by (4.36), ∏
j

µj =
ωnψ
ωn

= e−tψ+F−B

with F = h− w(xt) and B = (1 − t) log
(∑

α b(pα, t)|sα|2
)
. So by the C0-estimate of ψ, we get

µi =

∏
j µj∏
j 6=i µj

≤ e−tψ+F−B

Cn−1
4

≤ C5e
−B .

In conclusion, we get the partial C2-estimate

C4ω ≤ ωψ ≤ C5e
−Bω. (4.45)

Remark 36. The partial C2-upper bound ωψ ≤ C5e
−Bω can also be proved by maximal principle.
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In fact, let

Λ = log(n+ ∆ψ) − λψ +B, (4.46)

where ∆ = ∆ω is the complex Laplacian with respect to reference metric ω. Then by standard

calculation as in Yau [Yau1], we have

∆′Λ ≥
(

inf
i 6=j

Sīijj̄ + λ

)∑
i

1
1 + ψīi

+
(

∆F − ∆B − t∆ψ − n2 inf
i 6=j

Sīijj̄

)
1

n+ ∆ψ
− λn+ ∆′B

=
(

inf
i 6=j

Sīijj̄ + λ

)∑
i

1
1 + ψīi

+
(

∆F + nt− n2 inf
i 6=j

Sīijj̄

)
1

n+ ∆ψ
+

+
∑
i

Bīi

(
1

1 + ψīi
− 1
n+ ∆ψ

)
− (λn+ t). (4.47)

Since for each i, 1
n+∆ψ ≤ 1

1+ψiī
, so 1

n+∆ψ ≤ 1
n

∑
i

1
1+ψiī

. So the second term on the right of

(4.47) is bounded below by −C0

∑
i

1
1+ψiī

for some positive constant C0 > 0

For the 3rd term, we observe from (4.25) and (4.30) that

√
−1∂∂̄B = (1 − t)(σ∗ω − ω) ≥ −(1 − t)ω.

So, since again 1
n+∆ψ ≤ 1

1+ψiī
, we have

Bīi

(
1

1 + ψīi
− 1
n+ ∆ψ

)
≥ −(1 − t)

(
1

1 + ψīi
− 1
n+ ∆ψ

)
≥ −(1 − t)

1
1 + ψīi

.

By the above discussion, at the maximal point Pt of Λ, we have

0 ≥ ∆′Λ ≥ (λ+ inf
i 6=j

Sīijj̄ − C0 − (1 − t))
∑
i

1
1 + ψīi

− (λn+ t) = C2

∑
i

1
1 + ψīi

− C3 (4.48)

for some constants C2 > 0, C3 > 0, by choosing λ sufficiently large.

Now we use the following inequality from [Yau1]

∑
i

1
1 + ψīi

≥

(∑
i(1 + ψīi)∏
j(1 + ψjj̄)

)1/(n−1)

= (n+ ∆ψ)1/(n−1)e
B−F+tψ
n−1

= e
Λ
n−1 e

−F+(t+λ)ψ
n−1 . (4.49)

By (4.48) and (4.49), we get the bound

eΛ(Pt) ≤ C4e
−(t+λ)ψ(Pt).
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So we get estimate that for any x ∈ X = X4,

(n+ ∆ψ)e−λψeB ≤ eΛ(Pt) ≤ C4e
−(t+λ)ψ(Pt).

Since we have C0-estimate for ψ, we get partial C2-upper estimate:

(n+ ∆ψ)(x) ≤ C4e
−(t+λ)ψ(Pt)eλψ(x)e−B ≤ C5

(∑
α

b(pα, t)|sα|2
)−(1−t)

. (4.50)

In particular,

1 + ψīi ≤ C5e
−B ,

which is same as ωψ ≤ C5e
−B.

Higher order estimate and completion of the proof of Theorem 20

For any compact set K ⊂ X\D, we first get the gradient estimate by interpolation inequality:

max
K

|∇ψ| ≤ CK(max
K

∆ψ + max
K

|ψ|). (4.51)

Next, by the complex version of Evans-Krylov theory (Section 2.3.2, [Tia2], [B lo]), we have a

uniform C2,K > 0, such that ‖ψ‖C2,α(K) ≤ C2,K sor some α ∈ (0, 1). Now take derivative to the

equation:

log det(gij̄ + ψij̄) = log det(gij̄) − tψ + F −B

to get

g′ij̄ψij̄,k = −tψk + Fk −Bk + gij̄gij̄,k − g′ij̄gij̄,k. (4.52)

By (4.45), (4.51) and ‖ψ‖C2,α(K) ≤ C2,K , (4.52) is a linear elliptic equation with Cα coefficients.

By Schauder’s estimate, we get ‖ψk‖C2,α ≤ C, i.e. ‖ψ‖C3,α ≤ C. Then we can iterate in (4.52)

to get ‖ψ‖Cr,α ≤ C for any r ∈ N. So we see that (ψ = ψ(t))t<R(X) ⊂ C∞(X\D) is precompact

in the smooth topology.

Now we can finish the proof of Theorem 20 using argument from [DePai]

Proof of Theorem 20. The uniform estimate ‖ψ‖L∞ implies the existence of a L1-convergent

sequence (ψj = ψtj )j , tj ↑ R(X) with limit ψ∞ ∈ PSH(ω) ∩ L∞(X). We can assume that

a.e.-convergence holds too. The precompactness of the family (ψj) ⊂ C∞(X\D) in the smooth

98



topology implies the convergence of the limits over X\D:

(ω +
√
−1∂∂̄ψ∞)n = lim

tj→R(X)
(ω +

√
−1∂∂̄ψj)n

= lim
tj→R(X)

e−tjψtj

(∑
α

b(pα, tj)|sα|2
)−(1−tj)

ehω−w(xtj )ωn

= e−R(X)ψ∞

(∑
α

′bα|sα|2
)−(1−R(X))

ehω−cωn.

The fact that ψ∞ is a bounded potential implies that the global complex Monge-Ampère mea-

sure (ω +
√
−1∂∂̄ψ∞)n does not carry any mass on complex analytic sets. This follows from

pluripotential theory ([Klim]) because complex analytic sets are pluripolar. We conclude that

ψ∞ is a global bounded solution of the complex Monge-Ampère equation (∗ ∗ ∗)∞ which belongs

to the class PSH(ω) ∩ L∞(X) ∩ C∞(X\D).

4.5 Partial C0-estimate and Multiplier ideal sheaf

Proposition 29. The partial C0-estimate holds along the continuity method (∗∗)t, i.e. the k-th

Bergman kernel of
√
−1∂∂̄ut is uniformly bounded away from zero for any k ≥ 1.

This follows from immediately from Lemma 13-(3). Alternatively, define

c(pα, t) =
e−〈pα,xt〉∑
β e

−〈pβ ,xt〉
.

Note that
∑
α c(pα, t)pα = Dũ(−xt). By Lemma 13, the above Proposition follows from the

following Lemma-(2).

Lemma 29. There exists a constant C independent of t such that

∣∣∣∣∣φ− supφ− log
∑
α

c(pα, t)|sα|2h

∣∣∣∣∣ ≤ C

Proof. Let ξt = φt − supφt, then

√
−1∂∂̄ξt = ωt − ω̃ = (σ−1

t )∗(σ∗
t ωt − ω̃) + ((σ−1

t )∗ω̃ − ω̃).
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For the first bracket on the right

(σ−1
t )∗(σ∗

t ωt − ω̃) =
√
−1∂∂̄((σ−1

t )∗ψt)

For the second bracket on the right, we can take the potential of (σ−1
t )∗ω̃ to be

(σ−1
t )∗ũ− ũ(−xt) = log

∑
α

e〈pα,x−xt〉 − log
∑
α

e〈pα,−xt〉 = log
∑
α

c(pα, t)e〈pα,x〉

So

(σ−1
t )∗ω̃ − ω̃ =

√
−1∂∂̄ log

∑
α

c(pα, t)|sα|2

ξt = (σ−1
t )∗ψt + log

∑
α

c(pα, t)|sα|2 + C(t)

For the first term on the right ‖(σ−1
t )∗ψt‖C0 = ‖ψt‖C0 ≤ C1 with C1 independent of t.

So it’s easy to see that

∣∣∣∣∣sup ξt − sup log
∑
α

c(pα, t)|sα|2 − C(t)

∣∣∣∣∣ ≤ C1

To estimate C(t), note that sup ξt = 0, and

sup log
∑
α

c(pα, t)|sα|2 ≥ log
(

1
N + 1

min
α

{sup |sα|2}
)

= C ′
2

sup log
∑
α

c(pα, t)|sα|2 ≤ log
∑
α

|sα|2 = C ′′
2

So |C(t)| ≤ C1 + max(|C ′
2|, |C ′′

2 |).

By the similar argument as in [DeKo], the space of closed positive currents contained in a

given class is compact for the weak topology. So there exists a subsequence ωφti converging

weakly to a limit ω∞ = ωφ∞ . The potential φ∞ can be recovered from trωω∞ by means of the

Green kernel, and φti converges to φ∞ in L1(X). We define the multiplier ideal sheaf of φ∞ with

exponent γ to be

I(γφ∞)(U) = {f ∈ OX(U);
∫
U

|f |2e−γφ∞dV < +∞}

where U ⊂ X is any open set and dV is any smooth volume form on U . Define

AutZn(4) = {g ∈ GL(n,Z); g(4) = 4}
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Corollary 7. Assume the toric Fano manifold has very large symmetry in the sense that the fixed

points of the action of AutZn(4) on Rn is a one dimensional space generated by the barycenter

Pc ∈ Rn. Assume the metric ω is AutZn(4) invariant. Let Q̂ be the intersection of the ray
−−−−−→
O(−Pc) with ∂4. Let F̂ be the minimal face of 4 containing Q̂. Then the multiplier ideal sheaf

I(γφ∞) is the same as the multiplier ideal sheaf I(γφ̂) where

φ̂ = log
∑
p̂α∈F̂

|ŝα|2.

Proof. By symmetry, it’s easy to see that ct = Du(−xt) converge to the intersection of
−−−−−→
O(−Pc)

and ∂4.

Remark 37. The Kähler-Ricci flow version of the above corollary was obtained by Sano [Sano].

His argument depends on the convergence results obtained in [Zhu]. Here in the continuity method,

our convergence result Theorem 20 plays the role of Zhu’s convergence result in Kähler-Ricci flow

setting.

4.6 Example

Example 3. X4 = BlpPn. The polytope 4 is defined by

xi ≥ −1, i = 1, · · · , n;
∑
i

xi ≥ −1; and −
∑
i

xi ≥ −1.

Using the symmetry of the polytope, we can calculate that

V ol(4) =
1
n!

((n+ 1)n − (n− 1)n),

Pc =
(
xi =

2(n− 1)n

(n+ 1)((n+ 1)n − (n− 1)n)

)
, and Q =

(
xi = − 1

n

)
.

So

R(X4) =
|OQ|
|PcQ|

=
(

1 +
|OPc|
|OQ|

)−1

=
(n+ 1)((n+ 1)n − (n− 1)n)
(n+ 1)(n+1) + (n− 1)(n+1)

.

F is the (n-1)-dimensional simplex with vertices

Pi = (−1, · · · ,
i−th place
n− 2 , · · · ,−1) i = 1, · · · , n.
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Let ej be the j-th coordinate unit vector, then 〈Pi, ej〉 = −1 for i 6= j. 〈Pi, ei〉 = n − 2.

〈Pi,±(1, · · · , 1)〉 = ∓1. So Pi corresponds to a holomorphic section si with {si = 0} = (n −

1)Di + 2D∞, where Di is the toric divisor corresponding to the codimension one face with in-

ward normal ei, and D∞ is the toric divisor corresponding to the simplex face with vertices

Qi = (−1, · · · , n, · · · ,−1).

It’s easy to see that Bs(LF ) = 2D∞. If we view X4 as the projective compactification of

O(−1) → Pn−1, then D∞ is just the divisor added at infinity. So the limit metric should have

conic singularity along D∞ with conic angle

θ = 2π × (1 − (1 −R(X)) × 2) = 2π
(n+ 1)n+1 − (3n+ 1)(n− 1)n

(n+ 1)n+1 + (n− 1)n+1
.

In particular, if n = 2, i.e. X4 = BlpP2 which is the case of the figure in the Introduction, then

R(X4) =
6
7
, θ = 2π × 5

7
.

This agrees with the results of [Szé] and [ShZh]. In fact, the results in [Szé] and [ShZh] can be

easily generalized to BlpPn which give the same results as here.

For the multiplier ideal sheaf, by symmetry, we see that F̂ is the facet corresponding to D∞.

F̂ has vertex given by

P̂i = (−1, · · · ,
i−th place

n , · · · ,−1) i = 1, · · · , n.

Let ŝi be the holomorphic section corresponding to P̂i. Then it’s easy to see that

{ŝi = 0} = 2E + (n+ 1)Di

where E is the exceptional divisor corresponding to the facet F above. So

I(γφ∞) = I(2γE)

So when γ < 1/2, the multiplier ideal scheme is empty. When γ ≥ 1/2, the support of multiplier

ideal scheme is the exceptional divisor E.

Example 4. X4 = Blp,qP2, Pc = 2
7 (− 1

3 ,−
1
3 ), −21

4 Pc ∈ ∂4, so R(X4) = 21
25 .

F = Q1Q2. Q1 corresponds to holomorphic section s1 with {s1 = 0} = 2D1 + D2 + D5. Q2
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corresponds to s2 with {s2 = 0} = D1 +2D2 +D3. The fixed components in Bs(LF ) are D1 +D2.

Here as in the picture, D1 to D5 are the divisors corresponding to the facets. So at generic point

of D1 (or D2), the conic angle along D1 (or D2) should be

2π × (1 − (1 − 21
25

) × 1) = 2π × 21
25
.

While around the point p = D1 ∩ D2, if we choose local coordinate around p such that D1 =

{z1 = 0} and D2 = {z2 = 0}, the ideal defining the base locus is (z2
1z2, z1z

2
2) = (z1)(z2)(z1, z2).

the limit singular Monge-Ampère equation locally looks like

(ω +
√
−1∂∂̄ψ)n =

Ω
|z1|2α|z2|2α(|z1|2 + |z2|2)α

,

where Ω is a nonvanishing smooth volume form near p and α = 1−R(X) = 4
25 . The author does

not know a candidate singular Kähler metric as local model yet. See Remark 34.

For the multiplier ideal sheaf, it’s easy to see that F̂ = Q4. The corresponding section ŝ has

divisor given by

{ŝ = 0} = 2(D3 +D5) + 3D4

So

I(γφ∞) = I(γ(2(D3 +D5) + 3D4))

So when γ < 1/3, then multiplier ideal scheme is empty. When 1/2 ≤ γ < 1/3, the support

of multiplier ideal scheme is D4. When γ ≥ 1/2, the support of multiplier ideal scheme is

D3 ∪D4 ∪D5.

@
@

@@�
��r

r
Pc

−21
4 Pc

q

q q

q
q

Q5 D3

D1

D5

Q4

D2

D4

Q3

Q1

Q2
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4.7 Log-Futaki invariant for 1psg on toric Fano variety

Donaldson made a conjecture relating the two continuity methods.

Conjecture 1. [Don6] There is a cone-singularity solution ωβ to (∗)β for any parameter β ∈

(0, R(X)). If R(X) < 1, there is no solution for parameter β ∈ (R(X), 1).

The case of conic Riemann surface was known by the work of Troyanov, McOwen, Thurston,

Luo-Tian, etc. we can provide more evidence on toric Fano manifolds:

Theorem 22. [Li5] Let X4 be a toric Fano variety with a (C∗)n action. Let Y be a general

hyperplane section of X4. When β < R(X4), (X4, βY ) is log-K-stable along any 1 parameter

subgroup in (C∗)n. When β = R(X4), (X4, βY ) is semi-log-K-stable along any 1 parameter

subgroup in (C∗)n and there is a 1 parameter subgroup in (C∗)n which has vanishing log-Futaki

invariant. When β > R(X4), (X4, βY ) is not log-K-stable.

Let {pα; α = 1, · · · , N} be all the lattice points of 4. Each pα corresponds to a holomorphic

section sα ∈ H0(X4,K
−1
X4

). We can embed X4 into PN using {sα}. Define u to be the potential

on (C∗)n for the pull back of Fubini-Study metric (i.e.
√
−1∂∂̄u = ωFS):

u = log

(
N∑
α=1

e<pα,x>

)
+ C (4.53)

C is some constant determined by normalization condition:

∫
Rn
e−udx = V ol(4) =

1
n!

∫
X4

ωn =
c1(X4)n

n!

By the above normalization of u, it’s easy to see that

ehω =
| · |2FS
| · |2ωn

=
e−u

ωn/(dz1z1 ∧ dz̄1
z̄1

· · · ∧ dzn
zn

∧ dz̄n)
z̄n

So

hω = − log det(uij) − u (4.54)

Now let’s calculate the log-Futaki invariant for any 1-parameter subgroup in (C∗)n. Each 1-

parameter subgroup in (C∗)n is determined by some λ ∈ Rn such that the generating holomorphic

vector field is

vλ =
n∑
i=1

λizi
∂

∂zi
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A general Calabi-Yau hypersurface Y ∈ | −KX | is a hyperplane section given by the equation:

s :=
N∑
α=1

b(pα)zpα = 0

By abuse of notation, we denote λ(t) to be the 1 parameter subgroup generated by vλ, then

λ(t) · s =
N∑
α=1

b(pα)t−〈pα,λ〉zpα (4.55)

Let

W (λ) = maxp∈4〈p, λ〉

Then Hλ = {p ∈ Rn, 〈p, λ〉 = W (λ)} is a supporting plane of 4, and

Fλ := {p ∈ 4; 〈p, λ〉 = W (λ)} = Hλ ∩4

is a face of 4.

We have limt→0[s] =
[
s0 :=

∑
pα∈Fλ b(pα)zpα

]
, and by (4.55), the C∗-weight of s0 is −W (λ).

Proposition 30. Let F (K−1
X , βY )(λ) denote the Futaki invariant of the test configuration asso-

ciated with the 1 parameter subgroup generated by vλ. We have

F (K−1
X , βY )(λ) = − (β〈Pc, λ〉 + (1 − β)W (λ))V ol(4) (4.56)

Proof. We will use the algebraic definition of log-Futaki invariant (3.29) to do the calculation.

Note that (X,Y,K−1
X ) degenerates to (X,Y0,K

−1
X ) under λ.

Y0 is a hyperplane section of X, and s0 ∈ H0(X,K−1
X ) is the defining section, i.e. Y0 = {s0 =

0}. Then

H0(Y0,K
−1
X | kY0

) ∼= H0(X,K−k
X )/(s0 ⊗H0(X,K−(k−1)

X ))

So

w̃k = wk − (wk−1 −W (λ)dk−1)

Plugging the expansions, we get

ã0 = (n+ 1)a0 +W (λ)b0
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Note that b̃0 = nb0 = nV ol(4), we have

−ã0 +
b̃0
b0
a0 = −a0 −W (λ)b0

where

−a0 =
∫
X

θv
ωn

n!
=
∫

Rn

∑
i

λiui det(uij)dx =
∫
4

∑
i

λiyidy = V ol(4)〈Pc, λ〉

By (4.54), the ordinary Futaki invariant is given by

F (c1(X))(vλ) =
∫
X

v(hω)
ωn

n!
= −

∫
Rn

n∑
i=1

λi
∂u

∂xi
det(uij)dx

= −
∫
4

∑
i

λiyidy = −V ol(4)〈Pc, λ〉

Substituting these into (3.29), we get

F (K−1
X , βY )(λ) = −V ol(4)〈Pc, λ〉 + (1 − β)(V ol(4)〈Pc, λ〉 −W (λ)V ol(4))

= −(β〈Pc, λ〉 + (1 − β)W (λ))V ol(4)

Proof of Theorem 22. Note that for any Pλ ∈ Fλ ⊂ ∂4, W (λ) = 〈Pλ, λ〉. By Theorem 19, we

have

F (K−1
X , βY )(λ) =

(
β

1 − β

1 −R(X)
R(X)

〈Q,λ〉 −W (λ)
)

(1 − β)V ol(4)

= 〈Qβ − Pλ, λ〉

where Qβ = β
1−β

1−R(X)
R(X) Q.

Note that λ is a outward normal vector of Hλ. By convexity of 4, it’s easy to see that (see

the picture after Example 2)

• β < R(X): Qβ ∈ 4◦. For any λ ∈ Rn, 〈Qβ − Pλ, λ〉 < 0.

• β = R(X): Qβ = Q ∈ ∂4. For any λ ∈ Rn, 〈Qβ − Pλ, λ〉 ≤ 0. Equality holds if and only

if 〈Q,λ〉 = W (λ), i.e. Hλ is a supporting plane of 4 at point Q.

• β > R(X): Qβ /∈ 4. There exists λ ∈ Rn such that 〈Qβ − Pλ, λ〉 > 0
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4.7.1 Example

1. X4 = BlpP2. See the picture in Introduction. Pc = 1
4 ( 1

3 ,
1
3 ), Q = −6Pc ∈ ∂4, so

R(X) = 6
7 .

If we take λ = 〈−1,−1〉, then W (λ) = 1. So by (4.56)

F (K−1
X , βY )(λ) =

2
3
β − 4(1 − β)

So F (K−1
X , βY )(λ) ≤ 0 if and only if β ≤ 6

7 , and equality holds exactly when β = 6
7 .

2. X4 = Blp,qP2, Pc = 2
7 (−1

3 ,−
1
3 ), Q = − 21

4 Pc ∈ ∂4, so R(X4) = 21
25 .

If we take λ1 = 〈1, 1〉, then W (λ1) = 1. By (4.56),

F (K−1
X , βY )(λ1) =

2
3
β − 7

2
(1 − β)

F (K−1
X , βY )(λ1) ≤ 0 if and only if β ≤ 21

25 .

This is essentially the same as Donaldson’s calculation in [Don6].

If we take λ3 = 〈−1, 2〉, then W (λ3) = 〈−1, 2〉 · 〈−1, 1〉 = 3. By (4.56)

F (K−1
X , βY )(λ3) =

1
3
β − 21

2
(1 − β)

So F (K−1
X , βY )(λ3) ≤ 0 if and only if β ≤ 63

65 which means that (X,βY ) is log-K-stable

along λ3 when β ≤ 21
25 <

63
65 .

@
@

@
@@�

��s
s

Pc

Q 21
25

��
��

H3
P3A

AAK
λ3

?
λ2

P2r

r���λ1

P1rQ< 21
25

rQ> 21
25

r

q q

q
qqq
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Chapter 5

Intersection formula of

Donaldson-Futaki invariant and

applications

5.1 Introduction

K-stability is defined via the notion of test configurations. They are just C∗-equivariant degen-

erations of the polarized manifold (X,L), usually denoted by (X ,L). When the central fibre

X0 is normal, Ding-Tian [DiTi] defined generalized Futaki invariant by extending the differential

geometric defining formula from smooth case to normal case. Later Donaldson [Don4] defined

Futaki invariant algebraically so that one can define it for any test configuration as scheme which

may be very singular. However, motivated by compactness result for Kähler-Einstein metrics (cf.

[CCT]), Tian conjectured that

Conjecture 2 (Tian’s conjecture). When X is Fano, one only needs to consider those test

configurations with normal Q-Fano central fibers.

As in [Tia9], we will call such a test configuration to be a Special Test Configuration.

Recall that, in birational geometry, a Q-Fano variety is a Kawamata Log Terminal (klt) Fano

variety.

In this Chapter, we prove Theorem 24 which verify Tian’s conjecture. This will be an imme-

diate consequence of the following theorem proved jointly with Dr. Chenyang Xu.
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Theorem 23. [LiXu] Let X be a Q-Fano variety. Assume (X ,L) → A1 is a test configuration

of (X,−rKX). We can construct a special test configuration (X s,−rKX s) and a positive integer

m, such that (X s,−rKX s) is a and

mDF(X ,L) ≥ DF(X s,−rKX s).

Furthermore, if we assume X is normal, then the equality holds only when (X ,X0) itself is a

special test configuration.

As a immediate corollary, we can verify Tian’s conjecture:

Theorem 24 (Tian’s conjecture). ([LiXu]) Assume X is a Q-Fano variety. If X is destablized by

a test configuration, then X is indeed destablized by a special test configuration. More precisely,

the following two statements are true.

1. (unstable case) If (X,−rKX) is not K-semi-stable, then there exists a special test configu-

ration (X s,−rKX s) with a negative Futaki invariant DF(X s,−rKX s) < 0.

2. (semistable\ polystable case) Let X be a K-semistable variety. If (X,−rKX) is not K-

polystable, then there exists a special test configuration (X st,−rKX s) with Donaldson-Futaki

invariant 0 such that X s is not isomorphic to X × A1.

To prove the above result, we first derive an intersection formula for Donaldson-Futaki invari-

ant. Then we use various birational transformations in MMP to modify the test configuration

and prove the Donaldson-Futaki invariant is decreasing along the process. The end product will

be X s.

5.2 Intersection formula for the Donaldson-Futaki invari-

ant

Given any test configuration (X ,L), we first compactify it. So we want to glue (X ,L) with (X×

A1, p∗1L). In this section, we will compute the Donaldson-Futaki invariants by the intersection

formula on this compactified space. The same formula appeared before (see [Wang] and [Odak2]).

We include a proof here using Donaldson’s argument.

Example 5. Gm acts on (X,L−1) = (P1,OP1(−1)) by

t ◦ ([Z0, Z1], λ(Z0, Z1)) = ([Z0, tZ1], λ(Z0, tZ1)).
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In particular, the Gm-weights on

OP1(−1)|0,OP1(1)|0,OP1(−1)|∞ and OP1(1)|∞

are 0,0,1 and -1. Let τ0 = Z1, τ∞ = Z0 be the holomorphic sections of OP1(1). Then the

Gm-weights of τ0 and τ∞ are −1 and 0.

Take X̄ = P(OP1(1) ⊕ OP1) and L̄ = OX̄ (1) = OD∞ , where D∞ is the divisor at infinity.

We see that (X := X̄ \ P1
∞,L := L̄|X ) yields a test configuration of (X,L). Then H0(P1, L⊗k)

is of dimension dk = k + 1 and by the calculation in the first paragraph the total Gm-weight of

H0(P1, L⊗k) is wk = −1
2 (k2 + k). We know D2

∞ = −1 and K−1
X̄ ·D∞ = 1. So

wk =
D2

∞
2
k2 +

(
K−1

X̄ ·D∞

2
− 1

)
k and DF(X ,L) =

D2
∞
2

−

(
K−1

X̄ ·D∞

2
− 1

)
(= 0).

This example can be generalized to more general cases (see (5.2), (5.3)) by using Donaldson’s

argument in the following way. Also see the proof of Proposition 4.2.1 in [Don4].

First note that, after identifying the fiber X1 over {1} and X, we have an equivariant isomor-

phism:

(X\X0,L) ∼= (X × (A1 \ {0}), p∗1L)

by (p, a, s) → (a−1 ◦ p, a, a−1 ◦ s). Therefore, Gm acts on the right hand side by

t ◦ ({p} × {a}, s) = ({p} × {ta}, s)

for any p ∈ X, a ∈ A1 and s ∈ Lp. The gluing map is given by

(X ,L) (X × P1 \ {0}, p∗1L)∪ ∪
(X\X0,L) −→ (X × (A1 \ {0}), p∗1L)

(p, a, s) 7−→ ({a−1 ◦ p} × {a}, a−1 ◦ s),

where Gm only acts by multiplication on the factor P1 \ {0} of (X × P1 \ {0}, p∗1L).

Using the above gluing map, we get a compact complex manifold projective over P1: π̄ :

(X ,L) → P1. In the following, we will denote (X ,L) by (X̄ , L̄) for simplicity. Note that there

exists an integer N , such that M̄ = L̄ ⊗ π̄∗(OP1(N · {∞})) is ample on X̄ (cf. [KoMo, 1.45]).
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We need the following weak form of the Riemann-Roch formula whose proof is well known.

Lemma 30. Let X be a normal projective variety and L an ample divisor on X then

dimH0(X,L⊗k) =
Ln

n!
kn +

1
2
K−1
X · Ln−1

(n− 1)!
kn−1 +O(kn−2).

We define

dk = dimH0(X,L⊗k) =: a0k
n + a1k

n−1 +O(kn−2)

Theorem 25. Assume X is normal, then

a1b0 − a0b1
a2
0

= DF(X ,L) =
1

(n+ 1)!a0

(
a1

a0
L̄n+1 +

n+ 1
2

KX/P1 · L̄n
)
. (5.1)

Proof. For k � 0, by Kodaira Vanishing Theorem, we have two exact sequences:

A B C

‖ ‖ ‖

0 −→ H0(X̄ ,M̄⊗k(−X0)) ⊗σ0−→ H0(X̄ ,M̄⊗k) −→ H0(X0,M̄⊗k|X0) −→ 0

0 −→ H0(X̄ ,M̄⊗k(−X∞)) ⊗σ∞−→ H0(X̄ ,M̄⊗k) −→ H0(X∞,M̄⊗k|X∞) −→ 0,

‖ ‖ ‖

A B D

where σ0, σ∞ are sections of π̄∗OP1(1) which are pull back of the divisors {0}, {∞} on P1.

We can assume the Gm-weights of σ0 and σ∞ are -1 and 0. Note the first terms in the

two exact sequences are the same as A := H0(X̄ ,M̄⊗k ⊗ π̄∗OP1(−1)). We have the equation:

wB = wA − dA + wC = wA + wD, where we denote dA and wA to be the dimension and the

Gm-weight of the vector space A and similarly for dB etc. Since the Gm-weight of OP1(1)|∞ is

-1 and Gm acts on L̄|X̄∞ trivially, we have wD = −kNdimH0(X̄∞, L̄k|X̄∞). So we get

wC = dA + wD = dB − dC − kNdD = dB − (kN + 1)dC ,

In other words, we get the Gm-weight on H0(X0,M̄⊗k|X0) = H0(X0, L̄⊗k|X0):

wk = dimH0(X̄ ,M̄⊗k) − (kN + 1) dimH0(X0, L̄⊗k|X0).
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Expanding wk, we get:

wk = b0k
n+1 + b1k

n +O(kn−1)

with

b0 =
M̄n+1

(n+ 1)!
−Na0 =

L̄n+1

(n+ 1)!
, and (5.2)

b1 =
1
2
K−1

X̄ · M̄n

n!
−Na1 − a0 =

1
2
K−1

X̄ · L̄n

n!
− a0. (5.3)

We get (5.1) by substituting the coefficients into (2.27).

Remark 38. This intersection formula is related to the interpretation of Donaldson-Futaki in-

variant as the CM-weight as in [PaTi2]. It was extensively used in [ALV], [Odak1], [RoTh1],

etc.

The intersection formula gives us a way to define the Donaldson-Futaki invariants when L is

a π-big and semiample R-divisor.

Definition 17. (Donaldson-Futaki invariant for a semi-test configuation) Let π : (X ,L) → A1

be a Gm-equivariant flat family with L being π-big and π-semiample, such that for t ∈ A1\{0},

(Xt,L|Xt) ∼= (X,−rKX). We call (X ,L) a semi-test configuration and L a semi-polarization.

Assume X is normal. We define the Donaldson-Futaki invariant by the intersection formula:

DF(X ,L) =
1

(n+ 1)!a0

(
a1

a0
L̄n+1 +

n+ 1
2

KX/P1 · L̄n
)

(5.4)

A frequent example is as follows: Suppose there is a Gm-equivariant birational morphism

between normal varieties ρ : X ′tc → X over A1 and L′ = ρ∗(L) where (X ,L) is a test configura-

tion. If ρ is an isomorphism over the preimage images of A1 \ {0}, then L′ is big and semi-ample

but not ample in general. So (X ′,L′) is a semi-test configuration of (X,−rKX). The projection

formula and (5.1) imply that

DF(X ′,L′) = DF(X ,L).

Remark 39. For any relative big and semi-ample line bundle, this definition of Futaki invariant

coincides with the definition via computing the Gm-weights of cohomological groups as in [ALV].

For more details, see [RoTh1] and [ALV].

Remark 40. Using the above argument, we can also get the intersection formula in the log

case. Any test configuration can be equivariantly embedded into PN ×C∗ where the C∗ action on
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PN is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X, the test

configuration of (X,L) also induces a test configuration (Y,L|Y) of (Y, L|Y ). Let dk, d̃k be the

dimensions of H0(X,Lk), H0(Y, L| kY ), and wk, w̃k be the weights of C∗ action on H0(X0,L| kX0
),

H0(Y0,L| kY0
), respectively. Then we have expansions:

dk = a0k
n + a1k

n−1 +O(kn−2), a0 =
Ln

n!
, a1 = −KX · Ln−1

2(n− 1)!

wk = b0k
n+1 + b1k

n +O(kn−1), b0 =
L̄n+1

(n+ 1)!
, b1 = −KX̄ · L̄n

2n!
− a0

d̃k = ã0k
n−1 +O(kn−2), ã0 =

Ln−1 · Y
(n− 1)!

w̃k = b̃0k
n +O(kn−1), b̃0 =

L̄n · Ȳ
n!

alog
1 = a1 −

1
2
ã0, blog1 = b1 −

1
2
b̃0

K log

X̄ = KX̄ + Ȳ + X̄0

So we can calculate the intersection formula for the log-Futaki invariant:

DF(X ,Y,L) =
2(a1b0 − a1b0) + (a0b̃0 − ã0b0)

a2
0

=
(2a1 − ã0)b0 − a0(2b1 − b̃0)

a2
0

=
1

a0(n+ 1)!
[
c1L̄n+1 + (n+ 1)(KX̄ + Ȳ) · L̄n

]
+ 2

=
1

a0(n+ 1)!

[
2alog

1

a0
L̄n+1 + (n+ 1)K log

(X̄ ,Ȳ)/P1 · L̄n
]

c1 =
alog
1

a0
=

2a1 − ã0

a0
=
n(KX + Y ) · Ln−1

Ln

5.2.1 Song-Weinkove’s condition from intersection formula

As a preliminary application of the intersection formula, we prove (X,L) is K-stable in the special

case when c1(X) < 0 and L satisfies the inequality d. Following [Odak1], we only need to consider

the blow up of X × P1 along a flag ideal

J = J0 + tJ1 + · · · + tkJk
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Let X := BlJ (X × P1) → X × P1 be the blow up of along J . Let Lt = π∗L − tE we need to

show that

DF(X ,Lt) ≥ 0, for 0 < t < Seshadri constant of J with respect to L

Following [Odak1], we first rewrite the intersection formula for Donaldson-Futaki invariant

DF(X ,Lt) =
2a1

a0
(L(−tE))n+1 + (n+ 1)KX(L(−tE))n + (n+ 1)KX/(X×P1)(L(−tE))n

= I(t) + II(t)

Since X × P1 is smooth, so KX/(X×P1) is effective so we have II(t) ≥ 0. Let nµ = 2a1/a0, then

d

dt
I(t) = −(n+ 1)nLn−1

t · (µLt +KX) · E

Note that d
dt I(0) = 0. We can differentiate again:

d2

dt2
I(t) = n(n+ 1)

(
nµLn−1

t + (n− 1)KX · Ln−2
t

)
· E2

= −n(n+ 1)
(
−nc1(X) · [L]n−1

[L]n
Lt − (n− 1)KX

)
· Ln−2

t · E2 (5.5)

One should compare this intersection product with [Theorem 1.2 in [SoWe]]

Theorem 26 (Song-Weinkove). Suppose that X satisfies c1(X) < 0. Let V be the cone of all

Kähler class [χ0] with the property that there exist metrics ω in −c1(X) and χ′ in [χ0] with

(
−nc1(X) · [χ0]n−1

[χ0]n
χ′ − (n− 1)ω

)
∧ χ′n−2 > 0

Then the Mabuchi energy is proper on every class [χ0] in V .

So by discussion in section 2.7.2, (X,L) is K-stability. This should be able to follow from the

positivity of (5.5) for 0 < t < Seshadri constant of J with respect to L.

5.3 Special degeneration and K-stability of Fano manifold

In this section, we will prove Theorem 23 by simplifying the test configuration through various

birational transformations from MMP.
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5.3.1 Preliminaries from algebraic geometry

Definition and Theorem 1 (Relative MMP with scaling). ([BCHM], [KoMo])

Let (X0,∆0) := (X,∆) be a klt pair, projective over a smooth curve C. Let H be an ample

line bundle such that ∆ +H is nef. Assume KX + ∆ is not pseudo-effective. Let

µ = min{t;KX + ∆ + tH pseudo-effective }.

We can define a sequence rational numbers 1 = λ0 ≥ λ1 ≥ · · · ≥ λK > λK+1 = µ and a sequence

of models over C related by birational transformations:

(X0,∆0) 99K (Xi,∆i) 99K (XK ,∆K)

by the following inductive process. Assume (Xi,∆i) is defined. Let Hi be the birational transform

of H on Xi. Define

λi+1 = min{t ∈ [µ, 1];KXi + ∆i + tHi is nef }.

So there exists an extremal ray R ∈ NE(Xi/C) such that (KXi + ∆i) · R = −Hi · R < 0. We

can contract R by a contraction map πR : Xi → Y . There are two possibilities:

1. πR is divisorial contraction. Let Xi+1 = Y and ∆i+1 = (πR)∗∆i.

2. πR is a flipping contraction. Let f : Xi 99K Xi+ be the (KXi+∆i)-flip. Define Xi+1 = Xi+

and ∆i+1 = f∗∆i.

On the end product (X k,∆k) we have KXk + ∆k + µHk ∼Q,C 0.

The following two theorem are very important in the theory of MMP. We will frequently use

in the following argument too.

Theorem 27 (Relative base point free theorem). Let (X,4) be a klt pair, 4 effective, and

f : X → Y a proper morphism of projective varieties over C. Let D be an f-nef Cartier divisor

such that aD −KX −4 is f-nef and f-big for some a > 0. Then bD is f-free for all b� 0.

Lemma 31 (Negativity Lemma). ([KoMo, 3.39]) Let h : Z → Y be a proper birational morphism

between normal varieties. Let −B is an h-nef Q-Cartier Q-divisor on Z. Then

1. B is effective iff h∗B is.
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2. Assume B is effective. Then for every y ∈ Y , either h−1(y) ⊂ SuppB or h−1(y)∩SuppB =

∅.

We also need the higher dimensional version of the Zariski Lemma in the following calculation

of Donaldson-Futaki invariant. See [LiXu].

Lemma 32 (Zariski’s Lemma). Let X → C be a projective dominant morphism from a n-

dimensional normal variety to a proper smooth curve. Let E be a Q-divisor which supports on

some fiber X0. Let L1, ..,Ln−2 be n− 2 nef divisors on X . Then

E2 · L1 · · · Ln−2 ≤ 0.

If all Li’s are ample, then the equality holds if and only if E = tX0 for some t ∈ Q.

5.3.2 Step 0: Normalization

Assume (X ,L) → A1 is a test configuration. Let πν : X ν → X be the normalization of X . By

[RoTh1, Proposition 5.1] and [ALV, Corollary 3.9],

DF (X ν , (πν)∗L) ≤ DF (X ,L)

with equality holds if and only if Xnon−normal (i.e. the set of non-normal points of X has

codimension at least two.

Remark 41. Any test configuration can be equivariantly embedded into PN ×A1. So it’s induced

by a one parameter subgroup λ(t) of SL(N + 1,C). As we have seen in the end of Section 2.7.2,

there are three cases for X0. For the 3rd case, in general, the test configuration X is non-normal

(hence non-product), isomorphic to X × A1 in codimension 1, with Donaldson-Futaki invariant

0. This case was missing in most of precious work, e.g. [Sto1], as pointed out in [LiXu]. See

[Sto2], [Odak4] for related issues and corrections.

From now on, we will assume the test configuration X is normal. Since we can naturally

compactify any test configuration as in Section 5.2, we will consider more generally a polarized

family over a proper smooth curve whose total space is normal.

Definition 18. A polarized generically Q-Fano family is a projective morphism π : (X ,L) → C

from a normal polarized variety X to a smooth curve, whose generic fibre (Xη,Lη) ∼= (Xη,−rKXη )
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is a Q-Fano variety for some r ∈ Q. If each fibre is a Q-Fano variety, then (X ,−rKX/C) called

a Q-Fano family.

Definition 19. Assume (X ,L) → C is a polarized generically Q-Fano family over a proper

smooth curve. Assume for generic fibre L|Xt ∼Q −rKXt . We can define the Donaldson-Futaki

intersection number as

DF(X/C,L) =
1

2(n+ 1)rn(−KXt)n
(n
r
Ln+1 + (n+ 1)KX/C · Ln

)
,

If C = P1 and (X̄ , L̄) → P1 is the compactification of a Q-test configuration (X ,L) → A1 as

in Section 5.2 by simply adding a ‘trivial fiber’ over the point ∞ ∈ P1, then we have the equality

DF(X̄/P1, L̄) = DF(X ,L).

Remark 42. In the following, without loss of generality, we assume there is only one degenerate

fibre over 0 ∈ C, or 0′ ∈ C ′. We also note that although the following step of modification

was originally obtained without group action, they all can be carried out equivariantly. For

explanations, see [LiXu, Section 2.3], [And], [KoMo].

5.3.3 Step 1: Equivariant semi-stable reduction

Theorem 28. [LiXu] There exists a finite morphism φ : C ′ → C such that, if we denote X̃ to

be the main component of the normalization of X ×C C ′, then

1. X̃0 is reduced.

2. DF(X̃ , φ∗X̃/XL) ≤ deg(φ)DF(X ,L), where φX̃/X : X → X is the natural finite morphism.

The identity holds if and only if X0 is reduced.

3. then there exists a birational morphism f : Y → X̃ such that Y is smooth and the degenerate

fibre Y0 is simple normal crossing.

Proof. The existence of semi-stable reduction (1. and 3.) was obtained in ([KKMS] and [KoMo]).

We have the following commutative diagram:
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Y

��

φY/X

##

??
??

��?
??

?

X̃

��

// X

��
C ′ // C

such that

• Y is smooth

• Y0 =
∑N1
i=1 Y0,i is simple normal crossing.

Because KX̃ + X̃0 = φ∗X (KX + red(X0)) and KC′ + {0′} = φ∗(KC + {0}), we see that

KX̃/C′ = φ∗X (KX/C + red(X0) −X0)

So 2. follows from projection formula. Equality holds if and only if X0 = red(X0) is reduced.

5.3.4 Step 2: Log canonical modification

Theorem 29. [LiXu] Let (X̃ , L̃) → C be the polarized generic Q-Fano family such that X̃0 is

reduced and there exists a birational morphism Y → X̃0 such that Y is smooth and Y0 is simple

normal crossing. Then there exists a log canonical modification πlc : X lc → X̃ and polarization

Llc on X lc such that

(1) (X lc,X lc
0 ) is log canonical

(2) KX lc is relatively ample over X̃ .

(3) DF(X lc,Llc) ≤ DF(X̃ , L̃). The equality holds if and only if (X̃ , X̃0) is log canonical.

Proof. X lc is obtained by running (KY + Y0)-minimal model program on Y over X̃ . So X lc =

Proj R(Y/X̃ ,KY + Y0). For details, see ([LiXu],[OdXu]). Let

Lt =
r

r − t

(
πlc∗L + tKX lc

)
Since KX lc is relatively ample over X̃ , Lt is relatively ample over C if t is sufficiently small. Then

1
rLt + KX lc = r

r−t
(

1
rπ

lc∗L +KX lc

)
and L′

t = r2

(r−t)2
(

1
rπ

∗L +KX lc

)
. Let E = 1

rπ
lc∗L + KX lc ,
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then E is supported on X lc
0 .

d

dt
DF(X lc,Lt) =

1
(n+ 1)rn(−KXt)n

n(n+ 1)Ln−1
t

(
1
r
Lt +KX lc

)
· L′

t

=
nr3

rn(r − t)3(−KXt)n
· Ln−1

t ·
(

1
r
πlc∗L +KX lc

)2

≤ 0

for t sufficiently small. So we choose Llc = Lε for sufficiently small rational number ε. Then

DF(X lc,Llc) ≤ DF(X̃ , L̃). The equality holds only if E ∼Q,C X lc
0 , but then KX lc ∼Q,X 0, so X lc

is isomorphic to X̃ .

5.3.5 Step 3: Running MMP with scaling

Now we let X 0 = X lc, L0 = Llc. Given an exceptional divisor E, if its center dominates C

then a(E,X 0) > −1 because X ∗ is klt; if its center is vertical over C, then a(E,X 0) ≥ 0, since

(X 0,X 0
t ) is log canonical for any t in C. In particular, X 0 is klt.

Since L0 is ample, we can choose λ0 sufficiently large such that KX + λ0L is ample. To

simplify the family, we run a sequence of KX 0 -MMP over C with scaling of L0 as in Subsection

5.3.1. (This is equivalent to running (KX 0 + L0)-MMP with scaling L0. Compare with Section

5.3.9). So we obtain a sequence of models

X 0 99K X 1 99K · · · 99K X k.

Recall that, as in 5.3.1, we have a sequence of critical value of scaling factors

λi+1 = min{λ | KX i + λLi is nef over C}

with 1 = λ0 ≥ λ1 ≥ ... ≥ λk > λk+1 = 1
r . Note that 1

r is the pseudo-effective threshold of KX 0

with respect to L0 over C, since it is the pseudo-effective threshold for the generic fiber. Any

X i appearing in this sequence of KX 0 -MMP with scaling of L0 is a relative weak log canonical

model of (X 0, tL0) for any t ∈ [λi, λi+1] (see [BCHM, 3.6.7] for the definition of weak log canonical

model).

For λ ∈ [λi+1, λi], we denote by

Liλ =
r

λr − 1
(KX i + λLi). (5.6)
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where Li is the push forward of L0 to X i. As is clear from the context, this should not be

confused with the i-th power or intersection product of Lλ.

Lemma 33. −rKXk ∼Q,C Lk is big and semi-ample over C.

Proof. Since λk+1 = 1
r , the line bundle KXk + 1

rL
k is relatively nef over C and its restriction to

the generic fiber is trivial, so it is Q-linearly equivalent to a linear sum of components of X k
0 . By

its nefness, we can apply Lemma 32 to get

KXk +
1
r
Lk ∼Q,C 0.

Now for any λ ∈ [1/r, λk+1], λkλ ∼ Lk is nef. Lk is big because λk > 1
r , and from the relative

base-point free theorem (cf. Theorem 3.3 in [KoMo]), it is semi-ample over C.

By the above Lemma, we can define

X an = ProjR(X k/C,Lk) = ProjR(X k/C,−rKXk/C).

Since (X 0,X 0
0 ) is log canonical and and X 0

0 = (f ◦ πlc)∗({0}), this is a also a sequence of

(KX 0 + X 0
0 )-MMP and thus (X k,X k

0 ) is log canonical which implies that (X an,X an
0 ) is log

canonical as well.

5.3.6 Decreasing of DF-intersection number

For any λ > 1
r , the restriction of KX 0 + λL0 over C∗ is ample. So the MMP with scaling does

not change X 0 ×C C∗, i.e., X 0 ×C C∗ ∼= X i ×C C∗ for any i ≤ k. Let’s calculate the variation of

DF-intersection number.

Proposition 31. ([LiXu]) With the notation above, we have

DF(X 0/C,L0) ≥ DF(X k/C,Lk) = DF(X k/C,−rKXk/C) = DF(X an/C,−rKXan/C)

The firt equality holds if and only if h : X 0 99K X k is an isomorphism.
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Decreasing of DF on a fixed model

Assume X i
0 =

∑
αE

i
α, where Eiα’s are the prime divisors. Since (X 0,L0)×C C∗ is isomorphic to

(X 0 ×C C∗,−rKX 0×CC∗), there exist aiα ∈ R such that

KX i +
1
r
Li ∼R,C

∑
α∈I

aiαEα.

Let Zλ be the relative log canonical model of (X 0, λL0) over C. Then there is a morphism

πλ : X i → Zλ and an relatively ample Q-divisor Mλ on Zλ whose pull back is Liλ.

Lemma 34. If λi ≥ a > b ≥ λi+1 and b > 1
r , then DF(X i,Lia) ≥ DF(X i,Lib). The inequality

is strict if there is a rational number λ ∈ [a, b], such that the push forward of
∑
α a

i
αEα to Zλ is

not a multiple of the pull back of 0 ∈ C on Zλ.

Proof. Note that

(Liλ)′ =
d

dλ
Liλ = − r2

(λr − 1)2
(KX i +

1
r
Li), KX i +

1
r
Liλ =

λr

λr − 1
(KX i +

1
r
Li)

Now we compute the derivative of the Donaldson-Futaki invariants:

d

dλ
DF(X i/C,Liλ) = C0

(
(Liλ)n−1 · (Liλ)′ · (

1
r
Liλ +KX i)

)
= −C ′

0(Liλ)n−1 ·
(
KX i +

1
r
Li
)2

= −C ′
0(Mi

λ)n−1 ·

∑
β

aiβẼβ

2

,

where C0, C
′
0 are positive constants. Then the lemma follows from Lemma 32.

Lemma 35.

lim
λ→+∞

DF(X 0,L0
λ) = DF(X 0,L0)

Proof. This follows from limλ→+∞ L0
λ = L0 and the intersection formula.

The following corollary is a consequence of above two Lemmas.

Corollary 8.

DF(X 0,L0) ≥ DF(X 0,L0
λ0

)
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Invariance of DF at contraction or flip points

If λi+1 >
1
r , then by the definition of MMP with scaling, we pick up a KX i-negative extremal

ray [R] in NE(X i/C) such that R · (KX i + λi+1Li) = 0. we perform a birational transformation:

X i
fi //

  A
AA

AA
AA

A Yi

~~}}
}}

}}
}

P1,

which contracts all curves R′ whose classes [R′] are in the ray R>0[R]. There are two cases:

1. (Divisorial Contraction) If f i is a divisorial contraction. Then X i+1 = Yi. Since f i is a

(KX i + λi+1Li)-trivial morphism by the definition of the MMP with scaling, we have

KX i + λi+1Li = (f i)∗(KYi + λi+1Li+1),

which implies

Liλi+1
= (f i)∗Li+1

λi+1
.

Then it follows from projection formula that

DF(X i/C,Liλi+1
) = DF(X i+1/C,Li+1

λi+1
).

2. (Flipping Contraction) If f i is a flipping contraction, let φi : X i 99K X i+1 be the flip.

X i
φi //_______

−KXi is fi-ample
fi

  A
AA

AA
AA

A X i+1

KXi+1 is fi+-ample
fi+

||zz
zz

zz
zz

Yi

As f i is a (KX i + λi+1Li)-trivial morphism, (KX i + λi+1Li) = (f i)∗DYi for some divi-

sor DYi . Since f i, f i+, φi are isomorphisms in codimension one, we also have KX i+1 +

λi+1Li+1 = (f i+)∗DLi . Therefore, using the intersection formula, we see that

DF(X i/C,KX i + λi+1Li) = DF(Yi/C,DYi) = DF(X i+1/C,KX i+1 + λi+1Li+1).

Now we can finish the proof of Proposition 31:
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Proof.

DF(X 0/C,L0) ≥ DF(X 0/C,L0
λ0

) ≥ DF(X 0/C,L0
λ1

)

= DF(X 1/C,L1
λ1

) ≥ DF(X 1/C,L1
λ2

)

· · · · · · · · ·

= DF(X i/C,Liλi) ≥ DF(X i/C,Liλi+1
)

= DF(X i+1/C,Li+1
λi+1

) ≥ DF(X i+1/C,Li+1
λi+2

)

· · · · · · · · ·

= DF(X k/C,Lkλk) = DF(X k/C,−rKXk).

Now we characterize the equality case. Since −KXk ∼Q,C
1
rL

k is relatively nef over C, we

conclude that fk−1 : X k−1 → X k is a divisorial contraction contracting a divisor E. So if we let

aE = KXk−1 +
1
r
Lk−1
λk

− (fk−1)∗(KXk +
1
r
Lk)

then because fk−1 is (KXk−1 + λkLk−1)- trivial, for any curve C ∈ E,

aE · C =
(

1
r
− λk

)
Lk−1 · C < 0

because λk > 1
r . Since E·C < 0, we have a > 0. BecauseKXk+ 1

rL
k ∼Q,C 0, KXk−1+ 1

rL
k−1
λk

∼Q,C

aE whose support E is a proper subset of X k−1
0 . So the equality condition of Lemma 34 can not

hold on X k−1. Thus

DF(X lc/C,Llc) ≥ DF(X 0/C,L0
λ0

) ≥ DF(X k−1/C,Lk−1
λk−1

)

> DF(X k/C,Lkλk) = DF(X k/C,Lk)

= DF(X an/C,−rKXan).

5.3.7 Step 4: Q-Fano extension

From last section, we get some family X k and its anti-canonical model X an. Now we need to use

results from MMP to carry on. We collect the result we need in the following theorem.
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Theorem 30. [LiXu]

1. There exists a finite morphism φ : C ′ → C and a birational morphism π : X ′ → X̃ :=

X an ×C C ′ such that, if X ′
0 =

∑
iEi, then

• We can find some polarization L′ such that

L′ +KX ′/C′ =
∑

Ei 6=Es
aiEi

with ai > 0.

• π is a divisorial contraction contracting divisor Es with a(Es, X̃ ) = 0.

2. We can run (KX ′ +L′)-MMP over C ′ and get a klt model X s such that X s
0 is an irreducible

Q-Fano variety which is the strict transform of Es.

Theorem 31. [LiXu]

DF(X̃/C ′,−KX̃/C′) ≥ DF(X s/C ′,−KX s)

with equality holds if and only if X̃ ∼= X s.

Proof. The Donaldson-Futaki intersection number becomes very simple for relative anti-canonical

polarization:

DF(X̃/C ′,−KX̃/C′) = − 1
2(n+ 1)(−KXt)n

(−KX̃/C′)n+1

= − 1
2(n+ 1)(−KXt)n

(−KX ′/C′)n+1

The second equality comes from π∗KX̃ = KX ′ because of a(Es, X̃ ) = 0. Similarly,

DF(X s/C ′,−KX s/C′) = − 1
2(n+ 1)(−KXt)n

(−KX s/C′)n+1

Let p : X̂ → X ′ and q : X̂ → X s be common resolution. Define E = p∗KX ′ − q∗KX s so that

q∗(−KX s/C′) = p∗(−KX ′/C′) + E

Then −E is q-nef and E is supported on X̂0.

Let p̃ = π◦p : X̂ → X̃ . We can write KX̂ = p̃∗KX̃ +B = p∗KX ′ +B with B being exceptional

over X ′. Because X ′ 99K X s is a birational contraction, B is also exceptional over X s. Similarly,
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KX̂ = q∗KX s + F with F exceptional over X s. So E = −B + F is exceptional over X s. By the

Negativity Lemma 31, E ≥ 0.

If E = 0 or, X ′ and X s are not isomorphic in codimension 1, then

X̃ = ProjR(X ′,−KX ′/C′) = ProjR(X s,−KX s/C′) = X s

So we can assume E > 0 and X ′ is not isomorphic to X s in codimension 1. Then E > 0 contains

some divisor E1 which is the strict transform of Ẽ1 ⊂ X̃0 and is contracted via the birational

map X ′ 99K X s.

Let Lt = p∗(−KX ′/C′) + tE = (1 − t)p∗(−KX ′/C′) + tq∗(−KX s/C′). Then Lt is nef for

0 ≤ t ≤ 1. We can differentiate again:

d

dt

(
Ln+1
t

n+ 1

)
= Lnt · E

≥ (1 − t)np∗(−KX ′/C′)n · E1

= (1 − t)n(−KX ′/C′)n · p∗E1

= (1 − t)n(−KX̃/C′)n · Ẽ1 > 0

5.3.8 Completion of Proof of Theorem 23

Proof. For any test configuration X , we modify it by the above steps.

X/C  X ν/C ( Step 0: normalization )

 X̃/C ′ ( Step 1: base change and normalization)

 X lc/C ′ ( Step 2: log canonical modification )

 X an/C ′ ( Step 3: Run MMP with scaling )

 X ′/C ′′ ( Step 4a: Base change and crepant blow up)

 X s/C ′′ ( Step 4b: Contracting extra components)

For each step, the Donaldson-Futaki invariant decreases up to a factor due to base change

deg(C ′/C) and deg(C ′′/C). So

DF(X/C,L) ≤ deg(C ′′/C ′)DF(X s,−rKX s)
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The equality holds if and only if Xnon−normal has codimension at least two and X ν ×C C ′′ = X s

is a special test configuration. So if X is normal, then the equality holds if and only if X is itself

a special test configuration.

5.3.9 Simplification in the unstable case and Discussions

If we want to prove the following weaker statement of the theorem.

Theorem 32. Given any test configuration (X ,L) → C1, for any ε � 1, we can construct a

special test configuration (X s,−rKX s) and a positive integer m, such that

m(ε+ DF(X ,L)) ≥ DF(X s,−rKX s)

Then we can simplify the argument. Note that the weaker statement implies Tian’s conjecture

in the un-stable case.

Proof. 1. Step 1: Equivariant semistable reduction. Y → X̃ → X .

2. Step 2: perturb the pull back polarization.

LY = εA+ φ∗Y/X (L)

by an ample divisor A (ε� 1) such that

• LY is still ample

• For some a ∈ Q

LY +KY + aY0 =
N∑
i=2

aαY0,α

with aα > 0 for any α ≥ 2.

3. step 3: Run (KX + LY)-MMP with scaling LY over C. Define

M̄λ =
(KX̄ + L̄) + λL̄

λ
, M̄1 = L̄.

so that M+∞ = L. As λ decreases from +∞ to 0, we get a sequence of critical points of λ

and a sequence of models:

+∞ ≥ λ1 ≥ . . . ≥ λk > λk+1 = 0

X 0 99K X 1 99K . . . 99K X k → C
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The X k in the above sequence has very good properties:

• Ek is linearly trivial over C. Lk ∼C −KXk is semiample.

• Assume X0 =
∑N
α=1 aαX0,α = E ≥ 0, then X 99K X 0 contracts precisely Supp(E).

This can easily seen as follows. Using hyperplane section, we can assume dim(X ) = 2.

Denote the strict transform of E on X i by Ei. Because Ei · X i
0,1 > 0, X i

0,1 is never

contracted. If Ek still contained X k
0,β for some β ≥ 2, then Ek · X k

0,1 > 0. This

contradicts the Ek ∼C 0.

By property 1 above, we can define: X s = X an = Proj(X k,−KXk/C) so that −KX s is

ample and X s
0 is Q-Fano.

Again, Donaldson-Futaki invariant decreases along Mλ. Note that

KX + Mλ =
λ+ 1
λ

(KX + L),
d

dλ
Mλ = − 1

λ2
(KX + L).

As before, we can calculate

d

dλ
DF(X ,Mλ) = −C(n, λ, r)Mn−1

λ · (L +KX/P1)2 ≥ 0

by the Hodge index theorem, because L +KX/P1 =
∑
i aiX0,i only supports on X0. This means

that DF invariant decreases as λ decreases.

Remark 43. Let’s explain the formal similarity between MMP and (normalized) Kähler Ricci

flow. Assume L|Xt ∼C −KX . In MMP, we vary the polarization in the direction of KX :

Ms :=
L + sKX

1 − s
, Ms|Xt ∼ −KX .

The derivative of Ms is

d

ds
Ms =

1
(1 − s)2

(L +KX )
s̃=1/(1−s)⇐==⇒ d

ds̃
Ms̃ = KX + L

This variation corresponds to the normalized Kähler-Ricci flow.

∂ω

∂s̃
= −Ric(ωs̃) + ωs̃
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Chapter 6

Rotationally symmetric

Kähler-Ricci solitons on flips

6.1 Introduction and motivation

Song-Tian [SoTi] used Kähler-Ricci flow to study general algebraic varieties. The goal is to con-

struct canonical metrics on algebraic varieties obtained after surgeries and this can be seen as the

metric counterpart of Minimal Model Program(MMP). Tian-Zhang [TiZha] proved singularity-

occurring time is the same as nef threshold. It is proved in the theory of Ricci flow that, the

type-I singularity will produce Ricci soliton after rescaling. In general, we don’t know whether the

singularity is type-I or not. In Fano case, this is related to the famous Hamilton-Tian conjecture

on the limit behavior of Kähler-Ricci flow on any Fano manifold. If we assume the singularity is

type-I, it’s interesting to see examples of Kähler-Ricci solitons.

In [FIK], the authors constructed some examples of gradient Kähler-Ricci soliton. Among

them is the shrinking soliton on the Bl0Cm. They also glue this to an expanding soliton on Cm

to extend the Ricci flow across singular time.

Recently, La Nave and Tian [LaTi] studied the formation of singularity along Kähler-Ricci

flow by symplectic quotient. The idea is explained by the following example.

Let C∗ act on Cm+n by

t · (x1, · · · , xm, y1, · · · , yn) = (t x1, · · · , t xm, t−1 y1, · · · , t−1 yn)
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S1 ⊂ C∗ preserves the standard Kähler structure on Cm+n:

ω =
√
−1(

m∑
i=1

dxi ∧ dx̄i +
n∑
α=1

dyα ∧ dȳα)

Let z = (x, y) = (x1, · · · , xm, y1, · · · , yn). The momentum map of this Hamiltonian action is

m(z) =
m∑
i=1

|xi|2 −
n∑
α=1

|yα|2 = |x|2 − |y|2

The topology of symplectic quotient Xa = m−1(a)/S1 changes as a across 0.

Let OPN (−1) be the tautological line bundle on the complex projective space PN . We will

use YN,R to represent the total space of holomorphic vector bundle (OPN (−1)⊕R → PN ).

1. (a>0) ∀z = (x, y) ∈ Xa, m(z) = |x|2 − |y|2 = a > 0, so x 6= 0.

Xa ' Ym−1,n ' {Cm+n − {x = 0}}/C∗. The isomorphism is given by

(x1, · · · , xm, y1, · · · , yn) 7→ ([x1, · · · , xm], y1 · x, · · · , yn · x)

There is an induced Kähler metric on Xa. Choose a coordinate chart u1 = x2
x1
, · · · , um−1 =

xm
x1
, ξ1 = x1y1, · · · , ξn = x1yn. The C∗ action is then trivialized to: (x1, u, ξ) 7→ (tx1, u, ξ).

The Kähler potential can be obtained by some Legendre transformation (see [BuGu]).

Specifically, the potential for the standard flat Kähler metric on {Cm+n − {x = 0}} is

φ = |x|2 + |y|2 = |x1|2(1 + |u|2) +
|ξ|2

|x1|2
= er1(1 + |u|2) + e−r1 |ξ|2

where r1 = log |x1|2. φ is a convex function of r1. a = ∂φ
∂r1

is the momentum map of the S1

action. In the induced coordinate chart (u, ξ), the Kähler potential of the induced metric

on the symplectic quotient is the Legendre transform of φ with respect to r1:

Φa = a log(1 + |u|2) +
√
a2 + 4(1 + |u|2)|ξ|2 − a log(a+

√
a2 + 4(1 + |u|2|)|ξ|2) + (log 2) a

(6.1)

2. (a<0) By symmetry, Xa ' Yn−1,m ' {Cm+n − {y = 0}}/C∗. Choose a coordinate chart

v1 = y2
y1
, · · · , vn−1 = yn

y1
, η1 = y1x1, · · · , ηm = y1xm. The Kähler potential has the same

expression as (6.1) but replacing a by −a, u by v, and ξ by η.
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3. (a=0) Xa
∼= affine cone over the Segre embedding of Pm−1 × Pn−1 ↪→ Pmn−1:

(x1, · · · , xm, y1, · · · , yn) 7→ {xiyα}

Away from the vertex of the affine cone, choose a coordinate chart: u1 = x2
x1
, · · · , um−1 =

xm
x1
, v1 = y2

y1
, · · · , vn−1 = yn

y1
, ζ = x1y1. The Kähler potential is given by

Φ0 = 2
√

(1 + |u|2)(1 + |v|2)|ζ|2

Note that Φ0 is obtained from Φa by coordinate change ξ1 = ζ, ξ2 = v1ζ, · · · , ξn = vn−1ζ,

and let a tend to 0.

This is a simple example of flip when m 6= n, or flop when m = n, in the setting of symplectic

geometry. X<0 is obtained from X>0 by first blowing up the zero section Pm−1, and then blowing

down the exceptional divisor E ∼= Pm−1 × Pn−1 to Pn−1. Note that when n = 1, this process is

just blow-down of exceptional divisor in Bl0Cm.

One hopes to have a Kähler metric on a larger manifold M such that induced Kähler metrics

on symplectic quotient would satisfy the Kähler-Ricci flow equation as the image of momentum

varies. See [LaTi] for details.

Our goal to construct a Kähler-Ricci soliton on Y = Ym−1,n and its projective compactifica-

tion, and this generalizes constructions of [Koi], [Cao] [FIK]. See also [DaWa]. The construction

follows these previous constructions closely, but we need to modify them to fit our setting. The

higher dimensional analogs have the new phenomenon of contracting higher codimension subva-

riety to highly singular point. To continue the flow, surgery are needed. The surgeries in these

cases should be the naturally appearing flips.

The organization of this note is as follows. In section 2, we put the construction in a more

general setting where the base manifold is Kähler-Einstein, and state the main results: Theorem

33 and Theorem 34. In section 3, by the rotational symmetry, we reduce the Kähler-Ricci soliton

equation to an ODE. In section 4, we analyze the condition in order for the general solution of

the ODE to give a smooth Kähler metric near zero section. In section 5.1, we get the condition

for the metric to be complete near infinity. In section 5.2, we prove theorem 33, i.e. construct

Kähler-Ricci solitons in the noncompact complete Kähler manifold and study its behavior as

time approaches the singular time. Finally in section 6, we prove theorem 34 by constructing the

compact shrinking soliton on projective compactification.
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6.2 General setup and the result

Let M be a Kähler manifold of dimension d. Kähler-Ricci soliton on M is a Kähler metric ω

satisfying the equation

Ric(ω) = λω + LV ω (6.2)

where V is a holomorphic vector field. The Kähler-Ricci soliton is called gradient if V = ∇f for

some potential function f . If σ(t) is the 1-parameter family of automorphisms generated by V ,

then

ω(t) = (1 − λt)σ
(
− 1
λ

log(1 − λt)
)∗

ω (6.3)

is a solution of Kähler-Ricci flow equation:

∂ω(t)
∂t

= −Ric(ω(t))

We will construct gradient Kähler-Ricci solitons on the total space of special vector bundle

L⊕n → M and its projective compactification P(C ⊕ L⊕n) = P(L−1 ⊕ C⊕n). Here M is a

Kähler-Einstein manifold:

Ric(ωM ) = τωM

L has an Hermitian metric h, such that

c1(L, h) = −
√
−1∂∂̄ log h = −εωM

In the following, we always consider the case ε ≥ 0.

We consider the Kähler metric of the form considered by Calabi [Cal1]:

ω = π∗ωM + ∂∂̄P (s) (6.4)

Here s is the norm square of vectors in L. Under local trivialization of holomorphic local section

eL,

s(ξeL) = a(z)|ξ|2, ξ = (ξ1, · · · , ξn)

P is a smooth function of s we are seeking for.

Using the form (6.4), we can determine λ immediately. Let M be the zero section. By adjoint
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formula,

−KY |M = −KM + ∧nNM |M = −KM + nL

Note that ω|M = ωM , so by restricting both sides of (6.2) to M , and then taking cohomology,

we see that

τ [ωM ] − nε[ωM ] = c1(Y )|M = λ[ωM ] (6.5)

So λ = τ − nε.

Remark 44. If we rescale the Kähler-Einstein metric: ωM → κωM , then τ → τ/κ, ε → ε/κ,

λ→ λ/κ.

The main theorem is

Theorem 33. On the total space of L⊕n, there exist rotationally symmetric solitons of types

depending on the sign of λ = τ − nε. If λ > 0, there exists a unique shrinking soliton. If λ = 0,

there exists a family of steady solitons. If λ < 0, there exists a family of expanding solitons. (The

solitons are rotationally symmetric in the sense that it’s of the form of (6.4))

Remark 45. If we take M = Pm−1, L = O(−1), ωM = ωFS, then τ = m, ε = 1. Then we get

to the situation in section 1. So depending on the sign of λ = m− n, there exist either a unique

rotationally symmetric shrinking KR soliton when m > n, or a family of rotationally symmetric

steady KR solitons when m=n, or a family of rotationally symmetric expanding KR solitons when

m < n.

We also have the compact shrinking soliton:

Theorem 34. Using the above notation, assume λ = τ−nε > 0, then on the space P(C⊕L⊕n) =

P(L−1 ⊕ C⊕n), there exists a unique shrinking Kähler-Ricci soliton.

6.3 Reduction to ODE

The construction of solitons is straightforward by reducing the soliton equation to an ODE.

First, in local coordinates, (6.4) is expressed as

ω = (1 + εPss)ωM + a(Psδαβ + Pssaξαξ
β)∇ξα ∧∇ξβ (6.6)

Here

∇ξα = dξα + a−1∂a ξα
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Note that {dzi,∇ξα} are dual to the basis consisting of horizontal and vertical vectors:

∇zi =
∂

∂zi
− a−1 ∂a

∂zi

∑
α

ξα
∂

∂ξα
,

∂

∂ξα

ω is positive if and only if

1 + εPss > 0, Ps > 0, and Ps + Psss > 0 (6.7)

ωd+n = (1 + εPss)dωdMa
nPn−1

s (Ps + Psss)
n∏
α=1

dξα ∧ dξ̄α

Since we assume Ric(ωM ) = τωM = (λ+ nε)ωM ,

∂∂̄ log detωd+n+λ(ωM+∂∂̄P ) = ∂∂̄ [d · log(1 + εPss) + (n− 1) logPs + log((Pss)s) + (τ − nε)P ]

Let r = log s, then ∂r = s∂s. Define

Q := d · log(1 + εPss) + (n− 1) logPs + log((Pss)s) + (τ − nε)P

= d · log(1 + εPr) + (n− 1) logPr + logPrr − nr + (τ − nε)P (6.8)

To construct a gradient Kähler-Ricci soliton (6.2), it is sufficient to require that Q(t) is a potential

function for the holomorphic vector field −V . Notice that, for the radial holomorphic vector field:

Vrad =
n∑
α=1

ξα
∂

∂ξα
(6.9)

iVradω = (Ps + Psss)a
∑
β

ξβ∇ξβ = (Pss)s∂̄s

Now

−iV ω = ∂̄Q(s) = Qs∂̄s =
Qs

(Pss)s
iVradω

which means −V = Qs
(Pss)s

Vrad, so Qs
(Pss)s

is a holomorphic function. Since s = a(z)|ξ|2 is not

holomorphic, Qs
(Pss)s

has to be a constant µ. We assume µ 6= 0, since V 6= 0. So we get the

equation: Qs = µ(Pss)s. Multiplying by s on both sides, this is equivalent to

Qr = µPrr (6.10)
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Remark 46. Note that, if µ = 0, then we go back to Calabi’s construction of Kähler-Einstein

metrics in [Cal1].

Define φ(r) = Pr(r) and substitute (6.8) into (6.10), then we get

d
εφr

1 + εφ
+ (n− 1)

φr
φ

+
φrr
φr

+ (τ − nε)φ− n = µφr (6.11)

Since φr = Prr = (Pss)ss = (Ps+Psss)s > 0 by (6.7), we can solve r as a function of φ: r = r(φ).

Define F (φ) = φr(r(φ)), then F ′(φ) = φrrr
′(φ) = φrr

φr
. So the above equation change into an

ODE

F ′(φ) + d
εF (φ)
1 + εφ

+ (n− 1)
F (φ)
φ

− µF (φ) = n− (τ − nε)φ = n(1 + εφ) − τφ (∗)

Remark 47. We will explain how this equation is related to the ODE in [FIK],(25). with our

notation, in [FIK], M = Pd, L = OPd(−k), n = 1. For the shrinking soliton case, d+ 1− k > 0,

ωM = (d + 1 − k)ωFS, τ = d+1
d+1−k , ε = k

d+1−k , λ = τ − ε = 1. Let r = kr̃, P (r) = P̃ (r̃) −

(d + 1 − k)r̃ = P̃ ( rk ) − d+1−k
k r, φ(r) = Pr(r) = P̃r̃(r̃) 1

k − d+1−k
k = 1

k (φ̃(r̃) − (d + 1 − k)),

F (φ) = φr(r(φ)) = 1
k2 φ̃r̃(r̃(φ̃)) = 1

k2 F̃ (φ̃), F ′
φ(φ) = 1

k F̃
′
φ̃
(φ̃). Substitute these expressions into

(∗), then we get the ODE

F̃ ′
φ̃

+
(
d

φ̃
− µ

k

)
F̃ − ((d+ 1) − φ̃) = 0

So we see this is exactly the ODE in [FIK], (25). The expanding soliton case is the similar.

We can solve (∗) by multiplying the integral factor: (1 + εφ)dφn−1e−µφ:

φr = F (φ) = ν(1 + εφ)−dφ1−neµφ − (1 + εφ)−dφ1−neµφ
∫
h(φ)e−µφdφ (6.12)

where

h(φ) = τ(1 + εφ)dφn − n(1 + εφ)d+1φn−1 (6.13)

is a polynomial of φ with degree d+ n. Note the identity:

∫
h(φ)e−µφdφ = −

+∞∑
k=0

1
µk+1

h(k)(φ)e−µφ
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Since h(φ) is a polynomial of degree d+n, the above sum is a finite sum. So

F (φ) = (1 + εφ)−dφ1−n

(
νeµφ +

d+n∑
k=0

1
µk+1

h(k)(φ)

)
(6.14)

6.3.1 Rotationally Symmetric Model of Tian-Yau metrics

Using similar calculation, we can also give an interpretation of the leading term in Tian-Yau’s

[TiYa1, TiYa2] construction of complete Ricci flat Kähler metrics on X\D where X is a Fano

manifold and D is a smooth divisor such that −KX ∼Q βD. By adjunction formula, K−1
D =

K−1
X |D −D ∼ (β − 1)D. Let M = D, L = ND, n = 1, ε = −1, d = dimD , F (r) = −r + P in

the above. Then

ωd+1 = (−Fr)dFrrωdD ∧ d log ξ ∧ dlog ξ

So Ric(ω) = −
√
−1∂∂̄ log((−Fr)dFrr) + τωD = −

√
−1∂∂̄

(
log
(
(−Fr)dFrr

)
+ τr

)
. In order for

Ric(ω) = 0, it suffices for

log
(
(−Fr)dFrr

)
+ τr = constant (6.15)

1. (β = 1) τ = 0. We can solve F = C · (−r)(d+2)/(d+1)which is same as F = C ·

(− log ‖s‖2)(n+1)/n using Tian-Yau’s notation in [TiYa1, equation 4.1].

2. (β > 1) τ = β− 1. We can solve F = C · e−τr/(d+1) which is C · ‖s‖−2(β−1)/n in Tian-Yau’s

notation in [TiYa2, equation 2.2].

6.4 Boundary condition at zero section

Since limr→−∞ φ(r) = lims→0 Pss = 0, we have the boundary condition

lim
φ→0

F (φ) = lim
r→−∞

φr = lim
s→0

(Pss)ss = 0 (6.16)

So φn−1(1 + εφ)dF (φ) = O(φn). Now the l-th term of Taylor expansion of φn−1(1 + εφ)dF (φ) at

φ = 0 is

(φn−1(1 + εφ)dF (φ))(l)
∣∣∣
φ=0

= νµl +
+∞∑
k=0

1
µk+1

h(k+l)(0) = µl

(
ν +

d+n∑
k=l

1
µk+1

h(k)(0)

)
(6.17)
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Note that by (6.13) h(k)(φ) = 0 for k > d + n, and h(k)(0) = 0 for k < n − 1. The vanishing of

the 0-th(constant) term in expansion gives the equation:

ν +
d+n∑
k=n−1

1
µk+1

h(k)(0) = 0 (6.18)

Using relation (6.18) we see that, when l < n, (φn−1(1 + εφ)dF (φ))(l)
∣∣
φ=0

= 0, and

(φn−1(1 + εφ)dF (φ))(n)
∣∣∣
φ=0

= µn

(
ν +

d+n∑
k=n

1
µk+1

h(k)(0)

)
= −h(n−1)(0) = n! > 0

So we see that (6.16) and (6.18) are equivalent, and if they are satisfied,

φn−1(1 + εφ)dF (φ) = φn +O(φn+1), or F (φ) = φ+O(φ2)

So F (φ) > 0 for φ near 0.

We can rewrite the relation (6.18) more explicitly:

ν =
+∞∑
k=0

1
µk+1

[
n((1 + εφ)d+1φn−1)(k) − τ((1 + εφ)dφn)(k)

]∣∣∣∣∣
φ=0

=
d+n∑
k=n−1

1
µk+1

(
n

(
k

n− 1

)
(n− 1)!

(d+ 1)!
(d+ n− k)!

εk−n+1 − τ

(
k

n

)
n!

d!
(d+ n− k)!

εk−n
)

=
d+n∑
k=n−1

Ck
1

µk+1
εk−n (6.19)

Here

Ck =
k!d!

(k − n+ 1)!(d+ n− k)!
(nε(d+ 1) − τ(k − n+ 1)) (6.20)

Cn−1 = n!ε, Cd+n = −(d+ n)!(τ − nε)

So, when k starts from n − 1 to d + n, Ck change signs from positive to negative if and only if

λ = τ − nε > 0. We need the following simple lemma later.

Lemma 36. Let P (x) =
∑l
i=0 aix

i −
∑N
j=l+1 ajx

j be a polynomial function. Assume ai > 0 for

0 ≤ ai ≤ N . Then there exists a unique root for P (x) on [0,∞).

Proof. First P (0) = a0 > 0. Since aN < 0, when x is large enough P (x) < 0. So there exists at

least one root on [0,∞). Assume there are more than one root, than it’s easy to see that P ′(x)

has at least two roots on [0,∞). Note that P ′(x) has the same form as P (x), so P ′′(x) has at
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least two roots on [0,∞). By induction, P (l)(x) has at least two roots on [0,∞), but P (l)(x) has

only negative coefficients, so it has no root at all. This contradiction proves the lemma.

6.5 Complete noncompact case

We prove theorem 33 in this section.

6.5.1 Condition at infinity

As φ→ +∞,

F (φ) = ν(1 + εφ)−dφ1−neµφ +
τ − nε

µ
φ+O(1) (6.21)

Let φ = b1 > 0 be the first positive root for F (φ) = 0, then F ′(b1) ≤ 0. By (∗), F ′(b1) =

n − (τ − nε)b1. So if λ = τ − nε ≤ 0, there exits no such b1. If λ = τ − nε > 0, we integrate

(6.12) to get

r = r(φ) =
∫ φ

φ0

1
F (u)

du+ r(φ0) (6.22)

then the metric is defined for −∞ < r < r(b1). We require that

rmax = r(b1) = +∞ (6.23)

We can also calculate the length of radial curve extending to infinity. In a fixed fibre, the

radial vector
∂

∂r
=

1
2
|ξ| ∂
∂|ξ|

=
1
2

n∑
α=1

ξα
∂

∂ξα
=

1
2
Vrad

∣∣∣∣ ∂∂r
∣∣∣∣2 =

1
4
gω(Vrad, Vrad) = C(Pss+ Psss

2) = Cφr

The completeness implies that the length of the radial curve extending to infinity is infinity:

∫ r(b1)

−∞

√
φrdr =

∫ b1

0

√
φrφ

−1
r dφ =

∫ b1

0

φ
− 1

2
r dφ =

∫ b1

0

F (φ)−
1
2 dφ = +∞ (6.24)

If 0 < b1 < +∞,(6.24) means F (φ) = c(φ− b1)2 +O((φ− b1)3), i.e. F ′(b1) = F (b1) = 0.

But this can’t happen: b1 = n
τ−nε , and c = −(τ − nε). First we have b1 > 0. Second, c ≥ 0

since F (φ) > 0 when φ < b1. But they contradict with each other.

In conclusion, there can’t be any finite value positive root for F (φ).
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6.5.2 Existence and asymptotics

1. (λ = τ − nε > 0) The solution is a shrinking Kähler-Ricci soliton. If µ < 0, then when φ

becomes large, the dominant term in F (φ)(6.21) is λ
µφ < 0, so there exists 0 < b < +∞

such that F (b) = 0. But this is excluded by former discusions. So we must have µ > 0.

If ν < 0 the dominant term is νφ1−n(1 + εφ)−meµφ < 0, so there is 0 < b < +∞, such that

F (b) = 0. Again, this is impossible. If ν > 0, when φ becomes large, the dominant term is

νφ1−d−neµφ, ∫ +∞

φ0

1
F (s)

ds ≤ C

∫ +∞

φ0

1
ν
φd+n−1e−µφdφ < +∞

This contradicts (6.23). So we must have ν = 0. This gives us an equation for µ via (6.19).

Since when λ = τ − nε > 0, Ck change signs exactly once, by lemma 36, there exists a

unique µ such that ν(µ) = 0 in (6.19). We now verify this µ guarantees the positivity of

φr. Since the dominant term in (6.21) is λ
µφ > 0, F (φ)

φ→+∞−→ +∞. We have also F (φ) > 0

for φ near 0. If φ = b1 > 0 is the first root and φ = b2 > 0 is the last root of F (φ), then

b1 ≤ b2, and

F ′(b1) = −λb1 + n ≤ 0, F (b2) = −λb2 + n ≥ 0

So b1 ≥ n
λ ≥ b2, this implies b1 = b2 and F ′(b1) = 0. We have ruled out this possibility

before. In conclusion, F (φ) > 0 for all φ > 0, or equivalently φr > 0 for all r.

So we already get the soliton. In the following, we study the limit of flow as time approaches

singularity time.

Define p = λ
µ = τ−nε

µ ,

r(φ) − r(φ0) =
∫ φ

φ0

du

F (u)
=
∫ φ

φ0

du

pu
+
∫ φ

φ0

pu− F (u)
puF (u)

ds =
1
p

(log φ− log φ0) +G(φ0, φ)

φ(r) = φ0e
−pr(φ0)e−G(φ0,φ)epr = φ0e

−pr(φ0)e−G(φ0,φ(r))sp (6.25)

The holomorphic vector field −V
2 = µ

2

∑
α ξ

α ∂
∂ξα generates the 1-parameter family of au-

tomorphisms: σ(t̃) · (u, ξ) = (u, e
t̃µ
2 ξ). Let

t̃(t) = − 1
λ

log(1 − λt) (6.26)
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lim
t→ 1

λ

(1 − λt)σ(t̃)∗φ = φ0e
−pr(φ0)e− limφ→+∞ G(φ0,φ) lim

t→ 1
λ

(1 − λt)((1 − λt)−
µ
λ s)p

= φ0e
−pr(φ0)e−G(φ0,+∞)sp = D0s

p

So

lim
t→ 1

λ

(1 − λt)σ(t̃)∗φr = lim
t→ 1

λ

(1 − λt)σ(t̃)∗F (φ) = pD0s
p

(6.6) can be rewritten as

ω = (1 + εφ)π∗ωFS + (φ|ξ|−2δαβ + (φr − φ)|ξ|−4ξαξβ)∇ξα ∧∇ξβ (6.27)

lim
t→ 1

λ

(1 − λt)σ(t̃)∗ω = D0

[
spεωM + sp(|ξ|−2δαβ + (p− 1)|ξ|−4ξαξβ)∇ξα ∧∇ξβ

]
= D0∂∂̄

(
1
p
sp
)

Remark 48. One sees that as t→ 1
λ , the flow shrinks the base (zero section of the vector

bundle). In the model case, M = Pm−1, L = O(−1), the flow contracts the manifold to the

affine cone of the Segre embedding Pm−1 × Pn−1 ↪→ Pmn−1. This is the same phenomenon

as that appears for the symplectic quotients at the beginning of this note.

2. (λ = τ − nε = 0) the solution is a steady Kähler-Ricci soliton.

F (φ) = ν(1 + εφ)−dφ1−neµφ − n(1 + εφ)−dφ1−n
d+n−1∑
k=0

1
µk+1

(
(1 + εφ)dφn−1

)(k)
If µ > 0, then v(µ) > 0 by (6.19). So the dominant term in (6.21) is ν(1 + εφ)−dφ1−neµφ,

so rmax < +∞.

So µ < 0 and the dominant term in (6.14) is the constant term −n
µ > 0. As φ→ +∞,

F (φ) = −n
µ
− n(d+ n− 1)

µ2

1
φ

+O

(
1
φ2

)
= c1 − c2

1
φ

+O

(
1
φ2

)
∫

du

c1 − c2
u

=
1
c1
u+

c2
c21

log(c1u− c2) = R(u)

r(φ) − r(φ0) =
∫ φ

φ0

du

F (u)
=
∫ φ

φ0

du

c1 − c2
u

+
∫ φ

φ0

(
1

F (u)
− 1
c1 − c2

u

)
du

= R(φ) −R(φ0) +G(φ0, φ)
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Since c1 > 0 and c2 > 0 (µ < 0, d > 0, n ≥ 1), R(u) is an increasing function for u � 0,

and has an inverse function denoted by R−1. Let G̃(r) = −G(φ0, φ(r)) + R(φ0) − r(φ0),

then G̃ is a bounded smooth function of r. We have

φ(r) = R−1(r + G̃(r))

The condition (6.24) is always satisfied. There is a family of steady Kähler-Ricci solitons.

Remark 49. If we let d = 0, then we get expanding solitons on Cn. 6.18 becomes νµn = n!.

The equation becomes

(|µ|φ)r = (−1)nn!(|µ|φ)1−ne−|µ|φ + n!
n−1∑
k=0

(−1)k

(n− 1 − k)!(|µ|φ)k

In particular, if n = 1, the equation becomes

φr = F (φ) = νeµφ − 1
µ

φ(r) = − 1
µ

log(µν + Cer) = − 1
µ

log(1 + C|z|2), φr = − C|z|2

µ(1 + C|z|2)

ω =
φr
|z|2

dz ∧ dz̄ = − Cdz ∧ dz̄
µ(1 + C|z|2)

w=
√
Cz=

1
−µ

dw ∧ dw̄
1 + |w|2

This is cigar steady soliton.

3. (λ = τ − nε < 0) the solution is an expanding Kähler-Ricci soliton. By similar argument,

we see that µ < 0. The situation is similar to the shrinking soliton case. Now t → 1
λ < 0,

or equivalently t̃→ −∞ (6.26),

φ(r) = φ0e
−pr(φ0)e−G(φ0,φ(r))sp

lim
t→ 1

λ

(1 − λt)σ(t̃)∗φr = lim
t→ 1

λ

(1 − λt)σ(t̃)∗F (φ) = pD0s
p

lim
t→ 1

λ

(1 − λt)σ(t̃)∗ω = D0∂∂̄

(
1
p
sp
)

The condition (6.24) is always satisfied. So there is a family of expanding Kähler-Ricci

solitons.

Remark 50. One could apply the same argument in [FIK] to get the Gromov-Hausdorff conver-
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gence and continuation of flow through singularity time.

6.6 Compact shrinking soliton

We prove theorem 34 in this section. First we show the considered manifold is Fano. For some

results on Fano manifolds with a structure of projective space bundle, see [SzWi].

Lemma 37. If λ = τ − nε > 0, then P(C ⊕ L⊕n) is Fano.

Proof. Let E = C ⊕ L⊕n and X = P(E). We have the formula for anti-canonical bundle:

K−1
X = (n+ 1)O(1) + π∗(K−1

M + L⊗n)

O(1) is the relative hyperplane bundle. Since c1(L−1) = ε[ωM ] ≥ 0, one can prove O(1) is nef

on X [Laz]. c1(K−1
M + L⊗n) = (τ − nε)[ωM ] > 0, so K−1

M + L⊗n is an ample line bundle on M .

So O(1) and π∗(K−1
M + L⊗n) are different rays of the cone of numerically effective divisors in

Pic(P(E)) = ZPic(M) + ZO(1). So K−1
X is ample, i.e. X is Fano.

The construction of shrinking soliton was developed for the n=1 case, see [Cal2], [Koi], [Cao],

[FIK]. We will give a simple direct argument under our setting. Note here we will use Tian-Zhu’s

theory [TiZhu] to get the uniqueness of Kähler-Ricci soliton.

First we need to know the expression for the metric near infinity. By change of coordinate

[1, ξ1, ξ2, · · · , ξn] = [η, 1, u2, · · · , un]

So the coordinate change is given by

ξ1 =
1
η
, ξ2 =

u2

η
, · · · , ξn =

un
η

⇐⇒ η =
1
ξ1
, u2 =

ξ2
ξ1
, · · · , un =

ξn
ξ1

Since

ξ1
∂

∂ξ1
= −η ∂

∂η
−

n∑
i=2

uα
∂

∂uα
, ξα

∂

∂ξα
= uα

∂

∂uα

So the radial vector
∑n
i=α ξα

∂
∂ξα

= −η ∂
∂η is a holomorphic vector field on P(C⊕L⊕n). The dual

1-forms transform into

∇ξ1 = − 1
η2

(dη − ηa−1∂a) = − 1
η2
ω0, ∇ξα =

duα
η

− uα
η2

(dη − ηa−1∂a) =
duα
η

− uα
η2
ω0
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Note that the dual basis for the basis {dzi, ω0, duα} is

∇zi =
∂

∂zi
+ a−1 ∂a

∂zi
η
∂

∂η
,

∂

∂η
,

∂

∂uα

So making coordinate change,

ω = (1 + Pss)ωM +
n∑
α=2

n∑
β=2

a

(
Psδαβ + Pssa

ūαuβ
|η|2

)(
1
η
duα − uα

η2
ω0

)
∧
(

1
η̄
dūβ − ūβ

η̄2
ω0

)

−
n∑
β=2

Pssa
2 uβ
|η|2

ω0

η2
∧
(

1
η̄
dūβ − ūβ

η̄2
ω0

)
−

n∑
α=2

Pssa
2 ūα
|η|2

(
1
η
duα − uα

η2
ω0

)
∧ ω0

η̄2

+a(Ps + Pssa
1

|η|2
)
ω0 ∧ ω0

|η|4

= (1 + Pss)ωM +
n∑
α=2

n∑
β=2

(Psδαβ + Psss
ūαuβ

1 + |u|2
)

s

1 + |u|2
duα ∧ dūβ

−
n∑
α=2

ūαη

a(1 + |u|2)2
(Ps + Psss)s2duα ∧ ω0 −

n∑
β=2

uβ η̄

a(1 + |u|2)2
(Ps + Psss)s2ω0 ∧ dūβ(6.28)

+
1

a(1 + |u|2)
(Ps + Psss)s2ω0 ∧ ω0

In the above calculation, we used many times the relation s = a|ξ|2 = a(1+|u|2)
|η|2 .

Lemma 38. The closing condition for compact shrinking soliton is: there exists a b1 > 0, such

that

F (b1) = 0, F ′(b1) = −1 (6.29)

Proof. Define s̃ = s−1 = |η|2
a(1+|u|2) . Under the condition (6.29), then near b1, φr = F (φ) =

−(φ − b1) + O((φ − b1)2. So up to the main term, φ − b1 ∼ −C0e
−r = −C0

1
s = −C0s̃ for some

C0 > 0, (Pss)ss2 = φss
2 ∼ C0, Psss2 = (Pss)ss − Pss = φss − φ ∼ −b1 + 2C0

s = −b1 + 2C0s̃,

. So we first see that the coefficients in (6.28) are smooth near infinity divisor defined by η = 0

(or equivalently s̃ = 0). We only need to show ω is positive definite everywhere. In fact, we only

need to check when s̃ = 0. When s̃ = 0, we have

ω = (1 + b1)ωM +
n∑
α=2

n∑
β=2

(b1δαβ − b1
ūαuβ

1 + |u|2
)

1
1 + |u|2

duα ∧ dūβ +
C0

a(1 + |u|2)
ω0 ∧ ω0

So ω is positive definite. So it defines a smooth Kähler metric on the projective compactification.
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By (∗), this condition determines

b1 =
n+ 1
τ − nε

=
n+ 1
λ

Since F (0) = 0, this condition is equivalent to

0 = F (b1) − F (0) =
∫ b1

0

h(φ)e−µφdφ = T (µ) (6.30)

T (0) =
∫ b1

0

h(φ)dφ =
∫ b1

0

(1 + εφ)dφn−1((τ − ε)φ− 1)

=
∫ b1

0

d∑
k=0

(
d

k

)
εk(λφk+n − φk+n−1)dφ

=
d∑
k=0

(
d

k

)
εkbk+n1

(
λb1

k + n+ 1
− n

k + n

)

=
d∑
k=0

(
d

k

)
εkbk+n1

k

(k + n+ 1)(k + n)
> 0

On the other hand,

T (µ) =
1

µd+n+1

d+n∑
k=0

µd+n−k(h(k)(0) − h(k)(b1)e−µb1)

Since h(0)(0) < 0 (6.20), and limµ→+∞ e−µb1 = 0. It’s easy to see that T (µ) < 0 for µ sufficiently

large. So there is a zero point for T (µ) on (0,∞). The uniqueness is difficult to see directly, but

because different solutions of (6.30) would give proportional vector fields and hence proportional

potential functions, by using Tian-Zhu’s invariant [TiZhu], we indeed have the uniqueness.
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