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Abstract

In this thesis, we study several problems related to the existence problem of Ké&hler-Einstein
metric on Fano manifold. After introduction in the first chapter, in the second chapter, we
review the basic theory both from PDE and variational point of view. Tian’s program using finite
dimensional approximation is then explained. Futaki invariant is discussed in detail for both its
definition and calculation. K-stability is introduced following Tian and Donaldson. In the third
chapter, we extend the basic theory to the twisted setting. As an important case, the analytic
and algebraic theory are both extended to the conic setting. In the third chapter, we study the
continuity method on toric Fano manifolds. We calculate the maximal value of parameter for
solvability and study the limit behavior of the solution metrics. As a corollary, we prove Tian’s
partial C%estimate on toric Fano manifolds. The log-Futaki invariant is calculated on toric
Fano manifolds too. In the fourth chapter, we discuss the recent joint work with Dr. Chenyang
Xu. We use Minimal Model Program (MMP) to simplify the degeneration and prove Tian’s
conjecture which reduce the test for K-stability to special degenerations. In the final chapter, we
construct examples of rotationally symmetric solitons. These solitons are local models of special

singularities of Kéhler-Ricci flow.
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Chapter 1

Introduction

1.1 Main Theme: Kahler-Einstein metric as canonical met-
ric

Complex geometry aims to study complex manifolds, which are manifolds with complex struc-
tures. Kéhler manifolds form a large class of complex manifolds. A Kéhler manifold is a complex
manifold with a Riemannian metric compatible with the complex structure. One basic problem
in Kahler geometry is to find the canonical metric on a given Ké&hler manifold. Canonical means
that the metric depends on the complex structure and is unique up to biholomorphic automor-
phisms. This problem is similar to Thurston’s Geometrization Conjecture for real 3-manifolds.
They all intend to classify manifolds by extending the Uniformization Theorem for Riemann
Surfaces to higher dimensions.

One class of canonical metric is Kédhler-Einstein (KE) metric. In order for a Kéhler manifold
X to have a Kéhler-Einstein metric, its first Chern class has to be definite, that is either —c;(X)
is a Kéhler class, or ¢;(X) = 0, or ¢;(X) is a Kahler class. For the first case, Aubin [Aub]
and Yau [Yaul] independently proved the existence of Kéhler-Einstein metric in —¢;(X). For
the second case, the existence of Kéhler-Einstein metric in any Kéhler class follows from Yau’s
solution of Calabi conjecture [Yaul]. These Kéhler-Einstein metrics with zero Ricci curvature
are known as Calabi-Yau metrics and play a major role in the String Theory.

The remaining case is the Fano case, i.e. when the anti-canonical line bundle —Kx is ample.
In general, there are obstructions to the existence of Kéhler-Einstein metric on X. For example,

a theorem of Matsushima [Mat] says that, any Kéhler-Einstein Fano manifold has a reductive



automorphism group, which is the complexification of the isometry group of the Kéhler-Einstein
metric. The goal now is to find all obstructions and characterize all Fano manifolds with Kéhler-
FEinstein metric. Now this is a big subject of intensive research.

On the one hand, finding Kéhler-Einstein metric reduces to solving a fully non-linear complex
Monge-Ampere equation. The standard tool from PDE is to use continuity method or flow
method.

Since the equation in general can not be solved, in both of these methods, the difficulty
lies in studying the singularities formed at certain threshold of the parameter and hopefully the
information of the singularities will give us obstructions to the existence. These are tied with
the compactness result from Riemannian geometry. More specifically, along continuity method,
the metrics have a uniform lower Ricci bound. By Cheeger-Colding’s theory, they converge in
Gromov-Hausdorff sense to some metric space. But it’s a weak limit and one does not know
much things about the singularities. For the K&ahler-Ricci flow case, there is the well-known
Hamilton-Tian’s conjecture, which predicts the limit to be Kahler-Ricci soliton on some normal
Fano variety. In general there may be a jump to a different complex structure and even jump to
a singular variety.

On the other hand, K&hler-Einstein problem is a variational problem. Futaki [Fut] found
an important invariant as the obstruction to this problem. Then Mabuchi [Mabl] defined the
K-energy functional by integrating this invariant. The minimizer of the K-energy is the Kéahler-
Einstein metric. Tian [Tia9] proved that there is a K&hler-Einstein metric if and only if the
K-energy is proper on the space of all Kidhler metrics in ¢;(X). So the problem is how to test
the properness of the K-energy.

Tian developed a program to reduce this infinitely dimensional problem to finitely dimensional
problems. More precisely, he proved in [Tia9] that the space of Kahler metrics in a fixed Kéhler
class can be approximated by a sequence of spaces consisting of Bergman metrics. The latter
spaces are finitely dimensional symmetric spaces. Tian ([Tia9]) then introduced the K-stability
condition using the generalized Futaki invariant ([DiTi]) for testing the properness of K-energy
on these finitely dimensional spaces. Later Donaldson [Don4] reformulated it using algebraically
defined Futaki invariant (see (2.27)), which is now called the Donaldson-Futaki invariant. The

following folklore conjecture is the guiding question in this area.

Conjecture 1 (Yau-Tian-Donaldson conjecture). Let (X, L) be a polarized manifold. Then there

is a constant scalar curvature Kahler metric in ¢y (L) if and only if (X, L) is K-polystable.



1.2 Content of the thesis

Chapter 2

Chapter 3

In 2.1, we will recall some standard notation in Kéhler geometry. In 2.2, we will reduce the
Kahler-Einstein problem to solving a complex Monge-Ampeére equation. Then we introduce
the continuity method and reduce the solvability to establishing a priori estimates. In 2.3,
we explain how the CZ-estimate and higher order estimate follow from the C-estimate.
This means the non-existence of KE is due to the failure of uniform CP-estimate. In
2.4, we will view Kahler-Einstein metric as critical points of two functionals: K-energy
and F-functional. We will also define various other energy functional which we will use
frequently later. We will state Tian’s important result which gives a analytic criterion of
existence of Kahler-Einstein metric using properness of K-energy or F-functional. This
raise the problem of how to test the properness of K-energy functional. In 2.5, we will
explain the important results and idea of finite dimensional approximation. This is the
link to the algebraic geometry side of the problem. As an application of finite dimensional

approximation, we prove:

Theorem 1. Constant scalar curvature Kdhler (CSCK) metric obtains the minimum of

K-energy.

In 2.6, we will explain Tian’s conjecture which reduces properness of K-energy on the
infinite dimensional space of Kéhler metrics to the properness of K-energy on finite dimen-
sional spaces. We explain how Tian’s another conjecture called partial C°-estimate would
complete the program if established. In 2.7, we will explain the important Futaki invariant,
which is roughly the asymptotic slope of K-energy along a one parameter subgroup of pro-
jective transformations. This invariant is used to test the properness in finite dimensional

spaces.

In this chapter, we generalize some of the standard theory associated to classical Kéahler-
Einstein problem. In 3.1, we consider the twisted Kéhler-Einstein equation. We define the
corresponding twisted version of K-energy and F-functional. We define the invariant R,
which measures the extent to which we can untwist such equation. Continuity method is
a special case of twisted Kéhler-Einstein. The other important case is the conic Kéahle-
Einstein metric. In 3.2, we explain the recent work of Jeffrey-Mazzeo-Rubinstein-Li which
proved existence of conic Kéhler-Einstein metric on Fano manifold along a smooth anti-

canonical divisor under the assumption that the log-K-energy is proper. The main strategy



Chapter 4

is the same as in the smooth case. But there are many technical difficulties to overcome.

One technical point is

Proposition 1. There exists a reference conic Kdhler metric whose holomorphic bisectional

curvature is bounded from above but not from below.

In 3.3, we extend the algebraic part of story to the conic setting. In particular, we explain
the log-Futaki invariant and log-K-stability, and extend conjectural K-stability picture to

conic case.

This chapter forms first main part of this thesis. Here we carry out a detailed study of
continuity method in Kéhler-Einstein problem on toric Fano manifolds. As explained in
4.2, this study is partly based on Wang-Zhu’s [WaZh] a priori estimates of the convex
solutions to real Monge-Ampere equations which are reductions of the complex Monge-
Ampere equations by toric symmetry. In 4.3, we calculate the greatest lower bound of Ricci
curvature in the first Chern class of toric Fano manifold. This invariant (called R(X)) is
also the maximal parameter for which one can solve the equations in the continuity method.
It is entirely determined by the geometry of the momentum polytope. Such a polytope A
contains the origin O € R™. We denote the barycenter of A by P.. If P, # O, the ray

P.+ Ry - m intersects the boundary A at point Q.

Theorem 2. If P. # O, e
Rx) = 199

|P:Q)|

Here |07Q}, |PCQ| are lengths of line segments OQ and P.Q. In other words,

=
o

_ RXap)
Q= _1—R(XA)PC € 0N

If P. = O, then there is Kdhler-Einstein metric on XA and R(Xa) = 1.

In 4.4, we study the limit behavior of the sequence of solutions to continuity family when
the parameter approach the maximal value. We prove the convergence upon holomorphic

transformation.

Theorem 3. After some biholomorphic transformation oy : XA — XA, there is a subse-
quence t; — R(X), such that o} wy, converge to a Kdihler current we = w + V=100,

With Yoo € L¥(XaA)NC™®(Xa\Bs(£r)), which satisfies a complex Monge-Ampére equation



Chapter 5

of the form

—(1-R(X))
(W4 V=100hso )" = e F(X)¥e <Z’ba5a|2> Q. (1.1)

Here Q) = elw™" is a smooth volume form. For each verter lattice point pl of F, by is a
constant satisfying 0 < b, < 1. || - || = || - llrs @s (up to multiplication of a constant) the

Fubini-Study metric on K)_(lA In particular
Ric(wy,,) = R(X)wy,, + (1 = R(X))V=10910g() _"balsal?). (1.2)

This convergence should be compared to the Cheeger-Gromov convergence of manifolds
with lower Ricci bounds. In particular, the limit we get has conic type singularities whose
information can be read out from the geometry of the moment polytope. As a corollary of

the convergence result, in 4.5, we prove

Corollary 1. Tian’s partial C°-estimate holds along the continuity method on toric Fano

manifolds.

For special toric Fano manfolds, we can describe the multipler ideal sheaf very explicitly.
We give examples in 4.6. In 4.7, we do some calculation for the log-Futaki invariant on

toric Fano manifolds.

Theorem 4. Let X be a toric Fano variety with a (C*)" action. Let Y be a general
hyperplane section of Xao. When 8 < R(Xa), (Xa,BY) is log-K-stable along any 1 pa-
rameter subgroup in (C*)". When = R(XA), (Xa,BY) is semi-log-K-stable along any
1 parameter subgroup in (C*)™ and there is a 1 parameter subgroup in (C*)™ which has

vanishing log-Futaki invariant. When 8> R(XA), (Xa,BY) is not log-K-stable.

This chapter grow out of the joint work with Dr. Chenyang Xu. In 5.2, we derive the

intersection formula for Donaldson-Futaki invariant.

Theorem 5. [LiXu] Assume X is normal, then

ai1bg — aghy . . 1 A1 Fp41 n+1
M = DRG0 = o (e

- K p1 - E“) . (1.3)
0

In 5.3, we modify the test configuration using Minimal Model Program (MMP) step by

step and calculate the derivative of the Donaldson-Futaki invariant. We prove that any



Chapter 6

test configuration can be modified to a special test configuration which means the central
fibre is a Q-Fano variety. Moreover, the Donaldson-Futaki invariant is decreasing along the

process.

Theorem 6. [LiXu/Let X be a Q-Fano variety. Assume (X, L) — Al is a test configuration
of (X,—rKx). We can construct a special test configuration (X*,—rKxs) and a positive

integer m, such that (X, —rKxs) is a and

mDF(X, L) > DF(X*, —rKx-).

Furthermore, if we assume X is normal, then the equality holds only when (X, Xy) itself is

a special test configuration.

These important facts allows us to confirm one of Tian’s conjecture: to test K-stability,

one only needs to test on special test configurations.

Theorem 7 (Tian’s conjecture). ([LiXu])Assume X is a Q-Fano variety. If X is destablized
by a test configuration, then X is indeed destablized by a special test configuration. More

precisely, the following two statements are true.

1. (K-semistability) If (X, —rKx) is not K-semi-stable, then there exists a special test

configuration (X°, —rKys) with a negative Futaki invariant DFE(X®, —rKys) < 0.

2. (K-polystability) Let X be a K-semistable variety. If (X, —rKx) is not K-polystable,
then there exists a special test configuration (X*t, —rKxs) with Donaldson-Futaki in-

variant 0 such that X* is not isomorphic to X x AL,

In the last chapter, we construct examples of Kéahler-Ricci solitons on direct sum of KE
line bundles on KE manifolds. The construction is straightforward using the rotational

symmetry to reduce the equation to an ODE.

Theorem 8. Assume (L,h) — (M,wkg) is a line bundle with Hermitian metric h over
a Kdihler-Einstein manifold, such that —/—100logh = —ewxr and Ric(wkEg) = TWkE-
Then on the total space of L™, there exist complete rotationally symmetric solitons of types
depending on the sign of A =1 —ne. If A > 0, there exists a unique rotationally symmetric
shrinking soliton. If A = 0, there exists a family of rotationally symmetric steady solitons.

If A <0, there exists a family of rotationally symmetric expanding solitons.



When n = 1, this construction recovers the previous constructions by Cao [Cao], Koiso
[Koi], Feldman-Tlmane-Knopf [FIK]. The singularities of Kéahler-Ricci flow correspond to
extremal contractions in MMP. While their examples can serve as the local model in the
case of divisorial contraction, the example in the above theorem should correspond to the
Kahler-Ricci soliton appeared when a special flipping contraction happens, because the

contracting base is of high codimension.

In the compactified Fano manifold, there also exists shrinking Kahler-Ricci soliton.

Theorem 9. [Li3] Using the notation as in Theorem 8, assume A\ = 7 — ne > 0, then
on the space P(C & L") = P(L™! & C®"), there exists a unique rotationally symmetric

shrinking Kdahler-Ricci soliton.

Remark: Ideas in different chapters are inter-related. For example,

e The theory to the twisted KE problem, in particular for the conic KE, are essentially the

same as in the smooth case except for several technical difficulties.

e The idea of using symmetry to simplify the problem is manifest in both Chapter 4 (toric

symmetry) and Chapter 6 (rotational symmetry).

e Since the Kahler-Ricci flow is just the metric counter part of Minimal Model Program
(MMP) with scaling. The solitons in Chapter 6 should be the scaling limit of the special
extremal contractions in MMP with scaling. Actually, this is true if the singularity of

Kahler-Ricci flow is of type I.

e The study of singularities are important for the existence problem. These are tied with
the compactness result from Riemannian geometry. Chapter 4 and Chapter 6 can be seen
as examples of the singularities developed along continuity method and Ké&hler-Ricci flow

respectively.



Chapter 2

Preliminaries

2.1 Basic Kahler geometry

Let (X, J) be a complex manifold. g is a Riemannian metric on X. Assume g is compatible with

respect to J, i.e.

g(JV, JW) = g(V, W), for any V,W € T X
Define the form wy(X,Y) = g(JX,Y). Then g(X,Y) = wy(X,JY). Then
Lemma 1. The following are equivalent: 1. VX¢J =0, 2. dwg = 0.

The Kéhler condition is characterized by either of the condition. wy is called the Kéhler form
of the Kéahler metric g.

In local complex coordinate, any Kéhler metric can be represented by its Kéahler form

wg =v—1 Zgijdzi ANdZ,  satisfying g = (9i3) > 0 and dw, =0
.3
Since dwy = 0 and wy # 0, w represents a nonzero cohomology class in H L1(M,R). Since wy
comes from a Kéhler metric which is positive definite, we write [w,] > 0. The Kéhler cone on
any Kéhler manifold is characterized by Demailly-Paun [DePau]. If [w] € H?(X,Z) then [w] is
the first Chern class of an ample line bundle L: [w] = ¢;(L).

The curvature tensor of a Kéhler metric is easier to compute using the complex coordinates.

o Vy. 0, = r;“jazk, with I‘fj = gkfaz_j ¢,7- Similarly, F% = glkagiglj

o Vo, 0: =0=V,,0.,



So the curvature is (use 9; = 0., and 9; = 0z,)

R(0.,,02,)0., = Rz, 0., with Riz, = —0: T, = ¢'°(9;9:5)9""(Digkq) — 9'70:0;91g

So we get:
Py grqf?gkq 99,7
821‘85]‘ 0z; 8Zj

Rijk:f =

The Ricci curvature
So we get the simple expression for the Ricci curvature of the
_ 92 _ _
Ric(w) = —vV/—190logw™ = —v/—1 ; 905 log det(gy)dz" A dZ’

We can give the Chern-Weil explanation of this formula. Any volume form €2 induces an Hermi-
tian metric on K)_(1 by

270

Doy A0, |5 =
19, wlo V=1"dzy NdZ, A -+ Ndzy A dZ,

By abuse of notation, we denote the Chern curvature of the (Ky', |- |q) to be Ric(Q) then we
see that Ric(w) = Ric(w™). So we see that the Ricci form is a closed (1,1) form representing the

class 2mep (X).
(n(2mrey (X)) w]"~1, [X])
([w]™, [XT)

S(ws) = g Ric(wg);j, S =

e

are the scalar curvature of wg and average of scalar curvature. Note that S is a topological

constant.

Lemma 2 (90-Lemma). If [wi] = [ws], then there exists ¢ € C®(M) such that wy — w; =

V—180¢.

This Lemma is very useful because it reduces equations on Ké&hler metriccs to equations

involving Kéhler potentials.

Definition 1. Fiz a reference metric w and define the space of smooth Kdhler potentials as

H:=H, = {¢p € C°(M)|wy := w+vV—190¢ > 0} (2.1)



Remark 1. The set H depends on reference Kdahler metric w. However in the following, we will
omit writing down this dependence, because it’s clear that H is also the set of Hermitian metrics

h on L whose curvature form

wp, = —/—1001log h

is a positive (1,1) form on X. Since wy determines ¢ up to the addition of a constant, H/C is
the space of smooth Kdhler metric in the Kdhler class [w]. By abuse of language, sometimes we

will not distinguish H and H/C.

2.2 Kahler-Einstein problem and complex Monge-Ampere
equation

We are interested in Ké&hler-Einstein metrics on Kéhler manifolds, that is the Kahler metric
wiE € |[w] satisfying

Ric(wKE) = AWKE
There are three cases.

c1(X,J) <0: X is canonically polarized. Let [w] = —c1(X,J) and A = —1. There exists a unique
Kéhler-Einstein metric wi g in —cq (X, J) such that Ric(wxg) = —wig. This was proved

independently by Aubin [Aub] and Yau [Yaul].

c1(X,J) =0: X is Calabi-Yau. Let [w] be any Ké&hler class and A = 0. There exists a unique Kéhler
metric in [w] which is Ricci flat Ric(w) = 0. This is a consequence of Yau’s solution of

Calabi’s conjecture in [Yaul].

c1(X,J) > 0: X is Fano, i.e. anti-canonically polarized. Let [w] = ¢1(X) and A = 1. In contrast with
the previous 2 cases, in general there are obstructions to the existence of KE metric. Mat-
sushima [Mat] proved Kéahler-Einstein Fano manifold must have reductive automorphism
group which is just the complexification of the isometric group Isom(X, gx ). Futaki [Fut]
found an important invariant which is now called Futaki invariant as the obstruction to the
existence. The Yau-Tian-Donaldson conjecture aims to characterize all the Fano manifolds

which have Kahler-Einstein metrics.

10



From PDE point of view, the Kéahler-Einstein equation is equivalent to the complex Monge-
Ampere equation

(w4 V=190¢p)" = elw=royn

where h,, is the function measuring the deviation of w from wgxpr which is determined by the

following Lemma.

Lemma 3. There exists h, € C*(X) such that
Ric(w) — M\w = v/—190h,,, / ehewn /nl =V
b's

Through out the paper, we will use the notation h,, for this meaning and call it the Ricci potential

of the smooth metric w.

One classical method to solve the complex Monge-Ampere equation is continuity method.
The main reason that we can solve the case when A = —1,0 is that along the continuity method
we can get a priori C%-estimate from which the C? and higher order estimate follows (as we will
discuss in the next section). But for the A = 1 case, the C%-estimate in general does not hold.
More precisely, for the Fano case, we fix a reference metric w and consider a family of equations

with parameter t:
Ric(wy) = twy + (1 — hw <= (w +V—199¢)™ = eh=~tou" (%)¢

Define § = {t € [0,1]; ((x):) is solvable }. Then by [Yaul], 0 € S. By implicit function theorem,
S is open. To show the closed-ness of S one needs to show uniform a priori estimate for ¢;. But
when there is no Kéhler-Einstein metric on X, then ||¢||co will blow up when ¢ approaches some
critical value. We will study this continuity method in detail on toric Fano manifolds in Chapter
4.

The other method to get a Kéhler-Einstein metric is to use the Kéahler-Ricci flow. Actually
one can run Kéahler-Ricci flow on any projective variety with mild singularties [SoTi]. This can
be seen as the metric counterpart of Minimal Model Program in birational algebraic geometry.

See Chapter 6 for more details.
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2.3 (?-estimate and complex Krylov-Evans estimate

2.3.1 (?-estimate

Lemma 4. [Yaul, Yau2/

1. Assume wy salisfies wy = efwn. Let A =log(n + A¢) — Ap = log tr,wy — Ag, then

. 1 . 1

i

2. Define = = logtr,,w — A, then

A'Z > (inf Rj; — An) 4 (A — sup Sj;7)tr,,w (2.3)
Proof. Let f = tr,,w and A’ be the complex Laplacian associated with Kéhler metric wg. As in
[Yau2], we have the Chern-Lu’s identity:

A/f _ g/ilglij;Jgij + g/ijg/klﬂ?kaigaB . g/ijg/klsﬁki

Here the tensor T3; = f‘% — I'?; is the difference of Levi-Civita connections T and T' associated
with g, and ¢’ = g, respectively. R;ﬁ is the Ricci curvature of wy and S;j;7 is the curvature of

reference metric w. Let V' be the gradient operator associated with g.,,, then

A IVIFE
Allog f = - LJ
[T 7
1l gtk R g - 1ij oIkl g . - 1ij gtklpo B 1pq oij o/ KlpaB o o
99 g 979 Siger 979 Lkt i9a 977979 Liptg9ai Ik
N f 7 f - f?

Sin Ry g 1y S | Dt i TP X, K TP
> N;l > N;l > M;l (> M;l)z
iIZ,lf R — (SUP Siij3) Z Ni_l = irz.lf Rz — (SPP Siii)f (2.4)
0. p 0.

v

In the 3rd equality in (2.4), for any fixed point P € X, we chose a coordinate near P such that

9i5 = 9ij, Org;; = 0. We can assume g = g, is also diagonalized so that

955 = Midij,  with p; =14y

12



For the last inequality in (2.4), we the following inequality:

2

Zup 1| Zﬂ—sz

Z“ Z/‘z 1/2TZZP 1—1/2
p

(Zﬂglﬂf T2 )
Oy tp! {,’glz)(ZuZ1

Py,

IA

IN

O

Proposition 2. 1. There exists \ = A\(n,inf AF,inf,+; S;:5) and C = C(n,inf AF,sup F,inf;+; S;7,7)
such that

trowg < CeMOse(9)

2. There exists a constant X = A\(n,sup S;;;5) and C = C(inf Ric(wg),sup S;;;3) such that

z]])

try,w < CeMOse(9)) (2.5)

Remark 2. This proposition implies that, under appropriate assumptions, the C? estimate is
valid if there is a C° estimate for the potential. Yau [Yau2] used Chern-Lu’s formula to deduce

the Schwartz Lemma which generalize the classical Schwartz Lemma by Ahlfors.

Proof. 1. Let C; = —min(0,inf AF — n?inf, 4, Sizj7) = 0. Since f@; > m, we get

1 1
MA Okl Sa — O ) g =G = O

> Cy(n+AgY Vet — ¢y

with Cy = (A +inf;; S;7;7 — C1) > 0 by choosing A sufficiently large and C3 = An. For the

2nd inequality, we used the following trick

1/(n—1)
Z 1 +1</)-f 2 <m> = ((n+ Ag)w™ fwi)/ (=1,

So at the maximal point P of A, we have

1 —F(P)

0 2 A/A Z Cz(t’rww¢>(P)meﬁ _ C?”
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which implies tr,,(wg)(P) < (&) 1) < CuesPF = C5. So at general point z € X,

we get the C?-estimate:

n+ Ap(z) < (trywg)(x) < trwwd,(P)e”\(d’(”’)_MP)) < Cger05e(9)

. Assume Ric(wg) > —dwg. Let f = tr, w, then by (2.3),
A'(log f = Ap) > —(0 + An) + (A —sup Sz;7)f =: C1f — Co

for some constants C; > 0, Cy > 0, if we choose A\ to be sufficiently large. So at the

maximum point P of the function log f — ¢, we have
0= Al(log f — Ap)(P) = C1f(P) — Cs.

with C1 = —(6 + An) and Cy = XA — sup S;;,5. So

5
f(P) =try,(w)(P) < Cs.
So for any point = € X, we have

trw(Pw(x) < 036)‘(‘15@)*(17(13)) < 036)\(Osc(¢))'

O

To apply the Chern-Lu’s inequality method, we sometimes need to use the following observa-

tion [Yau2l:

Lemma 5. Let (X, J,g) be a complex Kihler manifold. If Y C X is a complex submanifold.

Then the holomorphic bisectional curvature jo; of Y is bounded from above by the holomorphic

bisectional curvature RX - of X.

iijj

Proof. By Gauss’ formula:

R¥(0:,0;,0;,0;) = RY(0:,0;, 05, 0;) + [1(0;, 0;)* — [11(9%, ;)

14



For any V,W € TY and N € (TY)*, because V.J = 0 by Lemma 1, we have

(IL(JV, JW), N)

(Vv (JW),N) = (JV v W,N) = —(V;y W, JN)
= —(Vw(JV),JN) = —(JVwV,JN)

= —<VW‘/, N> = _<II(‘/a W)?N>

So I1(.JV, JW) = —II(V, W) which implies I1(3;, ;) = 0. O

In particular, if X C PV is a projective manifold and w = wrg|x. Then where R is the
curvature of Fubini-Study metric of ambient PV. R satisfies: Rﬁklf = 9i59ki + 9i19k;, S0 the holo-

morphic bisectional curvature of the restriction of Fubini-Study metric satisfies R;;;; < Rigﬁ =2

For any o € PSL(N,C), let w, = 0*wrs|x = wrs + vV—109¢,. Then

lo- Z|?
o =log ——5—
@ og e

By the above discussion and by (2.5), we have the C%-estimate of ¢, in terms of oscillation of ¢,

Corollary 2.

wy < Ce 05C(¢a)

In particular, since Osc(¢y) has log polynomial growth,

wn
log == < nlog C' + nA Osc(¢)
w

has log polynomial growth.

2.3.2 Complex Krylov-Evans estimate

In the proof of Calabi conjecture in [Yaul], Yau proved 3rd order estimate. Define S =

S g glisg k%ﬁk(b;sg. By complicated computation, Yau showed that
A'(S + C1A¢) > Co8 — C

We have now a systematic way of getting higher order estimate thanks to the work of Krylov-
Evans-(Safonov). This estimate is purely local in contrast with Yau’s proof which is global and

uses maximal principle. We record a version here from [Blo] (See also [Tia3]:
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Theorem 10 ([Blo]). Let u be a C* plurisubharmonic function in an open @ C C"™ such that
[ = det(u;;) > 0. Then for any Q' € Q there exist a € (0,1) depending only on n and on
upper bounds for ||ullco.1(q), supg Au, ||fllco1(q), 1/infq f and C > 0 depending in addition on
a lower bound for dist(€,0Q) such that

lullgze < C

2.4 Energy functionals and Variational point of view

The Kéhler-Einstein problem is variational. Futaki [Fut] found an important invariant (now
known as Futaki invariant) as the obstruction to its existence. Then Mabuchi [Mabl] defined

K-energy functional by integrating this invariant:

/ dt/ (wg,) ¢>tw¢/n'

where ¢, is any path connecting 0 and ¢ in the space of Kahler potentials H. This is well-defined,
i.e. it is independent of the path connecting w and wg. This follows from Stokes’ Theorem because

the one form defined by the variation:

vy (we) / S(we) — S)dgwy /n! (2.6)

is a closed one form one H and H is contractible.

It’s easy to see that the constant scalar curvature Kahler (CSCK) metric is the critical point
of K-energy. Actually, CSCK metric obtains the absolute minimum of K-energy. (See section
2.5.3).

In the Fano case, it’s easy to see that for w € 2meq (X),
wis CSCK <= h, =0<= w is KE

Define the functional:

L) = [ ot ~apyint, dutea) = [ 2%dn F2(0) = suto) - [ owr
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We have the well known formula for K-energy [Tial0]:

Volwy) = /X log om0 (1~ JL)(6) + /X how™ /!

It’s easy to verify that

(L= J)(6) = - ( [ o+ F3<¢>)

There is another energy functional associated with Monge-Ampere equation:

Fufe) = 20 = Viog (5, [ ehewr i)

Lemma 6. We have the following relations between these functionals:

1.
Fw(w¢):Vw(w¢)_AhW%+Ahw¢%SVW(‘U(P)_/th%'
] J, N O NP Awk AW 1F
w(¢);n+1/x 6 NG Awh A w1 F /!
3.
"L J@) S L6) < (n+ 1) (),
/.
1 n . )
0 = =7 3 [ e ne
=0
5,
F)(¢2) > F)(¢1) — /X(¢2 — ¢1)wg, /n!
6.
d . d .
@Jw(@):/xﬂwn—w;)/nh @FE(@):—/XW;}/H!
7. [Ding]

Ju(td) < 'V 1, (9), for 0 <t < 1.
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Definition 2. A functional F': H — R is called proper if there is an inequality of the type
Flwg) > f((I = J)wlwy)), for any wy € H

where f(t) : Ry — R is some monotone increasing function satisfying lim;—. 1o f(t) = +o0.

Theorem 11. [Tia9] If Aut(X,J) is discrete. There exists a Kdhler-Einstein metric on X if

and only if either F,,(wy) or v, (wg) is proper.

So, at least when there is no holomorphic vector field, the problem is how to test the properness

of K-energy. The basic idea due to Tian ([Tiad], [Tia5]) is to use finite dimensional approximation.

2.5 Finite dimensional approximation

2.5.1 Tian-Catlin-Zelditch-Lu expansion

Let (X, L) be a fixed polarized manifold. h is any fixed Hermitian metric on L with positive

Chern curvature wy, = —/—1901log h. Let Nj, = dim HO(X,L*), V = [, wj/n!.
Definition 3. 1. By := {%bg Zgil |5a|%;{sa} is a basis of HO(X, Lk)} CH
2. Hy = ( the space of inner products on the vector space H°(X, L®*)) = GL(Ny,C)/U(Ng, O)

3. Define two maps between Hy and H.

Hilby : H — Hp
h = (s1,82)mim, () :/(31,32)h®kwﬁ/n!, Vs1,s0 € HO(X, L)
b's

FSy:H, — B.CH

2
5 , Vse L.

2
He = slps,m,) =

0

In the above definition, {s&k);l < a < Ni} is an orthonormal basis of the Hermitian

(z2,

complex vector space (H°(X, L*), Hy).

For any Hermitian metric A on L such that wy, > 0, the kth Bergman metric of h is

hy = FSk(Hﬂbk(h)) e H.

18



Let {s&k),l < a < Ni} be an orthonormal basis of Hilbg(h). Define the kth (suitably

normalized) Bergman kernel of w

Ny
pe(@) =Y 158 [hen.
a=1

Note that although h is determined by wy, up to a multiplication by a positive constant, pg(wp)
doesn’t depend on the choice of h.

The following proposition is now well known.
Proposition 3. ([Tia4/,[Cat],[Zel],[Ruan],[Lu2])

(i) For fixed w, there is an asymptotic expansion as k — 400
pr(w) = Ag(W)E"™ + A (W)E™ 1t + ...

where A;(w) are smooth functions on X defined locally by w.

(ii) In particular

1
A(w) =1, Ai(w) = §S(W)~
(iii) The expansion holds in C* in that for any r,N >0
N

pr(w) = 3 Ai(w)kn

=0

< Kr,N,wkniNil

cr(X)

for some constants K, n.,. Moreover the expansion is uniform in that for any r, N, there
is an integer s such that if w runs over a set of metrics, which are bounded in C*, and with

w bounded below, the constants K, n ., are bounded by some K,  independent of w.

The following approximation result is a corollary of Proposition 3.(i)—(ii).

Corollary 3 ([Tiad]). Using the notation at the beginning of this subsection, we have, as
k — 400, hy — h, and wx, — w, the convergence in C*° sense. More precisely, for any r > 0,

there exists a constant Cy, ., such that

h
log &

; or < Cnrwk™>. (2.7)

C'r‘
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Proof. 1t’s easy to see that

1
k

hie = - (Z Sgk)ﬁ@k) =: he k.

Note that by the expansion in Proposition 3.(i)—(ii), we have

za: |s$ 200 = K™ <1 + %S(w)kfl + O(k2)> =k"(1+0(k™)).

1 log k _
vn = 7 log (Za]s&’ﬂi@k) =n— +O0(k™?).

The error term is in C* sense. So the first inequality in (2.7) holds. The second inequality in

(2.7) follows because

Wi, — w = V/—190Yx,.

2.5.2 FY functional and Chow norm

Under the orthonormal basis {r{", 1 < a < Ny} of Hy, H(X, L¥) = CN and P(H(X, LF)*) =
CcPNe T,

For any Hy € Hj, take an orthonormal basis {s4,1 < a < Ny} of Hy. Let det Hy
denote the determinant of matrix (Hg)ag = (H}(Sa»58))- {Sa} determines a projective
embedding into CPY*~!.  (Note that the fixed isomorphism P(H°(X,LF)*) = CP! is
determined by the basis {Ték)}> The image of this embedding is denoted by Xy (Hj) ¢ CPNV+~1
and has degree dj, = Vnlk™. X} (Hy) has a Chow point ([Zha], [Paul]):

Xi(Hy) € Wy == HY(Gr(Ny, — n — 2,PNs=1) O(dy,))
such that the corresponding divisor
Zero(Xy(Hy)) = {L € Gr(Ny —n — 2,PN*71): LN X} (Hy) # 0}

Proposition 4 ([Zhal, [Paul]). Wy has a Chow norm || - |cu(a;), such that for all Hy, € Hy we
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have
1

1 k
—1 H;, — —F°(FS(Hy)) =
ogdet Hy, (FS(Hy)) = 37w

0 2
N . log ||Xk(Hk)HCH(H;)

SL(Ny,C) acts on Hy, and Wy. Note that Xy (o - Hf) = 0 - Xi(H}). Define
fi(o) =1og (I Xu( - Hi)l2s)) Vo € SL(NK,C)
It’s easy to see that fi(o-01) = fr(o) for any o1 € SU(Ng), so fi is a function on the symmetric
space SL(Ny,C)/SU(N). We have

Proposition 5. ([KeNe/, [Zha], [Don2], [PhSt1]) fr(c) is convexr on SL(Ng,C)/SU(Ny).

To relate H and Hy, following Donaldson [Don2], we change F'S(Hj) in the above formula

into general hg € H and define:

Definition 4. For all hy € H and Hy € Hy,

. 1 k
Pk(hqg,Hk) = Fklogdet H — VF‘S((b)

Note that, for any ¢ € R,
Pk(ech(z,,eCka) = Pk(h¢,Hk). (28)

Remark 3. This definition differs from Donaldson’s definition by omitting two extra terms, since

we find no use for these terms in the following argument.

2.5.3 Application: CSCK as minimizer of K-energy

The finite dimensional symmetric space Hy = GL(N})/U(Ny) in Definition section 5.3 can be
identified as the space of Hermitian inner products on H°(X,L*). There are natural convex
functional on Hy:

L

1 k
—1 Hi — —F%FS(H)) =:
N, ogdet Hy — v+ F,(FS(Hi)) = 77

log HXk(Hk)HZCH(H;)

where I is called Aubin-Yau functional defined as integration of some Bott-Chern class. For
any Hy € Hjy, we can choose an orthonormal base of Hy and get a Kodaira’s embedding into

Xy (Hy) C P(HO(X, LF)*) = PNe—1L, )?k(Hk) denotes the Chow form of Xj(Hy). The functional
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defines some norm |- |cu () for any Chow form. These Chow-norm functionals approximate K-
energy as Hj approximate H by the Tian-Catlin-Zelditch-Lu expansion. If there exists a constant
scalar curvature Kéhler (CSCK) metric wy, then its Bergman metrics w(o.]f) is the approximate

minimum of the k-th Chow-norm. Using this, we can prove

Theorem 12. [Li2] Assume there is CSCK metric wo, on the polarized manifold (X, L), then it

obtains the global minimum of K-energy.

Remark 4. In the Fano case, this was proved by Bando-Mabuchi [BaMa] using the continuity
method. Donaldson [Don2] proved the above result assuming the automorphism group is discrete.
Chen-Tian [ChTi] proved the same result for general Kdhler class (not necessarily rational) using

the convezity of K-energy along geodesics in H.

To prepare for the proof of the above theorem, assume we have a Kéhler metric of constant
scalar curvature we, in the Kéahler class ¢1(L). Take a ho € K; such that wee = wp,_. We will
make extensive use of the kth Bergman metric of ho, and its associated objects, so for the rest

of this note, we denote

Ny,
1 _
Hy =Hilbk(hoo), hi = FSy(Hj) = FSy(Hilby(heo)), wi = wpy = P/_laa log <Z Tgf>|2> .
a=1
(%)

Hereafter, we fix an orthonormal basis {Ték), 1 <a < N} of Hf = Hilbg(hoo).

The following is the direct corollary of Proposition 3.

Proposition 6. For any r > 0, there exists some constant Cy, r ., such that

< Cn,r,w(x, kn—2 (29)
CT

Ny,
Z T2 on — N
a=1 ¢ e 4

So in particular,

Ny
1 _
/= (k)2 ] — — -3
: 1001og <a§1 |75 ) Weo = O(k™7) (2.10)
Lemma 7. For any hg,, he, € Ky, we have

‘/X("b? — 012 < F(6a) - F(n) < —/X(@ o),

n!

This is the same as Lemma 6-5

Proof. This lemma just says F is a convex function on H, regarded as an open subset of C*°(X).
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We only need to calculate its second derivative along the path ¢, = t¢:

@FB /¢At¢*t, /|Vt¢| *t

A; and V; are the Laplace and gradient operators of Kihler metric ¢; (LF, hy(t)). O
From now on, fix a H such that wg = wy, € c1(L).

Lemma 8.

Py.(hg, Hilb(hg)) > Py, (FS(Hilb(hy)), Hilb(hg)) — log %

This is a corollary of [Don2, Lemma 4]. Since the definition of P is a little different from that

in [Don2], we give a direct proof here.

Proof. Let he™%* = FSi(Hilbg(hy)). Then
~ . ~ . . k
Py, (hg, Hilb(hg)) — Pr(FS(Hilb(hg)), Hilb(hg)) = V(FB(%) — FJ())-
Let {s$,1 <a < Ny} b th 1 basis of Hilb —p = p—1 Ne s, =
& > 1 < a < N} bean orthonormal basis of Hilby (hg). Then ¢p—¢p = ¢—1 log (> 5 |5 [ er

—% log pr.(wg). By Lemma 7 and concavity of the function log,

k

v (FB(¢k) - FLB((ZS)) > log pk(w¢)

V2
\
5}

09
A
\
?

’§
=le3
N—————

Lemma 9. There exists a constant C' > 0, depending only on hg and he, such that
Py (FSy(Hilbg (hg)), Hilby (he)) — Pu(FSK(H}), Hy) > —Ck~ L.

Proof. Recall that H; = Hilby(ho) and {Ték); 1 < a < Ni} is an orthonormal basis of H} (see
(%)). Let H, = Hilbg(he) and {s((lk); 1 < a < N} be an orthonormal basis of Hy. Transforming

by a matrix in SU(Ny), we can assume

) = AL 2 (8)
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Evaluating the norm Hilby(hy) on both sides, we see that

—2x(®) (k)2 w;’; (2 11
€ —/)(|Ta |h§kﬁ . )

There exists a constant C; > 0,C% > 0, depending only on hy and Ao, such that Cfl <
% < (4, C{lwoo < wy < Cows, 850 we see from (2.11) that |)\g€)| < Ck.

Let A = (1/Ni) X0, A, HY = e2Hy,, ALY = AP — A Then {3 = X 7"} is an
orthonormal basis of H ]'C Note that 5\&’6) satisfies the same estimate as )\&k):

IAB)| < Ck. (2.12)

(e[\)ag = ej‘gk)(Sag is a diagonal matrix in SL(Nj,C). By scaling invariance of P, (2.8) and

Proposition 4, we have

PL(FS(Hy), Hy) = Py(FS(H}), HY) = — 1 FO(FSi (H]))

1 1

= IOgHXk(Hl/c)H%H(H;) T VEn

— FR((PS(H)™) (213)

5 * * k; *
PL(FS(H]), H}) = - FO(FSi(H]))
1 1

— X 12 =
= 7 log || X (Hi)[Crazy = T VEn

FR(FSp(Hg))®F) (2.14)
As in Section 2.5.2, let
Xi(s) = et - X (H)
Frls) = log [|Xk(s) &y = —FR (FSk(e*h - Hyp)®").

Then X;(0) = Xi(H}) and Xi(1) = Xi(Hj,) = Xi(Hy). By Proposition 5, fi(s) is a convex
function of s, so

fr(1) = fr(0) > £1.(0).
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We can estimate f/(0) by the estimates in Proposition 6:

k = og To
X Z |T(k) ,2L®k

> )‘(k)|7'a ®k _
=/ Nk/V+O(k”h 2‘)(1+0(/§ 3))

woo
/XO( Z)‘ ‘T(k h®k Tl

where the last equality is because of
Ny, o Ny,
\NF) | (k)2 Koo \F) —
J AR e T =D =0
a=1 a=1
By the estimate for AR (2.12), we get
/£ (0)] < Ck2kN), < Ck" 1.

So fi(1) — f(0) > f{(0) > ~Ck"~", and

()= ful0)) 2 —C ok > O,

(log || X () o

log ||Xk(Hk)||CH)

an - an Vikn

So the lemma follows from identities (2.13) and (2.14). O

Remark 5. The proof of this lemma is similar to the argument in the beginning part of [Mab6,
Section 5] where Mabuchi proved K-semistability of varieties with constant scalar curvature met-
rics. Roughly speaking, here we consider geodesic segment connecting H}, and Hy, in Hy, while
Mabuchi [Mab6, Section 5] considered geodesic ray in Hy, defined by a test configuration. The es-
timates in Proposition 6 show that, to prove the K-semistability as in Mabuchi’s argument [Mab6,

Section 5], we only need Bergman metrics of hs instead of Mabuchi’s T-balanced metrics.
Remark 6. Some similar argument also appears in the proof of Theorem 2 in [PhSt2].

Remark 7. In [Don2, Corollary 2], H} is taken to be balance metric, that is, H} is a fized point
of the mapping Hilb(FS(-)). Then the difference in Lemma 9 is nonnegative, instead of bounded

below by error term —Ck~1.
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Lemma 10. There exists a constant C > 0, which only depends on hso, such that

~ ~ N,

Py(FSy(HY), HY) ~ Pe(hoo, Hilbi (o)) +log 7| < Ck ™2
Proof. Recall from () that: Hilbg(he) = Hj, hj = FSi(H}) = FSp(Hilbg(hoo)). Let hog =
he=%=. hi = he=%. Since FO(¢ 4 ¢) = FO(¢) — V. So defining ¢} = ¢f — +log(Ny/V), it’s

easy to see that,

PLFSL(HE), H}) — Pl Hilbg () = o (FD(61) — FO(6))
k

= 7 (FS(0m) = F2(37) ) +log(Ni/V)

_ Islh

2
b = %
k k
(za 7 >\,2L§ok)

For any section s of L, |s So by proposition 6.

hoo 11 &
hp kP

(EI; - (boo‘ = ‘IOg

1 %
L v (k)2 _ -3
i log (Nk Ea 7o h?g’“>| =O0(k™).

So by Lemma 7, we get

& (F0w) - P2GD) | < o2

Definition 5. For any hy = he=? € H and its corresponding Kdihler form wg € [w]. Define
Li(wg) = Pi(hg, Hilby(hy))
Lemma 11 ([Don2]). There exist constants u, such that
1 -1
Li(ws) + pr = 5¥(w) + O(k™).

Here O(k™') depends on w and wy.

Proof. Let (t) = t¢ € H connecting 0 and ¢, hyy = he™*?, wy = w + t/—100¢, A; be the

Laplace operator of metric w;. Plugging in expansions for Bergman kernels pj in Proposition 3,
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we get

d - . -
37 D, Hilbr (heg)) - = Nk/ Z|s<k>| sne RO (= k¢+At¢ /</>
1 1 A
= Ve lseo oty (=kpr(we) + Depr(wr))dwy’ + ¢wt
1

= gy J (Sten) = S)out + Ok~

{w,0 <t < 1} have uniformly bounded geometry, so by Proposition 3.(3), the expansions above

are uniform. So the lemma follows after integrating the above equation. O

Proof of Theorem 12. By Lemma 8, Lemma 9, Lemma 10

i . N,
Py (hg, Hilby(hy)) > Pk(FSk(Hilbk(hd,)),Hilb(h¢))—logvk

> B(FS(H}), )~ log 5~ + O(k™)

Py (hoo, Hilbg (hoo)) + O(k™1)

So by Lemma 11

Vo(wg) = 2Lk(wg) + 2up + O(k™Y) = 2P, (hg, Hilby (hy)) + 2u + O(k™1)
> 2P (hoo, Hilbg (hoo)) + 2 + O(E™1) = 2L (woo) + 2 + O(k™1)
= Vw(WOO) + O(kil)
The Theorem 12 follows by letting k — 4o0. O

2.6 Tian’s Conjecture and Partial C'-estimate

The following conjecture of Tian is the analytic version of Yau-Tian-Donaldson conjecture spe-

cialized to the Fano case.

Conjecture 2 (Tian). There is a Kdhler-FEinstein metric on X if and only if for sufficiently

large k, v, is proper on By.

Lemma 12. [PaTi2] For fized k, there exists a constant Cy, > 0 such that for any

Cit (I = J)ulws) < Ose(6) < O - (I = J)(ws)
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Remark 8. So the properness in the sense of Definition 2 is the same as saying that there exists

some monotone increasing function fi as in Definition 2 such that:

Vi(wg) > fr(Osc(9))

holds for any ¢ € By. In particular, Osc(¢) — 400 would imply v, (wg) — +00.

Definition 6 (Partial CC-estimate). Assume {wy,} C c1(L) is a family of Kdhler metrics
parametrized by t, we say the partial C°-estimate holds for {wg, } if there exists an integer k
and positive constants Cy, both independent of t, such that C;l < pi(we,) < Cr. Equivalently,

if {s((lk) (t)YNk | are orthonormal basis of Hilbg(hy) then

a=1

1 log Cy,
¢>t—%10g§aj|sg’v><t>|i®k <=

To get the upper bound for Bergman kernel, we use the standard Moser iteration. We need

to the estimate on L2-Sobolev constant.

Definition 7 (L2-Sobolev constant). For any fived Kdhler metric wg, there exists a positive

constant Csop, > 0 such that for any F € C*(X) we have

Csob (/ Ff—"lde> ’ S/(\VF|2+F2)de (2.15)
X X

Remark 9. If Ric(wy) > dwy with § > 0, then Cyop > C(6,n) > 0. The L*-Sobolev constants is

also uniformly bounded away from 0 along the normalized Kahler-Ricci flow [Zhu.

Lemma 13. Suppose ¢ = ¢(t) is a sequence of Kahler potentials. k > 1 is fized integer. Then

1. If the Sobolev constant of we, is uniformly bounded, then pi(wy,) < C(Csob, k) or equiva-

lently, if {s&k)} is an orthonormal basis of Hilby(hy) then
1 log C(Cisop, k

2. Assume the Sobolev constant of wg, is uniformly bounded. If exists a constant Cy indepen-
dent of t, such that for every t there exists a base {§g€)(t)} of H(X,—kKx) such that the
inequality

< Oy

1 Al
‘qs —log (Z |§&k>(t>i®k>

a=1
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holds, then the the partial C°-estimate holds.

3. Assume w; converge to Weo = w + /—1000s, with s € L>(X) and the relative density

function “:;’: 1s integrable. Assume there is a closed subset S C X with zero Hausdorff
measure, such that for any compact set K CC X\S, ¢ converge to 1o uniformly on K.

Then the partial CO-estimate holds.

Proof. 1.

%\ \h®k = \V5|h¢ ”k|3|i§k

Let o' =wy, A'=A,, and f = |S|h§k. We get —A'f? < nkf? which implies

Np <My

We want to use Moser iteration method, so we multiply both sides by f? for p > 1 and

integrate by parts with respect volume form dV,,, = w'™/n! to get

( +1 / ‘vf p+1 /22 Vw/ S / fp+1dv/
p

Using this and rearranging the terms we get

n = 1 (p+1)%nk
(p+1) 725 de,) < ( — 41 / P+1de/
</X f N C(Csob»n) 4p 2 X f

Taking (p + 1)-th root on both sides, we get

1oy 2 < (C(Caonsnk(p + 1)) 7T ||f 1

Define p; +1 = (pi—1 + 1)

;+1=2(-"7)". So

n

1 lloe = tim [ llpi+1 < CCkyn, Coo)lIf 12
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where

oo

Clk,n,Cor) = [[(Chlpi+1))77

i=0
log(Ck) n—1\" 1 n—1\" ) n
= exp 5 z; - +§z; - log 2 + ilog 1
= Ck/?
If we assume ||| gy, ,01) = H|S|h®k =1 then |S|i®’° < Ck™ which implies
6 o ll2 ¢

Pk = sup{\S\i%k; ||5||12{ilbk(h¢) =1} < Ck"

2. By a unitary transformation, we can assume s = \Jda (t)é&k)(t).

n
Yo
|

~ 2 ~ _
”VcasozHHilbk = / Ca|8a|}2l®k€ k¢
X n

kC Cal3al? we < FC2yy
= == <
x 2pcsldpl® n!

IA

where we used (f(b + %log Yoa ca|sa|i®k < C’z). So ¢o < €2V d,, and
pk(wt) = E da|§a|i§k > e*kC2V71 E Ca|§a|i§k > €72kC2V71 >0
t t
« «

The upper bound follows from part (1).

3. This follows from pg(w) — pr(weo) > inf pr(wee) > 0.

O

Remark 10. In Section 4.5, we will show that the partial C°-estimate holds along the classical
continuity method on toric Fano manifolds. More precisely, on toric Fano manifolds, we will
prove, along the continuity method, the condition (2) holds, and also (8) holds upon transforma-
tion by holomorphic automorphisms.

But in general, one can not expect such strong convergence in the fized complex manifold
and one expects the jump of complex structure. This is where the notion of Gromov-Hausdorff
convergence comes in. The partial C°-estimate should comes from the understanding of Gromov-
Hausdorff limit, in particular the structure of the singular set.

One such successful example is in Tian’s solution of Kdhler-FEinstein problem on del Pezzo

surfaces [Tia4] where the partial C°-estimate for a sequence of Kdhler-Einstein complex del Pezzo
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surfaces played an important role. Tian proved the partial C°-estimate by proving the Gromov-

Hausdorff limit of a sequence of Kdhler-FEinstein del Pezzo surfaces is an complex orbifold.

Partial C%-estimate and Tian’s Conjecture

The importance of partial C%-estimate lies in its implication of Tian’s conjecture 2. We will
explain this now. For more discussion, see [Tial0].
Along the continuity method ()¢, it’s easy to see that the K-energy is decreasing. So in

particular it’s uniformly bounded from above: v, (w;) < C.

Lemma 14. If the partial C°-estimate holds, then v, (wi(t)) < C', where wi(t) is the k-th

Bergman metric of wg, .

Proof. By the co-cycle property of v-energy. v, (wg(t)) = v, (wi) + v, (wi(t)). So we only need

to bound v, (wk(t)). By the explicit formula of v-energy:

v lon(t) = [ log @) wr(8)"

x o owp ol —<I—J>wt<wk<t>>s/ log )" @r ()"

X w n!

where ¢, = 7 log pp(wy) = £ log >, |s£f) (t)|2 — ¢ is the relative potential between w; and wy(t):
V—=100v; = wi(t) — w;. By Corollary 2, we have the C2-estimate: 1og% < C - Osc(y) So
Vi, (Wi (t)) < CV - Osc(). The bound Osc(1)) follows from partial C-estimate. O

Now we can prove Tian’s Conjecture 2 assuming partial C°-estimate as follows. If v, is proper
on By, then by Remark 8 Osc(¢g(t)) must be bounded. But since |¢r(t) — ¢¢] = |1¢| < C by

partial C%-estimate, Osc(¢;) is uniformly bounded. By Harnack inequality, ||@||co is uniformly

bounded. So there exists Kahler-Einstein metric.

Partial C%-estimate and effective finite generation

Following the idea of Siu [Siu], we explain how partial C-estimate implies some effective finite

generation of the rings
o0

P HO(x, kL)

m=1

Let’s first recall the following generation theorem of Skoda.

Theorem 13. ([Sko]) Let Q be a domain spread over C™ which is Stein. Let 1) be a plurisubhar-

monic function on Q, g1,...,gp be holomorphic functions on Q, o > 1, ¢ = min(n,p—1), and f
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be a holomorphic function on Q. Assume that

J R n
(6.9]
o (7o g, e

Then there exist holomorphic functions hy,--- ,h, on Q with f = Z§:1 hjgs on § such that

L Sy
o i lgi®)er = a =1 Jo 5, g2t
for1 <k <p.

n

We also have the global version due to [Siu]. Note that we can choose o = TH and g = n.

Theorem 14. ([Siu, 2.4]) Let X be a compact complex algebraic manifold of complex dimension
n, G be a holomorphic line bundle over X, and E be a holomorphic line bunlde on X with
e~V such that ¢ is plurisubharmonic. Let | > 1 be an integer, gi,---+9p € HY(X,@G), and
> =01 g1 If f € HO(X, (n +1+1)G + E + Kx) satisfies

[f]Pe™?
« |g]2(n D

<C
Then f = 25:1 hjg; with h; € H*(X,((n+1)G 4+ E + Kx)) satisfying

|hj|26_w n+1 |f|2e=?
< 19RO = T [y gD

Write mL = (n+1+1)(kL)+ (m— (n+1+ 1)k)L — Kx)+ Kx = (n+1+ 1) G+ E+ Kx.
Define the v = (m — (n + 1+ 1)k)¢ — log L:T% Then

V=190¢ = (m — (n + 1+ 1)k)wg + Ric(wg) > (m — (n+ 1+ 1)k + §)wy

Now assume the partial C°-estimate in the definition 6 holds for some integer k. Let s1,...,sn,

be the orthonormal basis of (H°(X, kL), Hilby(hs)). We want to prove

Proposition 7.
+oo

P HO(x,mL)

m=1

is finite generated by
(n+2)k

P H(X.iL)
=0
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with effective estimates.
Proof. e Fix m > (n+2)k, assume m = (n+1+ 1)k +r with 0 <r < k.

e For any u(®) :=u € H°(mL), there exists ud e HY(X,(n+1)G+E+ Kx) = H°(X, (m —
k)L) with u(®) = ZN" 1 u s, such that

|u(1)|2 - n41 |u(0)‘2671p (2.16)
< SR = T [ Js[RnriED :
The left hand side
)2 _
L s = \u<1>|2 (m-kyp € OO Wy
‘ ‘2(n+l - | |2(n+l n!
= (1)|2o—(m—k)o —("-H)l
- /X U e mhie a0 e
Similarly
0)|2 - |u 0)|2 -mp€ T (n+l+1)k¢w |u |2 —m¢> *(n+l+1)
| |2(n+l+1) | |2 (n+14+1) nl
So (2.16) is equivalent to
[ e < B [ e S @

e Repeat the above process for each ul’ € HO(X,(m —k)L). We get u((fl),w € HY(X, (m —
2k)L) with u(l) = ZNk 1 u((fl),az Sa, such that

/ |u e —(m=2k)¢ —(n+l de’ < —n+l_1/ \u(l e —(m— k)¢p—(n+l)w¢
X 1,02 n| — l _ 1 o 13 n'

e By induction, we get uﬁfﬁlam € H°(X,(m — (j + 1)k)L) with

Ni
. 1
ug-?l) ..... aj = Z ugl—t..),a]‘+18aj+1
ojp1=1
such that
|u G+1) 2e=(m=(+ Dk (ntl- J>‘*’¢ n+l- | 2e=(m=ik)e), —(n+z i) We
Q1,541 p n| —_ l—j (xl, Be?] TL'
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o When j+ 1 =1, we get ul) o, € H'(X,(m—1k)L) = H'(X, ((n+ 1)k +r)L) with
Ny,
l— l
ulgé17-1~?;al—1 = Z ut(lznu,azsal

Dq:l

such that

n n

—(m— —(nt1)W _ —(r—(1— —(n+2)¥
J e S <y [ e oo B
X : X .

e So for any u € H%(X,mL) with m > (n+ 2)k, if we let Il = [2*] —n — 1, then

Ny,

— E O]
u = Uy, oySar -+ Say

(117...7(1[:1

with uﬁff’.,‘,a, € HY(X,(m —lk)L) and

(n+1)! (suppg)™?

l 2 2
||ng,...,al ||Hilbm,”C = I (mf pk)n+l+1 ||uHHilbm

2.7 Futaki invariant and K-stability

2.7.1 Analytic and algebraic definition of Futaki Invariant

Let X be an n dimensional normal variety. Assume it’s Fano, i.e. its anticanonical line bundle
Ky' is ample. If X is smooth, then for any Kihler form w in ¢;(X), by 99-lemma, we have
a smooth function h,,, such that Ric(w) —w = /—190h,,. We call h,, := —log :—: the Ricci
potential of w. Let v be a holomorphic vector field on X, i.e. v is of type (1,0) and dv = 0. Then

the Futaki invariant is defined to be

Fcl(X)(v):/Xv(hw)w" (2.18)

It’s a holomorphic invariant, as a character on the Lie algebra of holomorphic vector field, and
independent of the choice of the Kéhler form in ¢;(X). See [Fut]. The necessary condition of
existence of Kahler-Einstein metric on X is that the Futaki invariant vanishes.

In [DiTi], the Futaki invariant is generalized to the singular case. When X is possibly singular
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normal, first use \/{:K)_(1| to embed X into projective spaces, ¢p = gble;‘ : X < CPY*. hpg
is the Fubini-Study metric determined by an inner product on H°(X,kKy'). h = (¢ihps)t/*
is an Hermitian metric on K)_(l. Note that on the smooth part of X, Hermitian metrics on
K one-to-one corresponds to volume forms. If {;} is a local holomorphic coordinate, denote

dz1 N -+ Ndzp by dz, and dz; A - - - dZ, by dZz, the correspondence is given by

ndzy A -deg NdZ A - NdZ, ndz Adz
hs V1 _ /T
- [dz1 A Adzn2_, =2,

=IMh

|d,z|}:,21 =105, A+ A, |3 is the induced Hermitian metric on Kx by the metric dual. On the

smooth part of X,

wh :=V/—100log h = —/—100 log % =: —/—1901og ny,
V—=1"dzNdz

is a Kéhler form, its Ricci curvature is: Ric(wy) = —y/—109log det w.

n

Ric(wp,) — wp, = —v/—190log “h

Th
So the Ricci potential is hy,, = —log %
wh wh L Nh
,/ v(log )i = 7/ v(= ), = 7/ (Lowy — ——wp)
Xom M Xom T Xom &

. n 1 . n
= [ i = g [ i, @) e

In [DiTi], it’s proved this is still a well defined holomorphic invariant. Note that in local holo-

morphic coordinate, L,dz; = 0, so

Ly(nn) L,(dz) -2
" == +v(log|dzl, =,)

Note that the first term on the right is holomorphic , so
ddivy, (v) = —i,00log |dz[, % = — iyWh (2.19)

We can transform the expression of Futaki invariant (2.18) into another form:

Foox)(v) = — /X(S(w) —w)f,w" (2.20)
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where S(w) is the scalar curvature of w, and 6, is the potential function of the vector field v
satisfying

iow = /=100,

In this way, the Futaki invariant generalizes to any Kéhler class. The vanishing of Futaki invariant
is necessary for the existence of constant scalar Kahler metric in the fixed Kéhler class.
Assume there is a C* action on (X, L), there are induced actions on H°(X, L¥). Let wy, be

the k — th (Hilbert) weight of these actions. For k sufficiently large,

L knfl
d, = dimH°(X,LF) = ap— + a1——— + O(k""?) ,ag = / W', oap = / S(w)w™
= i +b L +O(k™ ™) (2.21)
Wk =00 Lon! ’

At least in the smooth (or normal) case, one can show that (See [Don4])

b0:/ O,w", b1:/ S(w)f,w™ (2.22)
X X

By this, Donaldson [Don4] gives an algebro-geometric definition of Futaki invariant:

a1b0 — a0b1
Feyny(v) = T (2.23)

Remark 11. Assume we can embed X into P(H°(X, L)*) using the complete linear system |L|
such that the C* action is induced by a one parameter subgroup in SL(dy,C). Then we see that,
at least in the smooth case, if we normalize 0,, the (normalized) leading coefficient ((n + 1)bg)

in the expansion (2.21) is the Chow weight of this C* action.

2.7.2 Donaldson-Futaki invariant and asymptotic slope of K-energy

along one parameter subgroup
Sean Paul’s work

Assume X C PV is embedded into the projective space and wgg is the standard Fubini-Study

metric on PY. For any o € SL(N + 1,C), denote w, = c*wrg|x-

Theorem 15. [Paul] Let X™ — PN be a smooth, linearly normal, complex algebraic variety of

degree > 2. Let Rx denote the X-resultant (the Cayley-Chow form of X ). Let Ax ypn-1 denote
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the X-hyperdiscriminant of f format (n-1) (the defining polynomial for the dual of X x P"~!
in the Segre embedding). Then there are norms such that the Mabuchi-energy restricted to the

Bergman metrics is given as follows:

o - Axspn|? o - Rx||?
Vo(wy) = deg(RX)log——deg(AX pn—1) log —————
Bt I? : Rx?
Lemma 15 (Tian).
o Rx]? v
log ———H—=(n+1) Doy
TRx P o Jx
o - Ax ypn—1]? / / +  N4n—1
log——"———=(N+n—-1) [ dt QoW g PN tn_1v
||AX><]P’" 1” X xPn—1) FS(@N+n=1Y)

Lemma 16.
deg(Dxxpn-1) = deg((X x P"71)Y) = /Xxpn 2n-1(J(O(L, 1)) = (n(n+ 1) —np)V
where J(O(1,1)) is the jet bundle of O(1,1) = 77 Opn (1) @ 75 Opn—1(1) while
deg(Rx) = (n+1)d

The most important ingredient is the following identity

Theorem 16 (Hyper-discriminant part in the K-energy).

1 1
(N+n—1)/ dt/ @awg;&;)l :/ dt/ b (n(n+1)w? —nRic(wy) Aw?™) (2.24)
0 (X xPN+n—1)v 0 X

To get the above identity, the idea is to consider both sides as function of G := SL(N 41, C).
Then one takes 99 of both sides and pair with any smooth test (m — 1,m — 1)-form 1 on G
to conclude the above identity after taking 9. To remove the transgression operator 09 one
uses the following trick by Tian. First compactify G to be G such that G\G has an irreducible
divisor. Then one verify the log polynomial growth of both sides. The following is an immediate

corollary of Corollary 2 in Section 2.3.1.

Proposition 8. The functional

1 n
—/ dt/ nde (Ric(wy) — Ric(wo)) Awl ™t = / log w—‘;wg
0 X X w

0
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has log polynomial growth as function on SL(N + 1,C). In particular, the K-energy v(wy) has

log polynomial growth as a function of o € SL(N + 1,C).

Futaki invariant as asymptotic slope

By Tian’s Conjecture 2, we need to test if the K-energy functional is proper on By. Following the
Hilbert-Mumford Criterion for GIT stability, we consider any one parameter subgroup A(t) =
t4 € SL(N +1,C). Although the K-energy is not convex along A(t), the above theorem 15 by
Sean Paul says that it is the difference of two convex functionals. As a corollary, we have the
existence of asymptotic slope as the difference of Chow weight and the hyperdiscriminant weight.
Define wy ) = A(t)*wrs|x, and &y to be the limit lim; .o A(¢) - X in the Hilbert scheme (which
is the central fibre of the induced test configuration introduced in the next subsection). Then

combined with [PaTi2], we also have the following expansion

Proposition 9. [Tia9, PaTi2]
1
velwr) = (FL(Y) + a)log + +0(1) (2.25)

where Fy is the Donaldson-Futaki invariant. a € Q is negative if and only if the central fibre Xj

has generically non-reduced fibre.

Remark 12. In fact, if Xy is irreducible, then by ([Tia9], [PaTi2]) one can calculate that
—a = c- (mult(Xp) — 1) for ¢ > 0€ Q.

Without loss of generality, we assume each homogeneous coordinate Z; are the eigenvector
of A(t) on H°(X,0(1)) with eigenvalues A\g = -+ = Ag < Agq1 < -+ < Ay, Let wyyy =
wrs +v/—1900¢;. Then

>t Zil?
¢y = log S————
> 1%il?

(2.26)

There are three possibilities for Xy. Compare [Stol].
1. (non-degenerate case)
lim; o Osc(¢;) — +00. By (2.26), this is equivalent to NX  {Z; = 0} N X # 0.

2. (degenerate case) Osc(¢;) < C for C independent of t. This is equivalent to N {Z; =
0} X = 0. In this case, X is the image of X under the projection PV — PX given by
(Zo,....,ZN] — [Zo,...,ZK,0,...,0] and there is a morphism from ® : X = X2o — A)

which is the restriction of the projection. There are two possibilities.
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(a) deg(®) > 1. In this case, A} is generically non-reduced. So a < 0 in (2.25).
Example: X = {Z3+Z3+23+73 = 0}. \t) : (Zo, Z1, Za, Z3) v (t 71 20, t 71 24,41 25, Z3).
Xo = 3{Z3 = 0}.
More generally, assume X" C PV is in general position. Then the generical linear
subspace L 22 PV—"~1 gatisfies L N X = (). Let M = P" be a complement of L. C PV.
Then the projection of ® : PY\IL — M gives a projection ® : X — ®(X) with degree

equal to the degree of X.
(b) deg(®) = 1. In this case, Ap is generically reduced. We have the following fact

Lemma 17. If ®(X) is normal, then X = ®(X).

Proof. Note that ® is generically one to one, ® is a birational morphism. Assume
y € ®(X), such that ®~!(y) contains a positive dimensional subvariety C. The sub-
linear system £ of |O(1)| defining ® has a basis {Zy, ..., Zx} has no base point, so

the form defined by

K
w= \/—laélogz | Z:|?

i=1

is a smooth form representing ¢;(O(1)). By assumption w|c = 0. So

deg C = / wdim ¢ —
c

This contradicts the ampleness of O(1). So the inverse image of ® contains only finite
many points. Since ®(X) is normal, by Zariski’s main theorem [Hart, 11.4], the fibre

of ® is connected, so ® must be isomorphism. O

Example: Assume X™ C PV is in general position. Assume K > n+ 1, then N — K —
1 < N —n—2. So the generical linear subspace L = PV =K~ gatisfies LN X = (). Let
M = PK be a complement of . € PV. Then the projection of ® : PN\IL — M gives a

projection ® : X — ®(X) with degree 1.

Now assume v,,(wg) is proper on By, in the sense of Definition 2. Then by Lemma 12 and Remark
8 (See [PaTi2]), in case 1 or 2(a), F; > 0. However, in case 2(b), F; = 0. So there always exists
non-product test configuration with vanishing Donaldson-Futaki invariant. This case was missing

in most of previous works as pointed out in [LiXu] (See also [Sto2] and [Odak4]).
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2.7.3 Test configuration and K-stability

Following [LiXu|, we will state the definition for any Q-Fano variety X which by definition is a

normal, klt variety with —Kx ample.

Definition 8. 1. Let X be a Q-Fano variety. Assume —rKx is Cartier. A test configuration

of (X,—rKx) consists of
e g variety X with a G,,-action,
o a G,,-equivariant ample line bundle L — X,

o a flat G,,-equivariant map 7 : (X, L) — A', where G,, acts on A by multiplication in the

standard way (t,a) — ta,

such that for any t # 0, (X, = 7= (t),L|x,) is isomorphic to (X, —1Kx).
2. If L is only a Q-Cartier divisor on X such that for an integer m > 1, (X, mL) yields a test

configuration of (X, —mrKx). We call (X,L) a Q-test configuration of (X, —rKx).

Remark 13. With this definition, in fact any test configuration comes from a Q-test configura-
tion of (X, —Kx) by taking power of a Q-polarization. In the following, by the abuse of notation,
if we do not want to specify the exponent r, we will just call (X, L) a test configuration for both

cases in the above definition.
Similarly, we have the following definition.

Definition 9. A Q-test configuration (X, L) of (X, —rKx) is called a special test configuration

if L= —rKx and Xy is a Q-Fano variety.

For any test configuration, we can define the Donaldson-Futaki invariant. First by the

Riemann-Roch theorem,
d, = dim H°(X, Ox(—rkKx)) = agk™ + a1 k"' + O(k"?)

for some rational numbers ag and a;. Let (Xy, Lo) be the restriction of (X, £) over 0. Since G,
acts on (X, LE*), G, also acts on H(Xy, L&*). We denote its total G,,-weight by wy. By the

equivariant Riemann-Roch Theorem,

Wy = bok"+1 =+ blk’n + O(kin_l).
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So we can expand

W _ -1 —2
kdk—Fo—FFlk' +O(k™2).

Definition 10 ([Dond]). The (normalized) Donaldson-Futaki invariant (DF-invariant) of the

test configuration (X, L) is defined to be

F; bo — agpb
DF(X, L) = 7673 - % (2.27)
0

With the normalization in (2.27), we can define the Donaldson-Futaki invariant for any Q-test
configuration by DF(X, £) := DF(X,mL). It is easy to see that this definition does not depend

on the choice of m because of the normalization in the definition (2.27).
Definition 11. Let X be a Q-Fano variety.

1. X is called K-semistable if for any Q-test configuration (X, L) of (X,—rKx) with r > 0,
we have DF(X, L) > 0.

2. X is called K-stable (resp. K-polystable) if for any normal Q-test configuration (X, L) of
(X, —rKx) with r > 0, we have DF(X,L) > 0, and the equality holds only if (X,L) is
trivial (resp. X =2 X x Al).

Remark 14. The original definition of K-polystability and K-stability need to be amended as
pointed out in [LiXu] or at the end of Subsection 2.7.2. Here for the triviality of the test con-
figuration with Donaldson-Futaki invariant 0, we require the test configuration to be normal.
See the case 2-(b) at the end of Section 2.7.2 and Remark 41 in Section 5.3.2. On the other
hand, for K -semistability, it follows from [RoThl1, 5.2] that we only need to consider normal test

configurations, too. See Subsection 5.3.2.

2.7.4 Calculation of Futaki invariant
by Log Resolution

Assume X is an equivariant log resolution of singularity of X such that

K =mKx' =) P

E; are exceptional divisors with normal crossings. v lifts to be a smooth holomorphic vector

field & on X, which is tangential to each exceptional divisor E;. Let S; be the defining section of

41



[E], so E; = {S; = 0}. Let h; be an Hermitian metric on [E;] and R, = v/—1901og h; be the
corresponding curvature form. By 99 lemma (or Hodge theory), there is an Hermitian metric

on K)T(l such that its curvature form R; = V=100 logiz = —/—190log 7;, satisfies

R;L = W*wh — E aiRhi
%

So
7 (Ric(wp) —wy) = —v/—109log Tncijh ++v-1 Z a;001og |Sz|i
h i
7 hy,, = —log T Li)h + Zai log |Si[;. + C
n * * n ~ ﬂ-*w}’? ~ 2 *x n
V(hy,, Jwpy, = 7" (v(he), )T wy = —v(%)ng + Zﬁbz‘v(log|5i|m)7T W
Xsm X\U1E'L X\UiEi T]h i

- .
() is a smooth function on X.
h

Lemma 18. 0; = 9(log|S;[} ) extends to a smooth function on X such that
V—100; = —iz Ry,

Proof. Tt’s clearly true away from exceptional divisors. Let p € F;, in a neighborhood U of p,
choose a local frame e; of [E;], S; = fie;, and E; = {f; = 0}. We assume E; is smooth at p, so

we can take f; to be a coordinate function, say z;. Since v is tangent to F;, v is of the form

(z) = 2101(2)0:, + Y _ €i(2)0s,
i>1
b1(z), ¢i(z) are holomorphic functions near p. Now
0; = v(log |21|*) + o(log les ;)

the second term is smooth near p, and

a1og 21) = "2 <2
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is holomorphic near p. Also

2T

iR
NV

90; = d(v(log|e;|7,)) = —i,00log le;[;. = — (2.28)

i

So the Futaki invariant can be written as

Lin; .
Fox)(v) = / (F2h > aib) (R + Y aiRp,)

X My
1 .
- /X (ivs(0) + st + By + T aiftn)"

Now by (2.19) and (2.28), (div;(0) + >, a:f; + R; + >, a;Ry,) is an equivariantly closed form,

so we can apply localization formula to this integral. See [BGV], [Tial0] for localization formula.

Remark 15. Note that at any zero point p of 0, the divergence divi(v) is well defined independent
of volume forms. Also by the proof of previous lemma, if p € E;, 0;(p) = b1(p) is the weight
on the normal bundle of E; at p, otherwise 0;(p) = 0. In any case, if ¢ = w(p) € X, then
div(9)(p) + 32, aibli(p) is the weight on Ky'|,.

An example of calculation

We calculate an example from [DiTi] using log resolution.

X is the hypersurface given by F' = ZgZ3+Z1Z3+Z3. v is given by A(t) = diag(1, 5, e**, e3').
The zero points of v are [1,0,0,0], [0,1,0,0], [0,0,0,1].

[1,0,0,0] is an A-D-E singular point of type Eg. Locally, it’s C2/T", T is the lifting to SU(2)
of the symmetric group of Tetrahedron in SO(3). |I'| = 24. After a (nonlinear) change of
coordinate, we change it to the standard form 27 + 25 + z3. The vector field is given by v =
6210,, + 4220,, + 3230.,. By viewing the surface as a two-fold covering of C2, branched along a
singular curve, we can equivariantly resolve the singularity by blowup and normalization (at the

origin of each step). See [BPV].

4 3

1. 224+ 23+ z§ =0. 21 — €%z, 20— e*2y, 25— €325,

2 3\ _ _ 22 t —_ Z1 3t
2. 87+ 2z3(z3 +t7) = 0. t1=2 et s1= 2 edlsy.

3. 82 +ta(te +12)=0. ty = el ey, sy = e e%sy.

4. S% +t3(t3 +t1) =0. t3 = % — 6%3, §3 = ;Lf — 6t83.
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5. Si+t4(t4+1)=0. t4=%l—>t4,54:%|—>84.

z3 z3 tz t3 z3 t4 t2
2+ 2550 #3 7;2? =0 — 2'322 7«&‘ ) o 23 -
— 2}
z2 tl tl tl tl
ty +12 =0 ‘ th+t3=0 ty=—1
P -
6 1
K
3
5 E
B Py Tpr E} ~2)
E2
2 PS
P4 P6 P7 P5
E} E} E, E2 E?
B, (-2) (-2) (-2) (=2) (—=2)
The intersection diagram of Exceptional divisors is of type Fg. Assume
Ky = T Kx +ZaiEi
i
Note that 7*Kx - E; = 0, then
KX- E1 = Z(lej Ez
J
By adjoint formula,
Ky E;=Kp,-E;—E =0
Because the intersection matrix {E; - E;} is negative definite, we have a; = 0. So
K)_( = ’N*KX
The zero points set of ¥ are: UP_,{P;} U Ej.
1. equation near Py is: uf + 22(1 +t1'20) = 0. g = 2L = ey, #] = 22 o e,

2. equation near Py, Py is: uj + 523 +1=0. th = L+ e}, 23— €*'z3.
3. equation near Py, Psis: u3 +t#ta+1=0. th = % — et ty s ey,

4. equation near F; (away from Ps, P;) is: s2 +t4(ts + 1) = 0. (near Ps, Py, the equation is

u421+t§12+1=0) N :{tl :O} t1 '—>€tt1.
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So the contribution to the localization formula of Futaki invariant at point [1,0,0, 0] is:

L+2L+2i+/71 _!
-2 "6 -2 Jgl+a(E) 6

the contributions from the other two fixed points are easily calculated, so the Futaki invariant is:

Fe x)(v) =

Remark 16. The contribution of the singular point can also be calculated using the localization

formula for orbifolds given in [DiTi]. Note that the local uniformization is given by:

m:C* — C*TccC?
(21,22) = (1, (sf +2V=32123 + 23)%,2(=3) S ;v 20 (2] — 23), —(2F + 142125 + 25)]
So mjv = (210, + 220s,), and

1 (div(zjo)"™ 1 1% 1

[T] det(V(miv)lr.x)  241/4 6
Futaki invariant of Complete Intersections

We will use the algebraic definition to calculate. Assume X € CP" is a complete intersection
given by: X = N[,_,{F, = 0}. Assume deg F, = dqn, s0 deg X =[] do. Let R = C[Zy,--- , Zn].

X has homogeneous coordinate ring
R(X) =Cl[Z, -, Zn]/(I(X)) = R/I(X)

I(X) is the homogeneous ideal generated by homogeneous polynomial {F,}. It is well known

that R(X) has a minimal free resolution by Koszul complex:

0= R(= Y da)(CJ[Fa) = -+ = €D R(~da—dp)-(C-(FaF3)) = D R(~da)®(C-F,) = R — R(X) — 0
a=0 @ a=0

a<p

Let A(t) € PSL(N + 1,C) be a one-parameter subgroup generated by A = diag(Xog, -, An),

and v be the corresponding holomorphic vector field. Assume that

al 0
; )\iZia—ZiF(Z) = piaFa
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(C*)? acts on S(X). Let ay; = dimS(X),; be the dimensions of weight spaces, then this action

has character:

T (1 = tlaghe
Ch(S(X)) = > aptith= Haffl( L2 ) _ F(tr,t2)
(k,1)ENXZ Hi:O(l —hty")

The k — th Hilbert weight is (note it’s a finite sum) wy = ;5 ax; x [ and

da
Zwktk _ af _Za(ﬂat1 Hﬂ#a(l Z A) _(1— tila)
keN ' ot ta=1 (1 —t)N+! 1 — )N
ds—1 - _
_ Zalmati Mppa(l+--+6°7)) i Ham (Lo 25070 ) o)
1- tl)N+2 T (1— tl)N+2 T :

Lemma 19. Let

T i +oo
£(t) = 9(t) _ Zizo a;t _ Zbktk

(1 —¢t)ntt (1 —¢)ntt
then

kn knfl

by = Fg(l) + m((n + l)g(l) — 29/(1)) + O(kn72)

Proof. )
i n+7\,;

So when £ > 1,

a n+k—i n+k—i)---(k—i+1)
b, = Zal< ) Zal "

1=0
= n'i Z+ k,nl ia2n+1—22)+0(k" 2)
- %9(1) + 2(5_1)!((71 +1)g(1) — 2¢'(1)) + O(k™~2)

O

Let g(t) = — 3, (pati™ [psa(l 4+ tdf’ 1)) XL A+t n=N+1 -,
let fio = plo — % +1d0“ then fi is invariant when A(t) differs by a diagonal matrix. by the lemma,

we can get

ZuaHdﬁHHda— Hd Hd ——NLH(NH_T)

o Ba dg
(2.30)
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o
=20 -200) = [l (V1= ST Y A - Y
a B vy 7B B
i _ A
Y
B ¥ B a
/ffﬁ JN+1=r [L’y ) LN
= —||da do | (N+1->» d -
e H — ds (N +1—7)! H * %:ﬁ;d B“ﬁ 2(N — 1)
A 770
By (2.23), we can get the Futaki invariant
- N+1_E dv ﬁ,é’
Feyoay (v Hd Z“ﬁ_—NH_l ds
8 B

Remark 17. In hypersurface case, the above formula becomes

(d—1)(N +1) A
Fe,oay) =— N (1 — Nl

d)

Apply this to the example in section 2.7.4, where d =3, N =3, A=6+3+4 =13, p = 12,

O(1) = Ki', then we get the same result as before.

24 13

Remark 18. We can calculate directly the leading coefficient of wy in (2.31)using the Lelong-

Poincdre equation. Also see [Lul].

Lemma 20 (Poincédre-Lelong equation). Assume L is a holomorphic line bundle on X, s is
a nonzero holomorphic section of L, D is the zero divisor of s, i.e. {s = 0} counted with
multiplicities. h is an Hermitian metric on L, Ry, = /—1001og h is its curvature form. Then in

the sense of distribution, we have the identity

\/713510g|8|%:/ —Rp,
D
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i.e., for any smooth (2n — 2) form n on X, we have

\/—1/(10g|s|,21)8517:/ 77—/ Ry A
X D X

Let Xo = CPY, Xoi1 = Xo N {F, = 0}, then Xo D X1--- 2 Xy = X. 0, = 22 e
+ A
lwwps = vV/—100,. On X,_1, by the lemma, we have

:/ —dg - Wrs|x,_
Xa

,/,1351% &
(22 1Zi[?) e

Xa—1

So

2
vaN’“:da/ vaN7“+1+\/—1/ 0,001og =2 —— | Fal Awh
/xa s Xoy 8 Xos (32 1Z:?) rs”

Using integration by parts, the second integral on the right equals

N / 30
Xa—1

01 |Ful? Awhs® / j A0l |Fu? Awne®
08 = Awhg® = TyWFg 0 =0 v
O lzippyd Xo1 (32 12i]2)de “rs

- ot / v(log 7|Fa|2 JwN oot
N-a+1Jx,, (3, 1Zi|?)d= 18
1 Z il Zi|? a
T BN
1

>

N—-a+1 SNz s
_ —N%mpadeg()(a,l)—l—dazv%a_‘_l /X o et
So
(N—a+1) /X 0,wN5® = —p1g deg(Xao1) + du(N — a+2) /X Opwpg “H
While

ZMZI2
N+1 ﬁva:N—H/ E:)\_)\
( ) x, b8 ( ) v S 1Zi

By induction, we get

SfF

N+1_T)N+1

e}

N—r—i—l)/X 0vwg§T:_HdaZZ—Z+)\Hda:Hda Z
r a B a B

This is the same as g(1), (2.30).
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Chapter 3

Some Extension of general

theories

3.1 Twisted Kéahler-Einstein equation and Invariant R,(X)

In the following, we will always use the notation: 8 € [0,1] and o =1 — §.

Let’s consider the twisted Kahler-Einstein equation

Ric(wy) = Pwe + an (3.1)

for some current 1 € 27c1 (X) which is allowed to be non-positive and singular. This is equivalent

to the following Monge-Ampere equation:
(W +V=109p)" = eflwan=Boyn
where H,, o, satisfies:
VETODH,, o = Ricw) = fio— . [ el = v

One can define the associated K-energy and F-energy:

Fyan(wg) = F3(¢) — %log (11/ /X eHw,an—ﬁtbwn/n!)
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w? w?
Vo(e) = BFS(O) + [ og 2

n/ml
w,an7ﬁ¢wn nl +/)(Hw7a77w /n

It’s easy to verify that these two functional are dual to each other under Legendre transform
([Berm]). Berman called v, o, the free energy associated with (3.24). The name comes from

his statistical mechanical derivation of K&hler-Einstein equations. Note that in this notation,

Vo (We) = Vu,0(wp)-

Proposition 10. We have the following formulas:

1
Vi an(We) = —/O dt/X gi)t -n(Ric(w) — Pwr — an) A wt”_l

Voon(@s) = BFan(ws)+ /X Ho o™ ! — /X oy ol 1!

> ﬁFw,an'i'/ Hw,anwn/n!
X

3. Let wy solve the equation wy, = efloen=000u™  In other words, Ric(wy) = Bwg + an. then

n

w
BFu.an(we) + [ Hoan—7 2 Vu.an(wy)

4.
wh W .
ore) = [ Tog i 28— (L = L)(wo) + | Hos”

5. Assume wy = w + /—100¢1, wy = w + /—190¢3 = w + /—100(¢1 + ¢2). Then
Vw,an(wl) + le,om(WZ) = Vw,an(WQ)a Fw,an(wl) + le,an(WZ) = Fw,an(WZ)

In other words, vy, oy and F, oy satisfy the cocycle condition.

Proof. (2),(3) and (5) follows from the formula relating twisted potentials of two Kéhler metrics.

w” 1 _
Hw¢,an = Hw,oﬂ] + 10g E — ﬁ¢ — log (V / eHw,om ﬁ¢wn/n')
b X

= - 10g L + log i eHu,an*ﬁtﬁwﬂ/n!
eHuw,an—PBoyn 1% X
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The inequality in (3.2) follows from concavity of log:

1 wo ! Hopon W6\ _
V/)(Hw%anﬁglog (V/)(e 4 nn') =0

For (3), since we have normalized ¢ so that [, effe.cn=F%un /nl =V,
Fo.an(®) = F5(9)

oanfe) = BEYD) + 5 [ (0= 4 [ o
So (3) follows from
F0) 2 ) - [ (0- 02
O

Corollary 4. F,, ., is bounded from below if and only if vy oy s bounded from below. In this

case,

w" . .
/ Hw,an—' + Binf Fy, oy = inf vy, oy
b'e n:

Proposition 11. ([Bern],[BaMa/,[Ban]) If 1 is a positive current, and wg := wy, solves the

equation (3.1), then wg obtains the minimum of F,, an(wg) and vy an(wg).

Proof. If wg to the equation (3.1) is the critical point of F, 4,(we). Berndtsson [Bern] proved
F,an(wg) is convex on H. So wg obtains the minimum of F,, 4, (wg). The inequality (3.2) implies

Vy,an also obtains the minimum at wg. O
There are 2 cases we would like to consider in this Chapter.

e 7 is any smooth Kéhler metric in 27meq (X).

It was first showed by Tian [Tia6] that we may not be able to solve (x); on certain Fano
manifold for ¢ sufficiently close to 1. Equivalently, for such a Fano manifold, there is some
to < 1, such that there is no Kéhler metric w in ¢;(X) which can have Ric(w) > tow. It is

now made more precise. Define
R(X) =sup{t: (*); is solvable}

Székelyhidi proved
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Proposition 12 ([Szé]).
R(X) = sup{t : Ric(w) > tw,¥ smooth Kdihler metricw € c1(X)}

In particular, R(X) is independent of n € ¢1(X).

e = {D = 0} is the integration along a smooth anti-canonical divisor. One can extend the
theory in smooth case to the conic case. We can define the logarithmic Futaki invariant
after Donaldson (See Section 3.3, [Don6]) and integrate the log-Futaki invariant to get log-
K-energy (See Section 3.3.2). If we assume the log-K-energy is proper, then there exists
conic Kéhler-Einstein metric. (Cf. [JMRL]). Note that, we need to relax the C*° condition
for Kahler potentials to include the potential of Kahler metric with conic singularities. This
conic type Holer space is studied by Donaldson [Don6] (also called wedge Holder space in

[JMRL]). See section 3.2 for sketched proof.

The two cases can be related as follows. Take 1. = w + /=199 1log(|s|> + €), then it’s easy to

verify that lim._.on. = a{s =0} =: D, and
i s 0, (6) = .0(0)

lim F oy, (6) = Fo.p(¢)

€E—

Proposition 13. ([Tial],[Tial0],[Berm]) For the above two cases, when 0 < <K 1, vy an 18

proper.

Proof. When 7 is smooth, this was proved by Tian ([Tial], [Tial0]). The modification to the

conic case was proved by [Berm]. First define the log-alpha-invariant.

1 ) hey, n
(K, (1-8)D) = max {u > 0;30 < C,, < +o0 such that v /X e_“(‘z’_h“p‘b)m < C’u}

Now for any u < a(Kx", (1 - 8)D),

1 ehwwn 1 ‘SD\2(1*H)W(7; wn
— —u(¢—sup ¢) _ —u(¢p—sup ¢)—log ——5———"= "¢
logC, > log(V/Xe n!|sD|2(1—5)> = log (V/ e z -
spl2A=Byn\ n
C ehewn n'
>

1 |sp|2(1—F )wg wg
v <_ /X log ol T wlo(wy)
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Vo, 1-p)p(Wgp) = uly(wg) — B — J)u(wy) — C(B)

So if
n+1

B< a(Kx', (1-p)D),

then log-K-energy is proper for smooth reference metric. Berman estimated the log-alpha-

invariant:

Proposition 14. [Berm]

a(Ky',(1-B)D) =a(Lp, (1 - B)D) > min{B,a(Lp|p),a(Lp)} > 0 (3.2)
So when
n+1 .
0<pB< T min{a(Lp|p),a(Lp)}, (3.3)
the log-K-energy is proper. In particular, when 0 < 8 < 1, the log-K-energy is proper. O

Remark 19. Let D be a smooth divisor such that D ~g —AKx for some 0 < XA € Q. If we let
n=A"YD} € c1(X), then as we will show in [LiSuj, the conclusion in Lemma 13 in general is

false if A < 1.
Proposition 15. ([Berm/, [Rub]) v, oy is proper if and only if F, oy is proper.
We give a proof due to Berman [Berm, Cor.3.5].
Proof. If F, o, is proper, then v, o, is proper by inequality in (3.2).
Now assume v, oy is proper. Then v, o, — 06(I — J),, is proper for 6 small. Let ' = (an —
dw)/(a—9). Note that o — 6 = 1 —(8+6). Then it’s easy to verify that H,, o—s)y = Hu,ay and

Vo,an — 5(1 - J)w = Vw,(u—6)7;’

Because it’s bounded from below, by Corollary 4, F,, (o—s), is bounded from below (even when
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7’ is not a positive current). So

Foon®) = FY(0) -0 s log (‘1/ XeHuva”ﬁ”)ff%w"/n!)
> 130 - R (250 ) + L e (91054 9)
o R ] e e
> (1= (B/(B+0)"")Ju(¢) - C

Now by Lemma 13,
Corollary 5. In the two cases (smooth or conic), when 8 < 1, F,, (1_g)y, is proper.
The following lemma is observed together with Dr. Song Sun.

Lemma 21. If F, (1_g)y is proper (resp. bounded) when 3 = 3y and it’s bounded (resp. proper)
when B = B1, then it’s proper when = (1 —1t)Bo+1t61 for 0 <t < 1. The same conclusion holds
Jor vy, 1—gyn-

Proof. Let 3; = (1 —1)Bo +tf1. First note that H,, (1-g,), = (1 —1t)Hy, (1—gy)n + tHu (1-5,)n- SO

by Holder inequality we get

n n
/ eHun(l—ﬁt)n_thbwi — / (eHw,aon—BU¢>1—t (eHw,aln—ﬁuzb)t W
ny\ 1—t n\ t
< / eHo.1—syn—Bod Y / eHo.—s1n=Br18 Y
So the statement follows. The last statement follows by noting v, (1—g)y is linear in 3. O

Proposition 16. In the above two cases (smooth or conic), if (3.1) is solvable for f =1 <1,

then it’s solvable for any 0 < B < [1.

Proof. Let wg, be a solution of the equation (3.1). Because 7 is positive, wg, obtains the minimum
of ¥, a,n(we) by Proposition 11. In particular it’s bounded from below . By Proposition 13, v aqy
is proper for any 0 < y < 1. So by Lemma 21, v, (1_g), is proper for any 0 < 8 < ;. By
Proposition 15, F, (1_g), is proper for 0 < 8 < ;. Now the solvability in the smooth case is
well known ([Tia9],[Tial0]). The conic case is solved in [JMRL]. See section 3.2 for sketched

proof. O
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For the above two cases (smooth or conic), we can define

R, (X) = sup{s : (3.1) is solvable for 3 € (0, s}

Corollary 6. The following are equivalent:
1. Ry(X) > to, i.e. (3.1) is solvable for 0 < 5 < to;
2. The function v, on(we) is proper for any 0 < B < to;
3. Fyan(we) is proper for any 0 < B < to.

Proof. (1)=(2). Take any (1 < to. The solution ws, obtains the minimum of v, 1_g,), by
Proposition 11. By Proposition 13, v,, (1-3,)y is proper for any 0 < fy < 1. So by Lemma 21,
Vi (1—B)y is proper for By < B < B1. (2)=(3) follows from Proposition 15. (3)=(1): This is well

known in the smooth case (See e.g. [BaMal, [Tial0]). In the conic case, see Section 3.2. O

3.2 Existence of conic Kahler-Einstein metric on Fano man-

ifold

There is another continuity method, which is via Kéhler-Einstein metrics with conic singularities.

This is equivalent to solving the following family of equations with parameter 3:

. 5 \n o w"
Ric(wy) = Bwy + (1 — B){D} <= (w +V—100¢)" = €" WW (*)a
where D € | — Kx| is a smooth divisor, s is the defining section of [D] &2 —Kx, and | -|? is a

Hermitian metric on —Kx such that its curvature form —/—199log| - |? = w.

Remark 20. The weak solution was obtained by Berman [Berm] using pluripotential theory. For
the geometric conic solution, in the early version of [JMRL], the authors need to assume the cone
angle is in (0,7] or the bisectional curvature of some reference conic metric has upper bound.
Joint with Yanir Rubinstein, by carefully choosing adapted local coordinates, we showed in the
appendiz that the bisectional curvature of a natural reference conic metric is indeed bounded from

above. So this allows any cone angle in (0, 2.

We will use the log-K-energy associated with a reference conic metric. Let & = w-++/—199|s|?”.

55



So for any & € [w] with at most conic singularities, we can define the log-K-energy and
log-F-energy to be
oy @

Do) = . = / log

X e/ﬁa —ﬂw@n n!

+ BFY(¥) + /X ha@" /nl.

Fa(w) = FY(4) — %bg (é /X e%%"/ng .

where hg satisfies

V—=180hg = Ric(@) — & — afs = 0}, and / ehoym =V (3.4)
X

Theorem 17. [JMRL] Assume ﬁa is proper or Ug is proper, then there exists a conic metric

along the divisor D of conic angle 27(3.

Sketch of the proof. The idea is using continuity method as in the proof in the smooth case. So

we consider a family of equations:
(@ + V=100y)" = ha—tvgn (3.5)

This is equivalent to the equation
Ric(Wy) =ty + (B8 — )0 + afs = 0}. (3.6)

e Step 0: Set up good function space. This is essentially carried out by Donaldson in [Don6].
We first write the metric and differential operator in the conic coordinate. Let z = re*® be

the ordinary complex coordinate. Define p = 7®. The model case tells us the right thing

to do.
N dz1 A dzy _ (dr+irdf) A (dr — irdf) _
w = W‘FZde/\de: 28 +Zd2j/\d2j
j>1 j>1
= (dp+iBpd0) A (dp —iBpdf) + > dz; A dz;
Jj>1

Let € = €% (dp+ifpdf) = d¢, where ¢ = 2% = pe’?? is defined by choosing a branch locally

away from 0. Then the general (1,1) form, in particular the Kéler form for a conic metric,
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also has cross terms:
O=vV-1(feNe+ fjendz; + fidz; Ne+ fdzi A dZ;) (3.7)
If & = /—100¢,
B 82¢>71 —ipo, O i 0 i, O i 0
1= =1 ma) (T )
1 11 0 0 1 0
= EAC%M)— 13p ((“)p(ﬁp(“)p)_k 9

0
_ 1 872+12+ 1 872 ¢
4 \9p?  pdp  B*p* 062

where A2 5 is the Laplacian associated with the standard conic metric on C% g5 =

dp2 + 52p2d92.

20 1 (0 i 9\ 0
= = —€
9Coz; 2

i 872]

fi 90 DBpao

Following Donaldson, we define

Definition 12. 1. f is in CVP if f is Héler continuous in the coordinate
2 i0 i0 -1
(€ = pe? =rPei® = 2271 2))

2. A (1,0)-form a = f1€+zj>1 fidzj is in CVP if f; € CF for 1 <i<mn, and f; — 0

as z1 — 0.
8. A (1,1)-form w is in CVB if f, lis f5, fij € C8 and Jisf; = 0asz —0.

4. A function f is in C*7VPB if £,0f,00f are all CV5.
Remark 21. The point is the derivatives involve only the following wedge differentials:

V10 0 ¥ F 1P
dp’ p 00’ 0z OCOC’ Dpdz; p 000z, 0207,

The linear theory is set up by Donaldson:

Proposition 17. [Don6] If v < pu = ! — 1, the inclusion C*>*P — C7B is compact.
If & is a CP Kihler metric on (X, D) then the Laplacian of & defines a Fredholm map

Ag: C218 OB,
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e Step 1: Start the continuity method. Let
S ={t € (-0, 0);(3.5) is solvable}.

Then S is non-empty. This is achieved by solving the equation (3.5) when ¢ < 0 using

Newton-Moser iteration method.

e Step 2: Openness of solution set. This follows from implicit function theorem thanks to

the Fredholm linear theory set up in Step 0. See [JMRL] for details.

e Step 3: CYestimate. This is the same as in the smooth case. By taking derivative with

respect to t on both sides of (3.5)
Aty = —tih — 1)
By calculation, one can prove that
1 t
B3 =~ [ (1= D wiap/nt <0
0

So

A
|
\
<}
09

Fo(n) < ; (‘1// ”‘WA”/nQ:_;log (é/xe_(ﬁ—t)wat"/n!)
t o~

IN
\
§
\
s
/\

Q
<
S
0
7 N
<|+
T
aQ
@
&
&
3
~
s
N——

So if F5(v) is proper, then I5(@y,) < C. Now the C%estimate follows from the following

Proposition.

Proposition 18. 1. Osc(¢y) < Iz(vy).

2. (Harnack estimate) —inf x 1y < nsupy ;.

e Step 3: C?-estimate. To get the C%-estimate, we can use the Chern-Lu’s inequality and
maximal principle as in Proposition 2. By the equation (3.6), Ric(Wy,) > tWy,. The
upper bound of bisectional curvature of & is crucial, which will be shown in the following

subsection.
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Let = = logtrg, @ — A as in (2.3). To use the maximal principle in the conic setting, one
can use Jeffrey’s trick as in [Jef]. We add the barrier function €|[s[|2”" for 0 < 4/ < 7 so
that = + €|[s]|2?" obtains the maximum zj, ¢ D. We then apply the maximal principle to

2+ €||s||> and let € — 0.

e Step 4: C'27F_estimate. There is a Krylov-Evans’ estimate in the conic setting as developed
in [JMRL]. The proof is similar to the smooth case in Subsection 2.3.2 but adapted to the

conic(wedge) Holder space.

3.2.1 A calculation of bisectional curvature of a conic metric

We consider reference metric of the form
w=w +-190|5|*

w’ is a smooth Kahler form. Let D = {S = 0}. Assume we choose a local coordinate {z;}, such

that D = {z, = 0}. Denote Vz, = dz, + z,a"10a.
aNSI*? = B11S1*PVaz,V

99|15)1* = —BIISI*°@ + B||S|**2aVza A Vz,

where & = ¢1([D], || - ||) = —991oga. So
w=u' —B|S|*%P& + B?|S|I**2aVz, A Vz, (3.8)

By scaling the Hermitian metric || - ||, we can assume this is positive definite.

To simplify the calculation of curvature of w, we need lemma.

Lemma 22. For any point p € X\D, there exists € > 0, such that if disty (p, D) < €, then we
can choose local holomorphic frame e of Lp and local coordinates {z;}1_, such that S = zne, and

a = |le||? satisfies a(p) = 1, da(p) =0, %a(p) =0.

Proof. Fix any point ¢ € D, we can choose local holomorphic frame ¢’ and complex coordinates

{w;} in By/(q,€(q)) for €(q) < 1. Let S = f’e’ with f’ a holomorphic function and ||€’||> = c. Let

P =

e = he’ for some holomorphic function h to be chosen. Then a = ||he |h|?c. Now fix any
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point p € By (g,€(g)). In order for a to satisfy the vanishing property with respect to variables
{w;} at point p, we can just choose h such that h(p) = ¢(p)~/2, d;h(p) = —c(p) ' h(p)dic(p) =

—c(p)~3/2d;¢(p) and

—c(p) ™ (W(p)D;0;c(p) + 0;5¢(p)Dih(p) + Dic(p)d;h(p))

= —c(p)73/251-5jc(p) + 2c(p)75/25ic(p)5jc(p)

<
>

—

=
|

Here we used 9; to mean partial derivatives with respect to variable w;. Then we get S = fe=
f'e’ with f = f’h=! a holomorphic function. Since D = {S = 0} is a smooth divisor, we can
assume %fn(q) # 0. Choose €(q) sufficiently small, we can assume % # 01in By (g, €(q)). So by
inverse function theorem, z3 = w1y, -+, 2p—1 = Wp—1, 2n = f(w1,- - ,wy,) are complex coordinate
in By(q,€(q)/2) and now S = ef(w) = zne. By chain rule, it’s easy to verify that a satisfy the
condition. a(p) = 1, d;a(p) = 0;0;a(p) = 0.

We can cover D by By (q,€(q)/2) for any ¢ € D. By compactness of D, the conclusion
follows. O

Remark 22. By the above proof, we can choose z, = f = f'h= = f'c'/2 for any point p in
By(q,€(q)). So zy is uniformly equivalent to f', i.e. C7f'|(p) < |za|(p) < C|f'|(p) for any

p € By (g,€(q)/2).
Proposition 19. The holomorphic bisectional curvatures of w are bounded from above.

Proof. Using the above lemma, for any point ¢ € D, fix any point p € By (g, €) and choose the
adapted local holomorphic frame e and complex coordinate {z;} provided by the last lemma.
Assume in the representation (3.8), v’ = 3, ggjdzi Ndzj, @ = 37, hizdz; A dzj and w =
> j 9i7dz; Ndzj. We do some calculation. The calculation is straightforward although laborious.

In particular, note that the formula we get has the right symmetry for the subindex.

95 = 95— 8’|z’ hi; + 520’20 |* ( )

| 2|2

(dzp +a=0az,) A (dz, + a_laazn)>
ij
— gl’,; — ﬁaﬁhi;\zn|2ﬁ + ﬁZaﬁ_Q&»a@;a\anﬁ + ﬁ2a5_18ia|zn\2(ﬁ_1)zn6jn

+ﬁ2aﬁilaja|zn|2(ﬁ71)2n5in + 62GB|2n|2(671)5in§jn
Using the vanishing property of a we get
9ij (p) = g;j - 6hijlzn|25 + ﬁQ‘ZnF(ﬁ_l)éinéjn (3'9)
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8 if‘ ag*
ai«,j = T — B0k (a’hi3)|20]*® + B20k(a°20;1a0;a) |2, |** + 520k (a7 1 0ia) |2 [PV 206,

—|—ﬁ28k(aﬁ 18;a)|zn\2(ﬁ )2 0in + 32 Ok(a )|zn|2(ﬁ Jinljn

_62a6hi3‘zn|2(ﬂ_l)én§nk + ﬂ3aﬁ_2aiaaja|zn|2(B_1)2n6nk + 53aﬁ_18ia‘zn|2(ﬁ_1)5nk6n]’

B2(8 = 1)a” 00l P2 2300101 + B2(8 — 1)’ 20?2 20001 0inbns
Now we use the vanishing property of a and 0;0;a(p) = 0;0; log a(p) = —h;; to get

Orgi () = Okgls — Bohizlznl®® — B2zl 2PV 2001 — Bhijln 2P 2 b
+ﬁ2( )|Z |2(ﬁ 2 Znankfsmén]
= Okgl; — BOkhij|znl — B (hyj0in + hijoni)|zal* "~V 2,

+ﬂ2(6 - 1)|Zn|2(ﬁ 2) Znank(sm(sn]
The last ingredient appearing in holomorphic bisectional curvature can also be calculated.

Or0kgi;(p) = 010kgl; — B(=Bhyrhij + 00khi;) 2nl* + B> highyj|zn |’ — B0 hytl 20 2P 2,850,
— B0 2n PPV 2000 — Byl 2n PPV 85 in — 8205120 PP 2k
—Bhiglzn D 81605
—32(0hi) | 2n PPV 2080 — B3| 20 2P V6,000 — BPhiz]2n] * P 6016,
+6%(8 = 1?1207 8,18110ni6,

= OOkg; + B (huthiz + highig)|2n >’ — B(0r0khi3) |2
—B%(OkhgSin + Okhiz0n) | 2n*P ™V 20 = B2 (Othijbin + Othizoni)|za V2,
— B33 (hpiGinGin + hij0nidin + hijnibnk + Rirdnidng)|za 2P

+6%(8 = 1) 20?7 618160 (3.10)

Now we can estimate the holomorphic bisectional curvature. Let {&}7 ¢, {n:}_; be two unit
vectors with respect to g;5(p): g;5(p)&&; = g:5(p)nifl; = 1. Using the formula for g;5(p) in (3.9).
This implies in particular

&1 <C, | <C, 1<i<n-1

[€nl < Clzal'™",  |nal < Clzn|'™7 (3.11)
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We want to estimate

8955 | 09iq pg 093

_6zk821 0z, g 0z,

Ri1i(p) & mm = ( ) &Mk

There are several types of singular terms. In order to estimate them, we first estimate the inverse
of (g;5). Let fi; = g;j — Bhiz|za]*?, It’s easy to get from (3.9) that
32 3? 2(1
det(g;;) = [ENEEEE] det(fi7)1<ij<n—1 +det(f;;) =: W(a + ]2, [2179))

with a = det(f,ijhgi,jgn_l and b = det(f@)/(BQ) and

gP? = 0(1) p,g<n
P g = O(|z,[*179) pg<n (3.12)
gnﬁ — ﬁ—2|zn|2—2/3ma|2(l_m

Remark 23. Since when |z,| is small, f;; is uniformly positive definite, a and b are uniformly

positive when |z,| is small.
2 _ —
1. Possible singular terms in —%fifﬂ%ﬁl

(a)
|O(1)5jn|zn|2ﬁ_2zngj| = ||Zn|2ﬁ_1€_n| < C|Zn|,8
|O(1)6in5jn|zn|2ﬁ_2§igj| = ‘|Zn‘26_2|§n|2| < C
|O(1)5in6kn|znl2ﬁ72£ink| = “Zn|2ﬁ72§n’r}n| <C

c) S0 here the singular term is the only last one

(¢) So h he singul is th ly 1

=328 = 1)|znl* €n 10 ? (3.13)

. . . P
2. Possible singular terms in %g”q ;;’ &&me.-

We first define the bilinear form for local tensor A = (A;xg) satisfying A;pg = Akig as
follows:

Ax B = Ajgg? Bjp,&i&imiii (3.14)
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where Bﬁp = Djip-
By diagonalization, it’s easy to see that * is a semipositive bilinear form.

Now we can write

0014 09,5
g 99ia gfﬂgigjnkﬁl:(A+B+C+D)*(A+B+C+D)
8Zk 82:[

where

Aigg = 3k9£q’ Bikg = —ﬁakhi(ﬂzn\m
Cikq = _ﬁ2(hk¢j6in + hiqénk)|zn|2(ﬁ_l)2na Dikq = /Bz(ﬁ - 1)|Zn|2(ﬁ_2)2n5nk5ni5nq
Using (3.12) and (3.11), let’s check all the possible singular terms:

(a) Terms in C «x C:
| hkgBinl 2| =2 209" hyi6in| 20 2 2n&ilmei| = [O(1)]2n] = 216nl?| < Clzn|*

’higakn|ZTL|2B722ngpthf5jn|Zn|2ﬁ72zngigj77kﬁl| = ’0(1)|Zn‘4ﬁ72gn77n| < C|Zn|2ﬁ

(b) Terms in A * C:
|(8kg;q)gpthi6jn|zn|25722n§igj77k77l| =[0(1)|2a*71&] < Cl2nl®

This also implies the terms in B * C' are bounded.

(¢) Terms in B x D:
| (Okhig) 120l 7 20|~ 20000 &i&imiii| = |O(1)|za " 72 g" 98010 | < C2n
(d) Terms in C * D:
|hkgBinl2n 27220 g" 20|~ 20 0npOni i &i&imiiit| = |97zl € Pl | < Clzn|™

(e) So the only singular terms are contained in (A + D) % (A + D).

Now to deal with this bad term, we first note the Cauchy-Schwartz inequality

(A+ D)+ (A+D)=|AP+|DP+Ax«D+D+xA<(1+1/e)AxA+(1+€e)DxD
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where € is to determined. Indeed, this follows from (ﬁA —+/eD) x (%A —/eD) > 0.

To find ¢, replacing g"™ by it’s explicit expression in (3.12) we get:

_ pdia_ 1\2|. [4B—6 nAjs (2 2 _ 22(2 _ 1\2 2B8—4)¢ 12 2 a
D*D = p"(8—1)7|z| """ = B7(B — 1) 2n] 1€n %7 a+ blzn |28
(3.15)
We can add (3.13) and (1 +€)D % D to get
203 1\21. 128—41¢ 121, 12 _ a
ﬂ (6 1) |Zn‘ |§n| |'r]n‘ ( 1+(1+6)a+b|zn2—2ﬁ)
So if we choose e:
P S SN L
a + b|z,|2—28 a"
The only singular term left is
a+blz, |72 P
Bim (141045 A= T2 gi0u,) GueEmn (.16)

To bound this term, we first note that there were some ambiguity in choosing first
n — 1 coordinates z1, -+ ,2,—1 in Lemma 22. Now we can choose these coordinates

more carefully.

Lemma 23. At a fized point P, We can modify the first (n — 1) coordinates {z; ?:_11
and leave z, unchanged such that 8kg§q(P) =0, for1 < q<n-—1. Also under these

coordinate, the condition for a is preserved: a(p) =1, d;a(p) =0, 9;0;a(p) = 0.

Proof. Denote Z; = z; — z;(P) for 1 <14 < n, we can write w’ as
W' = (¢ + aigrir + ayip ek )dz; A dz; 4+ O(2) (3.17)
We want to do coordinate change:
Zi = w; + %bilmwmwg (3.18)

with b;1; = bimi, and by, = 0 since we want 2z, to stay unchanged.
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When we substitute (3.18) into (3.17), we get

/

w' = (ci5 + (aijr + crjbrri)wr + (@5ix + Cisbsky)Wr) dw; A diwj + O(2)

For any fixed 1 < i,k < n, we want to solve (n-1) unknown {b,1;}"=] from (n-1)

equations:
n—1

ag+ > cgbi=0,1<j<n—1

r=1

Note that the 1 <r <n — 1 since b,;; = 0.

_ \n—1 ~ _ - o .
. = C,j), j=1, then &5 is positive definite.

If we denote the truncated square matrix (¢, ;

Denote by ¢/ its inverse matrix. Then we can choose

brki:fniléﬁaﬁk for1<r,j<n-—1, and b,k =0
r=1
to get
%9’ (aawl, 8?%) (P) = ajg + cjbrri =0for 1 <j<n—1
The last statement follows from chain rule. O

Using this lemma and ¢"" in (3.12), we see the last singular term in (3.16) becomes

a+ b|z,|?>~%8

]:E =
b|z,|2—28

9" (Ok95) (O19,5) & = 5_2%0(1) =0(1)

3.3 Log-Futaki invariant and log-K-stability

3.3.1 Log-Futaki invariant

In this section, we recall Donaldson’s definition of log-Futaki invariant (3.22). Let (X, L) be a

polarized projective variety and D be a normal crossing divisor:

D = XT: aiDi
i=1

with «; € (0,1).

From now on, we fix a Hermitian metric | - |; = h; and defining section s; of the line bundle
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[D;]. Assume w € ¢1(L) is a smooth Kéhler form. We define
= {wy :=w +V—-190¢; ¢ € L>°(X) N C>*(X\D) such that w + v/—109¢ > 0}

Around any point p € X, we can find local coordinate {z;;¢ = 1,--- ,n}, such that D is defined
by
D =UZ? a;{z =0}

where 7, = #{i;p € D;}.

Definition 13. We say that © € P(w) is a conic Kihler metric on (X, D), if around p, w is

quasi-isometric to the metric

dz; N\ dz;
Z TZ/|\2%Z Z dz; N\ dz;

=1 j= =rp+1
We will simply say that & is a conic metric if it’s clear what D is.

Geometrically, this means the Riemannian metric determined by w has conic singularity along

each D; of conic angle 27(1 — ).

Remark 24. Construction of Kdhler-Einstein metrics with conic singularites was proposed long
time ago by Tian, see [Tia8] in which he used such metrics to prove inequalities of Chern numbers

in algebraic geometry.

One consequence of this definition is that globally the volume form has the form

Q
H::1 ‘31|12a1

~n

where € is a smooth volume form. For any volume form €2, let Ric(€2) denote the curvature of

the Hermitian metric on K;(l determined by 2. Then, by abuse of notation,

Ric(@) = Ric@") = Ric(Q) + V=1 a;00log|si[i, = Ric(Q) = > aic1([Di], hi) + Y o D;}
=1 =1 =1

—  Ric(Q) — e1([D], h) + {D} (3.19)

where h = ®]_,hi" and s = ®]_;s;" are Hermitian metric and defining section of the R-line

bundle [D] = ®]_,[D;]*.
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Here we used the Poincare-Lelong identity:
vV —18510g |Sl|i1 = —Cl([Di], h,) + {Dl}

where {D;} is the current of integration along the divisor D;.

The scalar curvature of @ on its smooth locus X\ D is

nRic(@) AD""" _ n(Ric(®) — ei([D], h) AG"

@n an

S(@) =57k =

So if S(@) is constant, then the constant only depends on cohomological classes by the identity:

n(c1(X) — e ([D]) Aler (D)"Y —n(Kx +D)-L"' o Vol(D)
c1 (L) - L T Ve(x)

ny = (3.20)

Here
ne(X) (L))"t —nKx-L"!
Cc1 (L)n L

is the average scalar curvature for smooth Kéhler form in ¢;(L). And

(L)' DLt (L)t Lm
VOZ(D):/D (1n71)! GRS VOZ(X):/X l(nl Tl

Now assume C* acts on (X, L) and v is the generating holomorphic vector field. Recall that the

ordinary Futaki-Calabi invariant ([Fut], [Cal3]) is defined by

where 6, satisfies

Lyw = 00,

Now assume &, € P(w) is a conic metric and satisfies
S(Beo) = nptn (3.21)

Assume D is preserved by the C* action. Let’s calculate the ordinary Futaki invariant using the
conic metric . Let 0, = 5(@00, v). Thennear p € D, v ~ > :%, ¢;2;0,, +0 with § = o(21 - - - Zr,)

holomorphic. 0, ~ PN PACICEN
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We then make use of the distributional identity (3.19) to get

an—l

F(er(L)(w) = /9 (nRic(Doo) — NpWoo) A ‘;:!

an—l

= / 0, [(nRic(Q) — ney ([D], h) — np1@eo) + n{D} — (npt — np1 )Boo) A C;LO!

~
~ "

_ 7/ (S(@n) — Wl)“’ /{D}eu(Aill)!+(nuW1)/X9v;!o

([ 8 ) [ 5

on-t Vol(D) [ ~ &
0="F (/0 n—l Vol(X)/Xevn!>

Since the two integrals in the above formula is integration of (singular) equivariant forms, they are

So we get

independent of the chosen Kihler metric in P(w) with at worst conic singularities. In particular,
we can choose the smooth Kéahler metric w, then we just discover the log-Futaki invariant defined

by Donaldson:

Definition 14. [Don6]

wn—l o w™
Fe(L), D)(v) = Plei (L)(v) + ( [o -l | eum) (3.22)

Remark 25. This differs from the formula in [Don6] by a sign. And we think of D as a cycle

with real coefficients, so if we replace D by (1—3)A\, we have the same formua as that in [Don6].

3.3.2 Integrating log-Futaki-invariant

We can integrate the log-Futaki-invariant to get log-K-energy

—/0 dt/X(S(wt) ¢*+/ dt/d)nil Itojg)’ii/()dt XQS%I'L
1 wi o
+/O /X (i8510g|80|2+2WC1([D]vh))¢(ni 1)! + KOEE)D(iFS(qS)

Vol(D)
Vol(X)

Vw,D(¢)

Vi (#) +

FO(6) + TX° (6) + / log [sp 2wl — ™)/l (3.23)
X

where xp = ¢1([D], h) is the Chern curvature form. The JX(¢) is defined by:
1 . wg_l
= dt/ OX N ——
/0 X (n—1)!
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Let’s now focus on the Fano case as in the beginning of this paper. ((x)g) is equivalent to the

following singular complex Monge-Ampere equation:

S QO

with Q; = e?~w" and s is a defining section of [Y]. Note that the line bundle [Y] = Ky has the
Hermitian metric || - || such that the curvature is w.

We have D = (1 — 3)Y. Since [Y] = Ky, we can assume xp = (1 — B)w, Vol((1 — B)D) =
n(l — B)Vol(X). Then (3.23) becomes

Vop(ws) = velws) +(1— B) (WFAS) + T2(6)) + (1 — B) / tog [

= a(we) + (1= B) (L — Ju)(ws) + (1 — ﬁ)/ tog] s/

(/'bgeﬁwwn*?' ALy = Ju)(w )+(1——6)/'bg\ /nhww"/n

/ Ogehwwn/|s|21 8) T"'ﬂ(/ ¢W¢/n'+FO( )) /thw”/n!
¢ n

/ ehw alog|s|?2— ﬁ¢wn7+ﬁFO )+/thw /’I’L'

eh *ﬁ¢wn n!

:/®$Ji7%+MWH/mwm
X X

where hy, = hy, — alog |s|? satisfies
V=180h,, = Ric(w) — fw — afs =0}, and / ehow™ =V (3.25)
p's

3.3.3 log-K-stability

We imitate the definition of K-stability to define log-K-stability. First we recall the definition of

test configuration [Don4] or special degeneration [Tia9] of a polarized projective variety (X, L).
Definition 15. A test configuration of (X, L), consists of

1. a scheme X with a C*-action;

2. a C*-equivariant line bundle L — X

3. a flat C*-equivariant map 7w : X — C, where C* acts on C by multiplication in the standard

wayy
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such that any fibre X; = 7w~ 1(t) for t # 0 is isomorphic to X and (X, L) is isomorphic to
(X, L]x, )

Any test configuration can be equivariantly embedded into PV x C* where the C* action on
PV is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X, the test
configuration of (X, L) also induces a test configuration (Y, L|y) of (Y, L|y) .

Let dj, dj be the dimensions of HO(X,L*), H(Y, L|{¥), and wy, @y be the weights of C*

action on H%(X,, [,|)’§0), HO(Yy, L',|3’/“0)7 respectively. Then we have expansions:
wy, = agk™ ™ + a k™ + O(k™Y),  dy, = bok™ + bik" T 4+ O(K" )

Wy = aok™ + O(K"™1),  dp = bok™ ! + O(k"2)

If the central fibre Xy is smooth, we can use equivariant differential forms to calculate the

coefficients by [Don4]. Let w be a smooth Kéahler form in ¢; (L), and 6, = £, — V,, then

w™ 1 w™
ap = */ QUF; a; = *5/ GUS(w)F (3.26)

b'e : X :

w’fb 1 wn

x n X :

wnfl ~ wnfl

ag = — 0,——; bp = —— = Vol(Y{ 3.28
0 /Y (n—1)1" " /Y (n—1)! (Yo) (3.28)

Remark 26. To see the signs of coefficients and give an example, we consider the case where
X =P, L = Op (k). C* acts on P! by multiplication: t-z = tz. A general D € |L| consists of k
points. Ast — 0,t-D — k{0}. D is the zero set of a general degree k homogeneous polynomial
Pi(20,21) and k{0} is the zero set of 2. C* acts on HO(P',O(k)) by t - zizl = t77zi2] so
that limy o[t - Pp(20,21)] = [2¥], where [Py] € P(H°(P',O(k))). Take the Fubini-Study metric

— _ 2 2
wrs = V=100log(1 + |2[?) = V=T %05, then 0, = 80l — L2k, g

oo r? 1
—ag= | Opwpg = —9rdr ==
ag /ﬂ»1 WEs /0 (1 +’I“2)3 rar 2

1
—a1 =< | S(wrs)bowrs = / Oywrs =
p1 p1

2 2
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which gives exactly ag = ay = —%.

Comparing (3.22), (3.26)-(3.28), we can define the algebraic log-Futaki invariant of the given

test configuration to be

2(a1by — agb b
F(X,),L) = % + (S + iaO)
_ (20— do)bob— ao(2b1 — bo) (3.29)
0

Definition 16. (XY, L) is log-K-stable along the test configuration (X, L) if F(X,Y,L) <0,
and equality holds if and only if (X,Y, L) is a product configuration.
(X,Y, L) is semi-log-K-stable along (X, L) if F(X,Y,L) < 0. Otherwise, it’s unstable.
(X,Y, L) is log-K-stable (semi-log-K-stable) if, for any integer r > 0, (X,Y, L") is log-K-stable

(semi-log-K-stable) along any test configuration of (X,Y, L").

Remark 27. When Y is empty, then definition of log-K-stability becomes the definition of K-
stability. ([Tia9], [Don4])

Remark 28. In applications, we sometimes meet the following situation. Let A(t) : C* —
SL(N+1,C) be a 1 parameter subgroup. Ast — 0o, \(t) will move X,Y C PN to the limit scheme
Xo, Yo. Then stability condition is equivalent to the other opposite sign condition F(Xg, Yy, v) >

0. This is of course related to the above definition by transformation t — t—1.

Example 1 (Orbifold). Assume X is smooth. Y =3 _._ (1— i)DZ is a normal crossing divisor,
where n; > 0 are integers. The conic Kdahler metric on (X,Y) is just the orbifold Kdahler metric
on the orbifold (X,Y). Orbifold behaves similarly as smooth variety, but in the calculation, we
need to use orbifold canonical bundle Ky, = Kx + Y. For example, think L as an orbifold line
bundle on X, then the orbifold Riemann-Roch says that

L™ 1-(Kx+Y)-

LTL
dimH® ,(X,Y),L) = k" §Wk”‘l +O(k"2)

1 ~
= bok" + 5 (201 — bo)k™ + O(k"?)

For the C*-weight of H°

orb

((X,Y), L), we have expansion:

wzrb _ agrbknJrl + a?rbkn + O(k_nfl)
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By orbifold equivariant Riemann-Roch, we have the formula:

orb /QS —
Tl

ap = —= @,n Ric(@) A

So

1
ag™ = 5(2a1 = @) (3.30)

Comparing (3.29), we see that the log-Futaki invariant recovers the orbifold Futaki invariant,
and similarly log-K-stability recovers orbifold K-stability. Orbifold Futaki and orbifold K-stability
were studied by Ross-Thomas [RoTh2].

Example 2. X =P!, L = Kﬂm1 =0pi(2),Y =3 _,ap;. Foranyie{l,---,r}, we choose
the coordinate z on P!, such that z(p;) = 0. Then consider the holomorphic vector field v = 20,.
v generates the 1 parameter subgroup \(t) : A(t) -z =t-z. Ast — oo, A(t) degenerate (X,Y)
into the pair (P*,a;{0} + > i j{oc}). We take 0, = % Then it’s easy to get the

log-Futaki invariant of the degeneration determined by A:

Pl Zaipz, O]pl Zaj (%]

i=1 JFi

If (PY, 507 aupi) is log-K-stable, by Remark 28, we have

> aj—a; >0 (3.31)

i

Equivalently, if we let t — 0, we get a; — zj# o < 0 from log-K-stability.

Let’s consider the problem of constructing singular Riemannian metric g of constant scalar
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curvature on P which has conic angle 2m(1 — ;) at p; and is smooth elsewhere. Assume p; # 00
for any i = 1,...,r. Under conformal coordinate z of C C P!, g = e*“|dz|?>. wu is a smooth
function in the punctured complex plane C—{p1,...,p.} so that near each p;, u(z) = —2a; log |z—
pi|+a continuous function, where a; € (0,1) and u = —2log|z|+ a continuous function near
infinity. We call such function is of conic type. The condition of constant scalar curvature

corresponds to the following Liouville equations.

1. Au= —e2v
2. Au=0
3. Ay = e

which correspond to scalar curvature=1, 0, -1 case respectively.
For such equations, we have the following nice theorem due to Troyanov, McOwen, Thurston,

Luo-Tian.

Theorem 18 (See [LuTi] and the reference there). 1. For equation 1, it has a solution of
conic type if and only if
(a) 3, <2, and

(b) Zj#aj*ai >0, foralli=1,...,n.

2. For equation 2, it has a solution of conic type if and only if (a): > i, oy = 2.

In this case, (a) implies the condition: (b) 37, ;05 —a; >0, for alli=1,...,r.

3. For equation 3, it has a solution of conic type if and only if (a): >, o > 2.

Again in this case, (a) implies the condition: (b) Zj;ﬁi aj —a; >0, foralli=1,... 7.

Moreover, the above solutions are all unique.

Note that deg(—(Kp1 + > cuip;)) = 2 — >y o, so by (3.20), conditions (a) in above
theorem correspond to the cohomological conditions for the scalar curvature to be positive, zero,
negative respectively. While the condition (b) is the same as (3.31). So by the above theorem,
if (P30, cups) is log-K-stable, then there is a conic metric on (P*,>"\_, a;p;) with constant

curvature whose sign is the same as that of 2 — ", ;.
This example clearly suggests

Conjecture 3 (Logarithmic version of Tian-Yau-Donaldson conjecture). There is a constant

scalar curvature conic Kahler metric on (X,Y) if and only if (X,Y) is log-K-stable.
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Chapter 4

Continuity method in
Kahler-Einstein problem on toric

Fano manifold

4.1 Introduction to results

Recall that the continuity method on Fano manifold in (x); is defined as the following family of

equations parameterized by ¢
(W + V=100¢;)"™ = ehe=toryn
where h,, is defined by
Ric(w) — w = v/—190h,, /X ehew™ /nl =V (4.1)

We get much information about the continuity method for toric Fano manifolds. A toric Fano
manifold X is determined by a reflexive lattice polytope A. For example, Bl,P? i.e. P? blown

up one point is represented by
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Such a polytope A contains the origin O € R™. We denote the barycenter of A by P,. If P, # O,

the ray P, + Rx>¢ - PO intersects the boundary 0A at point Q.

Theorem 19. ([Li1]) If P. # O,

oQ
o) = [
Here ‘@ , PCQ‘ are lengths of line segments OQ and P.Q. In other words,
R(X4)
=———"_P, AN
Q="1-R(xn Y

If P. = O, then there is Kihler-Einstein metric on X and R(Xa) = 1.
Remark 29. The last statement was already proved by Wang-Zhu [WaZh].

Remark 30. Székelyhidi [Sz€é] proved that R(BL,P?) = $ and R(Bl, ,P?) < 2+. My result gives

5

the sharp value for R(XA) of any toric Fano manifold.

The next natural problem is how the limit metric looks like as ¢ — R(X). For the special
example X = BlpIE”27 which is also the projective compactification of the total space of line bundle
O(—1) — P2, Székelyhidi [Szé] constructed a sequence of Kihler metric wy, with Ric(w;) > tw;
and w; converge to a metric with conic singularty along the divisor D, of conic angle 27 x 5/7,
where D, is divisor at infinity added in projective compactification. Shi-Zhu [ShZh] proved that
rotationally symmetric solutions to the continuity equations (x); converge to a metric with conic
singularity of conic angle 27 x 5/7 in Gromov-Hausdorff sense, which seems to be the first strict
result on the limit behavior of solutions to (x);. Note that by the theory of Cheeger-Colding-
Tian [CCT], the limit metric in Gromov-Hausdorff sense should have complex codimension 1
conic type singularities since we only have the positive lower Ricci bound.

For the more general toric case, if we use a special toric metric, which is just the Fubini-Study
metric in the projective embedding given by the vertices of the polytope, then, after transforming
by some biholomorphic automorphism, we prove that there is a sequence of Kahler metrics which
solve the equation (x);, and converge to a limit metric satisfying a singular complex Monge-
Ampere equation (Also see equivalent real version in Theorem 21). This generalizes the result of
[ShZh] for the special reference Fubini-Study metric. Precisely, let {po;a =1,..., N} be all the

vertex lattice points of A and {ss; = 1,..., N} be the corresponding holomorphic sections of

75



K;(i. Then we take the reference metric to be

N
W=wpg = \/—laglogz 5a]?,
a=1

which is the pull-back of the Fubini-Study metric of CPY ! under Kodaira embedding induced
by {s4}. Now using the above notation, let F be the minimal face of A containing Q. Let {p7 }
be the vertex lattice points of F, then they correspond to a sub-linear system £ of | — Kx, |.
We let Bs(£r) denote the base locus of this sub-linear system. Also let )’ denote the sum

Zp{, then we have

Theorem 20. ([Lij]) After some biholomorphic transformation o : XA — Xa, there is a
subsequence t; — R(X), such that o} wy, converge to a Kdhler current we = w + V=100,
with Yoo € L™®(Xa) N C®(Xa\Bs(Lx)), which satisfies a complex Monge-Ampére equation of

the form

~(1-R(X))
(W + V=100 )" = e X )V (Z'bapaﬁ) Q. (4.2)

Here Q = el'>w™ is a smooth volume form. For each vertex lattice point p- of F, by is a constant
satisfying 0 < bo, < 1. |- |l = || - llrs s (up to multiplication of a constant) the Fubini-Study

metric on K)_(i. In particular
Ric(wy,,) = R(X)wy,, + (1 = R(X))V=10910g() _ "balsal?). (4.3)

The above equation shows the conic type singularities for the limit metric. We can read out
the place of conic singularities and conic angles from the geometry of the polytope. See Section
4.4.3 for the method and discussions. In particular, this can give a toric explanation of the special
case BI,P? just mentioned (See example 3).

Note that, although we can prove the limit metric is smooth outside the singular locus, to
prove geometrically it’s a conic metric along codimension one strata of singular set, we need to
prove more delicate estimate that we wish to discuss in future. There are also difficulties for
studying the behavior of limit metric around higher codimensional strata (See Remark 34 and
Example 2).

Finally, we remark that, in view of the special case Bl,P? in [ShZh] and results in [LaSo], we
expect the following statement is true: the Gromov-Hausdorff limit of (Xa,wy,) is the metric

completion of (XaA\Bs(£r), weo)-
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4.2 Consequence of Wang-Zhu’s theory

For a reflexive lattice polytope A in R" = Z™ ®z R, we have a Fano toric manifold X, D (C*)"

with a (C*)™ action. In the following, we will sometimes just write X for X for simplicity.
Let (S1)™ C (C*)™ be the standard real maximal torus. Let {z;} be the standard coordinates

of the dense orbit (C*)", and z; = log|z;|>. We have a standard lemma about toric Kéhler

metric, which we omit the proof. See for example [WaZh].

Lemma 24. Any (S1)" invariant Kihler metric w on X has a potential u = u(z) on (C*)", i.e.

w = +/—100u. u is a proper convex function on R™, and satisfies the momentum map condition:
Du(R™) = A.

Also,

(v/—=190u)™ /n! :det( 0%u

d7211 . %1"'/\ % . % &Uiaxj) =: det(u;j). (4.4)

Let {pa; @ = 1,---, N} be all the vertex lattice points of A. Each p, corresponds to a
holomorphic section s, € H?(Xa, K)_(i) We can embed X into PV using {s,}. Let us first
find the appropriate potential on (C*)™ for the pull back of Fubini-Study metric. (Cf. [WaZh])
Recall that, for any section s of K)_(l, the Fubini-Study metric as a Hermitian metric on K)_(1

is defined up to the multiplication by a positive constant:

e sl

2plssl®

|sls =€~ (4.5)

The righthand side is well defined by using local trivializations. C' is some normalizing constant
which we choose now to simplify the computation later.
First, let §p be the section corresponding to the origin 0 € A. On the open dense orbit (C*)™,

by standard toric geometry, we can assume

Sa - Do
= =]z 4.6
121 (4.6)

So the Fubini-Study norm of 5 is

- = 12 5 N n -1 . N —1
150/l = 6_0% =e ¢ (Z H Zi|2pw> - (Z e<pmw>> =re 0,
Z - v i a=1
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In other words, we define

N
’120 = IOg <Z €<pa,r>> + é (47)

a=1

Now we can choose C by the normalization condition:

/n e~iody = VouA) = AEa) 1 /X W (4.8)

n! @mm Sy, n!’

On the other hand, Ric(w) is the curvature form of Hermitian line bundle K;,;' with Hermitian

metric determined by the volume form w™. Note that we can take 59 = z; 8%1 JACERVA zn%. Since
o  _ 1 9 _ /19— _90 __ 9 : 1\n ; : .
TTog s = 2(8logm‘ V—lg5) = FToa[siE = Ba when acting on any (S*)™ invariant function on

(C*)™, we have

o |? 921
P e ey a Ty
0z 32“” wn 610g Zi 8log zi
0%t
¢ (8log|zi|2 6‘log|zj2> et (o i)

It’s easy to see from definition of A, in (4.1) and normalization condition (4.8) that

he, 0

et~w" /n! — chellg 12 — (|52 — T
Enm g O ol = [l = e (19)
1 Z1 Zn Zn

Remark 31. We only use vertex lattice points because, roughly speaking, later in Lemma 23,
vertex lattice points alone helps us to determine which sections become degenerate when doing
biholomorphic transformation and taking limit. See remark 33. We expect results similar to

Theorem 20 hold for general toric reference Kdihler metric.

So divide both sides of (*); by meromorphic volume form n!(dz—zl1 A d7511 co A 2y e

Z

can rewrite the equations (x); as a family of real Monge-Ampere equations on R™:
det(u;;) = e~ (17Dao—tu (k)¢
where u is the potential for w + /—199¢ on (C*)", and is related to ¢ in (x); by
¢ =1u— Up.

Every strictly convex function f appearing in (xx); (f = @, u, wy = (1 —t)Go + tuy) must satisfy

Df(R™) = A° (A° means the interior of A). Since 0 is (the unique lattice point) contained in
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A° = Df(R™), the strictly convex function f is properly. For simplicity, let

Then w; is also a proper convex function on R™ satisfying Dw;(R™) = A. So it has a unique

absolute minimum at point x; € R”. Let

me = inf{we(x) : @ € R"} = wy(xs).

Wang-Zhu’s [WaZh] method for solving (¥x); consists of two steps. The first step is to show
some uniform a priori estimates for w;. For ¢ < R(Xa), the proper convex function w; obtains

its minimum value at a unique point z; € R™. Let

me = inf{w(z) : © € R"} = wi(xy)

Proposition 20 ([WaZh],See also [Don3]). [I.]

1. there exists a constant C, independent of t < R(Xa), such that

Ime| < C

2. There exists kK > 0 and a constant C, both independent of t < R(Xa), such that

wy > Kkle — x| — C (4.10)

For the reader’s convenience, we record the proof here.

Proof. Let A ={z € R";m; <w(z) <m;+1}. Aisaconvex set. By a well known lemma due to
Fritz John, there is a unique ellipsoid E of minimum volume among all the ellipsoids containing

A, and a constant «,, depending only on dimension, such that

a,FECACE

an . means the «y,-dilation of E with respect to its center. Let T be an affine transformation

with det(7") = 1, which leaves z’=the center of E invariant, such that T(E) = B(z’, R), where
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B(2', R) is the Euclidean ball of radius R. Then

B(z',a,R) C T(A) C B(«,R)

We first need to bound R in terms of my. Since D?w = tD?u+ (1 —t)D?ag > tD?u, by ((xx)y),
we see that

det(w;;) > t"e™™

Restrict to the subset A, it’s easy to get

det(wij) Z Cle_"“

Let w(z) = w(T~'z), since det(T) = 1, W satisfies the same inequality

det(lbij) Z Cleimt

in T(A).

Construct an auxiliary function

1
"5 (|33 — m/\z — (anR)Q) +my+1

Then in B(z', a, R),

det(v;;) = Cre™™ < det(w;;)

On the boundary 0B(a', apR), v(x) = m; + 1 > w. By the Comparison Principle for Monge-
Amere operator, we have

w(r) <wv(z) in B(z',anR)

In particular

1 omy 1 2
my < w(z') <wv(z')=Cre” o 5(f72) +my+1
So we get the bound for R:
R < Coen

So we get the upper bound for the volume of A:

Vol(A) = Vol(T(A)) < CR" < Ce’?"
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By the convexity of w, it’s easy to see that {z;w(z) < my+ s} C s {z;w(x) <ms+ 1} =s- A,

where s - A is the s-dilation of A with respect to point z;. So
Vol({z;w(z) < my + s}) < s"Vol(A) < Cs"e’?" (4.11)

The lower bound for volume of sublevel sets is easier to get. Indeed, since |Dw(z)| < L, where

L = maxyen |y|, we have B(zy,s- L™1) C {z;w(x) < my + s}. So
Vol({z;w(x) <my + s}) > Cs™ (4.12)

Now we can derive the estimate for m;. First note the identity:

/n e Ydr = /n det(u;;)de = /A do =Vol(A) (4.13)

Second, we use the coarea formula

+oo +oo
/ e Ydr = / / e *dsdx :/ efsds/ Liw<sydx
" R™ Jw —00 R B

“+oo
= / e *Vol({w < s})ds

me

+oo
= e ™ / e *Vol({w < my + s})ds (4.14)
0

Using the bound for the volume of sublevel sets (4.11) and (4.12) in (4.14), and compare with
(4.13), it’s easy to get the bound for |my|.

Now we prove the estimate (4.10) following the argument of [Don3]. We have seen B(z;, L™!) C
{w <my+1}, and Vol({w < my +1}) < C by (4.11) and uniform bound for m;. Then we must
have {w < m; + 1} C B(z, R(C, L)) for some uniformly bounded radius R(C, L). Otherwise,
the convex set {w < m; 4+ 1} would contain a convex subset of arbitrarily large volume. By the
convexity of w, we have w(z) > ﬁh‘ — x¢| + my — 1 Since m; is uniformly bounded, the

estimate (4.10) follows. O

The second step is trying to bound |z;|. In Wang-Zhu’s [WaZh] paper, they proved the exis-
tence of Kédhler-Ricci soliton on toric Fano manifold by solving the real Monge-Ampere equation
corresponding to Kahler-Ricci solition equation. But now we only consider the Ké&hler-Einstein

equation, which in general can’t be solved because there is the obstruction of Futaki invariant.
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Proposition 21 ([WaZh]). the uniform bound of |z:| for any 0 <t < to, is equivalent to that
we can solve (xx)¢, or equivalently solve (x)¢, for t up to tg. More precisely, (by the discussion

in introduction,) this condition is equivalent to the uniform C°-estimates for the solution ¢; in

()¢ fort € [0,10].
Again we sketch the proof here.

Proof. If we can solve (xx); (or equivalently (x);) for 0 < ¢ < ty. Then {w(t) = (1 —t)up+1tu;0 <
t < tp} is a smooth family of proper convex functions on R™. By implicit function theorem, the
minimal point z; depends smoothly on ¢. So {z;} are uniformly bounded in a compact set.
Conversely, assume |z;| is bounded. First note that ¢, = u — @y = 1 (w¢(x) — @o).
As in Wang-Zhu [WaZh], we consider the enveloping function:

v(r) = , nax L (Pas @)

Then 0 < Gp(z) —v(z) < C, and Dw(€) -z < v(x) for all {,z € R". We can assume ¢t > ¢ > 0.

Then using uniform boundedness of ||

Gulr) = o) o) = l(ww) — wilw) — (@) + (v(x) ~ o) + wi(w)]

IN

S H(Dwy(€) -z — v(z) — Dw (&) - ) +C < '

Thus we get the estimate for sup, ¢;. Then one can get the bound for inf; ¢; using the Harnack
inequality in the theory of Monge-Ampere equations. For details see ([WaZh], Lemma 3.5) (see
also [Tial]). O

By the above proposition, we have

Lemma 25. If R(Xa) < 1, then there exists a subsequence {x¢,} of {x+}, such that

lim |z, | =400
ti HR(XA)

The observation now is that

Lemma 26. If R(Xa) < 1, then there exists a subsequence of {x;,} which we still denote by
{z,}, and yoo € 0N\, such that

li Diig(4.) = Yoo 4.15
i Up(ze,) =y (4.15)
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This follows easily from the properness of @y and compactness of A.

We now use the key relation (See [WaZh] Lemma 3.3, and also [Don3] page 29)

0= Dw(z)e™Ydx = / ((1 =t)Dig + tDu)e” Vdx
]R'n.

n

Since

Due Ydx = Dudet(u;;)dx = / ydo = Vol(A)P,
R™ R™ A

where P, is the barycenter of A\, so

1 t
—— | Dagedz = -—"—P. 416
Vol(A) Jan 7 10C T T (4.16)

Remark 32. This identity is a toric form of a general formula for solutions of equations (x);:

1 . n t
,V/Xdzvg(v)wt = EFQWQ(X)(U)'

Here Q = ehew™. v is any holomorphic vector field, and divg(v) = Léﬂ is the divergence of v

with respect to 2.

1 n
F27rcl(X)(v) = V/ U(hw)w
b's
is the Futaki invariant in class 2meq (X) [Fut].

We will show this vector tend to a point on A when ¢ goes to R(Xa). To prove this we use

the defining function of A. Similar argument was given in the survey [Don3], page 30.
4.3 Calculate R(X) on any toric Fano manifold
We now assume the reflexive polytope A is defined by inequalities:
My)>-1r=1,--- K (4.17)
Ar(y) = (v, y) are fixed linear functions. We also identify the minimal face of A where y lies:

)"r'(yoo) = _15 r= 17 e aKO (418)

AM(Yso) > -1, r=Ko+1,--- | K
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Clearly, Theorem 19 follows from

Proposition 22. If P. +# O,

R(XA)
G
T R(xa) e

Precisely,
R(Xa)
T - Pc 2_1 41
v (-ZRE") 19

Equality holds if and only if r =1,--- | Kg. So —%PC and Yoo lie on the same faces (4.18).

Proof. By (4.16) and defining function of A, we have

The inequality (4.19) follows from (4.20) by letting t — R(Xa). To prove the second statement,

by (4.20) we need to show

I ! A(Diig)eedz 410 0 T bR (4.21)
im —— (Dug)e” Y tidr + .
ti—R(Xa) Vol(A) Jgn >0 : r=Ky+1,---,N

By the uniform estimate (4.10) and fixed volume (4.13), and since Dig(R™) = A° is a bounded

set, there exists R., independent of ¢ € [0, R(Xa)), such that

1 / . 1 / _
—_— Ar(Dig)e™ "t dr < €, and ———— e tdr < e 4.22
VOZ(A) R™\Br, (@) ( 0) VOZ(A) R™\Br, (@) ( )

Now (4.21) follows from the following claim.

Claim 1. Let R > 0, there exists a constant C > 0, which only depends on the polytope A, such
that for all dx € Br(0) C R",

e” B\ (Diig(4,)) + 1) < Ap(Diig(wt, + 62)) + 1 < e“F (A (Diig(xy,)) + 1) (4.23)
Assuming the claim, we can prove two cases of (4.21). First by (4.15) and (4.18), we have

0 cr=1,--- Ky
lim A (Dag(z,)) +1=M(yYso) + 1 = (4.24)
ti—R(Xa) a>0 : r=Ky+1,---,N

1.r=1,---,Ky. Ve > 0, first choose R, as in (4.22). By (4.23) and (4.24), there exists

84



pe > 0, such that if [t; — R(XA)| < pe, then for all dx € Bg_(0) C R™,
0 < Ap(Diig(¢; + 0x)) + 1 < e“Fe(\.(Diig) (2,) + 1) < €

in other words, A, (Dig(z¢; + 0x)) + 1 — 0 uniformly for 6z € Bg_(0), as t; — R(Xa). So

when |t; — R(XA)| < pe,

1 / L 1 /‘ L
—— | M\(Dig)e Mdr+1= — M\ (Diig)e™ " dx
Vol(A) Jgn (Dito) Vol(A) Jzm\ g, (a0,) (Diio)

1 / _ 1 / ~ _
+— e Ydx + ——— M (Do) + 1)e” Ydx
Vol(A) R™\Bg, (z1,;) Vol(A) Br, (wtj)( ( ) )

2+ €e—— e Ydx < 3¢

< o/
VOZ(A) BR€ (3711)

The first case in (4.21) follows by letting € — 0.

2.7 =Ky+1,---,N. Wefix e = 1 and Ry in (4.22). By (4.23) and (4.24), there exists

p > 0, such that if |t; — R(Xa)| < p, then for all 6z € Bg, (0) C R™,
2

—-C —CR; Gy
14

A (Diig(xs, +02) +1> ¢ (A (Diig(z,)) + 1) > e >0

1
Vol(A)

1
Ar(Dig)e™"dx +1 > ———= Ar (D 1)e™"d
/n (Dug)e”“dx +1 > V(D) /BRI(%)( (Do) + 1)e™“dx

—CR; G 1 / _
> e 2 — e Ydr
2 VOZ(A) BRl (zfl)

—CR; ay 1
15
= ¢ 799

Now we prove the claim. We can rewrite (4.23) using the special form of g (4.53).

e<pa,:r>

DUO Z Z <P, w>p(y = an(x)pa

[e3%

Here the coefficients
<p,y x>
0 <cqlx) =

19 =
— Z e<p[a,iv> Z @
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So

Ar(Diig(z)) +1 = an(x)()‘r(pa) +1) = Z ca(®)(Ar(Pa) +1)
@ {a: A (pa)+1>0}

Since A(po)+1 > 0 is a fixed value, to prove the claim, we only need to show the same estimate
for cq(x).

But now

<PaTt, > ,<Pa,0T> <Pa,Ti;>
Colty, +61) = —— € < elpalR . gmazalpal R €1
Q <pg,Tt, > ,<pg,0r> — <pg,Te; >
Zﬁe PB:Tt; > o<pg,0x Zﬂe PB,Tt;
<Pa,Tt; >
CrR_°© ’ _ ,CR
< s = <Tealan)
B
And similarly
calmy, +02) > e Bey(zy,)
So the claim holds and the proof is completed. O

4.4 On behaviors of the limit metric

4.4.1 Equation for the limit metric

We first fix the reference metric to be the Fubini-Study metric.
w = V=100ig = v/=10010g() _ |sal?)
o
We want to see what’s the limit of w; as ¢ — R(X) under suitable transformation, where
wr = w +V—100¢,

is solution of continuity equation (x);. We now use notations from previous section. So in toric

coordinates,
0%u

= —————dlogz; Ndlog z; = —v —1u,;dx;db;,
0log z;010g z; 8% 08 % Uiy il

Wt

where u = wu; is the solution of real Monge-Ampere equation (xx);.

Let 0 = 04 be the holomorphic transformation given by

oi(x) = x + 4.

86



Assume z; = (z,- - ,27), then under complex coordinate, we have
or({zi}) = {2},
By the analysis of previous section, we do the following transformation.
U(z) = oju(z) —u(zy) = ulz + x) —u(zy), Ui(x) =ojto(z) — to(ze) = to(x + x) — o).

Note that wy(x) = tu+ (1 —t)ty. Then U = U,(x) satisfies the following Monge-Ampere equation

det(Uy;) = e~ tU—(1=)U~w(x:) (%)}
By Proposition 22, we know that @ = —%Po lies on the boundary of A. Let F be the

minimal face of A which contains ). Now the observation is

Proposition 23. There is a subsequence t; — R(X), Uti converge locally uniformly to a convez

function of the form:

Us = log Zbae“’ﬂ’z) \ (4.26)
Pa€EF

where 0 < by, < 1 are some constants. For simplicity, we will use Y ' =" to denote the

PaEF

sum over all the vertex lattice points contained in F.

Proof. By (4.53) and (4.25), we have

U(x) =log(Y_ e®==r)) —log(y_elPrt) =log(D_ b(pa, t)e?="), (4.27)

where
e(?’ouzt)

Zﬁ @<p8733t) ’

Since 0 < b(pa,t) < 1, we can assume there is a subsequence t; — R(X), such that for any vertex

b(pom t) =

lattice point p,,

lim  b(pa,t) = ba. 4.28
 dim_ b(pe.) (4.28)

We need to prove b, # 0 if and only if p, € F. To prove this, we first note that

i 5, Pact?e )
D ==a = b(payt)Pa- 4.29
tio(4) 25 o(Pa e ? (Past)p ( )
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By Lemma 25, Dig(xt) — Yoo € OA. So by letting ¢ — R(X) in (4.29) and using (4.28), we get

Yoo = Z baPa-

By Proposition 22, y., € 0A lies on the same faces as ) does, i.e. F is also the minimal face
containing y.., o we must have b, = 0 if p, ¢ F. We only need to show if p, € F, then b, # 0.
If dim F=k, then there exists k41 vertex lattice points {p1,--- ,pry1} of F, such that the

corresponding coefficient b; # 0, i =1,--- ,k+ 1, i.e. limy_, g(x) b(pi, t) = b; > 0.
Remark 33. Here is why we need to assume p,, are all vertex lattice points.
Let p be any vertex point of F, then
k+1 k+1
p= Zcipi, where Zci =1.
i=1 i=1
Then

. i
(i eipiay)  REL ( e(PisTt) R t—R(x) "
)

bp,t) = ——F——— = = =1]opit)¥ — bt > 0.
Zﬁ 6<pﬁaxt> ];[ ZB e(pg,zt z];[1 Pl ?

We can now state a real version of Theorem 20

Theorem 21. There is a subsequence t; — R(X), Uy, (x) converge to a smooth entire solution

of the following equation on R™

det(Uy;) = e~ RXOU ()~ (1-R(X))Us () —c ()’
c = limy, _, g(x)w(xy,) is some constant.

4.4.2 Change to Complex Monge-Ampere equation

The proof of Theorem 21 might be done by the theory of real Monge-Ampere equation. But
here, we will change our view and rewrite (x%)} as a family of complex Monge-Ampeére equations.
This will alow us to apply some standard estimates in the theory of complex Monge-Ampere

equations.
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We rewrite the formula for U(z) in (4.27) as

7 2 b(Pay el S b(Pas B)|sal?
U — S o Zema @) W C+iig _ Zb Past)]sal?)e™.  (4.30)
8

Sq is the holomorphic section of K)_(1 corresponding to lattice point p,. Here and in the following

| -1l := || - || rs is the Fubini-Study metric on Ky'. Recall that, by (4.5), for any section s,

e lsP

Jof3s = e o
4 Zg|56‘2

2
by (4.6). We also used the definition

) _

The second equality in (4.30) holds because e{Pe

Sa
So

of iy in (4.53).

(#); can then be rewritten as

[e3

—(1-t)
det(Us;) = e™"Ve™™ (Zb@a,t)lsaﬁ) e,

where

Y =1 =U — to. (4.31)
By (4.4) and (4.54), (xx*); can finally be written as the complex Monge-Ampeére equation

—(1-1)
(w4 V—=100¢)" = et (Z b(pa, t)|sa|2> ehe—w(ze) yn (o %)y

Similarly for U, in (4.26), we write

- b pa
(O - a5 ) (5 e
Jé] a

And the limit equation (**). becomes:

(1-R(X))
(1 + V=100 = e~ OO (Z 'basaF) el (55 5)oo

[

So we reformulate Theorem 21 as the main Theorem 20 in the introduction.
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4.4.3 Discussion on the conic behavior of limit metric

For any lattice point p, € A, let D,, = {sq = 0} be the zero divisor of the corresponding

holomorphic section s,. By toric geometry , we have

Dy, ={sa =0} = Z((pmvz‘) +1)D;.

i=1

Here v; is the primitive inward normal vector to the i-th codimension one face, and D; is the
toric divisor corresponding to this face.

Recall that F is the minimal face containing Q. Let {p] } be all the vertex lattice points of
'l

F. They correspond to a sublinear system £x of |[Ky |. The base locus of £ is given by the

schematic intersection

Bs(£r) = () D,z
k

The fixed components in Bs(£r) are

D¥ =) " a:D;, (4.32)
i=1
where
N3a; = 1+mkin(pf,vi> >0,i=1,...,7.
For i = 1,..., K, we always have a; = 1 + miny(p7,v;) > 0. In (4.32), the coefficients a; are

those with a; # 0.
Pick any generic point p on D*. p lies on only one component of D¥. Without loss of
generality, assume p € D1, and in a neighborhood U, of p, choose local coordinate {z;} such that

D is defined by z; = 0, then the singular Monge-Ampére equation (4.2) locally becomes:

(w + V=199Y)" = |z |72 (1-F(X))q (4.33)

with © a nonvanishing smooth volume form in .

So locally around generic point on p, we have

Ric(wy) = 2m(1 — R(X))a1({z1 = 0}) + Ric(2) (4.34)

where {z; = 0} is the current of integration along divisor {z; = 0}.
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Note that we have the following singular conic metric in U,

dzi Ndz1 o
nzuﬁ-Zdzi/\dZi.

2c
|21] i=2
7 has conic singularity along {z; = 0} with conic angle 27(1 — «), and satisfies

n

. dzy Ndzy N -+ Ndzp, NdZ,
- |Zl‘2a

, and  Ric(n) = 2ra({z = 0}).

Comparing this with (4.33) and (4.34), we expect that the limit K#hler metric around p has
conic singularity along D; with conic angle equal to 27(1 — (1 — R(X))aq) and the same hold for
generic points on D;, i.e. the limit metric should have conic singularity along D; of conic angle

equal to 27(1 — (1 — R(X))ay).

Remark 34. At present, it seems difficult to speculate the behavior of limit metric around higher
codimensional strata of D7 . See the discussion in example 2. We hope to return to this issue in

future.

4.4.4 Proof of Theorem 20

We are now in the general setting of complex Monge-Ampeére equations. (x * %), i a complex
Monge-Ampere equation with poles at righthand side. (x * *); can be seen as regularizations of
(* % %)oo. We ask if the solutions of (x x %); converge to a solution of (* % %). Starting from
Yau’s work [Yaul], similar problems have been considered by many people. Due to the large
progress made by Kolodziej[Kolo|, complex Monge-Ampere equation can be solved with very
general, usually singular, righthand side. Kotodziej’s result was also proved by first regularizing
the singular Monge-Ampere equation, and then taking limit back to get solution of original
equation.

We will derive several apriori estimate to prove Theorem 20. For the C°-estimate, the upper
bound follows from how we transform the potential function in (4.25). The lower bound follows
from a Harnack estimate for the transformed potential function which we will prove using Tian’s
argument in [Tia3]. For the proof of partial C?-estimate, higher order estimates and convergence
of solutions, we use some argument similar to that used by Ruan-Zhang [RuZh], and Demailly-

Pali [DePai.
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CY-estimate

We first derive the CYestimate for ¢ = U — 1p. Let © = 9(x) be a piecewise linear function
defined to be

o(z) = ngx(pa, x).

Then ug is asymptotic to v and it’s easy to see that |v — G| < C. So we only need to show that
|U(z) — 9(z)| < C. Here and in the following, C' is some constant independent of ¢ € [0, R(X)).

One side is easy. Since DU(R") = A and U(0) = 0, we have for any x € R", U(x) =
U(x) —U(0) = DU(E) -« < v(x). & is some point between 0 and . So

b= -0+ (@i <C.

To prove the lower bound for 1, we only need to prove a Harnack inequality

Proposition 24.

sup(—1) < nsupe + C(n)t . (4.35)
X X

For this we use the same idea of proof in [Tia3]. First we rewrite the (x * x); as
(w4 V=100y)" = e~ WHEF=Beyn (4.36)

where

B, =(1-1t)log <Z b(pa,t)sa|2> , F=hy,—w(ax).

Now consider a new continuous family of equations
(w+V=1000,)" = e~ 0= =Brn, (4.36),

Define S = {s’ € [0,¢]|(4.36), is solvable for s € [s’,¢]}. We want to prove S = [0, t]. Since (4.36)
has a solution 9, t € S and S is nonempty. It is sufficient to show that S is both open and closed.

For openness, we first estimate the first eigenvalue of the metric go associated with the K&hler
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form wp = w + /=100 for the solution 6 of (4.36),.

Ric(wy) = 5vV/—1000 — \/—190F + /—1900B; + Ric(w)
= 5V/=1000 +w+ (1 —t)(0*w — w) = s(v—=1900 + w) + (t — s)w + (1 — t)o*w

= swp+ (t—s)w+ (1—t)c*w. (4.37)

In particular, Ric(wg) > swyp. So by Bochner’s formula, the first nonzero eigenvalue A1(gg,) > s.
This gives the invertibility of linearization operator (—A,)—s of equation (4.36),, so the openness
of solution set S follows.

Recall the functional I, J, defined in Section 2.4.
Lemma 27 ([BaMal,[Tia3]). (i) “tLJ,(65) < 1,(65) < (n+1)J,(6s),
(i) 4(1(0.) = J(0.)) = — [y 0.(Aub ).
Using A1(gp,) > s, Lemma 27.(ii) gives
Lemma 28 ([BaMal,[Tia3]). I1(6;) — J(6s) is monotonically increasing.
Let’s recall Bando-Mabuchi’s estimate for Green function.

Proposition 25 ([BaMal). For every m-dimensional compact Riemannian manifold (X,q) with

diam(X, g)?Ric(g) > —(m — 1)a?, there exists a positive constant v = vy(m, ) such that
Gy(z,y) > —y(m, a)diam(X, g)Q/VQ. (4.38)
Here the Green function Gy4(z,y) is normalized to satisfy
[ Gotappavia) =o.
M

Bando-Mabuchi used this estimate to prove the key estimate:

Proposition 26 ([BaMal). Let
HE = {0 € C®(X);wp = w+ vV—1900 > 0, Ric(wg) > swp},

then for any 6 € 'H®, we have
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(1)
sup(—0) < — [ (=0)wy +C(n)s 1, (4.39)

(2)
Osc(f) < I(0) + C(n)s™ . (4.40)

Proposition 27. (4.36), is solvable for 0 < s < t.
Proof. From (4.36), there exists x5 € X such that —sb(zs) + F(zs) — Bi(xs) =0, so |0s(xs)| =
LF — By|(zs) < Cys™'. By (4.40) and I < (n+ 1)(1 — J) (by Lemma 27-(i)), we get

s;p 0, < Osc(0) +0(zs) < (n+1)(I —J)(B) +C(n)s™ + Cys™ L.

By Lemma 28, for any 6 > 0, we get uniform estimate for supy s and hence also infx 6, for
s € [0,t]. So ||0s]lco < C5~1. We can use Yau's estimate to get C? and higher order estimate.
So we can solve (4.36), for s € [4,¢], for any § > 0.

On the otherhand, by Yau’s theorem, we can solve (4.36), for s = 0. And by implicit function
theorem, we can solve (4.36), for s € [0, 7) for 7 sufficiently small. We can pick § such that 6 < T,
so we get solution of (4.36), for s € [§,7) in two ways. They must coincide by the recent work of
Berndtsson [Bern] on the uniqueness of solutions for the twisted Kéhler-Einstein equation (4.37).

So we complete the proof. O
Then one can use the same argument as in [Tia3] to prove

Proposition 28 ([Tia3]).

1 n
- 0w"<—/9w"<nsu 0. 4.41
7o [ oo < (4.41)

Proof. First by taking derivatives to equation (4.36), we get
A0 =—0— sb.

So

d d d .
— (I -J0)ly) = - 0—wy) = —— Owy Owy
ds( )(0s) ; 2520 ds </X w9>+ ; wWo
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So
S =00 = 1=y =5 (s [ 0t). (1.42)

By Proposition 27, 65 can be solved for s € [0,¢], and 6; = ¢ = 9;, we can integrate to get

1= D)) = [ 1= 7)0ds ==t [ v

Divide both sides by ¢ to get

(=0 = [ @=Do)ds = = [ .

By Lemma 27.(i), we can get

n

n ny __ n _ n
7 [ v —et) = 1w = - [ vl

(4.41) follows from this inequality imediately. O

Combine (4.41) with Bando-Mabuchi’s estimate (4.39) when s = ¢, we then prove the Harnack
estimate (4.35). So we can derive the lower bound of % from the upper bound of ¢ and C°-

estimate is obtained.

Remark 35. Professor Jian Song showed me that by modifying the above argument one can
prove Harnack inequality using the weaker statement instead of that in Proposition 27: (4.36),
can be solved for s € (0,t]. In this way, one can avoid using Berndtsson’s uniqueness result. Here
we give his nice argument from [Son] for comparison. First by the concavity of log function and

using (4.36),, we have

1 1 1
_ " F_B n) < —s0,+F—B; n =1 / n —0.
V( S/Xoéw +/X( e >_ Og(‘//xe “ ®\v Xwes 0

So

—s/ Osw™ < / (By — F)u" < C. (4.43)
p's p's

C is a constant independent of both s and t. Now we integrate (4.42) from any s to t, then

t(I—J)(w)—s(I—J)(GS)—/ (I—J)(Gs)ds:—t/x W%S/Xes(wgs —w")+S/X9sw"-
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Using positivity of I — J, (4.43), Lemma 27 and Lemma 28, we get

M= D)) > —t /X bl — s1(8,) — C

Y

—t/X Gty — s(n+ 1)(I — J)(6s) - C

Y

—t/X bty — s(n+ 1)(I — J)() — C.

Now letting s — 0, we get
C
(- D)z~ [ b= 5.
X

Now we can argue as before to get Harnack.

Partial C?-estimate

(*); is equivalent to

Ric(wy) = twy + (1 — t)w.

From our transformation (4.25), we get
Ric(wy) = twy + (1 —t)o*w. (4.44)

In particular, Ric(wy) > twy.
By CP-estimate of 1 and Proposition 2, we get the estimate try,w < Cy. So wy > Cyw. If
we choose local coordinate such that w(9;,9;) = d0;; and wy,(9;,0;) = pidyj, then p; > Cy.

Now by (4.36),

with F = h —w(z¢) and B = (1 —t)log (3, b(Past)]sal?). So by the CC-estimate of ¥, we get

iy —tp+F—B
_ HJ,U] <€

-B
122 > — < 056 .
' Hj;éi Hj cy !
In conclusion, we get the partial C?-estimate
Cyw < wy < Cse Pu. (4.45)

Remark 36. The partial C?-upper bound wy, < Cse=Bw can also be proved by mazimal principle.
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In fact, let
A =log(n+ AY) — M\ + B, (4.46)

where A = A, is the complex Laplacian with respect to reference metric w. Then by standard

calculation as in Yau [Yaul], we have

1
A’A Z (mf S”J] + )\) 1/}“ + (AF AB — tAw — N mf Szzg]) m - )\?’L + A/B
1
= (mf Szz]] —+ )\) 1 + ,(/)“ + (AF =+ nt—n 1nf S”]]) m +
1
B (A t). 4.4
+Z ”(ku n+Aw> n (4.47)

1 1 1 1 1
7 n+AY S 1+, 50 n+Avy S n 1450

Since for each i So the second term on the right of
(4.47) is bounded below by —Cp >, len for some positive constant Cy > 0

For the 8rd term, we observe from (4.25) and (4.30) that
V—100B = (1 —t)(0*w — w) > —(1 — t)w.

. . 1 1
So, since again AT S Tho we have

1 1 ! L :
Bii(1+¢ii_n+Aw> 2_(1_t)(1+1/m_"+&/’> ST

By the above discussion, at the mazimal point P; of A, we have

1 1
OZA/A>()\+1nfS“” co—(l—t));HW—(An+t)zcgz;w—cs (4.48)

for some constants Cy > 0, C3 > 0, by choosing A sufficiently large.

Now we use the following inequality from [Yaul]

1/(n-1)
1 0+ ) ity B
Z . > (Hj(1+1/)jj)) (n+Aq/))1/ De

A —F+{+N)y

— en—1le n—1 . (449)

%

By (4.48) and (4.49), we get the bound

) < Cpe—tHNU(P),
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So we get estimate that for any x € X = Xx,
(n+ Ao < AP < e NP,

Since we have C°-estimate for 1, we get partial C*-upper estimate:

—(1-1)
(n+ Ap)(z) < Cre~EHNHPIXV@ =B < O (Z b(pa,wsaP) L (450)
In particular,
1+ wﬁ S C5e_B7

which is same as wy, < Cse™B.

Higher order estimate and completion of the proof of Theorem 20

For any compact set K C X\ D, we first get the gradient estimate by interpolation inequality:
< A . 4.51
max [Vy| < C (max Ay +max [¢]) (4.51)

Next, by the complex version of Evans-Krylov theory (Section 2.3.2, [Tia2], [Blo]), we have a
uniform Cy g > 0, such that [|1)[|c2.a(x) < Co i sor some « € (0,1). Now take derivative to the
equation:

log det(g;; + v;;) = logdet(g;;) =ty + F — B

to get

950 = =Wk + Fr. — B+ 97 956 — 97 93 1 (4.52)

By (4.45), (4.51) and [[¢||c2.0 (k) < C2,k, (4.52) is a linear elliptic equation with C* coefficients.

By Schauder’s estimate, we get ||¢g]c2e < C, ie. |[¢]|cs.o < C. Then we can iterate in (4.52)

to get [|¢|

in the smooth topology.

cre < C for any r € N. So we see that (¢ = ¢(t))i<p(x) C C*(X\D) is precompact

Now we can finish the proof of Theorem 20 using argument from [DePai]

Proof of Theorem 20. The uniform estimate ||1) L~ implies the existence of a L!-convergent
sequence (V; = y,)j, t; T R(X) with limit ¢, € PSH(w) N L>(X). We can assume that

a.e.-convergence holds too. The precompactness of the family (¢;) C C*°(X\D) in the smooth
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topology implies the convergence of the limits over X\ D:

(w0 VTT000)" = lim (w4 v=1004;)"

t;—R(X)

—(1-t;)
= lim e %% b(pa,ti)|sal? ehe—wi@e) n
: (Ea (Pastj)]sal

thR(X

-(1-R(X))
_ e*R(X)’LZJOQ (Z /ba5a|2> ehwfcwn.

[}

The fact that ¥, is a bounded potential implies that the global complex Monge-Ampeére mea-
sure (w + v/ =100, )" does not carry any mass on complex analytic sets. This follows from
pluripotential theory ([Klim]) because complex analytic sets are pluripolar. We conclude that
Yoo 18 a global bounded solution of the complex Monge-Ampere equation (x * %) which belongs

to the class PSH(w) N L>®(X) N C>°(X\D). O

4.5 Partial C'-estimate and Multiplier ideal sheaf

Proposition 29. The partial C°-estimate holds along the continuity method ()¢, i.e. the k-th

Bergman kernel of /—100uy is uniformly bounded away from zero for any k > 1.
This follows from immediately from Lemma 13-(3). Alternatively, define

6*(17&,1%)

c(pa,t) = 7ZB prrEn g

Note that > ¢(pa,t)pa = Du(—x:). By Lemma 13, the above Proposition follows from the

following Lemma-(2).

Lemma 29. There exists a constant C independent of t such that

¢ —sup¢ —log »_ c(pa,t)lsali| < C
Proof. Let & = ¢ — sup ¢4, then

VEL00E, = wi — @ = (071 (ofwe — ) + (07 1)@ — @).
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For the first bracket on the right
(07 ) (o7 we — @) = V=100((0; ") ")
For the second bracket on the right, we can take the potential of (o; *)*@ to be

(O't_l)*a — ﬂ(*xt) = log Z e(pa,:rfwﬁ _ logz €<pa,*£vt> — logz c(pou t)6<pa,w>

So
(orY'o—o= \/—18510g2:c(po“t)|soz|2

& = (Ut_l)*wt + IOgZC(pavt)|5a|2 + C(t)

For the first term on the right ||(o; ")*%¢|lco = [|[¢]lco < C1 with C; independent of t.

So it’s easy to see that

sup&; — suplog Y _ c(pa, t)]sal® — C(t)| < Cy

[e%

To estimate C(t), note that sup &, = 0, and

1 .
suplog 3 clpa. 0lsal? > tog (2 minfsup 502} ) = €4

[e3

suplog Y _ c(pa,t)|sal® <log» |sal* = CY
So |C(t)] < Cy + max(|CY|, |CY]). O

By the similar argument as in [DeKo], the space of closed positive currents contained in a
given class is compact for the weak topology. So there exists a subsequence wg, converging
weakly to a limit we = wg_ . The potential ¢, can be recovered from tr, ws by means of the
Green kernel, and ¢, converges to ¢, in L'(X). We define the multiplier ideal sheaf of ¢, with

exponent 7y to be

T(160)(U) = {f € Ox (U); /U |f 279 dV < 400}

where U C X is any open set and dV is any smooth volume form on U. Define

Autzgn (N) ={g € GL(n,Z);g(A) = A}
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Corollary 7. Assume the toric Fano manifold has very large symmetry in the sense that the fized
points of the action of Autzn (D) on R™ is a one dimensional space generated by the barycenter
P. € R™. Assume the metric w is Autzn (/) invariant. Let Q be the intersection of the ray
OTPCS with d/\. Let F be the minimal face of I\ containing Q. Then the multiplier ideal sheaf

T(Yhoo) is the same as the multiplier ideal sheaf I(yd) where

¢E = log Z |30%.

Pa€EF

R E—
Proof. By symmetry, it’s easy to see that ¢; = Du(—x;) converge to the intersection of O(—P,.)

and 0A. 0

Remark 37. The Kdihler-Ricci flow version of the above corollary was obtained by Sano [Sano].
His argument depends on the convergence results obtained in [Zhu]. Here in the continuity method,
our convergence result Theorem 20 plays the role of Zhu’s convergence result in Kdhler-Ricci flow

setting.
4.6 Example
Example 3. Xa = Bl,P". The polytope A is defined by
x> —1i=1,---,n; Zmi >—1; and —in > —1.
Using the symmetry of the polytope, we can calculate that

Vol(£) = - ((n+1)" ~ (n—1)"),

P~ (o= ) ™ 0 (=)

So

oQ
o= 2 (1,

|OPC|)1 _nt D+ )" = (n— L")
0Q)| (n+ 1)) 4 (n — 1)(n+D)

F is the (n-1)-dimensional simplex with vertices

i—th place
Pi=(=1,+, n—2 oo, —1) i=1--n.
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Let e; be the j-th coordinate unit vector, then (P;,e;) = —1 for i # j. (P,e;) = n — 2.
(P, £(1,---,1)) = F1. So P; corresponds to a holomorphic section s; with {s; = 0} = (n —
1)D; + 2D, where D; is the toric divisor corresponding to the codimension one face with in-
ward normal e;, and Dy, is the toric divisor corresponding to the simplex face with vertices
Q; = (_1,... STy ,_1).

It’s easy to see that Bs(Lx) = 2Dw. If we view X as the projective compactification of
O(—1) — P71, then Do, is just the divisor added at infinity. So the limit metric should have
conic singularity along Do, with conic angle

(n+1)"" —@Bn+1)(n—-1)"

0=2rx(1-(1-R(X))x2)=2r (n+ )" (0 — 1)t

In particular, if n =2, i.e. XaA = Bl][,IP’2 which is the case of the figure in the Introduction, then

R(XA)zg, 0= 2m x %

This agrees with the results of [Szé] and [ShZh]. In fact, the results in [Szé] and [ShZh] can be
easily generalized to Bl,P™ which give the same results as here.
For the multiplier ideal sheaf, by symmetry, we see that F is the facet corresponding to D .

F has vertex given by

i—th place

Let §; be the holomorphic section corresponding to P,. Then it’s easy to see that
{8;=0}=2E+ (n+1)D;
where E is the exceptional divisor corresponding to the facet F above. So

I(v90) = I(27E)
So when v < 1/2, the multiplier ideal scheme is empty. When v > 1/2, the support of multiplier
ideal scheme is the exceptional divisor E.

Example 4. Xx = Bl, ;P?, P. = 2(—1,-1%), —=2LP. € A\, so R(Xp) = 2.

F = Q1Q2. Q1 corresponds to holomorphic section s1 with {s1 = 0} = 2D1 4+ Da + D5. Q2
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corresponds to sg with {s2 = 0} = D1 +2Ds+ D3. The fized components in Bs(£x) are D1+ Ds.
Here as in the picture, D1 to D5 are the divisors corresponding to the facets. So at generic point

of D1 (or Ds), the conic angle along Dy (or Dy) should be

27 x (1— (1= 25y 5 1) = 2 x 2

i 25 BT
While around the point p = D1 N Da, if we choose local coordinate around p such that D1 =
{21 = 0} and Dy = {29 = 0}, the ideal defining the base locus is (2222,2123) = (21)(22)(21, 22).

the limit singular Monge-Ampére equation locally looks like

9)
Pz (a? + [zl

(w + V=T08w)"

where  is a nonvanishing smooth volume form near p and a =1— R(X) = %. The author does

not know a candidate singular Kdhler metric as local model yet. See Remark 34.
For the multiplier ideal sheaf, it’s easy to see that F =Qu. The corresponding section § has
divisor given by

{8=0} =2(D3 + D5) + 3Dy

So
I(v¢oo) = Z(v(2(D3 + Ds) + 3D4))

So when v < 1/3, then multiplier ideal scheme is empty. When 1/2 < v < 1/3, the support
of multiplier ideal scheme is Dy. When v > 1/2, the support of multiplier ideal scheme is

D3 U Dy U Ds.

Qs Dy |1

— % P.

Dy Q2
<

P, D

Q4 D1 QS
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4.7 Log-Futaki invariant for 1psg on toric Fano variety

Donaldson made a conjecture relating the two continuity methods.

Conjecture 1. [Don6] There is a cone-singularity solution wg to (x)g for any parameter 8 €

(0, R(X)). If R(X) < 1, there is no solution for parameter 3 € (R(X),1).

The case of conic Riemann surface was known by the work of Troyanov, McOwen, Thurston,

Luo-Tian, etc. we can provide more evidence on toric Fano manifolds:

Theorem 22. [Li5] Let Xa be a toric Fano variety with a (C*)™ action. Let Y be a general
hyperplane section of Xa. When 8 < R(Xa), (Xa,BY) is log-K-stable along any 1 parameter
subgroup in (C*)". When 8 = R(Xa), (Xa,BY) is semi-log-K-stable along any 1 parameter

n

subgroup in (C*)™ and there is a 1 parameter subgroup in (C*)™ which has vanishing log-Futaki

invariant. When 3 > R(Xa), (Xa,BY) is not log-K-stable.

Let {pa; o =1,---, N} be all the lattice points of A. Each p, corresponds to a holomorphic

section s, € H'(Xa, Ky ). We can embed X into PV using {s,}. Define u to be the potential

1
N

on (C*)™ for the pull back of Fubini-Study metric (i.e. v/—100u = wrg):

N
u = log <Z e<p“’w>> +C (4.53)

a=1

C' is some constant determined by normalization condition:

/ etdr = Vol(A) = / o = aa)
" “JXa !

By the above normalization of u, it’s easy to see that

| 2 e v
ehe — FS _
[ 12n  wnj(d p LA e dEa)
z1 Z1 Zn Zn
So
hw = — logdet(uij) —Uu (454)

Now let’s calculate the log-Futaki invariant for any l-parameter subgroup in (C*)™. Each 1-
parameter subgroup in (C*)™ is determined by some A € R™ such that the generating holomorphic

vector field is

Uy = z; )\izi%

104



A general Calabi-Yau hypersurface Y € | — Kx| is a hyperplane section given by the equation:

N
s := Z b(pa)zP> =0
a=1

By abuse of notation, we denote A(¢) to be the 1 parameter subgroup generated by vy, then

N
A(t) - s = Z b(pg )t~ (P Pa (4.55)

Let
W(AX) = mazpen(p, \)

Then Hy = {p € R", (p,\) = W(A)} is a supporting plane of A, and
Fr={pel;{p, y=WN)}=H\NA

is a face of A.

We have lim;_,o[s] = [so =D eF b(pa)z”a], and by (4.55), the C*-weight of s is —W ().
Proposition 30. Let F(Ky', BY)()\) denote the Futaki invariant of the test configuration asso-
ciated with the 1 parameter subgroup generated by vy. We have

F(EX!,BY)(A) = = (B(P, A) + (1= B)W(N)) Vol(A) (4.56)

Proof. We will use the algebraic definition of log-Futaki invariant (3.29) to do the calculation.
Note that (X,Y, Ky') degenerates to (X, Yy, K') under \.
Y} is a hyperplane section of X, and sy € H°(X, K;(l) is the defining section, i.e. Yy = {sg =
0}. Then
HO (Yo, K [,) 2 HOOXK)/(s0 @ HOOX KX 47Y))

So
ﬂ}k = Wk — (wk_l — W()\)dk_l)

Plugging the expansions, we get

ap = (Tl + 1)&0 + W()\)bo
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Note that by = nby = nVol(A), we have

b
—ao + bjao = —ap — W(\)bo
0

where

wn
—ap = /X Oy — = /R Z)\u det(u;;)dx = /A Z)\iyidy = Vol(A)(P., \)

By (4.54), the ordinary Futaki invariant is given by

n

w™ ou
= — A — det(u;4)d
/R"; am e(u])x

n! i

Fler(X))(wy) = /X v(ho)

~ [y = -val(a)R Y
A
Substituting these into (3.29), we get

F(Kx',pY)(N) = =Vol(A)(Pe, X) + (1= B)(Vol(A){Pe, \) = W(N)Vol(A))

—(B(Pe; A) + (1 = B)W(A)Vol(A)

O

Proof of Theorem 22. Note that for any Py € F) C 0A, W(\) = (P, ). By Theorem 19, we

have

FERLBY)(N) < p_1-RX)

1-3 R(X)

@ - W(A)) (1 ByVol(2)
= <Qﬁ - P)\? )‘>

where Q3 = %%)(())()Q'

Note that A is a outward normal vector of Hy. By convexity of A, it’s easy to see that (see

the picture after Example 2)
e 0 <R(X): Qg€ A°. Forany A € R, (Qg — Py, \) <0.

e 0=R(X): Qz=Q € 9A. For any X € R", (Q3 — Px,\) < 0. Equality holds if and only

if (Q,\) = W(X), i.e. Hy is a supporting plane of A at point Q.

e 3> R(X): Qs ¢ A. There exists A € R" such that (Qg — Px,\) >0
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4.7.1 Example

1. Xo = BIl,P?2. See the picture in Introduction. P. = %(%,%), Q = —6P. € 0A, so

If we take A = (—1, —1), then W(\) = 1. So by (4.56)
(K BY)(N) = 26— 401~ )

So F(K;(l, BY)(A\) <0 if and only if § < g, and equality holds exactly when § = g.

2. XA =Bl P? P.=2(-%,-%),Q=—-3P. €0/, s0o R(Xp) = 2L.

If we take A\; = (1, 1), then W (A1) = 1. By (4.56),
PR BY)() = 56— 2(1- )

F(K¥',BY)(A1) < 0if and only if 8 < 2L
This is essentially the same as Donaldson’s calculation in [Don6].

If we take A3 = (—1,2), then W(A3) = (—1,2) - (=1,1) = 3. By (4.56)

FKY!, 6Y)(0) = 58— 5 (1= 5)

So F(Ky',8Y)(A\3) < 0 if and only if 8 < % which means that (X,3Y) is log-K-stable

21
along A3 when 3 < 52 < %.

A3 H;
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Chapter 5

Intersection formula of
Donaldson-Futaki invariant and

applications

5.1 Introduction

K-stability is defined via the notion of test configurations. They are just C*-equivariant degen-
erations of the polarized manifold (X, L), usually denoted by (X,L£). When the central fibre
Xp is normal, Ding-Tian [DiTi] defined generalized Futaki invariant by extending the differential
geometric defining formula from smooth case to normal case. Later Donaldson [Don4] defined
Futaki invariant algebraically so that one can define it for any test configuration as scheme which
may be very singular. However, motivated by compactness result for Kahler-Einstein metrics (cf.

[CCT)), Tian conjectured that

Conjecture 2 (Tian’s conjecture). When X is Fano, one only needs to consider those test

configurations with normal Q-Fano central fibers.

As in [Tia9], we will call such a test configuration to be a Special Test Configuration.
Recall that, in birational geometry, a Q-Fano variety is a Kawamata Log Terminal (klt) Fano
variety.

In this Chapter, we prove Theorem 24 which verify Tian’s conjecture. This will be an imme-

diate consequence of the following theorem proved jointly with Dr. Chenyang Xu.
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Theorem 23. [LiXu] Let X be a Q-Fano variety. Assume (X, L) — Al is a test configuration
of (X,—rKx). We can construct a special test configuration (X°,—rKxs) and a positive integer

m, such that (X, —rKys) is a and

mDF(X, L) > DF(X*, —rKa:).

Furthermore, if we assume X is normal, then the equality holds only when (X, ) itself is a

special test configuration.
As a immediate corollary, we can verify Tian’s conjecture:

Theorem 24 (Tian’s conjecture). ([LiXu/) Assume X is a Q-Fano variety. If X is destablized by
a test configuration, then X is indeed destablized by a special test configuration. More precisely,

the following two statements are true.
1. (unstable case) If (X, —rKx) is not K-semi-stable, then there exists a special test configu-

ration (X*, —rKys) with a negative Futaki invariant DF(X®, —rKxs) < 0.

2. (semistable\ polystable case) Let X be a K-semistable variety. If (X,—rKx) is not K-
polystable, then there exists a special test configuration (X%, —r K xs) with Donaldson-Futaki

invariant 0 such that X° is not isomorphic to X x Al.

To prove the above result, we first derive an intersection formula for Donaldson-Futaki invari-
ant. Then we use various birational transformations in MMP to modify the test configuration
and prove the Donaldson-Futaki invariant is decreasing along the process. The end product will

be X’S.

5.2 Intersection formula for the Donaldson-Futaki invari-
ant

Given any test configuration (X, £), we first compactify it. So we want to glue (X, £) with (X x
Al piL). In this section, we will compute the Donaldson-Futaki invariants by the intersection
formula on this compactified space. The same formula appeared before (see [Wang] and [Odak?2]).

We include a proof here using Donaldson’s argument.

Example 5. G,, acts on (X,L7!) = (P!, 0p:(-1)) by

to ([Zo,Zl},)\(Zo, Zl)) = ([Zo,tZ1]7)\(Z()7tZ1)).
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In particular, the G,,-weights on
O]pl (—1)|0, OP] (1)|0, O]}Dl (_1)|oo and O]pl (1)|oo

are 0,0,1 and -1. Let 10 = Z1, Too = Zo be the holomorphic sections of Opi(1). Then the
G -weights of 79 and Too are —1 and 0.
Take X = P(Op1(1) ® Op1) and L = Ox(1) = Op_,, where Dy, is the divisor at infinity.

We see that (X := X \ P, L := L|x) yields a test configuration of (X,L). Then H°(P', L®F)
is of dimension di, = k 4+ 1 and by the calculation in the first paragraph the total G,,-weight of
HO(P', L®%) is wy, = —3(k* + k). We know D% = —1 and K/%l Do =1. So

D2 KZ' D, D? K" Do
wk:;ok2+<?f2—1>k and DF(X,ﬁ)ZOO—<X—1> (=0).

This example can be generalized to more general cases (see (5.2), (5.3)) by using Donaldson’s
argument in the following way. Also see the proof of Proposition 4.2.1 in [Don4].
First note that, after identifying the fiber X; over {1} and X, we have an equivariant isomor-
phism:
(0\Xo, £) = (X x (A1 {0}), piL)

by (p,a,s) — (a=top,a,a™! os). Therefore, G,, acts on the right hand side by

to({p} x{a},s) = ({p} x {ta},s)
for any p € X, a € A! and s € £,. The gluing map is given by

(X, L) (X x Pt\ {0}, pi L)

U U
(N\X, L) — (X x (A'\{0}),piL)

(p.a,s)  +— ({a7top}x{a},a™ o),

where G, only acts by multiplication on the factor P\ {0} of (X x P!\ {0},piL).

Using the above gluing map, we get a compact complex manifold projective over P': 7 :
(X,L£) — PL. In the following, we will denote (X, L) by (X, L) for simplicity. Note that there
exists an integer N, such that M = £ ® 7*(Op1 (N - {oc})) is ample on X (cf. [KoMo, 1.45]).
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We need the following weak form of the Riemann-Roch formula whose proof is well known.
Lemma 30. Let X be a normal projective variety and L an ample divisor on X then

Ln 1 K3l n1
Aim B LE) = Sk 5+ HOT

We define
dy, = dim H°(X, L®%) =: apk™ + a1 k"~ + O(k" %)

Theorem 25. Assume X is normal, then

ai1bg — apby 1 al = n+1 ~
- = DF(X,L)=—— [ =L Kz - L7 ). 5.1
a? ( ) (n+ Dlag (ao Ty aym ) (5:1)

Proof. For k> 0, by Kodaira Vanishing Theorem, we have two exact sequences:

A B C
| I |

where 0q, 04 are sections of 7*Op1 (1) which are pull back of the divisors {0}, {oo} on P!.

We can assume the G,,-weights of oy and o, are -1 and 0. Note the first terms in the
two exact sequences are the same as A := HO(X, M®* ®@ 7*Op1(—1)). We have the equation:
wp = wy —dg + we = wa + wp, where we denote dg and wa to be the dimension and the
Gyn-weight of the vector space A and similarly for dp etc. Since the G,,-weight of Op:i(1)| is

-1 and Gy, acts on L|5_ trivially, we have wp = —kNdimH° (X, LF|z_). So we get
we =da+wp =dp —dc — kNdp = dp — (k)N—l—l)dc,
In other words, we get the G,,-weight on H°(Xy, M®*|y,) = HO(Xy, L2 x,):

wy = dim HO(X, M®%) — (kN + 1) dim H° (X, L% |, ).
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Expanding wy, we get:

wy, = bok" Tt + b k" + O™ )

with
MnJrl ZnJrl
bp = —— — Nag= ——, and 5.2
Tl YT e ™ (52)
1K - M? 1K L
blziT—Nal—aoziT—ao. (53)
We get (5.1) by substituting the coefficients into (2.27). O

Remark 38. This intersection formula is related to the interpretation of Donaldson-Futaki in-
variant as the CM-weight as in [PaTi2]. It was extensively used in [ALV], [Odakl1], [RoThl],

etc.

The intersection formula gives us a way to define the Donaldson-Futaki invariants when L is

a m-big and semiample R-divisor.

Definition 17. (Donaldson-Futaki invariant for a semi-test configuation) Let 7 : (X, L) — Al
be a G,,-equivariant flat family with £ being w-big and w-semiample, such that for t € A'\{0},
(X, Lla,) =2 (X, —rKx). We call (X,L) a semi-test configuration and L a semi-polarization.

Assume X is normal. We define the Donaldson-Futaki invariant by the intersection formula:

1 ai = n+1 -
DF(X,L) = —— [ — L™ Ko - L7 A
(&, £) (n+ Dlag (aoﬁ Ty R E) (54)

A frequent example is as follows: Suppose there is a G,,-equivariant birational morphism
between normal varieties p : X'*¢ — X over Al and L' = p*(£) where (X, L) is a test configura-
tion. If p is an isomorphism over the preimage images of A\ {0}, then £’ is big and semi-ample
but not ample in general. So (X', L’) is a semi-test configuration of (X, —rKx). The projection
formula and (5.1) imply that

DF(X',L') = DF(X, L).

Remark 39. For any relative big and semi-ample line bundle, this definition of Futaki invariant

coincides with the definition via computing the G,,-weights of cohomological groups as in [ALV].

For more details, see [RoTh1] and [ALV].

Remark 40. Using the above argument, we can also get the intersection formula in the log

case. Any test configuration can be equivariantly embedded into PN x C* where the C* action on
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PN is given by a 1 parameter subgroup of SL(N + 1,C). If Y is any subvariety of X, the test
configuration of (X, L) also induces a test configuration (¥, L]y) of (Y,Lly). Let di, di, be the
dimensions of H°(X, L¥), HO(Y, L|{¥), and wy, Wy be the weights of C* action on H°(Xo, L] %),

HO(Yy, ,CH%), respectively. Then we have expansions:

di = agk™ + a1 k™ 1+ O(k""?), ag = %’ o — _[;E(n.yll)—ll
wy = bok™ T+ bik™ + O(K"71), b = (Tf:jrll)!’ by = 7K«'\;7f — ag
Wy = bok™ + ok 1Y), by = 22'37

1 1-
1 ~ 1
CLlog = a; — 5(10, blog = b1 — 5[)0

So we can calculate the intersection formula for the log-Futaki invariant:

2(a1by — arbo) + (CLOBO — aobo)

DF(X,y,ﬁ) = 5
ap
_ (241 — dg)by — ao(2b1 — by)
= 2
1 _ o
= ———— [l 1)(Kz LM +2
P [e1 +(n+1)(Kz+Y)-L"] +
1 2a110g An+1 log n
 ag(n+ 1) | ag £t DK(/?’?)/W £
o allog 2a1—ay  n(Kx+Y) N Al
= = —

ag ag Ln

5.2.1 Song-Weinkove’s condition from intersection formula

As a preliminary application of the intersection formula, we prove (X, L) is K-stable in the special
case when ¢1(X) < 0 and L satisfies the inequality d. Following [Odak1], we only need to consider

the blow up of X x P! along a flag ideal

T=Jo+tJ + - +tE T,
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Let X := Bl7(X x P!) — X x P! be the blow up of along J. Let £; = n*L — tE we need to

show that
DF(X,L;) > 0, for 0 < t < Seshadri constant of J with respect to L

Following [Odak1], we first rewrite the intersection formula for Donaldson-Futaki invariant

DF(X, L)) — %(L(—tE))”“+(n+1)KX(L(—tE))”+(n+1)KX/(XXp1)(L(7tE))”

1(t) + T1(2)

Since X x P! is smooth, so Kx/(xxpy is effective so we have II(¢) > 0. Let nu = 2a;/ag, then

d
%I(t) =—(n+1)nLr - (uli+Kx)-E

Note that £1(0) = 0. We can differentiate again:

d2
—1

n(n+1) (nply™ "+ (n—1)Kx - £}7?) - E?

cl(X) - [L]" n-2 | g2
—n(n+1) (—nmﬁt —(n— l)KX> LR (5.5)

One should compare this intersection product with [Theorem 1.2 in [SoWe]]

Theorem 26 (Song-Weinkove). Suppose that X satisfies c1(X) < 0. Let V' be the cone of all

Kabhler class [xo] with the property that there exist metrics w in —c1(X) and X' in [xo] with

(oL o)~

I n—lw)/\ m=2 59
o] X —( ) X

Then the Mabuchi energy is proper on every class [xo] in V.

So by discussion in section 2.7.2, (X, L) is K-stability. This should be able to follow from the

positivity of (5.5) for 0 < ¢ < Seshadri constant of 7 with respect to L.

5.3 Special degeneration and K-stability of Fano manifold

In this section, we will prove Theorem 23 by simplifying the test configuration through various

birational transformations from MMP.
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5.3.1 Preliminaries from algebraic geometry

Definition and Theorem 1 (Relative MMP with scaling). ([BCHM], [KoMo])
Let (X9, A% := (X, A) be a kit pair, projective over a smooth curve C. Let H be an ample

line bundle such that A + H is nef. Assume Kx + A is not pseudo-effective. Let

w=min{t; Kx + A + tH pseudo-effective }.

We can define a sequence rational numbers 1 =X g > A1 > -+ > Ag > Agy1 = p and a sequence

of models over C related by birational transformations:

(XovAO) -2 (XiaAi) -2 (XK7AK)

by the following inductive process. Assume (X, A?) is defined. Let H' be the birational transform
of H on X*. Define

i1 = min{t € [, 1]; Kxi + A"+ tH" is nef }.
So there exists an extremal ray R € NE(X'/C) such that (Kxi + A")-R=—H'-R < 0. We
can contract R by a contraction map wg : X* — Y. There are two possibilities:

1. g is divisorial contraction. Let X*t1 =Y and ATt = (7). Al

2. wg is a flipping contraction. Let f : X* —-» X** be the (K xi+A%)-flip. Define Xt = X+
and A1 = f A7,

On the end product (X%, A*) we have K x» + A* + uHF ~q,c 0.

The following two theorem are very important in the theory of MMP. We will frequently use

in the following argument too.

Theorem 27 (Relative base point free theorem). Let (X,A) be a kit pair, A\ effective, and
f: X =Y a proper morphism of projective varieties over C. Let D be an f-nef Cartier divisor

such that aD — Kx — A is f-nef and f-big for some a > 0. Then bD s f-free for all b > 0.

Lemma 31 (Negativity Lemma). ([KoMo, 3.39]) Let h : Z — 'Y be a proper birational morphism

between normal varieties. Let —B is an h-nef Q-Cartier Q-divisor on Z. Then
1. B is effective iff h,B is.
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2. Assume B is effective. Then for everyy € Y, either h=1(y) C SuppB or h~!(y)NSuppB =
0.

We also need the higher dimensional version of the Zariski Lemma in the following calculation

of Donaldson-Futaki invariant. See [LiXu].

Lemma 32 (Zariski’s Lemma). Let X — C be a projective dominant morphism from a n-
dimensional normal variety to a proper smooth curve. Let E be a Q-divisor which supports on

some fiber Xy. Let L1, .., L,_2 be n — 2 nef divisors on X. Then

E*. Ly L, 52<0.

If all L;’s are ample, then the equality holds if and only if E = tXy for some t € Q.

5.3.2 Step 0: Normalization

Assume (X, L) — Al is a test configuration. Let 7” : X¥ — X be the normalization of X. By
[RoThl, Proposition 5.1] and [ALV, Corollary 3.9],

DF(X",(7")*L) < DF(X, L)

with equality holds if and only if X,on—normar (i-e. the set of non-normal points of X' has

codimension at least two.

Remark 41. Any test configuration can be equivariantly embedded into PN x A'. So it’s induced
by a one parameter subgroup \(t) of SL(N +1,C). As we have seen in the end of Section 2.7.2,
there are three cases for Xy. For the 3rd case, in general, the test configuration X is non-normal
(hence non-product), isomorphic to X x Al in codimension 1, with Donaldson-Futaki invariant
0. This case was missing in most of precious work, e.g. [Stol], as pointed out in [LiXu]. See

[Sto2], [Odak] for related issues and corrections.

From now on, we will assume the test configuration X is normal. Since we can naturally
compactify any test configuration as in Section 5.2, we will consider more generally a polarized

family over a proper smooth curve whose total space is normal.

Definition 18. A polarized generically Q-Fano family is a projective morphism w: (X, L) — C

from a normal polarized variety X to a smooth curve, whose generic fibre (X;, L,)) = (X, —rKx, )
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is a Q-Fano variety for some r € Q. If each fibre is a Q-Fano variety, then (X, —rKx,c) called

a Q-Fano family.

Definition 19. Assume (X,L) — C is a polarized generically Q-Fano family over a proper
smooth curve. Assume for generic fibre L]y, ~g —TKx,. We can define the Donaldson-Futaki

intersection number as

1
2(n+ 1)r"(—Ku,)

DF(X/C, L) = (B (4 DEge - L)

If C = P! and (X, L) — P! is the compactification of a Q-test configuration (X, L) — Al as

in Section 5.2 by simply adding a ‘trivial fiber’ over the point co € P!, then we have the equality
DF(X /P!, L) = DF(X, L).

Remark 42. In the following, without loss of generality, we assume there is only one degenerate
fibre over 0 € C, or 0 € C'. We also note that although the following step of modification
was originally obtained without group action, they all can be carried out equivariantly. For

explanations, see [LiXu, Section 2.3/, [And], [KoMo].

5.3.3 Step 1: Equivariant semi-stable reduction

Theorem 28. [LiXu] There exists a finite morphism ¢ : C' — C such that, if we denote X to

be the main component of the normalization of X xc C’, then
1. 220 is reduced.

2. DF(X L) < deg(¢)DF(X, L), where ¢ 5, : X — X is the natural finite morphism.

X)X
The identity holds if and only if Xy is reduced.

3. then there exists a birational morphism f:Y — X such that Y is smooth and the degenerate

fibre Vo is simple normal crossing.

Proof. The existence of semi-stable reduction (1. and 3.) was obtained in ([KKMS] and [KoMo]).

We have the following commutative diagram:
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—_—

=3

<

[

I

Q=——r

such that
e YV is smooth
e )y = Zf\;ll Vo,i is simple normal crossing.

Because K 3 + Xy = ¢% (K +red(Xp)) and Keor + {0’} = ¢* (K¢ + {0}), we see that
K)?/C/ = ¢y (Kx/c + red(Xy) — Ap)
So 2. follows from projection formula. Equality holds if and only if Xy = red(&Xp) is reduced. O

5.3.4 Step 2: Log canonical modification

Theorem 29. [LiXu] Let (X,L£) — C be the polarized generic Q-Fano family such that Xy is
reduced and there exists a birational morphism ) — 2\?0 such that Y is smooth and Yy is simple

normal crossing. Then there exists a log canonical modification ©'¢ : X' — X and polarization

Ll on X' such that

(1) (X', XL°) is log canonical

(2) Kaic is relatively ample over X.

(3) DF(X' L) < DF(X,L). The equality holds if and only if (X, Xy) is log canonical.
Proof. X'¢ is obtained by running (Ky + )p)-minimal model program on ) over X. So xle =

Proj R(Y/X, Ky + ),). For details, see ([LiXu],[0dXu]). Let

,Ct = Lt (7'('[0*,6 "l‘tKch)

r—

Since K y:i. is relatively ample over X, Ly is relatively ample over C' if ¢ is sufficiently small. Then

2

%Et + lec = T"Zt (%ch*ﬁ—FKch) and [_:; = (,'0177:)2 (%W*E—FK‘X'Z(‘) Let E = %ﬂ'lc*ﬁ +lec,
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then E is supported on X{°.

d 1 1

—DF(Xxe = et = Kyie |- L]

gt PF (A L) (n+1)7m(717<‘,¥,/)n”(”Jr )L (r£t+ Xl) £t
’I'LT3

1 2
= L =l L K ) <0
(= P~ Kx)r (ﬂ " X’) :

for ¢ sufficiently small. So we choose L!¢ = L, for sufficiently small rational number e. Then
DF(X'e, £l¢) < DF(X, £). The equality holds only if E ~qg ¢ X}¢, but then K yic ~qg x 0, so X'

is isomorphic to X. O

5.3.5 Step 3: Running MMP with scaling

Now we let X0 = Xl £0 = £l°. Given an exceptional divisor E, if its center dominates C
then a(E,X%) > —1 because X'* is klt; if its center is vertical over C, then a(E,X°) > 0, since
(X9, &) is log canonical for any ¢ in C. In particular, XY is klt.

Since £° is ample, we can choose )¢ sufficiently large such that Kx + AL is ample. To
simplify the family, we run a sequence of K yo-MMP over C with scaling of £° as in Subsection
5.3.1. (This is equivalent to running (Kxo + £°)-MMP with scaling £°. Compare with Section

5.3.9). So we obtain a sequence of models
X0 st s s xR
Recall that, as in 5.3.1, we have a sequence of critical value of scaling factors
Nit1 = min{\ | Ky: + AL" is nef over C}

with 1 =X > A1 > ... 2 A > Agy1 = % Note that % is the pseudo-effective threshold of K yo
with respect to £° over C, since it is the pseudo-effective threshold for the generic fiber. Any
X' appearing in this sequence of K yo-MMP with scaling of £° is a relative weak log canonical
model of (X0, ¢L%) for any t € [\;, \j11] (see [BCHM, 3.6.7] for the definition of weak log canonical
model).

For X € [Ai+1, \i], we denote by

i_ T ‘ i
Ly = SV 1(KX7, + ALY). (5.6)
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where £? is the push forward of £° to X?. As is clear from the context, this should not be

confused with the i-th power or intersection product of L.
Lemma 33. —rKyx ~q.c L is big and semi-ample over C.

Proof. Since Apy1 = %, the line bundle Ky« + %Ek is relatively nef over C and its restriction to
the generic fiber is trivial, so it is Q-linearly equivalent to a linear sum of components of XJ. By

its nefness, we can apply Lemma 32 to get
s
Kyr +-L" ~q,c 0.
r

Now for any A € [1/r, Agy1], A§ ~ L£F is nef. £ is big because Ay > %, and from the relative

base-point free theorem (cf. Theorem 3.3 in [KoMo]), it is semi-ample over C. O

By the above Lemma, we can define
X" = ProjR(X"*/C, LF) = ProjR(X* /C, —rK xr ) 0).

Since (X9 &J) is log canonical and and X = (f o 7'¢)*({0}), this is a also a sequence of
(Kxo + X)-MMP and thus (X%, X[) is log canonical which implies that (X", X¢") is log
canonical as well.

5.3.6 Decreasing of DF-intersection number

For any A > %, the restriction of Kxo 4+ AL? over C* is ample. So the MMP with scaling does
not change X% xo C*, i.e., X0 xoc C* =2 X x C* for any i < k. Let’s calculate the variation of

DF-intersection number.

Proposition 31. ([LiXu]) With the notation above, we have
DF(Xx°/C, £°%) > DF(X*/C, £F) = DF(X*/C, —rK yx ;) = DF(X*"/C, =1 K yan ;)

The firt equality holds if and only if h : X0 —=» X* is an isomorphism.
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Decreasing of DF on a fixed model

Assume X} = > E', where E’’s are the prime divisors. Since (X, £°) x C* is isomorphic to

(X% xo C*, —rKxoy ¢~ ), there exist a, € R such that

1 .. )
Kyi+ L'~ ! .
xi + TE R,C Z aoEao
acl
Let Z) be the relative log canonical model of (X% AL%) over C. Then there is a morphism

Ty : X' — Zy and an relatively ample Q-divisor M on Z whose pull back is Eg\.

Lemma 34. If \; > a > b > Ay and b > 1, then DF(X?, L1) > DF(X?, L}). The inequality
is strict if there is a rational number X € [a,b], such that the push forward of 3°_, a',Eq to Zy is

not a multiple of the pull back of 0 € C' on Z).

Proof. Note that

. d .. r?
i 2o,

AT 1

1 .. 1 .. )
Kyi + =L Kyi+ L= " (Kyi + =L}
( X+Tﬁ)7 X+r£ )\r—l( X‘FTﬁ)

Now we compute the derivative of the Donaldson-Futaki invariants:

SOP@CL) = G (6" () - (L + K

2
. 1 ..
= oyt (K 1e)
2
= —CoM)" [ D abEs |
B
where Cy, C{) are positive constants. Then the lemma follows from Lemma 32. O
Lemma 35.
lim DF(X° £%) = DF(X°, %)
A——+o0

Proof. This follows from limy_, 4 [,E{ = £9 and the intersection formula. O]

The following corollary is a consequence of above two Lemmas.

Corollary 8.
0,0 0,0
DF(&", £%) > DF(X", Ly,)
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Invariance of DF at contraction or flip points

If Niv1 > %, then by the definition of MMP with scaling, we pick up a K yi-negative extremal

ray [R] in NE(X?/C) such that R- (Kx: + Ai+1L") = 0. we perform a birational transformation:
ity
which contracts all curves R’ whose classes [R'] are in the ray Rso[R]. There are two cases:
1. (Divisorial Contraction) If f¢ is a divisorial contraction. Then Xt = Y?. Since f’ is a
(Kxi + Aip1L)-trivial morphism by the definition of the MMP with scaling, we have

Kyi + i1 £ = () (Kyi + X1 L7,

which implies

= ()Lt

1+1 - Ait1

Then it follows from projection formula that

DF(X'/C, L5, ) = DF(X"™/C, L3t ).

Aig1
2. (Flipping Contraction) If f is a flipping contraction, let ¢¢ : X --» X**! be the flip.

XYi——— — — — > yit+l

fi fi+
—K,: is fi-ample Kyit1 1S fit-ample

yi

As flis a (Kyi + Aiy1LY)-trivial morphism, (Kyi + A\iy1L%) = (f1)*Dy: for some divi-
sor Dy:. Since f!, f'* &' are isomorphisms in codimension one, we also have Kyi+1 +

N1 LY = (fi)*Dyi. Therefore, using the intersection formula, we see that

DF(X?/C, Kxi + Xiy1£") = DF(V'/C, Dy:i) = DF(X"/C, Kyitr + N1 L771).

Now we can finish the proof of Proposition 31:
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Proof.

DF(x°/C, £°)

Y

DF(X°/C, £3,) > DF(X°/C, £3,)

= DF(X'/C,L},) > DF(X'/C, L, )

= DFX™'/C, L ) > DF(X™/C, L3t

i+2

= DF(X*/C, L5 ) =DF(X*/C,—rKx).

Now we characterize the equality case. Since —Kyr ~g.c %Ek is relatively nef over C, we

conclude that f*=1: X*~1 — X% is a divisorial contraction contracting a divisor E. So if we let
| k—1y% s
O,E:KX}c—1+;£)\k *(f ) (K/yk+;£ )
then because f*~!is (Kyr-1 + A\ LF71)- trivial, for any curve C € E,
1 k—1
ab-C=(-=-X\ | L7 C<0
r

because A, > 1. Since E-C' < 0, we have a > 0. Because K yx+1LF ~g ¢ 0, Kyt +%£§;1 ~Q,C
aF whose support E is a proper subset of Xéﬂ ~1. So the equality condition of Lemma 34 can not

hold on X*~1. Thus

DF(X'°/C, L") > DF(X°/C,L})) > DF(x*1/C, )
> DF(X*/C, L5 )=DF(Xx*/C, cF)

= DF(X"/C,—rKxan).

5.3.7 Step 4: Q-Fano extension

From last section, we get some family X'* and its anti-canonical model X%". Now we need to use

results from MMP to carry on. We collect the result we need in the following theorem.
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Theorem 30. [LiXu/

1. There exists a finite morphism ¢ : C' — C and a birational morphism 7 : X' — X :=

X x o C" such that, if X5 =Y, E;, then

e We can find some polarization L' such that

E/ + KX’/C’ = Z aiEi
E;#E*

with a; > 0.

e 7 is a divisorial contraction contracting divisor E* with a(E*®, /'?) =0.

2. We can run (Kx+L")-MMP over C' and get a klt model X* such that Xg is an irreducible

Q-Fano variety which is the strict transform of E*.

Theorem 31. [LiXu/
DF(X/C', K 3 ,0:) 2 DF(X*/C, —Kx:)

with equality holds if and only if X = Xs.

Proof. The Donaldson-Futaki intersection number becomes very simple for relative anti-canonical

polarization:

DF(X/C',~Kg,00) = —

The second equality comes from 7*K 3 = Ky because of a(E?, /'E') = 0. Similarly,

DF(X*/C", ~Ke o) = — yrtl

An T D) (KRR

Let p: X — X’ and ¢ : X — X* be common resolution. Define E = p* K/ — ¢* K- so that

q*(_KXS/C’> = p*(_KX’/C’) + FE

Then —F is g-nef and F is supported on X,.
Let p = mop : X — X. We can write Ky =p*K 3+ B = p*Kx/ + B with B being exceptional

over X’. Because X’ --» X' is a birational contraction, B is also exceptional over X'*. Similarly,
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K, = q"Kys + F with F' exceptional over X°. So I/ = —B + F' is exceptional over X°. By the
Negativity Lemma 31, £ > 0.

If £ =0 or, X’ and X* are not isomorphic in codimension 1, then

X = IDI'OjR(.X‘/7 _KX’/C’) = PI‘OjR(/YS, _KXS/C’) = X°

So we can assume E > 0 and X’ is not isomorphic to X'® in codimension 1. Then E > 0 contains
some divisor F; which is the strict transform of El - 220 and is contracted via the birational
map X' --» XS,

Let £y = p"(—Kxrjor) +tE = (1 — t)p*(—Kxrjcr) + tq*(=Kxsycr). Then L; is nef for

0 <t < 1. We can differentiate again:

d (c;i“

il = [".E
dt n+1) t

2 (1 —t)np*(—KX//c/)n 'E1
= (1=8)"(=Kxrjcr)" - peEr

= (1=)"(~Kz,c)" E1>0

5.3.8 Completion of Proof of Theorem 23

Proof. For any test configuration X', we modify it by the above steps.

xX/C ~ xv/C Step 0: normalization )

(
~s  X/C"  (Step 1: base change and normalization)
~  X'/C"  ( Step 2: log canonical modification )
~ X /C" (Step 3: Run MMP with scaling )
~ X'/C"  ( Step 4a: Base change and crepant blow up)

~  X%/C"  ( Step 4b: Contracting extra components)

For each step, the Donaldson-Futaki invariant decreases up to a factor due to base change

deg(C’/C) and deg(C”/C). So

DF(X/C, L) < deg(C" /C"\DF(X*, —rK x-)
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The equality holds if and only if X;,0,_norma; has codimension at least two and X” xo C" = X'*
is a special test configuration. So if X is normal, then the equality holds if and only if & is itself

a special test configuration. O

5.3.9 Simplification in the unstable case and Discussions

If we want to prove the following weaker statement of the theorem.

Theorem 32. Given any test configuration (X,L) — C, for any e < 1, we can construct a

special test configuration (X*, —rKys) and a positive integer m, such that
m(e + DF(X, L)) > DF(X*, —rKxs)

Then we can simplify the argument. Note that the weaker statement implies Tian’s conjecture

in the un-stable case.
Proof. 1. Step 1: Equivariant semistable reduction. ) — X — X.

2. Step 2: perturb the pull back polarization.
Ly =€eA+ gb;;/x(ﬁ)

by an ample divisor A (e < 1) such that

e Ly is still ample

e For some a € QQ
N

Ly+Ky+ao =) aadoa

=2

with a, > 0 for any a > 2.

3. step 3: Run (Kx + £Ly)-MMP with scaling £y over C. Define

(Kx+ L)+ AL -

M, = My =L.

so that M, = L. As X decreases from 400 to 0, we get a sequence of critical points of A

and a sequence of models:

+oo > A 2

Y

Ak > /\k+1 =0

X0 s Xt s s X C
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The X* in the above sequence has very good properties:

e E* is linearly trivial over C. LF ~c —K v« is semiample.

o Assume Xy = YV

a=1

aaXo.a = E > 0, then X --» X contracts precisely Supp(FE).
This can easily seen as follows. Using hyperplane section, we can assume dim(X) = 2.
Denote the strict transform of E on X by E'. Because E*- Xj, > 0, Aj, is never
contracted. If E¥ still contained XJ,; for some 8 > 2, then E¥ - X§; > 0. This

contradicts the E*¥ ~¢ 0.

By property 1 above, we can define: X* = X" = Proj(X*, —ka/c) so that —Kys is
ample and X is Q-Fano.

Again, Donaldson-Futaki invariant decreases along M. Note that

A+1 d 1
As before, we can calculate
d
aDF()(,A/U) = —C ML (L+ Kyp1)? >0

by the Hodge index theorem, because £+ Kx/p = >, a;Xo; only supports on Xp. This means

that DF invariant decreases as \ decreases. O

Remark 43. Let’s explain the formal similarity between MMP and (normalized) Kdhler Ricci

flow. Assume L|x, ~¢ —Kx. In MMP, we vary the polarization in the direction of Kx :

L+ sK
M= SR My, ~ K
-5
The derivative of M is
d 1 s=1/(1-s) d
dsM (175)2( + Ky) &= déM x +

This variation corresponds to the normalized Kdhler-Ricci flow.

% = —Ric(wz) + ws
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Chapter 6

Rotationally symmetric

Kahler-Ricci solitons on flips

6.1 Introduction and motivation

Song-Tian [SoTi] used Kéhler-Ricci flow to study general algebraic varieties. The goal is to con-
struct canonical metrics on algebraic varieties obtained after surgeries and this can be seen as the
metric counterpart of Minimal Model Program(MMP). Tian-Zhang [TiZha] proved singularity-
occurring time is the same as nef threshold. It is proved in the theory of Ricci flow that, the
type-I singularity will produce Ricci soliton after rescaling. In general, we don’t know whether the
singularity is type-I or not. In Fano case, this is related to the famous Hamilton-Tian conjecture
on the limit behavior of Kahler-Ricci flow on any Fano manifold. If we assume the singularity is
type-1, it’s interesting to see examples of Kahler-Ricci solitons.

In [FIK], the authors constructed some examples of gradient K&hler-Ricci soliton. Among
them is the shrinking soliton on the BlyC™. They also glue this to an expanding soliton on C™
to extend the Ricci flow across singular time.

Recently, La Nave and Tian [LaTi] studied the formation of singularity along Kéhler-Ricci
flow by symplectic quotient. The idea is explained by the following example.

Let C* act on C™*" by

t'($17"' y Ty Y1, 7y’n> = (tl']_,"' 7t$m7t_1y17"' ,t_lyn)
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St C C* preserves the standard Kahler structure on C™+":

w = \/jl(i dx; Ndx; + i dya A dga)

i=1 a=1

Let z = (x,y) = (X1, yZm, Y1, ,Yn). The momentum map of this Hamiltonian action is

m n
m(z) =Y lwil* =Y lyal® = |2* = |y)?
i=1 a=1

The topology of symplectic quotient X, = m~*(a)/S! changes as a across 0.

Let Opn(—1) be the tautological line bundle on the complex projective space PY. We will
use Y to represent the total space of holomorphic vector bundle (Opn (—1)%% — PV).

1. (a>0) Vz = (z,y) € X, m(2) = |z]2 — |y|> =a > 0, so z # 0.

Xo~Yp_1, ~{C™" — {2 =0}}/C*. The isomorphism is given by

(1.17"‘ y Ty Y1, 7+ ayn) = ([xla"' 7xm]ay1 cLyc oty Yn .’E)
There is an induced K&hler metric on X,. Choose a coordinate chart u; = %, N T
“;’; €1 =11, ,&n = 1Yn. The C* action is then trivialized to: (z1,u,&) — (tz1,u,§).

The Kahler potential can be obtained by some Legendre transformation (see [BuGu]).
Specifically, the potential for the standard flat Kéhler metric on {C™*" — {z = 0}} is
€7 _

¢ = lo* + [y1* = |21 P (1 + |uf?) + ENche e (14 [uf?) + e gl

where 71 = log |71]?. ¢ is a convex function of 1. a = g—i is the momentum map of the S!

action. In the induced coordinate chart (u,£), the Kahler potential of the induced metric

on the symplectic quotient is the Legendre transform of ¢ with respect to ry:

®, = alog(l + |ul?) + \/a2 +4(1 + |ul?)|€)? — alog(a + \/a2 +4(1 + |ul?])|€]?) + (log2) a
(6.1)

2. (a<0) By symmetry, X, ~ Y,_1,, ~ {C™*" — {y = 0}}/C*. Choose a coordinate chart

Y2

v = Y1’

C L Up_1 = %,01 = y1T1,"** ,Mm = Y1ZTm- LThe Kéahler potential has the same

expression as (6.1) but replacing a by —a, u by v, and & by 7.
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3. (a=0) X, = affine cone over the Segre embedding of P~ x Pn~1 — pmn—1,

(x17"' y Ty Y1, 72Un) = {xlya}

Away from the vertex of the affine cone, choose a coordinate chart: u; = ;—f, e Um—1 =
Tmv = %, R T %, ¢ = z1y1. The Kéihler potential is given by

®o = 2+/(1+ [ul)(1 + [02)[¢]?

Note that ®¢ is obtained from ®, by coordinate change &1 = (, &2 = v1(, -+ ,&n = Vp—1C,

and let a tend to 0.

This is a simple example of flip when m # n, or flop when m = n, in the setting of symplectic
geometry. X g is obtained from X+ by first blowing up the zero section P!, and then blowing
down the exceptional divisor E = P™~! x P*~! to P"~!. Note that when n = 1, this process is
just blow-down of exceptional divisor in BlyC™.

One hopes to have a Kéhler metric on a larger manifold M such that induced Kéhler metrics
on symplectic quotient would satisfy the Kahler-Ricci flow equation as the image of momentum
varies. See [LaTi| for details.

Our goal to construct a Kahler-Ricci soliton on Y =Y,,,_, and its projective compactifica-
tion, and this generalizes constructions of [Koi], [Cao] [FIK]. See also [DaWa]. The construction
follows these previous constructions closely, but we need to modify them to fit our setting. The
higher dimensional analogs have the new phenomenon of contracting higher codimension subva-
riety to highly singular point. To continue the flow, surgery are needed. The surgeries in these
cases should be the naturally appearing flips.

The organization of this note is as follows. In section 2, we put the construction in a more
general setting where the base manifold is K&hler-Einstein, and state the main results: Theorem
33 and Theorem 34. In section 3, by the rotational symmetry, we reduce the Kahler-Ricci soliton
equation to an ODE. In section 4, we analyze the condition in order for the general solution of
the ODE to give a smooth Kéhler metric near zero section. In section 5.1, we get the condition
for the metric to be complete near infinity. In section 5.2, we prove theorem 33, i.e. construct
Kahler-Ricci solitons in the noncompact complete Kéhler manifold and study its behavior as
time approaches the singular time. Finally in section 6, we prove theorem 34 by constructing the

compact shrinking soliton on projective compactification.
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6.2 General setup and the result

Let M be a Kahler manifold of dimension d. Kéihler-Ricci soliton on M is a Kahler metric w
satisfying the equation

Ric(w) = Aw + Lyw (6.2)

where V is a holomorphic vector field. The K&hler-Ricci soliton is called gradient if V = V f for
some potential function f. If o(t) is the 1-parameter family of automorphisms generated by V,

then

w(t) =(1-=X)o <—i log(1 — /\t)) w (6.3)

is a solution of Kéahler-Ricci flow equation:

We will construct gradient Kahler-Ricci solitons on the total space of special vector bundle
L®" — M and its projective compactification P(C & L®") = P(L~! @& C®"). Here M is a
Kaéhler-Einstein manifold:

Ric(wp) = Twm

L has an Hermitian metric h, such that
c1(L,h) = —/—100logh = —ewy;

In the following, we always consider the case € > 0.

We consider the Kéhler metric of the form considered by Calabi [Call]:
w =T wp + OOP(s) (6.4)

Here s is the norm square of vectors in L. Under local trivialization of holomorphic local section

€L,

S(geL) = (l(Z)|§|2, 'f = (517' o ,gn)

P is a smooth function of s we are seeking for.

Using the form (6.4), we can determine A immediately. Let M be the zero section. By adjoint

131



formula,

—Ky|lpy=—Kpy +AN"Nylyy = =Ky +nL

Note that w|pr = war, so by restricting both sides of (6.2) to M, and then taking cohomology,

we see that
Tlwnp] — nelwy] = a1 (Y)|m = Mwas] (6.5)
SoA=171—ne.

Remark 44. If we rescale the Kdihler-FEinstein metric: wy — kwy, then 7 — 7/k, € — €/k,
A — MNE.

The main theorem is

Theorem 33. On the total space of LO", there ewist rotationally symmetric solitons of types
depending on the sign of A\ =1 —ne. If A > 0, there exists a unique shrinking soliton. If A =0,
there exists a family of steady solitons. If A < 0, there exists a family of expanding solitons. (The

solitons are rotationally symmetric in the sense that it’s of the form of (6.4))

Remark 45. If we take M = P! L = O(—1), wy = wrs, then 7 =m, € = 1. Then we get
to the situation in section 1. So depending on the sign of A = m — n, there exist either a unique
rotationally symmetric shrinking KR soliton when m > n, or a family of rotationally symmetric
steady KR solitons when m=n, or a family of rotationally symmetric expanding KR solitons when

m<n.
We also have the compact shrinking soliton:

Theorem 34. Using the above notation, assume A\ = T—ne > 0, then on the space P(CH L") =

P(L~! @ C®"), there exists a unique shrinking Kdhler-Ricci soliton.

6.3 Reduction to ODE

The construction of solitons is straightforward by reducing the soliton equation to an ODE.

First, in local coordinates, (6.4) is expressed as

w = (1+ €Pys)wns + a(Psdap + PssaloP)VEX AVEP (6.6)

Here

VEY = dE® +a™ ' Ba g
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Note that {dz?, V&€*} are dual to the basis consisting of horizontal and vertical vectors:

_ 0 o 8@ o 0
Vi = 92t Zf é’oz’ afa

w is positive if and only if

1+ €ePss >0, Ps >0, and Ps + Psss >0

N = (14 ePys) i a" PP (P + Pugs) [ de® A dg™

w
a=1
Since we assume Ric(wpr) = Twpr = (A + ne)way,

dd1og det w4 N(wpr+0IP) = 30 [d - log(1 + €Pys) + (n — 1) log P + log((Pss)s) 4 (1 — ne) P]

Let r =log s, then 0, = sds. Define

Q = d-log(l+€Pys)+ (n—1)log Ps +log((Pss)s) + (1 — ne) P

= d-log(l+¢€P,)+ (n—1)log P, + log P, —nr + (17 — ne)P (6.8)

To construct a gradient K&hler-Ricci soliton (6.2), it is sufficient to require that Q(t) is a potential

function for the holomorphic vector field —V. Notice that, for the radial holomorphic vector field:

Tad Z g 850‘ (69)

iV,,40 = (Ps + Poss)a y_ £7VEP = (Pys),0s
B

Now

ive = 0Q(5) = Quds = v, i

which means —V = (PQT“)V,M, S0 % is a holomorphic function. Since s = a(z)|¢]? is not

holomorphic, (P P has to be a constant u. We assume p # 0, since V' # 0. So we get the

equation: Qs = u(Pss)s. Multiplying by s on both sides, this is equivalent to

Qr = uPy, (6.10)
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Remark 46. Note that, if u = 0, then we go back to Calabi’s construction of Kdhler-Einstein

metrics in [Call].

Define ¢(r) = P,(r) and substitute (6.8) into (6.10), then we get

€Qr
d
1+ €0

—|—(n—1)%—|— q;’“’

+ (T —ne)p —n = pop, (6.11)

Since ¢, = P, = (Pss)ss = (Ps+ Psss)s > 0 by (6.7), we can solve r as a function of ¢: r = r(¢).
Define F(¢) = ¢r(r(4)), then F'(¢) = ¢ppr'(¢p) = % So the above equation change into an
ODE

eF(¢)
1+e¢p

F(¢)

' d
F(¢) + 5

+(n—1) —pF(¢9) =n— (1 —ne)p =n(l +ep) —7¢ (%)

Remark 47. We will explain how this equation is related to the ODE in [FIK],(25). with our

notation, in [FIK], M = P¢, L = Opa(—k), n = 1. For the shrinking soliton case, d+1—k >0,

wy = (d+1—Ekwpg, T = di%w €=t A=7—€e=1 Letr =k, P(r) = P(F) -
(@41 K7 = P(G) — 2585, g(r) = P = BRI — 2545 = LG0) — @+ 1 k),
F(¢) = ¢:(r(9)) = =6:(7(9)) = %F((ﬁ) Fi(¢9) = %Né() Substitute these expressions into

(%), then we get the ODE

Fé)+<gg>ﬁ((d+1)¢)0

So we see this is exactly the ODE in [FIK], (25). The expanding soliton case is the similar.

We can solve (x) by multiplying the integral factor: (1 + e¢)?¢nLe#¢:

¢r = F(¢) = v(1+ed) 19" et — (1 + 6¢)_d¢1_"6“¢/h(¢)6_“¢d¢> (6.12)

where
h(¢) = (1 + e¢)'¢™ — n(1 + ep)™ g (6.13)
is a polynomial of ¢ with degree d + n. Note the identity:
“+oo

[ 1@ = =3 i@

k=0
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Since h(¢) is a polynomial of degree d+n, the above sum is a finite sum. So

d+n

F(¢) = (1 +ep) dp!™ (Ve‘“b +> uk1+1 h<k>(¢)> (6.14)

k=0

6.3.1 Rotationally Symmetric Model of Tian-Yau metrics

Using similar calculation, we can also give an interpretation of the leading term in Tian-Yau’s
[TiYal, TiYa2] construction of complete Ricci flat Kéhler metrics on X\ D where X is a Fano
manifold and D is a smooth divisor such that —Kx ~g 3D. By adjunction formula, K =
Ki'lp-D~(B—-1)D. Let M =D, L=Np,n=1,e=—1,d=dimD , F(r) = —r + P in
the above. Then

Wit = (=F)4F,.w} A dlog € A dlog €

So Ric(w) = —/=1801og((—F;)?F,,) + twp = —/—180 (log ((—=F,)*F,.) + 7). In order for
Ric(w) = 0, it suffices for

log ((fFr)de) + 71 = constant (6.15)

1. (B =17 =0. We can solve F = C - (—r)d+2/(d+Dwhich is same as F = C -

(—log ||s]|?)™+1)/™ using Tian-Yau’s notation in [TiYal, equation 4.1].

2. (B>1)7=p—-1. Wecansolve F = C-e~7"/(@+1) which is C - ||s|| 72(*~1/™ in Tian-Yau’s

notation in [TiYa2, equation 2.2].

6.4 Boundary condition at zero section

Since lim, . _ o, ¢(r) = limg_g Pss = 0, we have the boundary condition

lim F(¢) = lim ¢, = hir(l)(PSs)Ss =0 (6.16)

»—0 r——00

So ¢"1(1 +€p)?F(¢) = O(¢™). Now the I-th term of Taylor expansion of ¢" ! (1 + e¢)?F(¢) at

¢=01is
+oo 1 d+n 1
(0" 11+ e) F(9)" T 3 WWH)(O) =l (1/ +y Wh(k) (0)> (6.17)
N k=0 k=1
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Note that by (6.13) h¥)(¢) = 0 for k > d + n, and h(¥)(0) = 0 for k < n — 1. The vanishing of

the 0-th(constant) term in expansion gives the equation:

d+n

v+ Z A8 (0) =0 (6.18)

knl

Using relation (6.18) we see that, when I < n, (¢" (1 + )4 F(4))? o =0, and

o

(6" (1 + ep)? F ()™

d+n
1
6=0 p (V > 1 h(k)(0)> = —h"D(0) =n! >0
a k=n

So we see that (6.16) and (6.18) are equivalent, and if they are satisfied,

" (1 + €)' F(¢) = ¢" + O(¢™ ), or F(¢) = ¢ + O(¢?)

So F(¢) > 0 for ¢ near 0.

We can rewrite the relation (6.18) more explicitly:

o0
vo= ) ﬁ [n((1+€g)™ 19" )8 — (1 + eg) ")V
k=0
“ro k d+1)! . k d! .
) k;m’m(”(n—l)(”‘”!ww—k)!e tr ()
d+n

= Y Cirr e (6.19)

k=n—1

Here
k'd!
(k—n+D(d+n—k)!

Cp = (ne(d+1) — 7(k —n+1)) (6.20)
Cpno1=nle, Cyin =—(d+n)l(r — ne)

So, when k starts from n — 1 to d + n, Cy change signs from positive to negative if and only if

A =7 —ne > 0. We need the following simple lemma later.

Lemma 36. Let P(z) = Ei:o a;x’ — E;VZZH ajz? be a polynomial function. Assume a; > 0 for

0 < a; < N. Then there exists a unique root for P(z) on [0,00).

Proof. First P(0) = ag > 0. Since ay < 0, when z is large enough P(z) < 0. So there exists at
least one root on [0,00). Assume there are more than one root, than it’s easy to see that P’(x)

has at least two roots on [0,00). Note that P’(x) has the same form as P(z), so P”(x) has at
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least two roots on [0, 00). By induction, P(!)(z) has at least two roots on [0,00), but P®)(z) has

only negative coefficients, so it has no root at all. This contradiction proves the lemma. O

6.5 Complete noncompact case

We prove theorem 33 in this section.

6.5.1 Condition at infinity

As ¢ — +o0,

F(6) = v(1 + ed) 6" + T4 1 o(1) (6.21)

Let ¢ = by > 0 be the first positive root for F(¢) = 0, then F'(b1) < 0. By (x), F'(b1) =
n — (1 —ne)by. Soif A =7 — ne < 0, there exits no such b;. If A = 7 — ne > 0, we integrate

(6.12) to get

[
r=r@)= [t o) (622)

then the metric is defined for —oo < r < r(by). We require that
Tmaz = T(bl) = 400 (623)

We can also calculate the length of radial curve extending to infinity. In a fixed fibre, the

radial vector

B 1 N
or a\§| Zg aga = 5 Vrad

1
= Zgw(vrada Vrad) = C(Pss + R@ssz) =C9,

The completeness implies that the length of the radial curve extending to infinity is infinity:

r(b1) b b1 .
/ @dw/ Vonor o= [ qwdgb:/o F(6) ¥dé = +oo  (6.24)

If 0 < by < 400,(6.24) means F(¢) = c(¢ — b1)> + O((¢ — b1)3), i.e. F'(by) = F(b1) = 0.

But this can’t happen: b; = and ¢ = —(7 — ne). First we have b; > 0. Second, ¢ > 0

T— ne’

since F(¢) > 0 when ¢ < b;. But they contradict with each other.

In conclusion, there can’t be any finite value positive root for F(¢).
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6.5.2 Existence and asymptotics

1. (A =7 —ne > 0) The solution is a shrinking Kéhler-Ricci soliton. If p < 0, then when ¢
becomes large, the dominant term in F(¢)(6.21) is fqﬁ < 0, so there exists 0 < b < +o0

such that F(b) = 0. But this is excluded by former discusions. So we must have p > 0.

If v < 0 the dominant term is v =" (1 + €¢) ~™eH?® < 0, so there is 0 < b < +00, such that

F(b) = 0. Again, this is impossible. If v > 0, when ¢ becomes large, the dominant term is

Vd)lfdfne,ud)
400
1

+oo 1
—ds<C ¢d+” le=hdp < 400
/0 F(S) b0

This contradicts (6.23). So we must have v = 0. This gives us an equation for y via (6.19).
Since when A\ = 7 — ne > 0, C}\ change signs exactly once, by lemma 36, there exists a
unique p such that v(p) = 0 in (6.19). We now verify this p guarantees the positivity of

$too +00. We have also F(¢) > 0

¢r. Since the dominant term in (6.21) is fqb >0, F(¢)
for ¢ near 0. If ¢ = by > 0 is the first root and ¢ = by > 0 is the last root of F(¢), then
b1 S bg, and

F'(by) = —Aby +n <0, F(by)=—Aby+n>0

So by > § > by, this implies by = by and F'(b;) = 0. We have ruled out this possibility
before. In conclusion, F'(¢) > 0 for all ¢ > 0, or equivalently ¢, > 0 for all r.

So we already get the soliton. In the following, we study the limit of flow as time approaches
singularity time.

Define p = % ==,

_ [P du _ [Pdu pu—Fu), _ _
) —ron = | = % /¢ s = (o9~ og o) + Gl 9)

o , DU qu
o(r) = (boe—p?“(qﬁo)e—G(dJo,dJ)em _ ¢06—P7’(¢o)e—G(¢o7¢(T))SP (6.25)
The holomorphic vector field —% = 53" o2 ¢+ generates the 1-parameter family of au-

tomorphisms: o(f) - (u, &) = (u,eff). Let

() = —i log(1 — At) (6.26)
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lim (1 — M)o(f)*¢ = ¢pe Pr(00)e= iMoo G(60:0) Jim (1 — AE)((1 — M)~ K s)?
t—>§ t—»%

— ¢Oe—pr(¢o)€—G(¢oy+OO)Sp = Dps?

So
lim (1 — A\t)o(£)*¢, = lim (1 — M\t)o(£)*F(¢) = pDos?
t%% t%%
(6.6) can be rewritten as
w=(1+ep)m"wps + (BlE] *das + (¢r — 9)[€]"E2E")VEX A VEP (6.27)
E%a—mw@m;: DﬂfwM+¢mr%w+@—1mr%%%va€?

A

D065 <1Sp)
p

Remark 48. One sees that as t — %, the flow shrinks the base (zero section of the vector
bundle). In the model case, M = P™~1 [ = O(—1), the flow contracts the manifold to the
affine cone of the Segre embedding P! x P"~1 — P™n—1_ This is the same phenomenon

as that appears for the symplectic quotients at the beginning of this note.
2. (A =7 — ne = 0) the solution is a steady Kéahler-Ricci soliton.
d+n—1

F(9) = v(1 4 0) 10! e —n(14 )91 30 o (14 €)oY

k=0

(k)

If > 0, then v(i) > 0 by (6.19). So the dominant term in (6.21) is v(1 + ep) 4@t~ "er?,

SO Tmar < +00.

So p < 0 and the dominant term in (6.14) is the constant term —%>0. As ¢ — Fo0,

ﬂ@nnu+gnl+0<l>QQl+o(l>

I I ¢ ¢? ¢ ¢?
du 1 Co
—_— = — —_— 1 — =
/ P Clu + 2 og(ciu — ¢c2) = R(u)

r(9) —r(d) = /¢F"(Z): :dj‘+/¢(F(1w_f)du



Since ¢; > 0 and ¢a >0 (u < 0,d >0, n > 1), R(u) is an increasing function for u > 0,
and has an inverse function denoted by R™1. Let G(r) = —G(¢o, ¢(r)) + R(do) — (o),

then G is a bounded smooth function of r. We have

The condition (6.24) is always satisfied. There is a family of steady Ké&hler-Ricci solitons.

Remark 49. If we let d = 0, then we get expanding solitons on C™. 6.18 becomes vu™ = nl.

The equation becomes

1 |l = (=n*
(lul@)r = (=1)"nl(|ul¢)" e + nl
| | 2 TR
In particular, if n = 1, the equation becomes
o 1
¢r:F(¢):VeM -
1
1 1 C|z|?
o(r) = ——log(uv + Ce") = —=log(1+ C|z|?), ¢p = ———- "
(r) . ( ) . ( |21%) T O
Or ds A d3 Cdz NdZ  w=yC>: 1 dwAdw
W = ¥4 = - = _—
|22 p(l+CJz[?) —p 1+ [w]?

This is cigar steady soliton.

3. (A =7 — ne < 0) the solution is an expanding Kéhler-Ricci soliton. By similar argument,
we see that p < 0. The situation is similar to the shrinking soliton case. Now t — % <0,

or equivalently  — —oo (6.26),

o(r) = ¢Oe—pr(¢o)e—G(¢o,¢(T))sp

lim (1 = Xt)o (8)* ¢, = lim (1 — Ao (£)*F(¢) = pDos?

t—>; t_’x

~ =(1
lim (1 — At)o(t)"w = Dodd <p5p>

t—

The condition (6.24) is always satisfied. So there is a family of expanding Kéahler-Ricci

solitons.

Remark 50. One could apply the same argument in [FIK] to get the Gromov-Hausdorff conver-
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gence and continuation of flow through singularity time.

6.6 Compact shrinking soliton

We prove theorem 34 in this section. First we show the considered manifold is Fano. For some

results on Fano manifolds with a structure of projective space bundle, see [SzWi.
Lemma 37. If A\ =7 —ne > 0, then P(C® L®") is Fano.

Proof. Let E =C @ L®™ and X = P(E). We have the formula for anti-canonical bundle:
Ex'=(n+1)0(1) + 7" (K + L")

O(1) is the relative hyperplane bundle. Since ¢1(L™1) = €[ws] > 0, one can prove O(1) is nef
on X [Laz]. ¢ (K]\}l + L®") = (1 — ne)wr] > 0, so K]\}l + L®" is an ample line bundle on M.
So O(1) and 7* (K, + L®") are different rays of the cone of numerically effective divisors in

Pic(P(E)) = ZPic(M) + ZO(1). So K" is ample, i.e. X is Fano. O

The construction of shrinking soliton was developed for the n=1 case, see [Cal2], [Koi], [Cao],
[FIK]. We will give a simple direct argument under our setting. Note here we will use Tian-Zhu’s
theory [TiZhu| to get the uniqueness of Kéhler-Ricci soliton.

First we need to know the expression for the metric near infinity. By change of coordinate

[17517§2a"' 75”] = [77,17?12,"' ,Un]

So the coordinate change is given by

1 Us Un, 1 &o &n
) ) yQn — — — = T = " s Up = —
&1 &2 , ¢ n 3 U 3 3
Since
0 0 - 0 0 0
56 = o 2" C O~ "G,

So the radial vector Y ;- fa% = —778—6:7 is a holomorphic vector field on P(C @ L®"). The dual

1-forms transform into

1 _ 1 dug  Uq _ dug  uq
vel = —?(dn —na~'0a) = —?wo, VES = e —2(dn —na"t0a) = —= — —

wo
n? non
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Note that the dual basis for the basis {dz;,wo, duq} is

0 _10a 0 0
VZi - 5‘21 +a 82177377]7 877],

0

O

So making coordinate change,
ug__

Uaug 1 Ug > (1 - >
—du, — —wo | A | =dig — =W
> < 2 )\

1+ Pys)wpyr + a (Pséa + Posa—> Ug,
( ) 2.2 ’ 2 ) \n

w =
a=2 =2
- ug wo 1. ag__ " o U (1 Uq Wo
— Pssa2—ﬁ—/\ <du —w0> — Pssa”— (dua—wo N =
52::2 e "\ P ; In[* \n n? Uk
1 [ wo AWy
a(Py + Pyya—0) 000
n[>" Inl*
- (1+Pgs)wM+ii(P95ag+ngs Uolls 5 gy Adug
‘ ‘ Tl uP 1 A [uf?
a=2 f=2
- ﬂoﬂ? 2 — - Ugﬁ 2 U
N (P, + Ps)s’dug Nog — > ———— (P, + Py, A di46.28
2 it e B Poes)sdia A5 ﬁzzza<1+lu|2>2( T Fuas)Tuo 1 dug0.28)

1
+—————(Ps + Pyys)s*wo AW
a(l T ‘u|2)( s 555)5 wo wo
In the above calculation, we used many times the relation s = al¢]? = “(1‘:7"3‘2)

Lemma 38. The closing condition for compact shrinking soliton is: there exists a by > 0, such

that
F(b)=0,F'(by) = -1 (6.29)

Proof. Define 5 = s71 = a(1l+‘\z|2) Under the condition (6.29), then near by, ¢. = F(¢) =
—(¢ —b1) + O((¢ — b1)2. So up to the main term, ¢ — by ~ —Coe™" = —C’O% = —(Cys for some
Co > 0, (Ps8)55? = ¢s5% ~ Cp, Pyss? = (Pys)ss — Pys = ¢gs — ¢ ~ —by + 20 = —by + 203,

S S
. So we first see that the coefficients in (6.28) are smooth near infinity divisor defined by 1 =0

(or equivalently § = 0). We only need to show w is positive definite everywhere. In fact, we only

need to check when § = 0. When § = 0, we have
w:(1+b1)wM+ii(b15 - b Uati ) 1 dug N du +Lwo A Wy
T P T+ [P T T a(T o [uf?)

a=2 B=2

So w is positive definite. So it defines a smooth Kéahler metric on the projective compactification.
O
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By (), this condition determines

n+1 n—+1
b]_: =
T —ne A

Since F'(0) = 0, this condition is equivalent to

by
0=F(b) — F(0) = /0 h(@)e " ¢do = () (6.30)

by by
T(0) = /0 h(p)dg = /0 (1+ )¢ (r — )p— 1)

Il
—
M-

(d> Ek()\(ﬁ]ﬁ_n _ ¢k+n—1)d¢

k=0
A\ pikin Aby n
= 2 ) e
= n n
d
AN k
— b +n 0
];) (k)e U tnt Dktn)
On the other hand,
1 d+n
T(p) = W Z udJrnfk(h(k)(()) — h(k)(bl)ewbl)
k=0

Since 2(?)(0) < 0 (6.20), and lim,— . e = 0. Tt’s easy to see that T'(x1) < 0 for p sufficiently
large. So there is a zero point for T'(u) on (0, 00). The uniqueness is difficult to see directly, but
because different solutions of (6.30) would give proportional vector fields and hence proportional

potential functions, by using Tian-Zhu’s invariant [TiZhu], we indeed have the uniqueness.
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