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Abstract: In this paper we introduce the “interpolation–degeneration” strategy to study
Kähler–Einstein metrics on a smooth Fano manifold with cone singularities along a
smooth divisor that is proportional to the anti-canonical divisor. By “interpolation” we
show the angles in (0, 2π ] that admit a conical Kähler–Einstein metric form a connected
interval, and by “degeneration” we determine the boundary of the interval in some
important cases. As a first application, we show that there exists a Kähler–Einstein metric
on P

2 with cone singularity along a smooth conic (degree 2) curve if and only if the angle
is in (π/2, 2π ]. When the angle is 2π/3 this proves the existence of a Sasaki–Einstein
metric on the link of a three dimensional A2 singularity, and thus answers a question
posed by Gauntlett–Martelli–Sparks–Yau. As a second application we prove a version
of Donaldson’s conjecture about conical Kähler–Einstein metrics in the toric case using
Song–Wang’s recent existence result of toric invariant conical Kähler–Einstein metrics.
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1. Introduction

The existence of Kähler–Einstein metrics on a smooth Kähler manifold X is a main
problem in Kähler geometry. For the case when the first Chern class of X is negative,
this problem was solved by Aubin [3] and Yau [74]. For the case when the first Chern
class is zero, this problem was settled by Yau [74]. The main interest at present lies in
the case of Fano manifolds, when the first Chern class is positive. There is the famous
Yau–Tian–Donaldson program which relates the existence of Kähler–Einstein metrics
to algebro-geometric stability.

More generally one could look at a pair (X, D) where D is a smooth divisor in
a Kähler manifold X , and study the existence of Kähler–Einstein metrics on X with
cone singularities along D and smooth away from D. This problem was classically
studied on the Riemann surfaces [45,48,72] (see also a recent paper [20]) and was first
considered in higher dimensions by Tian in [65]. Recently, there is much new interest on
this generalized problem, mainly due to Donaldson’s program (see [25]) on constructing
smooth Kähler–Einstein metrics on X by varying the cone angle along an anti-canonical
divisor. There are many subsequent works, see, for example, [6,34].

From now on in this paper, we assume X is a smooth Fano manifold, and D is a
smooth divisor which is Q-linearly equivalent to −λK X with 0 < λ ∈ Q. β will always
be a number in (0, 1]. We say (X, D) is log canonical (resp. log Calabi–Yau, resp. log
Q-Fano) polarized if λ > 1 (resp. λ = 1, resp. λ < 1). We will study Kähler–Einstein
metrics in 2πc1(X) with cone singularities along D. The equation is given by

Ric(ω) = r(β)ω + 2π(1 − β){D}, (∗)
where 2πβ is the angle along D. For brevity we say ω is a conical Kähler–Einstein met-
ric on (X, (1 − β)D). Note that when β = 1, conical Kähler–Einstein metrics become
smooth Kähler–Einstein metrics.

Recall that the Ricci curvature form of a Kähler metric ω can be calculated as

Ric(ω) = −√−1∂∂̄ logωn .

In other words, the volume form ωn determines a Hermitian metric on K−1
X whose

Chern curvature is the Ricci curvature. So in particular, it represents the cohomology
class 2πc1(X). By taking cohomological class on both sides of the equation (∗), we
obtain

r(β) = 1 − (1 − β)λ. (1)
We will use the above notation throughout this paper. Given a pair (X, D), we define
the set

E(X, D) = {β ∈ (0, 1]| There is a conical Kähler–Einstein metric on (X, (1 − β)D)}.



Conical Kähler–Einstein Metrics Revisited 929

Theorem 1.1. If λ ≥ 1, then E(X, D) is a connected relatively open interval in (0, 1],
which contains (0, 1 − λ−1 + ε) for some ε = ε(λ) > 0.

The last property essentially follows from the work of [34] and [6], and we will
review it in Sect. 2. Now suppose X admits a smooth Kähler–Einstein metric and λ ≥ 1,
then by Theorem 1.1 there exists a Kähler–Einstein metric ωβ on (X, (1 − β)D) for
any β ∈ (0, 1]. By [11] and [6] we know ωβ is unique for β ∈ (0, 1). Moreover, by the
implicit function theorem in [25] ωβ varies continuously when β varies. When β goes
to one, we have

Theorem 1.2. If X admits a Kähler–Einstein metric and Aut (X) is discrete, then the
potential of ωβ converges to the potential of ωK E in the C0 norm, where ωK E is the
unique smooth Kähler–Einstein metric on X.

Remark 1.3. This is in a similar flavor to Perelman’s theorem [70], that the Kähler–Ricci
flow converges on a Kähler–Einstein Fano manifold. In particular, when λ = 1 this
provides evidence for Donaldson’s program. An algebro-geometric counterpart about
K-stability was shown in [49,59]. When β tends to zero, this is related to a conjecture
of Tian [65] that the rescaled limit should be a complete Calabi–Yau metric on the
complement of D.

When Aut (X) is not discrete, we will prove the convergence of ω to a distinguished
Kähler–Einstein metric ωD

K E , modulo one technical issue, see Sect. 7. The issue is that,
since we need to work in different function spaces corresponding to different cone angles,
the application of implicit function theorem is more delicate as shown by Donaldson in
[25], and Donaldson’s linear theory does not provide uniform Schauder estimate when
β is close to 1. However, in this case even though the Kähler–Einstein metrics on X are
not unique, we can still identify the correct limit Kähler–Einstein metric in the moduli
space. To do this, we use Bando–Mabuchi’s bifurcation method. The result we find is
that, the only obstruction for solving the conical Kähler–Einstein metric from β = 1 to
β = 1 − ε (for 0 < ε � 1) comes from the holomorphic vector fields on X tangent to
D, i.e., LieAut (X, D). If we assume λ ≥ 1, then Aut (X, D) is discrete, and hence the
obstruction vanishes. For more details, see the discussion in Sect. 7.

Another motivation for this paper comes from the study of conical Kähler–Einstein
metrics on our favorite example P

2. In this case when D is a smooth curve of degree
bigger than two, we are in the setting of the above theorem and we know the conical
Kähler–Einstein metrics exist on (X, (1−β)D) for allβ ∈ (0, 1]. When the degree is one
or two, we are in the case λ < 1. We have an obstruction coming from log K-stability.

Theorem 1.4. Ifλ < 1, then there is no conical Kähler–Einstein metric on (X, (1−β)D)
for β < (λ−1 − 1)/n, where n is the dimension of X.

This immediately implies that there is no Kähler–Einstein metric on P
2 which bends

along a line, which could also be seen from the Futaki invariant obstruction. The most
interesting case is when the degree is 2.

Theorem 1.5. When D is a smooth conic in P
2, i.e., a smooth degree two curve, then

E(X, D) = (1/4, 1].
From the proof we also speculate the limit of the conical Kähler–Einstein metrics ωβ

as β tends to 1/4. As an application of the above theorem, we have
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Corollary 1.6. A three dimensional A2 singularity x2
1 + x2

2 + x2
3 + x3

4 = 0 admits a
Calabi-Yau cone metric with the natural Reeb vector field.

This settles a question in [29]. As mentioned in [29], such a Calabi–Yau cone metric
on A2 might be dual to an exotic type of field theory since the corresponding Calabi–
Yau cone does not admit a crepant resolution. Note this shows that the classification
of cohomogeneity one Sasaki–Einstein manifolds given in [21] is incomplete, which
is confirmed by the numerical result and calculations by the first author in [42]. See
Remark 5.4.

Now we briefly discuss the strategy to prove the above results. The proof of Theorem
1.1 follows from the following “interpolation” result. Here one point in the statement
is that the log-Mabuchi-energy is well defined on the space of admissible functions
denoted by Ĥ(ω), which includes all the Kähler potentials of conical Kähler metrics for
different angles. The definition of log-Mabuchi-energy and log-Ding-energy, as well as
Ĥ(ω), will be given in Sect. 2.

Proposition 1. As functionals on Ĥ(ω), the log-Mabuchi-energy Mω,(1−β)D is linear
in β. The normalized log-Ding-energy r(β)Fω,(1−β)D is concave downward in β up to a
bounded constant. As a consequence, if the log-Mabuchi-energy (resp. log-Ding-energy)
is proper for β1 ∈ (0, 1] and bounded from below for β2 ∈ (0, 1], then for any β between
β1 and β2, the log-Mabuchi-energy (resp. log-Ding-energy) is proper, so there exists a
conical Kähler–Einstein metric on (X, (1 − β)D).

By combining Proposition 1 with the openness result of Donaldson [25], and the
result of Berman [6] (see section 4.3) we easily see that

Corollary 1.7. If λ ≥ 1 and there is a conical Kähler–Einstein metric on (X, (1−β)D)
for 0 < β < 1, then the log-Mabuchi energy Mω,(1−β)D is proper.

Theorem 1.1 easily follows from the above proposition. In general, to apply Proposi-
tion 1, we often need to get the lower bound of log-Mabuchi-energy. For this we introduce
the “degeneration” method. We have

Theorem 1.8. If there exists a special degeneration (X , (1−β)D,L) of (X, (1−β)D)
to a conical Kähler–Einstein variety (X0, (1 − β)D0). Assume X0 has isolated Q-
Gorenstein singularities. Then the log-Ding-functional and log-Mabuchi-energy of
(X, (1 − β)D) are bounded from below.

Remark 1.9. Here the assumption that X0 has isolated singularities is purely technical,
but it is satisfied for our main application here to prove Theorem 1.5. We now know a
general statement to be true(see Remark 4.11 in Sect. 5).

In particular, we provide an alternative proof of a special case of a theorem of Chen
[18]:

Corollary 1.10 (Chen’s theorem in the Kähler–Einstein case). If there exists a special
degeneration of Fano manifold (X, J ) to a Kähler–Einstein manifold (X0, J0), then the
Mabuchi energy on X in the class 2πc1(X) is bounded from below.

To rule out the existence for small angles stated in Theorem 1.4, we need to generalize
the K-stability obstructions to the conical setting.
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Theorem 1.11. If the log-Ding-functional Fω,(1−β)D or the log-Mabuchi-energy Mω,

(1 − β)D is bounded from below(resp. proper), then the polarized pair ((X, (1 −
β)D),−K X ) is log-K-semistable(resp. log-K-stable).

Corollary 1.12. (1) If there exists a conical Kähler–Einstein metric on (X, (1 − β)D),
then ((X, (1 − β)D);−K X ) is log-K-semistable. As a consequence, if λ ≥ 1, then
((X, (1−β)D);−K X ) is log-K-semistable for 0 ≤ β < 1−λ−1 + ε for some ε > 0

(2) Assume λ ≥ 1 and 0 < β < 1. If there exists a conical Kähler–Einstein metric on
(X, (1 − β)D), then ((X, (1 − β)D);−K X ) is log-K-stable.

Theorem 1.5 is proved by the above “interpolation–degeneration” method. We first
use Theorem 1.4 to show E(X, D) ⊂ [1/4, 1]. Then we find an explicit special degen-
eration of (X, 3/4D) to (P(1, 1, 4), 3/4D0) where D0 = {z3 = 0} which admits the
natural conical Kähler–Einstein metric. Since X itself admits a Kähler–Einstein metric,
Theorem 1.5 will follow from the interpolation argument using Theorem 1.8. A technical
point is that we do not get the full properness of Ding functional due to the presence of
holomorphic vector fields. For details, see Sect. 5.

The organization of the paper is as follows. In Sect. 2, we review some prelimi-
nary materials, including the definition of Hölder norms with respect to conical Kähler
metrics, various energy functionals, and existence theory for conical Kähler–Einstein
metrics. We prove Proposition 1, Theorem 1.1 and Corollary 1.7 in Sect. 2.4. In Sect. 3,
we explain the obstructions to the existence of conical Kähler–Einstein metrics. In par-
ticular, we prove Theorem 1.11 and its Corollary 1.12, and Theorem 1.4. In Sect. 4,
we prove Theorem 1.8. In Sect. 5, we prove Theorem 1.5 and obtain Corollary 1.6. In
Sect. 6, we discuss the construction of smooth Kähler–Einstein metrics using branch
covers. In Sect. 7, we prove Corollary 1.2. We also prove (modulo one technical point)
the convergence in the case when there are holomorphic vector fields on X .

After finishing the draft of this paper, we received the paper by Song and Wang [58].
In the last Sect. 8, we discuss the relation of their work to our paper. In addition to some
overlaps with our results, they proved an existence result in the toric case. The conical
Kähler–Einstein spaces they obtained can serve as the degeneration limits of toric Fano
manifolds with some smooth pluri-anticanonical divisors. So combining their existence
result in the toric case with the strategy in this paper, we show, in the toric case, a version
of Donaldson’s conjecture which relates the maximal cone angle and the greatest lower
bound of Ricci curvature. To state this result, first define

R(X) = sup{t | ∃ Kähler metric ω ∈ 2πc1(X) such that Ric(ω) ≥ tω}. (2)

Proposition 2. Let X be a toric Fano manifold. For each λ sufficiently divisible, there
exists a sub-linear system Lλ of |−λK X | such that for any general member D ∈ Lλ, if
D is smooth, then there exists a conical Kähler–Einstein metric on (X, (1 − γ )λ−1 D)
with positive Ricci curvature if and only if γ ∈ (0, R(X)).

Remark 1.13. The smoothness assumption is easily satisfied when dim(X) ≤ 2. It seems
to be guaranteed by choosing Lλ more carefully. See the discussion in Remark 8.6. In
general, if D is not smooth, then there exists a weak solution (i.e., bounded solution) to
the conical Kähler–Einstein equation.

The idea of the proof is similar to the proof of Theorem 1.5, again using the
“interpolation–degeneration” method. The sublinear system Lλ we construct has the
property that for each general member D in Lλ, (X, D) has a degeneration to the toric
conical Kähler–Einstein pair (X, D0) constructed by Song–Wang.
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The interpolation properties of energy functionals obtained in this paper seem to be
observed by some other experts in the field too. In particular, we were informed by
Professor Arezzo that he also observed this.

2. Existence Theory on Conical Kähler–Einstein Metrics

2.1. Space of admissible potentials. In this paper, all Kähler metrics will be in the class
2πc1(X).

Definition 2.1. (1) A conical Kähler metric on (X, (1−β)D) is a Kähler currentω in the
class 2πc1(X) with locally bounded potential, smooth on X \ D, and for any point
p ∈ D, there is a local coordinate {zi } in a neighborhood of p such that D = {z1 = 0}
such that ω is quasi-isometric to the model metric:

dz1 ∧ dz̄1

|z1|2(1−β) +
n∑

i=2

dzi ∧ dz̄i . (3)

Geometrically, ω represents a Kähler metric with cone singularities along D of angle
2πβ.

(2) A conical Kähler–Einstein metric on (X, (1−β)D) is a conical Kähler metric solving
the equation

Ric(ω) = r(β)ω + 2π(1 − β){D}.
Here {D} is the current of integration on D, and r(β) = 1 − (1 − β)λ.

Now we follow Donaldson [25] to define the Hölder norm with respect to conical
metric. let (z1, z2, . . . , zn) be the coordinates near a point in D as chosen above. Let
z = reiθ and let ρ = rβ . The model metric in (3) becomes

(dρ +
√−1βρdθ) ∧ (dρ −√−1βρdθ) +

∑

j>1

dz j ∧ dz̄ j

Let ε = e
√−1βθ (dρ +

√−1βρdθ), we can write

ω = √−1
(

f ε ∧ ε̄ + f j̄ε ∧ dz̄ j + f j dz j ∧ ε̄ + fi j̄ dzi ∧ dz̄ j

)
(4)

Definition 2.2. (1) A function f is in C ,γ,β(X, D) if f is Cγ on X \ D, and locally near
each point in D, f is Cγ in the coordinate (ζ̂ = ρeiθ = z1|z1|β−1, z j ).

(2) A (1,0)-form α is in C ,γ,β(X, D) if α is Cγ on X \ D and locally near each point in
D, we have α = f1ε +

∑
j>1 f j dz j with fi ∈ C ,γ,β for 1 ≤ i ≤ n, and f1 → 0 as

z1 → 0.
(3) A (1,1)-form ω is in C ,γ,β(X, D) if ω is Cγ on X \ D and near each point in D we

can write ω as (4) such that f, f j , f j̄ , fi j̄ ∈ C ,γ,β , and f j , f j̄ → 0 as z1 → 0.

(4) A function f is in C2,γ,β(X, D) if f, ∂ f, ∂∂̄ f are all in C ,γ,β .

It is easy to see that the above definitions do not depend on the particular choice of
local complex chart. Donaldson set up the linear theory in [25].

Proposition 3 ([25]). If γ < μ = β−1 − 1, then the inclusion C2,γ,β(X, D) →
C ,γ,β(X, D) is compact. If ω is a C ,γ,β Kähler metric on (X, D) then the Laplacian
operator for ω defines a Fredholm map 
ω : C2,γ,β(X, D)→ C ,γ,β(X, D).
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In order to consider the conical Kähler–Einstein metrics for different cone angles at
the same time, we define the following space

Definition 2.3. Fix a smooth metric ω0 in c1(X), we define the space of admissible
functions to be

Ĉ(X, D) = C2,γ (X) ∪
⋃

0<β<1

⎛

⎝
⋃

0<γ<β−1−1

C2,γ,β(X, D)

⎞

⎠ ,

and the space of admissible Kähler potentials to be

Ĥ(ω0) = {φ ∈ Ĉ(X, D)|ωφ := ω0 +
√−1∂∂̄φ > 0}.

Note that Ĥ(ω0) includes the space of smooth Kähler potentials

H(ω0) = {φ ∈ C∞(X)|ω0 +
√−1∂∂̄φ > 0},

and is contained in the bigger space of bounded ω0-plurisubharmonic functions
PSH∞(ω0) = PSH(ω0) ∩ L∞(X) where

PSH(ω0) = {φ ∈ L1
loc(X);φ is u.s.c. and ω0 +

√−1∂∂̄φ ≥ 0}.
Modulo constants the space of admissible Kähler metrics corresponding to Ĥ(ω0) con-
sists exactly C ,γ,β Kähler metrics on (X, D) for different γ and β.

We will need the following fundamental openness theorem proved by Donaldson.

Theorem 2.4 ([25]). Let β0 ∈ (0, 1), α < μ0 = β−1
0 − 1 and suppose there is a C2,α,β0

conical Kähler–Einstein ωβ on (X, (1 − β0)D). If there is no nonzero holomorphic
vector fields on X tangent to D, then for β suifficiently close to β0 there is a C2,α,β

conical Kähler–Einstein metric on (X, (1 − β)D).
For later applications, we give a slight generalization. We use an idea from [54,

Theorem 2]. Let Aut (X, D) be the automorphism group of the pair (X, D), and let
G = I som(X, D, ωβ0) denote the isometry group of C2,α,β0 conical Kähler–Einstein
metric ωβ0 on (X, (1 − β0)D), so that Lie(G) = {Killing vector field of (X, D, ωβ0)}.
Let

(�R

r(β0)
)0 =

{
θ ∈ C∞(X,R); (
ωβ0

+ r(β0))θ = 0,
∫

X
θ
ωn
β0

n! = 0

}
.

Lemma 2.5 ([16,19,46]). We have the isomorphism:

(�R

r(β0)
)0 ∼= Lie(G).

Lie(Aut (X, D)) = (�R

r(β0)
)0 ⊗R C = (�C

r(β0)
)0.

(5)

Note that the isomorphism (5) is given as follows. For any θ ∈ (�R

r(β0)
)0, we asso-

ciate Vθ := −J∇ωβ0
θ ∈ Lie(G). Equivalently, we have the identity ιVωβ0 = dθ .

From this, it’s easy to see that the isomorphism is equivariant under the action of
G = I som(X, D, ωβ0).
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Proposition 4. With the above notations, let H < G be a closed subgroup. Assume that
CentrG H is finite. Then for β sufficiently close to β0, there is a H-invariant C2,α,β

conical Kähler–Einstein metric on (X, (1 − β)D).
Proof. If we adapt Donaldson’ proof to H -invariant C2,α,β conical Kähler metrics, we
just need to show that the H -invariant functions in (�R

r(β0)
)0 is 0. By the above isomor-

phism, any θ = θV ∈ (�R

r(β0)
)0 gives rise to a Killing vector field Vθ = −J∇ωβ0

θ .
If θ is H -invariant, then by the G-equvariance of the isomorphism (5), Vθ is also
H -invariant. By the assumption the only fixed point of H on Lie(G) is 0. So Vθ = 0
and hence θ = 0. ��

2.2. Energy functionals and analytic criterions. In the analytic study of Kähler–Einstein
metrics, various functionals play important roles. We review them carefully in this sub-
section. Although they were originally defined on the space of smooth Kähler potentials
H(ω0), they can be naturally extended for φ ∈ Ĥ(ω0), and some of them can even be
defined on PSH(ω0) ∩ L∞(X).

Definition 2.6. For any φ ∈ H(ω0), we define the functionals

(1)

F0
ω0
(φ) = − 1

(n + 1)!
n∑

i=0

∫

X
φωi

φ ∧ ωn−i
0

(2)

Jω0(φ) = F0
ω0
(φ) +

∫

X
φωn

0/n!

(3)

Iω0(ωφ) =
∫

X
φ(ωn

0 − ωn
φ)/n!,

By pluripotential theory the above functionals are also well-defined for φ ∈
PSH(ω0) ∩ L∞(X). The following facts are also well known.

Proposition 5 ([2,4]).

(1) If φt is a smooth path in H(ω0), then

d

dt
F0
ω(φt ) = −

∫

X
φ̇ωn

φ/n!, (6)

(2)
n + 1

n
Jω(φ) ≤ Iω(φ) ≤ (n + 1)Jω(φ), (7)
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Remark 2.7. Equation (6) tells us that F0
ω(φ) is the integral of Bott–Chern form. (See

[66]) If we let h be the Hermitian metric on K−1
X such that ωh := −√−1∂∂̄ log h = ω.

Denote hφ = he−φ . Connect h and hφ by any path ht = he−φt . The corresponding path
of curvature formsωt = ωht = ω+

√−1∂∂̄φt connects ω andωφ . The Bott–Chern form
is defined by

BC
(

c1(K
−1
X )n+1; h, hφ

)
= −

∫ 1

0
dt (n + 1)h−1

t ḣt c1(K
−1
X , ht )

n = (n + 1)
∫ 1

0
dt φ̇ωn

t .

So we have the following identities

F0
ω(φ) = − 1

(n + 1)!
∫

X
BC

(
c1(K

−1
X )n+1; h, hφ

)
.

We now recall the generalization (see [6,34,40]) of the Mabuchi-energy ([47]) and Ding-
energy ([23]) to the conical setting. In the next section we will show that log-Mabuchi-
energy integrates log-Futaki invariant. First we introduce some more notations. For the
smooth metric ω0 in c1(X), define the twisted Ricci potential Hω0,(1−β)D by

Ric(ω0)− r(β)ω0 − 2π(1 − β){D} = √−1∂∂̄Hω0,(1−β)D,∫

X
eHω0,(1−β)D

ωn
0

n! =
∫

X

ωn
0

n! .

It is easy to see that up to a constant Hω0,(1−β)D = hω0 − (1 − β) log |sD|2, where hω0

is the usual Ricci potential of ω0, defined by the following identities:

Ric(ω0)− ω0 = √−1∂∂̄hω0 ,

∫

X
ehω0

ωn
0

n! =
∫

X

ωn
0

n! .

|sD|2 is the norm of the defining section of D under the Hermitian metric on −K X
satisfying −√−1∂∂̄ log |sD|2 = ω0. We will use the following definition of volumes in
this paper:

V ol(X) =
∫

X

ωn

n! = (2π)n
〈c1(K

−1
X )n, [X ]〉
n! ,

V ol(D) =
∫

D

ωn−1

(n − 1)! = (2π)n−1 〈c1(K
−1
X )n−1, [D]〉
(n − 1)! .

Definition 2.8. (1) (log-Mabuchi-energy) For any φ ∈ Ĥω0

Mω0,(1−β)D(ωφ) =
∫

X
log

ωn
φ

eHω0,(1−β)Dωn
0

ωn
φ

n! + r(β)

(∫

X
φ
ωn
φ

n! + F0
ω0
(φ)

)

+
∫

X
Hω0,(1−β)D

ωn
0

n!
=
∫

X
log

ωn
φ

eHω0,(1−β)Dωn
0

ωn
φ

n! − r(β)(I − J )ω0(ωφ)

+
∫

X
Hω0,(1−β)D

ωn
0

n! .
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(2) (log-Ding-energy)

Fω0,(1−β)D(ωφ) = F0
ω0
(φ)− V ol(X)

r(β)
log

(
1

V ol(X)

∫

X
eHω0,(1−β)D−r(β)φ ω

n
0

n!
)
.

We will also call r(β)Fω0,(1−β)(ωφ) the normalized log-Ding-energy.

When β = 1 these functionals go back to the original functionals on smooth mani-
folds, which we denote by Mω0 and Fω0 for simplicity.

By studying the behavior of conical metrics near D, it is not hard to see that the above
functionals Mω1(ω2), etc. are all well defined for any a Cγ1,β1 metric ω1 and Cγ2,β2

metric ω2. We have the following proposition generalizing the facts in the smooth case.
(see [6,69])

Proposition 6. (1) The Euler–Lagrange equations of log-Mabuchi-energy and log-Ding-
energy are the same:

(ω0 +
√−1∂∂̄φ)n = e−r(β)φeHω0,(1−β)Dωn

0

(2) The log-Mabuchi-energy and log-Ding-energy differ by a cocycle:

Mω0,(1−β)D(ωφ)=r(β)Fω0,(1−β)D(ωφ)+
∫

X
Hω0,(1−β)D

ωn
0

n! −
∫

X
Hωφ,(1−β)D

ωn
φ

n! .

(3) log-Mabuchi-energy is bounded from below by log-Ding-energy:

Mω0,(1−β)D(ωφ) ≥ r(β)Fω0,(1−β)D(ωφ) +
∫

X
Hω0,(1−β)D

ωn
0

n!
The equality holds if and only if ωφ is a conical Kähler–Einstein metric on (X, (1 −
β)D).

(4) (co-cycle condition) Assume ωi are C ,γi ,βi Kähler metrics on (X, D), for i = 1, 2, 3.
Then

Mω1,(1−β)D(ω2) + Mω2,(1−β)D(ω3) = Mω1,(1−β)D(ω3)

Fω1,(1−β)D(ω2) + Fω2,(1−β)D(ω3) = Fω1,(1−β)D(ω3)

Proof. Items (1), (2) and (4) easily follows from the formula relating twisted Ricci
potentials of two Kähler metrics.

Hωφ,(1−β)D = Hω0,(1−β)D + log
ωn

0

ωn
φ

− r(β)φ − log

(
1

V

∫

X
eHω0,(1−β)D−r(β)φ ω

n
0

n!
)

= −
(

log
ωn
φ

eHω0,(1−β)D−r(β)φωn
0

+ log

(
1

V

∫

X
eHω0,(1−β)D−r(β)φ ω

n
0

n!
))

Item (3) follows from from concavity of logarithm. ��
Theorem 2.9 ([11]). If there exists a conical Kähler–Einstein metric ωβ on (X, (1 −
β)D), then ωβ obtains the minimum of log-Ding-energy Fω0,(1−β)D(ωφ).

Berndtsson ([11]) proved the important property that the log-Ding-energy is convex
along a bounded geodesic in PSH∞(ω0). By Proposition 6 (3) we get
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Corollary 2.10. ωβ also obtains the minimum of log-Mabuchi-energy Mω0,(1−β)D.

Remark 2.11. One technical point here is that it is more difficult to use convexity of
log-Mabuchi-energy than that of log-Ding-energy, as it requires more regularity.

The following properness of energy functions was introduced by Tian [68].

Definition 2.12. A functional F : H(ω0)→ R is called proper if there is an inequality
of the type

F(ωφ) ≥ f
(
Iω0(ωφ)

)
, for any φ ∈ H(ω),

where f (t) : R+ → R is some monotone increasing function satisfying limt→+∞ f (t) =
+∞.

Note that, by the inequalities (7), we could replace Iω0(ωφ) by equivalent norms
Jω0(ωφ) or (I − J )ω0(ωφ) in the above definition. Now we state a fundamental theorem
by Tian which gives an analytic criterion for the existence of Kähler–Einstein metric.

Theorem 2.13 ([68]). If Aut (X, J ) is discrete. There exists a Kähler–Einstein metric
on X if and only if either Fω0(ωφ) or Mω0(ωφ) is proper on H(ω0).

The case when Aut (X, J ) is not discrete is more subtle. (We thank Professor G.
Tian, Professor J. Song and Professor R. J. Berman for pointing out this to us). The full
general statement is a conjecture by Tian [68]. But for our application, we just need the
following result obtained in [54]. Note that we used this idea of [54] in Proposition 4.

Theorem 2.14 ([54]). Let ωK E be a smooth Kähler–Einstein metric on a Fano manifold
X and denote G = I som(X, ωK E ). If K ⊂ G is a closed subgroup whose centralizer
in G denoted by CentrKG is finite, then Fω0 is proper on K -invariant potentials.

It is natural to extend the definition of properness to the conical case, where we simply
replace H(ω0) by Ĥ(ω0).

Lemma 2.15. If log-Mabuchi-energy or log-Ding-energy is proper (resp. bounded from
below) on the space of smooth Kähler potentials, then it’s proper (resp. bounded from
below) on the space of admissible Kähler potentials.

Proof. By Proposition 6, we just need to prove for the log-Ding-energy. By [22] (see
also [14]), we can approximate any admissible Kähler potential φ by a sequence of
decreasing smooth potentials φ j ∈ PSH(ω0) ∩ C∞(X). Moreover, we can assume
‖φ j − φ‖C0 → 0. So by co-cycle condition, we get that

F0
ω0
(φ j )− F0

ω0
(φ) = F0

ωφ
(φ j − φ) = − 1

n + 1

n∑

j=0

∫

X
(φ j − φ)ωn− j

φ j
∧ ω j

φ −→ 0.

The Lemma easily follows from this fact. ��
The following Lemma is well known (see for example [69] and [61]). We record a

proof for the reader’s convenience. From the proof, we see that the conclusion holds for
any continuous potentials.
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Lemma 2.16. Let ωi be a C ,γi ,βi metric. Then the norm defined by Jω1 and Jω2 are
equivalent, that is, there is a constant C(ω1, ω2) such that for any other metric ω3 ∈
Ĥ(ω),

∣∣Jω1(ω3)− Jω2(ω3)
∣∣ ≤ C(ω1, ω2).

Proof. Assume ω2 = ω1 +
√−1∂∂̄φ and ω3 = ω2 +

√−1∂∂̄ψ . Then by co-cycle
condition of F0

ωi
, it’s easy to verify that

Jω1(ω3)− Jω2(ω3) = Jω1(ω2) +
∫

X
ψ(ωn

1 − ωn
2) =: Jω1(ω2) + E.

To estimate the term E we do integration by part:

E = 1

n!
∫

X
ψ(ω1 − ω2) ∧

(
n−1∑

i=0

ωn−1−i
1 ∧ ωi

2

)

= 1

n!
∫

X
−φ(ω3 − ω2) ∧

(
n−1∑

i=0

ωn−1−i
1 ∧ ωi

2

)

|E| ≤ 1

n!
∫

X
|φ| (ω2 + ω3) ∧

(
n−1∑

i=0

ωn−1−i
1 ∧ ωi

2

)
≤ 2n‖φ‖L∞V ol(X).

��
By the cocycle relations and the above lemmas, we obtain

Proposition 7. Assume ωi is a Cγi ,βi Kähler metric on (X, D). Then Mω1,(1−β)D(or
Fω1,(1−β)D) is proper if and only if Mω2,(1−β)D(or Fω2,(1−β)D) is proper.

Now we can state a theorem on the existence of conical Kähler–Einstein metric which
is a generalization of Tian’s sufficient criterion in the smooth case.

Theorem 2.17 ([34]). If the log-Mabuchi-energy is proper on C2,γ,β(X, D), then there
exists a conical Kähler–Einstein metric on (X, (1 − β)D).

The idea in [34] is to use continuity method as in the proof in the smooth case. More
precisely, fix a backgroubd conical Kähler metric on (X, (1 − β)D) and consider the
following family of equations.

(ω +
√−1∂∂̄ψ)n = eHω,(1−β)D−tψωn (8)

This is equivalent to the equation

Ric(ωψ) = tωψ + (r(β)− t)ω + (1 − β){s = 0}. (9)

Note that the C0-estimate and weak solution was first obtained by Berman [6]. The a
priori uniform C2-estimate for any β ∈ (0, 1) was first obtained in [34] which depends
heavily on deriving upper bound of bisectional curvature for reference conical Kähler
metric (see [34, Appendix]). The higher order C2,α,β estimate in the conical setting is
more complicated than in the smooth case when we have Evans–Krylov theory. In [34],
the edge calculus was used to attack this (alternatively in the Appendix B in [34], Tian’s
original argument in the smooth case was adapted to the conical setting).
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2.3. Alpha-invariant and small cone angles. In [6] and [34], Tian’s alpha invariant [63]
was generalized to the conical setting. We will explain this modification.

Definition 2.18 (log alpha-invariant). Fix a smooth volume form �. For any Kähler
class [ω], we define

α([ω], (1 − β)D) = max

{
α > 0; ∃0 < Cα < +∞ s.t.

∫

X
e−α(φ−supφ) �

|sD|2(1−β)

≤ Cα for any φ ∈ PSH∞(X, [ω])
}
.

When β = 1, we get Tian’s alpha invariant α([ω]) in [63]. In the following, we
will write α(L , (1 − β)D) = α(2πc1(L), (1 − β)D) for any line bundle L . For any
α < α(K−1

X , (1 − β)D), using concavity of log function, we can estimate, for any

φ ∈ Ĥ(ω0) ⊂ PSH∞(ω0),

log Cα ≥ log

(
1

V

∫

X
e−α(φ−supφ) ehω0ωn

0

n!|sD|2(1−β)
)

= log

⎛

⎜⎝
1

V

∫

X
e
−α(φ−supφ)−log

|sD |2(1−β)ωn
φ

e
hω0 ωn

0
ωn
φ

n!

⎞

⎟⎠

≥ − 1

V

∫

X
log

( |sD|2(1−β)ωn
φ

ehω0ωn
0

)
ωn
φ

n! + α

(
supφ − 1

V

∫

X
φ
ωn
φ

n!

)

≥ 1

V

(
−
∫

X
log

ωn
φ

eHω0,(1−β)Dωn
0

ωn
φ

n! + α Iω0(ωφ)

)
.

In the last inequality, we used the expression for Hω0,(1−β)D = hω0 − (1−β) log |sD|2.
Now using the expression for Mω,(1−β)D in Definition 2.8 and inequalities in (7), we
get

Mω0,(1−β)D(ωφ) ≥ α Iω0(ωφ)− r(β)(I − J )ω0(ωφ)− C ′
α

≥
(
α − r(β)

n

n + 1

)
Iω0(ωφ)− C ′

α

So if

α(K−1
X , (1 − β)D) > n

n + 1
r(β) = n

n + 1
(1 − λ(1 − β)) , (10)

then log-Mabuchi-energy is proper for smooth reference metric. To estimate the alpha-
invariant, we can use Berman’s estimate:

Proposition 8 ([6]). If we let L D denote the line bundle determined by the divisor D,
we have the estimate for log-alpha-invariant:

α(K−1
X , (1 − β)D) = λα(L D, (1 − β)D) ≥ λmin{β, α(L D|D), α(L D)}

= min{λβ, λα(L D|D), α(K−1
X )} > 0. (11)
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Corollary 2.19. When λ ≥ 1, if

0 < β < min

(
1, (1 − 1/λ) +

n + 1

n
min{α(L D|D), λ−1α(K−1

X )}
)
, (12)

then the log-Mabuchi-energy is proper. In particular, when 0 < β < 1 − λ−1 + ε for
ε = ε(λ) � 1, the log-Mabuchi-energy is proper. When λ < 1, we need to assume in
addition that β > n(λ−1 − 1).

Proof. This follows from (10), (11) and the relation

λβ >
n

n + 1
(1 − λ(1 − β))⇐⇒ β > n(λ−1 − 1)

This is automatically true if λ ≥ 1 and β > 0. ��
Remark 2.20. If we use Hölder’s inequality, we could get the estimate: α(K−1

X , (1 −
β)D)) ≥ α(K−1

X )β > 0. (Note that it’s easy to get that λ ≥ α(K−1
X ) from the existence

of smooth divisor D ∼ λK−1
X ) If we want to prove there always exists a conical Kähler–

Einstein metric with small cone angle, this estimate only works when λ > 1 but not
equal to 1. To see this, we study the inequality α(K−1

X )β > n
n+1r(β). When λ > 1, we

get

β < (λ− 1)/(λ− n + 1

n
α(K−1

X )) = (1 − λ−1)

(
1 +

n+1
n λ−1α(K−1

X )

1 − n+1
n λ−1α(K−1

X )

)
. (13)

So again when β < 1 − λ−1 + ε for ε = ε(λ) � 1, the log-Mabuchi-energy is proper.
When λ = 1, we get the condition α(K−1

X ) > n
n+1 . This condition is not always satisfied,

and if it’s true, then X has a smooth Kähler–Einstein metric by [63]. When λ < 1 we
don’t get useful condition on β ∈ (0, 1). On the other hand, Berman’s estimate works
when λ ≥ 1.

Corollary 2.21 (Berman, [6]). When λ ≥ 1, there is no holomorphic vector field on X
tangent to D.

Proof. If v is the holomorphic vector field tangent to D, then v generate a one-parameter
subgroup λ(t). Log-Mabuchi-energy is linear along σ ∗ωwith the slope given by the log-
Futaki-invariant. This is in contradiction to Corollary 2.19. ��
Remark 2.22. This corollary was speculated by Donaldson in [25]. This is also proved
using pure algebraic geometry in Song–Wang’s recent work [58].

2.4. Proof of Proposition 1, Theorem 1.1 and Corollary 1.7.

Proof of Proposition 1. Rewrite the log-Mabuchi-energy as:

Mω0,(1−β)D(ωφ) =
∫

X
log

ωn
φ

ωn
0
ωn
φ + r(β)

(∫

X
φωn

φ + F0
ω0
(φ)

)

+
∫

X
(hω0 − (1 − β) log |s|2)ω

n
0 − ωn

φ

n! . (14)



Conical Kähler–Einstein Metrics Revisited 941

We see immediately that the linearity of log-Mabuchi-energy follows from the linearity
of r(β) = 1 − λ(1 − β) in β and the relation Hω0,(1−βt )D = (1 − t)Hω0,(1−β0)D +
t Hω0,(1−β1)D + Ct . For the log-Ding-energy, let βt = (1 − t)β0 + tβ1. So by Hölder
inequality we get

∫

X
eHω0,(1−βt )D−r(βt )φ

ωn
0

n!
= eCt

∫

X

(
eHω0,(1−β0)D−r(β0)φ

)1−t (
eHω0,(1−β1)D−r(β1)φ

)t ωn
0

n!
≤ eCt

(∫

X
eHω0,(1−β0)D−r(β0)φ

ωn
0

n!
)1−t (∫

X
eHω0,(1−β1)D−r(β1)φ

ωn
0

n!
)t

By taking logarithm and using the definition of the log-Ding-energy we get, we get

r(βt )Fω0,(1−βt )D ≥ (1 − t)r(β0)Fω0,(1−β0)D + t · r(β1)Fω0+,(1−β1)D − C̃t .

It’s easy to see that C̃t is uniformly bounded with respect to t ∈ [0, 1]. ��
Proof of Theorem 1.1. By the discussion above, when λ ≥ 1, the Mω,(1−β)D is proper
for β ∈ (0, 1 − λ−1 + ε) with some ε > 0. On the other hand, when there is a conical
Kähler–Einstein metric on (X, (1− β0)D), Mω,(1−β0)D is bounded from below. So we
can use Proposition 1 to get the properness of log-Mabuchi-energy for any β ∈ (0, β0).
Now we use Theorem 2.17 to conclude. The openness follows from [25]. ��
Proof of Corollary 1.7. Assume there exists a conical Kähler–Einstein metric for 0 <
β = β0 < 1. Since we assume λ ≥ 1, there is no holomorphic vector field on X fixing
D by Corollary 2.21. By Donaldson’s implicit function theorem 2.4 ([25]) for conical
Kähler–Einstein metrics, there exists a conical Kähler–Einstein metric for β = β0 + ε
when ε � 1. So the log-Mabuchi-energy is bounded for β = β0 + ε. Because log-
Mabuchi-energy is proper for 0 < β � 1, we can use interpolation result Proposition 1
to conclude the log-Mabuchi-energy is proper for 0 < β < β0 + ε. ��

3. Obstruction to Existence: Log-K-Stability

3.1. Log-Futaki invariant and log-K-(semi)stability. Fix a smooth Kähler metric ω ∈
2πc1(X). Assume D is a smooth divisor such that D ∼Q −λK X for some λ > 0 ∈ Q.
Assume C

∗ acts on (X, D) with generating holomorphic vector field v. There exists a
potential function θv ∈ C∞(X) satisfying

√−1∂̄θv = ιvω. The log-Futaki invariant,
defined by Donaldson [25], is a generalization of the classical Futaki invariant (see [28])
to the conical setting.

Definition 3.1 ([25]). The log-Futaki invariant F(X, (1 − β)D) = F(X, (1 −
β)D; 2πc1(X)) of the pair (X, (1 − β)D) in the class 2πc1(X) is a function on the
Lie algebra of holomorphic vector fields, such that, for any holomorphic vector field v
as above, its value is

F(X, (1 − β)D; 2πc1(X))(v) (15)

= F(2πc1(X); v) + (1 − β)
(∫

2πD
θv

ωn−1

(n − 1)! −
V ol(2πD)

V ol(X)

∫

X
θv
ωn

n!
)

= −
∫

X
(S(ω)− n)θv

ωn

n! + 2π(1 − β)
(∫

D
θv

ωn−1

(n − 1)! − nλ
∫

X
θv
ωn

n!
)
. (16)
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Log-Futaki invariant is an obstruction to the existence of conical Kähler–Einstein
metrics as explained in [40]. When λ ≥ 1, one can show that there are no nontrivial
C
∗ action for the pair (X, D). (See Corollary 2.21) To obtain the obstruction for the

existence we define the log-K-stability by generalizing the original definition by Tian
[68] and Donaldson [24].

Note that, although we state the following results by using general test configurations,
by the results of [44], for the Fano manifolds or generally for the pairs considered in this
paper, we only need to consider special degeneration first introduced by Tian [68]. We
will construct special degeneration in our application later.

Definition 3.2 ([24,68]). A test configuration of a polarized pair (X, D; L) consists of

(1) a scheme X with a C
∗-action, and a subscheme D ⊂ X which is invariant under the

C
∗-action;

(2) a C
∗-equivariant line bundle L → X ;

(3) a flat C
∗-equivariant map π : (X ,D) → C, where C

∗ acts on C by multiplication
in the standard way;

such that any fibre (Xt ,Dt ) = π−1(t) for t �= 0 is isomorphic to (X, D) and (X, D; L)
is isomorphic to (Xt ,Dt ;L|Xt ). The test configuration is called normal if the total space
X is normal.

A test configuration is called a special test configuration or special degeneration, if
the central fibre (X0, αD0) is a klt pair for some α ∈ (0, 1).

Note that any test configuration of X (without divisor) can be equivariantly embedded
into P

N × C
∗ where the C

∗ action on P
N is given by a 1 parameter subgroup λ(t) of

SL(N + 1,C). If D is any reduced irreducible divisor of X , the one parameter subgroup
λ(t) associated with the test configuration of (X, L) induces a test configuration (D,L|D)
of (D, L|D).

Let dk , d̃k be the dimensions of H0(X, Lk), H0(Y, L| k
Y ), and wk , w̃k be the weights

of C
∗ action on H0(X0,L| k

X0
), H0(D0,L| k

D0
), respectively. Then we have expansions:

dk = a0kn + a1kn−1 + O(kn−2), wk = b0kn+1 + b1kn + O(kn−1);

d̃k = ã0kn−1 + O(kn−2), w̃k = b̃0kn + O(kn−1)

If the central fibre X0 is smooth, we can use equivariant differential forms to calculate the
coefficients as in [24]. Letω be a smooth Kähler form in 2πc1(L), and θv = 2π(Lv−∇v),
then

(2π)na0 =
∫

X

ωn

n! = V ol(X); (2π)na1 = 1

2

∫

X
S(ω)

ωn

n! ; (17)

(2π)nb0 = −
∫

X
θv
ωn

n! ; (2π)nb1 = −1

2

∫

X
θvS(ω)

ωn

n! ; (18)

(2π)nã0=
∫

2πD0

ωn−1

(n − 1)! = V ol(2πD0); (2π)nb̃0=−
∫

2πD0

θv
ωn−1

(n − 1)! . (19)

Comparing (17)–(19) with (15), we let α = 1 − β ∈ [0, 1) and define the algebraic
log-Futaki invariant of (X , αD;L) to be
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F((X , αD);L) = 1

(2π)n
F((X , αD); 2πL) = 2(a0b1 − a1b0)

a0
+ α

(
−b̃0 +

ã0

a0
b0

)

= a0(2b1 − αb̃0)− b0(2a1 − αã0)

a0
. (20)

Definition 3.3. (X, Y ; L) is log-K-semistable along (X ,L) if F(X ,Y;L) ≤ 0. Other-
wise, it’s unstable.
(X,Y ; L) is log-K-polystable along test configuration (X ,L) if F(X ,Y;L) < 0, or

F(X ,Y;L) = 0 and the normalization (X ν,Yν;Lν) is a product configuration.
(X,Y ; L) is log-K-semistable (resp. log-K-polystable) if, for any integer r > 0,

(X,Y ; Lr ) is log-K-semistable (log-K-polystable) along any test configuration of
(X,Y ; Lr ).

Remark 3.4. When Y is empty, then the definition of log-K-stability becomes the defin-
ition of K-stability. (See [24,68])

3.2. Log-Mabuchi-energy and log-Futaki-invariant.

3.2.1. Integrate log-Futaki-invariant. We now integrate the log-Futaki invariant to get
log-Mabuchi-energy, which was already defined in the previous section. Fix a smooth
Kähler metric ω ∈ 2πc1(X). Define the functional on H(ω) as

F0
ω,D(φ) = −

∫ 1

0
dt
∫

D
φ̇t

ωn−1
φt

(n − 1)! ,

where φt is a family of Kähler potentials connecting 0 and φ. We can define the log-
Mabuchi-energy as

Mω,(1−β)D(ωφ) = Mω(ωφ) + 2π(1 − β)
(
−F0

ω,D(φ) +
V ol(D)

V ol(X)
F0
ω(φ)

)
, (21)

so that if ωt = ω +
√−1∂∂̄φt is a sequence of smooth Kähler metrics in 2πc1(X), then

d

dt
Mω,(1−β)D(ωφ)=−

∫

X
(S(ωt )− n)φ̇t

ωn
φ

n! +2π(1−β)
(∫

D
φ̇
ωn−1
φ

(n − 1)! −nλ
∫

X
φ̇
ωn
φ

n!

)
.

Proposition 9 ([40]). The log-Mabuchi-energy can be written as

Mω,(1−β)D(ωφ) =
∫

X
log

ωn
φ

ωn

ωn
φ

n! − r(β)(Iω − Jω)(ωφ)

+
∫

X

(
hω − (1 − β) log |s|2h

) ωn − ωn
φ

n!

=
∫

X
log

ωn
φ

eHω,(1−β)Dωn

ωn
φ

n! + r(β)

(∫

X
φ
ωn
φ

n! + F0
ω(φ)

)

+
∫

X
Hω,(1−β)D

ωn

n! ,

so it agrees the definition in the previous section.
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Proof. Recall the Poincaré–Lelong equation
√−1∂∂̄ log |sD|2h = −λω + 2π{D}. Then

F0
ω,2πD(φ) = 2πF0

ω,D(φ) = −
∫ 1

0
dt
∫

2πD
φ̇tω

n−1
φt

/(n − 1)!

= −
∫ 1

0
dt
∫

X
φ̇t (

√−1∂∂̄ log |sD|2h + λω)ωn−1
φt

/(n − 1)!

= −
∫ 1

0
dt
∫

X
log |sD|2h

d

dt

ωn
φt

n! + λJ ω
ω (ωφ)

= −
∫

X
log |sD|2h

ωn
φ − ωn

n! + λJ ω
ω (ωφ)

Here, for any smooth closed (1, 1)-form χ , we define

J χ
ω (φ) = −

∫ 1

0
dt
∫

X
φ̇tχ ∧ ωn−1

φt
/(n − 1)!

By taking derivatives, it’s easy to verify that nF0
ω(φ)− J ω

ω = (I − J )ω(ωφ). So

Mω,(1−β)D(ωφ) = Mω(ωφ) +
(1 − β)V ol(2πD)

V ol(X)
F0
ω(φ)− (1 − β)F0

ω,2πD(φ)

= Mω(ωφ) + (nλ)(1 − β)F0
ω(φ)− (1 − β)λJ ω

ω (φ)+(1 − β)
∫

X
log |sD|2

ωn
φ − ωn

n!
= Mω(ωφ) + λ(1 − β)(I − J )ω(ωφ) + (1 − β)

∫

X
log |sD|2

ωn
φ − ωn

n! .

Then the statement follows from the expression for Mω and that Hω0,(1−β)D =
hω0 − (1 − β) log |sD|2. ��

3.2.2. Log-Futaki invariant and asymptotic slope of log-Mabuchi-energy. In this sec-
tion, we adapt S. Paul’s work in [51] to the conical setting and prove Theorem 1.11
using the argument from [68] and [52]. Assume X ⊂ P

N is embedded into the pro-
jective space and ωF S ∈ 2πc1(P

N ) is the standard Fubini-Study metric on P
N . For

any σ ∈ SL(N + 1,C), denote ωσ = σ ∗ωF S|X . We first recall S. Paul’s formula for
Mabuchi-energy Mω = Mω,0 on the space of Bergman metrics.

Theorem 3.5 ([51]). Let Embk : Xn ↪→ P
N = P

Nk be the embedding by the complete
linear system | − kK X | for k sufficiently large. Let R(k)X denote the X-resultant (the

Cayley–Chow form of X). Let �(k)
X×Pn−1 denote the X-hyperdiscriminant of format (n-1)

(the defining polynomial for the dual of X × P
n−1 in the Segre embedding). Then there

are continuous norms such that the Mabuchi-energy restricted to the Bergman metrics
is given as follows:

n!kn

(2π)n
· Mω(ωσ /k) = log

‖σ · �(k)
X×Pn−1‖2

‖�(k)
X×Pn−1‖2

− deg(�(k)
X×Pn−1)

deg(R(k)X )
log

‖σ · R(k)X ‖2

‖R(k)X ‖2
. (22)

For some notes on Paul’s proof, see [37]. One ingredient in S. Paul’s formula is
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Lemma 3.6 ([50,67,75]). There is a continuous norm on Chow forms, which satisfies,
for any projective variety Xn ⊂ P

N ,

(2π)n · log
‖σ · R(k)X ‖2

‖R(k)X ‖2
= (n + 1)

∫ 1

0
dt
∫

X
φ̇σω

n
σ = −(n + 1)!kn+1 F0

ω(φσ /k). (23)

In particular, this holds when Xn is replaced by Dn−1 and F0
ω is replaced by F0

ω,D.

We also know the degree of Cayley–Chow forms:

Lemma 3.7. The degree of Cayley–Chow form R(k)X and R(k)D are given by

deg(R(k)X ) = (n + 1)kn deg(X, K−1
X ) = (n + 1)!kn

(2π)n
· V ol(X),

deg(R(k)D ) = nkn−1 deg(D, K−1
X ) = n!kn−1

(2π)n−1 · V ol(D).

Combining the formulas (21), (22), and (23), we get

Corollary 3.8. We have the following formula for log-Mabuchi-energy:

n!kn

(2π)n
· Mω,(1−β)D(ωσ /k) = log

‖σ · �(k)
X×Pn−1‖2

‖�(k)
X×Pn−1‖2

− deg(�(k)
X×Pn−1)

deg(R(k)X )
log

‖σ · R(k)X ‖2

‖R(k)X ‖2

+(1 − β)
(

log
‖σ · R(k)D ‖2

‖R(k)D ‖2
− deg(R(k)D )

deg(R(k)X )
log

‖σ · R(k)X ‖2

‖R(k)X ‖2

)

For any one parameter subgroup λ(t) = t A ∈ SL(Nk + 1,C). Although the log-
Mabuchi-energy is not convex along λ(t), the above Corollary says that it is the linear
combination of convex functionals. As a consequence, we have the existence of asymp-
totic slope. Define ωλ(t) = λ(t)∗ωF S|X , and (X0,D0) = limt→0 λ(t) · (X, D) in the
Hilbert scheme (which is the central fibre of the induced test configuration introduced
in Sect. 3.1). Then by combining Corollary 3.8 with the argument in [52], we have the
following expansion

Proposition 10.
Mω,(1−β)D(ωλ(t)/k) = (F + a) log t + O(1) (24)

where F = F(X, (1 − β)D; 2πc1(X))(λ) is the log-Futaki invariant. a ≥ 0 ∈ Q is
nonnegative and is positive if and only if the central fibre X0 has generically non-reduced
fibre.

Remark 3.9. In fact, if X0 is irreducible, then by ([52,68]) one can calculate that a =
c · (mult(X0)− 1) for c > 0 ∈ Q.

Without loss of generality, we assume the homogeneous coordinates Zi are the eigen-
vectors of λ(t) on H0(PN ,O(1)) = C

N+1 with eigenvalues λ0 = · · · = λK < λK +1 ≤
· · · ≤ λN . Let ωλ(t) = ωF S +

√−1∂∂̄φt . Then

φt = log

∑
i tλi |Zi |2∑

i |Zi |2 (25)

There are three possibilities for X0.
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(1) (non-degenerate case) limt→0 Osc(φt ) → +∞. By (25), this is equivalent to
∩K

i=0{Zi = 0}⋂ X �= ∅.
(2) (degenerate case) Osc(φt ) ≤ C for C independent of t . This is equivalent to

∩K
i=0{Zi = 0}⋂ X = ∅. In this case, X0 is the image of X under the projec-

tion P
N → P

K given by [Z0, . . . , Z N ]  → [Z0, . . . , ZK , 0, . . . , 0] and there is a
morphism from � : X = Xt �=0 → X0 which is the restriction of the projection.
There are two possibilities.

(a) deg(�) > 1. In this case, X0 is generically non-reduced. So a > 0 in (24).
Example: Assume Xn ⊂ P

N is in general position. Then the generical linear
subspace L ∼= P

N−n−1 satisfies L ∩ X = ∅. Let M ∼= P
n be a complement of

L ⊂ P
N . Then the projection of � : P

N\L → M gives a projection � : X →
�(X) whose mapping degree equals the algebraic degree of X .

(b) deg(�) = 1. In this case, X0 is generically reduced and a = 0. This case was
pointed out in [44]
Example: Assume Xn ⊂ P

N is in general position. Assume K ≥ n + 1, then
N − K −1 ≤ N −n−2. So the generical linear subspace L ∼= P

N−K−1 satisfies
L ∩ X = ∅. Let M ∼= P

K be a complement of L ⊂ P
N . Then the projection of

� : P
N\L → M gives a projection � : X → �(X) with degree 1.

Proposition 11. As a functional on the space H(ω) of smooth Kähler potentials, if
Mω,(1−β)D(ωφ) is bounded from below (resp. proper), then (X,−K X , (1 − β)D) is
log-K-semistable (resp. log-K-stable).

Proof. If log-Mabuchi-energy is bounded from below, then F ≤ 0 by the expansion
(24) since a ≥ 0.

Assume Mω,(1−β)D(ωφ) is proper on H(ω) in the sense of Definition 2.12, then in
particular it’s proper on the space of Bergman potentials, so by [52], in case 1 or 2(a),
F < 0. In case 2(b), (X ,Y,L) has vanishing log-Futaki invariant and its normalization
is a product test configuration. See [44] and [41] for more details (Actually, using [44],
we can always assume that we have a special degeneration). ��
Remark 3.10. Tian [68] introduced K-stability and proved K-stability for smooth
Kähler–Einstein Fano manifolds with discrete automorphism groups. Recently, Berman
[7] showed Kähler–Einstein (log) Q-Fano variety is (log) K-polystable without assump-
tion on the automorphism group. His approach is based on the expansion of Ding-
functional along any (special) test configuration.

3.3. Log-slope stability and log-Fano manifold . Recall that when λ < 1, r(β) =
1− λ(1− β). So when β = 0, r(β) = 1− λ > 0. The conical metric in this case would
correspond to complete metric with infinite diameter and with Ric = 1 − λ > 0. This
contradicts Myers theorem. So we expect when β is very small, there does not exist such
conical Kähler–Einstein metrics.

This is indeed the case. To see this, we first generalize Ross-Thomas’ slope stability
[55] to the log setting (see [59]). For any subscheme Z ⊂ X , we blow up the ideal sheaf
IZ + (t) on X × C to get the degeneration of X to the deformation to the normal cone
TZ X . For the polarization, we denote Lc = π∗L − cE , where E = PZ (C ⊕ NZ X)
is the exceptional divisor, and 0 < c < Seshadri constant of Z with respect to X . By
Ross–Thomas [55], we have the identity:
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H0(X ,Lk
c) = H0(X × C, Lk ⊗ ((t) + IZ )

ck)

=
ck−1⊕

j=0

t j H0(X, Lk ⊗ Ick− j
Z )⊕ tck

C[t]H0(X, Lk).

So for k sufficiently large,

H0(X0,Lk
c) = H0(X, Lk ⊗ Ick

Z )⊕
ck⊕

i=0

t j H0(X, Lk ⊗ Ick− j
Z /Ick− j+1

Z )

= H0(X, Lk ⊗ Ick
Z )⊕

ck⊕

i=0

t j H0(X, Lk ⊗ Ick− j
Z )

H0(X, Lk ⊗ Ick− j+1
Z )

.

By Riemann–Roch, we have the expansion:

χ(X, Lk ⊗ Ixk
Z ) = a0(x)k

n + a1(x)k
n−1 + O(kn−1).

By the calculation in by Ross–Thomas in [55], we know that

b0 =
∫ c

0
a0(x)dx − ca0, b1 =

∫ c

0
(a1(x) +

1

2
a′

0(x))dx − ca1.

Similarly, if we restrict to D, we have

H0(D,Lk
c) = H0(X × C, Lk ⊗ ((t) + IZ )

ck ⊗ OX/ID)

= H0(D × C, Lk ⊗ ((t) + IZ · OD)
ck)

and

H0(D0,Lk
c) = H0(D, Lk ⊗ (IZ · OD)

ck)⊕
ck⊕

i=0

t j H0(D, Lk ⊗ (IZ · OD)
ck− j )

H0(X, Lk ⊗ (IZ · OD)ck− j+1)
.

So, by [55] again, if

χ(D, Lk ⊗ (IZ · OD)
xk) = ã0(x)k

n−1 + O(kn−2),

then

b̃0 =
∫ c

0
ã0(x)dx − cã0.

So we can calculate the log-Futaki invariant as

a0 F(X , αD;L) = 2(a0b1 − a1b0) + α(ã0b0 − a0b̃0)

= a0(2b1 − b̃0)− b0(2a1 − ã0)

= 2a0

(∫ c

0
(a1(x)− α

2
ã0(x) +

1

2
a′

0(x))dx

)

−2(a1 − αã0/2)
∫ c

0
a0(x)dx . (26)
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In other words, we can define the log-slope invariant:

μ
log
c ((X, αD); IZ ) =

∫ c
0 (a1(x)− α

2 ã0(x) + 1
2 a′

0(x))dx
∫ c

0 a0(x)dx

=
∫ c

0 (a1(x)− α
2 ã0(x))dx + 1

2 (a0(c)− a0)∫ c
0 a0(x)dx

= μc(X; IZ )− α
∫ c

0 ã0(x)dx

2
∫ c

0 a0(x)dx
.

μlog((X, αD)) = a1 − αã0/2

a0
= −n

2
· (K X + αY ) · Ln−1

Ln
= μc(X)− nαD · Ln−1

2Ln
.

Definition 3.11. We call (X, αD) is log-slope-stable, if for any subscheme Z ⊂ X , we
have

μ
log
c ((X, αD); IZ ) < μlog((X, αD)).

Proposition 12. Let X be a Fano manifold, and D a Cartier divisor which is numerically
equivalent to −λK X . Then if λ < 1, the pair (X, (1 − β)D) is not log-slope-stable for
β < (λ−1 − 1)/n. As a consequence, in the log-Fano case, the log-Mabuchi-energy is
not bounded from below for very small angle.

Proof. The idea is to look at the test configuration X given by deformation to the normal
cone to D, as in [59]. By Lemma 3.13, the Seshadri constant of (−K X , D) is equal to
c = 1/λ. We will calculate the Futaki invariant for the semi test configuration polarized
by L = L(− 1

λ
D) with L = −K X and show it is negative for β < (λ−1 − 1)/n.

In our case, if we choose Z = D ∼ −λK X , then the calculation simplifies to

a0(x)= (L − x D)n

n! = (1−xλ)n
(−K X )

n

n! =(1−xλ)na0, a′
0(x)=−nλ(1−xλ)n−1a0.

a1(x) = −K X · (L − x D)n−1

2(n − 1)! = (1 − xλ)n−1 (−K X )
n

2(n − 1)! =
n

2
(1 − xλ)n−1a0.

Recall that when x > 0, ã0(x) is defined as follows:

χ(D, Lk ⊗ (IZ · OD)
xk) = ã0(x)k

n−1 + O(kn−2).

Because Z = D, IZ · OD = 0. So

ã0(x) =
{

0, when x > 0
Ln−1·D
(n−1)! = nλa0, when x = 0
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To calculate the log-Futaki-invariant, we first calculate:
∫ c

0
a0(x)dx = a0

λ(n + 1)
(1 − (1 − cλ)n+1);

∫ c

0
a′

0(x)dx = a0(c)− a0 = a0((1 − cλ)n − 1);
∫ c

0
a1(x)dx = a0

2λ
(1 − (1 − cλ)n),

∫ c

0
ã0(x)dx = 0.

Using (26) we can calculate that the log-Futaki invariant is equal to

a0 F(X , (1 − β)D;L) = a2
0(1 − (1 − cλ)n+1)

n

n + 1

×
[
(λ−1 − 1)

(
n + 1

n
· 1 − (1 − cλ)n

1 − (1 − cλ)n+1 − 1

)
− β

]
.

So we get F(X , (1 − β)D;L) ≤ 0 ⇐⇒ β ≥ β(λ, c), where

β(λ, c) = (λ−1 − 1)

(
n + 1

n

1 − (1 − cλ)n

1 − (1 − cλ)n+1 − 1

)

= λ−1 − 1

n

(
1 − n + 1∑n

i=0(1 − cλ)−i

)

From the above formula for β(λ, c) we easily get that

sup
0<c<λ−1

β(λ, c) = λ−1 − 1

n
.

So when β < (λ−1 − 1)/n there exists c ∈ (0, λ−1) such that (X, (1 − β)D) is
destabilized by the subscheme cD. ��
Example 3.12. On P

2, when D is a line, then (X, (1−β)D) is unstable for all β ∈ [0, 1);
when D is a conic, then (X, (1−β)D) is unstable for β ∈ (0, 1/4), and it will be proved
below that it is semi-stable for β = 1/4, and hence poly-stable for β ∈ (1/4, 1). On
P

1 × P
1, when D is a diagonal line, (X, (1 − β)D) is unstable for β ∈ (0, 1/2). By

viewing P
1 × P

1 as a double cover of P
2 along a conic curve (See Remark 5.1 in Sect.

5.1 for details) we see these observations match. It is an interesting question whether
the bounds of β given by the above proposition is sharp for a smooth hypersurface of
degree d in P

n with d < n + 1.

Lemma 3.13. The Seshadri constant of (−K X , D) is equal to λ−1.

Proof. Note that X0 = X ∪D∞ E . Here E ∼= P(ND ⊕C) is the exceptional divisor and
D ∼= D∞ ⊂ P(ND ⊕ C) is the divisor at infinity. Lc|X = K−1

X − cD = (1 − cλ)K−1
X .

This is ample if and only if c < λ−1.
On the other hand, Lc|P(ND⊕C) = π∗K−1

X + cOE (1) = π∗K−1
X + cD∞. Let h be a

Hermitian metric on O(D) such that ωh := −√−1∂∂̄ log h is a Kähler form. Then if we
define� = λ−1π∗ωh + c

√−1∂∂̄ log(1 + h), this gives a smooth rotationally symmetric
(1,1)-form on E . To write � in local coordinate, we choose two kinds of coordinate
charts on E which covers the neighborhood of zero section D0 and infinity section D∞
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of P(ND ⊕ C) respectively. To do this, just choose local trivialization of ND|D to get
holomorphic coordinate along the fibre, which is denoted by ξ . Then h = a|ξ |2 for
some smooth positive definite function a. Note that ωh = −√−1∂∂̄ log a. In this local
coordinate one can easily calculate that

� = (λ−1 − c
a|ξ |2

1 + a|ξ |2 )ωh + c
√−1

a

(1 + a|ξ |2)2 ∇ξ ∧ ∇ξ .

where for simplicity we denote ∇ξ = dξ + ξa−1∂a. For the coordinate at infinity, we
use coordinate change η = ξ−1, then

� = (λ−1 − c
a

a + |η|2 )ωh + c
√−1

a

(|η|2 + a)2
∇′η ∧ ∇′η

with ∇′η = dη − ηa−1∂a. So we easily sees that � is positive definite if an only if
c < λ−1. The lemma clearly follows from the combination of above discussions. ��

The following example is in the log-Calabi-Yau case (λ = 1).

Example 3.14. Let X = BlpP
2, D ∈ | − K X | be a general smooth divisor. Choose

Z = E to be the exceptional divisor. If we perform the operation of deformation to the
normal cone, the central fibre is given by X̃0 = X ∪E=D∞ P(C⊕O(−1)). The Seshadri
constant equals 2 and the line bundle L2 contracts X along its fibration direction and the
resulting test configuration has central fibre X0 = P(C ⊕ O(−1)) ∼= X . The boundary
divisor on X0 is given by F + 2D∞ where F is the fibre over the intersection point
F ∩ E ∈ E = D∞. Denote L = K−1

X and Y = (1 − β)D. Then the calculation
specializes to

a0(x) = (L − x Z)2

2
= 4 − x − x2

2
, a1(x) = −K X · (L − x Z)

2
= 4 − x

2
.

ã0(x) = deg(L − x Z)|D = (8 − x).

Using formula (26), it’s easy to calculate the log-Futaki invariant as

F(X , (1 − β)D,L2) = 8

(
7β

3
− 2

)
.

This is negative if and only if β < 6/7. This is compatible with the calculation in [25]
(See also [40]), where, instead of taking deformation to normal cone, the same test
configuration is generated by one parameter subgroup in the torus action.

4. Special Degeneration to Kähler–Einstein Svarieties

4.1. Kähler metrics on singular varieties. We will first establish some standard notations
following [27].

Definition 4.1 (Q-Fano variety). A normal variety X is Q-Fano if X is klt and −K X is
an ample Q-Cartier divisor.
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Assume X is an n-dimensional Q-Fano variety. D is a smooth divisor such that
D ∩ Xsing = ∅. Define the space of Kähler metrics on Q-Fano varieties following [27].
So a plurisubharmonic(psh) function φ on X is an upper semi-continuous function on
X with values in R ∪ {−∞}, which is not locally −∞, and extends to a psh function in
some local embedding X → C

N . φ is said to be smooth(locally bounded) if there exists
a smooth(locally bounded) local extension is smooth(bounded). Similarly a smooth
Kähler metric on X is locally

√−1∂∂̄ of a smooth plurisubharmonic function. We are
only interested in the class of bounded plurisubharmonic functions. Fix a smooth Kähler
metric ω on X , we define

PSH∞(ω) := {φ ∈ L∞(X);ω +
√−1∂∂̄φ ≥ 0 and φ is u.s.c.}.

Remark 4.2. Any function φ ∈ PSH∞(X, ω) is of finite self-energy in the sense of
Definition 1.1 in [27].

Remark 4.3 (Orbifold metric induces L∞ Hermitian metrics). When the Cartier index
of K X divides r , K⊗r

X is a line bundle. Any orbifold metric induces a Hermitian metric
on K⊗r

X and hence on K−⊗r
X . In fact, for any point x , we can choose local uniformization

chart Ũ → U # x such that U = Ũ/G for some finite group G and we choose local
coordinates {z̃i } on Ũ . Define r=order of G. Then the Cartier index of K X at x divides
r . The r -pluri-anticanonical form τ̃ = (∂z̃1 ∧ · · · ∧ ∂z̃n )

⊗r on Ũ is G-invariant, so it
induces a local generator τ of K−⊗r

X downstairs. If we have an orbifold metric which is
locally induced by a smooth G-invariant metric g̃ on Ũ . We just define the Hermitian
metric on K−⊗r

X by requiring |τ |2 = |∂z̃ |2r
g̃ = det(g̃)r .

Example 4.4 . Let Z4 acts on C
2 by ξ : (z̃1, z̃2)  → (ξ z̃1, ξ z̃2) where ξ =

exp(2π
√−1/4). Let X = C

2/Z4, then X has an isolated singularity of index 2, which
is usually denoted by 1

4 (1, 1). We can embed X into C
5 by defining ui = z̃4−i

1 z̃i
2 for

i = 0, . . . , 4.
We can choose the orbifold metric induced by the following smooth metric on

Ũ = C
2:

ω̃ = √−1∂∂̄(|z1|2 + |z1|4 + |z2|2) = (1 + 4|z1|2)dz1 ∧ dz̄1 + dz2 ∧ dz̄2

Then τ̃ = (∂z̃1 ∧ ∂z̃2)
⊗2 induces a generator τ of K−⊗2

X with |τ |2g̃ = (1 + 4|z̃1|2)2 =
(1 + 4|u1|1/2)2.

By the above discussion, we see that the Hermitian metric determined by an orbifold
metric does not give rise to a smooth plurisubharmonic function. However, it is locally
bounded, so we can use pluripotential theory to deal with them.

4.2. Degenerate Complex Monge–Ampère equation on Kähler manifolds with boundary.
Let M be a Kähler manifold of dimension n + 1 with smooth boundary ∂M . We will be
interested in solving degenerate Dirichlet problem of complex Monge–Ampère equation
on M . We recall some important results for this problem. First, there is existence of weak
solution
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Theorem 4.5 ([11]). Let ω be a nonnegative, smooth (1,1)-form on X. Assume φi ∈
PSH(ω) ∩ C0(X), i = 0, 1. Then there exists a bounded geodesic �t connecting φ0
and φ1. In other words, there exists a bounded solution of the Dirichlet problem to the
following homogeneous complex Monge–Ampère equation on X × [0, 1] × S1.

⎧
⎪⎨

⎪⎩

π∗ω +
√−1∂∂̄� ≥ 0,

(π∗ω +
√−1∂∂̄�)n+1 = 0,

�|X×{0}×S1 = φ0,�|X×{1}×S1 = φ1.

(27)

Remark 4.6. The existence of weak C1,1-geodesics (“weak” means that
� is bounded)
connecting smooth Kähler metrics was first proved by Chen in [17]. Since we want to
deal with mildly singular varieties, we choose to work with just bounded solutions. There
are many other important related works to this result. See for example [5,13,15,32,35].

We also record a result by Phong–Sturm.

Theorem 4.7 ([53]). Assume � ≥ 0 and there exists a smooth divisor E in the interior
of M such that � > 0 on M\E. Also assume the line bundle O(E) has a Hermitian
metric H, such that �ε = � + ε

√−1∂∂̄ log H > 0 for 0 < ε � 1 sufficiently small.
Consider the following homogeneous complex Monge–Ampère equation

(� +
√−1∂∂̄�)n+1 = 0, �|∂M = φ. (28)

If there exists a subsolution � ∈ C∞(M) such that � +
√−1∂∂̄� ≥ 0 and �|∂M = φ,

then (28) has a bounded solution � ∈ L∞(M). Moreover, � ∈ C1,α(M\E) for any
0 < α < 1.

4.3. Proof of Theorem 1.8. Assume π : (X ,−KX /C) → C is a special degeneration.
Assume for simplicity, X has only finite many isolated singularities {pi }. Let � = {w ∈
C; |w| ≤ 1} be the unit disk and X� = π−1(�). We embed the special test configuration
equivariantly into P

N × C:

φX : (X ,−KX /C) ↪→ C × (PN ,OPN (1)).

We get a smooth S1-invariant Kähler metric on X� by pulling back � = φ∗X (ωF S +√−1dw∧dw̄). We define the reference metric X to be ω = �|X1 , where X1 ∼= X is the
fibre above {w = 1}. For any φ ∈ C∞(X), such that ω +

√−1∂∂̄φ > 0, we are going
to solve the homogeneous Monge–Ampère equation

(� +
√−1∂∂̄�)n+1 = 0,�|S1×X = φ. (29)

Proposition 13. There exists bounded solution � for (29). � ∈ C1,α(X \{pi }).
Proof. We choose a equivariant resolution π : X̃ → X . Then we solve the equation
on X̃ :

(�̃ +
√−1∂∂̄�̃)n+1 = 0, �̃|S1×X = φ (30)

with �̃ = π∗� being a smooth, closed, non-negative form. By the following Proposition,
we have smooth subsolution for (30). So by Phong–Sturm’s result (Theorem 4.7), we
can get bounded solution �̃ of (30) and, moreover, �̃ is C1,α on X̃\E , where E is
exceptional divisor. Because �̃ is plurisubharmonic along the fibres of the resolution
which are compact subvarieties, so �̃ is constant on the fibre of the resolution and hence
�̃ descends to a solution � of (29). ��
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As pointed out in the above proof, to apply Theorem 4.7, we need to know the
existence of subsolutions. Let X ∗ = X \X0. To construct such subsolution, we first note
that there is an equivariant isomorphism

ρ : C
∗ × X ∼= X ∗ ↪→ X . (31)

Proposition 14. For any smooth Kähler potential φ, there exists a smooth S1-invariant
smooth Kähler metric �� on X� such that ρ∗�� |S1×X = π∗

2ωφ . As a consequence, �
is a subsolution of the homogeneous Monge–Ampère equation (29).

Remark 4.8. Similar result was proved in [53]. For the reader’s convenience, we give a
proof here.

Proof. Under the isomorphism (31), we can write

π∗
2ωφ +

√−1dw ∧ dw̄ = � +
√−1∂∂̄�0

by taking �0 = − log(hφ/ρ∗φ∗X hF S). Note that this only holds on C
∗ × X . Now let

η(w) be a smooth cut-off function such that η(w) = 1 for |w| ≤ 1/3 and η(w) = 0 for
|w| ≥ 2/3. Now we define a new metric on C

∗ × X :

� +
√−1∂∂̄� := π∗

2ωφ +
√−1dw ∧ dw̄ −√−1∂∂̄(η(w)�0) + a

√−1dw ∧ dw̄

= � +
√−1∂∂̄(�0 − η(w)�0 + a|w|2).

In other words we let � = (1 − η(w))�0 + a|w|2 + c for some constant c.
We will show when R # a $ 1 is chosen to be big enough, then we get a smooth

Kähler metric on X� with the required condition.
For |w| ≥ 2/3, �� = π∗ωφ + a

√−1dw ∧ dw̄. When |w| ≤ 1/3, �� = � +
a
√−1dw ∧ dw̄. we can use the glue map ρ to get a smooth S1-invariant Kähler metric

on π−1({|w| ≤ 1/3}). So �� is a smooth S1-invariant Kähler metric for |w| ≤ 1/3 or
|w| ≥ 2/3. We now need to consider the behavior of �� at any point p ∈ C

∗ × X such
that 1/3 < |w(p)| < 2/3.

�� = π∗ωφ − η
√−1∂∂̄�0 −�0

√−1∂∂̄η −√−1
(
∂η ∧ ∂̄�0 + ∂�0 ∧ ∂̄η

)

+(a + 1)
√−1dw ∧ dw̄ ≥ (1 − η)(ωφ +

√−1dw ∧ dw̄) + η�

−ε√−1∂�0 ∧ ∂̄�0 + (a − ε−1|ηw|2 −�0ηww̄)
√−1dw ∧ dw̄.

Note that the first two terms together are strictly positive definite. Because on X|w|≥1/3 =
π−1({|w| ≥ 1/3}), �0 is a well defined smooth function there. So we can choose ε
sufficiently small and a sufficiently big such that this is a positive form on X|w|≥1/3. ��
Proof of Theorem 1.8. There exists a metric h� on K−1

X /C such that� = −√−1∂∂̄ log h�.
h� defines a volume form on each fibre. If we choose local coordinate {zi } on Xt and
denote ∂z = ∂z1 ∧ · · · ∧ ∂zn and dz = dz1 ∧ · · · ∧ dzn . Then the volume form is given
by

dV (h�|Xt ) = |∂z |2h�|Xt
dz ∧ dz.

Let S be the defining section of the divisor D. Fix the Hermitian metric | · | on OX (D)
such that −√−1∂∂̄ log | · |2 = λ�.
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Let ωt = �|Xt . To prove the lower boundedness of log-Ding-functional Fω,(1−β)D ,
by Lemma 2.15, we only need to consider smooth Kähler potentials. For any smooth
potential φ ∈ C∞(X), we solve the homogeneous complex Monge–Ampère equation
(29) to get the geodesic ray �. Then consider the function on the base defined by

f (t) = F0
ωt
(�|Xt )−

V

r(β)
log

(
1

V

∫

Xt

e−r(β)� dV (h�|Xt )

|S|2(1−β)
)
.

Claim 4.9. f (t) satisfies 
 f ≥ 0.

Assuming the claim, let’s finish the proof of Theorem 1.8. By maximal principle of
subharmonic function, we have

F X
ω1,(1−β)D(φ) = f (1) = max

t∈∂� f (t) ≥ f (0) = FX0
ω0,(1−β)D0

(�|X0).

Now since by assumption, there exists a conical Kähler–Einstein metric ω̂K E = ω0 +√−1∂∂̄φ̂K E on (X0, (1 − β)D0). By Berndtsson’s Theorem 2.9 and its generalization
to the Q-Fano case [8], we have

Fω0,(1−β)D0(�|X0) ≥ Fω0,(1−β)D0(φ̂K E ).

So combining the above two inequality, we indeed get the lower bound of log-Ding-
energy:

F X
ω1,(1−β)D(φ) ≥ FX0

ω0,(1−β)D0
(φ̂K E ).

Now, to prove the claim, we write f (t) as parts: f (t) = I + II:

I = F0
ωt
(�|Xt ) = − 1

(n + 1)!
∫

X
BC(�n+1, (� +

√−1∂∂̄�)n+1),

II = − V

r(β)
log

(
1

V

∫

Xt

e−r(β)� dV (h�|Xt )

|S|2(1−β)
)
.

For part I, we use the property of Bott–Chern form and the geodesic equation to get that
(see Remark 2.7):

√−1∂∂̄I = − 1

(n + 1)!
∫

Xt

√−1∂∂̄BC(�n+1, (� +
√−1∂∂̄�)n+1)

= − 1

(n + 1)!
∫

Xt

(� +
√−1∂∂̄�)n+1 −�n+1

= 1

(n + 1)!
∫

Xt

�n+1 ≥ 0.

For part II, we can write locally 1 = ∂z⊗dz in the decompositionOX = −KX /C+KX /C.
Then we think 1 ∈ OC is a holomorphic section in π∗OX = OC.

II = − V

r(β)
log ‖1‖2

L2 .

where ‖ ·‖2
L2 is the L2-metric induced by the singular metric H = h�e−r(β)�/|S|2(1−β)

on −KX /C. Then the subharmonicity is given by the next proposition. ��
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Proposition 15. II is a subharmonic function of t.

Proof. First note that

−√−1∂∂̄ log H = � + (1 − λ(1 − β))√−1∂∂̄� + (1 − β)(−λ� + {D = 0})
= (1 − λ(1 − β))�� + (1 − β){D}

is a positive current. If X is smooth, then the subharmonicity follows immediately from
Berndtsson’s important result in [10]. In our case, X has isolated singularities. We can
use divisors to cut out this singularity and reduce the problem to smooth fibrations
of Stein manifolds. We apply Berndtsson–Paun’s argument in [12]. They construct a
sequence of smooth fibrations π j : X j → C, such that

(1) π j is a smooth fibration. Each fibre is a Stein manifold.
(2) As j → +∞, {X j } form an exhaustion of X .

Note that in our equivariant setting, we can also require the X j is C
∗-invariant.

In [12] Berndtsson–Paun proved that the relative Bergman kernel metric h j of the
bundle OX j = KX j /C + (−KX j /C) has semipositive curvature current. See also [9].

In other words, − log |1|2h j
is plurisubharmonic on Xk . If we use ‖ · ‖ j to denote the

L2-metric on (π j )∗OX j induced by H = h�e−r(β)�/|S|2(1−β) on K−1
X j /C

and K j (z, z)

to denote the relative Bergman kernel of OX j = KX j /C + (−KX j /C) , then

K j (z, z) = max{| f |2; ‖ f ‖ j ≤ 1}, |1|2h j
= 1

K j (z, z)
.

Now, as showed by Berndtsson–Paun, the relative Bergman kernel K of OX = KX /C +
(−KX /C) is the decreasing limit of the Bergman kernel K j , and hence the relative
Bergman kernel metric on OX also has semipositive curvature current. Since, for any
t ∈ C, H0(Xt ,OX |Xt ) = C which is generated by constant function 1, using the
extremal characterization of the relative Bergman kernel, it’s straight forward to verify
that the relative Bergman kernel metric (BK) on OX = KX /C + (−KX /C) is given by
|1|2BK = 1

K(z,z) = ‖1‖2
L2 which is the pull-back of a function from the base C. So we

get that II = − log ‖1‖2
L2 is plurisubharmonic on the disk {|w| ≤ 1}. ��

Remark 4.10. When the central fiber is smooth, Theorem 1.8 is a special case of a theorem
of Chen [18], where a more general statement concerning constant scalar curvature
Kähler metrics is proved, using the weak convexity of Mabuchi functional on the space
of Kähler metrics. It seems difficult to adapt Chen’s argument to the singular setting. The
advantage here(in the log setting) is to use (log)-Ding’s functional, which requires much
weaker regularity of the geodesics. A fundamental result of Berndtsson [11] says that the
Ding functional is genuinely geodesically convex. This technique has been demonstrated
in [11], [8] and [7].

Remark 4.11. During the writing of this paper, the paper by Berman [7] appeared in
which some more results about subharmonicity of Ding-functional in the singular setting
was proved. Recently, the following result is proved by the first author [43] by proving
the continuity (log)-Ding energy at t = 0.
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Theorem 4.12. Let π : (X ,D) → C be a special degeneration for (X, D). Suppose
the central fiber (X0, (1 − β)D0) admits a singular Kähler–Einstein metric of cone
angle 2πβ along D0. Then the log-Ding functional Fω,(1−β)D is bounded below. As a
consequence, the log-Mabuchi functional Mω,(1−β)D is also bounded below.

This covers Theorem 1.8. Note that by the work [8], the pair (X0, (1 − β)D0) must be
klt in order for it to admit a conical Kähler–Einstein metric.

5. Kähler–Einstein Metrics on X = P
2 Singular Along a Conic

5.1. Proof of Theorem 1.5. We first apply Phong–Song–Sturm–Weinkove’s properness
result in Theorem 2.14 to show that the Ding-energy FP

2

ω is proper on the space of SO(3)-
invariant Kähler metrics. For this, we need to show that the centralizer of SO(3,R) in
SU (3) is finite. Indeed, if γ ∈ CentrSO(3,R)SU(3), then γ ·C is a degree 2 curve invariant
under SO(3,R). But there is a unique curve invariant under SO(3,R) which is just C
itself. So γ · C = C and we conclude γ ∈ SO(3,R). Since the center of SO(3,R) is
finite, so the conclusion follows.

By the calculation in Example 3.12, we see that (P2, (1 − β)D) is unstable when
0 < β < 1/4, so there is no conical Kähler–Einstein metric for β ∈ (0, 1/4), by
Corollary 2.10 and Proposition 11.

When β = 1/4, we can show there is no conical Kähler–Einstein metric. Indeed,
if there is such a Kähler–Einstein metric, then by Proposition 4, there exists SO(3,R)
invariant conical Kähler–Einstein metric on (X, (1 − β)D) for some β < 1/4. This
would imply (X, (1−β)D) is semi-stable for some β < 1/4 which we know is not true
by above discussion. (Alternatively, we can also use the fact that the deformation to the
normal cone considered in Proposition 12 shows that (P2, 3/4D) is not log-K-polystable
since it has log-Futaki-invariant zero and is not a product degeneration, and conclude
the nonexistence of conical Kähler–Einstein metrics for β = 1/4 by appealing to the
more general result of Berman [7]. See Remark 3.10).

To prove the existence for all β ∈ (1/4, 1], by Proposition 1, we only need to show
the lower boundedness of log-Mabuchi-energy when β = 1/4. To do this, we construct
a special degeneration to conical Kähler–Einstein variety and apply Theorem 1.8. The
special degeneration comes from deformation to the normal cone. Let X̃ be the blow up
of P

2 × C along D × {0}. Choose the line bundle L3/2 := π∗K−1
P2 − 3/2E where E

is the exceptional divisor. Then L3/2 is semi-ample and the map given by the complete
linear system |kL3/2| for k sufficiently big contracts the P

2 in the central fibre and we
get a special test configuration X with central fibre being the weighted projective space
P(1, 1, 4). It inherits an orbifold Kähler–Einstein metric from the standard Fubini-Study
metric on P

2 by the quotient map P
2 = P(1, 1, 1)→ P(1, 1, 4)given by (Z0, Z1, Z2)→

(Z0, Z1, Z4
2) =: [W0,W1,W2]. (See Example 8.5 in Sect. 8 for a toric explanation) The

induced orbifold Kähler–Einstein metric is the same as the conical Kähler–Einstein
metric on P(1, 1, 4) singular along the divisor [W2 = 0] with cone angle 2π/4. There
is one orbifold singularity on P(1, 1, 4) of type 1

4 (1, 1) as explained in Example 4.4.
But this does not cause any difficulty by the discussion in Sect. 4.1. So by Theorem
1.8, we get that the log-Ding-energy FP

2

ω,3/4D is bounded from below. So by Proposition
1, Fω,(1−β)D(φ) is proper for β ∈ (1/4, 1] on the space of SO(3,R) invariant conical
metrics. So by the existence Theorem 2.17, we get the existence of conical Kähler–
Einstein metric on (P2, (1 − β)D) for any β ∈ (1/4, 1].
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Remark 5.1. When β = 1/2, there exists an orbifold metric on (P2, 1/2D) coming from
the branched covering map given by

p : P
1 × P

1 → P
2

[U0,U1], [V0, V1]  → [U0V0 + U1V1, i(U0V1 + U1V0), i(U0V0 − U1V1)]
This is a degree 2 cover branching along the diagonal � = {[U0,U1], [U0,U1]} ⊂
P

1 × P
1. Note that

p(�) = D = {Z2
0 + Z2

1 + Z2
2 = 0} ⊂ P

2.

From the above proof it is tempting to expect that

Conjecture 5.2. The conical Kähler–Einstein metric ωβ on P
2 with cone angle 2πβ

along a smooth degree 2 curve converge in the Gromov–Hausdorff sense to the standard
orbifold Kähler–Einstein metric on P(1, 1, 4) as β tends to 1/4.

Actually, more generally, assume there is a special degeneration (X ,Y) of the pair
(X,Y ), such that (X0,Y0) is a conical Kähler–Einstein pair. Then we expect (X,Y )
converges to (X0,Y0) in Gromov–Hausdorff sense along certain continuity method
(either by the classical continuity method by increasing Ricci curvature (cf. [4,39]), or
by changing cone angles(cf. [25]) , or even by log-Kähler–Ricci flow(cf. in [60]). This
philosophy is certainly well known to the experts in the field. In particular, this is related
to [71] and [26].

Remark 5.3. In [33], Q-Gorenstein smoothable degenerations of P
2 are classified. They

are given by partial smoothings of weighted projective planes P
2(a2, b2, c2) where

(a, b, c) satisfies the Markov equation: a2 + b2 + c2 = 3abc. Different solutions are
related by an operation called mutation: (a, b, c) → (a, b, 3ab − c). The first sev-
eral solutions are (1, 1, 1), (1, 1, 2), (1, 5, 2), (1, 5, 13), (29, 5, 2). The above construc-
tion gives geometric realization of such degeneration corresponding to the mutation
(1, 1, 1) → (1, 1, 2). We expect there is similar geometric realization of every muta-
tion.

5.2. Calabi–Yau cone metrics on three dimensional A2 singularity. Through a stimu-
lating discussion with Dr. Hans-Joachim Hein, we learned that Theorem 1.5 has the
following application. Recall it was discovered by Gauntlett–Martelli–Sparks–Yau [29]
that there may not exist Calabi–Yau cone metrics on certain isolated quasi-homogeneous
hypersurface singularities, with the obvious Reeb vector field. In particular, there are
two constraints: Bishop obstruction and Lichnerowicz obstruction. As an example, the
cases of three dimensional Ak−1 singularities were studied. Recall a three dimensional
Ak−1 singularity is the hypersurface in C

4 defined by the following equation

x2
1 + x2

2 + x2
3 + xk

4 = 0.

There is a standard Reeb vector field ξk which generates the C
∗ action with weights

(k, k, k, 2). Let Lk be the Sasaki link of the Ak−1 singularity. Then the existence of a
Calabi–Yau cone metric with Reeb vector field ξk is equivalent to the existence of a
Sasaki–Einstein metric on Lk . In [29], using the Bishop obstruction, it was proved that
Lk admits no Sasaki–Einstein metric for k > 20, and using Lichnerowicz obstruction
this bound was improved to k > 3. For k = 2 this is the well-known conifold singularity
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and there is a homogeneous Sasaki–Einstein metric on the link L2. For k = 3 by
Matsushima’s theorem the possible Sasaki–Einstein metric on L3 must be invariant
under SO(3;R) action, and is of cohomogeneity one. The ordinary differential equation
has been written down explicitly in [29], and it is an open question in [29] whether L3
admits a Sasaki–Einstein metric.

In the language of Sasaki geometry, the above examples Lk are all quasi-regular,
meaning that the Reeb vector field ξk generates an S1 action on Lk , and the quotient
Mk is a polarized orbifold Mk(in the sense of [56]). The existence of a Sasaki–Einstein
metric on Lk is equivalent to the existence of an orbifold Käler–Einstein metric on Mk .
In the above concrete cases, the orbifold Mk is the hypersurface in P(k, k, k, 2) defined
by the same equation x2

1 + x2
2 + x2

3 + xk
4 = 0. Note that P(k, k, k, 2) is not well-formed.

When k = 2m + 1 is odd, then

P(2m + 1,2m + 1,2m + 1,2)
∼=−→ P(2m + 1,2m + 1,2m + 1,2(2m + 1)) = P(1, 1, 1, 2)

[x1, x2, x3, x4]  → [x1, x2, x3, x2m+1
4 ].

When k = 2m is even, then

P(2m, 2m, 2m, 2) = P(m,m,m, 1)
∼=−→ P(m,m,m,m) = P(1, 1, 1, 1)

[x1, x2, x3, x4]  → [x1, x2, x3, xm
4 ].

So Mk is isomorphic to {z2
1+z2

2+z2
3+z4 = 0} ∼= P

2 when k is odd, and to {z2
1+z2

2+z2
3+z2

4 =
0} ∼= P

1 × P
1 when k is even.

Regarding the non-well-formed orbifold structure it is not hard to see that when k is
odd we get (P2, (1 − 1/k)D) and when k is even we get (P1 × P

1, (1 − 2/k)
). Thus
we see the close relationship between the existence of Sasaki–Einstein metric on Lk
and the existence of conical Kähler–Einstein metric on (P2, (1 − 1/k)D). In particular
we know there is no Sasaki–Einstein metric on Lk for k > 3 by Example 3.12. This is
not surprising, since by [56] the Lichnerowicz obstruction could be interpreted as slope
stability for orbifolds. The new observation here is the case k = 3 follows from Theorem
1.5. So we know the three dimensional A2 singularity admits a Calabi–Yau cone metric
with the standard Reeb vector field. This is Corollary 1.6.

The corresponding Sasaki–Einstein metric on Lk is invariant under the SO(3;R)

action. It would be interesting to find an explicit solution by solving the ODE written in
[29]. In [21] cohomogeneity one Sasaki–Einstein five manifolds were classified, but the
above result suggests that the classification is incomplete.

Remark 5.4. In [42], the first author used numerical method to solve the ODE in [29].
The numerical results confirm our theoretical result. Moreover, numerical results show
that Conjecture 5.2 is true. Also, by calculating the simplest examples of A0 and A1
singularities, one finds there are indeed cases which were ignored in [21]. For details,
see [42].

6. Kähler–Einstein Metrics from Branched Cover

One of our motivations for this paper is to construct smooth Kähler–Einstein metrics
using branch covers(see [1,30] for such kind of constructions). If D ∼ m D1 with D1
being an integral divisor, we can construct branch cover of X with branch locus D.
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B ⊂ Y

↓ ↓ π
D ⊂ X

The canonical divisors of X and Y are related by Hurwitz formula:

KY = π∗
(

K X +
m − 1

m
D

)
.

In our setting, since D ∼ −λK X , we get

K−1
Y =

(
1 − m − 1

m
λ

)
π∗K−1

X = r(1/m)π∗K−1
X . (32)

We have the following 3 cases to consider.

(1) (Positive Ricci) −(K X + (1 − 1/m)D) is ample. This is equivalent to r(1/m) > 0.
Example: X = P

2. Define deg Y = (K−1
Y )2.

• deg D = 2, m = 2, λ = 2/3. deg Y = 4. Y = P
1 × P

1.
• deg D = 3, m = 3, λ = 1. deg Y = 3. Y is a cubic surface.
• deg D = 4, m = 2, λ = 4/3. deg Y = 2. Y is Bl7P

2.
(2) (Ricci flat) K X + (1 − 1/m)D ∼ 0. This is equivalent to r(1/m) = 0.

Example: X = P
2.

• deg D = 4, m = 4, λ = 4/3. Y is a K3 surface in P
3.

• deg D = 6, m = 2, λ = 2. Y is a K3 surface.
(3) (Negative Ricci) K X + (1 − 1/m)D is ample.

Example: X is P
2 and D is a general smooth, degree d curve such that λ = d/3.

Choose m|d. Except for the cases already listed above, K X + (1− 1/m)D is ample.

Assume we have already constructed an orbifold Kähler–Einstein metric ω̂K E on
(X, (1 − 1/m)D). Then π∗ω̂K E is a smooth Kähler–Einstein metric on Y . Note that
orbifold Kähler metric can be seen as a special case of conical Kähler metric, i.e. when
the cone angle is equal to 2π/m for some m ∈ Z. So existence of conical Kähler-Einstein
metrics with angle 2π/m will give rise to smooth Kähler–Einstein metrics. Using the
existence theory for conical Kähler–Einstein metrics, we can construct a lot of smooth
Kähler–Einstein metrics on Fano manifolds using branch covers. More precisely, using
the notation of branch-covering above, we have

Theorem 6.1. If there is conical Kähler–Einstein metric on (X, (1−1/m)D), then there
is a smooth Kähler–Einstein metric on Y . In particular, if X admits a Kähler–Einstein
metric and λ ≥ 1, then there exists smooth Kähler–Einstein metric on Y .

To begin the proof, we first observe the following

Proposition 16. Fix an orbifold Kähler metricω on (X, (1−1/m)D). The branch cover
π induces a map from PSH(ω) to PSH(π∗ω) by pulling back. The energy functionals
are compatible with this pull back.

FY
r(1/m)π∗ω(r(1/m)π∗φ) = m F X

ω,(1−1/m)D(φ),

MY
r(1/m)π∗ω(r(1/m)π∗φ) = mMX

ω,(1−1/m)D(φ).

Similar relation holds for the functionals F0
ω(φ), I and J .



960 C. Li, S. Sun

Proof. For any orbifold Kähler metricω ∈ 2πc1(X), there exists Hω,(1−1/m)D such that

Ric(ω)− r(1/m)ω − (1 − 1/m){D} = √−1∂∂̄Hω,(1−1/m)D. (33)

ω̃ = r(1/m)π∗ω is a smooth Kähler metric in c1(Y ) (see (32)). Note that ωn has poles
along D, but π∗ωn is a smooth volume form. From (33), we get

Ric(ω̃)− ω̃ = √−1∂∂̄π∗Hω,(1−1/m)D.

So hω̃ := Hω̃,0 = π∗Hω,(1−1/m)D and ehω̃ ω̃n = π∗(eHω,(1−1/m)Dωn).
∫

X
eHω,(1−β)D−r(1/m)φωn/n! = 1

m

∫

Y
ehω̃−π∗(r(1/m)φ)ω̃n/n!.

So we get the identity for log-Ding-energy on X and Y . Similarly, by the defining formula
for the F0

ω(φ), I , J functional in Definition 2.6, the relation stated in the proposition
holds. ��
Proof of Theorem 6.1. We can choose the reference metricω on X to be orbifold metric.
Then the pull back ω̃ = r(1/m)π∗ω is a smooth Kähler metric on Y . If ωK E = ω +√−1∂∂̄φK E is the conical Kähler–Einstein metric on (X, (1 − 1/m)D, c1(X)), then
φ̃K E = r(1/m)π∗φK E is the bounded continuous solution of the following Monge–
Ampère equation on Y .

(ω̃ +
√−1∂∂̄φ̃)n = ehω̃−φ̃ ω̃n .

By the regularity result in [62] (see also [8]), φ̃K E is indeed a smooth solution of Kähler–
Einstein equation on Y . ��

7. Convergence of Conical KE to Smooth KE

In this section, we prove the convergence statement in Theorem 1.2 and related dis-
cussions following it. So we assume there exists smooth Kähler–Einstein metric on X .
When Aut (X) is discrete, thenωK E is invariant under Aut (X). In this case, the Mabuchi
energy is proper on Ĥ(ω).
Theorem 7.1. Assume D ∼Q −λK X with λ ≥ 1, ωβ = ω +

√−1∂∂̄φβ is the conical
Kähler–Einstein metric on (X, (1 − β)D), and ωK E = ω +

√−1∂∂̄φK E , then φβ
converges to φK E in C0-norm. Moreover, φβ converges smoothly on any compact set
away from D.

Proof. Choose any smooth reference Kähler metric ω. By Proposition 1, the log-
Mabuchi-energy Mω,(1−β)D is proper on Ĥ for β ∈ (0, 1]. Furthermore, from the
interpolation, we see that there exists constants C1 and C2 independent of β such that

Mω,(1−β)D(ωφ) ≥ C1 Iω(ωφ)− C2. (34)

Since ωβ obtains the minimum of log-Mabuchi-energy, we have

Mω,(1−β)D(ωβ) ≤ Mω,(1−β)D(ω) = 0.
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So from (34), we see that there exists a constant C independent of β such that

Iω(ωβ) ≤ C.

Assume ωβ = ω +
√−1∂∂̄φβ . By [4] and [34], there exists a constant C independent

of β such that

V ol(X) · Osc(φβ) ≤ Iω(ωβ) + C =
∫

X
φ(ωn − ωn

β)/n! + C.

So ‖φβ‖C0 is uniformly bounded. Now the first statement follows from standard pluripo-
tential theory. For the last statement, we can use Chern–Lu’s inequality:


β(log trωβω − Cφβ) ≥ (C1 − λn) + (λ− C2trωβω).

to get C2-estimate on φβ . (Note that it’s easy to verify from the calculation in the
Appendix of [34] that we indeed have the upper bound on bisectional curvature to be
independent of β at least when β ≥ δ > 0.) Then we can use Krylov–Evan’s estimate
to get uniform higher order estimates on any compact set away from D. The smooth
convergence away from D follows from these uniform estimates. ��

When Aut (X) is continuous, then Aut (X) is the complexification of G :=
I som(X, ωK E ). By Bando–Mabuchi’s theorem [4], the moduli space of Kähler–Einstein
metrics (denoted by MK E ) is isomorphic to the symmetric space GC/G. In particular

TωK E MK E = g = LieG.

Recall that Matsushima’s theorem ([46]) says that

g = (�R

1 )0 = {θ ∈ C∞(X,R); (
K E + 1)θ = 0,
∫

X
θωn

K E/n! = 0}.

Now we want to identify the limit ωD
K E as β → 1. ωD

K E turns out to be the critical point
of the following functional, which is a part of log-Mabuchi-functional.

Lemma 7.2. Define the functional

Fω,D(ωφ) = λ(I − J )ω(ωφ) +
∫

X
log |s|2h(ωn

φ − ωn)/n!

where λω = −√−1∂∂̄ log | · |2h. Then F satisfies the following properties:

(1)
Mω,(1−β)D(ωφ) = Mω(ωφ) + (1 − β)Fω,D(ωφ). (35)

(2) Fω satisfies the cocycle condition. More precisely, for φ,ψ ∈ PSH∞(ω), we have

Fω,D(ωφ)− Fωψ,D(ωφ) = Fω,D(ωψ),

Fω(ωψ) = −Fωψ (ω).

(3) F is convex along geodesics of Kähler metrics..



962 C. Li, S. Sun

Proof. The first item follows from the expression for log-Mabuchi energy in, for
example, formula (14). The second statement follows from the cocycle properties of
Mω,(1−β)D and Mω. It can also be verified by direct calculations.

For the last statement, first it is well known that M is a totally geodesic submanifold
of the space of smooth Kähler metrics in 2πc1(X) and (I − J )ω(ωφ) is convex on the
space of smooth Kähler metrics. Assume φ(t) is a geodesic, i.e. φ̈ − |∇φ̇|2ωφ = 0. Then
we can calculate

d

dt
(I− J )ω(ωφ) =−

∫

X
φ
ωφ φ̇ω

n
φ/n!=−

∫

X
φ̇(ωφ−ω) ∧ ωn−1

φ /(n−1)!

= n
d

dt
F0
ω(φ)+

∫

X
φ̇ω ∧ ωn−1

φ /(n − 1)!.
d

dt

∫

X
log |s|2h(ωn

φ − ωn)/n! =
∫

X
log |s|2h
ωφ φ̇ωn

φ/n!

=
∫

X
(−λω + 2π{D})φ̇ωn−1

φ /(n − 1)!.

So combining the above two identities, we get

d

dt
Fω,D(ωφ) = d

dt
(nλF0

ω(φ)− F0
ω,2πD(φ)).

This is certainly true by the way how we integrate the log-Futaki invariant to get the log
Mabuchi energy. Now since F0

ω(φ) is affine along geodesics of Kähler metrics, we get

d2

dt2 Fω,2πD(ωφ) = − d2

dt2 F0
ω,D(φ) =

∫
2πD(ω + ∂∂̄�)n/n!

dt ∧ dt̄

=
∫

2πD
φ̈ωn−1

K E /(n − 1)! −
∫

2πD
∂φ̇ ∧ ∂̄ φ̇ ∧ ωn−2

K E /(n − 2)!

=
∫

2πD
(|∇φ̇|2ωK E

− |∇Dφ̇|2ωK E |D )ω
n−1
K E /(n − 1)!

=
∫

2πD
|(∇φ̇)⊥|2ωK E

ωn−1
K E /(n − 1)! ≥ 0. (36)

��
Lemma 7.3. We have the following different formulas for the Hessian of Fω,D on MK E :
for any θ ∈ (�R

1 )0,

HessF (θ, θ) =
∫

2πD
|∇θ⊥|2ωn−1

K E /(n − 1)! (37)

= λ

∫

X
θ2ωn

K E/n! +
∫

X
(−θ2 + θ iθi )(λφ − log |s|2h)ωn

K E/n!

= λ

∫

X
θ2ωn

K E/n! +
∫

X
(θ2 − θ iθi )(log |s|2he−λφ )ω

n
K E/n!. (38)

Proof. The first identity follows from (36) because θ = ∂φ
∂t |t=0. Let’s prove the 2nd

identity. For θ ∈ �1 = K er(
K E + 1), ∇θ is a holomorphic vector field generating
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a one parameter subgroup σt in Aut (X). Let σ ∗
t ωK E = ωK E +

√−1∂∂̄φt . Then φt

satisfies the geodesic equation: φ̈ − |∇φ̇|2ωφ = 0 with initial velocity d
dt φ|t=0 = θ .

d2

dt2

∣∣∣∣
t=0

ωn
t = d

dt
(
φ̇ωn

t ) = (
̇φ̇ +
φ̈ + (
φ̇)2)ωn
K E

= (−θ i j̄θi j̄ + (θ iθi )
j

j + θ2)ωn
K E

= (−θ i j̄θi j̄ + θ i
jθ

j
i + θ i j

j θi + θ2)ωn
K E/n!

= (θ2 − θ iθi )ω
n
K E

Note that in the last identity, the relation 
θ = θ
i

i = −θ was used. So we get

HessF (θ, θ) = d2

dt2

(
λ(I − J )ω(ωt ) +

∫

X
log |s|2h(ωn

t − ωn)/n!
)

= −λ
∫

X
φ̇
φ̇ωn

K E/n! +
∫

X
(−λφ + log |s|2h)

d2

dt2ω
n
t /n!

= λ

∫

X
θ2ωn

K E/n! +
∫

X
(log |s|2he−λφ )(θ

2 − θ iθi )ω
n
K E/n!.

��
Lemma 7.4. If there is no holomorphic vector field on X which is tangent to D, i.e.
Aut (X, D) is discrete, then HessF is non-degenerate at any point ωK E ∈ MK E . In
particular, this holds when λ ≥ 1.

Proof. We have seen HessF is non-negative at any point ωK E ∈ MK E using formula
(37). HessF is degenerate if and only if

∫
2πD |(∇θ)⊥|2ωn−1

K E /(n−1)! = 0. This happens
if and only if (∇θ)⊥ ≡ 0 on D, i.e. when the holomorphic vector field ∇θ is tangent to
D. The last statement follows from Corollary 2.21 (see also [58]). ��
Lemma 7.5. When restricted to MK E , there exists a unique minimum ωD

K E of
Fω,D(ωφ).

Proof. By the previous Lemma, Fω,D is a convex functional on the space MK E ∼=
GC/G. To prove the existence of critical point, we only need to show it’s proper on
GC/G. Because we assumed λ ≥ 1 and there exists Kähler–Einstein on X , by Theorem
2.10, Mω,(1−β)D is proper for β ∈ (0, 1). Because the Mabuchi energy is constant on
MK E , by equality (35), Mω,(1−β)D = (1 − β)Fω,D+constant is proper on MK E . ��

Write ωD
K E = ω +

√−1∂∂̄φD
K E , then it satisfies the critical point equation

∫

X
(log |s|2h − λφD

K E )ψ(ω
D
K E )

n/n! = 0.

for any ψ ∈ TωD
K E

MK E ∼= �1(ω
D
K E )/R. In other words, λφD

K E − log |s|2h ∈ �⊥
1 .

Proposition 17. As β → 1, the conical Kähler–Einstein metrics ωβ converges to a
unique smooth Kähler–Einstein metric ωD

K E ∈ MK E (under one technical assumption
that the implicit function theorem is valid on admissible function space when β = 1).
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Proof. Recall that the conical Kähler–Einstein equation can be written as

(ω +
√−1∂∂̄φ)n = ehω−r(β)φ ωn

|s|2(1−β) .

Any ωK E = ω +
√−1∂∂̄φK E ∈ MK E satisfies the equation

(ω +
√−1∂∂̄φK E )

n = ehω−φK Eωn .

By Lemma 7.5, there exists a unique minimum ωD
K E of the functional Fω,D on MK E .

We will choose ωK E = ωD
K E in the following argument. Divide the above two equations

to get

log
(ω +

√−1∂∂̄φ)n

(ω +
√−1∂∂̄φK E )n

= φK E − r(β)φ − (1 − β) log |s|2h .

Let φ = φK E + ψ and ψ = θ + ψ ′ with θ ∈ �1 and ψ ′ ∈ �⊥
1 , then

log
(ωK E +

√−1∂∂̄(θ + ψ ′))n

ωn
K E

+ r(β)(θ + ψ ′) = (1 − β)(λφK E − log |s|2h). (39)

We use Bando–Mabuchi’s bifurcation method to solve the equation for β close to 1.
First project to �⊥

1 to get

(1−P0)

(
log

(ωK E +
√−1∂∂̄(θ + ψ ′))n

ωn
K E

)
+r(β)ψ ′ = (1−β)(λφK E−log |s|2h). (40)

The equation is satisfied for (β, ψ, θ) = (1, 0, 0). The linearization of the left side
of this equation with respect to ψ ′ is

(1 − P0)(
̃θ + r(β))ψ ′

where 
̃θ is the Laplacian with respect to ωK E +
√−1∂∂̄θ . Since�1 = K er(
K E + 1),

there exists a positive constant δ > 0, such that

(1 − P0)(−
ωK E − 1) ≥ δ > 0.

By continuity, it’s easy to see that

(1 − P0)(−
̃θ − r(β)) ≥ δ/2 > 0.

for (β, θ) close to (1, 0). In other words, the inverse of (1−P0)(
̃θ +r(β)) has uniformly
bounded operator norm for (β, θ) close to (1, 0). So by implicit function theorem, there
exists solution ψ ′

β,θ for β near 1 and θ small. Now to solve the Eq. (39), we only need
to solve the following equation, obtained by projecting to �1,

P0

(
log

(ωK E +
√−1∂∂̄(θ + ψ ′))n

ωn
K E

)
= −r(β)θ. (41)

To solve this, we need to take the gauge group G = I som(X, ωK E ) into account and
rewrite (41) in another form. For any σ ∈ G near I d, we have a function θ = θσ
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satisfying σ ∗ωK E = ωK E +
√−1∂∂̄(θ + ψ ′

1,θ ). Because σ ∗ωK E is a smooth Kähler–
Einstein metric, we have the equation

log
(ωK E +

√−1∂∂̄(θ + ψ ′
1,θ ))

n

ωn
K E

= −(θ + ψ ′
1,θ )

Now let ψ ′
β,θ = ψ ′

1,θ + (1 − β)ξβ,θ . We can rewrite the Eq. (39) in the following form

log
(ωK E +

√−1∂∂̄(θ + ψ ′
1,θ + (1 − β)ξβ,θ ))n

ωn
K E

= −(1 − λ(1 − β))(θ + ψ ′
1,θ + (1 − β)ξβ,θ ) + (1 − β)(λφK E − log |s|2h)

= log

(
ωn
θ

ωn
K E

)
+(1 − β)λ(θ+ψ ′

1,θ )− (1 − β)r(β)ξβ,θ + (1 − β)(λφK E − log |s|2h).

whereωθ = ωK E +
√−1∂∂̄(θ +ψ ′

1,θ ). In particular, it’s easy to see that (40) is equivalent
to

1

1 − β (1 − P0)

(
log

(ωK E +
√−1∂∂̄(θ + ψ ′

1,θ + (1 − β)ξβ,θ ))n
(ωK E +

√−1∂∂̄(θ + ψ ′
1,θ ))

n

)

= λψ ′
1,θ − r(β)ξβ,θ + (λφK E − log |s|2h).

Let β → 1 to get

(1 − P0)
(
(
θ + 1)ξ1,θ

)− λψ ′
1,θ = λφK E − log |s|2h .

where
θ is the Laplacian with respect to the metricωθ . In particular,
0 = 
K E . Since
I m(
0 + 1) = (K er(
0 + 1))⊥ = �⊥

1 , so in particular,

(
0 + 1)ξ1,0 = λφK E − log |s|2h . (42)

Now the Eq. (41) is equivalent to

P0

(
1

1 − β log
(ωK E +

√−1∂∂̄(θ + ψ ′
1,θ + (1 − β)ξβ,θ ))n

(ωK E +
√−1∂∂̄(θ + ψ ′

1,θ ))
n

)
− λθ = 0 (43)

Denote by �(β, θ) the term on the left side, Then

�(1, 0) = 0, �(1, θ) = P0(
θξ1,θ )− λθ.
Let θ(t) = tθ ∈ �1 = K er(
0 + 1). For any θ ′ ∈ �1,

∫

X

d

dt
�(1, θ)

∣∣∣∣
t=0

θ ′ωn
K E/n! = −λ

∫

X
θθ ′ωn

K E/n! +
∫

X
(
̇θ ξ1,0 +
0ξ̇1,0)θ

′ωn
K E/n!

= −λ
∫

X
θθ ′ωn

K E/n! +
∫

X
−θ i j̄ (ξ1,0)i j̄θ

′ωn
K E/n!.
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Let ξ = ξ1,0 ∈ �⊥
1 . As the calculation in [4], we have

∫

X
θ i j̄ ξi j̄ θ

′ωn
K E/n! = −

∫

X
(θ i ξ

j̄
i j̄
θ ′ + θ i ξi j̄ θ

′ j̄ )ωn
K E/n! = −

∫

X
(θ i ξ

j̄
j̄ i
θ ′ − θ i ξi θ

′ j̄
j̄
)ωn

K E/n!

= −
∫

X
θ i ((
 + 1)ξ)i θ

′ωn
K E/n! =

∫

X
(−θθ ′ + θ i θ ′i )(
 + 1)ξωn

K E/n!

= −
∫

X
(θθ ′ − θ i θ ′i )(λφ − log |s|2h)ωn

K E/n!

In the last identiy, we used the relation in (42). So

D2�(1, 0)(θ)θ ′ = −λ
∫

X
θθ ′ωn

K E/n! +
∫

X
(θθ ′ − θ iθ ′i )(λφ − log |s|2h)ωn

K E/n!
= −HessF (θ, θ ′). ( by equation (38))

By Lemma 7.4, D2�(1, 0) is invertible, so by implicit function theorem, (43) is
solvable for β close to 1. So we get conical Kähler-Einstein metrics ωβ for β close to 1
and by continuity φβ converges to φD

K E as β → 1. ��

Remark 7.6. The above calculations are variations of Bando–Mabuchi’s calculation. In
their work [4], Bando–Mabuchi solved equations in Aubin’s continuity method back-
wardly from the correctly identified Kähler–Einstein metric. To do this, in general, they
needed to perturb the reference metric to make sure some linear map similar to D2�(1, 0)
is invertible. In the conical case, when there is no holomorphic vector field tangent to
D, by Lemma 7.4 and above calculations, we see that D2�(1, 0) is always invertible.
This is not very surprising because the conical continuity method is in some sense more
canonically related to the background geometry. If we continue to calculate as in [4]:

∫

X
θ i j̄ξi j̄θ

′ωn
K E/n! = −

∫

X
(θθ ′ − θ iθ ′i )(λφ − log |s|2h)ωn

K E/n!

= 1

2
nλ
∫

X
θθ ′ωn

K E/n! − 1

2

∫

2πD
θθ ′ωn−1

K E /(n − 1)!.

so that the linearized operator becomes

D2�(1, 0)(θ)θ ′ = −λ(1 + n/2)
∫

X
θθ ′ωn

K E/n! +
1

2

∫

2πD
θθ ′ωn−1

K E /(n − 1)!,

it seems not straightforward to see that D2�(1, 0) is nondegenerate using this formula.

Remark 7.7. One reason why we packed all the conical spaces together in the space
of admissible functions is because that we need to work in different function space
corresponding to different cone angles. Strictly speaking, there are subtleties in apply-
ing implicit functional theorem in this setting. However, we expect one can generalize
Donaldson’s argument to validate the application of implicit function theorem.
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8. Relations to Song–Wang’s Work

In this section, we will briefly explain Song–Wang’s results and derive one of its impli-
cations.

For one thing, they also observe the interpolation property for the log-Ding-energy.
Secondly, they considered pluri-anticanonical sections in their paper. This corresponds
to the λ ≥ 1 case in our paper. Recall that R(X) in the introduction (see (2)) is defined
to be the greatest lower bound of Ricci curvature of smooth Kähler metrics in c1(X).
R(X) was studied in [38,41,58,61,64]. Donaldson [25] made the following conjecture

Conjecture 8.1 (Donaldson). Let D ∈ | − K X | be a smooth divisor, then there exists a
conical Kähler–Einstein metric on (X, (1 − β)D) if and only if β ∈ (0, R(X)).

Song–Wang proved a weak version of Donaldson’s conjecture by allowing pluri-
anticanonical divisor and its dependence on β. Translating their result in our notations,
they proved

Theorem 8.2 (Song–Wang [58]). For any γ ∈ (0, R(X)) there exists a large λ ∈ Z and
a smooth divisor D ∈ |λK−1

X | such that there exists a conical Kähler–Einstein metric
on (X, λ−1(1 − γ )D).
Remark 8.3. Note that in general,λ and D may depend on γ . γ is related to the cone angle
parameterβ by the relationλ−1(1−γ ) = 1−β or equivalently, γ = r(β) = 1−λ(1−β).

The proof of this theorem can be explained through the Hölder’s inequality
∫

X
ehω−γφ ωn

n!|s|2(1−γ )/λ ≤
(∫

X
ep(hω−γφ)ωn/n!

)1/p (∫

X
|s|−2q(1−γ )/λωn/n!

)1/q

where p−1 + q−1 = 1. To make contact with the invariant R(X), one choose p = t
γ

for any t ∈ (γ, R(X)). (This is related to the characterization of R(X) through the
properness of twisted Ding-energy as in [41]) Then q = (1 − p−1)−1 = t

t−β . Now the

integrability of the second integral on the right gives the restriction onλ: 2q(1−γ )
λ

−1 < 1.
This gives the lower bound of λ in Song–Wang’s theorem.

λ > (1 − γ ) R(X)

R(X)− γ .

One other result Song–Wang proved is the construction of toric conical Kähler–
Einstein metrics. This can be combined with the strategy in our paper to prove a (weak)
version of Donaldson’s conjecture on toric Fano manifolds. We will explain this briefly.

Any toric Fano manifold X� is determined by a reflexive lattice polytope � ⊂ R
n

containing only O as the interior lattice point. For any P ∈ R
n , P determines a toric

R-divisor DP ∼R −K X . More concretely, assume that the polytope is defined by the
inequalities l j (x) = 〈x, ν j 〉 + a j ≥ 0. Then DP =∑ j l j (P)D j . If P ∈ � is a rational
point, then for any integer λ such that λP is an integral lattice point, there exist a genuine
holomorphic section sλP of −λK X and an integral divisor λDP .

Let Pc be the barycenter of�, then the ray
−−→
Pc O intersect the boundary ∂� at a unique

point Q. Note that in general, Q is a rational point. In [38], the first author proved R(X)
is given by

R(X) = |O Q|
|Pc Q| . (44)
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For any γ ∈ (0, 1], define Pγ = − γ
1−γ Pc. Then Pγ ∈ � if and only if γ ∈ (0, R(X)],

which is also equivalent to DPγ being effective. In particular, PR(X) = Q. Using these
notations, Song–Wang proved the following theorem by adapting the method in Wang–
Zhu’s work [73] on the existence of Kähler–Ricci solitons on toric Fano manifolds.

Theorem 8.4 (Song–Wang[58]). For any γ ∈ (0, R(X)], there exists toric solution to
the following equation:

Ric(ω) = γω + (1 − γ ){DPγ }.
When γ ∈ (0, R(X)] is rational, then the solution ωγ is a conical Kähler–Einstein
metric on (X, (1 − γ )DPγ ). In particular, when γ = R(X), there exists a conical
Kähler–Einstein metric on (X, (1 − R(X))DQ).

Example 8.5. The above theorem can be generalized to toric orbifold case. (See [57] and
[36] for related works) We will illustrate this by showing the conical Kähler–Einstein
on X = P(1, 1, 4) considered in Sect. 5 in the toric language. The polytope determining
(X,−K X ) is the following rational polytope �. Note that −2K X is Cartier because 2�
is a lattice polytope.

Pc

Q

O

BA

Q = (−1, 1/2), Pc = (1,−1/2). So R(X) = |O Q|/|Pc Q| = 1/2. DQ = 3/2D,
where the divisor D corresponds to the facet AB. The conical Kähler–Einstein satisfies
the equation:

Ric(ω) = 1

2
ω + (1 − 1

2
) · 3

2
D.

So the cone angle along D is 2πβ with β = 1 − 3/4 = 1/4.

Now we show that Song–Wang’s existence result implies Theorem 2.

Proof of Theorem 2. Let FQ be the minimal face of � containing Q. For any λ ∈ Z

such that λQ is an integral point, define a set of rational points by

R(Q, λ) = {Q}
⋃(

(� \ FQ)
⋂ 1

λ
Z

n
)
.

Then we define the linear system Lλ to be the linear subspace spanned by the holo-
morphic sections corresponding to rational points in R(Q, λ):

Lλ = SpanC

{
sλP ; P ∈ R(Q, λ)} .

Choose any general element D ∈ Lλ, the coefficient of the term sλQ is nonzero. Because
Q is a vertex of the convex hull of R(Q, λ), there exists a C

∗ action denoted by σ(t)
contained in the torus action, such that

lim
t→0

σ(t)∗D = λDQ .
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In this way, we construct a degeneration (X , 1−R(X)
λ

D, K−1
X ) with X = X × C and

Dt = σ ∗
t D. By Song–Wang’s theorem in [58], the central fibre (X0,

1−R(X)
λ

(λDQ)) =
(X, (1 − R(X))DQ) has conical Kähler–Einstein metric. So we use Theorem 1.8 to get
the lower bound of MX, 1−R(X)

λ
D . (Here we are in a simpler situation. Since X = X ×C,

we just need to use the trivial geodesic and apply Berndtsson’s result in [11] to get the
subharmonicity and use the argument as in the proof of Theorem 1.8) On the other hand,
because λ ≥ 1, we can use the interpolation result in Proposition 1 to see that MX, 1−γ

λ
D

is proper for any γ ∈ (0, R(X)) (actually for any γ ∈ (1 − λ, R(X)). So there exists
a conical Käler–Einstein metric on (X, 1−γ

λ
D) for any γ ∈ (0, R(X)). There can not

be conical Kähler–Einstein metric for γ ∈ (R(X), 1) is easy to get because the twisted
energy is bounded from below by the log-Ding-energy. For details, see [58] and also
[41]. The non-existence for γ = R(X) is implied by Donaldson’s openness theorem in
[25] (see Theorem 2.4), since otherwise there exists conical Kähler–Einstein for some
γ ∈ (R(X), 1). ��
Remark 8.6. The smoothness of the generic member seems to be more subtle than we
first thought. We will discuss this a little bit using standard toric geometry. For this, we
first denote {Hi }N

i=1 to be the set of codimensional 1 face (i.e. facet) of �. Define

B(FQ) =
⎛

⎝
⋃

FQ �⊂Hi

Hi

⎞

⎠
⋂

FQ .

Now it’s easy to see that the base locus of Lλ is equal to

BQ =
⋃

σ⊂B(FQ)

Xσ .

Here for any face of � we denote Xσ to be the toric subvariety determined by σ . Indeed,
this follows from the following fact: if P is any lattice point and FP is the minimal face
containing P . Define

Star(FP ) =
⋃

FP⊂σ
σ.

where σ ranges over all the (closed) faces of �. (including � itself). Then the zero set of
the corresponding holomorphic section sP is the toric divisor corresponding to the set

� \ (Star(FP ))
◦ =

⋃

FP �⊂Hi

Hi ⊂ ∂�.

By Bertini’s Theorem [31], the generic element D ∈ Lλ is smooth away from BQ . To
analyze the situation near BQ , fix any vertex P of F . We can choose integral affine
coordinates {xi }n

i=1 such that

FQ =
n⋂

i=m+1

{xi = 0}.

We can also write Q = λ(d1, . . . , dm, 0, . . . , 0)with λdi being positive integers. On the
other hand, by standard toric geometry, the normal fan of � at P determines an affine
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chart UP on X . There exists complex coordinate {zi }n
i=1 such that XFQ ∩UP = {zm+1 =

0, . . . , zn = 0}. Locally, the generic member D in Lλ is given by the equation of the
form:

m∏

i=1

ai z
λdi
i +

n∑

j=m+1

b j z j (1 + f j (z1, . . . , zm)) +
n∑

j,k=m+1

c jk z j zk g(z1, . . . , zn)).

where ai , b j �= 0. If we delete the lattice points corresponding to terms z j f j (z1, . . . , zm),
then C would be smooth near XFQ ∩ UP . Since BQ ⊂ XFQ and UP covers XFQ as
P ranges over all the vertices of FQ we conclude that D is smooth at points in BQ as
well. This certainly puts a lot of restriction on the sub-linear system. However, even if
we don’t delete these lattice points, the generic member in Lλ could be smooth. For
example, this is the case when FQ has dimension ≤ 1 in which case the base locus
consists of isolated points. In particular, this is true when the toric variety has dimension
≤ 2.

Remark 8.7. The degeneration behavior in the toric case is related to the study of degen-
erations in [39] where the current DPγ is replaced by (1 − γ )ω with ω being a smooth
reference metric.

Example 8.8. Let X = BlpP
2. Let [Z0, Z1, Z2] be homogeneous coordinate on P

2. We
can assume p = (1, 0, 0) ∈ C

2 = {Z0 �= 0} ⊂ P
2. Let π : X → P

2 be the blow down
of exceptional divisor E . For simplicity we use H to denote both the hyperplane class on
P

2 and its pull-back on X . Then −K X = 3H − E and −2K X = 6H − 2E . So divisors
in | − 2K X | correspond to the sextic curves on P

2 whose vanishing order at 0 is at least
2. More precisely, if C is such a curve representing 6H , then the corresponding divisor
D(C) in | − 2K X | = |6H − 2E | is the strict transform of C . In toric language, X is
determined by the following polytope:

Q

O PcB1

B2

Q

The invariant R(X) = 6/7 was calculated in [61] and [38]. Since the point Q =
(−1/2,−1/2), it’s easy to see that DQ = 1/2(F1 + F2) + 2D∞. By Song-Wang [58],
there is a conical Kähler–Einstein metric on (X, (1 − R(X))DQ) = (X, 1/7DQ).

Now λQ is integral when λ is even. The generic divisors in the linear system L2
correspond to the sextic curves given by degree 6 homogeneous polynomial of the form

C : Z4
0 Z1 Z2 +

3∑

i=0

6−i∑

j=0

ai j Z i
0 Z j

1 Z6−i− j
2 = 0.

Let σt be the C
∗-action given by

(Z0, Z1, Z2)→ (Z0, t−1 Z1, t−1 Z2).
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Then limt→0 σt · C = {Z4
0 Z1 Z2 = 0}. Equivalently, by taking strict transform, we get

limt→0 σt · D(C) = 2DQ . The same argument applies to λ = 2m being even, where the
divisors in L2m correspond to the degree 6m curves of the form:

Z4m
0 Zm

1 Zm
2 +

4m−1∑

i=0

6m−i∑

j=0

ai j Z i
0 Z j

1 Z6m−i− j
2 = 0.

Note that the strict transform of such generic curves are smooth at the base locus BQ =
B1 ∪ B2 and so smooth everywhere.

Remark 8.9. From the above discussion, we see that when λ is even, the divisor degen-
erates while the ambient space stays the same. The case when λ = 1, or more generally
when λ is odd, is still open. From the point of view of our strategy, the problem is that
the right degeneration to conical Kähler–Einstein pair is still missing. In this case, we
expect the degeneration also happens to the ambient space, similar with the degree 2
plane curve case studied in Sect. 5.
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