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COMPACT MODULI SPACES OF DEL PEZZO SURFACES AND

KÄHLER-EINSTEIN METRICS

YUJI ODAKA, CRISTIANO SPOTTI, AND SONG SUN

Abstract. We prove that the Gromov-Hausdorff compactification of the mod-
uli space of Kähler-Einstein Del Pezzo surfaces in each degree agrees with
certain algebro-geometric compactification. In particular, this recovers Tian’s
theorem on the existence of Kähler-Einstein metrics on smooth Del Pezzo sur-
faces and classifies all the degenerations of such metrics. The proof is based
on a combination of both algebraic and differential geometric techniques.
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1. Introduction

For each positive integer d, we denote by MGH
d the Gromov-Hausdorff compact-

ification of the moduli space of degree d Kähler-Einstein Del Pezzo surfaces, and
denote by M0

d the dense subset that parametrizes those smooth surfaces. It is well-
known that for d ≥ 5 the moduli space is just a single point, so in this paper we
will always assume d ∈ {1, 2, 3, 4}. By Tian-Yau [75] we know that M0

d is at least
a non-empty set. By general theory, MGH

d is a compact Hausdorff space under the
Gromov-Hausdorff topology. By [4, 7, 70], points in MGH

d \M0
d parametrise certain

Kähler-Einstein log Del Pezzo surfaces, and a famous theorem of Tian [70] says
that, every smooth Del Pezzo surface admits a Kähler-Einstein metric so that it is
actually parametrized in M0

d .
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In this paper for each d we identify MGH
d with certain explicit algebro-geometric

moduli space of log Del Pezzo surfaces. The latter is a compact Moishezon analytic
space Md, which, roughly speaking, parametrizes isomorphism classes of certain
Q-Gorenstein smoothable log Del Pezzo surfaces of degree d. Notice that there
are a-priori several possibilities of such algebro-geometric compactifications of the
moduli varieties. On the other hand, the Gromov-Hausdorff compactification is
clearly canonical but very non-algebraic and just topological in nature. We refer to
[10] as an introductory textbook for those who are not familiar with the Gromov-
Hausdorff topology. The following main theorem of the present article builds a
bridge between the two notions of moduli spaces.

Theorem 1.1. For each integer d, there is a compact moduli algebraic space 1 Md,
that will be constructed explicitly in later sections, and a homeomorphism

Φ: MGH
d → Md,

such that [X ] and Φ([X ]) parametrize isomorphic log Del Pezzo surfaces for any
[X ] ∈ MGH

d . Moreover, Md contains a (Zariski) open dense subset which parametrizes
all smooth degree d Del Pezzo surfaces.

For the precise formulation, see Section 3.4. Theorem 1.1 immediately implies the
above mentioned theorem of Tian, and also classifies all degenerations of Kähler-
Einstein Del Pezzo surfaces which was posed as a problem in [71]. When d = 4
Theorem 1.1 was proved by Mabuchi-Mukai [45], and we shall provide a slightly
different proof based on our uniform strategy. For other degrees, there have been
partial results by [15], [17], [27], [65], [77] on the existence of Kähler-Einstein metrics
on some canonical Del Pezzo surfaces, by calculating α-invariant.

A minor point is that the Gromov-Hausdorff topology defined here is slightly
different from the standard definition, in that we also remember the complex struc-
ture when we talk about convergence. See [23], [66, Chapter 1 and 4] and Section 2
for a related discussion on this. The standard Gromov-Hausdorff compactification
is homeomorphic to the quotient of Md by the involution which conjugates the
complex structures.

For the proof of Theorem 1.1, we do not need to assume the existence of Kähler-
Einstein metrics on all the smooth Del Pezzo surfaces. The only assumption which
we need, and which has been originally proved by Tian-Yau [75], is the following:

Hypothesis 1.2. For each d ∈ {1, 2, 3, 4}, M0
d is non-empty as a set.

Given this, the main strategy of proving Theorem 1.1 is as follows:

(1) For each d, we construct a natural moduli variety Md with a Zariski open
subset M sm

d parametrizing all smooth degree d Del Pezzo surfaces. More-
over, there is a well-defined continuous map Φ: MGH

d → Md, where we
use the Gromov-Hausdorff distance in the domain and the local analytic
topology in the target, so that [X ] and Φ([X ]) parametrize isomorphic log
Del Pezzo surfaces for any [X ] ∈ MGH

d .
(2) Φ is injective. This follows from the uniqueness theorem of Bando-Mabuchi

[8] and its extension to orbifolds.
(3) Φ is surjective. This follows from the fact that the image of Φ is open in

M sm
d (by the implicit function theorem, see for example [42]) and closed in

Md (by the continuity of Φ in (1)).
(4) Since MGH

d is compact and Md is Hausdorff, then Φ is a homeomorphism.

The main technical part lies in Step (1). For this we need first to investigate
Gromov-Hausdorff limits of Kähler-Einstein Del Pezzo surfaces, and then construct

1For d 6= 1, it follows from the construction that Md is actually a projective variety.
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a moduli space that includes all the possible limits. The difficulty increases as the
degree goes down. When d = 3, 4 we take the classical GIT moduli space on the
anti-canonical embedding. For d = 2 we take the moduli space constructed in [52]
(based on Shah’s idea [64] which blows up a certain GIT quotient). For d = 1
we need to combine Shah’s method with further modifications suggested by the
differential geometric study of Gromov-Hausdorff limits. As far as we are aware,
this moduli space is new. We should mention that in the last two cases, Md (and
thus MGH

d ) contains points that parametrize non-canonical log Del Pezzo surfaces.
This disproves a conjecture of Tian in [70], see Remark 5.14. We also remark that
Gromov-Hausdorff limits of Kähler-Einstein Del Pezzo surfaces was first studied by
Tian in [70], but as we shall see there are some inaccuracies in [70], see Remark 2.8
and Example 5.8.

Finally we remark that for each d ∈ {1, 2, 3, 4}, it is easy to find explicit examples
of singular degree d Q-Gorenstein smoothable Kähler-Einstein log Del Pezzo surface
by a global quotient construction (see the examples in later sections). Thus one
way to avoid assuming Hypothesis 1.2 would be to find a smooth Kähler-Einstein
Del Pezzo surface by a gluing construction. For example, it has been proved in [67]
that for a Kähler-Einstein log Del Pezzo surface with only nodal singularities and
discrete automorphism group, one can glue model Eguchi-Hanson metrics to obtain
nearby Kähler-Einstein metrics in the smoothing. This can be applied when d = 3,
since the Cayley cubic (see Section 4) satisfies these assumptions.

The organization of this paper is as follows. In Section 2 we collect the main
results that we need on the structure of Gromov-Hausdorff limits, focusing on the
two dimensional case. In Section 3 we make an algebro-geometric study of the
Gromov-Hausdorff limits, and define precisely the notion of moduli spaces that we
use in this paper. Then we reduce the proof of Theorem 1.1 to the construction
of moduli spaces in each degree. In later Sections we treat the cases d ≥ 3 and
d ≤ 2 separately. We also investigate the relation with moduli space of curves, in
subsections 5.2.1, 5.3.5. In Section 6 we make some further discussions.

Notation:
A Del Pezzo surface is a smooth projective surface with ample anti-canonical

bundle. A log Del Pezzo surface is a normal projective surface with quotient singu-
larities (or equivalently, with log terminal singularities) and ample anti-canonical
divisor. For a log Del Pezzo surface X , its degree deg(X) is the intersection number
K2

X . In general dimensions, a Q-Fano variety means a normal projective variety
with log terminal singularities and with −rKX ample for some positive integer r.
Smallest such r will be called index or Gorenstein index .

Acknowledgements: This work is motivated by the PhD Thesis of the second
named author under the supervision of Professor Simon Donaldson. We would like
to thank him for great support. The pre-print version of this paper was written
when all the authors were based at Imperial College London. We would also like
to thank Professors Jarod Alper, Claudio Arezzo, Paolo Cascini, Ivan Cheltsov,
Xiuxiong Chen, Mark Haskins, David Hyeon, Alexander Kasprzyk, Radu Laza,
Yongnam Lee, Shigeru Mukai, Hisanori Ohashi, Shingo Taki and Bing Wang for
helpful discussions and encouragements. S.S. was partly funded by European Re-
search Council award No 247331.
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2. General results on the Gromov-Hausdorff limits

The main differential geometric ingredient involved in the proof of the main
theorem is the study of the structure of Gromov-Hausdorff limits of Kähler-Einstein
Del Pezzo surfaces. The following orbifold compactness theorem is well-known.

Proposition 2.1 ([4], [7], [70]). Given a sequence of degree d Kähler-Einstein
Del Pezzo surfaces (Xi, ωi, Ji) then, by passing to a subsequence, it converges in the
Gromov-Hausdorff sense to a Kähler-Einstein log Del Pezzo surface (X∞, ω∞, J∞),
and deg(X∞) = d.

In [70] Tian found further constraints on the possible singularities that could
appear in X∞. We will state a more general theorem and give an alternative proof.
First we have (compare also [74]):

Proposition 2.2 ([23]). Given a sequence of n-dimensional Kähler-Einstein Fano
manifolds (Xi, ωi, Ji), by passing to a subsequence, it converges in the Gromov-
Hausdorff sense to a Q-Fano variety (X∞, J∞) endowed with a weak Kähler-Einstein
metric ω∞ (cf. [24]). Moreover, there exist integers k and N , depending only on
n, so that we could embed Xi (i ∈ N ∪ {∞}) into PN using orthonormal basis of
H0(Xi,−kKXi

) with respect to the Hermitian metric defined by ωi, and Xi con-
verges to X∞ as varieties in PN .

Here one can think of the convergence as varieties in PN as the convergence
of defining polynomials. Notice that the orbifold property in Proposition 2.1 also
follows naturally from Proposition 2.2, since by Kawamata’s theorem [36] that a
two dimensional log terminal singularity is a quotient singularity.

We will treat singular varieties that come from certain limits of smooth ones.
The following algebro-geometric notion is very natural from the point of view of
minimal model program, and will be shown to be also naturally satisfied by the
above limit X∞.

Definition 2.3. Let X be a Q-Fano variety. We say X is Q-Gorenstein smoothable
if there exists a deformation π : X → ∆ ∋ 0 of X over a smooth curve germ ∆ such
that X0 = X , the general fibre is smooth and KX is Q-Cartier.

Lemma 2.4. X∞ is Q-Gorenstein smoothable.

Proof. By Proposition 2.2 and general theory we can find a family of varieties
π2 : X ⊂ PN ×∆ → ∆ in PN where for t 6= 0 Xt is smooth and X0 is the variety
X∞. Indeed, for a morphism from ∆ to the Hilbert scheme which sends 0 to X∞

(embedded by |−kKX∞
|) and contains Xi (embedded by |−kKXi

| as well) for one
sufficiently large i, we can construct the required family by pulling back the total
space and take its normalization if necessary. Denote the other projection map by
π1 : P

N ×∆ → PN , then −rKX and π∗
1O(1) agrees up to a pull back from the base.

Thus −rKX is Cartier and so X∞ is Q-Gorenstein smoothable. �

Note that the above proof does not use the Q-Gorenstein property of the normal
central fiber, although in our case, we knew it by Proposition 2.2. We only need a
relatively ample linear line bundle and the normality assumption of the total space
and the central fiber. The definition of Q-Gorenstein smoothability can be obvi-
ously defined also for local singularities, and for a Q-Gorenstein smoothable Q-Fano
manifold, all its singularities must also be Q-Gorenstein smoothable. On the other
hand, it is proved in [30] that a log Del Pezzo surface with Q-Gorenstein smooth-
able singularities is Q-Gorenstein smoothable. In dimension two, Q-Gorenstein
smoothable quotient singularities are also commonly called “T-singularities”. The
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classification of T -singularities is well-known, see [39], [47] for example. So com-
bining the above discussions we obtain:

Theorem 2.5 ([70]). The Gromov-Hausdorff limit (X∞, J∞) of a sequence of
Kähler-Einstein Del Pezzo surfaces is a Kähler-Einstein log Del Pezzo surface with
singularities either canonical (i.e. ADE singularities) or cyclic quotients of type
1

dn2 (1, dna− 1) with (a, n) = 1 (1 ≤ a < n).

Remark 2.6. For sake of completeness, even if we will not use it in our proof,
we should remark that it is known that local smoothings of T -singularities admit
asymptotically conical Calabi-Yau metrics [40] [69]. It is then natural to expect
from a metric perspective the following picture: given a sequence (Xi, ωi) of degree
d Kähler-Einstein Del Pezzo surfaces Gromov-Hausdorff converging to a singular
(X∞, ω∞) and choose p∞ ∈ Sing(X∞), then there exists a sequence of points pi ∈
Xi → p∞ ∈ X∞ and scaling parameters λi → +∞ such that (Xi, pi, λiωi) converges
in the pointed Gromov-Hausdorff sense to an asymptotically conical Calabi-Yau
metric on a smoothing of the T -singularity at p∞.

Next, we can use the Bishop-Gromov volume comparison Theorem to control
the order of the orbifold group at each point.

Theorem 2.7 ([70]). Let (X,ω) be a Kähler-Einstein log Del Pezzo surface and
let Γp ⊆ U(2) be the orbifold group at a point p ∈ X. Then

(2.1) |Γp| deg(X) < 12,

Proof. Without loss of generality we may normalize the metric so that Ric(ω) = 3ω.
The Bishop-Gromov volume comparison extends without difficulty to orbifolds [12],

so for all p ∈ X the function V ol(B(p,r))

V ol(B(r))
is decreasing in r, where B(r) is the ball of

radius r in the standard four sphere S4(1). As r tends to zero the function converges
to 1/|Γp|, and for sufficiently large r the function is constant V ol(X,ω)/V ol(S4(1)).
So V ol(X,ω)|Γp| ≤ V ol(S4(1)). The normalization condition Ric(g) = 3g implies

that [ω] = 2π
3 c1(X). So V ol(X,ω) =

∫
X

ω2

2 = 2π2

9 deg(X). Then, using the fact

that V ol(S4(1)) = 8
3π

2, it is easy to see |Γp| deg(X) ≤ 12. If the equality is achieved,

then X must have constant curvature. But since X is Kähler, we have S(ω)2 =
24|W+|2, so the scalar curvature vanishes. Contradiction. �

Remark 2.8. The two theorems above were essentially known to Tian [70]. For
the inequality 2.1, the constant on the right hand side was 48 in [70].

By Theorem 2.5 and 2.7, and we have the constraints on the possible singularities
that could appear on the Gromov-Hausdorff limit X∞

2

• deg = 4, X∞ is canonical, and can have only A1 singularities.
• deg = 3, X∞ is canonical, and can have only A1 or A2 singularities.
• deg = 2, X∞ can have only A1, A2, A3, A4, and

1
4 (1, 1) singularities.

• deg = 1, X∞ can have only 1
4 (1, 1),

1
8 (1, 3), and

1
9 (1, 2) singularities besides

Ai (i ≤ 10) and D4 singularities.

For the case when d ≥ 3, the above classification is already sufficient for our pur-
poses, as canonical log Del Pezzo surfaces are classified (see the next section). When
d ≤ 2 we will make a further study in Section 5. Now we make a side remark about
the Gromov-Hausdorff topology used in this paper. In [66] it is proved that if two
Kähler-Einstein log Del Pezzo surfaces are isometric, then the complex structures
could be the same or conjugate. For this reason the standard Gromov-Hausdorff

2Recall that the order of the finite Klein group yielding an Ak singularity is k+1, a Dk singularity
is 4(k − 2), an E6 singularity is 24, an E7 singularity is 48, and an E8 singularity is 120.
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distance can not distinguish two conjugate complex structures in general. So in our
case there is an easy modification, where we say a sequence (Xi, Ji, ωi) converges to
(X∞, J∞, ω∞) if it converges in the Gromov-Hausdorff topology and in the sense of
Anderson-Tian, i.e. smooth convergence of both the metric and complex structure
away from the singularities. The spaces Md appearing in Theorem 1.1 admit an in-
volution given by conjugating the complex structure, and we will identify explicitly
this involution for each d.

3. Algebro-geometric properties of log Del Pezzo surfaces

We continue to study the algebro-geometric properties of X∞ appearing in the
last section. These constraints help the construction of the desired moduli spaces
in later sections.

3.1. Classification of mildly singular log Del Pezzo surfaces. We first recall
some general classification results for log Del Pezzo surfaces with mild singularities.
The following is classical.

Theorem 3.1 ([31]). A degree d log Del Pezzo surface with canonical singularities
is

• a complete intersection of two quadrics in P4, if d = 4;
• a cubic hypersurface in P3, if d = 3;
• a degree 4 hypersurface in P(1, 1, 1, 2) not passing [0 : 0 : 0 : 1], if d = 2;
• a degree 6 hypersurface in P(1, 1, 2, 3) not passing [0 : 0 : 1 : 0] and [0 : 0 :

0 : 1], if d = 1.

Although we will not use it, log Del Pezzo surfaces with Gorenstein index two
are also classified, by [3] and [55]. In case the degree is one or two, we have:

Theorem 3.2 ([37]). A degree 2 log Del Pezzo surface with Gorenstein index at
most two is either a degree 4 hypersurface in P(1, 1, 1, 2), or a degree 8 hypersurface
in P(1, 1, 4, 4). A degree 1 log Del Pezzo surface with Gorenstein index at most two
is a degree 6 hypersurface in P(1, 1, 2, 3).

Notice that by the restrictions on Gromov-Hausdorff limits of Kähler-Einstein
Del Pezzo surfaces discussed in the previous section, we know that the Gorenstein
index of such limits is less then or equal to 2 for degree ≥ 2, and at most 6 in the
degree 1 case.

3.2. CM line bundle comparison. In this subsection we study GIT stability of
Kähler-Einstein log Del Pezzo surfaces. For smooth Kähler-Einstein manifolds, it
is known that they are K-polystable (cf. [73, 68, 44]). This has been generalized to
the singular setting in [11], and we state the two dimensional case here:

Theorem 3.3 ([11]). A log Del Pezzo surface admitting a Kähler-Einstein metric
is K-polystable.

Next we state a general theorem relating K-polystability and usual GIT stabil-
ities, using the CM line bundle of Paul-Tian [60]. Recall that the CM line bundle
is a line bundle defined on base scheme of each flat family of polarized varieties in
terms of the Deligne pairing and if the family is G-equivariant with an algebraic
group G, the line bundle naturally inherits the group action. It gives a GIT weight
interpretation to the Donaldson-Futaki invariant whose positivity is roughly the
K-stability. A point is that the CM line bundle is not even nef in general so that
we cannot apply GIT straightforward. We refere to [60], [61] for more details.
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Theorem 3.4. Let G be a reductive algebraic group without nontrivial characters.
Let π : (X ,L) → S be a G-equivariant polarized projective flat family of equidi-
mensional varieties over a projective scheme. Here “polarized” means that L is a
relatively ample line bundle on X , and “equidimensional” means that all the irre-
ducible components have the same dimension. Suppose that

(1) the Picard rank ρ(S) is one;
(2) there is at least one K-polystable (Xt,Lt) which degenerates in S via a one

parameter subgroup λ in G, i.e. the corresponding test configuration is not
of product type.

Then a point s ∈ S is GIT (poly, semi)stable if (Xs,Ls) is K-(poly, semi)stable.

Proof. Let ΛCM be the CM line bundle [60] over S associated to π. In general, this
is a G-linearized Q-line bundle. Let Λ0 be the positive generator of Pic(S), then

there exists integers r > 0 and k, so that Λ⊗r
CM

∼= Λ⊗k
0 . The isomorphism is G-

equivariant by the condition that G has no nontrivial character. On the other hand,
from the condition (2), we know that the degree of CM line along the closure of the
λ-orbit is positive. This is because by [78] the degree is the sum of the Donaldson-
Futaki invariant on the two degenerations along λ and λ−1. This implies that the
integer k is positive. Therefore, Λ⊗r

CM is ample.
If π : X → S is the universal polarized family over a Hilbert scheme, and G is

the associated special linear group SL, then it is known [60] that for any s ∈ S and
one parameter subgroup λ : C∗ → G, the associated Donaldson-Futaki invariant
[22] DF ((Xs,Ls);λ) is the GIT weight in the usual sense with respect to the CM
line bundle Λ⊗r

CM , up to a positive multiple. This fact can be extended to our
general family π : (X ,L) → S in a straightforward way by consideringG-equivariant
morphism into a certain Hilbert scheme defined by (X , (π∗Λ0)

⊗l ⊗ L⊗m) for l ≫
m ≫ 0. If Xs is reduced, from our equidimensionality assumption on all fibers,
we can not get almost trivial test configurations from one parameter subgroup of
G (in the sense of [43], [59]). This is because the central fiber of an almost trivial
test configuration for a reduced equidimensional variety should have an embedded
component. Summarizing up, the conclusion follows from the Hilbert-Mumford
numerical criterion. �

We believe Theorem 3.4 should have more applications in the explicit study of
general cscK metrics beyond our study of log Del Pezzo surfaces in this paper.
For instance, there are many examples of equivariant family of polarized varieties
parametrized by a projective space or Grassmanian through various covering con-
structions. In these situations one can always apply Theorem 3.4. We remark that
in the above proof what we really need is the CM line bundle to be ample. For
example, the following has been known to Paul-Tian long time ago:

Corollary 3.5 ([72]). A hypersurface X ⊆ PN is Chow polystable (resp. Chow
semistable) if (X,OX(1)) is K-polystable (resp. K-semistable).

Hence, in particular, combined with [58, Theorem 1.2], it follows that semi-log-
canonical hypersurfaces with ample canonical classes and log-terminal Calabi-Yau
hypersurfaces are GIT stable. This is just one of the easiest examples of applications
of Theorem 3.4.

We also state the following local version of Theorem 3.4, which we also believe
to be a fundamental tool for future developments.

Lemma 3.6. Let S be an affine scheme, and G be a reductive algebraic group acting
on S fixing 0 ∈ S. Let π : (X ,L) ։ S be a G-equivariant polarized flat projective
deformation of a K-polystable reduced polarized variety (X0,L0) and suppose all
fibers Xs are equidimensional varieties. We assume that if (Xs1 ,Ls1) is isomorphic
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to (Xs2 ,Ls2) then s2 ∈ Gs1 and that G-action on S is faithful. Then there is an
affine neighborhood S′ of 0 so that the CM line bundle is equivariantly trivial over
S′. For such S′, it holds that a point s ∈ S′ is GIT (poly)stable if (Xs,Ls) is
K-(poly)stable.

This follows from similar arguments as in the proof of Theorem 3.4, and we write
a detailed proof here for the convenience of readers.

Proof. First, let us prove that the CM line bundle λCM is locally G-equivariant
trivial around 0 ∈ S. Pick an arbitrary but sufficiently ample G-equivariant line
bundle λB and put λA := λCM ⊗ λB. We can assume λB is also ample. By
multiplying an appropriate character of G to change the G-linearisations on λA

and λB if necessary, we can assume the G-action at λA|0 and λB|0 is trivial. It
is possible since from our assumption, G-action on λCM |0 is trivial. Embed S via
λA into projective space and take a compactification simply as the Zariski closure
S̄A. Then applying the Hilbert-Mumford criterion to (S̄A, λA), we can see that
there is some G-invariant section s1 which does not vanish at 0. It is indeed the
original definition of GIT semi-stability. Note this implies the equivariant triviality
of λA at the locus where s1 does not vanish. Do the same for λB and we get s2,
a G-invariant section of B non-vanishing around 0. Then we let S′ be the locus
where both s1 and s2 do not vanish. This is of course affine again. Over S′, A and
B are both equivariantly trivial so is the difference which is exactly our CM line
bundle.

Suppose s ∈ S′ is not polystable in the GIT sense, although (Xs,Ls) is K-
polystable. The non-polystability implies that it degenerates to s′ ∈ (S′ \Gs) via
one parameter subgroup λ : C∗ → G. This gives a non product test configuration
but its Donaldson-Futaki invariant vanishes, due to the equivariant triviality of the
CM line bundle over S′. This contradicts. So we proved the assertion. �

One can often apply this to the versal deformation family, as we do in the Section
3.3. We remark that in general if the base S is replaced by an open analytic subset
of S, we can also work locally analytically provided S is smooth at 0. Let K be a
maximal compact subgroup of G, and A be the tangent space of S at 0. Since G fixes
0, it induces a linear G action on A. We fix a K-invariant Hermitian metric on A.
Then by standard slice theory for compact group actions we can find a K-invariant
analytic neighborhood U of 0 in S, a ball Br(0) in A, and a K-equivariant bi-
holomorphic map from U to Br(0). So we can identify U with Br(0), in particular,
the CM line bundle λCM restricts to Br(0). Our statement then becomes that
a point s ∈ Br(0) is GIT (poly)stable if (Xs,Ls) is K-(poly)stable. To prove
this, by making r small we may choose a non-vanishing holomorphic section s of
λCM over Br(0). Now define s̃(x) =

∫
K
g−1.s(g.x)dg, where dg is a bi-invariant

Harr measure on K. Then s̃ is a K-invariant holomorphic section over Br(0), and
hence G- invariant (more precisely, it is invariant in the Lie algebra level since
Lie(G) = Lie(K)C). On the other hand, since G fixes zero, and X0 is K-polystable,
G acts trivially on the fiber of λCM over 0. So s̃(0) = s(0) 6= 0. By making r
smaller again we may assume s̃ is also nowhere vanishing over Br(0). Now suppose
x ∈ Br(0) is not polystable in the GIT sense, then there is a unique polystable
orbit G.x′ in the closure of the G orbit of x. Moreover by the Kempf-Ness theorem
it is easy to see that we may assume x′ is also in Br(0) (for example, we can choose
x′ to satisfy the moment map equation µ(x′) = 0), and there is a one parameter
subgroup λ : C∗ → G that degenerates x to x′. Since s̃ is non-vanishing and Lie(G)-
invariant, it follows that the Donaldson-Futaki invariant as the weight of the action
of the C∗ action on the fiber of λCM over x′ must vanish. By assumption Xx′ is
not isomorphic to Xs, this implies Xx is not K-polystable.
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3.3. Semi-universal Q-Gorenstein deformations. In this subsection we pro-
vide some general theory onQ-Gorenstein deformations, continuing Section 2. Most
of the general theory we review in the former half of this subsection should be well-
known to experts of deformation theory but we review them for the convenience.
First, the following is well-known, see for example the Main Theorem in page 2 of
[47]:

Lemma 3.7 ([39], [47]). A T -singularity has a smooth semi-universal Q-Gorenstein
deformation.

A T -singularity is either Du Val (ADE type), which is a hypersurface singularity
in C3 and has a smooth semi-universal Q-Gorenstein deformation space, or a cyclic
quotient of type 1

dn2 (1, dna− 1) with (a, n) = 1. The latter is the quotient of the
Du Val singularity Adn−1 by the group Z/nZ. More precisely, an Adn−1 singularity
embeds as a hypersurface z1z2 = zdn3 in C3. The generator ζn of Z/nZ acts on C3

by ζn.(z1, z2, z3) = (ζnz1, ζ
−1
n z2, ζ

a
nz3), where ζn is the n-th root of unity. One can

explicitly write down a semi-universal Q-Gorenstein deformation as the family of

hypersurfaces in C3 given by z1z2 = zdn3 + ad−1z
(d−1)n
3 + · · · + a0, see [47]. Then

its dimension is d.
Moreover, it is also known that T-singularities are the only quotient surface

singularities which admit Q-Gorenstein smoothings.
Furthermore, for log Del Pezzo surface X which only has T-singularities, since

H2(TX) = 0 (cf., e.g., [30, Proposition 3.1]), we know that X has global Q-
Gorenstein smoothing. Summarising up, we have

Lemma 3.8 ([39], Proposition 3.10 and [30], Proposition 2.2). Let X be a log
Del Pezzo surface. Then X is Q-Gorenstein smoothable if and only if it has only
T -singularities.

We give more precise structure of the deformations as follows, which should be
certainly known to experts.

Lemma 3.9. Let X be a Q-Gorenstein smoothable log Del Pezzo surface with sin-
gularities p1, · · · , pn. Then for the Q-Gorenstein deformation tangent space Def(X)
of X, we have

0 → Def′(X) → Def(X) →
n⊕

i=1

Defi → 0,

where Def′(X) is the subspace of Def(X) corresponding to equisingular deforma-
tions, and Defi is the Q-Gorenstein deformation tangent space of the local singu-
larity pi. Notice Aut(X) naturally acts on Def′(X) as well as on Def(X).

Moreover, if Aut(X) is reductive group, there is an affine algebraic scheme
(Kur(X), 0) with tangent space Def(X) at 0, and a semi-universal Q-Gorenstein
family U → (Kur(X), 0) which is Aut(X)-equivariant, and the induced action on
Def(X) is the natural one as above. Here Aut(X) denotes the automorphism group
of X.

We give a sketch of the proof here. In general there is a tangent-obstruction the-
ory for deformation of singular reduced varieties, with tangent space Ext1(ΩX ,OX)
and obstruction space Ext2(ΩX ,OX). Since X has only isolated singularities and
H2(X,TX) = 0 (cf., [30, Proposition 3.1]) in which the local-to-global obstructions
lie in general, we have the following natural exact sequnce due to the local-to-global
spectral sequence of Ext:

0 → H1(TX) →֒ Ext1(ΩX ,OX) ։ ⊕x∈XExt1(ΩX ,OX) → 0.
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It is well-known that H1(TX) = Def ′(X) i.e., it is the first order deformation
tangent space of equisingular deformations. The local obstruction for deforming
singularities lies in the map

H0(Ext1(ΩX ,OX)) =

n⊕

i=1

Ext1pi
(ΩX ,OX) → H0(Ext2(ΩX ,OX)) =

n⊕

i=1

Ext2pi
(ΩX ,OX).

Hence, restricting the above exact sequence to the subspace of ⊕x∈XExt1(ΩX ,OX)
which corresponds to Q-Gorenstein deformation (cf., Lemma 3.7, [39, 3.9(i)]) we
are done.

Now let us argue the construction Kur(X). It follows from general algebraic
deformation theory (or the Grauert’s construction of analytic semi-universal defor-
mation [28]) that there exists a formal semi-universal family X → Spec(R), where R
is the completion of an essentially finite type local ring. By using the Grothendieck
existence theorem [25] and the Artin algebraicity theorem [5], we obtain a semi-
universal deformation. Moreover, in the semi-universal deformation, it follows from
[39, Theorem 3.9(i)] that Q-Gorenstein deformation corresponds to one irreducible
component.

As we stated, we can even take semi-universal Q-Gorenstein deformation space
Kur(X) as an Aut(X)-equivariant affine scheme i.e., Aut(X) acts on both the total
space of the semi-universal deformation above Kur(X) and Kur(X) equivariantly
while the projection is equivariant. Indeed, it follows from Luna étale slice theorem
which we apply to Hilbert schemes (see [2, especially section 2]) combined with [39,
Theorem 3.9(i)].

We remark that for our main applications in this paper we will only need the
existence of the versal deformation as an analytic germ, in which case we do not
have the action of Aut(X), but only a holomorphic action of K for a maximal
compact subgroup of Aut(X). This follows from the equivariant version of the
construction of Grauert [28] (cf., also [62]).

Now we study a particular example, which we will use in Section 5.

Example 3.10. Let XT
1 be the quotient of P2 by Z/9Z, where the generator ξ

of Z/9Z acts by ζ9.[z1 : z2 : z3] = [z1 : ζ9z2 : ζ−1
9 z3], and ζ9 is the primitive

ninth root of unity. Then XT
1 is a degree one log Del Pezzo surface, with one A8

singularity at [1 : 0 : 0] and two 1
9 (1, 2) singularities at [0 : 1 : 0] and [0 : 0 : 1].

In particular it is Q-Gorenstein smoothable and has Gorenstein index 3. Note the
Fubini-Study metric on P2 descends to a Kähler-Einstein metric. Since this metric
has constant positive bisectional curvature, the cohomology group H1

orb
(X,TX)(the

space of harmonic TX-valued (0, 1) forms on the orbifold) vanishes (see for example,
Proposition 9.4 in [19]), so by the obvious orbifold generalization of the Kodaira-
Spencer theory XT

1 has no equisingular deformations. By the above general theory
and a dimension counting using the Main Theorem in [47], we have a decomposition

Def(XT
1 ) = Def1 ⊕Def2 ⊕Def3,

where Defi is the Q-Gorenstein deformation tangent space of the local singularity
pi. It is not hard to see that the connected component of the automorphism group
is Aut0(XT

1 ) = (C∗)2. We want to identify its action on Def(XT
1 ). We first choose

coordinates on Aut0(XT
1 ) so that λ = (λ1, λ2) acts on Xt

1 = P2/(Z/9Z) by λ.[z1 :
z2 : z3] = [λ1z1 : λ2z2 : z3]. Around p3 we may choose affine coordinate y1 =
z1/z3, and y2 = z2/z3. So the action of Z/9Z is given by ξ.(y1, y2) = (ζ9y1, ζ

2
9y2),

which is the standard model for the 1
9 (1, 2) singularity. The action of (C∗)2 is then

λ.(y1, y2) = (λ1y1, λ2y2). Now a local deformation of the affine singularity 1
9 (1, 2)

can be seen as follows. We embed C2/(Z/9Z) into C3/(Z/3Z) by sending (y1, y2)
to (u, v, w) = (y31 , y

3
2, y1y2). A versal deformation is given by uv − w3 = s. The
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induced action of (C∗)2 is then λ.s = λ−3
1 λ−3

2 s. This is then the weight of the action
on Def3. Similarly one can see the weight on Def2 is given by λ−3

1 λ6
2. To see the

weight on Def1, we can embed XT
1 into P(1, 2, 9, 9) as a hypersurface x3x4 = x9

2,
by sending [z1 : z2 : z3] to [x1 : x2 : x3 : x4] = [z1 : z2z3 : z92 : z93 ]. One can
easily write down a space of deformations of XT

1 as x3x4 = x2Π
8
i=1(x2 + aixi).

This deformation only partially smoothes the A8 singularity, so that Def1 can be
identified with the space of all vectors (a1, · · · , a8). It is then easy to see the weight
of the action of λ on Def1 is λ1λ

−1
2 . So we have arrived at:

Lemma 3.11. The action of Aut0(XT
1 ) on Def(XT

1 ) is given by

λ.(v1, v2, v3) = (λ1λ
−1
2 v1, λ

−3
1 λ6

2v2, λ
−3
1 λ−3

2 v3).

From Lemma 3.9 we have a linear action of a group Aut(X) on Def(X). If
Aut(X) is reductive (for example, when X admits a Kähler-Einstein metric, by
Matsushima’s theorem [50]), one can take a GIT quotient Def(X)//Aut(X). So we
are in the situation of the remark after Lemma 3.6, and locally analytically this
can be viewed as a “local” coarse moduli space of Q-Gorenstein deformations of X .
The following lemma provides a more precise link between the Gromov-Hausdorff
convergence and algebraic geometry.

Lemma 3.12. Let X∞ be the Gromov-Hausdorff limit of a sequence of Kähler-
Einstein Del Pezzo surfaces Xi, then for i sufficiently large we may represent Xi

by a point ui in an open neighborhood of the GIT quotient Kur(X∞)//Aut(X∞)
(analytically interpreted above as Def(X)//Aut(X)) so that ui → 0 as i goes to
infinity.

Proof. From Section 2, we know there are integers m,N , such that by passing to a
subsequence the surface Xi converges to X∞, under the projective embedding into
PN defined by orthonormal section of H0(Xi,−mKXi

). Since X∞ has reductive
automorphism group, we can choose a Luna slice S in the component of the Hilbert
scheme corresponding to Q-Gorenstein smoothable deformations of X∞. Hence for
i large enough, Xi is isomorphic to a surface parametrized by si(∈ S) → 0. By
the versality, shrinking S, we have a map F : S → Kur(X∞) so that s and F (s)
represent isomorphic surfaces. Let vi = F (si). Then vi → 0. Moreover, by the
remark after Lemma 3.6, the corresponding point to vi in Def(X) is polystable for
i large, thus its image ui ∈ Kur(X∞)//Aut(X∞) represents the same surface Xi.
The conclusion then follows. �

3.4. Moduli spaces. In this section we will define precisely what “moduli of
Kähler-Einstein Q-Fano varieties” means to us in this paper.

Definition 3.13 (KE moduli stack). We call a moduli algebraic (Artin) stack M
of Q-Gorenstein family of Q-Fano varieties a KE moduli stack if

(1) It has a categorical moduli M in the category of algebraic spaces;
(2) There is an étale covering of M of the form {[Ui/Gi]} with affine algebraic

schemes Ui and reductive groups Gi, where there is a Gi-equivariant Q-
Gorenstein flat family of Q-Fano varieties.

(3) Closed orbits of Gi y Ui correspond to geometric points of M , and param-
etrize Q-Gorenstein smoothable Kähler-Einstein Q-Fano varieties.

We call the categorical moduli in the category of algebraic space M a KE moduli
space. If it is an algebraic variety, we also call it KE moduli variety.

For an introduction to the theory of algebraic stacks, one may refer to [9]. For
the general conjecture and for more details on the existence of KE moduli stack,
compare Section 6. For our main purposes in proving Theorem 1.1, we only need a
much weaker notion.
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Definition 3.14 (Analytic moduli space). An analytic moduli space of degree d log
Del Pezzo surfaces is a compact analytic space Md with the following structures:

(1) We assign to each point in Md a unique isomorphism class of Q-Gorenstein
smoothable degree d log Del Pezzo surfaces. For simplicity of notation, we
will denote by [X ] ∈ Md a point which corresponds to the isomorphism
class of the log Del Pezzo surface X .

(2) For each [X ] ∈ Md with Aut(X) reductive, there is an analytic neighbor-
hood U , and a quasi-finite locally bi-holomorphic map ΦU from U onto
an analytic neighborhood of 0 ∈ Def(X)//Aut(X) (where as in the remark
after Lemma 3.6, we have chosen aK-equivariant identification between an-
alytic neighborhoods in Kur(X) and Def(X)) such that Φ−1

U (0) = [X ] and
for any u ∈ U , the surfaces parametrized by u and ΦU (u) are isomorphic.

Definition 3.15. We say that an analytic moduli space has property (KE) if every
surface parametrized by MGH

d is isomorphic to one parametrized by some point in
Md.

Theorem 3.16. For any analytic moduli space Md which has property (KE), there
is a homeomorphism from MGH

d to Md, under the obvious map.

Proof. To carry out the strategy described in the introduction, we just need the
natural map from MGH

d to Md to be continuous. It suffices to show that if we have
a sequence [Xi] ∈ M0

d converges to a point [X∞] ∈ MGH
d , then Φ([Xi]) converges

to Φ([X∞]). Unwrapping the definitions, this is exactly Lemma 3.12. �

In later sections 4 and 5, we will construct the analytic moduli space Md for
Q-Gorenstein smoothable cases one-by-one. We will show that these Md’s satisfy
property (KE). Moreover they are actually categorical moduli of moduli stacksMd,
with a Zariski open subset parametrizing all smooth degree d Del Pezzo surfaces.
Thus Theorem 1.1 follows.

4. The cases of degree four and three

4.1. Degree four case. In this case Theorem 1.1 has already been proved in [45].
Following the general strategy outlined in the introduction, we give a partially new
proof here. Recall that smooth degree 4 Del Pezzo surfaces are realized by the
anti-canonical embedding as intersections of two quadrics in P4. So in order to
construct a moduli space, it is natural to consider the following GIT picture

PGL(5;C) y H4 = Gr(2, Sym2(C5)) →֒ P∗(Λ
2Sym2(C5))3,

with a linearization induced by the Plücker embedding. Here, Gr stands for the
Grassmanian.

Theorem 4.1 (Mabuchi-Mukai [45]). An intersection X of two quadrics in P4 is

• stable ⇐⇒ X is smooth;
• semistable ⇐⇒ X has at worst A1 singularities (nodes);
• polystable ⇐⇒ the two quadrics are simultaneously diagonalizable, i.e. X

is isomorphic to the intersection of quadrics
{
x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0

λ0x
2
0 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3 + λ4x

2
4 = 0

and no three of the λis are equal (or equivalently, X is either smooth or
has exactly two or four A1 singularities).

3In this paper P∗(V ) = P(V ) is the covariant projectivization and P∗(V ) = P(V ∗) is the con-
travariant projectivization.
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Since two degree four Del Pezzo surfaces as above considered are abstractly bi-
holomorphic if and only if their equations in the above embeddings are transformed
by the natural action of an element of PGL(5;C) (this follows by the very ampleness
of the anticanonical line bundle=, the GIT quotient

M4 := Hss
4 //PGL(5;C)

parametrizes (abstract) isomorphism classes of polystable intersections of two quadrics.
We remark here that the same reasoning should be applied later in the other degree
cases.

Moreover, since M4 is naturally coarsely isomorphic to the moduli space of bi-
nary quintics on P1, choosing invariants as in [21], Chapter 10.2, we see that M4

is isomorphic to P(1, 2, 3) and that the smooth surfaces are parametrized by the
Zariski open subset M sm

4
∼= P(1, 2, 3) \D, where D is an ample divisor cut out by

the equation z21 = 128z2.

The d = 4 case of Theorem 1.1 then follows from the following:

Theorem 4.2. The above constructed M4 is an analytic moduli space with property
(KE).

Proof. First we verify that our degenerations of del Pezzo surfaces in P4 can not
give any “pathological test configuration” in the sense of [43] (called “almost triv-
ial” test configuration in [59]) whose normalization is trivial. It is due to the
following reason. The central fibers of such pathological test configurations is not
equidimensional, so it is especially not Cohen-Macaulay. However, the degener-
ations in P4 that we considered here are all Cohen-Macaulay. This is because,
in general, weighted projective spaces only have quotient singularities, and so are
Cohen-Macaulay (cf., e.g., [34]). Then the finite times cut by Cartier divisors (hy-
persurfaces) are inductively Cohen-Macaulay (cf., e.g., [49, page 105]). Later we
will use the similar reasoning for other degrees as well.

To check M4 is an analytic moduli space, observe that item (1) is obvious, and
item (2) follows from the construction of M4 as a GIT quotient (the versal family
is the universal one over H4). To see M4 has property (KE), we first use Theorem
3.1 to see that any [X ] ∈ MGH

4 is parametrized by H4. Then we apply Theorem
3.3 and Theorem 3.4 (since Picard rank of H4 is one, and it is easy to verify the
assumptions are satisfied in this case) to see that [X ] is parametrized by M4. �

Clearly M4 := [Hss
4 /PGL(5;C)] is a quotient stack, so we conclude that it is

indeed a KE moduli stack. We make a few remarks here. First of all, the above
arguments actually prove that all degree four Kähler-Einstein log Del Pezzo surfaces
are parametrized by M4. By Theorem 4.1 the Gromov-Hausdorff limits of smooth
Del Pezzo quartics have only an even number of A1 singularities. The maximum
number of such singularities is four. There is exactly one such surface XT

4 , which
is defined by the equations x0x1 = x2

2 = x3x4. It is isomorphic to the quotient
P1 × P1/(Z/2Z), where the generator ξ of Z/2Z acts as ξ.(z1, z2) = (−z1,−z2). So
it admits an obvious Kähler-Einstein metric.

It is also easy to see that the action of complex conjugation, which sends a
Del Pezzo quartic to its complex conjugate, coincides with the natural complex
conjugation on P(1, 2, 3).

4.2. Degree three case. Recall that smooth degree 3 Del Pezzo surfaces are cubic
hypersurfaces in P3. Note that the anti-canonical bundle is very ample. We recall
the following classical GIT picture. The group PGL(4;C) acts naturally on the
space H3 = P∗(Sym

3(C4)) ∼= P19 of cubic polynomials.
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Theorem 4.3 (Hilbert). A cubic surface X in P3 is

• stable ⇐⇒ X has at most singularities of type A1;
• semistable ⇐⇒ X has at worst singularities of type A1 or A2;
• strictly polystable ⇐⇒ X is isomorphic to the cubic XT

3 defined by equation
x1x2x3 = x3

0. It is not hard to see that XT
3 has exactly three A2 singular-

ities, and is isomorphic to the quotient P2/(Z/3Z), where the generator ξ
of (Z/3Z) acts by ξ.[z1 : z2 : z3] = [z1 : e2πi/3z2 : e−2πi/3z3].

Define the quotient stack M3 := [Hss
3 /PGL(4;C)] and the corresponding GIT

quotient (or in other word, categorical moduli)

M3 := Hss
3 //PGL(4;C)

which parametrizes isomorphism classes of polystable cubics. The above Theorem
is classical. It was proved by D. Hilbert in his Doctoral dissertation [32]. For a
modern proof consult [53]. Moreover, by looking at the ring of invariants [63], it is
known that

M3
∼= P(1, 2, 3, 4, 5),

and that M sm
3

∼= P(1, 2, 3, 4, 5) \D where D is the ample divisor of equation (z21 −
64z2)

2 − 211(8z4 + z1z3) = 0. So M sm
3 is Zariski open and parametrizes all smooth

cubic surfaces.
Note that we can apply Theorem 3.4 for universal family over H3. Thus it fol-

lows that M3 is a KE moduli stack and M3 is a KE moduli variety.

Observe that a Gromov-Hausdorff limit of smooth Kähler-Einstein cubic surfaces
has either exactly three A2 singularities or at most four A1 singularities. In the
former case, it is isomorphic to XT

3 . In the latter case, this is the Cayley’s cubic
XC

3 defined by x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0. It is not hard to see it
is isomorphic to the quotient of X6/(Z/2Z), where X6 is the degree six Del Pezzo
surface, and the action of Z/2Z is induced by the standard Cremona transformation
on P2, i.e., [z1 : z2 : z3] 7→ [z−1

1 : z−1
2 : z−1

3 ]. The existence of Kähler-Einstein
metrics on XT

3 and XC
3 can also be easily seen using the above quotient description.

We remark that it was proved in [20] that a Kähler-Einstein cubic surface must
be GIT semistable, and our application of Theorem 3.4 sharpens this. The existence
of Kähler-Einstein metrics on cubic surfaces with exactly one A1 singularity was
proved by [77], using Kähler-Ricci flow on orbifolds and certain calculation of α-
invariants. In [67], by glueing method we know the existence of Kähler-Einstein
metrics on a partial smoothing of the Cayley cubic XC

3 . For general cubics with two
or three A1 singularities this was previously unknown. Here we actually know that
all degree three Q-Gorenstein smoothable Kähler-Einstein log Del Pezzo surfaces
are parametrized by M3.

As in the degree four case, the action of complex conjugation on M3 is also given
by the natural anti-holomorphic involution.

5. The cases of degree two and one

5.1. More detailed study on Gromov-Hausdorff limits. When the degree is
one or two, there are new difficulties as non-canonical singularities could appear in
the Gromov-Hausdorff limits. So the classification of canonical Del Pezzo surfaces
(Theorem 3.1) is not enough for our purpose. In degree two by Theorem 2.7 we
only need to deal with index 2 log del Pezzo surfaces, which have been classified
in [3], [55], [37]. We could simply use these classification results directly, but since
our assumption is much more restricted, we provide a more elementary approach
which treats both d = 1 and d = 2 cases.
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A common feature of the two cases is the existence of a holomorphic involution.
For a degree two Del Pezzo surface X , it is well-known that the anti-canonical map
defines a double cover of X to P2. Therefore X admits an involution σ (“Geiser
involution”) which is simply the deck transformation of the covering map. The
fixed locus of σ is smooth quartic curve. If X admits a Kähler-Einstein metric
ω, then by [8] ω must be invariant under any such σ. Similarly for a degree one
Del Pezzo surface X , the linear system | − 2KX | defines a double cover of X to
P(1, 1, 2) ⊂ P3. So X also admits an involution σ (“Bertini involution”). Again
any such σ must preserve the Kähler-Einstein metric if X admits one. The fixed
locus of σ consists of the point [0 : 0 : 1] and a sextic in P(1, 1, 2).

Lemma 5.1. Suppose a sequence of degree one (or two) Kähler-Einstein Del Pezzo
surfaces (Xi, ωi, Ji) converges to a Gromov-Hausdorff limit (X∞, ω∞, J∞), then by
passing to a subsequence one can take a limit σ∞, which is a holomorphic involution
on X∞.

Proof. This is certainly well-known. We include a proof here for the convenience
of readers. Let p1, · · · , pn be the singular points of X∞. We denote Ωr = X∞ \
∪n
j=1B(pj , r). For any r > 0 small, from the convergence theorem 2.1, we know that

for i sufficiently large, there are σi invariant open subsets Ωi ⊂ Xi and embeddings
fi : Ωi → X∞ \ {p1, · · · , pn} such that Ωr is contained in the image of each fi and
(f−1

i )∗(ωi, Ji) converges to (ω∞, J∞) smoothly. Then, by passing to a subsequence,

the isometries (f−1
i )∗σi converge to a limit σr,∞ : Ωr → X∞ with σ∗

r,∞(ω∞, J∞) =
(ω∞, J∞). Then we can let r tend to zero and choose a diagonal subsequence so
that σr,∞ converges to a holomorphic isometry σ∞ on X∞ \ {p1, · · · , pn}. Then
by the Hartog’s extension theorem, σ∞ extends to a holomorphic isometry on the
whole X∞. It is also clear σ2

∞ is the identity. �

Theorem 5.2. In the degree two case, X∞ is either a double cover of P2 branched
along a quartic curve, or a double cover of P(1, 1, 4) branched along a degree 8 curve
not passing through the vertex [0 : 0 : 1]. In the degree one case, X∞ is either a
double cover of P(1, 1, 2) branched along the point [0 : 0 : 1] and a sextic , or a
double cover of P(1, 2, 9) branched along the point [0 : 1 : 0] and a degree 18 curve
not passing through the vertex [0 : 0 : 1].

Proof. We first treat the case of degree one. The proof of the degree two case is
essentially the same and we will add some remarks later. Denote by Yi the quotient
of Xi by σi, so the quotient Y∞ = X∞/σ∞ is the Gromov-Hausdorff limit of
Yi’s. For each integer m we have an orthogonal decomposition H0(Xi,−mKXi

) =
Vi ⊕ Wi with Vi being the +1 eigenspace and Wi the −1 eigenspace. Then we
have a corresponding decomposition H0(X∞,−mKX∞

) = V∞⊕W∞ on X∞. Now,
by constructing orthonormal σ∞-invariant sections of −kKX∞

for some k large
divisible, one can show that there is a well-defined map ι∞ : X∞ → P∗(V∞),
which induces a projective embedding of Y∞. By an adaption of the Hörmander
technique ([70], [23]), this implies that the orthonormal σi-invariant sections of
−kKXi

(equivalent to sections of −lKYi
for some integer l) define an embedding

(Tian’s embedding) of Yi into P∗(Vi) for i sufficiently large. Moreover, we may
assume Yi converges to Y∞ as normal varieties in PN for some integer N . Since
Yi’s are all isomorphic to P(1, 1, 2), we see that Y∞ is Q-Gorenstein smoothable,
and there is a partial Q-Gorenstein smoothing of Y∞ to P(1, 1, 2).

Claim 5.3. Y∞ is isomorphic to P(1, 2, 9).

Since the degree is preserved in the limit, we have K2
Y∞

= 8 and thus we may ap-
ply [30]. Notice the full proof in [30] relies on the classification theorem of Alexeev-
Nikulin [3], but in our case we only need the more elementary part [29], without
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use of [3]. So we know Y∞ is either a toric log Del Pezzo surface P(a2, b2, 2c2) with
a2+ b2+2c2 = 4abc or its partial smoothings. Since the orbifold structure group of
X∞ always has order less than 12, the order of all the orbifold structure groups of
Y∞ must be less or equal to 22. Then, by an easy investigation of the above Markov
equation, we see that Y∞ must have two singularities, one of type A1 and one of
type 1

9 (1, 2). It could be possible that Y∞ is a partial smoothing of P(9, b2, 2c2), but
we claim then it must be P(1, 2, 9). For this we need to go back to the proof in [29].

For the minimal resolution π : Ỹ∞ → Y∞, let n be the largest number such that

there is a birational morphism µn from Ỹ∞ to the n-th Hirzebruch surface Fn. Let

B′ be the proper transform of the negative section B in Fn, and let p : Ỹ∞ → P1

be the composition of µn with the projection map on Fn. Then by a theorem of
Manetti [47, Theorem 11] (see also [29, Theorem 5.1]) we know that n ≥ 2, and
the exceptional locus E of π is the union of B′ and the components of degenerate
fibers of p with self-intersection at most −2; furthermore, each degenerate fiber of p
contains a unique −1 curve. Moreover, by the proof of Theorem 18 in [47] (see laso
Theorem 5.7 in [29]), there are only two possible types for the dual diagram of the
degenerate fiber: one type is that two strings of curves of self-intersection at most
−2 joined by a (−1)-curve, and the other type is that we join a string of (−2)-curves
though a (−1) curve to the middle of a string of curves of self-intersection at most
−2. In our case we know Y∞ has exactly one A1 and one 1

9 (1, 2) singularity. By
general theory on the resolution of cyclic quotient singularities we know E is the
disjoint union of a (-2)-curve and a string of a (-2)-curve and a (-5)-curve. Then
one easily sees that the only possibility is that there is exactly one degenerate fiber

of Ỹ∞ which consists of a string of (-2)-(-1)-(-2)-curve, and one of the (-2)-curves

in the string intersects the horizontal section B′ which is a (-5)-curve. Clearly Ỹ∞

is then a toric blown-up of F5 and then Y∞ is toric which must be P(1, 2, 9). This
completes the proof of the claim.

The degree of the branched locus follows from the Hurwitz formula for coverings.
The degree 18 curve can not pass through the point [0 : 0 : 1], for otherwise the
equation would be a0x3f9(x1, x2) + a1f18(x1, x2) = 0. Then by Lemma 5.6 below
the singularity on the branched cover is not quotient, so can not be X∞ by Theorem
2.1. This finishes the proof of Theorem 5.2 for degree one case.

In the degree two case we can follow exactly the same arguments, noticing that,
in this case, Y∞ must have degree equal to 9 and that the associated Markov type
equation to be satisfied is now a2 + b2 + c2 = 3abc (corresponding to the weighted
projective space P(a2, b2, c2)). Thus it follows, by inspection as above, that the only
possibility is that Y∞ = P(1, 1, 4) (since the standard projective plane is the only
Q-Gorenstein smoothing of the above weighted projective space). �

Noticing that in the above situation our double cover can be realized as a hyper-
surface in a one dimensional higher weighted projective space, in terms of equations
we have the following:

Corollary 5.4. In degree one case X∞ is either a sextic hypersurface in P(1, 1, 2, 3)
of the form x2

4 = f6(x1, x2, x3), or a degree 18 hypersurface in P(1, 2, 9, 9) of the
form x2

3 + x2
4 = f18(x1, x2).

Corollary 5.5. In degree two case X∞ is either a quartic hypersurface in P(1, 1, 1, 2)
of the form x2

4 = f4(x1, x2, x3) or an octic hypersurface in P(1, 1, 4, 4) of the form
x2
3 + x2

4 = f8(x1, x2).

Lemma 5.6. Suppose f is a polynomial and the surface w2 = f(x, y) in C3 or its
Z/2Z quotient by (x, y, w) 7→ (−x,−y,−w) has a quotient singularity at the origin,
then f must contain a monomial with degree at most three.
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Proof. If the singularity is a quotient singularity, then singularity w2 = f(x, y)
in C3 is canonical since the finite map does not have branch divisor. Then the
statement follows from a criterion of canonicity in terms of Newton polygon (cf.
e.g., [35, Corollary 1.7]).

�

The idea of using involutions to study X∞ was previously used in [70], where
some partial results were claimed. For example, in Proposition 6.1 of [70], it was
stated that in degree two case X∞ can have at most 1

4 (1, 1) singularities besides
canonical singularities and |−2KX∞

| is base point free. This agrees with the above
result. But, as one can see from the following example, the claims in Proposition 6.2
of [70] that in degree one case X∞ can have at most one non-canonical singularity
and | − 2KX∞

| is base point free, are both incorrect.
Now we show explicit examples of Kähler-Einstein log Del Pezzo surfaces with

non-canonical singularities in both degree one and two 4 . In the next two subsec-
tions it will be proved that both are parametrized in the moduli spaces.

Example 5.7. Let XT
2 be the quotient of P1×P1 by the action of Z/4Z, where the

generator ξ of Z/4Z acts by ξ.([z1 : z2], [w1 : w2]) = ([
√
−1z1 : z2], [−

√
−1w1 : w2]).

Then it is easy to see that XT
2 is a degree two log Del Pezzo surface, with two A3

singularities and two 1
4 (1, 1) singularities. The standard product of round metrics on

P1×P1 descends to a Kähler-Einstein metric on XT
2 . The space H0(XT

2 ,−KXT
2

) is

spanned by the sections z21w
2
1, z

2
2w

2
2, and z1z2w1w2. So a generic divisor in |−KXT

2

|
is given by the union of two curves z1w1 + az2w2 = 0 and z1w1 + bz2w2 = 0 for
a 6= b, and is thus reducible. The space H0(XT

2 ,−2KXT
2

) is spanned by sections

z41w
4
1 , z

4
2w

4
2 , z

2
1z

2
2w

2
1w

2
2 , z

3
1z2w

3
1w2, z1z

3
2w1w

3
2 , z

4
1w

4
2, z

4
2w

4
1. The subspace U spanned

by the first five sections is generated by H0(XT
2 ,−KXT

2

). The involution σ maps

([z1 : z2], [w1 : w2]) to ([w1 : w2], [z1 : z2]). The +1 eigenspace V1 is still six
dimensional, spanned by U and the element z41w

4
2 + z42w

4
1. It is easy to see that

the image of X under the projection to V is the cone over the rational normal
curve of degree 4, i.e. P(1, 1, 4). The branch locus is defined by z41w

4
2 = z42w

4
1, with

singularies exactly at the two A3 singularities. We can also see directly that XT
2 is

the hypersurface in P(1, 1, 4, 4) defined by x4
1x

4
2 = x3x4. The map is given by

([z1 : z2], [w1 : w2]) 7→ (z1w1, z2w2, z
4
1w

4
2 , z

4
2w

4
1).

Make a change of variable x′
3 = x3 + x4 and x′

4 = x3 − x4, then the projection to
the (x1, x2, x

′
3) plane realizes XT

2 as a double cover of P(1, 1, 4).

Example 5.8. Let XT
1 be the example studied in Section 3. It is a toric degree

one Kähler-Einstein log Del Pezzo surface with one A8 singularity and two 1
9 (1, 2)

singularities. It can be viewed as a hypersurface in P(1, 2, 9, 9) given by the equation
x3x4 = x9

2. The embedding is defined by

[z1 : z2 : z3] 7→ [z1 : z2z3 : z92 : z93 ].

The projection map P(1, 2, 9, 9) → P(1, 2, 9) sending [x1 : x2 : x3 : x4] to [x1 : x2 :
x3 + x4] realizes XT

1 as the double cover of P(1, 2, 9), branched along the rational
curve x9

2 = x2
3. On XT

1 the holomorphic involution σ simply exchanges z2 with
z3. One can see the pluri-anti-canonial linear systems on XT

1 . H0(XT
1 ,−KXT

1

) is

spanned by z31 and z1z2z3, so it has a fixed component z1 = 0. H0(XT
1 ,−2KXT

1

) is

spanned by z61 , z
4
1z2z3, z

2
1z

2
2z

2
3 , z

3
2z

3
3 , so it has two base points [0 : 1 : 0] and [0 : 0 : 1].

We will show below that XT
1 is the Gromov-Hausdorff limit of a sequence of Kähler-

Einstein degree one Del Pezzo surfaces. This implies that the Proposition 6.2 in

4We are indebted to A. Kasprzyk for discussions related to these examples [38].
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[70] is incorrect. Similarly it is easy to see that | − 3KXT
1

| is base point free. As

before we have an eigenspace decomposition H0(XT
1 ,−mKXT

1

) = Vm ⊕Wm for σ.

Then |V6| is base point free, and it defines the embedding of P(1, 2, 9) into P15 by
sections of O(18).

5.2. Degree two case. We first recall the moduli space constructed in [52]. For a
smooth Del Pezzo surface X of degree 2 the anti-canonical map is a double covering
to P2 branched along a smooth quartic curve F4. The geometric invariant theory for
quartic curves is well-understood (cf. [53]) as follows. (Note that Mukai’s citation
[52, 9.3] misses one case.)

Lemma 5.9 ([33] Theorem 2). For a quartic curve F4 in P2 we have:

• F4 is stable if and only if F4 has only rational double points of type A1 or
A2;

• F4 is strictly polystable if and only if F4 is one of the following: either a
double conic or a union of two reduced conics that are tangential at two
points and at least one is smooth (called cateye and ox in [33]).

It follows that the quotient Q := P∗(Sym
4C3)ss//PGL(3;C) parametrizes certain

canonical log Del Pezzo surfaces of degree 2, away from the double conic. The
stable curves parametrize surfaces with at worst A1 or A2 singularities, the double
conic parametrize a non-normal surface with non orbifold singularities (note in
fact that the variety of equation t2 = (x2 + y2 + z2)2 can be decomposed into
irreducible factors (t+x2+y2+z2)(t−x2+y2+z2) = 0), and the other polystable
curves parametrize surfaces with exactly 2A3 singularities. As in [52], we blow up
the point corresponding to the double conic to obtain a new variety, denoted by
M2. Let E be the exceptional divisor. Then, as in [64], we know E is isomorphic
to the GIT moduli space P∗(Sym

8C2)ss//PGL(2;C), parametrizing binary octics
f8(x, y). Moreover,

Theorem 5.10. M2 is an analytic moduli space of log Del Pezzo surfaces of degree
two. For any [s] /∈ E, Xs is the double cover of P2 branched along the polystable
quartic defined by [s], and for [s] ∈ E, Xs is the double cover of P(1, 1, 4) (i.e. the
cone over the rational normal curve in P5) branched along the hyperelliptic curve
z23 = f8(z1, z2), where f8 is the polystable binary octic defined by [s].

The proof uses some ideas of [64] as written in [52], but note that the proof in
[64] is incomplete about the existence of moduli algebraic stack nor the blow up is
its coarse moduli scheme, since no family has been constructed. The argument in
[64] is curve-wise and only verifies the properness criterion formally.

Proof. Let H4 be the Hilbert scheme of quartics in P2, and fix a non-degenerate
conic C = {q = 0}. We identify the automorphism group of C with PGL(2;C)
(The notation PGL(2;C) only appears in this context of this proof, so should not
be confusing). Denote by Ψ the (9-dimensional) PGL(2;C)-invariant subspace of
H0(P2,O(4)) that corresponds to H0(C,O(4)|C). Take an affine space A ≃ C9 in
H4 which represents {q2+f4(x, y, z)} for all quartics f4 ∈ Ψ. From the construction,
this gives a Luna étale slice. Note that the blow up B of A at 0 is a closed subvariety
of A × P∗(A), and let E be its exceptional divisor. Let B ⊂ A × (A \ {0}) be the
cone over B, and E = {0}× (A \ {0}) be the cone over E. For each point (a, b) ∈ B,
we can associate the curve q2 + b = 0 in P2. These form a flat projective family Q
over B.

On the other hand, consider the trivial family of (P2, C) over B. We blow up
C × E and contract the strict transform of P2 × E . It is possible because E is a
Cartier divisor in B and the classical degeneration (deformation to the normal cone
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of C) of P2 to P(1, 1, 4) over a smooth curve is constructed in the same way, so we
can do it locally and glue the contraction morphism. Denote the family constructed
in this way by P → B. The generic fibers are P2 and special fibers (those over E)
are P(1, 1, 4). We also obtain a natural family of conics CP ⊂ P over B.

All the above process is PGL(2;C) × C∗-equivariant. Thus we can construct
PGL(2;C)-invariant complement ofCq2 inH0(Pu,O(2CP )) (u ∈ B) in a continuous
way, and extend the family of quartics Q|(B\E) to the whole B. We denote the new
total space by D. Notice that over E this is a family of binary octics. Then construct
S as the double of P branched along D. As everything is again PGL(2;C) × C∗-
equivariant, we can first divide by C∗ and obtain a Q-Gorenstein flat family S of
degree two log Del Pezzo surfaces over B.

There is still an action of PGL(2;C) on B. We consider GIT with respect to this
action and with PGL(2;C)-linearized line bundle OB(−E). The natural morphism
Bss//PGL(2;C) → A//PGL(2;C) is an isomorphic away from E ⊂ B and 0 ∈ A.
So this is a blow up with exceptional divisor Ess//PGL(2;C). By the local picture
of GIT ([64, Prop 5.1]), we can see that A//PGL(2;C) → Hss

4 //PGL(3;C) is
étale (or in differential geometric language, local bi-holomorphism) around 0. This
follows completely the same way as in [64, Prop 5.1] or the proof of famous Luna
étale slice theorem. Hence, the blow up Bss//PGL(2;C) → A//PGL(2;C) induces
blow up M2 of H4//PGL(3;C).

To see that M2 is an analytic moduli space for degree two log Del Pezzo surfaces,
we only need to check the item (2) in the definition. For this, one simply notices
that, by construction, for any [s] ∈ M2 there is a Luna’s slice V in H4 or in B

(depending on whether [s] is in E or not). Then by versality there is an Aut(Xs)
equivariant analytic map ΨU from a small analytic neighborhood U = V//Aut(Xs)
of [s] to the GIT quotient Kur(Xs)//Aut(Xs) so that Φ−1

U (0) = 0. Then it follows
that ΨU is a finite map onto an open neighborhood of 0.

In terms of étale topology one can also directly check the versality by going
through our construction. We only need to check our (Hss

4 \PGL(3;C)q2)
∐

Bss is
versal in étale topology. That is, given a Q-Gorenstein projective family f : X →
S of our log del Pezzo surfaces of degree 2, there is a morphism S̃ → (Hss

4 \
PGL(3;C)q2)

∐
Bss compatible with fibers where S̃ → S is an étale cover. For

this, we can first construct a degenerating family of P2 to P(1, 1, 4) over S and
from the Q-Gorenstein deformation theory of P(1, 1, 4) (with 1-dimensional smooth
semi-universal deformation space) we know that the locus of P(1, 1, 4) should be a
Cartier divisor so that we can convert the process to obtain a family of reduced
quartics of P2. Thus we have a compatible morphism to (Hss

4 \PGL(3;C)q2)
∐

Bss

locally in étale topological sense. �

Remark 5.11. In terms of algebro-geometric language, M2 coarsely represents the
algebraic stack M2 constructed by gluing together the quotient stacks [B

ss/PGL(2;C)]
and [(Hss

4 \ PGL(3;C)q2)/PGL(3;C)].

Remark 5.12. Replacing blow up and its cone as above by weighted blow up and
its quasi-cone, the argument in [64] can be completed to prove that the blow up is a
coarse moduli scheme of degree two K3 surfaces and its degenerations.

The proof of Theorem 1.1 follows from the fact that all smooth degree two Del
Pezzo surfaces are parametrized by M2 and by

Theorem 5.13. M2 has property (KE).

Proof. By Theorem 5.2 there are two possibilities for X ∈ MGH
2 : it is either a

double cover of P2 branched along a quartic f4(x1, x2, x3) = 0, or a double cover of
P(1, 1, 4) branched along a hyperelliptic octic curve x2

3 − f8(x1, x2) = 0. It suffices
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to show f4 and f8 are polystable. For this we use Theorem 3.3 and Theorem 3.4.
When applying Theorem 3.4, in the first case we choose S = P∗(Sym

4(C3)); in the
second case we choose S = P∗(Sym

8(C2)). Note that both these parameter spaces
have Picard rank one. Also recall the first paragraph of the proof of (4.2) which
asserts that there is no pathological test configurations in the sense of [43] in this
situation. Thus we can apply theorem 3.16 and conclude that all the points in this
glued moduli are indeed GH limits. �

So we also conclude that M2 is a KE moduli stack. As it is immediately clear
from the proof, the complex conjugation acts onM2 by the natural anti-holomorphic
involution.

Remark 5.14. In [70] it is conjectured that degenerations of Kähler-Einstein Del
Pezzo surfaces should have canonical singularities. In this section we have seen that
this conjecture is in general false, as all the surfaces parametrized by the exceptional
divisor E have exactly two non-canonical singularities of type 1

4 (1, 1). In general
dimension one expects the compact moduli space of smoothable Q-Fano varieties to
have log terminal singularities, see [23]. This type of singularities also appear to be
the worst singularities allowed for K-semistability of Fano varieties, see [58].

We finish this subsection by a discussion on the surfaces parametrized by the ox
and cateyes, which will be used in our study of degree one case. These are defined
by equations in P(1, 1, 1, 2) parametrized by λ = [λ1 : λ2] in (P1 \ {[1 : 1]}) which
we denotes by Xλ

2 . The equation of Xλ
2 is

w2 = (λ1z
2 + xy)(λ2z

2 + xy).

It is clear that when we interchange λ1 and λ2 we get isomorphic surfaces. When
λ is [1 : 0] or [0 : 1], the branch locus is an ox and the surface X∞

2 = Xλ
2 with

exaclty two A3 plus one A1 singularities, otherwise the branch locus is a cateye and
Xλ

2 with exactly two A3 singularities. By Theorem 5.13 this family of surfaces all
admit Kähler-Einstein metrics. As λ tends to [1 : 1] these Kähler-Einstein surfaces
converge to XT

2 , with the obvious Kähler-Einstein metric.
One can see that X∞

2 is a global quotient of P1 × P1, as follows. Consider the
action of Z/4Z on P1 × P1, where the generator ξ acts by

ξ.([z1 : z2], [w1 : w2]) = ([−w1 : w2], [z1 : z2]).

Then there are exactly four points with nontrivial isotropy. Let Y be the quotient.
Then the points ([0 : 1], [0 : 1]) and ([1 : 0], [1 : 0]) are A3 singularities and
([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0]) are A1 singularities. One can see that the
anti-canonical map p from Y to P2 is given by

([z1 : z2], [w1 : w2]) 7→ (z21w
2
1 : z22w

2
2 : z21w

2
2 + z22w

2
1),

and the corresponding involution to the double covering structure is

σ.([z1 : z2], [w1 : w2]) = ([w1 : w2], [z1 : z2]).

The branch locus is defined by xy(z2 − 4xy) = 0 in P2, which is isomorphic to the
ox. So Y is exactly X∞

2 , and it admits an explicit Kähler-Einstein metric.
Notice that P1 × P1 or P2 has no deformations, so their quotients by any finite

group have no equisingular deformations. But clearly for λ 6= [1 : 0], [0 : 1], Xλ
2

has nontrivial equisingular deformations, so it can not be a global quotient of P2

or P1 × P1.
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5.2.1. Relation with moduli of curves. Naturally considering the associated branch
locus for each double cover (i.e. the bi-anti-canonical map), we can regard our
moduli M2 as the GIT moduli of bi-canonically embedded Hilbert polystable genus
3 curves, which is constructed in [33]. Indeed, by a direct comparison, the corre-
sponding set of parametrized curves are the same. We have a 1-dimensional tac-
nodal curves and 5-dimensional hyperelliptic curves. They intersect at one point
corresponding to the curve z2 = x4y4 in P(1, 1, 4). From this point of view, the
proof that the moduli space is a blow up of the GIT moduli of plane quartics is given
in [6] due to David Hyeon. Our proof recovers this result, modulo the criterion of
the Hilbert stability.

Thus a natural question would be the corresponding “Del Pezzo surface modular
interpretation” for the flipped contraction which contracts the tacnodal locus in the
paper [33]. In general, we can ask:

Question 5.15. What are the modular interpretations via log Del Pezzo surfaces
for each step of the Hassett-Keel program in [33]? In addition, are there also stability
interpretations for them?

5.3. Degree one case. From Section 2 we know that for any X ∈ MGH
1 , there are

only three possible types for the non-canonical singularities. Moreover, we have:

Lemma 5.16. The canonical singularities in X ∈ MGH
1 are either A1, · · · , A8 or

D4.

Proof. This follows from Theorem 2.7 and the Noether formula for singular surfaces
[[30], Proposition 2.6]

ρ(X) +K2
X +

∑

P∈Sing(X)

µP = 12χ(OX)− 2,

where ρ(X) is the Picard rank of X and µP denotes the Milnor number. Notice
that χ(OX) = 1 by the Kodaira vanishing theorem and that the Milnor number of
an Ak, Dk or Ek singularity is k. �

We mention that, by using the Kähler-Ricci flow and calculating certain α-
invariant, it has been proved in [77], [16] that a degree 1 log Del Pezzo surface with
only An singularities admits a Kähler-Einstein metric, if n ≤ 6.

5.3.1. First step: GIT. By Corollary 5.4, a Gromov-Hausdorff limit in degree one
is either a double cover of P(1, 1, 2) branched along a sextic or a double cover of
P(1, 2, 9) branched along a degree 18 curve. As the first step, we will construct
a moduli space of surfaces that are double cover of P(1, 1, 2) branched along a
sextic that does not pass through [0 : 0 : 1]. These surfaces have equations w2 =
F (x, y, z) ⊂ P(1, 1, 2, 3), where F contains a nonzero term z3.

Although the automorphism group of P(1, 1, 2) in non-reductive, we can con-
struct a compact moduli space of such sextics in P(1, 1, 2) which are polystable in
appropriate GIT sense, following [64]. Instead of the honest automorphism group
Aut(P(1, 1, 2)), we consider the action of SL(2;C)⋉H0(P1,O(2)) which is a finite
cover of Aut(P(1, 1, 2)) and a subgroup of Aut(P(1, 1, 2),O(2)) (i.e. it also acts on
the linearization). First we fix the translation action of H0(P1,O(2)) by requiring
the vanishing of the coefficient of z2. Thus we only need to consider surfaces of the
form

w2 = z3 + f4(x, y)z + f6(x, y).

Then, by dividing out by the natural C∗-action on f4 and f6 with weights 4, 6 repec-
tively, we obtain a weighted projective space Ps := P(2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3) as
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a parameter space. What is left is the action of SL(2;C) in the two variables x, y.
Thus we get a GIT quotient

M ′
1 := Pss

s //SL(2;C)

as a moduli space. This is similar to [64], where the GIT of degree 12 curves
in P(1, 1, 4) was studied. We have the following classification of singularities for
polystable locus (compare [64], Theorem 4.3):

Lemma 5.17. With respect to the GIT stability of the above SL(2;C)-action, our
surface [w2 = z3 + zf4(x, y) + f6(x, y) ⊂ P(1, 1, 2, 3)] is:

(1) stable if and only if it contains at worst Ak singularities;
(2) strictly polystable if and only if it contains exactly two D4 singularities or

SL(2;C)-equivalent to p0 := [− 1
3 (x

2 + y2)2 : 2
27 (x

2 + y2)3] in Ps (in this
case it is non-normal).

Proof. By the numerical criterion, a point f = [f4 : f6] is unstable if and only if
there is a point u ∈ P1(x, y) such that f4 and f6 has multiplicity bigger than two
and three at u respectively. Without loss of generality, we may assume u = [1 : 0],
so that y3 divides f4 and y4 divides f6. Then it is easy to see that the corresponding
sextic has a triple point at u, with unibranch (i.e. a unique tangent line). So the
surface Xf has an Ek or worse singularity. Conversely if Xf has a singularity of
type Ek or worse, then by multiplying by an element in SL(2;C) we may assume
the singularity is of the form [1 : 0 : z0] ∈ P(1, 1, 2). In the affine chart where x 6= 0,
the sextic is of the form z3+zf4(1, y)+f6(1, y). It is easy to see that the only triple
point must have y = z = 0. Then it follows that [f4 : f6] is unstable. Similarly, it is
easy to see that Xf is stable if and only if it contains at worst Ak singularities, i.e.
the sextic contains at worst double points. If Xf is polystable, then [f4 : f6] must
be in the SL(2;C) orbit of [ax2y2 : bx3y3] for some non zero [a : b] ∈ P(2, 3). It is
not hard to see that for [a : b] ∈ P(2, 3) not equal to [−1/3 : 2/27], Xf has exactly
two D4 singularities. �

Remark 5.18. We remark that, in the context of rational elliptic surfaces (which
is the blow up of the base point of a complete anti-canonical system of degree 1
Del Pezzo surface), Miranda [51] also analyzed the equivalent GIT stability and
constructed the corresponding compactified moduli variety which is isomorphic to
our M ′

1.

5.3.2. Second step: Blow up. For the compatibility with later discussions, we re-
place characters x, y, z, w by x′, y′, z′, w′ for the homogeneous coordinates for P(1, 1, 2, 3).
Recall that in the statement of Theorem 5.2 when the Gromov-Hausdorff limit is
the double cover of P(1, 1, 2), the branch locus could pass the vertex. This corre-
sponds to the z′3 term vanishing in the statementF (x′, y′, z′). By Lemma 5.6, it
is easy to see that if we want the surface to have only quotient singularities, there
must be a term of the form z′2f2(x

′, y′) where f2 must have rank at least one.
On the other hand, for these surfaces, there is no obvious reason that they do not
appear as the Gromov-Hausdorff limit of Kähler-Einstein surfaces. Indeed we have
explicit examples of such surfaces which admit Kähler-Einstein metric. The first
is a one dimensional family of degree one Kähler-Einstein log Del Pezzo surfaces
which are Gorenstein except one whose f2 is rank two.

Example 5.19. We consider a Z/2Z action on the family of degree two surfaces
Xλ

2 as studied in the end of Section 5.2. The action is given by [x : y : z : w] 7→ [x :
y : −z : −w]. The fixed points are exactly the singularities of Xλ

2 . One can check
that for λ 6= [1 : 0], [0 : 1], the quotient Xλ

1 is a degree one log Del Pezzo surface
with exactly two D4 singularities. It is interesting that these surfaces admit a C∗
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action and correspond exactly to the polystable points in M ′
1, except p0. From the

discussion in the end of Section 5.2 we see they all admit Kähler-Einstein metrics.
For the surface X∞

2 the action fixes also the A1 singularity [0 : 0 : 1 : 0], so
the quotient X∞

1 has two D4 singularities and one 1
4 (1, 1) singularity. Denote the

embedding P(1, 1, 2) →֒ P3 by [x′ : y′ : z′] 7→ [z′ : x′2 : x′y′ : y′2]. Then the bi-
anti-canonical map realizes X∞

1 as a double cover of P(1, 1, 2) ⊂ P3 branched along
the curve isomorphic to z′2x′y′ + x′3y′3. Indeed, | − 2KX∞

1
| = | − 2KX∞

2
|Z/2Z =

|OP(1,1,1,2)(2)
Z/2Z| which is spanned by x2, xy, y2, z2 so the branch locus is xyz(z −

xy). The latter is isomorphic to the sextic described above.
So X∞

1 corresponds to the case that f2 has rank two. Clearly X∞
1 admits a

Kähler-Einstein metric, as a global quotient of P1 × P1.

The next example, which will be important in our further modification, is a
degree one Kähler-Einstein log Del Pezzo surface which corresponds to f2 being
rank one.

Example 5.20. Consider the degree two surface Xγ0

2 with γ0 = [1 : −1]. It has
two A3 singularities, one at [1 : 0 : 0 : 0] and one at [0 : 1 : 0 : 0]. Now consider
the involution σ : Xγ0

2 → Xγ0

2 which sends [x : y : z : w] to [x : −y : −z : −w].
Then σ has two fixed points exactly at the two singularities. It is straightforward
to check that the quotient, which we will denote by Xe

1 from now on, has one A7

singularity and one 1
8 (1, 3) singularity. | − 2KXe

1
| is determined by the sections

{x2, y2, yz, z2} ∈ H0(P(1, 1, 1, 2),O(2)), and this defines a double covering map
from Xe

1 to the quadric cone in P3. The corresponding involution σ maps [x : y : z :
w] to [−x : −y : −z : −w] = [−x : y : z : w] (the identity holds on Xe

1). Then the
fixed locus of σ consists of the curve w = 0 and the curve x = 0. Denote again the
embedding P(1, 1, 2) →֒ P3 by [x′ : y′ : z′] 7→ [z′ : x′2 : x′y′ : y′2]. The branch locus
in P(1, 1, 2) is isomorphic to the sextic z′2x′2 − z′y′4 = 0. So Xe

1 corresponds to
that f2 has rank one. Again Xe

1 admits a Kähler-Einstein metric by the discussion
in the end of Section 5.2.

We have a refined classification than Corollary 5.4.

Lemma 5.21. Let X∞ be the Gromov-Hausdorff limit of a sequence of degree
one Kähler-Einstein Del Pezzo surfaces. If it is a hypersurface in P(1, 1, 2, 3) of
the form w2 = F6(x, y, z), then either F6 has a term z3, or F6 is equivalent to
z2(x2 + y2) + zg4(x, y) + g6(x, y) or X0 is isomorphic to Xe

1 .

Proof. Consider the case when F6 contains no z3 term. Then we claim the term
z2f2(x, y) must not vanish. Otherwise F6 = zf4(x, y) + f6(x, y). Then in the affine
chart {z 6= 0} in P(1, 1, 2, 3) we have equation w2 = f4(x, y) + f6(x, y) then by the
Lemma 5.6, X∞ has a non quotient singularity, so it can not be a Gromov-Hausdorff
limit by Theorem 2.1. So up to equivalence we may assume the z2 term in F6 is
of the form z2(x2 + y2) or z2x2. In the former case we are done, so we assume the
latter. Then we can write

F6(x, y, z) = z2x2 + azy4 + bzxf3(x, y) + f6(x, y).

Now if a = 0, then again in the affine chart {z 6= 0} we have equation w2 =
x2 + bxf3(x, y) + f6(x, y). Then by a change of variable at (0, 0, 0) we may assume
it is locally equivalent to w2 = x2 + a1xy

3 + a2xy
5 + a3y

6. It is easy to see this is
either non-normal or has a Ai singularity i ≥ 5 at the origin. The corresponding
singularity on X0 is a (Z/2Z)-quotient by the action (x, y, w) 7→ (−x,−y,−w). So
X0 is either non-normal or has an orbifold point of order at least 12, thus it can
not admit a Kähler-Einstein metric by Theorem 2.7.
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So a 6= 0, then by a change of variables y 7→ y+ cx and z 7→ z+ g2(x, y) we may
assume

F6(x, y, z) = z2x2 + zy4 + f6(x, y). (∗)
Xe

1 is isomorphic to the surface defined by w2 = z2x2 + zy4. The one parameter
subgroup λ(t) = (t2, t, 1, t2) degenerates every surface defined by (∗) to Xe

1 as t
tends to zero. Since Xe

1 admits a Kähler-Einstein metric, it has vanishing Futaki
invariant. By Theorem 3.3 we see X∞ must be isomorphic to Xe

1 .
�

We first construct a moduli space for surfaces with f2 being rank two, and we
will show these surfaces are parametrized exactly by a weighted blow up of M ′

1 at
p0. The surfaces are defined by

(5.1) w′2 = z′2(x′2 + y′2) + z′g4(x
′, y′) + g6(x

′, y′).

Similarly as before, by considering the translation z′ 7→ z′+ a2(x
′, y′) for certain

quadric a2(x
′, y′), we may assume g4 lies in the space T (x′, y′) := C(x′ + iy′)4 ⊕

C(x′ − iy′)4, which is the SO(2;C)(∼= C∗)-invariant complement to the linear sub-
space of Sym4(Cx′ ⊕ Cy′) consists of those divisible by (x′2 + y′2). In this way,
we can obtain GIT quotient Pss

e //SO(2;C) := P(1, 1, 2, 2, 2, 2, 2, 2, 2)ss//SO(2;C)
which parametrizes surfaces of the form (5.1). Here we need to specify the weight
of SO(2;C) ∼= C∗ on the linearization, and we choose the natural one, so the action
corresponding to (x′ + iy′) 7→ µ(x′ + iy′), (x′ − iy′) 7→ µ−1(x′ − iy′) has weight

(5.2) (4,−4, 6, 4, 2, 0,−2,−4,−6),

with respect to the basis consists of

(x′ + iy′)4, (x′ − iy′)4,

and

(x′ + iy′)6, (x′ + iy′)5(x′ − iy′),

(x′ + iy′)4(x′ − iy′)2, (x′ + iy′)3(x′ − iy′)3,

(x′ + iy′)2(x′ − iy′)4, (x′ + iy′)(x′ − iy′)5, (x′ − iy′)6.

Then we have the following.

Lemma 5.22. The GIT quotient Pss
e //SO(2;C) with respect to the action with

weight (5.2) above parametrizes log Del Pezzo surfaces, i.e. a polystable sextic
defined by [g4 : g6] ∈ Pe has only quotient singularities, or more precisely, the
corresponding Del Pezzo surface has exactly one 1

4 (1, 1) singularity besides canonical
singularities.

Proof. It is easy to check that if a sextic has the form z′2(x′2 + y′2) + z′(a(x′ +
iy′)4 + b(x′ − iy′)4) + g6(x

′, y′) with a, b 6= 0, then it has only double points away
from the vertex. If a = b = 0, then for it to be stable, it has at most double points,
and for it to be polystable, it has exactly two D4 singularities besides the vertex.
If a 6= 0 and b = 0, then, if it is stable, the sextic has at most double points, and if
it is semistable, then it degenerates to z′2(x′2 + y′2) + a(x′ + iy′)3(x′ − iy′)3, which
has two D4 singularities. �

When we prove the moduli space we constructed in the end has property (KE)
we need to show:

Lemma 5.23. A surface of the form (5.1) that admits a Kähler-Einstein metric
must be GIT polystable with respect to the chosen linearization as above.
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Proof. This does not follow directly from the general Theorem 3.4, as the group
SO(2;C) ∼= C∗ has non trivial characters. But in our case this can be done by
explicit analysis as follows. Notice that since Pe contains a point parametrizing
a K-polystable log Del Pezzo surface (e.g. X∞

1 ), the CM line bundle must be
isomorphic to O(k) for k > 0. This follows from the proof of Theorem 3.4. X∞

1

corresponds to the vector v = [0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0] in Pe with respect to the
quasi-homogeneous coordinates as above. So the weight of the action on the CM
line bundle must also be the natural one as above, for otherwise it is easy to see
that v is unstable. �

The second step toward the construction of M1 is to replace the point [p0] ∈ M ′
1

(which corresponds to a non-normal surface) by the above GIT quotient.

Theorem 5.24. There is a blow up M ′′
1 → M ′

1 at [p0] (with a non-reduced ideal)
so that M ′′

1 is an analytic moduli space for degree one log Del Pezzo surfaces. The
exceptional divisor E is isomorphic to Pss

e //SO(2;C). Moreover, a point s ∈ M ′′
1

parametrizes the polystable sextic hypersurface Xs defined by it, and s ∈ E if and
only if the sextic passes through the vertex [0 : 0 : 1].

Proof. Let Ã ≃ Sym4(Cx ⊕ Cy) ⊕ Sym6(Cx ⊕ Cy) be the cone over Ps. In the
tangent space at the point p0 = (− 1

3 (x
2 + y2)2, 2

27 (x
2 + y2)3), we take an SO(2;C)-

invariant Luna étale slice Af := p0 + {T (x, y)⊕ Sym6(Cx⊕Cy)} in Ã. To include

surfaces of the form (5.1), let Ag = T (x′, y′) ⊕ Sym6(Cx′ ⊕ Cy′), and we consider
the family of surfaces over Ag × C∗ where we associate (g4, g6, t) the sextic

(5.3) tz′3 + z′2(x′2 + y′2) + z′g4(x
′, y′) + g6(x

′, y′).

Making the change of variable

x′ := tx, y′ := ty, z′ := z − t

3
(x2 + y2),

and

f4(x, y) = − t2

3
(x2 + y2)2 + t3g4(x, y);

f6(x, y) =
2t3

27
(x2 + y2)3 − t4

3
(x2 + y2)g4(x, y) + t5g6(x, y),

the sextic in equation (5.3) is then transformed into the form

t[z3 + f4(x, y)z + f6(x, y)].

Hence it corresponds to the point [f4(x, y) : f6(x, y)] ∈ Af ⊆ Ps. If we keep g4 and
g6 fixed, and let t tend to zero this converges exactly to the point p0.

The equation (5.3) defines a family of sextics over the trivial Px′,y′,z′(1, 1, 2)
bundle P ′ over Ag×C∗, and it extends obviously over Ag×C, which is the cone over
the blow up Bg of Ag at 0. This family is invariant under C∗ action λ.(t, g4, g6) :=
(λ−1t, λg4, λ

2g6), and thus descended to a family over Bg. The above change of
variables indeed defines an isomorphism Ψ between P = Px,y,z(1, 1, 2)× (Af ×C∗),
and induces a C∗ action on Af . We decompose Af as Af = p0 + (L1 ⊕ L2), where

L1 := {(f4(x, y),−
1

3
(x2 + y2)f4(x, y))} | f4 ∈ T(x,y)},

and

L2 := Sym6(Cx ⊕ Cy) ⊂ Af .

Denote the associated ideals of Li + p0 in Af by I(Li+p0). Then we define Bf to be

the blow up of Af at I2(L1+p0)
+ I(L2+p0). The exceptional divisor is isomorphic to

Pe. Then by pulling back by Ψ we obtain a flat family of sextics over Bf , and the
exceptional divisor parametrizes sextics of the form (5.1).
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Similarly to the degree 2 case, we consider GIT of Bf with respect to the
SO(2;C)-action, and get a certain blow up Bss

f //SO(2;C) → Af//SO(2;C). This

induces a blow up of Ps//SL(2;C) at [p0], with exceptional divisor E ∼= Pss
e //SO(2;C).

We denote this by M ′′
1 → M ′

1.
From the construction, as in the previous section, M ′′

1 is an analytic moduli
space and a coarse moduli of an algebraic stack which is constructed by gluing

[Bss
f /SO(2;C)]

naturally with

[(Pss
s \ (PGL(2;C).p0))/PGL(2;C)]

in our context. �

5.3.3. Construction of moduli: further modifications. We have a further refinement
of Corollary 5.4, parallel to Lemma 5.21.

Lemma 5.25. Let X∞ be the Gromov-Hausdorff limit of a sequence of degree
one Kähler-Einstein Del Pezzo surfaces. Then X∞ is a sextic hypersurface in
P(1, 1, 2, 3) of the form x2

4 = f6(x1, x2, x3), or isomorphic to the toric surface XT
1 .

Proof. By Theorem 5.2, we may assumeX∞ is a degree 18 hypersurface in P(1, 2, 9, 9)
of the form x2

4 = f18(x1, x2, x3) not passing through the point [0 : 0 : 1]. So we
may assume f18(x1, x2, x3) = x2

3 + g18(x1, x2). If the term x9
2 appears in g18, then

the one parameter subgroup Λ acting with weight (0, 9, 2, 2) degenerates x2
4−f18 to

x2
4−x2

3−ax9
2. This induces a test configuration forX∞ with central fiber isomorphic

to XT
1 . Since XT

1 has vanishing Futaki invariant, and X∞ is K-polystable, we con-
clude thatX∞ must be isomorphic toXT

1 . If x
9
2 does not appear in g18, then the one

parameter subgroup Λ acting with weight (0, 0, 1, 1) degenerates x2
4−f18(x1, x2, x3)

to x2
4 − x2

3. Again this induces a test configuration for X∞ with central fiber the
nonnormal hypersurface Y defined by x2

4 − x2
3 = 0. We claim this has zero Futaki

invariant, thus contradicting the fact that X∞ is K-polystable. To see the claim,
note that the Futaki invariant for a C∗-action on a connected fixed component in
the Hilbert scheme is constant. Since XT

1 obviously degenerates to Y and is fixed
by the same Λ, we can compute the Futaki invariant on XT

1 , which is zero since it
is Kähler-Einstein. �

The analytic moduli space M ′′
1 constructed in the previous section does not have

property (KE), since it does not parametrize the two examples Xe
1 and XT

1 which
we are unable to show that they can not appear as a Gromov-Hausdorff limit. So
we have to make a modification of M ′′

1 . Now the only problem is to fit these two
into M ′′

1 . We first illustrate the phenomenon of modification of GIT by a simple
example.

Example 5.26. Let C∗ act linearly on C2 by t.(z1, z2) = (tz1, z2). Then the
quotient is isomorphic to C, and the polystable locus are points on the line {0}×C.
If we remove the origin (0, 0), then the quotient is again isomorphic to C, but
the polystable locus differs from the previous one in that the orbit of the origin is
replaced by the punctured line C∗ × {0}.

Our situation is very similar to this. We first investigate the Q-Gorenstein de-
formation of XT

1 studied in Section 3. Adopting the notation there, we have:

Lemma 5.27. A point v = (v1, v2, v3) ∈ Def(XT
1 ) is polystable under the action of

Aut0(XT
1 ) if and only if v1, v2 and v3 are all non-zero or all zero, and (0, 0, 0) is

the only strictly polystable point.
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Proof. If v1 = 0, then we can destabilize v by the one-parameter subgroup λ(t) =
(t−1, 1). If v2 = 0, then we can destabilize v by the one-parameter subgroup (1, t−1).
If v3 = 0, then we can destabilize v by the one-parameter subgroup (t3, t2). If all
the vi’s are non-zero, then for λ(t) = (ta, tb) to destabilize v we need a − b ≥ 0,
−3a + 6b ≥ 0, and −3a − 3b ≥ 0. It is easy to see that no non-trivial such pair
(a, b) exists. �

To fill XT
1 in our moduli, since we may locally identify Kur(XT

1 ) with Def(XT
1 ),

and the (C∗)2-action on Kur(XT
1 ) is compatible with the one on Def(XT

1 ), it suffices
to study the GIT on Def(XT

1 ). By the above lemma, the stable points all represent
canonical log Del Pezzo surfaces with at most a unique Ak(k ≤ 7) singularity, and
the polystable point 0 represents XT

1 . The GIT quotient Q is then smooth at [XT
1 ].

The semistable orbit (0, v2, v3) (where 0 < |v2|2 + |v3|2 ≪ 1) represent a log Del
Pezzo surface with a unique A8 singularity. Since it is unique up to isomorphism
by [26], we denote it by Xa

1 . Due to Lemma 5.17, it has discrete automorphism
group and it is parametrized by a point u0 in M ′′

1 \ E.
Consider the analytic subset Kur′(XT

1 ) of Kur(XT
1 ) which represents only canon-

ical log Del Pezzo surfaces, i.e. that consists of points with v2 6= 0 and v3 6= 0.
Then the corresponding quotient Q′ can be identified with the previous quotient
Q, which identifies every stable orbit, except the orbit of Xa

1 is replaced by XT
1 .

Q′ can be viewed as the universal deformation space Xa
1 . There is an analytic

neighborhood U of u0, and an embedding ι : U → Q′ = Q such that ι(u0) = 0, and
u and ι(u) parametrize equivalent surfaces. In terms of stack language, the open
embedding of stacks [(Kur(XT

1 ) \ Kur(XT
1 )

′)/(C∗)2] →֒ [Kur(XT
1 )/(C

∗)2] induces
an isomorphism of the categorical moduli. Now we can simply define M ′′′

1 = M ′′
1

as a variety and only change the surface parametrized by u0 from Xa
1 to XT

1 . Then
it is clear that M ′′′

1 is again an analytic moduli space of degree one log Del Pezzo
surfaces. So this modification takes care of the point XT

1 .
Now we treat Xe

1 in a similar fashion. First notice that the linear system | −
2KXe

1
| realizes Xe

1 as the double cover of P(1, 1, 2), thus Aut0(Xe
1) is induced from

Aut(P(1, 1, 2)). Then one sees that Aut0(Xe
1)

∼= C∗ corresponds to the scaling
λ(t) = (t2, t, 1, t2). By Lemma 3.9, we have

Def(Xe
1) = Def′ ⊕Def1 ⊕Def2,

where Def′ corresponds to equisingular deformations, Def1 corresponds to deforma-
tions of the local singularity at [0 : 0 : 1 : 0], and Def2 corresponds to deformations
of the local singularity at [1 : 0 : 0 : 0]. By applying again the Main Theorem of
[47], it follows that Def1 is two dimensional and Def2 is seven dimensional. Thus
by dimension counting we must have Def′ = 0. We can write down a semi-universal
deformation family:

(5.4) w2 = z2x2 + zy4 + a1z
3 + a2z

2y2 +

6∑

i=0

bix
iy6−j,

In particular, note that we have Aut(Xe
1)-invariant affine versal deformation space

Kur(Xe
1) as claimed in the explanation after Lemma 3.9 and in this case, Kur(Xe

1)
can be identified globally with the tangent space DefXe

1 so that (a1, a2) ∈ Def1 and
(b0, · · · , b6) ∈ Def2.

It is also easy to see the weights of the action is

λ(t).(a, b) = (t−4, t−2, t8, t6, · · · , t2).
So in the local GIT quotient by Aut(Xe

1) a point (a, b) is stable if and only if a 6= 0
and b 6= 0 in which case Xa,b has either a unique Ak(k ≤ 6) singularity or a 1

4 (1, 1)
plus Ak(k ≤ 6) singularity.



28 YUJI ODAKA, CRISTIANO SPOTTI, AND SONG SUN

When we remove the subspace {0}⊕Def2, every point becomes stable. In particu-
lar, the quotient of the subspace (a, 0) with a 6= 0 is exactly a P1, which parametrizes
surfaces in M ′′

1

w2 = a1z
3 + z2x2 + zy4 + a2z

2y2,

and intersects the exceptional divisor at one point corresponding to a1 = 0. It is
easy to see that λ(t) degenerates all these surfaces to Xe

1 as t tends to infinity, so
they could not admit Kähler-Einstein metrics, and we need to remove them. Notice
this family does not include the point corresponding toXa

1 , so we can make a further
modification simultaneously as the previous one. When we add the the subspace
{0}⊕Def2, the point (a, 0) with a 6= 0 become semistable and in the GIT quotient
this is contracted to the point 0. To be more precise we take the neighborhood U in
Def(Xe

1) consisting of points (a, b) with ||a| − 1| ≪ 1 and |b| ≪ 1, and the quotient
V by C∗ gives rise to a tubular neighborhood of the P1 in M ′′

1 . When we add the
subspace {0} ⊕ Def2 we have that V gets mapped to a neighborhood of 0 in the
local GIT, with P1 contracted to 0.

As before the GIT on Kur(Xe
1) and on Def(Xe

1) are equivalent so this allows
us to perform the contraction in an analytic neighborhood of the P1 inside M ′′′

1 .
We obtain a new analytic moduli space M1, which enjoys the Moishezon property.
Thus it has a natural structure of an algebraic space as well.

Theorem 1.1 in degree one case then follows from the theorem below.

Theorem 5.28. M1 has property (KE).

Proof. The proof is very similar to Theorem 5.13. By Lemma 5.25 we only need
to show that if a X ∈ MGH

1 is a sextic hypersurface in P(1, 1, 2, 3) defined by
w2 = f6(x, y, z), then it is parametrized by some element in M ′′

1 . If f6 contains a
term az3 with a 6= 0, then it is parametrized a point u by Ps. Then by Theorem
3.3 and Theorem 3.4, keeping in mind that Ps has Picard rank one, we conclude
that u is polystable under the SL(2;C) action, thus X is parametrized by a point
p in M ′

1. Then X can not be isomorphic to XT
1 or the P1 family above. So X

is parametrized by a point in M1. If the term z3 does not appear in f6, then by
Lemma 5.21 and Lemma 5.23 X is either isomorphic to Xe

1 or is parametrized by
a polystable point u ∈ Pe. Again this point u can not be on the P1 and this means
that u is in M1.

�

We can construct a KE moduli stack M1 by gluing the previously constructed
moduli stack with [U/Aut(Xe

1)] where U is some open Aut(Xe
1)-invariant neigh-

borhood of 0 ∈ Kur(Xe
1) (along [(U \ ({0} ⊕ Def2))/Aut(X

e
1)]). Recall that in

this case, we identified globally Kur(Xe
1 ) and Def(Xe

1). We can show that with a
small enough Aut(Xe

1 )-invariant open neighborhood U of 0 in Kur(Xe
1), a stack

[(U \ ({0}⊕Def2)))/Aut(X
e
1)] has a natural étale morphism to the previously con-

structed moduli stack so that the glueing is possible. Indeed, the Q-Gorestein
deforming component (cf. [39, section 5]) of a Luna étale slice in the Hilbert
scheme Hilb(P(H0(XT

1 ,−K⊗m
XT

1

))) at [XT
1 ] with respect to the standard SL action

is étale locally semi-universal deformation by the universality of the Hilbert scheme.
Then the étale local uniqueness of semi-universal family tells us it is actually étale
locally equivalent with U including the family on it. Then the assertion follows
from the universality of Hilbert scheme again. Note that especially U includes
the subspace Def1 ⊕ {0} so that the categorical moduli of the open immersion
[(U \ ({0} ⊕Def2)))/Aut(X

e
1)] →֒ [U/Aut(Xe

1)] represents the contraction of P1.
Then M1 is a KE moduli stack and M1 constructed above is KE moduli space.

This completes the proof of Theorem 1.1 for degree 1 case as well. Note that our
contraction of P1 on the coarse quotient is constructed just on an étale cover, not
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a priori an open substack. Indeed it is not, although we omit the lengthy proof for
that. This is the reason our argument is not enough to show M1 is a (projective)
variety. Completely as before, there is a natural anti-holomophic involution on M1

which gives rise to the complex conjugation.

5.3.4. A remark on a conjecture of Corti. In the paper [18], Corti conjectured the
following, motivated by the possibility of using birational geometry to get certain
“nice” integral models over a discrete valuation ring:

Conjecture 5.29 ([18, Conjecture 1.16]). For an arbitrary smooth punctured curve
C \ {p} and a smooth family of Del Pezzo surfaces f : X → (C \ {p}) over it, we
can complete it to a flat family f̄ : X̄ → C which satisfies:

• X is terminal.
• Q-Gorenstein index of X̄p is either 1, 2, 3 or 6 and −6KX̄p

is very ample.

He called X̄ the standard model. We have the following partial solution to the
above; it is rather weak, in the sense we permit base change, but on the other hand
we even have a classification of the possible central fiber.

Proposition 5.30. For an arbitrary smooth punctured curve C \{p} and a smooth
family of Del Pezzo surfaces f : X → (C \{p}) over it, possibly ramified base change

p′ ∈ C̃ → C (with p′ 7→ p), we can fill the punctured family X ×(C\{p}) (C̃ \ {p′})
to a flat family X̄ ′ → C̃ such that:

• X̄ ′ is terminal.
• Q-Gorenstein index of X̄ ′

p′ is either 1, 2 and −6KX̄ ′

p′
is very ample.

Proof. We have constructed the moduli stack M′′
1 by gluing quotient stacks of cer-

tain GIT semistable locus (subsection 5.3.2). From the construction, it is universally
closed stack and it parametrizes log del Pezzo surfaces of Q-Gorenstein index 1, 2.
The Q-Gorenstein property of X follows from our construction as well. �

5.3.5. Relation with moduli of curves. We expect the KE moduli variety M1 to be
a divisor of one of the geometric compactifactions of moduli of curves with genus
4. Especially we suspect that our moduli M1 is the prime divisor of M4(a) with
23
44 < a < 5

9 in [13]. Note that it is the moduli of Hilbert polystable canonical
curves.

6. Further discussion

6.1. Some remarks.

6.1.1. Lower bound of the Bergman function. The main technical part in the proof
of Proposition 2.2 is a uniform lower bound of the Bergman function. Let (X, J, ω, L)
be a polarized Kähler manifold, then for any k there is an induced metric on
H0(X,Lk). The Bergman function is defined by

ρk,X(x) =
∑

|sα|2(x),

where {sα} is any orthonormal basis of H0(X,Lk). Kodaira embedding theorem
says that for fixed X , and for sufficiently large k the Bergman function is always
positive. It is proved in [23] that for a n dimensional Kähler-Einstein Fano manifold
(X, J, ω), we always have ρk,X(x) ≥ ǫ for some integer k (and thus every positive
multiple of k) and ǫ > 0 depending only on n. This was named “partialC0 estimate”
in [70] and it is also proved there for two dimensional case. It was explained in [23]
that one may not take k to be all sufficiently large integers, and in our proof
of the main theorem we have seen examples, see Remark 5.14. Indeed we found
explicitly all the integers k that we need to take in each degree in order to ensure a
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uniform positivity of Bergman function for all Kähler-Einstein Del Pezzo surfaces.
(Compare the strong partial C0 estimate in [70], Theorem 2.2):

• d = 4, 3: k ≥ 1;
• d = 2: k = 2l, with l ≥ 1;
• d = 1: k = 6l, with l ≥ 1.

6.1.2. Kähler-Einstein metrics on del Pezzo orbifolds. As a consequence of our main
Theorem 1.1, we have a complete classification of Kähler-Einstein Del Pezzo surfaces
with at worst canonical singularities in terms of K-polystability.

Corollary 6.1. Let X be a Del Pezzo surface with at worst canonical singularities.
Then

X admits a Kähler-Einstein metric ⇐⇒ X is K-polystable.

Proof. The direction “=⇒” is known by Theorem 3.3. To prove the other direction,
suppose that X is K-polystable and with at worst canonical singularities (in partic-
ular it is automatically Q-Gorenstein smoothable). Then by Theorem 3.4 X is also
polystable with respect to the stability notions that we used in the construction of
our moduli spaces, i.e. [X ] ∈ Md. Thus X admits a Kähler-Einstein metric as a
consequence of Theorem 1.1. �

The above result gives the answer to the conjecture of Cheltsov and Kosta ([16],
Conjecture 1.19) on the existence of Kähler-Einstein metrics on canonical Del Pezzo
surfaces. In particular, we have the following exact list of possible singularities
that can occur. Let (X,ω) be a degree d ≤ 4 Del Pezzo surface with canonical
singularities, then it admits a Kähler-Einstein metric if and only if X is smooth or

• d = 4: Sing(X) consists of only twoA1 singularities andX is simultaneously
diagonalizable, or exactly four singularities (in which case X is isomorphic
to XT

4 );
• d = 3: Sing(X) consists of only points of type A1, or of exactly three points
of type A2 (in which case X is isomorphic to XT

3 );
• d = 2: Sing(X) consists of only points of type A1, A2, or of exactly two A3

singularities;
• d = 1: Sing(X) consists of only points of type Ak (k ≤ 7), or of exactly
two D4 singularities, and X is not isomorphic to one the surfaces in the P1

family in the last section.

As we have seen, the class of log Del Pezzo surfaces with canonical singularities is
not sufficient to construct a KE moduli variety. In particular we have found someQ-
Gorenstein smoothable Kähler-Einstein log Del Pezzo surfaces, hence K-polystable,
with non-canonical singularities. Thus it is natural to ask the following differential
geometric/algebro-geometric question: do there exist other Q-Gorenstein smooth-
able Kähler-Einstein/K-polystable log Del Pezzo surfaces besides the ones which
appear in our KE moduli varieties? If the answer to the above question is nega-
tive (as we conjecture) then the Yau-Tian-Donaldson conjecture for K-polystability
also holds for the class of Q-Gorenstein smoothable Del Pezzo surfaces. For this
it is of course sufficient to prove the following: let π : X → ∆ be a Q-Gorenstein
deformation of a K-polystable Del Pezzo surface X0 over the disc ∆ such that the
generic fibers Xt are smooth (hence admit Kähler-Einstein metrics). Then X0 ad-
mits a Kähler-Einstein metric ω0, and (X0, ω0) is the Gromov-Hausdorff limit of
a sequence of Kähler-Einstein metrics on the fibers (Xti , ωti) for some sequence
ti → 0.
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6.2. On compact moduli spaces. In this final section, we would like to for-
mulate a conjecture about the existence of certain compact moduli spaces of K-
polystable/Kähler-Einstein Fano varieties. Before stating our conjecture, we recall
some important steps in the history of the construction and compactifications of
moduli spaces of varieties.

For complex curves of genus g ≥ 2, the construction of the moduli spaces, and
their “natural” compactifications, was completed during the seventies by Deligne,
Mumford, Gieseker and others using GIT. The degenerate curves appearing in the
compactification are the so-called “stable curves”, i.e., curves with nodal singular-
ities and discrete automorphisms group. Let us recall that these compact moduli
spaces have also a “differential geometric” interpretation. It is classically well-
known that every curve of genus g has a unique metric of constant Gauss curvature
with fixed volume. As the curves move towards the boundary of the Deligne-
Mumford compactification, the diameters, with respect to the constant curvature
metrics, go to infinity and finally these metric spaces “converge” to a complete met-
ric with constant curvature and hyperbolic cusps on the smooth part of a “stable
curve”.

The construction of compact moduli spaces of higher dimensional polarized va-
rieties turns out to be much more complicated than in the one dimensional cases.
Indeed, in the seminal paper [39] the authors discovered examples of surfaces with
ample canonical class and semi-log-canonical singularities, which are the natural
singularities to be considered for the compactification, which are not asymptoti-
cally GIT stable. The central point for this phenomenon is that there are semi-
log-canonical singularities which have “too big” multiplicity compared to the one
required to be asymptotically Chow stable ([54]). Nevertheless, proper separated
moduli of canonical models of surface of general type have been recently constructed
using birational geometric techniques instead of classical GIT. These compactifica-
tions are sometimes known as Kollár-Shepherd-Barron-Alexeev (KSBA) type mod-
uli. It is then natural to ask what is the “differential geometric” interpretation of
these kind of moduli spaces.

In order to discuss this last point, we first recall that GIT theory became again
a main theme for the following reason: the existence of a Kähler-Einstein, or more
generally constant scalar curvature, metric on a polarized algebraic variety is found
to be deeply linked to some GIT stability notions, e.g., asymptotic Chow, Hilbert
stability and in particular to the formally GIT-like notion of “K-stability” intro-
duced in [71], [22]. Similarly to the previous discussion, asymptotic Chow stability
seems to not fully capture the existence of a Kähler-Einstein metric since there
are examples of Kähler-Einstein varieties which are asymptotically Chow unstable
([39], [58]). On the other hand, for Q-Fano varieties it is indeed proved that the
existence of a Kähler-Einstein metric implies K-polystability [11].

It turns out that the notion of K-stability is also closely related with the singu-
larities allowed in the KSBA compactifications ([57], [58]): for varieties with ample
canonical class, the notion of K-stability coincides with the semi-log-canonicity
property, and for Fano varieties K-(semi)stability implies log-terminalicity. This
last condition on the singularities in the Fano case it is also important for dif-
ferential geometric reasons. As recently shown in [23], it is known that Gromov-
Hausdorff limits of smooth Kähler-Einstein Fano manifolds (and more generally of
polarized Kähler manifolds with control on the Ricci tensor, the injectivity radius
and with bounded diameter) are indeed Q-Fano varieties, i.e., they have at worst
log-terminal singularities, and moreover they must be K-polystable, by [11].

Summing up, a central motivation of the present work was to investigate how
Kähler-Einstein metrics and the compact moduli varieties are indeed related. Thus,
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motivated by our results on Del Pezzo surfaces and by the above discussion, we
shall now try to state a conjecture on moduli of Kähler-Einstein/K-polystable Fano
varieties.

Denote the category of algebraic schemes over C by SchC, and let

Fh : Sch
o
C → Set

be the contravariant moduli functor which sends an object S ∈ Ob(SchC) to isomor-
phic classes of Q-Gorenstein flat families X → S of K-semistable Q-Fano varieties
with Hilbert polynomial equal to h and sends a morphism to pull-back of families
making the corresponding squared diagram commuting. Moreover, adding isomor-
phism (or isotropy) structure on this functor, we should naturally get a stack Mh

on which we conjecture, refining [66, Conjecture 1.3.1] and [56, Conjecture 5.2] in
the Q-Fano case, the following:

Conjecture 6.2. Mh is a KE moduli stack (cf. Definition 3.13) which has a
categorical moduli algebraic space

Mh → Mh,

where Mh is a projective variety (in general may not be irreducible) endowed with
an ample CM line bundle. Especially, Mh is a KE moduli variety in the sense of
Definition 3.13.

LetMGH
h be the Gromov-Hausdorff compactification of the moduli space of smooth

Kähler-Einstein Fano manifolds with Hilbert polynomial h. Then there is a natural
homeomorphism

Φ: MGH
h → Mh,

where we use the analytic topology on Mh.

This paper explicitly settles the above conjecture for (Q-Gorenstein smoothable)
log del Pezzo surface case, except the issue in the previous subsection and the
statement about the CM line bundle. A remark is that the CM line bundle [60] can
be naturally regarded as a line bundle on Mh and so by “CM line bundle on Mh”
we mean a Q-line bundle descended from Mh. The descent is possible for each
Ui ։ Ui//G in the context of Definition 3.13 since for each K-semistable x ∈ Ui

the action of the identity component of the isotropy group of G on the CM line
over x is trivial by the weight interpretation of vanishing of Futaki invariant [60].
They canonically patch together due to the canonical uniqueness of the descended
line bundle on each Ui//G.

From the point of view of the authors, one way towards establishing the above
conjecture in higher dimensions is by combining the algebraic and differential geo-
metric techniques, as we did in this article. In many concrete situations one can
hope to construct the above KE moduli stack by glueing together quotient stacks
from different GIT. This also fits into the general conjecture on Artin stack [1,
Conjecture 1].

Finally we remark that the points in the boundary Mh\M0
h should correspond to

Q-Fano varieties, admitting weak Kähler-Einstein metrics in the sense of pluripo-
tential theory [24]. This is known for MGH

h \M0
h , see [23].
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