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Calabi flow, Geodesic rays, and uniqueness of

constant scalar curvature Kähler metrics

Xiuxiong Chen and Song Sun

Abstract

We prove that constant scalar curvature Kähler metric “adjacent”
to a fixed Kähler class is unique up to isomorphism. This extends
the uniqueness theorem of Donaldson and Chen-Tian, and formally
fits into the infinite dimensional G.I.T picture described by Donaldson.
We prove that the Calabi flow near a cscK metric exists globally and
converges uniformly to a cscK metric in a polynomial rate. Viewed in
fixed a Kähler class, the Calabi flow is also shown to be asymptotic to
a smooth geodesic ray at infinity. This latter fact is also interesting in
the finite dimensional case, where we show that the downward gradient
flow of the Kempf-Ness function in a semi-stable orbit is asymptotic to
the direction of optimal degeneration.
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1 Introduction

The Kempf-Ness theorem relates complex quotient to symplectic reduction.
Suppose a compact connected group G acts on a compact Kähler manifold
X. We assume the action preserves the Kähler structure, with a moment
map µ : X → g

∗. Then the action extends to a holomorphic action of
the complexified group GC. Under proper hypothesis the notion of stability
could be defined. Then the Kempf-Ness theorem says that as sets:

Xss/GC ≃ µ−1(0)//G.

To be more precise,

(1). A GC-orbit is poly-stable if and only if it contains a zero of the
moment map. The zeroes within it form a unique G orbit.

(2). A GC-orbit is semi-stable if and only if its closure contains a zero
of the moment map. We call such a zero a de-stabilizer of the original GC

orbit. The de-stabilizers all lie in the unique poly-stable orbit in the closure
of the original orbit.

In Kähler geometry according to S. Donaldson([D1])(see also [Fu]) the
problem of finding cscK (constant scalar curvature Kähler) metrics formally
fits into a similar picture. However the spaces involved are infinite dimen-
sional. Given a compact Kähler manifold (M,ω, J), denote by G the group
of Hamiltonian diffeomorphisms of (M,ω) and by J the space consists of
almost complex structures on M which are compatible with ω. J admits
a natural Kähler structure which is invariant under the action of G. The
moment map is given by the Hermitian scalar curvature. The complexi-
fication of G may not exist, since G is infinite dimensional. Nevertheless,
it still makes sense talking about the orbits of GC–it is simply the leaf of
the foliation obtained by complexifying the infinitesimal actions of G. Then
the GC leaf of an integrable complex structure can be viewed as a principal
G-bundle over the Kähler class [ω]. Thus an analogue to the Kempf-Ness
theorem should relate the stability of the leaves to the existence of cscK
metrics in the corresponding Kähler class. This was made more precise as
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the Yau-Tian-Donaldson conjecture(see [Th]). The notion of “stability” in
this case is the so-called “K-stability”, see [Ti1], [D5]. There are also other
related notion of stability, see for example [RT], [Pa], etc.

Note that the Kempf-Ness theorem consists of both the existence and
uniqueness part. It is known that the existence of cscK metrics implies var-
ious kinds of stability, however the converse is fairly difficult, due to the
appearance of fourth order non-linear P.D.E’s. Recently Donaldson([D6])
proved a general result that the conjecture is true for toric surfaces. The
uniqueness part corresponding to the poly-stable case is known by

Theorem 1.1. (Donaldson[D3], Chen-Tian[CT]) Constant scalar Kähler
metric in a fixed Kähler class, if exists, is unique up to holomorphic isome-
try.

Remark 1.2. When the manifold is Fano, the uniqueness of Kähler-Einstein
metrics was previously proved by Bando-Mabuchi([BM]), and it was later
generalized to the case of Kähler-Ricci solitons by Tian-Zhu([TZ1]). The
uniqueness of cscK metrics was first proved by the first author in the case
when c1(X) ≤ 0([Ch1]).

The purpose of this paper is to prove the uniqueness in the semi-stable
case.

Theorem 1.3. If there are two cscK structures J1 and J2 both lying in the
(C∞) closure of the GC leaf of a complex structure J ∈ J int, then there is a
symplectic diffeomorphism f such that f∗J1 = J2.

Defintion 1.4. Let (M,ω, J) be a Kähler manifold and H be the space of
Kähler metrics in the Kähler class of ω. We say another Kähler structure
(ω′, J ′) onM is adjacent to H if there is a sequence of Kähler metrics ωi ∈ H
and diffeomorphisms fi of M such that

f∗i ωi → ω′, f∗i J → J ′

in C∞ sense. So in particular, the corresponding sequence of Riemannian
metrics gi converges to g

′ in the Cheeger-Gromov sense. Similarly, let (M,J)
be a Fano manifold. We say another complex structure J ′ on M is adjacent
to J if there is a sequence of diffeomorphisms fi such that

f∗i J → J ′.

Remark 1.5. The above definition is related to the “jumping” phenomenon
of complex structures, i.e. the space of isomorphism classes of complex

3



structures on a fixed manifold is in general not Hausdorff. As a simple
example, we can consider the blown-up of P2 at three points p1, p2, and p3.
The underlying differential manifold is fixed, and a choice of the three points
defines a complex structure. A choice of three points in a general position
gives rise to the same complex structure, while a choice of three points on a
line provides an example of an adjacent complex structure.

It follows theorem 1.3 that

Theorem 1.6. Let (M,ω, J) be a Kähler manifold. Assume [ω] is inte-
gral. Suppose there are two csc Kähler structures (ω1, J1) and (ω2, J2) both
adjacent to the Kähler class of (ω, J), then they are isomorphic.

Corollary 1.7. Let (M,J) be a Fano manifold. Suppose there are two
complex structures J1 and J2 both adjacent to J and both admitting Kähler-
Einstein metrics, then (M,J1) and (M,J2) are bi-holomorphic.

Remark 1.8. After finishing this paper, we learned that our theorem 1.6 and
corollary 1.7 partially confirmed a conjecture of G. Tian([Ti2]) in the case
of constant scalar curvature Kähler metric.

The main technical ingredient in the proof of the above theorems is to ob-
tain some C0 bound. We shall study the asymptotic behavior of the Calabi
flow near a cscK metric. The global existence and convergence are estab-
lished by using the Lojasiewicz inequality which controls the gradient of a
real analytic function near a critical point. Suppose now we have two cscK
metrics adjacent to a fixed Kähler class, then there are two Calabi flows
in the neighborhoods of the corresponding cscK metrics. Since the Calabi
flow decreases geodesic distance, we get a bound on the two Calabi flows in
terms of geodesic distance. It is not known whether this bound implies C0

bound automatically. Here we get around this difficulty by showing that the
previous Calabi flow is asymptotic to a smooth geodesic ray. This involves
a local study of the infinite dimensional Hamiltonian action of G, which is
the main technical part of this paper. We shall first look at the analogous
finite dimensional problem. Finally we are able to derive C0 bound for the
two parallel geodesic rays.

The organization of this paper is as follows. In section 2, we review
Donaldson’s infinite dimensional moment map picture in Kähler geometry,
and recall some known results for our later use. In section 3, we state the
Lojasiewicz inequality and “Lojasiewicz arguments” for the gradient flow of
a real analytic function. In section 4, we prove that in the finite dimensional
case, the Kempf-Ness flow for a semi-stable point is asymptotic to a rational
geodesic ray. In section 5, we study the stability of the Calabi flow near
a cscK metric when the complex structure is deformed. In section 6, we
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generalize the arguments in section 4 to the infinite dimensional setting by
considering the “reduced” Calabi flow. In section 7, the relative C0 bound
for two smooth parallel geodesic rays tamed by bounded geometry is derived.
In section 8, we prove the main theorems. In Section 9, we shall discuss some
further problems related to this study. The appendix contains the proof of
the technical lemmas used in sections 4 and 6.

Acknowledgements: This paper was essentially finished in the October
of 2009 during a conference in honor of Simon Donaldson at Northwestern
University. With admiration, we want to dedicate this modest paper to
him for his teaching of Kähler geometry to the first author in the last 12
years. Part of this work was done while both authors were visiting Stony
Brook. We wish to thank both the department of Mathematics and the
Simons Center for Geometry and Physics for their generous hospitality. We
also thank Professors Blaine Lawson, Claude Lebrun, and Gang Tian for
their interest in this work. The second author would also like to thank Joel
Fine, Sean Paul and Zhan Wang for interesting discussions. Both authors
are partially supported by an NSF grant.

2 The space of Kähler structures

Here we review the infinite dimensional moment map picture discovered
by Fujiki([Fu]) and Donaldson([D1]). Let (M,ω, J0) be a compact Kähler
manifold. Denote by J the space of almost complex structures on M which
are compatible with ω, and by J int the subspace of J consisting of integrable
almost complex structures compatible with ω. Then J is the space of smooth
sections of an Sp(2n)/U(n) bundle over M , so it carries a natural Kähler
structure. Indeed, there is a global holomorphic coordinate chart if we use
the ball model of the Siegel upper half space in the usual way. J0 determines
a splitting TM ⊗ C = T 1,0 ⊕ T 0,1 such that ω induces a positive definite
Hermitian inner product on T 1,0, then J could be identified with the space

Ω0,1
S (T 1,0) = {µ ∈ Ω0,1(T 1,0)|A(µ) = 0, Id − µ̄ ◦ µ > 0},

where A is the composition Ω0,p(T 1,0) → Ω0,p(T ∗0,1) → Ω0,p+1. An element
µ corresponds to an almost complex structure J whose corresponding (1, 0)
tangent space consists of vectors of the form X − µ̄(X)(X ∈ T 1,0). J int is a
subvariety of J cut out by quadratic equations:

N(µ) = ∂̄µ+ [µ, µ] = 0.

Denote by G the group of Hamiltonian diffeomorphisms of (M,ω). Its Lie al-
gebra is C∞

0 (M ;R). G will be the infinite dimensional analogue of a compact

5



group, though the exponential map is not locally surjective for G. G acts
naturally on J , keeping J int invariant. A. Fujiki[Fu] and S. Donaldson([D1])
independently discovered that the G action has a moment map given by the
Hermitian scalar curvature functional S − S1, which can be viewed as an
element in (C∞

0 (M ;R))∗ through the L2 inner product with respect to the
measure dµ = ωn. When J is integrable S(J) is simply the Riemannian
scalar curvature of the Riemannian metric induced by ω and J . We say
J0 ∈ J is cscK if J0 is integrable and (ω, J0) has constant scalar curvature.
So in the symplectic theory we are naturally lead to consider cscK metrics.

In the complex story, we need to look at GC. Since G is infinite dimen-
sional, there may not exist a genuine complexification GC. Nevertheless, we
can still define the GC leaf of an integral complex structure J0, as follows.
The infinitesimal action of G at a point J ∈ J is given by

DJ : C∞
0 (M ;R) → Ω0,1

S (T 1,0);φ→ ∂̄JXφ.

This operator can be naturally complexified to an operator from C∞
0 (M ;C) =

C∞
0 (M ;R) ⊕

√
−1C∞

0 (M ;R) to Ω0,1
S (T 1,0). Then a complex structure J is

on the GC leaf of J0 if there is a smooth path Jt ∈ J int such that J̇t lies in
the image of DJt . G acts on the leaf naturally and the quotient is the space
of Kähler metrics cohomologous to [ω]J0 . So the latter could be viewed as
“GC/G”. We define the space of Kähler potentials

H = {φ ∈ C∞(M ;R)|ω +
√
−1∂∂̄φ > 0}.

Then H/R is formally the “dual” symmetric space of G. This was made
more precise by Mabuchi([M1]), Semmes([Se]) and Donaldson([D2]). Define
a Weil-Petersson type Riemannian metric on H by

(ψ1, ψ2)φ =

∫

M

ψ1ψ2dµφ

for ψ1, ψ2 ∈ TφH. It can be shown that the Riemannian curvature tensor
is co-variantly constant and the sectional curvature is non-positive. A path
φ(t) in H is a geodesic if it satisfies the equation

φ̈(t)− |∇φ(t)φ̇(t)|2φ(t) = 0.

The first author([Ch1]) proved the existence of a unique C1,1 geodesic con-
necting any two points in H, and consequently that H is a metric space with
the distance given by the length of the C1,1 geodesics. It is proved in [CC]
that under this metricH is non-positively curved in the sense of Alexanderov.

1Here S is the average of scalar curvature, which indeed depends only on [ω] and c1(ω),
not on the choice of any compatible J .
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So far the best regularity for the Dirichlet problems of the geodesic equa-
tion was obtained by Chen-Tian([CT]). The initial value problem for the
geodesic equation is in general not well-posed. But by the non-positiveness
of the curvature of H, there should be lots of geodesic rays in H. In [Ch3],
the first author proved the following general theorem which we shall use
later:

Theorem 2.1. Given a smooth geodesic ray φ(t) in H which is tamed by a
bounded geometry, there is a unique relative C1,1 geodesic ray ψ(t) emanating
from any point ψ in H such that

|φ(t) − ψ(t)|C1,1 ≤ C.

Remark 2.2. For the precise definition of “tameness” we refer to [Ch3]. But
we point out that this is merely a technical condition imposed on the behavior
of φ(t) at infinity so that the analysis on non-compact manifolds work. In
our later applications where the geodesic ray φ(t) arises naturally from a test
configuration with smooth total space, this assumption is always satisfied.

Defintion 2.3. Two geodesic rays φ(t) and ψ(t) in H are said to be parallel
if

dH(φ(t), ψ(t)) ≤ C.

Hence it is clear by definition that if |φ(t) − ψ(t)|C0 ≤ C, then φ and ψ
are parallel.

Analogous to the finite dimensional Kempf-Ness setting, there is a rel-
evant functional E defined on H, called the Mabuchi K-energy. It is the
anti-derivative of the following closed one-form:

dEφ(ψ) = −
∫

M

(S(φ)− S)ψdµφ. (1)

So the norm square of the gradient of E is the Calabi energy:

Ca(φ) =

∫

M

(S(φ)− S)2dµφ.

By a direct calculation, along a smooth geodesic φ(t), we have

d2

dt2
E(φ(t)) =

∫

M

|Dtφ̇(t)|2dµφ(t) ≥ 0.

According to [Ch2], E can be extended to a continuous function on all C1,1

potentials in H. However, it is not clear why E is still convex. The first
author proved some weak versions of convexity. In the case when [ω] is
integral, we gave simplified proofs in [CS] using quantization(See also [Be]).
We recall them for our later purpose.
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Lemma 2.4. ([Ch3], [CS]). Given any φ0, φ1 ∈ H, we have

E(φ1)− E(φ0) ≤
√
Ca(φ1) · d(φ0, φ1).

Lemma 2.5. ([Ch3], [CS]) Given any φ0, φ1 ∈ H, let φ(t) be the C1,1

geodesic connecting them. Then the derivatives of E(φ(t)) at the end-points
are well-defined and they satisfy the following inequality:

d

dt
|t=0E(φ(t)) ≤ d

dt
|t=1E(φ(t)).

This lemma implies that

Lemma 2.6. ([CC]) The Calabi flow on H decreases geodesic distance.

3 Lojasiewicz inequality

In this section we recall Lojasiewicz’s theory for the structure of a real ana-
lytic function. The following fundamental structure theorem for real analytic
functions is well-known:

Theorem 3.1. (Lojasiewicz inequality) Suppose f is a real analytic function
defined in a neighborhood U of the origin in R

n. If f(0) = 0 and ∇f(0) =
0, then there exist constants C > 0, and α ∈ [12 , 1), and shrinking U if
necessary, depending on n and f , such that for any x ∈ V , it holds that

|∇f(x)| ≥ C · |f(x)|α. (2)

This type of inequality is crucial in controlling the behavior of the gra-
dient flow. If α = 1

2 , then we get exponential convergence. If α > 1
2 , then

we can obtain polynomial convergence:

Corollary 3.2. Suppose f is a non-negative real-analytic function defined
in a neighborhood U of the origin in R

n with f(0) = 0. Then there exists a
neighborhood V ⊂ U of the origin such that for any x0 ∈ V , the downward
gradient flow of f : {

d
dt
x(t) = −∇f(x(t)),

x(0) = x0.

converges uniformly to a limit x∞ ∈ U with f(x∞) = 0. Moreover, we have
the following estimate:

1.
f(x(t)) ≤ C · t− 1

2α−1 ;
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2.
d(x(t), x(∞)) ≤ C · t− 1−α

2α−1 ,

where we assume the Lojasiewicz exponent α > 1
2 .

Proof. The proof is quite standard, and we call it “Lojasiewicz arguments”
for later reference. Denote

Vδ = {x ∈ R
n||x| ≤ δ},

and fix δ > 0 small so that inequality (2) holds for x ∈ Vδ . In our calculation
the constant C may vary from line to line. If x(t) ∈ Vδ for t ∈ [0, T ] , then
we compute

d

dt
f1−α(x(t)) = −(1− α) · f−α(x(t)) · |∇f(x(t))|2 ≤ −C · |ẋ(t)|,

thus for any T > 0,
∫ T

0
|ẋ(t)|dt ≤ 1

C
· f1−α(x0).

For any ǫ ≤ δ
2 small, we choose δ2 ≤ δ small such that f(x) ≤ (C · ǫ) 1

1−α

for x ∈ Vδ2 , and δ1 = min{ǫ, δ2}, then the flow initiating from any point
x0 ∈ Vδ1 will stay in V2ǫ. So the Lojasiewicz inequality holds for all x(t).
Now

d

dt
f1−2α(x(t)) = −(1− 2α) · f−2α(x(t)) · |∇f(x(t))|2 ≥ (2α − 1) · C2,

so
f(x(t)) ≤ C · t− 1

2α−1 .

For any T1 ≤ T2, we get

d(x(T1), x(T2)) ≤
∫ T2

T1

|ẋ(t)|dt ≤ C · T1−
1−α
2α−1 .

Therefore we obtain polynomial convergence and the required estimates.

4 Finite dimensional case

4.1 Kempf-Ness theorem

Let (M,ω, J) be a Kähler manifold and assume there is an action of a com-
pact connected group G on M which preserves the Kähler structure. Let
µ be the corresponding moment map. This induces a holomorphic action
of the complexified group GC. Then the Kempf-Ness theorem relates the
complex quotient by GC to the symplectic reduction by G([DK]).
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Theorem 4.1. (Kempf-Ness)A GC-orbit contains a zero of the moment map
if and only if it is poly-stable. It is unique up to the action of G. A GC-orbit
is semi-stable if and only if its closure contains a zero of the moment map;
this zero is in the unique poly-stable orbit in the closure of the original orbit.

In this paper we are only interested in the uniqueness problem. We will
first give a proof in the finite dimensional case, using an analytic approach.
An essential ingredient in the proof of the Kempf-Ness theorem is the exis-
tence of a function E, called the Kempf-Ness function. Given a point x ∈M ,
one can define a one-form α on GC as:

αg(Rgξ) = −〈µ(g.x), Jξ〉,

where Rg is the right translation by g and ξ ∈ gC. It is easy to check that
α is closed and invariant under the left G-action. Then α is the pull back
of a closed one-form ᾱ from GC/G. It is well known that GC/G is always
contractible, so α gives rise to a function E, up to an additive constant.
Notice if the G action is linearizable, this coincides with the usual definition
given by the logarithm of the length of a vector on the induced line bundle.
It is a standard fact that E is geodesically convex, i.e. ᾱ is monotone along
geodesics in GC/G. The critical points of E consist exactly of the zeroes of
µ in the given GC orbit. So any GC orbit contains at most one zero of the
moment map, up to the action of G. In the semi-stable case, we consider
the function f(x) = |µ(x)|2 on M , and its downward gradient flow x(t). The
flow line is tangent to the GC orbit and the induced flow in GC/G is ex-
actly the downward gradient flow of E. We call either flow the Kempf-Ness
flow. As we will see more explicitly later, a theorem of Duistermaat([Le])
says that for x(0) close to a zero of µ, the flow x(t) converges polynomially
fast to a limit in µ−1(0). Now suppose x is semi-stable, and x1, x2 are two

poly-stable points in GC.x. W.L.O.G, we can assume µ(x1) = µ(x2) = 0.
Take y1, y2 ∈ GC.x such that yi is close to xi. Then the gradient flows xi(t)
converges to a point zi ∈ µ−1(0) near xi. Denote by γi(t) the correspond-
ing flow in GC/G. Since the gradient flow of a geodesically convex function
decreases the geodesic distance, d(γ1(t), γ2(t)) is uniformly bounded. By
compactness, we conclude that z1 and z2 must be in the same GC orbit and
by the uniqueness in the poly-stable case, we see that z1 and z2 must lie in
the same G orbit. By choosing yi arbitrarily close to xi, we conclude that
x1 and x2 are in the same G orbit.

The above argument proves the uniqueness of the poly-stable orbits in
the closure of a semi-stable orbit. There are technical difficulties to extend
this argument to the infinite dimensional setting, due to the loss of compact-
ness. As a result, we need to investigate more about the gradient flow in the
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Figure 1: a curve asymptotic to a geodesic ray

finite dimensional case. What we shall show next is that for a semi-stable
point, the gradient flow is asymptotic to an “optimal” geodesic ray at infinity.

Defintion 4.2. We say a curve γ(t)(t ∈ [0,∞)) in a simply-connected non-
positively curved space is asymptotic to a geodesic ray χ(t) if for any fixed
s > 0, d(γt(s), χ(s)) tends to zero as t tends to ∞, where γt is the geodesic
connecting χ(0) and γ(t) which is parametrized by arc-length. In other words,
χ(t) is the point in the sphere at infinity induced by γ(t) as t→ ∞(see figure
1).

It follows from the definition that any two geodesic rays χ1(t) and χ2(t)
that are both asymptotic to a given curve γ(t) must be parallel, i.e. d(χ1(t), χ2(t))
is uniformly bounded.

4.2 Standard case

Let (V, J0, g0) be an n dimensional unitary representation of a compact con-
nected Lie group G, so we have a group homomorphism: G → U(n). V
is then a representation of the complexified group GC. Denote by Ω0 the
induced Kähler form on V . It is easy to see that the G action always has a

11



moment map µ : V → g
∗ ≃ g, where we have identified g with g

∗ by fixing
an invariant metric. It is defined as

(µ(v), ξ) =
1

2
Ω0(ξ.v, v). (3)

For any v ∈ V , denote the infinitesimal action of G at v by

Lv : g → V ; ξ 7→ ξ.v,

then it is easy to see that

µ(v) =
1

2
L∗
v(J0v).

Lv can also be viewed as a map from g
C to V , and then µ(v) = −1

2JL
∗
vv.

Now consider the function f : V → R; v 7→ |µ(v)|2, whose downward
gradient flow equation is:

d

dt
v = −∇f(v) = −J0Lv(µ(v)). (4)

Since f is a homogeneous polynomial, and thus real analytic, the Lo-
jasiewicz inequality holds for f , i.e. there exists constant C > 0 and
α ∈ [12 , 1), such that for v close to zero,

|∇f(v)| ≥ C · |f(v)|α.

The previous Lojasiewicz arguments show that for v close to 0, the flow (4)
starting from v will converge polynomially fast to a critical point of f .

From now on we assume 0 de-stabilizes v, i.e. 0 ∈ GC.v. Thus the
gradient flow (4) converges to the origin by the uniqueness in the previous
section. Since everything is homogeneous, we can study the induced flow on
P(V ). The action of G is then holomorphic and Hamiltonian with respect
to the Fubini-Study metric on P(V ), with moment map µ̂ : P(V ) → g. It is
then easy to see that

µ̂([v]) =
µ(v)

|v|2 .

Let f̂ = |µ̂|2, then we can study the downward gradient flow of f̂ on P(V ):

d

ds
[v] = −∇f̂([v]) = −J0L[v](µ̂([v])). (5)

Let π : V → P(V ) be the quotient map, then clearly

π∗(∇f(v)) = |v|2∇f̂([v]).
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So the flow (5) is just a re-parametrization of the image under π of the
flow (4): if v(t) satisfies (4), then [v(s)] satisfies (5), with ds

dt
= |v(t)|2. Since

f̂ is also real analytic, the flow [v(s)] converges polynomially fast to a unique
limit [v]∞.

Lemma 4.3.

µ̂([v]∞) 6= 0

.

Proof. Otherwise [v] is semi-stable with respect to the action of GC on P(V ),
thus the corresponding Kempf-Ness function log |g.v|2 is bounded below on

GC. This contradicts the assumption that 0 ∈ GC.v.

Thus we know that

µ(v(s))

|v(s)|2 = µ̂([v]∞) +O(s−γ)(γ > 0)

is bounded away from zero when s is large enough. So for t sufficiently large,
we have

|∇f(v(t))|4 ≥ C · |f(v(t))|3.
The Lojasiewicz arguments then ensure that v(t) actually converges to 0 in

the order O(t−
1
2 ). So we obtain s ≤ C · log t.

Now since the gradient flow of f is tangent to the GC orbit, it can also
be viewed as a flow on GC/G. This is given by a path γ(t) = [g(t)], where
g(t) ∈ GC satisfies

ġ(t)g(t)−1 = −Jµ(g(t).v),
and the re-parameterized path corresponding to (5) is

ġ(s)g(s)−1 = −Jµ̂(g(s).[v]),

and
d

ds
γ(s) = −Jµ̂([v]∞) +O(s−γ).

In the following we shall use the re-parameterized version as | d
ds
γ(s)| has

a lower bound as s → ∞ which makes it more convenient to analyze the
asymptotic behavior.

Theorem 4.4. γ is asymptotic to a geodesic ray χ in GC/G. Moreover, the

direction of γ is conjugate to µ̂([v]∞)
|µ̂([v]∞)| under the adjoint action of G.
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Proof. We already know γ̇(s) is getting close to µ̂([v]∞), but this is not
sufficient to conclude that γ is asymptotic to a geodesic ray with direction
µ̂([v]∞). We shall analyze this more carefully, by elementary geometry. First
it is easy to see that

|γ̈(s)| = |L∗
[v](s)L[v](s)µ̂([v](s))|,

where L[v](s) is the infinitesimal action of g at [v](s). Since [v](s) → [v]∞ as
s→ ∞, by corollary 3.2 we get

∫ ∞

t

|γ̈(s)|ds ≤ C

∫ ∞

t

|L[v](s)µ̂([v](s))|ds = C

∫ ∞

t

|∇f̂(s)|ds ≤ C · t−β,

where β = 1−α
2α−1 > 0. Notice that here α is the exponent appearing in the

Lojasiewicz inequality for f̂ , not the original f . From the above we know
lims→∞ |γ̇(s)| = |µ̂([v]∞)| > 0, so if we parameterize γ by arc-length and
denote the resulting path by γ̃(u), then we have

|¨̃γ(u)| = |γ̇(s)|−2|γ̈(s)− 〈γ̈(s), γ̇(s)〉
|γ̇(s)|2 γ̇(s)| ≤ C · |γ̈(s)|.

Therefore ∫ ∞

t

|¨̃γ(u)|du ≤ C · t−β,

Now for any u > 0, let γ̃u(v)(v ∈ [0, 1) be the geodesic in GC/G connect-
ing γ̃(0) and γ̃(u). Denote by Lu(v)(v ∈ [0, u]) the distance between γ̃(v)
and γ̃u(v). Then Lu(0) = Lu(u) = 0 and a standard calculation of the sec-
ond variation of length(using the non-positivity of the sectional curvature of
GC/G) gives

d2

dv2
Lu(v) ≥ −|¨̃γ(v)|.

Now define the function

fu(v) =

∫ v

0

∫ ∞

w

|¨̃γ(r)|drdw − v

u

∫ u

0

∫ ∞

w

|¨̃γ(r)|drdw.

Then it is well-defined by the decay of |¨̃γ|, and fu(0) = fu(u) = 0 and

d2

dv2
fu(v) = −|¨̃γ(v)|.

Thus by maximum principle Lu(v) ≤ fu(v) for all u > 0 and v ∈ [0, u]. Fix
v we see

sup
u
Lu(v) ≤

∫ v

0

∫ ∞

w

|¨̃γ(r)|drdw ≤ C · v1−β .

14



Moreover, for any u2 > u1 >> 1, by comparison argument the angle between
γ̃u1 and γ̃u2 is bounded by d(γ̃u1(u1), γ̃u2(u1))/u1 = Lu2(u1)/u1, which is

controlled by C·uβ−1
1 . Thus we conclude that the direction of γ̃u is converging

uniformly to some limit direction and so γ̃(and thus γ) is asymptotic to a
geodesic ray χ starting from γ(0). Now for any s > 0 by the same way we get
a geodesic ray χs starting from γ(s) which is asymptotic to γ. So the rays
χs are all asymptotic to each other and one could easily see that they are
all parallel, and then χ̇s(0) are all conjugate to each other under the action
of G. On the other hand, if we denote by γs,t(u)(u ∈ [0, 1]) the geodesic
connecting γ(s) and γ(t) for s < t, then again by second variation,

d

dt
〈 γ̇(t)|γ̇(t)| ,

γ̇s,t(1)

|γ̇s,t(1)|
〉 ≥ −C |γ̈(t)|

|γ̇(t)| ≥ −C|γ̈(t)|.

So we get

〈 γ̇(t)|γ̇(t)| ,
γ̇s,t(1)

|γ̇s,t(1)|
〉 ≥ 1−

∫ t

s

|γ̈(u)|du ≥ 1− C · s−β.

We know γ̇(t) = Jµ̂([v]∞) +O(t−α), and as t→ ∞ up to the adjoint action
of G we have

γ̇s,t(1)

|γ̇s,t(1)|
→ χ̇(s).

So let s → ∞ we see χ̇(0) is conjugate to µ̂([v]∞)
|µ̂([v]∞)| under the adjoint action

of G.

From the proof of the above theorem we see that χ(s) also degener-

ates v to the origin since the path v(t) is of order O(t−
1
2 ) = O(e−C·s). By

Kempf([Ke]) and Ness([Ne]), the direction µ̂([v]∞) is indeed rational, i.e. it
generates an algebraic one-parameter subgroup λ : C∗ → GC. Moreover,
the direction µ̂([v]∞) is the unique(up to the adjoint action of G) optimal
direction for v in the sense of Kirwan([Ki])) and Ness([Ne]).

4.3 Linear Case

Now we suppose G acts linearly on (V = C
n,Ω, J0) where J0 is the standard

complex structure on C
n and Ω is a real-analytic symplectic form compatible

with J0. Then the action has a real-analytic moment map µ with µ(0) = 0.
µ is not necessarily standard but the Lojasiewicz inequality still holds for
f = |µ|2. Suppose 0 ∈ GC.v, then the downward gradient flow v(t) of
f(v) = |µ(v)|2 converges to the origin polynomially fast. Let v̂(t) be the
downward gradient flow of f̂(v) = |µ̂(v)|2, where µ̂ is the moment map for the
linearized G action on (V = T0V,Ω0, J0). By the arguments in the previous
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section, v̂(t) converges to zero in the order O(t−
1
2 ) and the corresponding

flow γ̂(t) is asymptotic to a rational geodesic ray χ(t). Let γ(t) in GC/G
be the flow corresponding to v(t), we want to show γ(t) is also asymptotic
to χ(t). It suffices to bound the distance L(t) between γ(t) and γ̂(t). Let
ψt(s)(s ∈ [0, 1]) be the geodesic connecting γ(t) and γ̂(t), then

d

dt
L(t) =

1

L(t)
〈ψ̇(1), µ̂(v̂(t))〉 − 1

L(t)
〈ψ̇(0), µ(v(t))〉

=
1

L(t)
(〈ψ̇(1), µ(v̂(t))〉 − 〈ψ̇(0), µ(v(t))〉) + 1

L(t)
〈ψ̇(1), µ̂(v̂(t))− µ(v̂(t))〉

≤ |µ̂(v̂(t))− µ(v̂(t))|,

where we used the fact that the Kempf-Ness function is geodesically convex.
To estimate the last term, notice since the G action is linear, we have for
any ξ ∈ g

〈µ(v), ξ〉 = 〈µ(0) +
∫ 1

0

d

dt
µ(tv)dt, ξ〉

=

∫ 1

0
Ωtv(ξ.tv, v)dt

=
1

2
Ω0(ξ.v, v)dt +O(|v|3)

= 〈µ̂(v), ξ〉 +O(|v|3).

From the previous secion we know v̂(t) = O(t−
1
2 ), so we obtain

d

dt
L(t) ≤ C · t− 3

2 ,

and so L(t) is uniformly bounded. Therefore, we conclude the following
theorem:

Theorem 4.5. Suppose G acts Hamiltonian linearly on (V,Ω, J0), with the
moment map given by µ. Suppose also a vector v0 is de-stabilized by the
origin. Let v(t) be the downward gradient flow of |µ|2 emanating from v, then

v(t) converges to 0 in the order O(t−
1
2 ). Let γ(t) be the corresponding flow

in GC/G, then there exists a geodesic ray χ in GC/G, which is asymptotic
to γ. Moreover, χ is rational.

4.4 General Case

In general we need to linearize the problem, using the Marle-Guillemin-
Sternberg normal form. Let (M,ω, J,G, µ) be a real analytic Hamiltonian
G-action on a real analytic Kähler manifold. Choosing a bi-invariant metric
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on g we can identify g with g
∗. Suppose x ∈ M is a zero of µ. Let G0 be

the isotropy group of x and g0 be its Lie algebra. The bi-invariant product
on g allows a G0 invariant splitting:

g = g0 ⊕m.

Notice g.x ⊂ (g.x)ω. Denote by N the orthogonal complement of g.x⊕ Jg.x
in TxM , thenN isG0-invariant and the linear G0 action onN has a canonical
moment map µN : N → g0. Let

Y = G×G0 (m ×N),

then G acts naturally on Y on the left.

Lemma 4.6. (Marle-Guillemin-Sternberg [GS], [OR]) There exists a sym-
plectic form ω defined in a neighborhood U of [e, 0, 0] in Y , under which the
G action is Hamiltonian with a moment map given by

µ : U → g; [g, ρ, v] → Ad∗g(µN (v) + ρ).

There exists a local G equivariant symplectic diffeomorphism Φ : Y → M
which respects the moment maps, and satisfies Φ([e, 0, 0]) = x, Φ∗J − J0 =
O(r2)) on N and Φ∗J = J0 at [e, 0, 0]. Here J0 is the canonical G-invariant
almost complex structure on Y induced by J , which will be more explicit in
the proof. Moreover, we can take Φ to be real analytic if everything we start
with is so.

The only new feature here is the control on the complex structure. The
proof of this theorem is a bit technical and will be deferred to the appendix.

From now on we will work on (U,Ω0, J) where we also denote by J the
pullback Φ∗J .

Theorem 4.7. Suppose y ∈ U is de-stabilized by x, then the Kempf-Ness
flow y(t) of |µ|2 converges to y∞ ∈ G.x polynomially fast. Moreover the
corresponding flow γ(t) in GC/G is asymptotic to a geodesic ray χ(t) which
is rational and also degenerates y to y∞.

Remark 4.8. Here we could define χ(t) as the “optimal” degeneration of y,
generalizing the usual definition in the linear case.

To prove the theorem, we study the function f = |µ|2 on U . By definition,

f([g, ρ, v]) = |ρ|2 + |µN (v)|2,

∇f([g, ρ, v]) = J [Lgρ, adµN (v)ρ, µN (v).v],
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Since f is real analytic, we have for some α ∈ [12 , 1) that

|∇f | ≥ C · |f |α.
Therefore y(t) converges to a zero y∞ of µ polynomially fast. By uniqueness,
y∞ ∈ G.x. Without loss of generality, we will assume y∞ = x from now on,
and we shall distinguish between two cases.

In the first case we assume G0 = G, then m = 0, and we are essen-
tially reduced to the linear case. What we obtain is a Kähler manifold
(U ⊂ N,Ω0, J). We just need to holomorphically linearize the G action:

Lemma 4.9. There exits a G-equivariant holomorphic embedding

Φ : (V ⊂ T0U, J0) →֒ (U, J); 0 7→ x.

Proof. Shrinking U if necessaray, we can first choose a holomorphic embed-
ding

Ψ : (U, J) →֒ (T0U, J0);x 7→ 0.

Again Shrinking U if necessary, define

Ψ̂ : (U, J) → (T0U, J0); y 7→ 1

|G|

∫

G

g−1 ·Ψ(g.y)dµ,

where µ is a Harr measure on G. Then Ψ̂ is holomorphic, and dΨ̂x = dΨx,
so Ψ̂ is an embedding near x. Then we can just take Φ = Ψ̂−1.

Now using Φ we can work on (V1,Ω = Φ∗Ω0, J0) with a linear Hamilto-
nian of G, and the linear theory in the previous section applies to conclude
the theorem in this case.

In the second case we assume G0 is a proper subgroup of G. We will try
to reduce to the first case. It is easy to see that the G0 action on Y is also
Hamiltonian, with a moment map µ̂ equal to the orthogonal projection of µ
to gx. Therefore,

µ̂([g, ρ, v]) = Ad∗gµN (v).

Denote by GC
0 the isotropy group of x.

Lemma 4.10. GC
0 is the complexification of G0(hence is reductive).

Proof. This lemma is well-known. In the Lie algebra level, we just need to
show if ξ.x + Jη.x = 0 for some ξ, η ∈ g, then ξ.x = η.x = 0. This follows
easily from the definition of the moment map:

ω(η.x, Jη.x) = (dµ(Jη.x), η) = (dµ(Jη.x + ξ.x), η) − (Ad∗ξµ(x), η) = 0.

Hence η.x = 0 and ξ.x = 0.
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Lemma 4.11. We can choose a point in the GC orbit of y, denoted by ŷ,
so that x de-stabilizes ŷ for the group G0.

Proof. It suffices to find ŷ in the GC orbit of y such that x lies in the
closure of GC

0 .ŷ. To do this, we first choose an arbitrary holomorphic map
Ψ : TxM → M with Ψ(0) = x and dΨ(0) = Id. As before we can linearize
the action so that Ψ is G0-equivariant. TxM has a C-linear decomposition

TxM = g
C.x⊕N,

where N is as before the orthogonal complement of gC.x = g.x⊗C = g.x⊕
J0(g.x). Then we define

Φ : GC ×GC
0
N →M ; [(g, v)] → g.Ψ(v).

This is a local diffeomorphism around [(Id, 0)]. So for any y close to x, there
is a unique (g, v) ∈ GC×N which is close to [(Id, 0)] such that y = g.Ψ(Id, v).

Let ŷ = Ψ(Id, v). We claim x ∈ GC
0 .ŷ. Notice that the Kempf-Ness flow

y(t) converges to x, so this gives rise to a smooth family (g(t), v(t)) with
y(t) = g(t).Ψ(Id, v(t)). Let ŷ(t) = Ψ(Id, v(t)). Since y(t) all lie in the same
GC orbit, so are ŷ(t). Thus all v(t) lie in the GC

0 orbit of v, and

lim
t→∞

v(t) = 0.

Therefore, x ∈ G0.ŷ.

Let ỹ(t) be the downward gradient flow of f with ỹ(0) = ŷ, and ŷ(t)
be the downward gradient flow of f̂ = |µ̂|2 with ŷ(0) = ŷ. Let γ̃(t) and
γ̂(t) be the corresponding path in GC/G and GC

0 /G0 respectively. Then the

previous linear theory tells that ŷ(t) converges to x in the order O(t−
1
2 ) and

γ̂(t) is asymptotic to a rational geodesic ray χ(t) with the same degeneration
limit. On the other hand GC

0 /G0 is naturally a totally geodesic submanifold
of GC/G, and next we will prove that the distance between γ̃(t) and γ̂(t) in
GC/G is uniformly bounded.

We denote by ψt(s)(s ∈ [0, 1]) the geodesic in GC/G connecting γ̃(t) and
γ̂(t), and L(t) the length of ψt, then it is easy to see that

d

dt
L(t) =

1

L(t)
(µ(y(t)), ψ̇t(0)) −

1

L(t)
(µ̂(ŷ(t)), ψ̇t(1))

=
1

L(t)
(µ(y(t)), ψ̇t(0)) −

1

L(t)
(µ(ŷ(t)), ψ̇t(1)) +

1

L(t)
(µ(ŷ(t))− µ̂(ŷ(t)), ψ̇t(1))

≤ |µ(ŷ(t)) − µ̂(ŷ(t))|,
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where again we have used the convexity of the Kempf-Ness function. In
our situation, µ − µ̂ = Ad∗gρ. Here g(t) are ρ(t) are uniquely determined
by the choice at t = 0 if we require ρ̇(t) ∈ m and g(t)−1ġ(t) ∈ m. Now at
ŷ(t) = [g(t), ρ(t), v(t)], we have

∇f̂ = J.([0, ad∗µN (v)ρ, µN (v).v])

= [ad∗µN (v)ρ, 0, J0 · (µN (v).v)] + (J − J0)ad
∗
µN (v)ρ+ (J − J0)µN (v).v.

Therefore,

| d
dt
ρ(ŷ(t))| = |Πm(∇f̂)|

≤ C · |J − J0||µN (v)||ρ| + C · d(ŷ(t), x)2|µN (v).v|)
≤ C · (t− 3

2 |ρ|+ t−
5
2 ).

Since ρ(∞) = 0, we first get

|ρ(t)| ≤ C · t− 1
2 .

Then plug back into the previous inequality and repeat to obtain

d

dt
ρ(x̂(t)) ≤ C · t− 5

2 ,

and then
|ρ(x̂(t))| ≤ C · t− 3

2 .

So

L(t) ≤
∫ t

1
s−

3
2ds + C ≤ C.

Therefore L(t) is uniformly bounded.
By definition, we see that γ̃(t) is also asymptotic to the geodesic ray

χ(t). Now the original γ(t) is also asymptotic to χ(t) again because that the
Kempf-Ness flow in GC/G decreases the geodesic distance.

Then it is easy to see that χ(t) has the same degeneration limit as γ(t).
So this completes the proof of theorem 4.7.

5 Stability of the Calabi flow

We first recall the definition of the Calabi flow. It is an infinite dimensional
analogue of the previously mentioned Kempf-Ness flow. Let (M,ω, J0) be a
Kähler manifold. As before, we have the group G acting on J and preserves
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J int. The action of G on J has a moment map given by the Hermitian
scalar curvature functional

S − S : J → C∞
0 (M ;R).

Its norm is called the Calabi functional :

Ca(J) =

∫

M

(S(J)− S)2dµω.

The gradient of Ca under the natural metric on J is given by

∇Ca(J) = 1

2
JDJS(J).

2

The Calabi flow is the downward gradient flow of Ca on J int. Its equation
is given by

d

dt
J(t) = −1

2
J(t)DJ(t)S(J(t)). (6)

As in the finite dimensional space, the Calabi flow can be lifted to GC/G,
which in this case is just the space of Kähler metrics

HJ = {φ ∈ C∞
0 (M ;R)|ω +

√
−1∂J ∂̄Jφ > 0}.

The equation reads:
d

dt
φ(t) = S(φ(t)) − S. (7)

By (1), this is also the downward gradient flow of the Mabuchi functional
E. The two equations (6) and (7) are essentially equivalent:

Lemma 5.1. Any solution of (7) naturally gives rise to a solution of (6);
any solution J(t) of (6) induces a solution of (7), if J(t) all lie in J int.

Proof. Given a path φ(t) ∈ H, we consider the time-dependent vector fields
X(t) = −1

2∇φ(t)φ̇(t). Let ft be the family of diffeomorphisms generated by

X(t). Then f∗t (ω +
√
−1∂∂̄φ(t)) = ω. Let J(t) = f∗t J . Then

d

dt
J(t) = −1

2
J(t)DJ(t)φ̇(t).

This proves the first half of the lemma. For the second half, if J(t) is a
solution to (6). We again consider the vector fields X(t) = 1

2∇J(t)S(J(t))
and the induced diffeomorphisms ft. Then f

∗
t J(t) = J(0) since J(t) ∈ J int,

and f∗t ω = ω +
√
−1dJ(0)dφ(t), with d

dt
φ(t) = S(φ(t)) − S.

2The factor comes from the fact that the metric we choose on J is (µ1, µ2)J :=
2Re

∫
M
〈µ1, µ2〉Jω

n.
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Equation (6) is not parabolic, due to the G invariance. But (7) is
parabolic and we have the following estimates:

Lemma 5.2. (see [CH2]) Suppose there are constants C1, C2 > 0 such that
along the Calabi flow: {

∂φ
∂t

= S − S
φ(0) = φ0,

(8)

we have
||Rm(g(t))||L∞(g(t)) ≤ C1,

and the Sobolev constant of g(t) is bounded by C2 for all t ∈ [0, T ), then for
any l > 0, and t ∈ [1, T ), we have

||∇l
tRm(g(t))||L∞(g(t)) ≤ C,

where C > 0 depends only C1, C2, l, n.

The Calabi flow equation in the form (7) was first proposed by E. Calabi([Ca1],
[Ca2]) to find extremal metrics in a fixed Kähler class. The short time ex-
istence was established by Chen-He([CH1]). They also proved the global
existence assuming Ricci curvature bound.

The equation (6) also has its own advantage. Namely, when the space H
does not admit any cscK metric, the solution of equation (7) must diverge
when t → ∞. However, it is still possible that the corresponding J(t) still
converges in the bigger ambient space J . In this section we are interested
in the Calabi flow (6) starting from an integrable complex structure in a
neighborhood of a cscK metric. We shall prove the following theorem:

Theorem 5.3. Suppose J0 ∈ J is cscK. Then there exists a small Ck,λ(k ≫
1) neighborhood U of J0 in J int, such that the Calabi flow J(t) starting from
any J ∈ U exists globally and converges polynomially fast to a cscK metric
J∞ ∈ J in Ck,λ topology. Up to a Hamiltonian diffeomorphism we can
assume J∞ is smooth, then the convergence is also in C∞.

Remark 5.4. When J lies on the leaf of J0, i.e. the corresponding Kähler
metrics are in the same Kähler classes, this was proved in [CH1] and the
convergence is indeed exponential. In general, the convergence is exponential
if and only if J0 and J∞ are on the same GC leaf.

Remark 5.5. There are also studies of stabiliy of other geometrical flows
(such as Kähler-Ricci flow) in Kähler geometry when the complex structure
is deformed, see for example [CLW], [TZ2]... We believe the idea in this
section could also apply to other settings. In a sequel to this paper([SW]),
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the second author and Y-Q. Wang proved a similar stability theorem for the
Kähler-Ricci flow on Fano manifolds. We should mention that two alterna-
tive approaches in the study of the stability of Kähler-Ricci flow have been
announced by C.Arezzo-G. La Nave and G. Tian-X. Zhu.

In general this type of stability result is based on a very rough a priori
estimate of the length of the flow and the parabolicity. Here the key ingre-
dient is the following Lojasiewicz type inequality which yields the required
a priori estimate.

Theorem 5.6. Suppose J0 ∈ J int is cscK, then there exists a L2
k(k ≫ 1)

neighborhood U of J0 in J int and constants C > 0, α ∈ [12 , 1) such that for
any J ∈ U , the following inequality holds:

||DJS(J)||L2 ≥ C · ||S(J) − S||2αL2 , (9)

where DJφ = ∂̄JXφ + X̄φ.NJ . When J is integrable, DJφ = ∂̄JXφ is the
Lichnerowicz operator.

Remark 5.7. The Lojasiewicz inequality was first used by L. Simon([Si]) in
the study of convergence of parabolic P.D.E’s. R̊ade([Ra]) used Simon’s idea
to study the convergence of the Yang-Mills flow on two or three dimensional
manifold. It also appeared in the study of asymptotic behavior in Floer
theory in [D4]. Here we follow [Ra] closely.

We begin the proof by reducing the problem to a finite dimensional one
and then use Lojasiewicz’s inequality(theorem 3.1).

To simplify the notation, we assume the function spaces appearing below
consist of normalized functions, i.e. functions with average zero. We have
the elliptic complex at J0(see [FS]):

L2
k+2(M ;C)

D0−→ TJ0J = L2
k(Ω

0,1
S (T 1,0))

∂̄0−→ L2
k−1(Ω

0,2
S (T 1,0)),

where Ω0,p
S (T 1,0) is the kernel of the operator A in section 3. So we have an

L2 orthogonal decomposition:

Ω0,1
S (T 1,0) = ImD0 ⊕KerD∗

0.

On the other hand, the infinitesimal action of the gauge group G is just the
restriction of D0 to L2

k+2(M ;R), which we denote by Q0. Since J0 is cscK,
D∗

0D0 is a real operator. Thus

Im(D0) = D0(L
2
k+2(M ;R)) ⊕D0(L

2
k+2(M ;

√
−1R))
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is an L2 orthogonal decomposition, so

L2
k(Ω

0,1
S (T 1,0)) = ImQ0 ⊕KerQ∗

0,

where explicitly, Q∗
0µ = ReD∗

0µ.

Now as in section 2 we identify a L2
k neighborhood of J0 with an open

set in the Hilbert space L2
k(Ω

0,1
S (T 1,0)). By the implicit function theorem,

any integrable complex structure J = J0 + µ ∈ J int with ||µ||L2
k
small is in

the G orbit of an integrable complex structure J0 + ν with ν ∈ KerQ∗
0 and

||ν||L2
k
small. Since both sides of (9) are invariant under the action of G, it

suffices to prove it for µ ∈ KerQ∗
0.

We still need to fix another gauge so that the problem becomes elliptic.
Recall that J int is the subvariety of J cut out by the equation:

N(µ) = ∂̄0µ+ [µ, µ] = 0.

We would like to linearize this space to Ker∂̄0. Let W = KerQ∗
0 ∩Ker∂̄0.

Consider the operator

Φ : (W∩L2
k(Ω

0,1
S (T 1,0)))×(Im∂̄0∩L2

k+1(Ω
0,2
S (T 1,0))) → Im∂̄0∩L2

k−1(Ω
0,2
S (T 1,0))

by sending (µ, α) to the orthogonal projection to Im∂̄0 of N(µ+ ∂̄∗0α). Since
the linearization

DΦ0(ν, β) = ∂̄0∂̄
∗
0β

whose second component is an isomorphism, by the implicit function the-
orem, for any ν ∈ W ∩ L2

k(Ω
0,1
S (T 1,0)) with ||ν||L2

k
small, there exists a

unique α = α(ν) ∈ Im∂̄0 ⊂ L2
k+1(Ω

0,2
S (T 1,0)) with ||α||L2

k+1
small such that

µ = ν + ∂̄∗0α satisfies Φ(µ) = 0. Furthermore, we have

||α(ν)||L2
k+1

≤ C · ||ν||2
L2
k
.

Define a map L from Bǫ1(W ∩ L2
k(Ω

0,1
S (T 1,0))) to KerQ∗

0 ∩ L2
k(Ω

0,1
S (T 1,0))

by sending ν to µ, then L is real analytic and a neighborhood of J0 in
J int ∩KerQ∗

0 ∩L2
k(Ω

0,1
S (T 1,0)) is contained in the image of L. Moreover we

have that for all ν ∈ Bǫ1W ∩L2
k(Ω

0,1
S (T 1,0)) and λ ∈W ∩L2

l (Ω
0,1
S (T 1,0))(for

any l ≤ k),
cl · ||λ||L2

l
≤ ||(DL)ν(λ)||L2

l
≤ Cl · ||λ||L2

l
, (10)

and
cl · ||λ||L2

l
≤ ||(DL)∗ν(DL)ν(λ)||L2

l
≤ Cl · ||λ||L2

l
. (11)
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To be explicit, the differential of α at ν is given by

(Dα)ν(λ) = (DΦ)L(ν)(0,−)−1 ◦ (DΦ)L(ν)(λ, 0).

So if we denote µ = L(ν) and β = (Dα)ν(λ), then β satisfies:

∂̄0∂̄
∗
0β +ΠIm∂̄0 [µ, ∂̄

∗
0β] = ∂̄0λ+ΠIm∂̄0 [µ, λ] = ΠIm∂̄0 [µ, λ].

Thus by ellipticity we obtain for ν small that

||(Dα)ν(λ)||L2
l+1

≤ C · ||ν||L2
k
· ||λ||L2

l
. (12)

(10) follows from (12) and similarly we can prove (11).

Now consider the Hilbert space W ∩L2
k(Ω

0,1
S (T 1,0)) with the constant L2

metric defined by J0. Define the functional C̃a on on a small neighborhood
of the origin in W ∩ L2

k(Ω
0,1
S (T 1,0)) by pulling back Ca through L, i.e.

C̃a(ν) =
1

2
Ca(L(ν)) =

1

2

∫
(S(L(ν)) − S)2ωn.

It is easy to see that

δλS(L(ν)) = 2ImD∗
L(ν)((DL)ν(λ))

So the gradient is

∇C̃a = (DL)∗ν(JDL(ν)S(L(ν))).

We first prove that in a neighborhood of 0 in W ,

||∇C̃a(ν)||L2 ≥ C · (C̃a(ν))α. (13)

The linearization of the gradient is the Hessian:

H0 := δ·∇C̃a : L2
k(W ) → L2

k−4(W );λ 7→ 2J0D0D∗
0λ.

H0 is an elliptic operator, so it has a finite dimensional kernel W0 consisting
of smooth elements, and W has the following decomposition:

W =W0 ⊕W ′,

where H0 restricts to invertible operators from L2
k(W

′) to L2
k−4(W

′). So
there exists a c > 0, such that for any µ′ ∈W ′, we have

||H0(µ
′)||L2

k−4
≥ C · ||µ′||L2

k
.

25



By the implicit function theorem, for any µ0 ∈ W0 with ||µ0||L2
3 small,

there exists a unique element µ′ = G(µ0) ∈W ′ with ||µ′||L2
k
small, such that

∇C̃a(µ0+µ′) ∈W0. Moreover the map G : Bǫ1W0 → Bǫ2W
′ is real analytic.

Now consider the function

f :W0 → R;µ0 7→ C̃a(µ0 +G(µ0)).

By construction, this is a real analytic function. For any µ0 ∈W0, it is easy
to see that ∇f(µ0) = ∇C̃a(µ0 +G(µ0)) ∈W0.

Now we shall estimate the two sides of inequality (13) separately. For
any µ ∈ W with ||µ||L2

k
≤ ǫ, we can write µ = µ0 + G(µ0) + µ′, where

µ0 ∈W0, µ
′ ∈W ′, and

||µ0||L2
k
≤ c · ||µ||L2

k
,

||G(µ0)||L2
k
≤ c · ||µ||L2

k
,

||µ′||L2
k
≤ c · ||µ||L2

k
.

For the left hand side of (13), we have:

∇C̃a(µ) = ∇C̃a(µ0 +G(µ0) + µ′)

= ∇C̃a(µ0 +G(µ0)) +

∫ 1

0
δµ′∇C̃a(µ0 +G(µ0) + sµ′)ds

= ∇f(µ0) + δµ′∇C̃a(0) +
∫ 1

0
(δµ′∇C̃a(µ0 +G(µ0) + sµ′)− δµ′∇C̃a(0))ds

The first two terms are L2 orthogonal to each other. For the second term
we have

||δµ′∇C̃a(0)||2L2 = ||H0(µ
′)||2L2 ≥ C · ||µ′||2

L2
4
.

For the last term, we have

||δµ′∇C̃a(µ0+G(µ0)+sµ′)− δµ′∇C̃a(0)|| ≤ C · ||µ||L2
k
||µ′||L2

4
≤ C · ǫ · ||µ′||L2

4
.

Therefore, we have

||∇C̃a(µ)||2L2 ≥ |∇f(µ0)|2L2 +C · ||µ′||2
L2
4
. (14)

3Since W0 is finite dimensional, any two norms on it are equivalent. We use the L2

norm for our later purpose.
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For the right hand side of (13), we have

C̃a(µ) = C̃a(µ0 +G(µ0) + µ′)

= C̃a(µ0 +G(µ0)) +

∫ 1

0
∇C̃a(µ0 +G(µ0) + sµ′)µ′ds

= f(µ0) +∇f(µ0)µ′ +
∫ 1

0

∫ 1

0
δµ′∇C̃a(µ0 +G(µ0) + stµ′)µ′dtds

= f(µ0) +H0(µ
′)µ′ +

∫ 1

0

∫ 1

0
(δµ′∇C̃a(µ0 +G(µ0) + stµ′)− δµ′∇C̃a(0))µ′dtds

So
C̃a(µ) ≤ |f(µ0)|L2 + C · ||µ′||2

L2
4
. (15)

Now we apply the Lojasiewicz inequality to f , and obtain that

|∇f(µ0)|L2 ≥ C · |f(µ0)|α,

for some α ∈ [12 , 1). Together with (14) and (15) we have proved (13).

To prove (9), we need to compare ||∇Ca(L(ν))||L2 and ||∇C̃a(ν)||L2 , i.e.
we want

||(DL)∗ν(DL(ν)S(L(ν)))||L2 ≤ C · ||DL(ν)S(L(ν))||L2 . (16)

We can take L2 decomposition

DL(ν)S(L(ν)) = (DL)νλ+ β,

where λ ∈W and β ∈ Ker(DL)∗ν . So we just need to prove

||(DL)∗ν(DL)νλ||L2 ≤ C · ||(DL)νλ||L2

for any λ. This follows from (10) and (11). �

Now we follow the Lojasiewicz arguments. Suppose we have a Calabi
flow J(t) along an integral leaf staying in a L2

k neighborhood of J0, then by
(6)

d

dt
Ca(J)1−α = −(1− α)Ca(J)−α||∇Ca(J)||2L2(t) ≤ −C · ||∇Ca(J)||L2(t).

Thus

∫ t

0
||J̇ ||L2(s)ds =

∫ t

0
||∇Ca(J(s))||L2(s)ds ≤ C · Ca(J(0))1−α. (17)
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So we get L2 length estimate for the Calabi flow in terms of the initial Calabi
energy. For γ slightly bigger than α, we have for β = 2− γ

α
< 1,

d

dt
Ca(J)1−γ = −(1− γ)Ca(J)−γ ||∇Ca(J)||2L2(t) ≤ −C · ||∇Ca(J)||β

L2(t)
.

So for β ∈ (2− 1
α
, 1) we have

∫ t

0
||J̇(s)||β

L2(s)
ds =

∫ t

0
||∇Ca(J(s))||β

L2(s)
ds ≤ C(β) · Ca(J(0))1−(2−β)α .

(18)
Also we have polynomial decay:

d

dt
Ca(t)1−2α ≥ C > 0,

so
Ca(J(t)) ≤ C · (t+ 1)−

1
2α−1 . (19)

Now we define

Uδk = {J ∈ Ck,λ(J int) | ||µJ ||Ck,λ ≤ δ},

where again we identify J close to J0 with µJ ∈ Ω0,1
S (T 1,0). Notice that if

δ ≪ 1, then for any tensor ξ, the Ck,λJ norms defined by (J, ω) are equivalent
for any J ∈ Uδk . We omit the subscript J if J = J0. Also for k sufficiently
large, the Sobolev constant is uniformly bounded in Uδk .
Theorem 5.8. Suppose J0 is a cscK metric in J int. Then there exist δ2 >
δ1 > 0, such that for any J(0) ∈ Uδ1k , the Calabi flow J(t)(t > 0) starting

from J(0) will stay in Uδ2k all the time.

Proof. Choose δ > 0 such that the previous a priori estimates hold in
Uδk . If suffices to prove that there exists δ1 < δ2 < δ such that for any Calabi

flow J(t) with J(0) ∈ Uδ1k , if J(t) ∈ Uδk for t ∈ [0, T ), then J(T ) ∈ Uδ2k . By
lemma 5.2, for t ≥ 1 and l, we have

||Rm(J(t))||
C

l,λ
t

≤ C(l).

Now fix β ∈ (2 − 1
α
, 1), for any p, there is an N(p)(independent of t ≥ 1),

such that the following interpolation inequality holds

||J̇(t)||L2
p(t)

≤ C(p) · ||J̇(t)||β
L2(t)

· ||DJS(J)||1−βL2
N(p)

(t)
≤ C(p) · ||J̇(t)||β

L2(t)
,

So by (18) we have

∫ T

1
||J̇(t)||L2

p(t)
dt ≤ C(p)·Ca(J(1))1−(2−β)α ≤ C(p)·Ca(J(0))1−(2−β)α ≤ C(p)·ǫ(δ1).
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Since the Sobolev constant is uniformly bounded in Uδk , we obtain for any l,

∫ T

1
||J̇(t)||

C
l,λ
t
dt ≤ C(l) · ǫ(δ1).

Therefore,

||J(T )− J(1)||Ck,λ ≤
∫ T

1
||J̇(t)||Ck,λdt ≤ ǫ(δ1).

By the finite time stability of the Calabi flow, we have

||J(1) − J0||Ck,λ = ǫ(δ1).

Thus
||J(T )− J0||Ck,λ ≤ ǫ(δ1).

Now choose δ2 = δ
2 , and ǫ(δ1) ≤ δ2, then the theorem is concluded. �

From theorem 5.8, we know the Calabi flow exists globally in Ck,λ and
thus by sequence converges to J∞ in Ck,β for β < α. Now again by the
Lojasiewicz arguments we see the limit must be unique and the convergence
is in a polynomial rate in Ck,λ.

Now we assume that J∞ = J0 is smooth. Then we can prove smooth
convergence. We first use the ellipticity to obtain a priori estimates in Uδk
for k ≫ 1. Any µ ∈ Uδk satisfies the following elliptic system:





ImD∗
0µ = S(µ) +O(||µ||2

L2
2
),

ReD∗
0µ = Q∗

0(µ),
∂̄µ+ [µ, µ] = 0.

(20)

So we have the following a priori estimate:

||µ||Cl+2,α ≤ C · (||µ||Cl,λ + ||S(µ)||Cl,λ + ||Q∗
0(µ)||Cl,λ). (21)

From the proof of theorem 5.8, we know that ||µ(t)||Ck,λ and ||S(µ(t))||Ck,λ

are uniformly bounded. Since

||Q∗
0(µ(t))||Ck,λ ≤

∫ ∞

t

||Q∗
0(µ̇(s))||Ck,λ

s
ds ≤ ǫ(Ca(J(s)))

is bounded, we obtain ||µ(t)||Ck+2,α bound, so we can derive smooth con-
vergence by bootstrapping argument. This finishes the proof of theorem
5.3.

Theorem 5.3 has its own interest. This yields a purely analytical proof
of an extension of a theorem due to Chen [Ch4] and Székelyhidi [Sz]. This is
inspired by an observation of Tosatti [To]. In particular, we do not require
the Kähler class to be integral.
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Theorem 5.9. ([Ch4]) For any J ∈ U , the Mabuchi functional E on the
space of Kähler metrics compatible with J is bounded below, and the lower
bound is achieved by the infimum along the Calabi flow initiating from J .

Proof. From the proof of theorem 5.3 we know the Calabi flow J(t) ∈ J int

starting from J converges to a limit J∞ with estimate

Ca(J(t)) ≤ C · (t+ 1)−
1

2α−1 .

By lemma 5.1, this is equivalent to the Calabi flow φ(t) in the space of Kähler
metrics compatible with J . Then

E(φ(t)) = E(φ(0))−
∫ t

0
Ca(φ(s))ds ≥ E(φ(0))−C·2α − 1

2α − 2
·[1−(t+1)

2α−2
2α−1 ] ≥ −C ′.

For any other Kähler potential φ, we have by lemma 2.4 that

E(φ) ≥ E(φ(t)) −
√
Ca(φ(t)) · d(φ, φ(t)).

Since

d(φ, φ(t)) ≤ d(φ, φ(0))+d(φ(0), φ(t)) ≤ C+

∫ t

0

√
Ca(φ(s))ds ≤ C·[1+(t+1)

4α−3
4α−2 ],

we have

E(φ) ≥ lim inf
t→∞

E(φ(t))− C · (t+ 1)−
1

4α−2 · [1 + (t+ 1)
4α−3
4α−2 ] = lim

t→∞
E(φ(t))

is bounded below.

6 Reduced Calabi flow

In this section we shall discuss a reduced finite dimensional problem. The
usual Kuranishi method provides a local slice as follows. Assume J0 is cscK.
We have as before the following elliptic complex:

C∞
0 (M ;C)

D0−→ TJ0J = Ω0,1
S (T 1,0)

∂̄0−→ Ω0,2
S (T 1,0).

Let �0 = D0D∗
0 + (∂̄∗0 ∂̄0)

2, and H1 = Ker�0. Let G be the isotropy group
of J0, which is the group of Hamiltonian isometries of (M,ω, J0), with Lie
algebra g = KerD0∩C∞

0 (M ;R). By the classical Matsushima-Lichnerowicz
theorem, KerD0 is the complexification g

C of g, and so the complexifica-
tion GC of G is a subgroup of the group of holomorphic transformations
of (M,J0), with Lie algebra g

C = KerD0. Then the linear G action on
H1 extends to an action of GC. For convenience, we include a proof of the
following standard fact.
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Lemma 6.1. (Kuranishi) There exists a neighborhood B of 0 in H1, and a
G-equivariant holomorphic embedding

Φ : B → J ,

such that:
(1). Φ(0) = J0;
(2). If v1 and v2 in B are in the same GC orbit and Φ(v1) is integrable,
then Φ(v2) is integrable, and Φ(v1) and Φ(v2) are in the same GC leaf. Con-
versely, if Φ(v) is integrable and (dΦ)v(u) is tangent to the GC leaf at Φ(v),
then u is tangent to the GC orbit at v.
(3). Any integrable J sufficiently close to J0 lies in the GC leaf of some
element in the image of Φ.

Proof. We can identify any J close to J0 with an element µ in Ω0,1
S (T 1,0),

and J is integrable if and only if

N(µ) = ∂̄0µ+ [µ, µ] = 0.

We can first choose a G-equivariant holomorphic embedding Ψ from a ball
B in Ω0,1

S (T 1,0) into J with dΨ0 = Id, by using the same “average trick” as
in the proof of lemma 4.9. Let

V = {µ ∈ Ω0,1
S (T 1,0)|D∗

0µ = 0},

and
U = {µ ∈ Ω0,1

S (T 1,0)|N(µ) = 0,D∗
0µ = 0}.

Denote by G the Green operator for �0 and H : Ω0,1
S (T 1,0) → H1 the

orthogonal projection. Then for any µ ∈ U , we have

µ = G�0µ+Hµ = −G∂̄∗0 ∂̄0∂̄∗0 [µ, µ] +Hµ.

Define a G-equivariant map

F : Ω0,1
S (T 1,0) → Ω0,1

S (T 1,0);µ 7→ µ+G∂̄∗0 ∂̄0∂̄
∗
0 [µ, µ],

where both spaces are endowed with the Sobolev L2
k norm. Its derivative

at 0 is the identity map, so by the implicit function theorem, there is an
inverse holomorphic map F−1 : V1(⊂ Ω0,1

S (T 1,0)) → V2(⊂ Ω0,1
S (T 1,0)). Let Q

be restriction of F−1 on B = V1 ∩H1 and Φ be the composition

Φ : B → J ; v 7→ Ψ ◦Q(v).

Since H1 consists of smooth elements, the image of Φ also consists of smooth
elements.

31



Now we check Φ is the desired map. For any v ∈ B, we have

D∗
0Q(v) = −D∗

0G∂̄
∗
0 ∂̄0∂̄

∗
0 [Q(v), Q(v)] = 0,

and

N(Q(v)) = −∂̄0G∂̄∗0 ∂̄0∂̄∗0 [Q(v), Q(v)]+[Q(v), Q(v)] = G(∂̄∗0 ∂̄0)
2[Q(v), Q(v)]−H[Q(v), Q(v)].

So N(Q(v)) = 0 if and only if H[Q(v), Q(v)] = 0, as in [Ku]. Therefore
a neighborhood of 0 in U is an analytic set contained in the image of Q.
Since both Ψ and F are G-equivariant and holomorphic, the first part of (2)
is true. Following [Sz], we define a map P from a neighborhood of (J0, 0)
in J × C∞

0 (M ;C) to J as follows. Given µ ∈ Ω0,1
S (T 1,0) representing an

element in J close to J0, and φ = φ1 +
√
−1φ2 ∈ C∞

0 (M ;C) small. There is
a family of Hamiltonian diffeomorphsms ft with

ḟt = Xφ1 .

Denote J1 = f∗1J . Since ωφ = ω +
√
−1dJ1dφ2 is isotopic to ω through the

path ωt = (1− t)ω+ tωφ2 . Then there is a canonical path of diffeomorphisms
gt such that g∗t ωt = ω. Now g∗1J1 is the image under Ψ of an element
µ1 ∈ Ω0,1

S (T 1,0). Then define

P (µ, φ) = GD∗
0µ1.

Then P is a smooth function from L2
k(V ) × L2

k(M ;C) to the orthogonal
complement L2

k(A
0) of gC in L2

k(M ;C). It is easy to calculate the derivative
of P at (J0, 0) is

(DP )0(ν, ψ) = GD∗
0ν +GD∗

0D0ψ.

The derivative with respect to the second variable is surjective with a finite
dimensional kernel 0×g

C. Thus by implicit function theorem, any integrable
complex structure close to J0 lies in the GC leaf of an element in U , and thus
is contained in the GC leaf of the image of Φ. So (3) is proved.

It suffices to prove the last statement in (2). Suppose µ = Φ(v), and
ν = (dΦ)v(u) is tangent to the GC leaf, i.e ν = Dµφ for some complex
valued function φ. Then DP(µ,0)(0, φ) = 0. On the other hand, the kernel of

DP(µ,0)(0,−) has the same dimension as dim g
C if µ is sufficiently close to

zero. Thus, φ ∈ g
C and u is tangent to the GC orbit of v.

By [D1] the action of G on J has a moment map given by the scalar
curvature functional µ = S − S : J → C∞

0 (M ;R). The downward gradient
flow of |µ|2 is just the Calabi flow. Now we reduce this flow to a finite
dimensional flow. Note G as a subgroup of G acts on J with induced moment
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map µ̄ = Πg(S − S). It is the L2 projection of µ to g with respect to the
natural volume form. We can consider the gradient flow of |µ̄|2, whose
equation reads

d

dt
J = −1

2
JDJ µ̄(J). (22)

If we have a solution to equation (22) such that Jt is integrable for all
t ∈ [0, T ], then we can translate it to a flow in H given by

d

dt
φ = Πf∗t g(S(φ) − S), (23)

where ft is the family of diffeomorphism satisfying

d

dt
ft = −1

2
JtXS(Jt),

and the projection is taken with respect to the volume form of f∗t ω. We will
study the relation between this flow and the Calabi flow later on. Let us
call the flow (22) or (23) the reduced Calabi flow. It is the gradient flow of
the norm squared of the moment map of a finite dimensional compact group
action.

Now we can pull back the Kähler structure on J to B, denoted by (Ω̃, J̃).
By the previous lemma, we know G acts on (B, Ω̃, J̃) holomorphically and
isometrically, with moment map µ̃ equal to Φ∗µ̄. We can then study the
reduced Calabi flow on a finite dimensional ambient space B. Let J be an
integrable complex structure J close to J0 such that the Calabi flow J(t)
converges to J0. Suppose J0 is not in the GC leaf of J . By property (3) in
lemma 6.1, we can smoothly perturb J(t) to J̄(t) in the GC orbit such that

J̄(t) = Φ(v(t)) for v(t) → 0 ∈ B. Since ˙̄J(t) is tangent to the GC leaf, by
property (2) in lemma 6.1, we see that v̇(t) is tangent to the GC orbit. So
v is de-stabilized by 0 in B under the GC action. By our previous study of
the finite dimensional case, the reduced Calabi flow starting from v exists
for all time and converges to 0 in the order O(t−

1
2 ), and the corresponding

flow Ĵ(t) in GC/G is asymptotic to a rational geodesic ray χ which also
degenerate v to zero. We can view χ as a geodesic ray in H as well, so the
reduced Calabi flow in H is asymptotic to a smooth geodesic ray with the
same degeneration limit. This needs a bit more clarification. First of all, for
any element g in GC, one can choose a path g(t) in GC with g(0) equal to
identity and g(1) = g. Then we have

d

dt
g(t) · g(t)−1 = ξ(t) +

√
−1η(t).

We can choose a path h(t) in G with h(0) being identity, such that

d

dt
(h(t)g(t)) ∈

√
−1g.
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This is equivalent to

d

dt
h(t) · h(t)−1 + h(t)ξ(t)h(t)−1 = 0.

Now we define a map F from an open set in GC/G to H as follows. This
open set is a geodesic convex open set U in GC/G such that [g].v still lies
in the previously constructed Kuranishi slice. Let v(t) = g(t).v, and J(t) =
Φ(v(t)). Then J(t) are all integrable and

d

dt
J(t) = −(DJ(t)ξ(t) + J(t)DJ(t)η(t)),

where ξ(t) and η(t) are viewed as functions on M through the inclusion
g ⊂ C∞

0 (M ;R). Choose an isotopy of Hamiltonian diffeomorphisms ft such
that

d

dt
ft = Xξ(t).

Then J̃(t) = f∗t J(t) satisfies

d

dt
J̃(t) = J̃(t)D

J̃(t)η̃(t),

where η̃(t) = f∗t η(t). In fact, J̃(t) = Φ(h(t)g(t).v). Then by Lemma 5.1 if
we choose an isotopy of diffeomorphisms kt with

d

dt
kt = −∇

J̃(t)η̃(t),

then
k∗t J̃(t) = J,

and k∗t ω = ωt = ω +
√
−1∂∂̄φ(t). We define F ([g]) to be φ(1). Of course

we need to show this is well-defined, it suffices to show the definition is
independent of the path chosen in GC/G. Since GC/G is always simply
connected, we only to show it is invariant under based homotopy. Fo this, we
choose a two parameter family gs,t in G

C such that gs,0 is equal to identity,
and gs,1 = g. Correspondingly we have h(s, t) in G with h(s, 0) equal to
identity. Let g̃s,t = hs,t · gs,t, then we have

∂

∂t
g̃s,t · g̃−1

s,t =
√
−1η(s, t) ∈

√
−1g.

Also we have

∂

∂s
g̃s,t · g̃−1

s,t = ξ(s, t) +
√
−1ζ(s, t) ∈ g⊕

√
−1g.
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So we have the relation

√
−1

∂

∂s
η(s, t) =

∂

∂t
ξ(s, t)+

√
−1

∂

∂t
ζ(s, t)+[

√
−1η(s, t), ξ(s, t)+

√
−1ζ(s, t)].

In particular
∂

∂s
η(s, t) =

∂

∂t
ζ(s, t) + [η(s, t), ξ(s, t)].

Also ξ(s, 0) = ζ(s, 0) = ξ(s, 1) = ζ(s, 1) = 0. Let Js,t = Φ(gs,t.v), and fs,t
be the two parameter family of diffeomorphisms obtained by fixing s and
integrate along the t direction as before. In particular, f(s, 0) is equal to
identity for all s. We compute

∂

∂s

∂

∂t
f∗s,tω = − ∂

∂s
f∗s,tdJs,tdη(s, t) = − ∂

∂s
dJdf∗s,tη(s, t).

We have

∂

∂s
f∗s,tη(s, t)

= f∗s,t(
∂

∂s
η(s, t) + LJs,t∇s,tξ(s,t)−∇s,tζ(s,t)η(s, t))

= f∗s,t(
∂

∂s
η(s, t) + {ξ(s, t), η(s, t)} − 〈∇s,tζ(s, t),∇s,tη(s, t)〉)

= f∗s,t(
∂

∂t
ζ(s, t)− 〈∇s,tζ(s, t),∇s,tη(s, t)〉))

=
∂

∂t
F ∗
s,tζ(s, t).

Thus

∂

∂s
|t=1f

∗
s,tω = −dJd(

∫ 1

0

∂

∂t
f∗s,tζ(s, t)dt) = −dJd(f∗s,1ζ(s, 1)) = 0.

Thus the map F depends only on the point [g], not on the path chosen.
So F is a well-defined smooth map. From this it is clear that F is a local
isometric embedding, in particular, the image is totally geodesic. Thus we
have proved that the reduced Calabi flow in H is asymptotic to a smooth
geodesic ray with the same degeneration limit. By Section 4.2 this geodesic
ray is indeed rational, i.e. extends to a C

∗ action. Then it follows from
arguments in [Sz] that χ is tamed by a smooth test configuration, so it is
tamed by a bounded geometry in the sense of [Ch3].

To prove that the Calabi flow is asymptotic to the reduced Calabi flow,
we need to generalize lemma 4.6 to the infinite dimensional case. Then by
the same argument as before, together with lemma 2.5 that the Mabuchi
functional is weakly convex, one can show
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Lemma 6.2. Let Ĵ(t) be the reduced Calabi flow as before and φ̂(t) be the
corresponding flow in H. Then for any Calabi flow path φ(t) ∈ H, we have
for all t that

d(φ(t), φ̂(t)) ≤ C.

The proof will be given in the appendix. Combining all these we arrive
at the following theorem:

Theorem 6.3. Let (M,ω0, J0) be a csc Kähler manifold. Let J be a complex
structure in J close to J0 and the Calabi flow starting from J converges to
J0 at the infinity. Suppose J0 is not in the GC leaf of J . Then there is a
smooth geodesic ray φ(t) in the space of Kähler metrics Hω,J which is tamed
by bounded geometry and degenerates J to J0 in the space J . Furthermore,
φ(t) is asymptotic to the Calabi flow with respect to the Mabuchi-Semmes-
Donaldson metric in the sense of definition 4.2.

7 Relative Bound for parallel Geodesic rays

It is well-known that in a Riemannian manifold with non-positive curvature,
the distance between two geodesics is a convex function. In this section we
first justify this property for the infinite dimensional space H.

Lemma 7.1. Let φ1(t) and φ2(t) be two C
1,1 geodesics in H, then d(φ1(t), φ2(t))

is a convex function of t.

Proof. . We first assume both geodesics are C∞. Let γǫ(t, s) be the ǫ-
geodesic connecting γ1(t) and γ2(t)(see [Ch1]), then

d2

dt2
L(γǫ(t)) =

∫ 1

0

1

|γǫ,s|
{|γ⊥ǫ,ts|2 −R(γǫ,s, γǫ,t)}ds +

1

|γǫ,s|
〈γǫ,s, γǫ,tt〉|10

−
∫ 1

0

〈γǫ,ss, γǫ,tt〉
|γǫ,s|

+
〈γǫ,s, γǫ,ss〉〈γǫ,s, γǫ,tt〉

|γǫ,s|3
ds

Along the ǫ-geodesics, we have

|γǫ,ss| =
√∫ 1

0
(φǫ,ss −∇φǫ,sφǫ,s)

2ωnφǫ ≤ C(t)
√
ǫ,

where C(t) is uniformly bounded if t varies in a bounded interval. Also

|γǫ,tt| ≤ C(t),

and
|γǫ,s| → Lt,
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uniformly for s ∈ [0, 1] and t bounded. Therefore, we have

d2

dt2
L(γǫ(t)) ≥ −C(t)

√
ǫ,

so for any a ≤ b,

Lǫ(ta+ (1− t)b) ≤ tLǫ(a) + (1− t)Lǫ(b) + C
√
ǫ(t− a)(b− t).

Let ǫ→ 0,
L(ta+ (1− t)b) ≤ tL(a) + (1− t)L(b).

So L(t) is still a convex function, and the argument of the lemma yields the
same conclusion.

In the general case we need to define the distance between two C1,1 po-
tentials, which is just the infimum of the length of all C1,1 paths connecting
the two points. Clearly the distance between any two points is always non-
negative.

Now we assume φ1 and φ2 are C1,1 but φi(0) and φi(1) are smooth, we
want to prove for t ∈ [0, 1],

L(t) ≤ (1− t)L(0) + tL(1). (24)

To prove this, choose a δ-geodesic φiδ approximating φi with endpoints fixed.
Let φǫ,δ(t, s) be the geodesic connecting φ1δ(t) and φ2δ(t), and Lǫ,δ(t) be its
length. Then similar calculation shows that

d2

dt2
Lǫ,δ(t) ≥ −C

√
δ −C(δ, t)

√
ǫ,

So

Lǫ,δ(t) ≤ (1− t)Lǫ,δ(0) + tLǫ,δ(1) +
1

2
(C

√
δ + C(δ, t)

√
ǫ)t(1− t).

Let ǫ→ 0, we have

Lδ(t) ≤ (1− t)Lδ(0) + tLδ(1) + C
√
δ.

Let δ → 0, we get the desired inequality. So the theorem is true in this case.

If φi(0) and φi(1) are not assumed to be smooth, we can approximate
them weakly in C1,1 by smooth potentials φǫi(0), φ

ǫ
i(1) respectively. Let φ

ǫ
i(t)

be the geodesic connecting φǫi(0) and φ
ǫ
i(1). Then we know d(φǫ1(t), φ

ǫ
2(t)) is
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a convex function. By maximum principle for the Monge-Ampère equations,
we know

|φǫi(t)− φi(t)|C0 ≤ max(|φǫi(0) − φi(0)|C0 , |φǫi(1)− φi(1)|C0).

Hence |φǫi(t) − φi(t)|C0 → 0, in particular, d(φǫi(t), φi(t)) → 0. Therefore,
d(φǫ1(t), φ

ǫ
2(t)) converges uniformly to d(φ1(t), φ2(t)). So the latter is also

convex.

Lemma 7.2. If φ1 is in H(i.e. φ1 is smooth and ω1 is positive) and φ2 is
C1,1, then d(φ1, φ2) = 0 if and only if φ1 = φ2.

Proof. We can choose C∞ potential φǫ2 converging to φ2 weakly in C1,1 as
ǫ→ 0. Then by [Ch1],

d(φ1, φ
ǫ
2) ≥ max(

∫

φ1≥φǫ2

(φ1 − φǫ2)ω
n
φ1
,

∫

φǫ2≥φ1

(φǫ2 − φ1)ω
n
φǫ2
)

Let ǫ→ 0, we get

d(φ1, φ2) ≥ max(

∫

φ1≥φ2

(φ1 − φ2)ω
n
1 ,

∫

φ2≥φ1

(φ2 − φ1)ω
n
2 ).

So if d(φ1, φ2) = 0, then
∫

φ1≥φ2

(φ1 − φ2)ω
n
1 = 0,

and ∫

φ2≥φ1

(φ2 − φ1)ω
n
2 = 0.

The first equation implies φ1 ≤ φ2. The second equation implies that
∫

φ2>φ1

ωn2 = 0.

Let Ω = {x ∈M |φ2(x) > φ1(x)}. Then by Stokes’ formula,
∫

Ω
ωn1 =

∫

Ω
ωn1 − ωn2

=

∫

Ω

√
−1∂∂̄(φ1 − φ2) ·

n−1∑

j=0

ωj1 ∧ ω
n−1−j
2

=

∫

∂Ω

√
−1∂̄(φ1 − φ2) ·

n−1∑

j=0

ωj1 ∧ ωn−1−j
2

= 0.

So Ω is empty. Thus φ1 = φ2.
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Corollary 7.3. Let φ1 be a geodesic ray tamed by bounded geometry(see
[Ch3]), and φ2 another geodesic ray parallel to φ1 with φ2(0) smooth. Then
φ1 − φ2 has a uniform relative C1,1 bound(with respect to ωφ1).

Proof. By [Ch3], there is a C1,1 geodesic ray φ3 emanating from φ2(0) such
that |φ3(t) − φ1(t)|C1,1

φ1

≤ C. Thus d(φ2(t), φ3(t)) is uniformly bounded.

Since φ2(0) = φ3(0), by lemma 7.1, d(φ2(t), φ3(t)) = 0. Lemma 7.2 then
implies φ2(t) = φ3(t). So |φ2(t)− φ1(t)|C1,1

φ1

≤ C.

Corollary 7.4. Let γ1(t) and γ2(t) be two smooth paths in H with d(γ1(t), γ2(t))
uniformly bounded. Suppose φ(t) is a smooth geodesic ray in H asymptotic
to γ1, then it is also asymptotic to γ2.

Proof. Let γi(t, s) be the geodesic connecting φ(0) and γi(t) parametrized
by arc-length. Fix s, by assumption, d(γ1(t, s), φ(s)) → 0 as t → ∞. So in
particular, d(φ(0), γ1(t)) → ∞. Suppose d(γ1(t), γ2(t)) ≤ C. Choose T large
enough so that d(φ(0), γ1(T )) ≫ s+C. Then d(γ1(T, T−C), γ2(T, T−C)) ≤
4C. By lemma 7.1, as T → ∞,

d(γ1(T, s), γ2(T, s)) ≤
s

T
· 4C → 0.

By definition, φ(t) is asymptotic to γ2.

Similarly we can prove

Corollary 7.5. Let γ(t) be a smooth path in H which is asymptotic to two
smooth geodesic rays φ1(t) and φ2(t). Then φ1 and φ2 are parallel, i.e.
d(φ1(t), φ2(t)) is uniformly bounded. If we assume one of them is tamed by
bounded geometry, say φ1 then by corollary 7.3, |φ1(t)− φ2(t)|C1,1

φ1

≤ C.

8 Proof of the main theorems

Now we proceed to prove the main theorems.

Lemma 8.1. Suppose gi is a sequence of Riemmanian metrics on a manifold
M . If there are two sequences fi and hi of diffeomorphism of M such that
f∗i gi → g1, and h

∗
i gi → g2 in C∞, then fi ◦ h−1

i converges by subsequence to
a diffeomorphism f in C∞ with f∗g2 = g1.

The proof is standard using compactness. We omit it here.

Corollary 8.2. The quotient J /G is Hausdorff in the C∞ topology.
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Figure 2: Calabi flows and asymptotic geodesic rays

Lemma 8.3. (C0 bound implies no Kähler collapsing) Suppose there are two
sequences φi, ψi ∈ H converging in the Cheeger-Gromov sense, i.e. there are
two sequences of diffeomorphisms fi, hi such that

f∗i (J, ωφi) → (J1, ω1)

and
h∗i (J, ωψi

) → (J2, ω2)

in the C∞ topology. If |φi − ψi|C0 ≤ C, then |φi − ψi|Ck
ωφi

is bounded for all

k, and there is a subsequence ki such that f−1
ki

◦ hki converges in C∞ to a

diffeomorphism f with f∗J1 = J2 and f∗ω1 = ω2 +
√
−1∂J2 ∂̄J2φ.

The proof is quite standard now, given the volume estimates in [CH1].
We will omit it here.

Proof. (of theorem 1.3). We may assume J1 and J2 are not in the GC leaf
of J , the proof in the other case is similar. We proceed by contradiction.
Suppose J1 and J2 were not in the same G orbit. Then by corollary 8.2
we can assume there are disjoint G invariant neighborhoods U1, U2 of J1,
J2 respectively. Pick J ′

i in the intersection of Ui with GC leaf of J . Now
by theorem 5.3, we know that the Calabi flow Ji(t) starting from J ′

i exits
globally and converges to Ji(∞) ∈ Ui. So J1(∞) and J2(∞) are not in the
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same G-orbit either. By theorem 6.3, the corresponding Calabi flow φi(t) in
the space of Kähler metrics is asymptotic to a smooth geodesic ray which
also degenerates some other Ĵi to Ji(∞). Since J ′

1 and J ′
2 are both in the

GC leaf of J , we can pull everything back to J and then we have two Calabi
flows φi(t) each asymptotic to a smooth geodesic ray χi(t) tamed by bounded
geometry. By [CC], d(φ1(t), φ2(t)) is decreasing, so by corollary 7.4, φ1(t) is
also asymptotic to χ2(t). By corollary 7.3 and corollary 7.5

|χ1(t)− χ2(t)|C1,1 ≤ C.

So lemma 8.3 implies, there is no Kähler collapsing, and there is a diffeomor-
phism f with f∗J1(∞) = J2(∞), and f∗ω = ω+

√
−1∂∂̄φ. Since(f∗ω, J2(∞))

and (ω, J2(∞) are both csc Kähler structures in the same Kähler class,
by theorem 1.1, there is a diffeomorphism h with h∗J2(∞) = J2(∞) and
h∗f∗ω = ω, so (f ◦ h)∗(ω, J1(∞)) = (ω, J2(∞)). Contradiction.

Proof. (of theorem 1.6). Suppose f∗i (ωφi , J) → (ω1, J1), and h∗i (ωψi
, J) →

(ω2, J2). Since [ω] is integral, we see that [f∗i ωφi ] = [ω1] for i large enough,
so we can further assume that f∗i ωφi = ω1, and h

∗
iωψi

= ω2. Then we can
follow the proof of theorem 1.3.

Proof. (of corollary 1.7). Suppose f∗i J → J1. Since c1(J1) > 0, we have
c1(f

∗
i J) > 0, and we can choose a sequence of Kähler metrics ωi in c1(J)

such that f∗i ωi → ω1. Then we can apply theorem 1.6.

9 Further Discussions

There are also some further interesting questions.

Problem 9.1. A general notion of optimal degenerations and its relation to
the Calabi flow. Generalize the theorem to the uniqueness of some “canon-
ical” objects in the closure, allowing the occurrence of singularities. On the
other hand, by the Yau-Tian-Donaldson conjecture, one would like to know if
there is a direct algebraic-geometric counterpart of Theorem 1.3, i.e. whether
a K-polystable adjacent Kähler structure is unique.

Problem 9.2. Quantization approach([D4], [Fi]). In the case of discrete
automorphism group, Donaldson [D4] proved the existence of cscK metric
implies asymptotic Chow stability. Theorem 1.1 in this case follows immedi-
ately. It looks like one can use the finite dimensional Kempf-Ness theorem to
deal with Theorem 1.3 also. However, this can not be straightforward. The
reason is that for an adjacent cscK Kähler structure whose underlying com-
plex structure is different from the original one, the automorphism group can
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not be finite; and it is known that the existence of cscK metric(or even KE
metric) does not necessarily imply asymptotic Chow poly-stability, see the
recent counter-example in [OSY], [DZ]. It seems to the authors that more
delicate work is required to proceed by the quantization method.

Problem 9.3. It follows from our result that Tian’s conjecture in [Ti2] is
likely to hold for cscK metrics(The original conjecture allows mild singu-
larities). In the case of general extremal metrics, we might need to modify
the statement in Tian’s conjecture a bit. This can be easily seen in the cor-
responding finite dimensional analogue. In that case any gradient flow can
be reversed and we can get critical points in the limit along both directions
of the flow. Clearly they are not in the same G orbit and therefore “adja-
cent” critical point is not necessarily unique. In our infinite dimensional
case, the naive uniqueness also fails for adjacent extremal metrics. Such
examples were already implicit in Calabi’s seminal paper [Ca2]. Namely, we
consider the blown up of P2 at three distinct points p1, p2 and p3(denoted
by Blp1,p2,p3(P

2)), then by [APS], the class π∗[ωFS] − ǫ2([E1] + [E2] + [E3])
contains extremal metrics for ǫ small enough. If p1, p2 and p3 are in gen-
eral position(i.e. they do not lie on a line), then Blp1,p2,p3(P

2) are all bi-
holomorphic and by [Ca2] the classes π∗[ωFS] − ǫ2([E1] + [E2] + [E3]) have
vanishing Futaki invariant thus the extremal metrics are cscK. If p1, p2 and
p3 lie on a line, Calabi pointed out in [Ca2] that there is no cscK metric due
to the Lichnérowicz-Matsushima theorem. It is easy to see that for a fixed
Kähler class π∗[ωFS]−ǫ2([E1]+[E2]+[E3]), the extremal metrics in the case
p1, p2 and p3 lie on a line are adjacent to the cscK metrics in the case p1,
p2, p3 are in general position. So we can find proper extremal metrics even
adjacent to cscK metrics. C. Lebrun also pointed out to us another example,
where we can look at the Hirzebruch surfaces F2n of even degree. If n > m,
then with appropriate polarization, F2n is adjacent to F2m, while in [Ca1],
Calabi explicitly constructed extremal metrics in any Kähler classes.

The problem where the uniqueness fails can be seen from the fact that
our proof depends on the Calabi flow in an essential way. Since the Calabi
flow can only detect de-stabilizing extremal metrics, we might want to con-
sider only the uniqueness of de-stabilizing(i.e. energy minimizing) extremal
metrics, as a modification of Tian’s conjecture. This idea of de-stabilizing
extremal metrics has already been implicitly discussed in [Ch3].

Problem 9.4. The integrality assumption in theorem 1.6 is just for fixing
the symplectic form. It seems possible to remove this assumption.
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A Marle-Guillemin-Sternberg normal form

In this appendix, we shall give a proof of the Marle-Guillemin-Sternberg
normal form theorem for a Hamiltonian group action in the finite dimen-
sional case(lemma 4.6). We shall also consider an infinite dimensional case
for our purpose(lemma 6.2). We suppose that there is a compatible complex
structure, which in general we can not standardize without some “errors”.

A.1 Model case

We first look at a prototype. Suppose ω is a Kähler metric defined in a neigh-
borhood of 0 in C

n. Then we can not trivialize both the complex structure
and the symplectic structure simultaneously, however, we can make either
of them standard, with appropriate control on the other.

First, it is easy choose a holomorphic coordinate such that

ω = ω0 +O(|z|2),

where ω0 is the standard symplectic form on C
n. In this way the com-

plex structure is made standard, while the error on the symplectic form is
quadratic.

Now we denote α = ω − ω0. Let ft : z → tz be the contraction map. Then

α = f∗1α− f∗0α = dθ,

where θ =
∫ 1
0 f

∗
t (Xyα)dt, and X = z ∂

∂z
+ z̄ ∂

∂z̄
. So

θ = O(|z|3).

Let ωt = (1 − t)ω + tω0, then φ
∗
tωt = ω0, where φt is the isotopy generated

by the vector fields Yt satisfying

Ytyωt = −θ.

Thus, Yt = O(|z|3) and so

φt(z) = z +O(|z|3),

and
φ∗tJ0 − J0 = O(|z|2).

In this way the symplectic structure is standard, with an quadratic error on
the complex structure.
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A.2 Proof of lemma 4.5

Suppose a compact group G acts on a Kähler manifold (M,Ω, J) with mo-
ment map µ, and z0 is a zero of the moment map, but not fixed by the whole
group G. We denote by G0 the isotropy group of z0 and g0 its Lie algebra.
We also fix an AdG-invariant metric on g. Now consider Y = G×G0 (m⊕N).
Here N is the orthogonal complement of g.z0 in (g.z0)

ω0 , and m is the or-
thogonal complement of g0 in g. We identify ρ ∈ m with ρ̃ ∈ J0 · (g.z0)
through

〈ρ, η〉 = Ω0(ρ̃,Xη). (25)

This also induces an identification between m and g.z0 which is different
from the one coming from the action. G0 acts on (N,ΩN = Ω0|N ) linearly
with a natural moment map µN . Y is in fact the symplectic quotient of
G× (g0 ⊕m⊕N) ≃ T ∗G×N by G0. The induced symplectic form on Y is
given explicitly by(see [OR])

Ω̃[g,ρ,v]((Lgξ1, ρ1, v1), (Lgξ2, ρ2, v2))

:= 〈ρ2 + dvµN (v2), ξ1〉 − 〈ρ1 + dvµN (v1), ξ2〉+ 〈ρ+ µN (v), [ξ1, ξ2]〉

+Ω0(Xξ1 ,Xξ2) + Ω0(v1, v2)

= 〈ρ2 + dvµN (v2), ξ1〉 − 〈ρ1 + dvµN (v1), ξ2〉+ 〈ρ, [ξ1, ξ2]〉+Ω0(v1, v2) + 〈µN (v), [ξ1, ξ2]〉

= Ω0(X1,X2) + 〈ρ, [ξ1, ξ2]〉+ (〈dvµN (v2), ξ1〉 − 〈dvµN (v1), ξ2〉) + 〈µN (v), [ξ1, ξ2]〉,

where we identify TgG with g through left translation, and Xi = Xξi+αi+vi
is viewed as a tangent vector at z0. The G action on Y is Hamiltonian with
moment map:

µ̃ : Y → g; [g, ρ, v] → Ad∗g(µN (v) + ρ).

To prove lemma 4.6, we need to trace the proof of the relative Darboux
theorem. Since Ω is Kähler, we can choose holomorphic coordinates on a
neighborhood V of z0 such that Ω−Ω0 = O(r2). Let expz0 be the exponential
map with respect to the metric induced from J and Ω. Then we have

expz0(ρ+ v) = z0 + ρ+ v +O(r3).

Consider the map

exp : G×G0 (m⊕N) →M ; (ξ, ρ, v) 7→ eξ.expz0(ρ+ v).
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This is a diffeomorphism from a G-invariant neighborhood U of G × 0 to a
neighborhood V of G.z0. Indeed, its derivative at [e, 0, 0] is given by

dexpz0 : m⊕m⊕N → Tz0M = m⊕m⊕N ; (ξ, ρ, v) 7→ (L(ξ), ρ, v),

where we have made use of the identification (25), and L : m → m is the the
automorphism such that

(L(ξ), η) = g0(Xξ ,Xη)

for any ξ, η ∈ m. Denote Ω′ = exp∗Ω and J ′ = exp∗J , then we have

J ′
(0,0,0)(ξ, ρ, v) = (L−1(ρ),−L(ξ), J0 · v).

We can extend J ′ to an almost complex structure J̃ defined on Y .

On V , denote by (z, z̄) the coordinates for N , x for g.z0 and y for W =
J0 · (g.z0). The tangent space at z0 is naturally identified with V . Let
( ∂
∂v
, ∂
∂v̄
), and ∂

∂ρ
be the vector fields on U corresponding to ∂

∂z
, ∂
∂z̄

and ∂
∂y
(on

m ⊕ N) respectively and ∂
∂ξ

the vector fields induced by left translation of
∂
∂x

∈ Tz0V . These vector fields could also be viewed as vector fields on V
through the map exp. Then at [e, ρ, v] we have

∂

∂v
=

∂

∂z
+O(r2);

∂

∂v̄
=

∂

∂z̄
+O(r2);

∂

∂ρ
=

∂

∂y
+O(r2);

L
∂

∂ξ
=

∂

∂x
+ ξ.y + ξ.z +O(r2).

Now it is easy to see that

Ω̃(
∂

∂z
,
∂

∂z̄
) = Ω′(

∂

∂z
,
∂

∂z̄
) +O(r2),

Ω̃(
∂

∂z
,
∂

∂z
) = Ω′(

∂

∂z
,
∂

∂z
) +O(r2) = O(r2);

Ω̃(
∂

∂z
,
∂

∂y
) = Ω′(

∂

∂z
,
∂

∂y
) +O(r2) = O(r2);

Ω̃(
∂

∂y
,
∂

∂y
) = Ω′(

∂

∂y
,
∂

∂y
) +O(r2) = O(r2).
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and

Ω̃(
∂

∂z
,
∂

∂x
) = Ω̃(

∂

∂v
+O(r2), L

∂

∂ξ
− ξ.y − ξ.z +O(r2))

= Ω′(
∂

∂z
,
∂

∂x
) +O(r);

similarly,

Ω̃(
∂

∂y
,
∂

∂x
) = Ω′(

∂

∂y
,
∂

∂x
) +O(r);

Ω̃(
∂

∂x
,
∂

∂x
) = Ω̃(L

∂

∂ξ
− ξ.y − ξ.z +O(r2), L

∂

∂ξ
− ξ.y − ξ.z +O(r2))

= Ω′(
∂

∂x
,
∂

∂x
) +O(r).

Therefore, we obtain:

α = Ω′−Ω̃ = O(r2)(dzdz̄+dzdy+dz̄dy+dydy)+O(r)(dzdx+dz̄dx+dydx+dxdx).

Now let ft : (g, ρ, v) → (g, tρ, tv), then

Xt = ḟt = tρ
∂

∂ρ
+ tv

∂

∂v
+ tv̄

∂

∂v̄
= ty

∂

∂y
+ tz

∂

∂z
+ tz̄

∂

∂z̄
+O(r2).

We have
α = dθ,

with

θ =

∫ 1

0
f∗t (Xtyα)dt

=

∫ 1

0
(ty

∂

∂y
+ tz

∂

∂z
+ tz̄

∂

∂z̄
+O(r2))y[O(r2)(dzdz̄ + dzdy + dz̄dy + dydy)

+O(r)(dzdx+ dz̄dx+ dydx+ dxdx)]dt

= O(r2)dx+O(r3),

where the estimate is valid at [e, ρ, v]. Let Ωt = (1− t)Ω̃ + tΩ′, then

φ∗tΩt = Ω̃,

where φ̇t = Yt satisfies
YtyΩt = θ.
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Since

Ωt = Ω0+O(r2)(dzdz̄+dzdy+dz̄dy+dydy)+O(r)(dzdx+dz̄dx+dydx+dxdx).

So at [e, ρ, v], we have

Yt = O(r2)
∂

∂y
+O(r3) = O(r2)

∂

∂ρ
+O(r3).

Since Yt is G-invariant, this is also true at [g, ρ, v] for g close to Id. Thus
the integral curve of Yt satisfies

vt = v0 +O(r30);

ρt = ρ0 +O(r20).

Therefore,

(φ∗tJ
′)
∂

∂v
= φ−1

t ∗J
′((φt)∗

∂

∂v
) = φ−1

t ∗J
′(
∂

∂v
+O(r2)) = φ−1

t ∗J(
∂

∂z
+O(r2)) = J̃

∂

∂v
+O(r2),

and similarly

(φ∗tJ
′)
∂

∂v̄
= J̃

∂

∂z̄
+O(r2).

Let Φ = φ1, then Φ∗Ω′ = Ω̃. We get the required estimate that

Φ∗J ′ − J̃ = O(r),

and
Φ∗J ′ ·X − J̃ ·X = O(r2)|X|,

for X ∈ N . Hence lemma 4.6 is proved.

A.3 Proof of lemma 6.2

Now we proceed to our infinite dimensional problem, following the same
route as in the finite dimensional setting. However, there are a few more
technical issues, as we shall see below. Suppose (M,ω, J0) is a csc Kähler
manifold. Then the relevant group G is the group of Hamiltonian diffeomor-
phisms of (M,ω), which acts on the space J of almost complex structures
compatible with ω. Here in order to apply the implicit function theorem,
we shall put C∞ topology on these infinite dimensional objects which makes
them into tame Fréchet spaces([Ha]). J inherits a natural (weak) Kähler
structure (Ω, I) from the original Kähler manifold M . The action of G pre-
serves the Kähler structure and has a moment map given by the Hermitian
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scalar curvature functional m(J) = S(J)−S. Denote by G the identity com-
ponent of the holomorphic isometry group of (M,ω, J0). Let g and g0 the Lie
algebra of G, G respectively. Then we have an L2 orthogonal decomposition

g = g0 ⊕m,

where m is the image of Q∗ = ReD∗. We want to show that a neighborhood
V of J0 in J is G-equivariantly Hamiltonian diffeomorphic to a neighborhood
U in

Y = G ×G (m⊕N),

where G acts adjointly on g by

f.φ = f∗φ.

N is the orthogonal complement of the image of D in Ω0,1(T 1,0), and G acts
on N by pulling back: g.µ = g∗µ. This action is Hamiltonian with moment
map given by

mN : N → g0; (mN (v), ξ) =
1

2
Ω(ξ.v, v).

Similar to the finite dimensional case we can define a (weak) symplectic form
on U . The left G action on Y is Hamiltonian with moment map given by

m̃ : [g, ρ, v] = g∗(ρ+mN (v)).

The exponential map Ψ on J with respect to the natural Riemannian met-
ric is well defined by fiber-wise exponential map of the symmetric space
Sp(2n)/U(n), and it is easy to see that it is a local tame embedding of a
neighborhood of the origin in Ω0,1

S (T 1,0) into J . Using the local holomorphic
coordinate chart of J , the Kähler form satisfies

Ωµ = Ω0 +O(|µ|2).

It is also clear that
Ψ(µ) = µ+O(|µ|3).

Here the norms on both sides could be taken to be the same. Now we can
define a map

Φ : U → J ; [g, ρ, v] 7→ g∗Ψ(ρ+ v).

Lemma A.1. G is a smooth tame Lie group.

Proof. We first prove it is a smooth tame space. We can identify a Hamilto-
nian diffeomorphismH with an exact Lagrangian graph GH in M =M×M ,
i.e.

GH = {(x,H(x))|x ∈M}.
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Here M is endowed with a canonical symplectic form ω′ = π∗1ω−π∗2ω, where
πi is the projection map to the i-th factor. A Lagrangian graph is called ex-
act if it can be deformed by exact Lagrangian isotopies to the identity. We
can construct local charts for G as follows. Given any H ∈ G, by Weinstein’s
Lagrangian neighborhood theorem([We]), we can choose a symplectic diffeo-
morphism between a tubular neighborhood U of GH in M and a tubular
neighborhood V of 0 section in the cotangent bundle T ∗M . Then locally
any Hamiltonian diffeomorphism close to H is represented by the graph of
an exact one-form, i.e. the differential of some real valued function on M .
So locally U can be identified with an open subset of C∞

0 (M ;R). Thus G
is modelled on C∞

0 (M ;R). Now we check the transition function is smooth
tame. In our case locally between any two charts there is a symplectic dif-
feomorphism of the cotangent bundle F : T ∗M → T ∗M which is identity
on the zero section. Then the induced transition map is smooth tame, by
observing that the Ck distance between the graph of exact one-forms dφ1
and dφ2 is equivalent to the Ck+1 distance between φ1 and φ2. Similary
we can prove that the group multiplication and inverses are both smooth
tame.

Since the finite dimensional group G acts smooth tame and freely on
G × (m⊕N), we know that

Y = G ×G (m⊕N)

is a tame space with a smooth tame G- action.

Lemma A.2. The G-equivariant map

Φ : G ×G (m⊕N) → J ; [g, ρ, v] 7→ g∗Ψ(ρ+ v)

is smooth tame with a local smooth tame inverse around [Id, 0, 0].

Proof. It is clear by definition that the map is smooth and tame. The k-th
derivative of Φ is tame of degree k+1. To apply Hamilton’s implicit function
theorem, we need to study the derivative of Φ near [Id, 0, 0]. At δ = [g, ρ, v],
we denote µ = Φ(δ). Then we have

DδΦ : m⊕m⊕N → Ω0,1
S (T 1,0); [φ,ψ, u] 7→

(Id− µ̄) ◦ (I − µ ◦ µ̄)−1 ◦ [Qµφ+ g∗DΨ|ρ+v(
√
−1D0ψ + u)] ◦ (Id− µ)−1.

To find the inverse to Dδ, we need to first decompose Ω0,1
S (T 1,0) into the

direct sum of DΨ−1 ◦ ImQµ|m and KerQ∗
0 with estimate. This can be done

using elliptic theory. We can obtain that

ν = (DΨ)−1 ◦Qµφ+
√
−1Q0ψ + η,
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where η ∈ KerD∗
0. Take the map Pµ : ν 7→ (φ,

√
−1Q0ψ + η). Then it is

smooth tame again by elliptic estimates. Since the inverse of DδΦ is the
combination of P with some other smooth tame operator, it is also smooth
tame. Then we can apply the Nash-Moser implicit function theorem([Ha])
to conclude the lemma.

As in the finite dimensional case, there is a canonically defined (weak)
symplectic form on U given by

Ω̃[g,ρ,v]((Lgξ1, ρ1, v1), (Lgξ2, ρ2, v2))

:= 〈ρ2 + dvµN (v2), ξ1〉 − 〈ρ1 + dvµN (v1), ξ2〉+ 〈ρ+ µN (v), [ξ1, ξ2]〉+Ω0(v1, v2)

= (D∗
0D0ξ1, ρ2)− (D∗

0D0ρ1 + dvµN (v1)− [D∗
0D0ρ+ µN (v), ξ1], ξ2) + Ω0(v1, v2) + (ξ1, dvµN (v2))

By the above lemma we can pull back the symplectic form Ω and the complex
structure I to U , denoted by Ω′ and I ′ respectively. There is also a canonical
almost complex structure I0 on U defined by

I0 : m⊕m⊕N → m⊕m⊕N ; (ξ, ρ, v) → ((D∗
0D0)

−1ρ,−D∗
0D0ξ, I(0)(v)).

It is easy to see that I ′ = I0 at [Id, 0, 0].

Proposition A.3. There are neighborhoods Ui,Vi(i = 1, 2)(U2 ⊂ U1) of
[Id, 0, 0] in Y and two G-equivariant smooth tame maps

Σ1 : U1 → V1,

Σ2 : V2 → U2,

which fixes the G-orbit of [Id, 0, 0] such that Σ1 ◦Σ2 equal to the identity and
such that

Σ∗
1Ω̃ = Ω′,

Σ∗
2Ω

′ = Ω̃,

and for any X ∈ N , and [g, ρ, v] ∈ V2,

(DΣ1) ◦ I ′ ◦ (DΣ2)(X)− I0(X) = O(r2) · |X|,

and at [Id, 0, 0],
(DΣ1) ◦ I ′ ◦ (DΣ2) = I0.

Here the estimate is only in the tame sense, i.e. the norm on the left hand
side might be weaker than that on the right, r is the norm of [g, ρ, v].
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Proof. The idea of the proof is the same as the finite dimensional case. The
main difficulty is to show the existence of solutions to the involved O.D.E’s in
infinite dimension. Once this is established, then everything else will follow
formally. First we have (µ = Φ([Id, ρ, v]))

Ω′
[g,ρ,v]((Lgξ1, ρ1, v1), (Lgξ2, ρ2, v2))

= Ωµ(Dµξ1 + dΦ∗(
√
−1D0ρ1 + v1),Dµξ2 + dΦ∗(

√
−1D0ρ2 + v2))

= −Im(Dµξ1 + dΦ∗(
√
−1D0ρ1 + v1),Dµξ2 + dΦ∗(

√
−1D0ρ2 + v2))L2

= (−ImD∗
µDµξ1 −ReD∗

µ ◦ dΦ∗(D0ρ1 −
√
−1v1), ξ2)

+(ReD∗
0 ◦ (dΦ∗)

t(Dµξ1) + ImD∗
0 ◦ (dΦ∗)

tdΦ∗(D0ρ1 −
√
−1v1), ρ2)

+Ω0((dΦ∗)
t(Dµξ1 + dΦ∗(

√
−1D0ρ1 + v1)), v2)

As in the finite dimensional case, we need to solve an O.D.E. Let Ωt =
(1 − t)Ω̃ + tΩ′. The isotopies ft : [g, ρ, v] → [g, tρ, tv] gives rise to time-
dependent vector field Xt(ft([g, ρ, v])) = [0, ρ, v]. We first need to solve
another time-dependent vector field Yt through the following relation:

Ωt [g,ρ,v](Yt, Z) =

∫ 1

0
(Ω′ − Ω̃)[g,sρ,sv]((0, ρ, v), fs∗Z)ds (26)

Notice that Yt is G-invariant. So we can assume g = Id. Let Yt = (ξ1, ρ1, v1)
and Z = (ξ2, ρ2, v2). By choosing Z arbitrarily, we get the following system
of equations:

−tImD∗
µDµξ1 − tReD∗

µ ◦ dΦ∗(D0ρ1 −
√
−1v1)

−(1− t)D∗
0D0ρ1 − (1− t)dvµN (v1) + (1− t)[D∗

0D0ρ+ µN (v), ξ1]

+

∫ 1

0
ReD∗

µs
◦ dΦs∗(sD0ρ+

√
−1sv) +D∗

0D0(sρ)− dvµN (sv)ds ∈ g0

(27)

tReD∗
0 ◦ (dΦ∗)

tDµξ1 + tImD∗
0 ◦ (dΦ∗)

t ◦ (dΦ∗)(D0ρ1 −
√
−1v1)

+(1− t)D∗
0D0ξ1 −

∫ 1

0
ImD∗

0 ◦ (dΦs)t∗ ◦ (dΦs)∗(sD0ρ−
√
−1sv)ds ∈ g0

(28)
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t(dΦ∗)
t ◦ (Dµξ1 + dΦ∗(

√
−1D0ρ1 + v1)) + (1− t)v1 + (1− t)(dvµN )

∗(ξ1)

−
∫ 1

0
(dΦs∗)

t ◦ dΦs∗(s
√
−1D0ρ+ sv)− svds ∈ ImD0

(29)

Since Ω′ and Ω̃ are both non-degenerate, this system admits a (unique) weak
solution. Then applying elliptic regularity, the solutions are smooth. Next
we shall prove that there are two neighborhoods N1, N2 of 0 in m×N , and
a smooth tame map F from N1 to C∞([0, 1],m × N) such that the time 1
evaluation of the image of F is a smooth tame map from N1 to N2 and for
any (ρ, v) ∈ N1,





d
dt
Ft(ρ, v) = (ρ1(t), v1(t)), t ∈ [0, 1] ;

F0(ρ, v) = (ρ, v).

(30)

To prove this claim, we shall exploit Hamilton’s implicit function theorem
again. Define a map

H : C∞([0, 1],m ×N) → (m ×N)× C∞([0, 1],m ×N)

which sends (ρ(t), v(t)) to (ρ(0), v(0)) × (ρ̇(t) − ρ1(t), v̇(t) − v1(t)). It is
clear that H is a smooth tame map and H(0) = 0. We shall show that for
x = (ρ(t), v(t)) close to zero, the derivative of H at x is invertible and its
inverse is smooth tame. Let δx = (ρ̃(t), ṽ(t)), then the derivative of H along
δx is given by (ρ̃(0), ṽ(0)) × ( ˙̃ρ − δρ1(ρ̃), ( ˙̃v − δv1(ṽ)). So the invertibilty of
dH is equivalent to the solvability of the Cauchy problem of the following
linear system along (ρ(t), v(t)):





d
dt
(α, u) = (δρ1(α), δv1(u)) + (β, q), t ∈ [0, 1]

(α(0), u(0)) = (ρ̃(0), ṽ(0)).

(31)

Thus we need to linearize equations (27) and (29). As a result, we get
the following





α̇(t) = A1(ρ(t), v(t))α(t) +A2(ρ(t), v(t))u(t) + β(t),

u̇(t) = B2(ρ(t), v(t))α̇(t) + C2(ρ(t), v(t))α(t) +B0(ρ(t), v(t))u(t) + q(t),

(α(0), u(0)) = (ρ̃(0), ṽ(0)),
(32)
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whereAi, Bi, Ci are pseudo-differential operators of order i whose coefficients
depend on (ρ(t), v(t)). Let w(t) = u(t)−B2(ρ(t), v(t))α(t). Then the systems
of equations for (α(t), w(t)) become symmetric hyperbolic, for which the
Cauchy problem is always solvable with estimates, see [AG]. From the proof
we can check that the solution depends tamely on (ρ(t), v(t)), (β(t), q(t))
and the initial condition (ρ̃(0), ṽ(0)). So by Hamilton’s implicit function
theorem H has a local smooth tame inverse. Let F = H−1(−, 0) and the
claim is then proved. Now for any [g, ρ, v] close to [Id, 0, 0], we obtain a path
(ρ(t), v(t)) = Ft(ρ, v). Then we can solve the O.D.E ġ(t) = Lg(t)ξ1(t), where
ξ1(t) is determined by (ρ(t), v(t)). [g(t), ρ(t), v(t)] is then an integral curve
of Yt by the G-invariancy. Now we define

Σ2 : V2 → U2; [g, ρ, v] 7→ [g1, F1(ρ, v)].

Then from the previous arguments we know that Σ2 is smooth tame and
fixes G.[Id, 0, 0]. Moreover, Σ∗Ω′ = Ω̃. It follows from equations (27), (28),
(29) that we have a tame estimate

|v1(t)| ≤ C · (|ρ(t)| + |v(t)|)3.

Since |(v(t), ρ(t))| ≤ C · |(v(0), ρ(0))|, we obtain

|v1(t)− v1(0)| ≤ C · (|ρ(0)| + |v(0)|)3.

By symmetry, we can obtain the map Σ1. Then one can check that the
required estimates hold.

Now to prove lemma 6.2, we just need to apply the previous proposition
to the path Ĵ(t), and use exactly the same argument as in the proof of
theorem 4.7.
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