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NOTE ON K-STABILITY OF PAIRS

SONG SUN

ABSTRACT. We prove that a pair (X, D) with X Fano and D an anti-
canonical divisor is K-unstable for negative angles, and is K-semistable
for zero angle.

1. INTRODUCTION

Let X be a Fano manifold. It was first proposed by Yau [20] that find-
ing Kéahler-Einstein metrics on X should be related to a certain algebro-
geometric stability. In [I7], the notion of K-stability was introduced by
Tian. This has been conjectured to be equivalent to the existence of a
Kahler-Einstein metric. One direction is essentially known, in a wider con-
text of constant scalar curvature Kéhler metrics [3]. Namely, it is proved
by Donaldson [4] that the existence of a constant scalar curvature metric
implies K-semistability. This was later strengthened by Stoppa [15] to K-
stability in the absence of continuous automorphism group, and by Mabuchi
[9] to K-polystability in general.

Recently in [6](see also, [16], [7]) K-stability has been defined for a pair
(X, D), where X is a Fano manifold and D is a smooth anti-canonical divisor.
The definition involves a parameter § € R. At least when 8 € (0, 1], the
K-stability of a pair (X, D) with parameter /3 is conjectured to be equivalent
to the existence of a Kéhler-Einstein metric on X with cone singularities of
angle 273 transverse to D. This generalization grew out of a new continuity
method for dealing with the other direction of the above conjecture, as
outlined in [5]. Note heuristically the case 5 = 0 corresponds to a complete
Ricci flat metric on the complement X \ D. By the work of Tian-Yau [18]
such a metric always exists if D is smooth. In this short article we prove
the following theorem, which may be viewed as an algebraic counterpart of
the differential geometric result of Tian-Yau.

Theorem 1.1. Any pair (X, D) is strictly K-semistable with respect to angle
B8 =0, and K-unstable with respect to angle B < 0.

By the definition of K-stability for pairs which will be recalled in the next
section, the Futaki invariant depends linearly on the angle 8. Thus Theorem
[Tl leads immediately to the following

Corollary 1.2. If X is K-stable(semi-stable), then for any smooth anti-
canonical divisor D, the pair (X, D) is K-stable(semi-stable) with respect to
angle B € (0,1].
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This corollary provides evidence to the picture described in [5] that a
smooth Kéhler-Einstein metric on X should come from a complete Calabi-
Yau metric on X \ D by increasing the angle from 0 to 2. The relevant defi-
nitions will be given in the next section. The strategy to prove K-unstability
for negative angles is by studying a particular test configuration, namely the
deformation to the normal cone of D. To deal with the zero angle case we
shall construct “approximately balanced” embeddings using the Calabi-Yau
metric on D. In [II], Odaka proved that a Calabi-Yau manifold is K-stable,
by a purely algebro-geometric approach. It is very likely that his method
can give an alternative proof of the above theorem, but the one we take
seems to be more quantitative.

2. K-STABILITY FOR PAIRS

We first recall the definition of K-stability.

Definition 2.1. Let (X, L) be a polarized manifold. A test configuration
for (X, L) is a C* equivariant flat family (X, L) — C such that (X1, L)) is
isomorphic to (X, L). (X, L) is called trivial if it is isomorphic to the product
(X, L) x C with the trivial action on (X, L) and the standard action on C.

Suppose D is a smooth divisor in X, then any test configuration (X, L)
induces a test configuration (D, £) by simply taking the flat limit of the C*
orbit of D in X;. We call (X, D, L) a test configuration for (X, D, L). Given
any test configuration (X, D, £) for (X, D, L), we denote by Aj and Ay, the
infinitesimal generators for the C* action on H°(Xp, £&) and H(Dy, LE)
respectively. By general theory for k large enough we have the following
expansions

dy, == h2(Xp, LE) = apk™ + a k" + O(k"72),
wy = tr(Ag) = bok™* + b1 k" + O(K" 1),
di == h% (Do, L) = agk™ " + a k"2 + O(k"3),
Wy = tr(Ay) = bok™ + b k"1 + O(k"2).

Definition 2.2. For any real number 3, the Futaki invariant of a test
configuration (X, D, L) with respect to angle 3 is

a1by — apby)

Fut(X,D, £, 5) = 2 + (1= B) (o - Z—Zbo).

ao

When f = 1 we get the usual Futaki invariant of a test configuration
(X, L)
2 _
Fut(X, L) = M'
ap
Definition 2.3. A polarized manifold (X, L) is called K-stable(semistable)
if Fut(X,L£) > 0(> 0) for any nontrivial test configuration (X,L). Sim-
ilarly, (X, D, L) is called K-stable(semistable) with respect to angle 8 if
Fut(X,D,L,3) > 0(> 0) for any nontrivial test configuration (X, D, L).
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When the central fiber (X, Dy) is smooth, by Riemann-Roch the Futaki
invariant then has a differential geometric expression as

w” wn—l 0 o
ruin2.69= [ 5-on | G |

where w is an St invariant Kéhler metric in 2me; (Lo) and H is the Hamil-
tonian function generating the S' action on L£g. This differs from the usual
Futaki invariant by an extra term which reflects the cone angle.

n!

~—

)

The above abstract notion of K-stability is closely related to Chow sta-
bility for projective varieties, which we now recall. Given a C* action on
CPV, and suppose the induced S! action preserves the Fubini-Study metric.
Then the infinitesimal generator is given by a Hermitian matrix, say A. The
Hamiltonian function for the S' action on CP¥ is

2*Az
H = .
S
Given a projective manifold V in CPY, we define the center of mass of V
zz* Vol(V)
= — Id —lsu(N +1
w(V) RS T N € vV=1Isu(N +1),

viewing CP" as a co-adjoint orbit in su(N + 1). Define the Chow weight of
V' with respect to A to be

Vol(V)
N +1
Notice this vanishes if A is a scalar matrix. The definition is not sensitive to
singularities of V' so one may define the Chow weight of any algebraic cycles
in a natural way. It is well-known that the CH(e!4.V, A) is a decreasing
function of ¢, see for example [4]. So

(2.1) CH(V,A) < CH(Vx, A),
where Vo is the limiting Chow cycle of e!4.V as t — —oo. Vi is fixed by

the C* action and then C'H(V,, A) is an algebraic geometric notion, i.e.
independent of the Hermitian metric we choose on CN*1.

TrA.

CH(V,A)=-Tr(u(V)-A) = —/VHAd,qu +

This well-known theory readily extends to pairs, see [5], [I]. We consider
a pair of varieties (V, W) in CPY where W is a subvariety of V. Given a
parameter A € [0, 1], we define the center of mass of (V, W) with parameter
A

zz* zz* AVol(V)+ (1 = X\)Vol(W)
V) = [ Za +1—)\/ 22 g
i ) /V|Z|2 trs+(1=A) o R N1

and the Chow weight with parameter A:
CH(V,W,A,\) = ~Tr(u(V, W, ) - A).

A pair (V, W) with vanishing center of mass with parameter \ is called a
A-balanced embedding.

Id,

Now given a test configuration (X, D, £), it is explained in [13] and [4](see
also [12]) that for k large enough one can realize it by a family of projective
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schemes in P(H°(X, L¥)*) with a one parameter group action. Moreover one
could arrange that the fiber (X7, Dy, L) is embedded into P(HO(X, L¥)*)
with a prescribed Hermitian metric, and the C* action is generated by a
Hermitian matrix — Ag(negative sign because we are taking the dual). Then
as in [4] the Futaki invariant is the limit of Chow weight:

(2.2) lim k"CHy(Xo, Do, —Ar, N) = Fut(X, D, L, 3),
— 00

with g = 3422,

3. PROOF OF THE MAIN THEOREM

From now on we assume X is a Fano manifold of dimension n, D is a
smooth anti-canonical divisor and the polarization is given by L = —Kx.
We first prove the part of unstability in theorem [ by considering the
deformation to the normal cone of D, as studied by Ross-Thomas [14]. We
blow up D x {0} in the total space X x C and get a family 7 : X — C.
The exceptional divisor P is equal to the projective completion P(vp @ C)
of the normal bundle vp in X. The central fiber A} is the gluing of P to X
along D = P(vp). There is a C* action on X coming from the trivial action
on X and the standard C* action on C. Let D be the proper transform
of D x C. This is C* invariant, and its intersection with the central fiber
is the zero section P(C) C P(vp @ C)(The readers are referred to [14] for
a very nice picture of a deformation to the normal cone). The line bundle
we use is L. = L(—cP)(c is rational). It is shown in [14] that L. is ample
when ¢ € (0,1). There is also a natural lift of the C* action to L., so that
we get test configurations (X, D, L.) parametrized by c¢. We follow [14] to
compute the Futaki invariant. Pick a sufficiently large integer k so that ck
is an integer. We have the decomposition

ck
HO(x,£h) = P+ HO (X, L") e t*C[ HO(X, LF),
=1
where t is the standard holomorphic coordinate on C. Using the short exact
sequence
0— H'X, L") - H°(X,LY) — H(D, L") — 0,

we obtain

HO(X07£ICC) = HO(X7£IZ)/tHO(X7£]c€)
ck—1
— HO(X, L(lfc)k) ® @ tckfiHO(D’kai).
=0

This is indeed the weight decomposition of H°(Xp, £¥) under the C* action.
Note the weight is —1 on t. So
ck—1 A
dim H°(Xp, L) = dim H*(X, L19%)4+ Y~ dim (D, LF ") = dim H(X, L)
=0
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This actually shows the flatness of the family (X, D, £). Thus by Riemann-

Roch,

1
ag —

- — )"
oy Xcl( )",

and
1

T /X“(‘KX) ()=

The weight is given by

ck—1
wp = = Y (ck—i)dim HO(D, 1)
=0
ck—1 -
_ ck —i M c n—l n=3
SR S [ atmy+ o)

ncag

= —nao/ (c—z)1 — )" Ldo - k" — Tk:” + O(k™ ).
0

S0 +1
1-(1—¢)"
S
and nea
b=~

Thus the ordinary Futaki invariant for the test configuration (X, £) is given

by

2(@1[)0 — aobl) 1-— (1 — C)n+1
F X == - .
ute(X, L) o n( 1 )ao
Note
HO(D,£F) = HY(D x C, L* @ (t)**) = t**C[t]H° (D, L*).
So

H°(Dy, £F) = HY(D, )/t HY (D, £F) = t* HO(D, L*).

Thus we see
~ / Cl(L)n_l
ap = ———— = na

~ L n—1
by = —c/ & = —ncag.
p (n—1)!

and

Therefore,

Futo(X,D,L,5) = Futc<x,£>+<1—ﬁ><éo—z—gbo>

_ —c n+1 _ —c n+1
= W0 ) ene e - 09T,
==t
= W

Therefore for 5 < 0 this particular test configuration gives rise to unstabil-
ity, and for 8 = 0 the pair (X, D) can not be stable.
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Now we move on to prove K-semistability for 5 = 0. Using again the
short exact sequence

0— HYX, ™" — HY(X, L) - H(D,L’) = 0

successively we can choose a splitting

k
(3.1) H(X, L") = H'(X, L") o @ H(D, L)
Jj=s

for s large enough and all £ > s. By Yau’s theorem [19] there is a unique
Ricci flat metric wp in ¢1(L)|p. This defines a Hermitian metric on H°(D, L7)
by the L? inner product. We can put an arbitrary metric on H°(X, L),
and make the splitting (3.1]) orthogonal. We also identify the vector spaces
with their duals using these metrics. Take s large enough so that D em-
beds into P(H°(D, L7)) and X embeds into P(H°(X, L7)) for all j > s — 1.
Choosing an orthonormal basis of H°(D,L’) we get an embedding fi:
D — P(HY(D,L7)) = P%L(here n; = dim H°(D, L7)). We also pick an
arbitrary embedding fs—1 : X — P(H°(X,L*"1)). Denote by D; the im-
age of f;, and let N(D;_1,D;) be the variety consisting of all points in
P(HO(D, L)@ HO(D, L)) C P(H®(X, L)) of the form [uf; 1(p) : vf;(p)]
for p € D and u,v € C. The projection map w; : N(D;_1,D;) — D
makes it a P! bundle over D. This is isomorphic to the projective com-
pletion of the normal bundle of D in X. Let X} be the union of all these
N(Dj_1,Dj)(s < j < k) together with f,_1(X). Then it is not hard to see
that as a pair of Chow cycles (X}, Dy) lies in the closure of the PGL(dy;C)
orbit of a smooth embedding of (X, D) in P(H°(X, L¥)). We want to esti-
mate its center of mass. The following two lemmas involve some calculation
and the proof will be deferred to the end of this section.

Lemma 3.1. For s < j <k we have
n—1
n o __ 7 n—1—1
T Wprg = ij A wi1
i=0
where wj = frwpg.

This lemma implies that

n—1

1

Vol(N(Dj-1,Dj)) = ]

=0
Summing over j we see that Vol(Xj) = k"Vol(X).

Notice N(Dj_1, D;) can only contribute to the H°(D, L ~1) and H(D, L7)
components of the center of mass of Xj. Denote by Z; = (Z}, e ,Z;j) the
homogeneous coordinates on H°(D,L’) for s < j < k, and by Z, ;| the

homogeneous coordinate on H°(X, L*~!). Then we have
Lemma 3.2. For s < j <k we have
7,7}
Jj—1 n
T 5 — 5 3Wrs =0,
T1Zi1P 412

> J =D (=) al(D) = (57— (—1)")Vol(X).
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Z; 17
LGP 120

* * 1.
—ZZ Wi :—Zij "Z Z+1wi/\w’?*1*i
TGRS T TR A

nS :0’

n—1 .
HNZP 2P 12 ST
=0

This lemma implies that the center of mass pu(X}) also splits as the direct
sum of y;’s. For j between s and k — 1 we have

Z: 7% on Z*"12+1 n—i
(X)) = J7]XFS _ / z/\ n—1—i AW 1—i

while

n—1 .

LAWY /4 AW PWEE
X)) = — E Wt ANwp—y

and
1 S— 1Z* — ’I’L—Z —1—g / Zs—lz*_lwn
—1(Xg) = — WA W s 1%s—12ps
Ho-1(Xr) n!/D 1 Zy_ 1|2 Zn+1 s Ws—1 s Zea?2 nl

The induced metric w; is related to the original metric wg by the “density
of state” function:

w; = jwo + v —1801og p;(wp).
It is well-known that we have the following expansion(see [2], [21], []], [10])

S(wo)

2 jﬂ,f? + O(]n73) — jnfl + O(jn73)’

pilwo) = " +
since wy is Ricci flat. Thus

wiwp T =G = )T e T 1+ 0(7)

To estimate (1 recall we have chosen an orthonormal basis {sz} of HY(D, L7)
and we can assume fi; is a diagonal matrix. Then for s < j < k—1 we obtain

|5l| 1+o =3)) = z—i—li. I STl PPN A

It is easy to see that

1+ 1 iy 11— n—u1
B A S
;:o("“] (-1 +oT

Thus

n—1 .
1(]+1)Zjn 1— Z):njn_1+0(jn_3).

wi(Xk) =1+0(72).
For j = k, we have
He(Xk) = 1/2+ O(k™1).
For j = s — 1, we have
pe_1(Xx) = O(1).
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The center of mass of the pair (X, Dy) with respect to A = 2/3 is given by

2 1
#( Xk, Di, 2/3) = 51(X) + 3u(Dp) — p - 1d,

where we denote
2Vol(Xy) + Vol(Dy) 2
3dy, 3
Thus for s <j <k —1and 0 <1 < nj we have
pi(Xk, Dy, 2/3) = O(5%) + O(k?).

Since n; is a polynomial of degree n — 1 in j, we obtain

= + O(k™?).

n;
1145 (X, Di 2/3)2 = (3 [uh(Xi, Dy 2/3))Y2 = 0(°),
1=0
and
E—1 .
> 115Xk, Di,2/3)|2 = O(k™T).
Jj=s
For j = k, we have
112 jn—1,n—1
»(D :/ 5 1 B W 2y
(D) p k14 O(k"*?’)( +0(k™)) n—1)! +O(k™7)
So
1 (Xg, Dy) = O(k™Y),
and

n—3

|1k (X, Di)|2 = O(k 2 ).

Therefore we obtain ,

[1( Xk, Dip)l2 = Ok 2).
So for a smoothly embedded (X, D) in P(H°(X, L¥)) we have
n—3
inf (X,D =0k 2).
serd o e (X, D))l = O(k=")
In particular there are embeddings ¢, : (X, D) — P(H®(X, L*)) such that
n—3
(ke (X, D))l2 = O(k™27).

Now any test configuration (X,D,L) can be represented by a family in
P(H°(X, L*)) such that the fiber (X;,D;,L;) is embedded by ¢, and the
C* action is generated by a Hermitian matrix Ay. Again by general theory
|Ak|3 = TrA2 = O(k™2). Therefore by monotonicity of the Chow weight
we obtain

CHy(Xo, Do, —Ak,2/3) > CHy(X1, D1, —Ay,2/3)
> — inf (X, D | —=A
P 1(g-(X, D))l2 - | = Agl2
> —O(k"2).

Thus by (2.2)
2
Fut(X,D,E,O) = lim k_nCHk(XQ,DQ, —Ak, —) > 0.
k—o0 3
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This finishes the proof of Theorem [T1]

Now we prove Lemmas 3.1l and In general suppose there are two
embeddings f; : D — P! and f, : D — P™. As before, let N(D) be the
variety in PH™+1 containing all points of the form (tfi(z), sfa2(z)) where
t,s € C. Intuitively N(D) is ruled by all lines connecting fi(z) and fa(x)
for x € D. Choose a local coordinate chart U in D such that the image f1(U)
and f2(U) are contained in a standard coordinate chart for the projective
spaces P! and P™ respectively. Let [1: z] and [1 : w] be local coordinates in
P! and P™. Under unitary transformations we may assume fi(xg) = [1 : 0]
and fa(zg) = [1: 0]. The line connecting fi(z¢) and fa(zg) is parametrized
as [1:0:¢:0] for t € C. Along this line we have

V-1

Wrs = ?aélog(l + 22+ [t + [t w]?)
_ VAT (4 L2) X2 d2* Adz + [t (1 4 [t*) X2 dw? A di? + dt A dE
o (11 [tP)? '
Thus

V=1 : ‘ . . _
wis = n(Zo=)" U+t Q_de' Az [t ) dw’ Ada?)" T AdEAdE.
i j

Hence integrating along the P! we get

1 _
/1 wpg = —/n(w1+|t|2w2)"_1/\(1+|t|2)_"_1\/—1dt/\dt
P
1 '
— / Z(n > J/\wn 1— J (1+x)7n71dx
= Zwl/\w" 1=,

This proves lemma Bj'_l

For the center of mass we compute

1 j+1 wl A1
/pll—i-]t]Q FS = Z wy A wsy )

and

/ . nz_ln—J' i A 1
w w .
b1 L g2 0FS T 1 Lo

Thus globally we obtain
/ |Z|2+|w|2 whs = /IZI Z

/ ww* n ww* T n — J A1
s Wps = | Z wi Aw .
vy FPF 0P TS T Jp TP 2 g 1112

and




10 SONG SUN

Also notice by symmetry of N(D) under the map w +— —w we have

zw* n
s wprg = 0.
/N(D) 2% + |l

Similarly

*

wz n
s wprg = 0.
/N(D) 2% + |l

This proves lemma [3.2]

Remark 3.3. In the case when X is P! and D consists of two points, one
can indeed find the precise balanced embedding for X\ = 2/3. In P* let L be
the chain of lines L; connecting p; and pi41(0 < i < k — 1), where p; is

the i-th coordinate point. Then it is easy to see that L is the degeneration

limit of a smooth degree k rational curve, and it is exactly %—bal(mced. It is

well-known that a rational normal curve in P is always Chow polystable, it
follows by linearity that it is also Chow polystable for \ € (2/3,1].
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