
PROJECTIVE EMBEDDING OF LOG RIEMANN SURFACES

AND K-STABILITY

JINGZHOU SUN AND SONG SUN

Abstract. Given a smooth polarized Riemann surface (X,L) endowed with a
hyperbolic metric ω that has standard cusp singularities along a divisor D, we

show the L2 projective embedding of (X,D) defined by Lk is asymptotically

almost balanced in a weighted sense. The proof depends on sufficiently precise
understanding of the behavior of the Bergman kernel in three regions, with the

most crucial one being the neck region around D. This is the first step towards
understanding the algebro-geometric stability of extremal Kähler metrics with

singularities.

1. Introduction

Let (X,L) be an n dimensional polarized Kähler manifold. The famous Yau-
Tian-Donaldson conjecture relates the existence of constant scalar curvature Kähler
(cscK) metrics in the class 2πc1(L) to the K-stability of (X,L). This is essentially
a correspondence between differential geometry/PDE and algebraic geometry of
(X,L). The direction from cscK metrics to K-stability was established by Don-
aldson [12], Stoppa [23], Mabuchi [20], using the idea of quantization. The other
direction is much more involved, and it has been established for toric surfaces by
Donaldson [11], and for anti-canonically polarized Fano manifolds by the recent re-
sult of Chen-Donaldson-Sun [5–7] (the corresponding metrics are Kähler-Einstein).

A crucial ingredient in the proof of [5–7] is the introduction of a smooth divisor
D ∈ | − mKX | for some m ≥ 1. Both aspects of the above conjecture extend
naturally to the pair (X,D) with an extra parameter β ∈ [0, 1]. On the algebraic
geometric side we have a notion of logarithmic K-stability for (X,D,K−1

X , β), and
on the differential geometric side the corresponding object is a Kähler-Einstein
metric with cone angle 2πβ along D. Roughly speaking the strategy of [5–7] is a
continuous deformation from β = 0 to β = 1. A simple but important fact is that
the logarithmic K-stability is linear in β, and it is then evidently important to study
both aspects at β = 0. On the metric side one expects complete Kähler-Einstein
metrics on the complement X \D, and such metrics are known to exist ( [8, 14, 28]),
by adapting Yau’s solution of the Calabi conjecture and following Calabi’s ansatz;
on the algebraic side the K-semistability of (X,D,K−1

X , 0) is established by [24],
[21], [3], [15]. However, a direct relationship between these two facts seems missing.

Now for a general polarized manifold (X,L) with a smooth divisor D the above
discussion can be extended in a straightforward way by replacing K−1

X with L. Such
a theory has not yet been satisfactorily established. In this direction we expect the
following

Conjecture 1.1. Let (X,L) be a polarized Kähler manifold of dimension n, and
D a smooth divisor in the class c1(L). Denote σ = −(KX + L).Ln−1/Ln, and
suppose D admits a constant scalar curvature Kähler metric ωD ∈ 2πc1(L|D). Then
(X,D,L, 0) is logarithmic K-semistable if σ ≤ 0.

The second author is partially supported by NSF grant DMS-1405832 and Alfred P. Sloan
fellowship.
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Notice the sign of σ is the same as the sign of the scalar curvature of ωD. When
σ = 0 Conjecture 1.1 follows from [24] (the proof there is written assuming D is
Calabi-Yau, but it is easy to see one only uses the condition that D is scalar flat).
WhenKX is proportional to L, Conjecture 1.1 holds by the results of [3, 15, 21]. The
conjecture can also be intuitively interpreted as a form of inversion of adjunction for
K-stability, if one assumes the Yau-Tian-Donaldson conjecture holds in dimension
n − 1. It is an interesting question to ask if the algebro-geometric counterpart
can be proved directly. From the differential geometric point of view the conjecture
also suggests the existence of complete Kähler metrics with negative constant scalar
curvature on the complement X \D, which is related to the work of H. Auvray [1].

In this paper we will deal with the case n = 1, so X is a smooth Riemann surface,

and D =
∑d
i=1 pi is an effective divisor of degree d (all pi’s are distinct). We call

such pair (X,D) a log Riemann surface. The condition σ < 0 is equivalent to d >
χ(X). Conjecture 1.1 in this case follows from the aforementioned results. However,
the proofs in [3, 15, 21] all depend crucially on the special feature that the canonical
bundle of X is definite, so seem difficult to be adapted to the general case. Our proof
here is based on the quantization technique and reveals the relationship between
logarithmic K-stability and the known complete hyperbolic metric on X \D. We
hope the techniques developed in this paper could help understand the quantization
for other types of singular metrics, for examples, those with cone singularities, and
lead to the proof that existence of singular cscK/extremal metrics with prescribed
asymptotic behavior implies an appropriately extended notion of K-stability. For
metrics with cone singularities or Poincaré type singularities along a divisor this
has already been speculated in [13, 25].

Before stating our main result, we recall some known facts and fix some notation.
Let V be a subvariety of CPN and W a subvariety of V . For λ ∈ [0, 1] we define
the λ-center of mass of (V,W ) to be

µ(V,W, λ) = λ

∫
V

ZZ∗

|Z|2
dµFS+(1−λ)

∫
W

ZZ∗

|Z|2
dµFS−

λV ol(V ) + (1− λ)V ol(W )

N + 1
Id

where [Z] ∈ CPN is viewed as a column vector, and the volume is calculated
with respect to the induced Fubini-Study metric. Notice µ always takes value in√
−1Lie(SU(N+1)); indeed, by general theory µ can be viewed as the moment map

for the action of SU(N + 1;C) on a certain Chow variety. For B ∈ Lie(SU(N + 1))

we write ‖B‖2 :=
√
TrBB∗.

A pair (V,W ) embedded in CPN with vanishing λ-center of mass is called a λ-
balanced embedding. We say (V,W ) is λ-Chow stable if there is an A ∈ SL(N+1;C)
such that (A.V,A.W ) is λ-balanced. and we say (V,W ) is λ-Chow semistable if the
infimum balancing energy

E(V,W, λ) := inf
A∈SL(N+1;C)

‖µ(A.V,A.W, λ)‖2

vanishes. It is well-known that by the Kempf-Ness theorem, these definitions agree
with the usual notion of Chow (semi)-stability of log pairs (see for example [16]).
When λ = 1 the subvariety W can be ignored and this reduces to the standard
notion of Chow (semi)-stability.

Now going back to our situation of a polarized manifold (X,L) and a smooth di-
visor D. We say (X,D,L) is λ-almost asymptotically Chow stable if for k sufficiently
large, under the projective embedding of (X,D) induced by sections of H0(X,Lk)
we have E(V,W, λ) = o(k−1+n/2). By [24] if (X,D,L) is λ-amost asymptotically
Chow stable then (X,D,L, β) is K-semistable for β = 3λ−2

λ . We will not explicitly
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make use of the notion of (logarithmic) K-(semi)stability in this article, so we will
not elaborate on the definition and we refer the readers to [24].

Restricting to our setting of a log Riemann surface (X,D), with an ample line
bundle L of degree l. In this one dimensional case we do not need to assume L = [D].
We denote by ω the complete Kähler metric on X \ D with constant nagative
curvature, with total volume 2lπ, and with standard cusp singularities at points in
D. ω can be considered as a closed Kähler current on X whose cohomology class
is 2πc1(L). So there is a singular metric h on L such that the curvature of h is ω.
For k large, we denote by Hk the subspace of H0(X,Lk) consisting of holomorphic
sections that are L2 integrable with respect to the norm defined by h and ω. It is
easy to see thatHk agrees with the image of the map H0(X,Lk(−D))→ H0(X,Lk)
given by multiplication by the defining section sD for D. For k large, we have an
embedding Φk : X → PH∗k. A choice of orthonormal basis of Hk determines a
Hermitian isomorphism of PH∗k with CPNk , unique up to the U(Nk + 1) action,
where Nk + 1 = dimHk. In particular, the quantity ‖µ(X,D, λ)‖2 is independent
of the choice of orthonormal basis. The following is our main result

Theorem 1.2. Given a log Riemann surface (X,D) with d > χ(X), and any ample
line bundle L over X, we have for k large,

‖µ(Φk(X),Φk(D),
2

3
)‖22 = O(k−3/2(log k)121).

We remark here that the exponent 121 is far from being optimal, and it can cer-
tainly be improved when needed. We can roughly say (X,D,L) is 2

3 -almost asymp-
totically Chow stable in the sense of above definition. This is not precisely true since
our embedding using L2 sections is not induced by the complete linear system |Lk|.
However, one can always construct from this an almost balanced embedding in-
duced by the complete linear system. Fix a splitting H0(X,Lk)∗ = H∗k

⊕
⊕p∈DCp,

where Cp is the one dimensional subspace of H0(X,Lk)∗ defined by evaluating
a section at p. Then we extend the L2 metric on Hk to a Hermitian metric on
H0(X,Lk) such that the different pieces are orthogonal. Now we define a pair of
cycles (X ′, D′) in P(H0(X,Lk)∗), where D′ is the union of points corresponding
to the one dimensional subspaces Cp, and X ′ is the union of the image of Φk(X),
together with all the lines that connect the image of a point p ∈ D in PH∗k and the
corresponding point in D′. This cycle is in the closure of the PGL orbit of the pair
(X,D) embedded by the linear system |Lk|; it is indeed given by deformation to the
normal cone, see analogous discussion in Section 4). Since the center of mass of a
line is easy to compute, it is then not hard to check that (X ′, D′) is indeed 2

3 -almost

balanced, which implies (X,D) also admits a 2
3 -almost balanced embedding.

As an immediate corollary, using [24], is that

Corollary 1.1. (X,D,L, 0) is logarithmic K-semistable.

Remark: We mention that corollary 1.1 were also proved in [16], using explicit
Hilbert-Mumford criterion and the special feature in complex dimension one. As
mentioned above, the main interest in our paper is indeed the quantitative estimate
of the balancing energy of the L2 embedding induced by the hyperbolic metric. We
hope this will have applications in higher dimensions.

Now we briefly describe the idea involved in the proof of Theorem 1.2. Let {sα}
be an orthonormal basis of Hk. An important quantity is the “density of state
function” (or the Bergman kernel function)

ρk =
∑
i

|sα|2h.
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Denote ωk = Φ∗kωFS (here our convention is that ωFS ∈ c1(O(1)), then

2πωk = kω + i∂∂̄ log ρk.

We know by definition

(1.1)

∫
X

〈sα, sβ〉hω = δαβ ,

and we can write

(1.2) µ(X,D, λ) = λ

∫
X

〈sα, sβ〉hρ−1
k ωk+(1−λ)

∑
α

ρk(pi)
−1〈sα(pi), sβ(pi)〉h−ckI,

where ck = λkl+(1−2λ)d
Nk+1 . Since D consists of finitely many points, the key is to

understand the first term of (1.2). Compared with (1.1), it is then important to
know the bahavior of ρ−1

k ωk. Not surprisingly, as in the case without divisor, we
need to study the function ρk.

If ω were a smooth Kähler metric on X, it would follow from the result of Tian,
Zelditch, Lu [4, 18, 19, 26, 29], that ρk has an asymptotic expansion of the form

(1.3) ρk =
1

2π
[k +

S(ω)

2
+O(k−1)],

Now as observed in [10] this result can be localized. The basic point is that for
any p ∈ X away from D, we have

ρk(p) = sup{|s(p)|2|s ∈ Hk, ‖s‖ = 1}.
and the supreme is achieved by a so-called peak section. When k is sufficiently large,
the rescaled manifold (X, p, Lk, h⊗k, kω) is close to the standard Gaussian model
(C, 0, L0, h0, ω0), where L0 is the trivial line bundle over C, h0 is the (non-trivial)

hermitian metric e−|z|
2/2 whose curvature ω0 is the standard flat metric. This

fact allows a construction of the peak section at p by a grafting and perturbation
procedure. Everything is local in p except the perturbation involves Hörmander’s
L2 estimate which depends on the global lower bound of Ricci curvature (this
is automatically satisfied in our case). A more careful analysis shows that the
expansion (1.3) indeed holds for points p whose injectivity radius is bounded below
by k−1/2 log k.

The new feature arises when we want to understand ρk at the points with small
injectivity radius, i.e. points very close to D (in the standard topology on X). A
difficult point here is thatD has co-dimension one. IfD were of higher co-dimension,
then by the result of [10] one can ignore a neighborhood of D and obtain a better
estimate than that is stated in Theorem 1.2.

Notice that ρk goes to zero near pi, so we can not expect the same expansion as
(1.3) to hold. Instead we need to look at a different model, which is the punctured
hyperbolic disc D∗. In Section 2 we will analyze the behaviors of ρk and ρ−1

k ωk in the
model case. As our investigation shows, there are also two further distinct behavior
according to the size of the injectivity radius. For a point p with injectivity radius
smaller than k−1/2(log k)−1 we show that the function ρk is essentially governed by
at most three monomial sections (so we can intuitively think of these as sections
“peaked” around a circle instead of at one point); for a point with injectivity radius
between [k−1/2(log k)−1, k−1/2 log k], there are infinitely many monomial sections
contributing to ρk, and we need to do a much more careful analysis to get the
required estimates.

In Section 3 we will use the results of Section 2 to prove Theorem 1.2. In Section
4, we will study for the case X = P1 and L = O(d), the exact range of λ ∈ [0, 1]
for which (X,D) is λ-Chow stable under the embedding induced by Lk. The key
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point is that for the minimum such λ, which we denote λk, we need to construct a
degeneration of (X,D) to a λk-balanced pair (X0, D0). We will show that λk < 2/3
and prove the existence of such pair. It turns out that the degeneration is exactly
given by deformation to the normal cone of D, so X0 consists of d+ 1 components,
one isomorphic to X, and the other are d lines. This contrasts the case considered
in [24] (see also Figure 2 and Figure 3), when σ = 0 (in the one dimensional
case, this means X = P1 and D consists of two points). In that case the limiting
balanced pair consists of a chain X0 of k lines in Pk, so the number of components
goes to infinity as k tends to infinity. One would expect the same picture to also
hold in higher dimension. This difference should also reflect the interesting facts
that the complete negative Kähler-Einstein metrics constructed in [8, 14, 28] has
finite volume, while the Tian-Yau complete Ricci-flat metric constructed in [27] has
infinite volume.

The draft of this paper was finished around November 2015. Just before the
first version of this paper was posted in arXiv.org we were informed of the pa-
per by Auvray-Ma-Marinescu [2], which studies the Bergman kernels on punctured
Riemann surfaces. There are also many results in the literature studying the asymp-
totics of Bergman kernels of singular Kähler metrics, see for example [9, 17, 22].
Our paper has different motivation from these and for our geometric purpose we
need more refined information of the Bergman kernel than the other works quoted
above.

Acknowledgements. We would like to thank Professor Simon Donaldson for
insightful discussions regarding quantization of Kähler metrics over long time, and
we are grateful to Professors Xiuxiong Chen, Dror Varolin and Bin Xu for their
interest in this result. This project started after the talk by the second author
in the workshop “Quantum Geometry, Stochastic Geometry, Random Geometry,
you name it” in the Simons Center in June 2015, and he thanks Steve Zelditch for
the invitation. The first author would also like to thank Professor Xiuxiong Chen
for the hospitality while his stay in USTC, and he is always grateful to Professor
Bernard Shiffman for his continuous and unconditional support.

2. Calculation on the model

Throughout this paper we will denote by ε(k) a quantity depending on k that
is O(k−m) as k → ∞, for all m ≥ 0. Recall that our model is the punctured disk
D∗ = {z ∈ C||z| ≤ 1}, endowed with the Kähler metric

(2.1) ω0 =
idz ∧ dz̄

|z|2(log 1
|z|2 )2

.

The corresponding Kähler potential is Φ0 = − log log 1
|z|2 , and the scalar curvature

of ω0 is −2. For k ≥ 1, we let Hk,0 be the Bergman space of holomorphic functions
f on D∗ such that

‖f‖2k :=

∫
D∗
|f |2e−kΦ0ω0 <∞.

On Hk,0 we denote by 〈·, ·〉k the corresponding Hermitian inner product.

Lemma 2.1. For any a ≥ 1, we have za ∈ Hk,0 and

(2.2) 〈za, zb〉k =
2π(k − 2)!

ak−1
δab.

In particular, the functions {( ak−1

2π(k−2)! )
1/2za|a ≥ 1} form an orthonormal basis of

Hk,0
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Figure 1. Mass Concentration

Proof. First of all, it is easy to see that za is L2 integrable with respect to the given
weight if and only if a ≥ 1. By the S1 symmetry of the metric and the weight, za’s
are obviously orthogonal to each other. Now we calculate the norms:

‖za‖2k =

∫
D∗
|z|2a(log

1

|z|2
)k

idzdz̄

|z|2(log 1
|z|2 )2

=

∫
D∗
|z|2(a−1)(log

1

|z|2
)k−2idzdz̄

= 2π

∫ 1

0

xa−1(− log x)k−2dx

Using the substitution t = − log x, we get

‖za‖2k = 2π

∫ ∞
0

tk−2e−atdt =
2π(k − 2)!

ak−1

�

Remark: The calculation above actually shows us more. By the substitution
t = (k − 2)y, we get that∫ ∞

0

tk−2e−atdt = (k − 2)k−1

∫ ∞
0

e(k−2)(log y−ay)dy.

So Laplace’s method tells that for large k the integral is concentrated in a small
neighborhood of t = k−2

a , i.e. |z|2 = e−(k−2)/a (see figure 1). Moreover, the

concentration is within a neighborhood of radius k1/2 log k
a of t = k−2

a , i.e.

(2.3)

∫
|t− k−2

a |≤
k1/2 log k

a

tk−2e−atdt ≥ (1− ε(k))

∫ ∞
0

tk−2e−atdt.

Here the error term ε(k) is, to be more precise, less than k−k/3, which is independent
of a.

From the Lemma above it follows that the Bergman kernel of Hk,0 is given by

(2.4) ρk,0 =
(log 1/|z|2)k

2π(k − 2)!

∞∑
a=1

ak−1|z|2a.

By the preceding remark, we see that near the origin, only those terms of small
degrees matter. So we can heuristically view ρk,0 as a polynomial function in |z|2.
Formally the above orthonormal basis of Hk,0 induces an embedding of D∗ into an
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infinite dimensional complex projective space, and the pull-back of the Fubini-Study
metric is given by

(2.5) ωk,0 :=
1

2π
(kω0 + i∂∂̄ log ρk,0) =

1

2π
i∂∂̄ log

∞∑
a=1

ak−1|z|2(a−1).

Our main goal in this section is to understand ρk,0 and ωk,0. This serves as a
local model for understanding the Bergman kernel and the induced Fubini-Study
metric near a hyperbolic cusp in our setup described in the introduction.

To simplify notations we will denote x = |z|2, and we will shift k by 1 (so we are
studying Hk+1,0 instead). We write

ϕk(x) =

∞∑
a=1

akxa−1,

then ωk+1(x) = 1
2πϕ

−2
k ψkidz ∧ z̄, where

ψk = ϕk∆zϕk − |∂zϕk|2

The integral in the model case corresponding to the one we are interested in (1.2)
is the following

(2.6) µa :=

∫
D∗

(
|za|
‖za‖k+1

)2e−(k+1)Φ0ρ−1
k+1,0ωk+1 =

∫ 1

0

xa−1akϕk(x)−3ψk(x)dx.

Similarly to the compact case, to measure the deviation of the image of D∗ in the
infinite dimensional projective space from being 2

3 -balanced, we need to estimate
2
3µa + 1

3δa1. We divide into three cases

Case I: a ≥ k1/2 log k. In this case by the remark above za is concentrated

around the points where |z|2 approximately e−k
1/2(log k)−1

. The injectivity radius
of the metric ω0 at these points is approximately π(log 1

|z|2 )−1 ≈ πk−1/2 log k.

Then as mentioned in the introduction, when |z|2 ≥ e−k1/2(log k)−1

, the usual proof
of the Bergman kernel expansion (c.f. [10]) goes through, and provides an uniform
estimate

(2.7) ρk,0 =
1

2π
(k − 1 +O(k−1)),

which holds in the C2 norm. This implies

ωk,0 = ω0(1 +O(k−2)),

So we obtain that µa = 1 + O(k−2) for a ≥ k1/2 log k. Moreover, this argument
also gives rise the following estimate of the volume of ωk,0.

Lemma 2.2.

(2.8)

∫
|z|2≤e−k1/2(log k)−1

ωk,0 = O(k−1/2 log k).

Proof. By definition ωk,0 = 1
2πkω0 + 1

2π i∂∂̄ log ρk,0. A direct calculation shows,∫
|z|2≤e−k1/2(log k)−1

ω0 = k−1/2 log k.

For the other term, using integration by parts and the above expansion of ρk,0, we
have

|
∫
|z|2≤e−k1/2(log k)−1

i∂∂̄ log ρk,0| ≤ |
∫
|z|2=e−k1/2(log k)−1

Jdρk,0| = O(k−2 log k).

�
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Case II: a = o(k1/2(log k)−1/2). In this case the sections za are concentrated in
a very small annular neighborhood of 0. We have

ψk(x) =
∑

a=1,b=2

akbk(b− 1)2xa+b−3 −
∑

a=2,b=2

akbk(a− 1)(b− 1)xa+b−3

=
∑
b=2

bk(b− 1)2xb−2 +
∑

a=2,b=2

akbk(b− 1)(b− a)xa+b−3

=
∑
l=3

clx
l−3,

where

cl =
∑

a+b=l,a≥2,b≥2

akbk(b− 1)(b− a) + (l − 2)2(l − 1)k

=
∑

a+b=l,a≥1,b≥2

akbk(b− 1)(b− a)

=
∑

a+b=l,a≥1,a<b

akbk(b− a)2

As power series, ϕk and ψk are complex for integrals. Our first observation is
that ϕk(x) can be estimated using only 2 or 3 terms when x is small. More precisely:

Lemma 2.3. When x ∈ [0, 2−k], ϕk(x) = 1 + 2kx + ε(k). Similarly, for x ∈
[n+1
n )−k, (n+2

n+1 )−k], we have

ϕk(x) = (1 + ε(k))(nkxn−1 + (n+ 1)kxn + (n+ 2)kxn+1)

as long as n2 = o( k
log k ).

Proof. The quotient of two adjacent terms is (a+1)kx
ak

. Suppose x ≤ 2−k. Notice
a+1
2a < 3

4 for a ≥ 3. So ∑
a≥3

akxa−1 ≤ (
3

4
)k
∑
a≥0

(
3

4
)a = ε(k).

Now suppose (n+1
n )−k ≤ x ≤ (n+2

n+1 )−k for some integer n. For a ≥ n+ 2, we have

(a+ 1)(n+ 1)

a(n+ 2)
≤ 1− 1

(n+ 2)2
.

So as long as n2 = o( k
log k ), (a+1)kx

ak
= ε(k). Then∑

a≥n+3

akxa−1 = (1 + ε(k))(n+ 2)kxn+1).

Similarly, for a ≤ n− 1, we have∑
a≤n−1

akxa−1 = (1 + ε(k))nkxn−1).

The Lemma is then proved. �

Now we consider ψk(x). As in the proof of the preceding Lemma, we first notice
that cl is dominated by the middle terms as long as l2 = o( k

log k ). More precisely,

when l is odd,

cl = (1 + ε(k))(x
l

2
yp
l

2
q)k

where xy and pq means round-down and round-up respectively. When l is even,

cl = (1 + ε(k))4 · ((l/2− 1)(l/2 + 1))k.



PROJECTIVE EMBEDDING OF LOG RIEMANN SURFACES AND K-STABILITY 9

With these in mind, we can now approximate ψk(x). More precisely, we have

Lemma 2.4. When x ≤ (
√

3)−k, ψk(x) = (1 + ε(k))(2k + 6kx2). Similarly, for

x ∈ [(
√

n+2
n )−k, (

√
n+3
n+1 )−k], we have

ψk(x) = (1+ε(k))((n(n+1))kx2(n−1)+((n+1)(n+2))kx2n+((n+2)(n+3))kx2(n+1))

as long as n2 = o( k
log k ).

Proof. The proof is similar to that for ϕk(x). We only want to remind the reader
that the odd power terms are omitted. The reason is that within each interval
appeared in the Lemma the odd power terms are dominated by the adjacent even
power terms. �

Lemma 2.3 describes a set of ladders a−kn for ϕk(x), where an = n+1
n , n ≥ 1.

Lemma 2.4 describes a set of ladders b−kn for ψk(x), where bn =
√

n+2
n , n ≥ 1. One

immediately sees that
an > bn > an+1

Since the integral we are interested in involves both ϕk(x) and ψk(x) and we want
to use the approximations given by Lemma 2.3 and lemma 2.4, we will further
refine our intervals to that of the form (a−kn , b−kn ) and (b−kn , a−kn+1). The following is
a direct consequence of Lemma 2.3 and Lemma 2.4.

Lemma 2.5. • Within the interval [a−kn , b−kn ], we have

ϕk(x) = (1 + ε(k))(nkxn−1 + (n+ 1)kxn)

ψk(x) = (1 + ε(k))((n(n+ 1))kx2(n−1) + ((n+ 1)(n+ 2))kx2n)

• Within the interval [b−kn , a−kn+1], we have

ϕk(x) = (1 + ε(k))((n+ 1)kxn + (n+ 2)kxn+1)

ψk(x) = (1 + ε(k))((n(n+ 1))kx2(n−1) + ((n+ 1)(n+ 2))kx2n)

Now we are ready to evaluate integrals.

Proposition 2.6. i) When a = 1, we have∫ 2−k

0

ψk(x)dx

(ϕk(x))3
=

3

8
+ ε(k)∫ (

√
3)−k

2−k

ψk(x)dx

(ϕk(x))3
=

1

8
+ ε(k)

ii) When a = 2, we have∫ 2−k

0

2kx
ψk(x)dx

(ϕk(x))3
=

1

8
+ ε(k)∫ (

√
3)−k

2−k

2kx
ψk(x)dx

(ϕk(x))3
=

3

8
+ ε(k)∫ (3/2)−k

(
√

3)−k

2kx
ψk(x)dx

(ϕk(x))3
=

3

8
+ ε(k)

∫ (
√

2)−k

(3/2)−k

2kx
ψk(x)dx

(ϕk(x))3
=

1

8
+ ε(k)

Proof. For each integral, we replace ϕk(x) and ψk(x) with the corresponding ap-
proximations listed in lemma 2.5. Then by simple substitutions, we can evaluate
the integrals. �
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The picture we see for a = 2 actually reflects the picture for general a. We will
use the following notations:

Ia,n =

∫ b−k
n

a−k
n

(a+ 1)kxa
ψk(x)dx

(ϕk(x))3

I ′a,n =

∫ a−k
n+1

b−k
n

(a+ 1)kxa
ψk(x)dx

(ϕk(x))3

Proposition 2.7. For n ≥ 2

In−1,n =
1

8
+ ε(k)

In,n =
3

8
+ ε(k)

I ′n,n =
3

8
+ ε(k)

I ′n+1,n =
1

8
+ ε(k)

Proof. Plugging in the approximations for ϕk(x) and ψk(x), we get

Ia,n =

∫ b−k
n

a−k
n

(
(a+ 1)(n+ 1)

n2
)kxa−n+1

1 + (n+2
n+1 )kx2

(1 + (n+1
n )kx)3

dx

and

I ′a,n =

∫ a−k
n+1

b−k
n

(
(a+ 1)n

(n+ 1)2
)kxa−n−2

1 + (n+2
n+1 )kx2

(1 + (n+2
n+1 )kx)3

dx

When a = n, we use the substitution y = (n+1
n )kx, and get

In,n =

∫ d

1

x(1 + bx2)

(1 + x)3)
dx

=
1 + b

2(1 + x)2
− 1 + 3b

1 + x
+ b(1 + x)− 3b log(1 + x)|d1

= (
1

2(1 + x)2
− 1

1 + x
)|d1 + ε(k)

=
3

8
+ ε(k),

where b = ( (n+2)n
(n+1)2 )k and d =

√
1
b .

We can compute the other 3 intergrals in the same way, using the fact the
integrands are all rational functions. �

In order to calculate µa, we need also calculate the integrals on other intervals.
The following lemma tells us that we already have the main value.

Proposition 2.8. For n ≥ 2

In−2,n = ε(k)

In+1,n = ε(k)

I ′n−1,n = ε(k)

I ′n+2,n = ε(k)

The calculations are basically the same as that in the last proposition. This
proposition shows that the integrals on the nearby intervals are negligible. As
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we have remarked, the mass of the integrands decay rapidly away from the main
intervals. More precisely, we can write

µn =

∫ 1

0

nkxn−1

ϕk(x)
ωk,0.

We claim the contribution of the integral from x ≤ a−kn−1 or x ≥ a−kn+1 are both ε(k).

Since a = o(k1/2(log k)−1), we know from the definition of ϕk(x) that the integrand
itself is ε(k) for x in this region. Now by Lemma 2.2, it follows that the contribution

from (0, a−kn−1) and (a−kn+1, e
−k1/2(log k)−1

) to µn is ε(k). When x > e−k
1/2(log k)−1

,
we know from Case I that ωk,0 ≤ 2ρk,0ω0. But since∫

nkxn−1

ϕk(x)
ρk,0ω0 = 1,

and by (2.3) we know the contribution to this integral from x > e−k
1/2(log k)−1

is
ε(k), so the contribution to µn is also ε(k). This proves the claim.

Therefore we obtain

Theorem 2.9. For a > 1 satisfying a2 = o( k
log k ), we have µa = 1 + ε(k). When

a = 1, we have µ1 = 1
2 + ε(k)

Case III: a ∈ [k1/2(log k)−1, k1/2 log k]. In this case the sections za are concen-
trated in the “neck region”. In order to estimate µa, we will compare it with the
above standard integral. We may write

γa(x) =
ϕk(x)

akxa−1
,

then

µa =

∫ 1

0

∆z log γa(x)dx

γa(x)
.

Next we use substitution v = log 1
x . Then γa(x) =

∑∞
c=−a+1(a+c

a )ke−cv. Let

v = u+ k
a , we can write

γa(x) = fa(u) :=
∑

c≥−a+1

ek(log(1+ c
a )− c

a )e−cu,

and since ∆z = 1
x
d2

du2 and dx = −xdu. We get

(2.9) µa =

∫ ∞
−k/a

(log fa(u))′′du

fa(u)

Lemma 2.10.

(2.10) µa =

∫ (log k)2

−(log k)2

(log fa(u))′′du

fa(u)
+ ε(k)

Proof. The idea again is to view 1
fa(u) as the integrand, with the measure part given

by ωk,0. We refer the reader to the arguments right after Proposition 2.8, which
also works here.

Since fa(u) is a convex function in u, and fa(0) ≥ 1, we only need to show that
when |u| = (log k)2, we have 1

fa(u) = ε(k). But this is already clear when we look

at the terms when |c| = 1. �



12 JINGZHOU SUN AND SONG SUN

Now we have∫ (log k)2

−(log k)2

(log fa(u))′′du

fa(u)
=

∫ (log k)2

−(log k)2

f ′′a (u)du

(fa(u))2
−
∫ (log k)2

−(log k)2

(f ′a(u))2du

(fa(u))3

The following estimates are based on the simple fact that the function log(1 +
x)− x is concave with only a unique maximum at x = 0.

Lemma 2.11. ∫ (log k)2

−(log k)2

f ′′a (u)du

(fa(u))2
= 2

∫ (log k)2

−(log k)2

(f ′a(u))2du

(fa(u))3
+ ε(k).

Proof. This is basically integration by parts, since∫ (log k)2

−(log k)2

f ′′a (u)du

(fa(u))2
=

f ′a(u)

(fa(u))2
|(log k)2

−(log k)2 + 2

∫ (log k)2

−(log k)2

(f ′a(u))2du

(fa(u))3
.

So we need to evaluate the boundary values. When u = (log k)2, it is easy to see

that both fa(u) and f ′a(u) are dominated by the terms with c ≤ 0. So | f
′
a(u)

(fa(u))2 | ≤
a

fa(u) = ε(k). Now we consider u = −(log k)2. Let P (c) = k(log(1 + c
a )− c

a )− cu.

Then P ′(c) = k
a+c −

k
a − u and g′′(c) = − k

(a+c)2 < 0. So P (c) is a concave function

of c. When u = −(log k)2, fa(u) and f ′a(u) are dominated by the terms with c > 0.
The zero of P ′(c) is c0 = k

k/a+u − a = −au
k
au +1

. So fa(u) is dominated by a term

around c0 = O((logk)4) (since c0 may not be an integer). Thus at u = −(log k)2,

| f
′
a(u)

(fa(u))2 | ≤
|c0|
fa(u) = O( (logk)4

fa(u) ) = ε(k). And the lemma is proved. �

From these we obtain

µa =
1

2

∫ (log k)2

−(log k)2

f ′′a (u)du

(fa(u))2
+ ε(k).

We now further simplify the integral. Let

ga(u) =
∑

|c|≤(log k)5

ek(log(1+ c
a )− c

a )−cu.

Then by similar arguments as in the proof of the previous lemma we see that

fa(u) = ga(u)(1 + ε(k)),

and

f ′′a (u) = g′′a(u)(1 + ε(k)).

So

(2.11) µa =
1

2

∫ (log k)2

−(log k)2

g′′a(u)du

(ga(u))2
+ ε(k).

Now we define

ha(u) =
∑
c∈Z

e−
kc2

2a2 e−cu.

As before for u ∈ [−(log k)2, (log k)2] we have

ha(u) = (1 + ε(k))
∑

|c|≤(log k)5

e−
kc2

2a2 e−cu.

Lemma 2.12. We have∫ (log k)2

−(log k)2

g′′a(u)du

(ga(u))2
=

∫ (∞)2

−∞

h′′a(u)du

(ha(u))2
+O(

(log k)60

k
).
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Proof. For u ∈ [−(log k)2, (log k)2], we have

ga(u) =
∑

|c|≤(log k)5

e−
kc2

2a2−cu(1 +
kc3

a3
+O(

k2c6

a6
+
kc4

a4
))

= ha(u)(1 +O(
(log k)36

k
)) +Ga(u),

where

Ga(u) =
∑

|c|≤(log k)5

e−
kc2

2a2−cu kc
3

a3
= ha(u)O(

(log k)20

k1/2
).

Similarly

g′′a(u) = h′′a(u)(1 +O(
(log k)46

k
)) +G′′a(u),

and

G′′a(u) = h′′a(u)O(
(log k)30

k1/2
).

Notice both Ga(u) and G′′a(u) are odd functions, so∫ (log k)2

−(log k)2

g′′a(u)du

ga(u)
= (1 +O(

(log k)60

k
))

∫ (log k)2

−(log k)2

h′′a(u)du

ha(u)
.

The lemma then follows from the fact that the last integral can be replaced by
the integral over (−∞,∞), with a possibly ε(k) error. The proof is similar to the
previous arguments, and we omit it here. �

Now the following elementary lemma is crucial for our purpose.

Lemma 2.13. For all a > 0, we have∫ ∞
−∞

h′′a(u)du

(ha(u))2
= 2

Proof. For simplicity let b = k
2a2 , and by abuse of notation we will hb(u) =∑

c∈Z e
−bc2e−cu. Notice hb(x) = Hb(x)e−u

2/(4b), where Hb(x) =
∑
c∈Z e

−b(c− u
2b )2 .

Since the summation is for all integers, we see that Hb(u) is periodic with period
2b. So ∫ ∞

−∞

dx

hb(u)
=

∫ 2b

0

∑
c∈Z e

− (u+2bc)2

4b

Hb(u)
du =

∫ 2b

0

du = 2b.

It is easy to justify that differentiating with respect to b commute with the integral,
and notice that hb(u) satisfies the heat equation d

dbhb(u) = −h′′b (u), we obtain∫ ∞
−∞

h′′b (u)du

hb(u)2
= 2.

�

To sum up, the above discussion yields

Theorem 2.14. For a ∈ [k1/2(log k)−1, k1/2 log k], we have

µa = 1 +O(k−1(log k)60)

From the proof it is easy to see that there is a fixed C > 0 such that the same
estimate holds for a ∈ [C−1k1/2(log k)−1, Ck1/2 log k].

The above discussion of Case III suggests that the behavior of the Bergman
kernel on the neck is modeled by the infinite cylinder C∗. Indeed, for any a ∈
[k1/2(log k)−1, k1/2 log k] we know the section za is concentrated in an annuli neigh-
borhood of the circle log 1

|z|2 = k−2
a . If we change to cylindrical coordinates

z = e−(ξ/2+(k−2)/a), where ξ = u + it. Then we see the measure |z|2ae−kΦ0ω0 =
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|z|2a−2(log 1
|z|2 )k−2dzdz̄ is to the leading order term approximated by the measure

dµ0 = e−
a2u2

2k dudt on the cylinder. On C∗, we can define a L2 norm on the space
of all holomorphic functions using the measure dµ0. It is easy to see

‖zc‖2 = e
kc2

2a2 .

The corresponding Bergman kernel

ρ(ξ) =
∑
c∈Z

e−
a2u2

2k −
kc2

2a2 +cu =
∑
c∈Z

e−
a2

2k (u− kc
a2 )2 .

Notice we can also understand this as the Bergman kernel on C∗ (up to constant

multiple), endowed with the hermitian metric e−
a2u2

2k whose curvature form is the
flat cylindrical metric. Geometrically, on this neck the hyperbolic metric is approx-
imated by a flat cylinder, and our discussion above makes precise that this model
approximates ρ0,k when k is large.

3. General case

We use the same setup of the introduction. Let (X,D) be a log Riemann surface,
and L be an ample line bundle over X endowed with the (singular) hermitian
metric h whose curvature form is the hyperbolic metric ω. Let Φk : X → CPNk

be the map defined in the introduction. Our goal is to estimate the asymptotics of
‖µ(Φk(X),Φk(D), 2

3 )‖2 as k → ∞, using a particular choice of orthonormal basis
of Hk.

First given any orthonormal basis {sα} of Hk, we re-write (1.2) as

3

2
µ(X,D,

2

3
) = µX +

1

2
µD − c̃kI,

where

µX =

∫
X

〈sα, sβ〉hρ−1
k ωk;

µD =

d∑
i=1

ρk(pi)
−1〈sα(pi), sβ(pi)〉h.

Using Riemann-Roch formula, we obtain

c̃k =
kl − d+ d

2

kl − d− g + 1
= 1− S

2
k−1 +O(k−2),

where S = −d+2g−2
l is the scalar curvature of ω, by our normalization.

Now let D = {p1, · · · , pd}. For each i we can find a local holomorphic coordinate
chart (Ui, z) ofX centered at pi, such that ω = − 2

Sω0 on Ui, and a local holomorphic

section ei of L over Ui, with |ei|2 = e
2
S Φ0 , where ω0 and Φ0 are defined in the

beginning of Section 2. We may assume Ui = {|z| < R} for some R < 1 and
Ui ∩ Uj = ∅ if i 6= j. Inside each Ui we are essentially reduced to the model case
studied in Section 2, with a possible change of k by − 2

S k (notice in the whole
discussion there k does not have to be an integer). For the calculation below to
make the notation simpler we will without loss of generality assume S = −2.

Fix a smooth cut-off function χi that equals 1 in Ui, and vanishes outside a
small neighborhood of Ui. To obtain global sections of Lk, we use Hörmander’s L2

estimate. The following lemma is well-known, see for example [26].

Lemma 3.1. Suppose (M, g) is a complete Kähler manifold of complex dimension
n, L is a line bundle on M with hermitian metric h. If

〈−2πiΘh +Ric(g), v ∧ v̄〉g ≥ C|v|2g
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for any tangent vector v of type (1, 0) at any point of M , where C > 0 is a constant
and Θh is the curvature form of h. Then for any smooth L-valued (0, 1)-form α on
M with ∂̄α = 0 and

∫
M
|α|2dVg finite, there exists a smooth L-valued function β

on M such that ∂̄β = α and ∫
M

|β|2dVg ≤
1

C
|α|2dVg

where dVg is the volume form of g and the norms are induced by h and g.

Fix k large so that the assumption of the Lemma is satisfied in our setting with
M = X \ D and L = Lk. For a positive integer a ≤ k3/4, we apply the Lemma

to αi,a = ∂̄(χiτaz
ae⊗ki ) (where τa = ( ak−1

2π(k−2)! )
1/2 is the normalization constant

appearing in Lemma 2.1) on X \ D and obtain the corresponding βi,a. Then the

section si,a := χiτaz
ae⊗ki −βi,a is holomorphic over X \D, and the L2 integrability

condition guarantees that si,a extends to a section in Hk.
By our discussion in Section 2, we know ∂̄χi is supported in the region where

|τazai e
⊗k
i |h is ε(k) for all a ≤ k3/4, and also ‖χiτazae⊗ki ‖ = 1 + ε(k), where we

denote by ‖ · ‖ the global L2 norm measured with respect to the obvious metrics.
So by the estimate in the above Lemma we get ‖si,a‖2 = 1 + ε(k). Similarly for

1 ≤ a, b ≤ k3/4 we have

〈si,a, sj,b〉 = δabδij + ε(k),

where 〈·, ·〉 denotes the obvious global L2 inner product. We should remind the
reader that the estimates for the error is of the size ε(k), which is independent of
the indices, so when adding them up we still have the size ε(k).

We may assume {si,a|i = 1, · · · , d; a ≤ k3/4} is orthonormal by possibly applying
a linear transformation of the form I+A where, by the remark for Lemma 2.1 the en-
tries of A = (aij) satisfy sup |aij | = ε(k). Now we let {sγ̃} be an arbitrary orthonor-

mal basis of the orthogonal complement of the span of {si,a|i = 1, · · · , d; a ≤ k3/4}
in Hk.

Now one can prove Theorem 1.2 using the above chosen basis, based on the
arguments of Section 2 and the known asymptotic expansion of Bergman kernel
away from the punctures. For readers’ convenience we include the details here, but
we should point out that the discussion below is essentially straightforward.

For each i, we denote by Vi the subset of Ui consisting of points with (log 1
|z|2 )−1 ≤

k−1/2 log k, and by Wi the subset of Ui consisting of points with (log 1
|z|2 )−1 ≤

k−3/8. As in Section 2, points in Vi have injectivity radius smaller than πk−1/2 log k.

For a point x outside
⋃d
i=1 Vi, the usual proof of the Bergman kernel asymptotics

goes through, and yield a uniform expansion (in the C2 sense)1

(3.1) ρk(x) =
1

2π
(k − 1 +O(k−1)),

and so

(3.2) ωk = ρkω(1 + k−1 +O(k−2)).

Lemma 3.2. We have the following estimate:

sup
γ̃

sup
i

sup
z∈Wi

|sγ̃(z)|2

ρk,0(z)
= ε(k).

Proof. Fix i, within Ui we can write sγ̃ = fγ̃e
⊗k
i for a holomorphic function fγ̃ .

Let fγ̃ =
∑
caτaz

a be the Taylor expansion around pi. We are interested in the

1Indeed one can show the error term is ε(k) since ω has constant curvature, see for example [10].
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estimates of various quantities for large k, so the estimates below will always be
understood for k sufficiently large, but are independent of γ̃ and i.

Claim 1. For all a ≤ k3/4 we have |ca| = ε(k).
To prove this, we use the fact that sγ̃ is L2 orthogonal to si,a. Since si,a =

χiτaz
ae⊗ki + βi,a with ‖βi,a‖ = ε(k), and again by the discussion of Section 2 we

know
∫
Ui
|τazae⊗ki |2ω = 1 + ε(k) (since the integral is concentrated in the annulus

|t− k−2
a | ≤

k1/2 log k
a , where we adopt the notation of Section 2 to denote t = log 1

|z|2 ),

it is then easy to obtain the conclusion.

Claim 2. For all a ≤ − k
2 logR , we have |ca|2 ≤ 3 for large k.

This follows from similar consideration as above, using the fact that∫
Ui

|τazae⊗ki |
2ω ≥ 1/3

for a in this range.

Now we define a function qa(z) = | caτaz
a

τbzb
|2, where b = k5/8. Denote γa = qa(z)

when log |z|2 = −k/b.

Claim 3. For all a ≥ − k
2 logR , we have γa = O(e−

1
3ak

3/8

).

As we have seen in the local calculation in Section 2, for k large we have∫
k
b−

k1/2 log k
b ≤log 1

|z|2
≤ k

b

|τbzbe⊗ki |
2ω ≥ 1/3.

We denote the annulus {z|kb −
k1/2 log k

b ≤ log 1
|z|2 ≤

k
b } by Ab.

For a ≥ k3/4, when k is large we have a > b hence qa is increasing in |z|, hence
we have ∫

Ab

|caτazae⊗ki |
2ω =

∫
Ab

qa(z)|τbzbe⊗ki |
2ω ≥ 1

3
γa.

On the other hand, we have∫
Ab

|zae⊗ki |
2ω = 2π

∫ k
b

k
b−

k1/2 log k
b

e(k−2) log t−atdt ≤ e− 1
2ak

3/8

.

Therefore,

γa ≤ |caτa|2e−ak
3/8/2.

Now since ‖sγ̃‖ = 1, we have∫
|z|≤R

|caτazae⊗ki |
2ω ≤ 1.

Notice∫
|z|≤R

|zae⊗ki |
2ω = 2π

∫ ∞
−2 logR

e(k−2) log t−atdt ≥ e−a(1−2 logR)+k log(1−2 logR),

so we obtain

|caτa|2 ≤ ea(1−2 logR)−k log(1−2 logR),

Hence

γa ≤ e−
1
2ak

3/8+a(1−2 logR)−k log(1−2 logR) ≤ e− 1
3ak

3/8

,

and Claim 3 is proved.
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Therefore, for z ∈Wi, we have by Claim 1 that

(3.3)
|
∑
a≤k3/4 caτaz

a|2∑
a |τaza|2

= ε(k),

and by Claim 3

(3.4)
|
∑
a≥− k

2 log R
caτaz

a|2∑
a |τaza|2

≤ (
∑

a≥− k
2 log R

e−ak
3/8/6)2 = ε(k).

For a ∈ [k3/4,− k
2 logR ], we first notice

Claim 4. For all a ≥ k3/4 and all z ∈Wi we have

|τaza|2∑
r≥1 |τrzr|2

= ε(k).

The proof of this follows from similar discussion as in Section 2, the main point
being that for z ∈Wi, the main contribution to the sum in the denominator comes
from terms where r is around (log 1

|z|2 )−1k ≤ k5/8, which is much smaller than

k3/4 when k is large. To be more precise, we can write |τaza|2 = ak−1|z|2a =

e(k−1) log a+a log |z|2 . Let P (y) = (k − 1) log y + log |z|2y, it is easy to see that when
z ∈Wi and y ≥ k3/4 − 1, P is concave and decreasing in y, hence we have

P (a)− P (a− 1) ≤ P ′(a− 1) ≤ −k1/2.

From this Claim 4 follows easily.

By Claim 2 and Claim 4 we also have

(3.5)
|
∑
k3/4≤a≤− k

2 log R
caτaz

a|2∑
a |τaza|2

= ε(k).

The conclusion of the Lemma then follows from the combination of (3.3), (3.4)
and (3.5). �

As a consequence, we obtain the following lemma, which essentially shows the
“localilty” of Bergman kernel in a neighborhood of the hyperbolic cusp.

Lemma 3.3. We have

(3.6) sup
i

sup
z∈Wi

| ρk(z)

ρk,0(z)
− 1| = ε(k).

Proof. Given Lemma 3.2, we only need to show for all a ≤ k3/4 and z ∈Wi,

(3.7) ρk,0(z)−1|βi,a(z)|2 = ε(k).

In the above local coordinate we can write βi,a =
∑
a caτaz

ae⊗ki . Notice we have
‖βi,a‖L2 = ε(k), hence 〈βi,a, si,a〉 = ε(k), so one can see that the same estimates for
caτa in the proof of Lemma 3.2 also holds here, and we obtain the conclusion. �

Corollary 3.4. We have

(3.8) sup
γ̃

sup
i

[

∫
Vi

|sγ̃ |2

ρk
ωk +

∫
Vi

|sγ̃ |2ω] = ε(k)

Proof. This is straightforward, just by noticing that
∫
Vi
ωk ≤

∫
X
ωk = O(k), and∫

Vi
ρkω ≤

∫
X
ρkω = dimH0(X,Lk) = O(k). �



18 JINGZHOU SUN AND SONG SUN

Using (3.1), (3.2) and (3.8), we get

µX(γ̃, γ̃) =

∫
X\

⋃
i Vi

|sγ̃ |2(1 + k−1 +O(k−2))ω +

∫
⋃

i Vi

|sγ̃ |2ρ−1
k ωk(3.9)

= 1 + k−1 +O(k−2).

Now for α = (i, a) with a ≥ 2k1/2 log k, we claim

(3.10) sup
z∈Vi

|τaza|2

ρk,0(z)
= ε(k).

Indeed, this follows from similar argument as in the proof of Claim 4 in Lemma
3.2. The point is that the function P (y) is also concave and decreasing when z ∈ Vi
and y ≥ 2k1/2 log k, and we have P ′(y − 1) ≤ − 1

2k
1/2(log k)−1. So together with

(3.6) and (3.7) we also have

sup
i

sup
a∈[2k1/2 log k,k3/4]

(

∫
Vi

|si,a|2

ρk,0
ωk +

∫
Vi

|si,a|2ω) = ε(k).

Hence in this case we also obtain

(3.11) µX(α, α) = 1 + k−1 +O(k−2).

Lemma 3.5. In Wi, we have

(3.12) ωk − ωk,0 = ε(k)ω,

where ω is the hyperbolic metric on X.

Proof. Write ρ−1
k,0ρk = 1 + Fk, then as shown in the proof of Lemma 3.3, we have

the pointwise estimate Fk = ε(k) and Fk can be written as the sum of contributions
from sγ̃ and βi,a. In local coordinates, both types of error terms are of the form

E(z) =
|
∑

a≥1 caτaz
a|2∑

a≥1 |τaza|2
, where as shown above, the ca satisfies the estimates in the

proof of Lemma 3.2.
Notice ωk−ωk,0 = −i∂∂̄ log(1+Fk), so it suffices to estimate ∂∂̄Fk and ∂Fk∧∂̄Fk

using ω. Then it is further reduced to show the following

∂∂̄E = ε(k)ω, ∂E ∧ ∂̄E = ε(k)ω.

These can be proved in the same way as in the proof of Lemma 3.2. For simplicity,
we denote f =

∑
a≥1 caτaz

a−1, and g =
∑
a≥1 τaz

a−1. Then E = f
g , and

∂∂̄E =
∂∂̄f

g
− ∂g ∧ ∂̄f + ∂f ∧ ∂̄g + f∂∂̄g

g2
+

2f∂g ∧ ∂̄g
g3

∂E ∧ ∂̄E =
∂f ∧ ∂̄f
g2

− f∂f ∧ ∂̄g + f∂g ∧ ∂̄f
g3

+
f2∂g ∧ ∂̄g

g4

One can show every single term in the above is indeed ε(k)ω. For example we
will treat the first term in ∂∂̄E. Notice ∂∂̄f = |

∑
a≥2(a − 1)caτaz

a−2|2dzdz̄, and

ω = 1
|z|2(log |z|2)2 dzdz̄. So if log |z|2 ≥ −k, we have (log |z|2)2 = O(k2), so we obtain

as in the proof of Lemma 3.2 that

∂∂̄f

gω
= ε(k).
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When log |z|2 ≤ −k, by the discussion of Section 2 we know τ2
1 ≤ g ≤ 2τ2

1 , and

|
∑
a≥2

(a− 1)caτaz
a−2|2 ≤ 2τ2

2 εk + 2|
∑
a≥3

(a− 1)caτaz
a−2|2.

Notice |τ2|2/|τ1|2 = 2k−1, and using the convexity similar to the proof of Claim 4
in Lemma 3.2, we can see for a ≥ 3, |τaza−2|2/|τ1|2 ≤ e−(a−1). Since |z|2 ≤ e−k,
we get

∂∂̄f

gω
= ε(k).

The estimates for the other terms follow similarly. �

Remark 3.1. With more work, it is possible to get higher order derivative estimates
for the error term ρk − ρk,0, but these are not needed for our current purpose in
this paper.

Lemma 3.6. For α = (i, a) with a ≤ 2k1/2 log k, we have

(3.13) µX(α, α) =

∫
Wi

|τaza|2

ρk,0
ωk,0 + ε(k)

Proof. We write

µX(α, α) =

∫
Wi

|si,a|2

ρk
ωk +

∫
X\Wi

|si,a|2

ρk
ωk.

Since outside Wi we have the expansion (3.1) and (3.2), we get∫
X\Wi

|si,a|2

ρk
ωk =

∫
X\Wi

|si,a|2(1− S

2
k−1 +O(k−2))ω.

Notice∫
X\Wi

|si,a|2ω ≤
∫
X

|βi,a|2ω+

∫
Ui\Wi

|τazae⊗ki |
2ω = ε(k)+

∫
Ui\Wi

|τaza|2∑
d |τdzd|2

ρk,0ω.

Now as in the proof of Claim 4 in Lemma 3.2 one can easily see that |τaza|2∑
d |τdzd|2

=

ε(k) for a ≤ 2k1/2 log k. On the other hand, outside Wi we have the usual expansion
of ρk,0 as (2.7), hence ρk,0 = O(k) on Ui \Wi. So we have∫

X\Wi

|si,a|2ω = ε(k).

Now by the above discussion we get∫
Wi

|si,a|2

ρk
ωk =

∫
Wi

|τazae⊗ki |
2(1 + ε(k))ρ−1

k,0ωk,0 +

∫
Wi

|βi,a|2

ρk,0
(1 + ε(k))ω.

The conclusion follows since the last term is ε(k) by similar arguments as in the
proof of Lemma 3.3. �

By the results of Section 2, we obtain

(3.14) µX(α, α) =

{
1
2 + ε(k), a = 1;
1 +O(k−1(log k)60) a > 1.

Similarly, for the off-diagonal term of µX , we have

Lemma 3.7. For α 6= β,

(3.15) µX(α, β) =

{
ε(k), α = (i, a), β = (j, b);
O(k−2) otherwise.
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Proof. We need to check each case separately. If α = γ̃, then for any other unit
norm section s which is L2 orthogonal to sα, we can write∫

X

〈sα, s〉ρ−1
k ωk =

∫
X\Vi

〈sα, s〉ρ−1
k ωk +

∫
Vi

〈sα, s〉ρ−1
k ωk.

For the first term we have∫
X\Vi

〈sα, s〉ρ−1
k ωk =

∫
X\Vi

〈sα, s〉(1−
S

2
k−1 +O(k−2))ω

= −
∫
Vi

〈sα, s〉(1−
S

2
k−1)ω +O(k−2).

Using (3.8) we see this is ε(k)+O(k−2) = O(k−2). For the second term we similarly
apply previous arguments to see it is ε(k).

Now if α = (i, a) and β = (i, b) with a 6= b, then∫
X

〈sα, sβ〉ρ−1
k ωk =

∫
X\Ui

〈sα, sβ〉(1−
S

2
k−1 +O(k−2))ω +

∫
Ui

〈sα, sβ〉ρ−1
k ωk.

Since si,a = χiτaz
ae⊗ki + βi,a with ‖βi,a‖ = ε(k), we easily see the first term is

ε(k). The second term is also ε(k) because a 6= b, ρ−1
k ωk = ρ−1

k,0(ωk,0 + ε(k)ω),

|βi,a|2ρ−1
k,0 = ε(k) in Wi, and

∫
Ui\Wi

|βi,a|2ω = ε(k).

For α = (i, a) and β = (j, b) with i 6= j the conclusion follows similarly.
�

Finally we have

(3.16) µD(α, α) =

{
1 + ε(k), α = (i, 1);
ε(k), otherwise.

Putting together (3.9), (3.11), (3.14), (3.15), (3.16), we get

‖µX +
1

2
µD − c̃k‖22 = O(k2 · k−4 +O(k−2(log k)120 · k1/2 log k)

= O(k−3/2(log k)121)

This finishes the proof of Theorem 1.2.

4. Explicit study of Chow stability

We assume X = P1 and D the union of d distinct points p1, · · · , pd. Consider
an embedding of (X,D) into PN using H0(X,Lk) where L = [D] and N = kd.

Theorem 4.1. Suppose d ≥ 2, then (X,D) is λ-semistable if and only if λ ∈ [λk, 1],
and λ-stable if and only if λ ∈ (λk, 1]. Here λk = 2/(d + 1) when k = 1 and
λk = 2kd+2

3kd+d+1 when k ≥ 2.

Proof. Clearly (X,D) is always 1-balanced. A simple fact is that (c.f. [24]) the set of
λ for which (X,D) is λ-semistable form an interval of the form [λk, 1] for some λk ∈
(0, 1). The point is to determine λk. The pair (X,D) is not λk-balanced but there
is another pair (X0, D0) in the closure of the SL(N + 1;C) orbit of (X,D) (in an
appropriate Chow variety) which is λk-balanced. When d = 2 this is proved in [24]
where X0 is constructed as a chain of linear rational curves in PN . Now we focus on
the case d ≥ 3. We will construct these by induction. When k = 1, we let qi be the
i-th coordinate point of Pd for i = 1, · · · , d+1. Then we let D0 = {q1, · · · , qd}, and
X0 be the union of all lines connecting qi with qd+1. A straightforward calculation
shows that (X0, D0) is λ1-balanced, and it is also easy to see that (X0, D0) is in the
SL(N + 1;C) orbit of (X,D). This shows that (X,D) is strictly λ1-semistable and
hence we are done with k = 1. Now suppose the conclusion holds for k = m−1 and
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3 -balanced pair in PN with D = {p1, p2}
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Figure 3. A λk-balanced pair in PN with d = 4 and k ≥ 2

we consider the case k = m. Then again we denote by qi the i-th coordinate point of
PN for i = 1, · · · , N + 1. Let X0 be the union of a smooth rational normal curve Y
in PN−d (viewed naturally as the a subspace of PN which contains q1, · · · , qN−d+1)
which passes through the co-ordinate points, and the lines connecting the qi with
qN−d+1+i. Let D0 = {qN−d+1+j |j = 1, · · · , d}, and E = {q1, · · · , qd}. This is in
the closure of the SL(N + 1;C) orbit of (X,D) (this can be alternatively seen as
a deformation to the normal cone). Now notice since d ≥ 3 we have λm−1 < 2/3,
by the induction hypotheses we may assume (Y,E) is 2/3-balanced in PN−d. Then
it is again a straightforward calculation that (X0, D0) is λm-balanced in PN . More
precisely, we obtain this value of λm by solving the equation 1

2λ+(1−λ) = λ 2N+d
2(N+1) .

By the same reason as the case k = 1 we see the conclusion holds for k = m. �
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