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DOUBLE RAMIFICATION CYCLES ON THE MODULI SPACES OF

ADMISSIBLE COVERS

HSIAN-HUA TSENG AND FENGLONG YOU

Abstract. We derive a formula for the virtual class of the moduli space of rubber maps
to [P1/G] pushed forward to the moduli space of stable maps to BG. As an application,
we show that the Gromov-Witten theory of [P1/G] relative to 0 and ∞ are determined by
known calculations.
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1. Introduction

1.1. P1-stacks. This paper is motivated by the study of Gromov-Witten theory of P1-stacks
of the following form: [P1/G].
Here, G is a finite group. The G-action on P1 is given by the one-dimensional representation
L = C,

ϕ ∶ GÐ→ µa = Imϕ ⊂ C∗ = GL(L),
together with the trivial one-dimensional representation C via

P1
= P(L⊕C).

The C∗-action on P1 given by

λ ⋅ [z0, z1] ∶= [z0, λz1], λ ∈ C∗, [z0, z1] ∈ P1

commutes with this G-action and induces a C∗-action on [P1/G].
1.2. Stacky rubbers. The relative Gromov-Witten theory of the pairs

(1) ([P1/G], [0/G]), ([P1/G], [0/G] ∪ [∞/G])
arise naturally in the pursue of Leray-Hirsch type results in orbifold Gromov-Witten theory,
see [11]. Indeed, [P1/G] = [P(L⊕C)/G]Ð→ BG

can be viewed as the stacky P1-bundle associated to the line bundle

L Ð→ BG.

The relative Gromov-Witten theory of the pairs (1) may be studied using virtual localization
with respect to the C∗-action on [P1/G]. Rubber invariants naturally arise in this approach.
Let

M g,I([P1/G], µ0, µ∞)∼
be the moduli space of rubber maps, see Section 2 for precise definitions. Post-composition
with [P1/G]→ BG defines a map

ǫ ∶M g,I([P1/G], µ0, µ∞)∼ Ð→M g,l(µ0)+l(µ∞)+#I(BG).
The cycle

DRG
g (µ0, µ∞, I) ∶= ǫ∗[Mg,I([P1/G], µ0, µ∞)∼]vir ∈ Ag(M g,l(µ0)+l(µ∞)+#I(BG))

is termed stacky double-ramification cycle. The main result of this paper is a formula for
DRG

g (µ0, µ∞, I). The formula, which involves complicated notations, is given in Theorem 3.9
below.

When G = {1}, our formula reduces to Pixton’s formula for double ramification cycles,
proven in [2]. Our proof, given in the bulk of this paper, closely follows that of [2].

The main application of the formula for DRG
g (µ0, µ∞, I) is the following

Theorem 1.1. The relative Gromov-Witten theory of

([P1/G], [0/G]) and ([P1/G], [0/G] ∪ [∞/G])
are completely determined.
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Proof. Since evaluation maps on M g,I([P1/G], µ0, µ∞)∼ factor through ǫ, rubber invariants1

are all determined by the formula for DRG
g (µ0, µ∞, I), together with the Gromov-Witten

theory of BG solved by [3].

Virtual localization reduces the calculation of relative Gromov-Witten invariants to cal-
culating rubber invariants with target descendants. By rubber calculus in the fiber class
case [5], rubber invariants with target descendants are determined by those without target
descendants. The proof is complete. �

Theorem 1.1 is an evidence supporting [11, Conjecture 2.2], and we expect that Theorem
1.1 plays an important role in the general case.

1.3. Acknowledgment. We thank F. Janda, R. Pandharipande, and D. Zvonkine for dis-
cussions. H.-H. T. is supported in part by NSF grant DMS-1506551 and Simons Foundation
Collaboration Grant.

2. Stacky double ramification cycle

Let G be a finite group and L = C a one dimensional G-representation given by the map

G
ϕ
Ð→ µa = Imϕ ⊂ GL(L) = C∗.

Let K ∶= kerϕ, we obtain the exact sequence

1Ð→K Ð→ G
ϕ
Ð→ µa Ð→ 1

Definition 2.1. For a conjugacy class c ⊂ G, define

r(c) ∈ N
to be the order of any element of c. Define2

ac(L) ∈ {0, . . . , r(c) − 1}
to be the unique integer such that each element of c acts on L by multiplication by exp (2π√−1ac(L)

r(c) ).
In other words, the representation ϕ ∶ G→ GL(L) = C∗ maps c to exp (2π√−1ac(L)

r(c) ).
Consider the quotient stack [P1/G], where the G-action on P1 is given by the 1-dimensional

representation ϕ together with the trivial one-dimensional representation C via

P1
= P(L⊕C).

Definition 2.2. Let A denote the following data:

µ0 = {(c0i, f0i, c0i)}i µ∞ = {(c∞i, f∞i, c∞i)}i, I = {c1, . . . , ck},
where c0i, c∞i ∈ Z≥0, f0i, f∞i ∈ N, c0i, c∞i, c1, . . . , ck ∈ Conj(G) such that

(i) f0i (resp. f∞i) is the order of any element in c0i (resp. c∞i).
(ii) ∑i

c0i
f0i
=∑j

c∞j

f∞j
.

(iii) age
c0i
(L) = ⟨ c0i

f0i
⟩, age

c∞j
(L) = ⟨ c∞j

f∞j
⟩.

1Following [5], we treat disconnected invariants as products of connected ones.
2ac(L) is well-defined because L is 1-dimensional.
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(iv) ageci(L) = 0, 1 ≤ i ≤ k. So ci ∈ Conj(K).
(v) Monodromy condition3 in genus g holds for {c0i} ∪ {c−1∞j} ∪ {c1, . . . , ck}.

Here the monodromy condition in genus g means the following.

Definition 2.3 (Monodromy condition). Let H be a finite group. We say that the collection
of conjugacy classes c1, ..., cn of H satisfy monodromy condition in genus g if there exist

hi ∈ ci,1 ≤ i ≤ n, aj , bj ∈ H,1 ≤ j ≤ g,

such that
n

∏
i=1
hi =

g

∏
j=1
[aj, bj].

Remark 2.4. The data µ0, µ∞ are referred to as stacky partitions. The length of µ0, denoted
by l(µ0), is the number of triples in the partition µ0.

The moduli space

M g,I([P1/G], µ0, µ∞)∼
parametrizes stable relative maps of connected twisted curves of genus g to rubber with
ramification profiles µ0, µ∞ over [0/G] and [∞/G] respectively, and additional marked points
whose stack structures are described by I. As noted in [11, Appendix A. 2], rubber theory
in the stack setting may be defined in the same way as e.g. [5, Section 1.5].

Set n = l(µ0)+ l(µ∞)+#I. A Riemann-Roch calculation4 shows that the virtual dimension
of M g,I([P1/G], µ0, µ∞)∼ is

vdimM g,I([P1/G], µ0, µ∞)∼ = 2g − 3 + n.
The moduli space M g,n(BG) of n-pointed genus g stable maps to BG is smooth of dimen-

sion 3g − 3 + n. There is a morphism

ǫ ∶Mg,I([P1/G], µ0, µ∞)∼ Ð→M g,n(BG)
defined by post-composition with [P1/G]→ BG.

Definition 2.5. The stacky double ramification cycle is defined to be the push-forward

DRG
g (A) = ǫ∗[M g,I([P1/G], µ0, µ∞)∼]vir ∈ Ag(M g,n(BG))

Remark 2.6. The cycle DRG
g (A) is supported on the component ofM g,n(BG) parametrizing

stable maps with orbifold structures at marked points given by {c0i} ∪ {c−1∞j} ∪ I.
3For a conjugacy class (g), (g)−1 stands for the conjugacy class (g−1).
4Note that the relative tangent bundle T[P1/G](−[0/G] − [∞/G]) entering the Riemann-Roch formula is in

fact trivial.
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3. Total Chern class

3.1. General case. Let H be a finite group and V = C a one-dimensional H-representation.

The representation H → GL(V ) = C∗ maps a conjugacy class c to exp (2π√−1ac(V )
r(c) ), where

ac(V ) ∈ {0, . . . , r(c) − 1}.
We write Conj(H) for the set of conjugacy classes of H . The inertia stack IBH is decom-

posed as

IBH = ∐
c=(h)∈Conj(H)

BCH(h)
where CH(h) ⊆H is the centralizer of h ∈H .

We write M g,n(BH) for the moduli stack of stable n-pointed genus g maps to BH . For
1 ≤ i ≤ n, there is the i-th evaluation map

evi ∶M g,n(BH)Ð→ IBH.

Pick c1, . . . , cn ∈ Conj(H), let
Mg,n(BH ; c1, . . . , cn) ∶= n

⋂
i=1

ev−1i (BCH(hi)),
where ci = (hi). Denote the universal family as follows:

C
f

//

π
��

BH

M g,n(BH ; c1, . . . , cn)
Consider the virtual bundle

Vg,n ∶=Rπ∗f
∗V,

where V is viewed as a line bundle on BH . The Chern character ch(Vg,n) was calculated
in much greater generality in [10], by using Toën’s Grothendieck-Riemann-Roch formula for
stacks [9]. Applied to the present situation, we find

ch(Vg,n) =π∗(ch(f∗V )Td∨(L̄n+1))(2)

−

n

∑
i=1
∑
m≥1

ev∗i Am
m!

ψ̄m−1i

+
1

2
(π ○ ι)∗ ∑

m≥2

1

m!
r2node(ev∗nodeAm)ψ̄m−1+ + (−1)mψ̄m−1−

ψ̄+ + ψ̄−

The formula is explained and further processed as follows.

● rnode is the order of the orbifold structure at the node.
● evnode is the evaluation map at the node defined in [10, Appendix B].
● ψ̄+ and ψ̄− are the ψ̄-classes associated the the branches of the node.
● Since dimBH = 0, we have

ch(f∗V ) = ch0(f∗V ) = rankV = 1.
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● By definition, the Todd class is

Td∨(L̄n+1) = ψ̄n+1

eψ̄n+1 − 1
=∑
r≥0

Br

r!
ψ̄rn+1,

where Br’s are the Bernoulli numbers. Therefore,

π∗(ch(f∗V )Td∨(L̄n+1)) =∑
r≥0

Br

r!
π∗(ψ̄rn+1)

● Am is defined in [10, Definition 4.1.2]. We have Am ∈ H∗(IBH). For c = (h) ∈
Conj(H), the component of Am in H0(BCH(h)) ⊂ H∗(IBH) is Bm(ac(V )r(c) ). Here

Bm(x) are Bernoulli polynomials, defined by

tetx

et − 1
= ∑
m≥0

Bm(x)
m!

tm.

● The map ι ∶ Znode ↪ C is the inclusion of the locus of the nodes. The last term of the
right hand side of (2) may be rewritten using the map

Bnode

i

↪M g,n(BH ; c1, . . . , cn),
whose image is the locus of nodal curves. The map i exhibits Bnode as the universal
gerbe at the node, and hence degree of i is 1

rnode
.

Given the above, we can write chm(Vg,n), the degree-2m component of ch(Vg,n), as
chm(Vg,n) = Bm+1(m + 1)!π∗(ψ̄m+1n+1 )

+

n

∑
i=1

1

(m + 1)!Bm+1 (aci(V )
r(ci) ) ψ̄mi

+
1

2
∑

c∈Conj(H)

r(c)
(m + 1)!Bm+1 (ac(V )

r(c) ) ζc∗ (
ψ̄m+ − (−ψ̄−)m
ψ̄+ + ψ̄−

)
where ζc ∶ Bnode,c → M g,n(BH ; c1, . . . , cn) is the universal gerbe at the node whose orbifold
structure is given by c.

Using the formula

c(−E●) = exp(∑
m≥1
(−1)m(m − 1)!chm(E●)) , E● ∈Db,

we can derive a formula for c(−Vg,n). To write this down we need more notations.

As in [2], the strata ofM g,n are indexed by stable graphs. The strata ofM g,n(BH ; c1, . . . , cn)
are indexed by stable graphs together with choices of conjugacy classes of H describing
orbifold structures.

Let Gg,n be the set of stable graphs of genus g with n legs. Following [2], a stable graph is
denoted by

Γ = (V,H,L, g ∶ V → Z≥0, v ∶ H → V, ι ∶ H→ H) ∈ Gg,n.

Properties in [2, Section 0.3.2] are required for Γ.
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Remark 3.1. The set of legs L(Γ) corresponds to the set of markings. The set of half edges
H(Γ) corresponds to the union of the set of a side of an edge and the set of legs. Each half
edge is labelled with a vertex v ∈ V(Γ). Each vertex v ∈ V(Γ) is labelled with a nonnegative
integer g(v), called the genus.

Definition 3.2. We define χΓ,H to be the set of maps

χ ∶ H(Γ)→ Conj(H)
such that,

● χ maps the i-th leg hi to ci, 1 ≤ i ≤ n;
● for a vertex v ∈ V(Γ), there exists (αj), (βj) ∈ Conj(H), for 1 ≤ j ≤ g(v), and
kh ∈ χ(h), for h ∈ v, such that

∏
h∈v
kh =

g(v)
∏
j=1
[αj, βj];

● for an edge e = (h,h′) ∈ E(Γ), there exists k ∈ χ(h), k′ ∈ χ(h′), such that

kk′ = Id ∈H.

For each Γ ∈ Gg,n and χ ∈ χΓ,H , there is a component MΓ,χ ⊂ Bnode parametrizing maps
with nodal domains of topological types given by Γ and orbifold structures given by χ. Let

ζΓ,χ ∶MΓ,χ Ð→Mg,n(BH ; c1, . . . , cn)
be the restriction of i to this component. Then c(−Vg,n) is

∑
Γ∈Gg,n

∑
χ∈χΓ,H

1

∣Aut(Γ)∣ζΓ,χ∗
⎡⎢⎢⎢⎢⎣ ∏v∈V (Γ)

exp(−∑
m≥1
(−1)m−1 Bm+1

m(m + 1)κm(v))×

×

n

∏
i=1

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1 (aci(V )
r(ci) ) ψ̄mhi)×

× ∏
e∈E(Γ)
e=(h+,h−)

r(χ(h+)) 1

ψ̄h+ + ψ̄h−

(1 − exp(∑
m≥1

(−1)m−1
m(m + 1)Bm+1 (aχ(h+)(V )

r(χ(h+)) ) (ψ̄mh+ − (−ψ̄h−)m)))
⎤⎥⎥⎥⎥⎥⎥⎦
.

(3)

Remark 3.3.

(i) For a half-edge h, ψ̄h denotes the descendant at the marked point/node corresponding
to h.

(ii) For a vertex v, let M v(BH) be the moduli space of stable maps to BH described
by v and let πv ∶ Cv → M v(BH) be the universal curve. Write ψ̄v ∈ A1(Cv) for
the descendant corresponding to the additional marked point. Then define κm(v) ∶=
πv∗(ψ̄m+1v ).
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3.2. Cyclic extensions. Let r ∈ Z>0, the r-th power map

C∗ Ð→ C∗, z z→ zr

gives the map

µar Ð→ µa.

The kernel of the map is µr. Hence this gives the exact sequence

1Ð→ µr
g
Ð→ µar

f
Ð→ µa Ð→ 1,

where

g (exp(2π
√
−1l

r
)) = exp(2π

√
−1la

ra
) , 0 ≤ l ≤ r − 1,

and

f (exp(2π
√
−1k

ar
)) = exp(2π

√
−1k

a
) , 0 ≤ k ≤ r − 1.

There is a unique finite group G(r) which fits into the following diagram with exact rows and
columns:

(4) 1

��

1

��
µr

��

µr

��
1 // K // G(r) α

//

β

��

µar //

��

1

1 // K // G
ϕ

//

��

µa //

��

1

1 1

Geometrically, the map µar → µa gives a µr-gerbe over Bµa,

Bµar Ð→ Bµa.

The map ϕ ∶ G→ µa gives a map

BGÐ→ Bµa.

Pulling back the µr-gerbe to BG using this map, we obtain the gerbe

(5) BG(r)Ð→ BG.

Moreover, when viewing the representation L as a line bundle on BG, BG(r) is the gerbe of
r-th roots of L → BG. The homomorphism

G(r)Ð→ µar ⊂ C
∗

is a one-dimensional representation of G(r) which corresponds to the universal r-th root of
L on BG(r). We denote this r-th root by

L1/r Ð→ BG(r).
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Let c ∈ Conj(G). Then ϕ(c) ∈ µa is a single number. The inverse image of ϕ(c) under the
r-th power map µar → µa has size r. The inverse image β−1(c) ⊂ G(r) can be partitioned into
conjugacy classes of G(r). Moreover, α maps these conjugacy classes to the set of inverse
images of ϕ(c), which has size r. So there are at least r conjugacy classes in β−1(c). By the
counting result [7, Example 3.4], there are at most r conjugacy classes. Therefore, there are
exactly r conjugacy classes of G(r) that map to c and they are determined by their images

under G(r) α
→ µar.

A canonical splitting of
1Ð→ µr Ð→ µar Ð→ µa Ð→ 1

is given by

(6) µa Ð→ µar, g ↦ exp
⎛
⎝
2π
√
−1 ageg(L)
r

⎞
⎠ .

Using this, for g ∈ µa, we may identify the inverse image of g under µar → µa as

{exp (2π√−1(ageg(L)
r

+
e

r
))∣ 0 ≤ e ≤ r − 1}

and hence with

µr = {exp (2π
√
−1e

r
)∣0 ≤ e ≤ r − 1} .

In summary, given c ∈ Conj(G), to specify the lifting c̃ ∈ Conj(G(r)) such that β(c̃) = c is
equivalent to specifying e ∈ {0, . . . , r − 1}.

Moreover, given c1, . . . , cn ∈ Conj(G) satisfying monodromy condition in genus g, selecting
c̃1, . . . , c̃n ∈ Conj(G(r)) with β(c̃i) = ci satisfying monodromy condition in genus g is equivalent
to selecting e1, . . . , en ∈ {0, . . . , r − 1} such that

(7)
n

∑
i=1
ei ≡ −

n

∑
i=1

ageci(L) mod r

This can be deduced from the lifting analysis in [8, Section 5]. We can also argue more directly
as follows. Since c1, . . . , cn satisfy monodromy condition in genus g, there exists a stable map
f ∶ C → BG with C smooth of genus g and C has orbifold points described by c1, . . . , cn.
Calculating χ(C, f∗L) by Riemann-Roch, we see that ∑ni=1 ageci(L) ∈ Z. Similarly, having

the required c̃1, . . . , c̃n implies the existence of a stable map f̃ ∶ C̃ → BG(r) with C̃ smooth

of genus g and C̃ has orbifold points described by c̃1, . . . , c̃n. Calculating χ(C̃, f̃∗L1/r) by
Riemann-Roch, we see that ∑ni=1 agec̃i(L1/r) ∈ Z. Equation (7) follows because by construction
age

c̃i
(L1/r) = (age

ci
(L) + ei)/r. This shows that equation (7) is necessary. That (7) is also

sufficient can be seen by a direct calculation using the description of G(r) as a set G × µr
endowed with the multiplication defined using the splitting (6), as in [6, Section 3]. We omit
the details.

The above discussion allows us to split a sum over χΓ,G(r) as a double sum over χΓ,G and
the set WΓ,χ,r defined as follows.

Definition 3.4. A weighting mod r associated to a stable graph Γ and a map χ ∈ χΓ,G is a
function

w ∶ H(Γ)Ð→ {0, . . . , r − 1}
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such that

(i) For legs h1, . . . ,hn, w(hi) ≡ 0 mod r.
(ii) For e = (h+,h−) ∈ E(Γ), if ageχ(h+)(L) = 0, then w(h+) + w(h−) ≡ 0 mod r. If

ageχ(h+)(L) ≠ 0, then w(h+) +w(h−) ≡ −1 mod r.
(iii) For v ∈ V(Γ), ∑h∈v w(h) ≡ A(v,χ) mod r, where A(v,χ) ∶= −∑h∈v ageχ(h)(L).

We write WΓ,χ,r for the set of weightings mod r associated to Γ and χ.

Remark 3.5.

(i) For e = (h+,h−) ∈ E(Γ), the conditions on w(h±) ensure that

(ageχ(h−)(L) +w(h−))/r = 1 − (ageχ(h+)(L) +w(h+))/r.
(ii) For v ∈ V(Γ), We have A(v,χ) ∈ Z by applying Riemann-Roch to χ(f∗L), where

f ∶ C → BG is a stable map with C smooth of genus g(v) and orbifold marked points
described by {χ(h)∣h ∈ v}.

3.3. Total Chern class on moduli spaces of stable maps to BG(r). We begin with
the following notations.

Definition 3.6 (Liftings). For {c0i}i,{c∞j}j ⊂ Conj(G), we select liftings

{c̃0i}i,{c̃∞j}j ⊂ Conj(G(r))
by

α(c̃0i) = exp⎛⎝
2π
√
−1 age

c0i
(L)

r

⎞
⎠ ∈ µar,

α(c̃∞j) = exp⎛⎝
2π
√
−1agec∞j

(L)
r

⎞
⎠ ∈ µar,

The lifts of c1, . . . , ck ∈ Conj(K) ⊂ Conj(G) are chosen to be themselves, viewed via Conj(K) ⊂
Conj(G(r)).

Let M g,µ̃0+µ̃∞+I(BG(r)) be the moduli space of stable maps to BG(r) of genus g whose
marked points have orbifold structures given by

{c̃0i} ∪ {c̃−1∞j} ∪ {c1, . . . , ck}.
Let M g,µ+µ∞+I(BG) be similarly defined. There is a natural map

ǫ ∶Mg,µ̃0+µ̃∞+I(BG(r))Ð→Mg,µ0+µ∞+I(BG).
Strata of M g,µ0+µ∞+I(BG) are indexed by pairs Γ ∈ Gg,n and χ ∈ χΓ,G. Let ζΓ,χ be the map

from this stratum to Mg,µ0+µ∞+I(BG). Strata of Mg,µ̃0+µ̃∞+I(BG(r)) are indexed by Γ, χ,

and w ∈WΓ,χ,r. Let ζΓ,χ,w be the natural map from the stratum to M g,µ̃0+µ̃∞+I(BG(r)).
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Applying the results of Section 3.1, we obtain the following formula for c(−L1/r
g,n) on

M g,µ̃0+µ̃∞+I(BG(r)):
∑

Γ∈Gg,n

∑
χ∈χΓ,G

∑
w∈WΓ,χ,r

1

∣Aut(Γ)∣ζΓ,χ,w∗
⎡⎢⎢⎢⎢⎣ ∏v∈V(Γ)

exp(−∑
m≥1
(−1)m−1 Bm+1

m(m + 1)κm(v))×

×∏
i

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1 (agec0i(L)
r

) ψ̄mi )×
×∏

j

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1 (1 − age
c∞j
(L)

r
) ψ̄mj )×

×

k

∏
l=1

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1ψ̄
m
l )

× ∏
e∈E(Γ)
e=(h+,h−)

r(χ(h+))r
ψ̄h+ + ψ̄h−

(1 − exp(∑
m≥1

(−1)m−1
m(m + 1)Bm+1 (ageχ(h+)(L)

r
+
w(h+)
r
)(ψ̄mh+ − (−ψ̄h−)m)))

⎤⎥⎥⎥⎥⎥⎥⎦
.

By the calculation of [8, Section 5], the degree of ǫ on strata indexed by Γ is r∑v∈V (Γ)(2g(v)−1).

This yields the following formula for ǫ∗c(−L1/r
g,n):

∑
Γ∈Gg,n

∑
χ∈χΓ,G

∑
w∈WΓ,χ,r

r2g−1−h
1(Γ)

∣Aut(Γ)∣ ζΓ,χ∗
⎡⎢⎢⎢⎢⎣ ∏v∈V(Γ)

exp(−∑
m≥1
(−1)m−1 Bm+1

m(m + 1)κm(v))×

×∏
i

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1 (agec0i(L)
r

) ψ̄mi )×
×∏

j

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1 (1 − age
c∞j
(L)

r
) ψ̄mj )×

×

k

∏
l=1

exp(∑
m≥1
(−1)m−1 1

m(m + 1)Bm+1ψ̄
m
l )

× ∏
e∈E(Γ)
e=(h+,h−)

r(χ(h+))
ψ̄h+ + ψ̄h−

(1 − exp(∑
m≥1

(−1)m−1
m(m + 1)Bm+1 (ageχ(h+)(L)

r
+
w(h+)
r
)(ψ̄mh+ − (−ψ̄h−)m)))

⎤⎥⎥⎥⎥⎥⎥⎦
.

Note that we have

●
ageχ(h+)

r
+
w(h+)
r
= 1 −

ageχ(h−)(L)
r

−
w(h−)
r

if ageχ(h±)(L) ≠ 0.
●

w(h+)
r
= 1 − w(h−)

r
, if ageχ(h±)(L) = 0.

Bernoulli polynomials satisfy the following property

Bm(x + y) = m

∑
l=0
(m
k
)Bk(x)ym−k.

This implies that terms of ǫ∗c(−L1/r
g,n) depend polynomially on {w(h)∣h ∈ H(Γ)}. The proof of

[2, Proposition 3”] may be modified to show that the polynomiality result remains valid for
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sums over WΓ,χ,r. Therefore we may apply the arguments of [2, Proposition 5] to conclude
the following.

Proposition 3.7. There exists a polynomial in r which coincides with the cycle class r2d−2g+1ǫ∗cd(−L1/r
g,n)

for r ≫ 1 and prime.

Remark 3.8. The orbifold structure at h± has order r(χ(h±))r when r ≫ 1 are primes. For
our purpose this suffices.

3.4. A formula for stacky double ramification cycle.

Theorem 3.9. Given a finite group G and double ramification data A = {µ0, µ∞, I}, the

stacky double ramification cycle DRG
g (A) is the constant term in r of the cycle class

a1−l(µ∞)r ⋅ ǫ∗cg(−L1/r
g,n) ∈ Ag(M g,n(BG)),

for r sufficiently large. In other words,

DRG
g (A) = a1−l(µ∞)Coeffr0[r ⋅ ǫ∗cg(−L1/r

g,n)] ∈ Ag(M g,n(BG))
We denote by PG,d,r

g (A) ∈ Ad(M g,n(BG)) the degree d component of the class

∑
Γ∈Gg,n

∑
χ∈χΓ,G

∑
w∈WΓ,χ,r

1

∣Aut(Γ)∣
1

rh
1(Γ) ζΓ∗ [∏

i

exp(agec0i(L)2ψ̄i)∏
j

exp(agec∞j
(L)2ψ̄j)⋅

∏
e∈E(Γ)
e=(h+,h−)

r(χ(h+))1 − exp((ageχ(h+)(L) +w(h+))(ageχ(h−)(L) +w(h−))(ψ̄h+ + ψ̄h−))
ψ̄h+ + ψ̄h−

⎤⎥⎥⎥⎥⎥⎥⎦
.

When the finite group G is trivial, PG,d,r
g reduces to Pixton’s polynomial in [2]. Arguing as

in the proof of [2, Proposition 5], we see that r2d−2g+1ǫ∗cd(−L1/r
g,n) and 2−dPG,d,r

g (A) have the
same constant term. Then the following corollary is a result of Theorem 3.9.

Corollary 3.10. The stacky double ramification cycle DRG
g (A) is the constant term in r of

a1−l(µ∞)2−gPG,g,r
g (A) ∈ Ag(M g,n(BG)), for r sufficiently large.

4. Localization analysis

In this section, we give a proof of Theorem 3.9 by virtual localization on the moduli space
of stable relative maps to the target obtained from [P1/G] by a root construction.

4.1. Set-up. Let [P1/G]r,1 be the stack of r-th roots of [P1/G] along the divisor [0/G]. By
construction, there is a map [P1/G]r,1 → [P1/G]. Over the divisor [0/G] ≃ BG, this map is
the µr-gerbe BG(r)→ BG studied in Section 3.2.

Let µ0, µ∞, I be as in Definition 2.2. Let µ̃0 = {(c0i, f0i, c̃0i)}i, where c̃0i are given in
Definition 3.6. Let

M g,I,µ0([P1/G]r,1, µ∞)
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be the moduli space of stable relative maps to the pair ([P1/G]r,1, [∞/G]). The moduli space
parametrizes connected, semistable, twisted curves C of genus g with non-relative marked
points together with a map

f ∶ C → P

where P is an expansion of [P1/G]r,1 over [∞/G] such that

(i) orbifold structures at the non-relative marked points are described by µ̃0 and I;
(ii) relative conditions over [∞/G] are described by µ∞.
(iii) The map f satisfies the ramification matching condition over the internal nodes of

the destabilization P .

By [1], M g,I,µ0([P1/G]r,1, µ∞) has a perfect obstruction theory and its virtual fundamental
class has complex dimension

vdimC[Mg,I,µ0([P1/G]r,1, µ∞)]vir = 2g − 2 + n + ∣µ∞∣
r
−

l(µ0)
∑
i=1

agec̃0i(L1/r)
where n = l(µ0) + l(µ∞) +#I and ∣µ∞∣ ∶=∑j c∞j

f∞j

For r >> 1, we have age
c̃0i
(L1/r) = c0i/rf0i. In this case the virtual dimension is 2g − 2 + n.

In what follows, we assume that r is large and is a prime number.

4.2. Fixed loci. The standard C∗-action on P1 is given by

ξ ⋅ [z0, z1] ∶= [z0, ξz1], ξ ∈ C∗, [z0, z1] ∈ P1.

This induces C∗-actions on [P1/G], [P1/G]r,1, and M g,I,µ0([P1/G]r,1, µ∞). The C∗-fixed loci

of M g,I,µ0([P1/G]r,1, µ∞) are labeled by decorated graphs Γ.

Notation 4.1. A decorated graph Γ is defined as follows:

(i) (Graph data)
● V (Γ): the set of vertices of Γ;
● E(Γ): the set of edges of Γ;
● F (Γ): the set of flags of Γ, defined to be

F (Γ) = {(e, v) ∈ E(Γ) × V (Γ)∣v ∈ e};
● L(Γ): the set of legs;

(ii) (Decoration data)
● each vertex v ∈ V (Γ) is assigned a genus g(v), a label of either [0/G(r)] or[∞/G], and a group

Gv ∶= {G(r) if v is over [0/G(r)],
G if v is over [∞/G].

● each edge e ∈ E(Γ) is labelled with a conjugacy class (ke) ⊂ Ge ∶= K and a
positive integer de, called the degree;
● each flag (e, v) is labelled with a conjugacy class (k(e,v)) ⊂ Gv;
● a map s ∶ L(Γ)→ V (Γ) that assigns legs to vertices of Γ;
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● legs are labelled with markings in µ0 ∪ I ∪µ∞. Namely j ∈ L(Γ) is labelled with
a conjugacy class (kj) ⊂ Gv where

{(kj) ∈ {c̃0i}i ∪ I if v is over [0/G(r)]
(kj) ∈ {c∞j}j if v is over [∞/G].

The data above satisfy certain compatibility conditions. We omit them as they do not enter
our analysis.

A vertex v ∈ V (Γ) over [0/G(r)] corresponds to a contracted component mapping to[0/G(r)] given by an element of the moduli space

M v ∶=Mg(v),I(v),µ0(v)(BG(r))
of genus g(v) stable maps to BG(r) such that orbifold structures at marked points are
given by corresponding entries of µ̃0 and (k(e,v))−1 for flags attached to v. The dimension of

M g(v),I(v),µ0(v)(BG(r)) is 3g(v) − 3 +#I(v) + l(µ0(v)) + ∣E(v)∣.
The discussion on fixed stable maps over [∞/G] ∈ [P1/G]r,1 is similar to that in [2, Section

2.3], we omit the details.

Let M
∼
∞ be the moduli space of stable maps to rubber. Its virtual class [M∼

∞]vir has
complex dimension 2g(∞)−3+n(∞), where g(∞) is the domain genus and n(∞) = #I(∞)+
l(µ∞) + ∣E(Γ)∣ is the total number of markings and incidence edges.

We write V S
0 (Γ) for the set of stable vertices of Γ over [0/G(r)]. If the target degenerates,

define
MΓ = ∏

v∈V S
0
(Γ)
Mg(v),I(v),µ0(v)(BG(r)) ×M∼

∞,

If the target does not degenerate, define

MΓ = ∏
v∈V S

0
(Γ)
M g(v),I(v),µ0(v)(BG(r)).

The fixed locus corresponding to Γ is isomorphic the quotient of MΓ quotiented by the
automorphism group of Γ and the product of cyclic groups associated to the Galois covers of
the edges. There is a natural map ι ∶MΓ →M g,I,µ0([P1/G]r,1, µ∞).

Assuming r >> 1, we may argue as in [2, Lemma 6] to conclude that there are only two
types of unstable vertices:

● v is mapped to [0/G], g(v) = 0, v carries one marking and one incident edge;
● v is mapped to [∞/G], g(v) = 0, v carries one marking and one incident edge.

4.3. Contributions to localization formula. By convention, the C∗-equivariant Chow
ring of a point is identified with Q[t] where t is the first Chern class of the standard repre-
sentation.

Let [f ∶ C → [P1/G]r,1] ∈MΓ. The C∗-equivariant Euler class of the virtual normal bundle

in M g,I,µ0([P1/G]r,1, µ∞) to the C∗-fixed locus indexed by Γ can be described as

e(Nvir)−1 = e(H1(C,f∗T[P1/G]r,1(−[∞/G])))
e(H0(C,f∗T[P1/G]r,1(−[∞/G])))(∏i e(Ni))−1e(N∞)−1.



STACKY DOUBLE RAMIFICATION CYCLES 15

Let V S(Γ) be the set of stable vertices in V (Γ). The set of stable flags is defined to be

F S(Γ) = {(e, v) ∈ F (Γ)∣v ∈ V S(Γ)}.
We have

(8) [Mg,I,µ0([P1/G]r,1, µ∞)]vir =∑
Γ

1

∣Aut(Γ)∣
1

∏e∈E(Γ) de∣Ge∣
⎛
⎝ ∏
(e,v)∈FS(Γ)

∣Gv∣
r(e,v)

⎞
⎠ ι∗ (

[MΓ]vir
e(Nvir))

where r(e,v) is the order of k(e,v) ∈ Gv.

The localization contributions are given as follows.

(i) Contributions to
e(H1(C,f∗T[P1/G]r,1(−[∞/G])))
e(H0(C,f∗T[P1/G]r,1(−[∞/G]))) .

(a) For each stable vertex v ∈ V (Γ) over 0, the contribution is

cC
∗

rk ((−L1/r(v))) =∑
d≥0
cd(−L1/r

g,n)( t

r(e, v))
g(v)−1+∣E(v)∣−d

.

Here r(e, v) = ∣Gv ∣
∣Ge∣
= ar, and the virtual rank rk is g(v)− 1 + ∣E(v)∣. This follows

from Riemann-Roch together with the observation that because r >> 1, the age
terms in Riemann-Roch add up to ∣E(v)∣.

(b) The two possible unstable vertices contribute to 1.
(c) The edge contribution is trivial because r >> 1.
(d) The contribution of a node N over [0/G(r)] is trivial.
(e) Nodes over [∞/G] contribute 1.

(ii) Contributions to ∏i e(Ni).
The product∏i e(Ni) is over all nodes over [0/G(r)] formed by edges of Γ attaching

to vertices. If N is such a node, then

e(N) = t

r(e,v)de
−

ψe

r(e,v)
.

Hence, the contribution of this stable vertex v is:

∏
e∈E(v)

1
t

r(e,v)de
−

ψe

r(e,v)

∑
d≥0
cd(−L1/r

g,n)( t

r(e, v))
g(v)−1+∣E(v)∣−d

.

(iii) Contributions to e(N∞).
If the target degenerates, there is an additional factor

1

e(N∞) =
∏e∈E(Γ) der(e,v)

t + ψ∞

4.4. Extraction. The virtual class of the moduli space of rubber maps has non-equivariant
limit, and C∗ acts trivially on M g,n(BG). Therefore the C∗-equivariant push-forward

ǫ∗([M g,I,µ0([P1/G]r,1, µ∞)]vir)
via the natural map

ǫ ∶M g,I,µ0([P1/G]r,1, µ∞)→M g,n(BG)
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is a polynomial in t. Hence its coefficient of t−1 is equal to 0.

Set s = tr, we will extract the coefficient of s0r0 in ǫ∗(t[M g,I,µ0([P1/G]r,1, µ∞)]vir). We
denote the map

ǫ ∶M g(v),I(v),µ(v)(BG(r))→M g(v),n(v)(BG)
We write

ĉd = r
2d−2g(v)+1ǫ∗cd(−L1/r

g,n) ∈ Ad(M g(v),n(v)(BG)),
then by Proposition 3.7, ĉd is a polynomial in r for r sufficiently large. So the operation of
extracting the coefficient of r0 is valid.

We have

ǫ∗(t[M g,I,µ0([P1/G]r,1, µ∞)]vir)
=
s

r
⋅∑

Γ

1

∣Aut(Γ)∣
1

∏e∈E(Γ) de∣Ge∣ ∏
(e,v)∈FS(Γ)

∣Gv∣
r(e,v)

ǫ∗ι∗ ([MΓ]vir
e(Nvir)) ,

where ǫ∗ι∗ ( [MΓ]
vir

e(Nvir) ) is the product of the following factors:

(i) For each stable vertex v ∈ V (Γ) over 0, the factor is

r

s
∏

e∈E(v)

r(e,v)

r

de

1 − rde
s
ψe
∑
d≥0
ĉds

g(v)−d
⋅ a−g(v)+1−E(v)+d.

Each edge contributes a factor
r(e,v)

r
which cancels with the factor ∣Gv ∣

r(e,v)
=

r∣G∣
r(e,v)

in

equation (8) which comes from the contribution of the automorphism group of the
node labelled by (k(e,v))−1. Therefore, we have at least one positive power of r for
each stable vertex of the graph over 0.

(ii) When the target degenerates, there is a factor

−
r

s
⋅

∏e∈E(γ) der(e,v)

1 + r
s
ψ∞

we have at least one positive power of r when the target degenerates.

There are only two graphs which have exactly one r factor in the numerator:

● the graph with a stable vertex of genus g over 0 and l(µ∞) unstable vertices over ∞;
● the graph with a stable vertex of genus g over ∞ and l(µ0) unstable vertices over 0.

Therefore, the r0 coefficient is

Coeffr0[ǫ∗(t[M g,I,µ0([P1/G]r,1, µ∞)]vir)]
=
∣G∣l(µ0)
∣Ge∣l(µ0) ⋅Coeffr0[∑d≥0 ĉds

g−d
⋅ a−g+1−l(µ0)+d] − ∣G∣l(µ∞)∣Ge∣l(µ∞)DRG

g (A)
To extract the coefficient of s0, we take d = g,

Coeffr0s0[ǫ∗(t[M g,I,µ0([P1/G]r,1, µ∞)]vir)] = ∣G∣l(µ0)∣Ge∣l(µ0) ⋅Coeffr0[ĉg ⋅ a1−l(µ0)] −
∣G∣l(µ∞)
∣Ge∣l(µ∞)DRG

g (A)
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By the vanishing of Coeffr0s0[ǫ∗(t[M g,I,µ0([P1/G]r,1, µ∞)]vir)], we have

DRG
g (A) = a1−l(µ∞)Coeffr0[r ⋅ ǫ∗cg(−L1/r

g,n)] ∈ Ag(M g,n(BG)).
The proof is complete.
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